WO2017071587A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2017071587A1
WO2017071587A1 PCT/CN2016/103406 CN2016103406W WO2017071587A1 WO 2017071587 A1 WO2017071587 A1 WO 2017071587A1 CN 2016103406 W CN2016103406 W CN 2016103406W WO 2017071587 A1 WO2017071587 A1 WO 2017071587A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
cell
cells
frequency
base station
Prior art date
Application number
PCT/CN2016/103406
Other languages
English (en)
French (fr)
Inventor
张鹏程
李小捷
宋照红
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112018008399-2A priority Critical patent/BR112018008399A2/zh
Priority to JP2018521943A priority patent/JP6675618B2/ja
Priority to EP16859022.2A priority patent/EP3361770B1/en
Priority to ES16859022T priority patent/ES2790524T3/es
Publication of WO2017071587A1 publication Critical patent/WO2017071587A1/zh
Priority to US15/963,735 priority patent/US10879976B2/en
Priority to SA518391460A priority patent/SA518391460B1/ar

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a communication method and apparatus.
  • the cellular communication network is the main networking mode of the mobile communication system.
  • the communication network capacity needs to be greatly increased to meet the needs of users.
  • a multi-sector networking mode can be adopted for networking.
  • each base station is equipped with a plurality of directional antennas, and the orientations of the plurality of directional antennas are different, and the coverage area of one base station is divided into multiple physical sectors, and each physical sector has its own And transmitting and receiving antennas, the base station is configured with one cell for each physical sector, and each cell is configured with radio resources, and the base station allocates radio resources of each cell to the user equipment residing in the cell, and then forms a beam shape.
  • the method uses the directional antenna corresponding to the cell to align the beam with the user equipment, so that the data carried on the radio resource allocated to the user equipment is sent to the corresponding user equipment by using the beam. Since the orientation of the directional antennas corresponding to each cell is different, that is, the directions of the radiated beams are different, these cells can adopt the same or similar frequency bands without interfering with each other, so that the spectrum resources can be reused, and the network capacity is improved.
  • the embodiment of the invention provides a communication method and device, and the technical solution is as follows:
  • an embodiment of the present invention provides a communication method, where the method includes:
  • the base station divides the coverage area of the first antenna into at least two cells, and the base station performs weighting processing on data carried on the time-frequency resources of the at least two cells, and the base station performs the weighted processing on the at least two
  • the data carried on the time-frequency resource of the cell is combined to obtain the combined data;
  • the base station transmits at least two directional beams through the first antenna, and the at least two directional beams are used to send the combined data,
  • the orientations of the at least two directional beams are different, the at least two directional beams are in one-to-one correspondence with the at least two directional beams, and the beam direction of the at least two directional beams is determined by the base station according to the directional beam Orienting the location distribution of all the terminals in the corresponding cell; or, the base station transmits a directional beam by using the first antenna, where the one directional beam is used to send the combined data, where the directional beam
  • the beam direction is directed by the base station according to the location
  • the base station transmits data of at least two cells by using at least two beams that are transmitted by the first antenna, and at least two beams that are transmitted by the first antenna are separated from at least two of the first antenna coverage areas.
  • the cells are configured one by one, and each of the cells is configured with its own transmission bandwidth. For a coverage area of an antenna, the total transmission bandwidth that can be used is significantly increased, thereby achieving an increase in network capacity.
  • the base station performs weighting processing on data carried on time-frequency resources of the at least two cells, including:
  • the base station multiplies the data carried on the time-frequency resource of each cell by the directional beam weight vector of the local cell, and obtains the data that the time-frequency resource maps to each channel of the first antenna.
  • the base station multiplies the data carried on the time-frequency resource of each cell by the directional beam weight vector of the local cell, to obtain the time-frequency resource mapping to the Data on each channel of an antenna, including:
  • the base station multiplies the data carried on the time-frequency resource of each cell by the cell beam weight vector of the local cell, and the cell beam weight vector is used to form a coverage corresponding to the corresponding cell or cover the corresponding corresponding cell.
  • the base station multiplies the data carried on the time-frequency resource block of each cell by the service beam weight vector of the local cell, and the service beam weight vector is used to form a directional beam that is aligned with the terminal in the local cell.
  • the base station multiplies the data carried on the time-frequency resources of each cell by different directional beam weight vectors, and finally forms a directional beam of the coverage cell or a directional beam of the aligned terminal according to actual needs.
  • the directional beam weight vector is further used to control the transmit power of the directional beam, and the transmit power is determined according to a network key performance indicator KPI.
  • the key performance indicators include terminal distribution, service type, and traffic load in the cell.
  • the performing, by the base station, the data carried on the time-frequency resources of the at least two cells including:
  • the data of the same frequency point is processed according to the following formula: (s1+s2+...+Sn)*e jw0t , where n represents a cell covered by the first antenna Number, n ⁇ 2, S1 ⁇ Sn represent signals from each cell, w0 is frequency information of S1 ⁇ Sn, and e jw0t means modulation of signal to carrier of frequency w0;
  • At least two cells covered by the same antenna may use the same frequency band or non-overlapping frequency bands.
  • an embodiment of the present invention provides a communication method, where the method includes:
  • the base station divides a coverage area of the second antenna into at least two cells, the base station has at least one antenna, and the second antenna is any one of the at least one antenna;
  • the base station processes signals received by all channels of the second antenna to obtain received data of the at least two cells.
  • the base station receives signals of at least two cells by using the second antenna, and the cells are all configured with their own transmission bandwidth, and the total transmission bandwidth that can be used is significantly increased for the coverage area of one antenna, thereby Achieved an increase in network capacity.
  • the receiving, by the base station, the signals received by the all the channels of the second antenna, and obtaining the received data of the at least two cells including:
  • the base station performs signals on all channels of the second antenna in units of cells. Single cell processing; or,
  • the base station simultaneously performs joint detection processing on signals received by all channels of the second antenna.
  • the base station can process the signals received by the second antenna in an inaccessible manner to obtain received data of at least two cells.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes: a module for performing the method of the first aspect.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes: a module for performing the method of the second aspect.
  • an embodiment of the present invention provides a communication device, where the device includes: a memory, a communication interface, and a processor connected to a memory and a communication interface, where the memory is used to store an instruction, and the processor is configured to execute the An instruction to communicate under control of the processor.
  • the method of the first aspect may be performed when the processor executes the instructions.
  • an embodiment of the present invention provides a communication device, where the device includes: a memory, a communication interface, and a processor connected to the memory and the communication interface, where the memory is used to store an instruction, and the processor is configured to execute the An instruction to communicate under control of the processor.
  • the method of the second aspect can be performed when the processor executes the instructions.
  • an embodiment of the present invention provides a computer readable medium for storing program code for execution by a communication device, the program code comprising instructions for performing the method of the first aspect.
  • an embodiment of the present invention provides a computer readable medium for storing program code for storing program code for execution by a communication device, the program code comprising instructions for performing the method of the second aspect.
  • the base station transmits data of at least two cells by using the first antenna to transmit different at least two beams, and the at least two beams transmitted by the first antenna are in one-to-one correspondence with at least two cells divided by the first antenna coverage area, and the cells Both are equipped with their own transmission bandwidth.
  • the total transmission bandwidth that can be used is significantly increased, thereby achieving an increase in network capacity.
  • the embodiment of the present invention implements the orientation of the beam covering the cell by processing the baseband signal, and thus can be implemented based on the existing base station antenna structure without increasing the hardware cost of the antenna system.
  • 1a is a schematic diagram of a networking structure provided by the prior art
  • FIG. 1b is a schematic structural diagram of a networking provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of another communication method according to an embodiment of the present invention.
  • 4a is a schematic diagram of beams of two cells according to an embodiment of the present invention.
  • 4b is a schematic diagram of frequency configuration of two cells according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present invention.
  • the cellular communication system of the embodiment of the present invention includes but is not limited to: Global System of Mobile communication (“GSM”) system, Code Division Multiple Access (“CDMA”). System, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) ”) System, LTE Frequency Division Duplex (“FDD”) system, LTE Time Division Duplex (“TDD”), Universal Mobile Telecommunication System (Universal Mobile Telecommunication System, referred to as "UMTS”), Worldwide Interoperability for Microwave Access (“WiMAX”) communication system, and the like.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a base station may implement an omnidirectional antenna to implement cell coverage, or a plurality of directional antennas may be used to implement cell coverage.
  • the embodiment of the present invention will be described in detail with a base station that implements cell coverage by using a 120-degree directional antenna. That is, one base station is configured with three directional antennas, and the three directional antennas have different directions, and each antenna covers a range of 120°.
  • the directional antenna in the embodiment of the present invention may be a single antenna, or may be a smart antenna composed of multiple antenna units.
  • FIG. 1a shows an existing three-sector cellular networking mode.
  • a triangle represents a base station.
  • the coverage of the base station is divided according to a hexagon, and each hexagon corresponds to one cell.
  • the base stations are arranged at three common intersections of hexagons, one directional antenna corresponds to one cell (ie one hexagon), and one base station can cover three cells. Assume that the transmission bandwidth of these three cells is configured as a megabyte.
  • Fig. 1b shows the cellular network structure of the present invention.
  • a triangle is also used to represent the base station, and a thick black line extending from a triangle in Fig. 1b indicates the antenna.
  • the base station 4 has three directional antennas 1a, 1b and 1c, and the base station 4 is arranged in the middle area of the hexagon 10, and the coverage area of each directional antenna is divided into two.
  • the cell for example, the coverage area of the directional antenna 1a is divided into cells 11a, 11b, so that the base station 1 can cover 6 cells (corresponding to 7 hexagons).
  • the cells 11a, 11b are not regular hexagons, but when a plurality of cells are formed together, they can be quantized into hexagons to form a plurality of standard cell sets.
  • one directional antenna can generate beams in two directions, and one direction of the beam covers one cell, so that one directional antenna can cover Two cells.
  • the coverage area of one antenna can cover two cells, wherein the transmission bandwidth of each cell can be separately configured (for example, configured as a megabit), and the transmission bandwidth of the coverage area of the directional antenna is 2a megabytes, which is twice the transmission bandwidth (a megabit) of the coverage area of one antenna shown in Fig. 1a, that is, the transmission bandwidth is doubled in the coverage area of one antenna, and it is easy to know that the transmission bandwidth is larger.
  • the networking mode shown in Figure 1b significantly increases the system capacity of the communication system.
  • one directional antenna in the cellular networking mode shown in FIG. 1b, one directional antenna generates beams in two directions, and in other cellular networking modes, one directional antenna can generate beams in more than two directions, for example, three.
  • the beam in four directions is not limited by the present invention; at this time, a directional antenna It can cover 3 cells, 4 cells or more.
  • the transmission bandwidth in the coverage area of one directional antenna is 3a megabytes and 4a megabytes, which is the transmission of the coverage area of one antenna shown in FIG. 1a.
  • the bandwidth (a megabyte) is 3 times, 4 times or more, that is, the system capacity of the communication system is greatly improved compared with the networking mode shown in FIG. 1b.
  • the coverage area of one antenna is divided into multiple cells, and each cell is configured with its own transmission bandwidth, so that the total transmission bandwidth that can be used for the coverage area of the same antenna is significantly increased.
  • the system capacity of the communication system can be significantly improved, and the embodiment of the present invention implements the orientation of the beam covering the cell by processing the baseband signal, and thus can be implemented based on the existing base station antenna structure without increasing the hardware cost of the antenna system.
  • FIG. 2 shows a communication method of an embodiment of the present invention, which may be performed by any suitable means, such as by a base station, but the invention is not limited thereto.
  • This method can be applied to a cellular communication system. Referring to Figure 2, the method includes:
  • Step S101 The base station divides the coverage area of the first antenna into at least two cells.
  • each cell is configured with its own cell identifier (such as a physical cell identifier ("PCI”) and a frequency domain resource (ie, a transmission bandwidth).
  • PCI physical cell identifier
  • frequency domain resource ie, a transmission bandwidth
  • the base station has at least one antenna, and the antenna may be a directional antenna or an omnidirectional antenna.
  • the antenna is an omnidirectional antenna, the base station has one antenna; when the antenna is a directional antenna, the base station has at least two antennas, for example, three directional antennas may be provided.
  • the first antenna is any one of the at least one antennas for transmitting data carried on a time-frequency resource of a cell in its coverage area.
  • the bandwidth is a frequency domain resource and the time is a time domain resource.
  • the time-frequency resource in the embodiment of the present invention is from the time domain and the frequency domain. Define the radio resources that the cell uses to transmit data.
  • the frequency domain resources may be described by channel resources, and are generally classified into traffic channel resources and control channel resources.
  • Step S102 The base station performs weighting processing on the data carried on the time-frequency resources of the at least two cells, so as to map the data carried on the time-frequency resources of the at least two cells to the channel of the first antenna.
  • step S102 beamforming of a beam of data carried on a time-frequency resource transmitting two cells can be performed.
  • Step S103 The base station combines the data carried on the time-frequency resources of the at least two cells after the weighting process to obtain the combined data.
  • Step S104 The base station transmits at least two directional beams by using the first antenna, where the at least two directional beams are used for transmitting the combined data, the directions of the at least two directional beams are different, and at least two directional beams and at least two cells are used.
  • the direction of the at least two directional beams is pointed by the base station according to the location distribution of all terminals in the cell corresponding to the directional beam; or the base station transmits a directional beam through the first antenna, and the one directional beam is used for transmitting and combining
  • the data, the beam direction of the one directional beam is directed by the base station according to the location of a single terminal in at least two cells.
  • the first antenna transmits two directional beams, and one directional beam points to the left of one cell. On the side, the other directional beam points to the right side of the other cell; if the terminal is located in the overlapping area of two adjacent cells, the first antenna transmits a directional beam that is aligned with the overlapping area of the two adjacent cells.
  • step S104 may further include:
  • the base station transmits at least two directional beams through the first antenna, the at least two directional beams are used to transmit the combined data, the directions of the at least two directional beams are different, and the at least two directional beams correspond to the at least two cells one by one. At least two directional beams are aligned with one terminal in each corresponding cell. For example, taking two beams corresponding to two cells as an example, one directional beam is aligned with terminal a in cell A, and the other directional beam is aligned with cell B. Terminal b in.
  • the base station sends data of at least two cells by using at least two beams that are transmitted by the first antenna, and at least two beams that are transmitted by the first antenna and at least two cells that are divided by the first antenna coverage area.
  • these cells are all configured with their own transmission bandwidth.
  • the total transmission bandwidth that can be used is significantly increased, thereby achieving an increase in network capacity.
  • the embodiment of the present invention implements the orientation of the beam covering the cell by processing the baseband signal, and thus can be implemented based on the existing base station antenna structure without increasing the hardware cost of the antenna system.
  • the base station can determine whether the first antenna transmits one directional beam or multiple directional beams according to the actual location distribution of the terminal in the cell, which is flexible.
  • FIG. 3 shows another communication method according to an embodiment of the present invention, and the communication method shown in FIG. 3 is further detailed description of the communication method shown in FIG. 2.
  • the method in this embodiment may be implemented based on the networking structure shown in FIG. 1b.
  • an antenna is used to cover two cells as an example for specific description.
  • the two cells are the first cell and the second cell.
  • the present invention is not limited thereto. Referring to Figure 3, the method includes:
  • Step S201 The base station divides the coverage area of the first antenna into two cells.
  • each cell is configured with its own cell identifier (such as a physical cell identifier ("PCI”) and a frequency domain resource (ie, a transmission bandwidth).
  • PCI physical cell identifier
  • frequency domain resource ie, a transmission bandwidth
  • the base station has at least one antenna, and the antenna may be a directional antenna or an omnidirectional antenna.
  • the antenna is an omnidirectional antenna, the base station has one antenna; when the antenna is a directional antenna, the base station has at least two antennas, for example, three directional antennas may be provided.
  • the first antenna is any one of the at least one antennas for transmitting data carried on a time-frequency resource of a cell in its coverage area.
  • the bandwidth is a frequency domain resource and the time is a time domain resource.
  • the time-frequency resource in the embodiment of the present invention is from the time domain and the frequency domain. Define the radio resources that the cell uses to transmit data.
  • the frequency domain resources may be described by channel resources, and are generally classified into traffic channel resources and control channel resources.
  • control channel resources include common control channel resources and user class control channel resources.
  • the public control channel resources mainly include a physical broadcast channel (PBCH), a primary synchronization channel, a secondary synchronization channel, and a physical downlink control channel (PDCCH).
  • the class control resources mainly include a PDCCH and a Physical Hybrid ARQ Indicator Channel (PHICH).
  • PBCH physical broadcast channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • the present invention is not limited thereto. In other communication systems, only control channel resources and user channel resources may be distinguished. Without further differentiation of control channel resources.
  • Step S202 The base station performs weighting processing on the data carried on the time-frequency resources of the two cells to map the data carried on the time-frequency resources of the two cells to the channel of the first antenna.
  • step S202 the beam of the data carried on the time-frequency resource transmitting the two cells can be beamformed.
  • the step S202 may include:
  • the base station multiplies the data carried on the time-frequency resources of each cell by the directional beam weight vector of the current cell, and obtains the data of the time-frequency resources mapped to the respective channels of the first antenna.
  • the first antenna transmits data carried on time-frequency resources of each cell, beams with different directions are formed.
  • the number of weights in the directional beam weight vector of each cell is the same as the number of antenna channels and is set in one-to-one correspondence.
  • the directional beam weight vector is also used to control the transmit power of the directional beam.
  • the transmit power is set according to the key performance indicator (KPI) of the network, where the KPI includes the terminal distribution and service type in the cell. , traffic load, etc.
  • KPI key performance indicator
  • the directional beam weight vector corresponding to the transmit power is determined, so that the directional beam achieves optimal coverage and capacity gain.
  • the base station multiplies the data carried on the time-frequency resource of each cell by the directional beam weight vector of the current cell, and obtains the data of the time-frequency resource mapped to each channel of the first antenna, which may include:
  • the base station multiplies the data carried on the time-frequency resources of each cell by the cell beam weight vector of the local cell, and the cell beam weight vector is used to form a directional beam covering the corresponding (partial or all) cells of the respective cells;
  • the base station multiplies the data carried on the time-frequency resource block of each cell by the service beam weight vector of the local cell, and the service beam weight vector is used to form a directional beam that is aligned with the terminal in the local cell.
  • the cell beam weight vector is generated according to the basic array pattern of the antenna, the beam pointing, the main lobe width, and the side lobe suppression.
  • the antenna can form multiple independent beams that are complementary to the upper area.
  • the determination of the cell beam weight vector can be adjusted according to the antenna index, which is not limited by the present invention.
  • the cell beam weight vector of the two cells may be set to an orthogonal form, so that the beam coherence covering the two cells is very small, that is, the overlap between the beams is small.
  • the service beam weight vector is the beam weight obtained by decomposing the channel feature of the terminal allocated by the time-frequency domain resource in the cell; or the service beam weight vector is the weight code fed back by the terminal allocated by the time-frequency domain resource in the cell. this.
  • the following takes an 8-channel antenna as an example to illustrate that the directional coverage of broadcast signals of two cells is implemented by setting a cell beam weight vector of two cells.
  • the time-frequency resource is composed of multiple time-frequency resource blocks, and the time-frequency resource block is the smallest unit of resource scheduling in the LTE system.
  • Weighting For the data on each time-frequency resource block, the following formula can be specifically used. Weighting:
  • (n s , k, l) is the index of the time-frequency resource block
  • n s represents the time slot
  • k represents the carrier
  • l represents the symbol
  • the resource block can be uniquely identified by the index (n s , k, l)
  • Y i (n s , k, l) indicates that the time-frequency resource block (n s , k, l) corresponds to the data of the i-th channel
  • n is the cell label
  • Sector n represents the cell n
  • Data indicating the port m of the cell n (the port of the cell refers to a logical port for transmitting a reference signal of the cell);
  • the weights in the beam weight vector of each cell correspond to the channel of the antenna, and the weight corresponds to which channel, that is, which channel the weighted data is mapped onto.
  • the beam transmitted by the first antenna is as shown in FIG. 4a. As can be seen from FIG. 4a, the first antenna transmits two different beams 51 and 52, and each of the two beams covers one cell. And the overlap between the two beams is small.
  • the 8-channel antenna is taken as an example to illustrate how to time-frequency resources using the joint allocation method and time-frequency resources using the independent allocation method to form a beam that aligns the terminal:
  • n s denotes a time slot
  • k denotes a carrier
  • l denotes a symbol
  • the resource block can be uniquely identified by an index (n s , k, l)
  • the data stream m representing the terminal of the cell X corresponds to the data of the time-frequency resource block (n s , k, l)
  • Y i (n s , k, l) indicates that the time-frequency resource block (n s , k, l) corresponds to The data of the i-th channel.
  • n s denotes a time slot
  • k denotes a carrier
  • l denotes a symbol
  • the resource block can be uniquely identified by an index (n s , k, l)
  • the data stream m indicating the terminal in the cell n corresponds to the data of the time-frequency resource block (n s , k, l)
  • Y i (n s , k, l) indicates that the time-frequency resource block (n s , k, l) corresponds to The data of the i-th channel.
  • the weight vector (ie, the service beam weight vector) used when aligning the beams of the terminals residing in the two cells may be set according to actual requirements, and the purpose thereof is to align the beam emitted by the antenna with the terminal, and the specific implementation thereof is It is well known to those skilled in the art, and thus the present invention will not be described in detail.
  • the method in this embodiment may further include: the base station allocates time-frequency resources of the two cells.
  • the allocation of time-frequency resources refers to determining the data carried on the time-frequency resources.
  • the time-frequency resource allocated by the base station to the two cells may be implemented by using at least one of the following manners:
  • the time-frequency resources of the two cells are separately scheduled (hereinafter referred to as independent scheduling);
  • the same time-frequency resources in the two cells are used to carry the same data, or two cells are used.
  • One of the same time-frequency resources carries data, and other time-frequency resources in the same time-frequency resource in the two cells do not carry data (hereinafter referred to as joint scheduling).
  • the independent scheduling refers to allocating the time-frequency resources of the cell to the local cell or the terminal residing in the local cell, and the resource scheduling between different cells does not affect each other; for example, the base station allocates the time-frequency resource of the first cell.
  • the first cell is allocated to carry data of the first cell, and the base station allocates time-frequency resources of the second cell to the second cell for carrying data of the second cell.
  • Joint scheduling refers to allocating the same time-frequency resources in two cells to the same terminal (it is easy to know that the terminal resides in one of the two cells); for example, for the first cell and the second cell, terminal A
  • the time-frequency resources of the first cell and the second cell are allocated to the terminal A, and the time-frequency resources of the first cell and the second cell are used for the bearer transmission to the bearer.
  • Terminal A data is
  • the joint scheduling means that for the same time-frequency resource, only one of the two cells uses the time-frequency resource, and the other cell does not use the time-frequency resource; for example, for the first cell and the second cell, the terminal A is in the overlapping area of the first cell and the second cell.
  • the time-frequency resource of the first cell is allocated to the terminal A, and is used to carry the data sent to the terminal A, and the time-frequency resource of the second cell is vacated. Do not use.
  • Joint scheduling is typically used to allocate resources to terminals in overlapping areas of two cells, which can reduce channel interference between terminals within overlapping coverage of two neighboring cells. It is easy to know that, ideally, the overlapping area of the two cells is small or even there is no overlapping area. In this case, the control channel resources can be allocated only in an independent allocation manner.
  • Step S203 The base station combines the data carried on the time-frequency resources of the two cells after the weighting process to obtain the combined data.
  • two cells may use the same frequency band, and two cells may also adopt frequency bands that do not overlap each other to achieve the scheduling effect of inter-frequency interference coordination.
  • the working frequency bands of the two cells can be set in the following two ways:
  • the base station 2 is configured with three directional antennas, and each directional antenna corresponds to two cells, wherein one cell adopts a frequency point of f0 and another cell adopts The frequency of the frequency is f1, and the adjacent cells adopt different frequency points;
  • a frequency band set is set, and the frequency band set includes a plurality of different frequency bands, and the base station dynamically selects the frequency band used by the cell from the frequency band set.
  • This step S203 can be implemented as follows:
  • the data of the same frequency point is processed according to the following formula: (s1+s2+...+Sn)*e jw0t , where n represents the number of cells covered by the first antenna, n ⁇ 2, S1 to Sn represent signals from respective cells, w0 is frequency information of S1 to Sn, and e jw0t indicates that the signal is modulated onto a carrier of frequency w0;
  • the data of different frequency points are processed according to the following formula: S1*e jw1t + S2*e jw2t + ... +Sn*e jw3t , where n represents the first antenna coverage
  • S1 to Sn represent signals from each cell
  • w1 is the frequency information of S1
  • w2 is the frequency information of S2
  • wn is the frequency information of Sn
  • e jwnt represents the modulation of the signal Go to the carrier with frequency wn.
  • the method may include:
  • the data of each cell is first weighted according to the foregoing step S202, and mapped to the corresponding antenna channel. Then, the data mapped by each channel is separately framing, and the frame data of each channel in each cell is obtained. Next, the frame data of each channel in each cell obtained is subjected to Inverse Fast Fourier Transform ("IFFT") processing. Finally, the IFFT-processed frame data on the same channel is subjected to power normalization and addition processing, and then subjected to medium-frequency processing, and then radiated to the air interface through the antenna.
  • IFFT Inverse Fast Fourier Transform
  • the power normalization and summation processing includes two processes of power normalization processing and addition processing, and the sequence thereof is not limited in this embodiment, and may be normalized first, then added, or first. Add and process, and then normalize.
  • power normalization processing on the data can prevent the power of the remote radio unit from being over-limit caused by the excessive power of the digital domain.
  • the method may include:
  • the data carried on the time-frequency resources of the two cells are simultaneously framing in units of channels, and frame data of two cells is obtained.
  • the data of each cell is first weighted according to the above step S202, and mapped to the corresponding antenna channel. Then, map the two cells to the number on the same antenna channel According to the framing, frame data of two cells is obtained. Finally, the frame data of the two cells are subjected to IFFT processing and intermediate radio frequency processing, and then radiated to the air interface through the antenna.
  • This implementation is applicable to the case where multiple cells use the same frequency band.
  • step S203 specifically includes:
  • the method may include:
  • the frequency-frequency resource carrying the frame data of each cell is subjected to frequency conversion combining processing.
  • the data of each cell is first weighted according to the foregoing S202, and mapped to the corresponding antenna channel. Then, the data mapped by each channel is separately framing, and the frame data of each channel in each cell is obtained. Then, the obtained frame data of each channel in each cell is subjected to IFFT processing, and the frame data of the two cells after the IFFT processing is subjected to intermediate frequency multi-carrier combining processing. Finally, the frame data processed by the intermediate frequency multi-carrier combining method is subjected to radio frequency processing, and then radiated to the air interface through the antenna.
  • the intermediate frequency multi-carrier combining processing refers to up-converting carriers of two cells, and then combining the carriers after up-conversion. Combining means combining signals from different frequency bands together.
  • This implementation is applicable to the case where two cells adopt frequency bands that do not overlap each other.
  • Step S204 The base station transmits two directional beams through the first antenna, where the two directional beams are used to transmit the combined data, the directions of the two directional beams are different, and the two directional beams and the two cells are in one-to-one correspondence;
  • the base station transmits a directional beam through the first antenna, and the one directional beam is used to transmit the combined data, and the beam direction of the one directional beam is pointed by the base station according to the location of a single terminal in the at least two cells.
  • the direction of the at least two directional beams may be pointed by the base station according to the location distribution of all terminals in the cell corresponding to the directional beam, or may be determined by the base station according to the cell corresponding to the directional beam. The position distribution of a single terminal in the direction is pointed.
  • the two directional beams formed respectively cover respective corresponding cells or cover a partial region of the corresponding cell (for example, the middle or the left or the right).
  • the situation is that the direction is distributed according to the location distribution of all the terminals in the cell corresponding to the directional beam; when the antenna transmits the data processed by the weighting of the service beam weights, the two directional beams formed are aligned respectively.
  • the terminal in the cell in this case, is directed according to the location distribution of a single terminal in the cell corresponding to the directional beam.
  • Step S205 The base station receives the signal through the first antenna. This step 205 is an optional step.
  • Step S206 The base station processes signals received by all channels of the first antenna to obtain received data of two cells. This step S206 is an optional step.
  • the base station sends data of at least two cells by using at least two beams that are transmitted by the first antenna, and at least two beams that are transmitted by the first antenna and at least two cells that are divided by the first antenna coverage area.
  • these cells are all configured with their own transmission bandwidth.
  • the total transmission bandwidth that can be used is significantly increased, thereby achieving an increase in network capacity.
  • the embodiment of the present invention implements the orientation of the beam covering the cell by processing the baseband signal, and thus can be implemented based on the existing base station antenna structure without increasing the hardware cost of the antenna system.
  • the base station can determine whether the first antenna transmits one directional beam or multiple directional beams according to the actual location distribution of the terminal in the cell, which is flexible.
  • FIG. 5 shows still another communication method according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step S301 The base station divides the coverage area of the second antenna into at least two cells.
  • the base station has at least one antenna, and the antenna may be a directional antenna or an omnidirectional antenna.
  • the antenna is an omnidirectional antenna, the base station has one antenna; when the antenna is a directional antenna, the base station has at least two antennas, for example, three directional antennas may be provided.
  • the second antenna is any one of the at least one antennas for receiving data carried on a time-frequency resource of a cell in its coverage area.
  • the second antenna and the first antenna in the embodiment shown in FIG. 2 or FIG. 3 may be the same antenna.
  • Step S302 The base station receives the signal through the second antenna.
  • Step S303 The base station processes signals received by all channels of the second antenna to obtain received data of at least two cells.
  • the step S303 can include:
  • the base station performs single cell processing on the signals received by all channels of the second antenna in units of cells;
  • the base station simultaneously performs at least two cell processing on the signals received by all channels of the second antenna.
  • the base station performs single cell processing on the signals received by all channels of the second antenna in units of cells, including:
  • the base station uses the resource allocation parameters of each cell to process the signals received by all the channels of the second antenna to obtain the received data of each cell. For example, the base station uses the resource allocation parameters of the first cell to perform the signals received by all the channels. Processing, obtaining the received data of the first cell; then, the base station uses the resource allocation parameter of the second cell to process the signals received by all the channels again, The received data of the second cell is obtained.
  • the resource allocation parameter of the cell is used to indicate the allocation status of the time-frequency resource allocation of the cell.
  • the single cell processing is applicable to a case where adjacent cells allocate the same time-frequency resources to terminals in respective cells.
  • the base station uses the resource allocation parameters of all the cells to perform joint detection processing on the signals received by all the channels of the second antenna.
  • the joint detection process means that the base station uses the resource allocation parameters of all cells and simultaneously receives all the channels of the second antenna.
  • the signals are processed to obtain received data for each cell.
  • the resource allocation parameter of the first cell and the resource allocation parameter of the second cell simultaneously process the signals received by all the channels to obtain the received data of the first cell and the second cell.
  • the joint processing is applicable to a case where a neighboring cell allocates the same time-frequency resource to a terminal in a respective cell, or a case in which a terminal of only one cell in a neighboring cell uses a certain time-frequency resource.
  • the joint detection process can employ interference suppression combining techniques.
  • the second antenna in this embodiment may be the same antenna as the first antenna in the embodiment shown in FIG. 2 and FIG. 3, or may be independent and different antennas.
  • the base station uses the second antenna to receive signals of at least two cells, and each of the cells is configured with its own transmission bandwidth. For a coverage area of one antenna, the total transmission bandwidth that can be used is significantly increased, thereby realizing The increase in network capacity. Moreover, the base station can process the signals received by the second antenna in a manner that is not available, and obtain received data of at least two cells, which has wide applicability.
  • FIG. 6 shows a communication device provided by an embodiment of the present invention.
  • the communication device may be a base station.
  • the communication device includes:
  • the processing module 401 is configured to divide the coverage area of the first antenna of the base station into at least two cells, the base station has at least one antenna, the first antenna is any one of the at least one antenna, and the time of the at least two cells
  • the data carried on the frequency resource is weighted to map the data carried on the time-frequency resource of the at least two cells to the channel of the first antenna; and the data carried on the time-frequency resource of the at least two cells after the weighting process Merging to obtain the combined data;
  • the transmitting module 402 is configured to transmit, by using the first antenna, at least two directional beams, where the at least two directional beams are used to transmit the combined data, the directions of the at least two directional beams are different, and the at least two directional beams and the at least two
  • the one-to-one correspondence of the cells the beam directions of the at least two directional beams are directed according to the position distribution of all the terminals in the cell corresponding to the directional beam; or one directional beam is transmitted through the first antenna, and one directional beam is used to transmit the combined data.
  • the beam direction of a directional beam is directed according to the location of a single terminal in at least two cells.
  • the transmitting module 402 is further configured to transmit, by using the first antenna, at least two directional beams, where the at least two directional beams are used to send the combined data, the orientations of the at least two directional beams are different, and at least two orientations are used.
  • the beam is in one-to-one correspondence with at least two cells, and at least two directional beams are aligned with one terminal in the corresponding cell. For example, taking two beams corresponding to two cells as an example, one directional beam is aligned with the terminal a in the cell A. Another directional beam is directed to terminal b in cell B.
  • the base station sends data of at least two cells by using at least two beams that are transmitted by the first antenna, and at least two beams that are transmitted by the first antenna and at least two cells that are divided by the first antenna coverage area.
  • these cells are all configured with their own transmission bandwidth.
  • the total transmission bandwidth that can be used is significantly increased, thereby achieving an increase in network capacity.
  • the embodiment of the present invention implements the orientation of the beam covering the cell by processing the baseband signal, and thus can be implemented based on the existing base station antenna structure without increasing the hardware cost of the antenna system.
  • the base station can determine whether the first antenna transmits one directional beam or multiple directional beams according to the actual location distribution of the terminal in the cell, which is flexible.
  • FIG. 7 shows another communication device according to an embodiment of the present invention.
  • the communication device may be a base station.
  • the communication device includes:
  • the processing module 501 is configured to divide the coverage area of the first antenna of the base station into at least two cells, the base station has at least one antenna, the first antenna is any one of the at least one antenna, and the time of the at least two cells
  • the data carried on the frequency resource is weighted to map the data carried on the time-frequency resources of the at least two cells to the channel of the first antenna, and is used to carry the time-frequency resources of the at least two cells after the weighting process.
  • the data is merged to obtain the combined data;
  • the transmitting module 502 is configured to transmit, by using the first antenna, at least two directional beams, where the at least two directional beams are used to send the combined data obtained by the processing module 501, where the orientations of the at least two directional beams are different, and at least two orientations are used.
  • the beam is in one-to-one correspondence with at least two cells, and the beam directions of the at least two directional beams are directed according to the position distribution of all terminals in the cell corresponding to the directional beam; or, by using the first antenna, one directional beam is used, and one directional beam is used for
  • the merged data obtained by the processing module 501, the beam direction of one directional beam is directed according to the location of a single terminal in at least two cells.
  • the processing module 501 may be specifically configured to: multiply the data carried on the time-frequency resources of each cell by the directional beam weight vector of the local cell, and obtain the time-frequency resource mapping to the first Data on each channel of an antenna.
  • the processing module 501 may be specifically configured to multiply the data carried on the time-frequency resources of each cell by the cell beam weight vector of the local cell, and the cell beam weight vector is used to form a coverage corresponding cell or coverage. a directional beam of a partial region of the corresponding cell; or, for respectively, multiplying data carried on a time-frequency resource block of each cell by a service beam weight vector of the current cell, and the service beam weight vector is used to form an alignment Directional beam of the terminal in the cell.
  • the service beam weight vector may be a beam weight obtained by decomposing the channel feature of the terminal allocated by the time-frequency domain resource in the cell; or the service beam weight vector may be the terminal feedback allocated by the time-frequency domain resource in the cell.
  • Weight codebook may be a beam weight obtained by decomposing the channel feature of the terminal allocated by the time-frequency domain resource in the cell; or the service beam weight vector may be the terminal feedback allocated by the time-frequency domain resource in the cell.
  • the directional beam weight vector may also be used to control the transmit power of the directional beam, and the transmit power is determined according to network key performance indicators.
  • At least two cells may adopt the same frequency band or at least two cells may adopt frequency bands that do not overlap each other.
  • processing module 501 may be specifically configured to:
  • the data of the same frequency point is processed according to the following formula: (s1+s2+...+Sn)*e jw0t , where n represents the number of cells covered by the first antenna, N ⁇ 2, S1 to Sn represent signals from respective cells, and w0 is frequency information of S1 to Sn;
  • the base station sends data of at least two cells by using at least two beams that are transmitted by the first antenna, and at least two beams that are transmitted by the first antenna and at least two cells that are divided by the first antenna coverage area.
  • these cells are all configured with their own transmission bandwidth.
  • the total transmission bandwidth that can be used is significantly increased, thereby achieving an increase in network capacity.
  • the embodiment of the present invention implements the orientation of the beam covering the cell by processing the baseband signal, and thus can be implemented based on the existing base station antenna structure without increasing the hardware cost of the antenna system.
  • the base station can determine whether the first antenna transmits one directional beam or multiple directional beams according to the actual location distribution of the terminal in the cell, which is flexible.
  • FIG. 8 shows still another communication device according to an embodiment of the present invention. As shown in FIG. 8, the communication device includes:
  • the receiving module 601 is configured to receive a signal by using the second antenna
  • the processing module 602 is configured to divide the coverage area of the second antenna into at least two cells, the base station has at least one antenna, and the second antenna is any one of the at least one antenna; all channels processing the second antenna are received
  • the signal is obtained by receiving data of at least two cells.
  • the processing module 602 is specifically configured to perform single-cell processing on the signals received by all channels of the second antenna in units of cells, or to simultaneously combine signals received by all channels of the second antenna. Detection processing.
  • the base station uses the second antenna to receive signals of at least two cells, and each of the cells is configured with its own transmission bandwidth. For a coverage area of one antenna, the total transmission bandwidth that can be used is significantly increased, thereby realizing The increase in network capacity. Moreover, the base station can process the signals received by the second antenna in a manner that is not available, and obtain received data of at least two cells, which has wide applicability.
  • FIG. 9 shows still another communication device according to an embodiment of the present invention.
  • the communication device may be a base station or a part of a base station, such as a BBU.
  • the base station 700 includes at least one antenna 701 and a radio frequency module 702.
  • the BBU 703 is connected to the radio frequency module 702, and the radio frequency module 702 passes The cable is connected to the antenna 701.
  • the BBU 703 outputs a baseband signal to the RF module 702.
  • the RF module 702 converts the baseband signal to the intermediate frequency signal, then converts the intermediate frequency signal to the RF signal, and then employs a power amplifier unit (eg, RF power).
  • the amplifier amplifies the radio frequency signal, and finally transmits the amplified radio frequency signal through the antenna 701.
  • the radio frequency signal from the terminal is transmitted to the radio frequency module 702 via the antenna 701.
  • the radio frequency module 702 first amplifies the radio frequency signal, and then The frequency is converted to an intermediate frequency signal, then converted to a baseband signal, and then the baseband signal is output to the BBU 703.
  • the radio frequency module 702 may include a digital intermediate frequency combining module, a digital to analog converter (DAC), a transceiver module, and a multiple carrier power amplifier (MCPA) module.
  • the BBU 703 transmits a multi-channel digital baseband signal to the digital intermediate frequency combining module, and the digital intermediate frequency combining module uses the digital intermediate frequency technology to perform frequency conversion and combining processing on the processed multi-channel digital baseband signal to obtain a digital intermediate frequency signal.
  • the DAC performs digital-to-analog conversion on the obtained digital intermediate frequency signal and outputs it to the transceiver module.
  • the transceiver module performs the conversion of the intermediate frequency signal to the radio frequency signal.
  • the MCPA amplifies the RF signal converted by the transceiver module, and outputs the amplified RF signal to the antenna 701 for transmission.
  • the BBU 703 includes a communication interface 704, a processor 705, a memory 706, and a communication bus 707.
  • Communication bus 707 is used to implement connection communication between processor 705, memory 706, and communication interface 704.
  • Communication interface 704 implements a communication connection between processor 705 and other modules (e.g., radio frequency module 702, antenna 701), and a coaxial cable or the like can be used.
  • modules e.g., radio frequency module 702, antenna 701
  • coaxial cable or the like can be used.
  • the memory 706 can be used to store software programs and application modules, and the processor 705 executes various functional applications and data processing of the devices by running software programs stored in the memory 706 and application modules.
  • the memory 706 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as dividing a coverage area of the first antenna into at least two cells, etc.), and the like;
  • the storage data area may store data created according to the use of the device (such as data obtained by the base station combining the data carried on time-frequency resources of at least two cells) and the like.
  • the memory 706 may include a high speed RAM (Random Access Memory), and may also include a non-volatile memory such as at least one magnetic disk storage device, a flash memory device, or other volatile solid state. Storage device.
  • Processor 705 is the control center of base station 700, which connects various portions of the entire device using various interfaces and lines, by running or executing software programs and/or application modules stored in memory 706, and recalling data stored in memory 706.
  • the various functions and processing data of the base station 700 are performed to perform overall monitoring of the base station 700.
  • processor 705 can implement partitioning the coverage area of the first antenna of the base station into at least two a cell, the base station has at least one antenna, and the first antenna is any one of the at least one antenna; and weighting data carried on the time-frequency resources of the at least two cells that are divided to perform at least two cells
  • the data carried on the time-frequency resource is mapped to the channel of the first antenna; the data carried on the time-frequency resources of the at least two cells after the weighting process are combined to obtain the combined data; and at least two are transmitted through the first antenna.
  • a directional beam at least two directional beams are used for transmitting the combined data, at least two directional beams have different directions, at least two directional beams are corresponding to at least two cells, and beam directions of at least two directional beams are according to Orienting the location distribution of all terminals in the cell corresponding to the directional beam; or transmitting a directional beam through the first antenna, A directional beam is used to transmit the combined data, and the beam direction of one directional beam is directed according to the position of a single terminal in at least two cells.
  • the processor 705 may be configured to multiply the data carried on the time-frequency resources of each cell by the directional beam weight vector of the current cell, and obtain the data of the time-frequency resources mapped to the respective channels of the first antenna.
  • the processor 705 may be configured to multiply the data carried on the time-frequency resources of each cell by the cell beam weight vector of the local cell, and the cell beam weight vector is used to form a coverage corresponding to each cell or cover each a directional beam of a partial region of the corresponding cell; multiplying the data carried on the time-frequency resource block of each cell by the service beam weight vector of the local cell, and the service beam weight vector is used to form a terminal aligned with the local cell Directional beam.
  • the service beam weight vector may be a beam weight obtained by decomposing the channel feature of the terminal allocated to the time-frequency domain resource in the cell; or the service beam weight vector may be the right of the terminal allocated to the time-frequency domain resource in the cell. Value book.
  • the directional beam weight vector can also be used to control the transmit power of the directional beam, and the transmit power is determined according to network key performance indicators.
  • At least two cells may adopt the same frequency band or at least two cells may adopt frequency bands that do not overlap each other.
  • the processor 705 may implement, when at least two cells adopt the same frequency band, process data of the same frequency point according to the following formula: (s1+s2+...+Sn)*e jw0t , where n represents the first The number of cells covered by one antenna, n ⁇ 2, S1 ⁇ Sn represent signals from each cell, w0 is frequency information of S1 ⁇ Sn, and e jw0t represents modulation of signals to carriers of frequency w0; When two cells adopt frequency bands that do not overlap each other, the data of different frequency points are processed according to the following formula: S1*e jw1t + S2*e jw2t + ...
  • n the coverage of the first antenna
  • S1 ⁇ Sn represent signals from each cell
  • w1 is the frequency information of S1
  • w2 is the frequency information of S2
  • wn is the frequency information of Sn
  • e jwnt represents The signal is modulated onto a carrier of frequency wn.
  • the processor 705 may be configured to divide the coverage area of the second antenna into at least two cells, the base station has at least one antenna, and the second antenna is any one of the at least one antenna; The antenna receives the signal; processes the signals received by all channels of the second antenna to obtain received data of at least two cells.
  • the processor 705 may be configured to perform single-cell processing on signals received by all channels of the second antenna in units of cells, and perform joint detection processing on signals received by all channels of the second antenna.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 706 comprising instructions executable by processor 705 of base station 700 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium that, when executed by a processor of a base station, enables a base station to perform the method of at least one corresponding embodiment of FIGS. 2, 3, and 5.
  • the communication device provided by the foregoing embodiment implements communication, only the division of each functional module described above is illustrated. In an actual application, the function distribution may be completed by different functional modules, that is, the device. The internal structure is divided into different functional modules to perform all or part of the functions described above.
  • the communication device provided by the foregoing embodiment is the same as the embodiment of the communication method, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信方法和装置,属于通信技术领域。所述方法包括:基站将第一天线的覆盖区域划分为至少两个小区;对至少两个小区的时频资源上承载的数据进行加权处理,以将所述至少两个小区的时频资源上承载的数据映射到第一天线的通道上;对至少两个小区的时频资源上承载的数据进行合并;通过第一天线发射至少两个定向波束,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应;或者,通过第一天线发射一个定向波束。本发明通过将一个天线的覆盖区域划分为多个小区且各个小区均配置有自己的传输带宽,从而对于同一根天线的覆盖区域而言,其可以使用的总传输带宽得到了显著增加,进而可以显著提高通信***的***容量。

Description

通信方法和装置
本申请要求于2015年10月29日提交中国专利局、申请号为201510715884.3、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术领域,特别涉及一种通信方法和装置。
背景技术
蜂窝通信网络是移动通信***的主要组网方式,随着移动通信技术的发展,通信网络容量需要大幅提升,以满足用户的需求。
为了提升蜂窝通信网络的网络容量,组网时可以采用多扇区组网方式。在多扇区组网方式中,每个基站配备有多根定向天线,这多根定向天线的指向不同,将一个基站的覆盖区域划分为多个物理扇区,每个物理扇区都有自己的发射和接收天线,基站对应每个物理扇区配置一个小区,每个小区配置有无线资源,基站将每个小区的无线资源分配给驻留在本小区的用户设备,然后通过波束赋形的方式采用本小区对应的定向天线将波束对准用户设备,从而通过该波束将分配给用户设备的无线资源上承载的数据发送给对应的用户设备。由于每个小区对应的定向天线的指向不同,即辐射的波束的方向不同,所以这些小区可以采用相同或者相近的频段而不会彼此干扰,使得频谱资源可以重复利用,提高了网络容量。
随着用户数量的不断增加,对移动通信***的网络容量的需求也显著增加,目前的采用传统多扇区组网技术来提升网络容量的方式已不能满足用户的需求。
发明内容
为了解决现有技术中通信***的网络容量受限的问题,本发明实施例提供了一种通信方法和装置,所述技术方案如下:
第一方面,本发明实施例提供了一种通信方法,所述方法包括:
基站将第一天线的覆盖区域划分为至少两个小区,所述基站对所述至少两个小区的时频资源上承载的数据进行加权处理,所述基站将加权处理后的所述至少两个小区的时频资源上承载的数据合并,得到合并后的数据;所述基站通过所述第一天线发射至少两个定向波束,所述至少两个定向波束用于发送所述合并后的数据,所述至少两个定向波束的指向各不相同,所述至少两个定向波束与所述至少两个小区一一对应,所述至少两个定向波束的波束方向由所述基站根据所述定向波束对应的小区中的所有终端的位置分布进行指向;或者,所述基站通过所述第一天线发射一个定向波束,所述一个定向波束用于发送所述合并后的数据,所述一个定向波束的波束方向由所述基站根据所述至少两个小区中的单个终端的位置进行指向。
因此,基于上述技术方案,基站采用第一天线发射的指向不同的至少两个波束发送至少两个小区的数据,第一天线发射的至少两个波束与第一天线覆盖区域划分出的至少两个小区一一对应,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。
在第一方面的一种实现方式中,所述基站对所述至少两个小区的时频资源上承载的数据进行加权处理,包括:
所述基站将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到所述时频资源映射到所述第一天线的各个通道上的数据。
在第一方面的另一种实现方式中,所述基站将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到所述时频资源映射到所述第一天线的各个通道上的数据,包括:
所述基站将各个小区的时频资源上承载的数据分别与所述本小区的小区波束权值向量相乘,所述小区波束权值向量用于形成覆盖各自对应的小区或者覆盖各自对应的小区的部分区域的定向波束;或者,
所述基站将各个小区的时频资源块上承载的数据分别与本小区的业务波束权值向量相乘,所述业务波束权值向量用于形成对准本小区内的终端的定向波束。
基站通过将各个小区的时频资源上承载的数据分别与不同的定向波束权值向量相乘,最终可以根据实际需要形成覆盖小区的定向波束或者是对准终端的定向波束。
优选地,所述定向波束权值向量还用于控制所述定向波束的发射功率,所述发射功率根据网络关键性能指标KPI确定。其中,关键性能指标包括小区中的终端分布、业务类型、流量负载等。通过根据KPI确定定向波束的发射功率,进而确定发射功率对应的定向波束权值向量,可以使得定向波束达到最优覆盖和容量收益。
在第一方面的另一种实现方式中,所述基站对所述至少两个小区的时频资源上承载的数据进行合并,包括:
当所述至少两个小区采用相同的频段时,将相同频点的数据按照以下公式进行处理:(s1+s2+……+Sn)*ejw0t,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w0是S1~Sn的频点信息,ejw0t表示将信号调制到频率为w0的载波上;
当所述至少两个小区采用互不重叠的频段时,将不同频点的数据按照以下公式进行处理:S1*ejw1t+S2*ejw2t+……+Sn*ejwnt,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w1是S1的频点信息,w2是S2的频点信息,……,wn是Sn的频点信息,ejwnt表示将信号调制到频率为wn的载波上。
也就是说,同一个天线覆盖的至少两个小区可以采用相同的频段,也可以采用互不重叠的频段。
第二方面,本发明实施例提供了一种通信方法,所述方法包括:
基站将第二天线的覆盖区域划分为至少两个小区,所述基站具有至少一根天线,所述第二天线为所述至少一根天线中的任一根;
基站通过所述第二天线接收信号;
所述基站处理所述第二天线的所有通道接收到的信号,得到所述至少两个小区的接收数据。
因此,基于上述技术方案,基站采用第二天线接收至少两个小区的信号,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。
在第二方面的一种实现方式中,所述基站处理所述第二天线的所有通道接收到的信号,得到所述至少两个小区的接收数据,包括:
所述基站以小区为单位,分别对所述第二天线所有通道接收到的信号进行 单小区处理;或者,
所述基站对所述第二天线所有通道接收到的信号同时进行联合检测处理。
据此,基站可以采用不到的方式对第二天线接收到的信号进行处理,得到至少两个小区的接收数据。
第三方面,本发明实施例提供了一种通信装置,所述装置包括:用于执行第一方面所述的方法的模块。
第四方面,本发明实施例提供了一种通信装置,所述装置包括:用于执行第二方面所述的方法的模块。
第五方面,本发明实施例提供了一种通信装置,所述装置包括:存储器、通信接口、以及与存储器和通信接口连接的处理器,所述存储器用于存储指令,处理器用于执行所述指令,所述通信接口用于在所述处理器的控制下进行通信。当所述处理器执行所述指令时,可以执行第一方面所述的方法。
第六方面,本发明实施例提供了一种通信装置,所述装置包括:存储器、通信接口、以及与存储器和通信接口连接的处理器,所述存储器用于存储指令,处理器用于执行所述指令,所述通信接口用于在所述处理器的控制下进行通信。当所述处理器执行所述指令时,可以执行第二方面所述的方法。
第七方面,本发明实施例提供了一种计算机可读介质,用于存储供通信装置执行的程序代码,所述程序代码包括执行第一方面所述的方法的指令。
第八方面,本发明实施例提供了一种计算机可读介质,用于存储程序代码用于存储供通信装置执行的程序代码,所述程序代码包括执行第二方面所述的方法的指令。
本发明实施例提供的技术方案带来的有益效果是:
基站采用第一天线发射的指向不同的至少两个波束发送至少两个小区的数据,第一天线发射的至少两个波束与第一天线覆盖区域划分出的至少两个小区一一对应,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且本发明实施例通过对基带信号的处理实现覆盖小区的波束的定向,因此可以基于现有的基站天线结构实现,不会增加天线***的硬件成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是现有技术提供的一种组网结构示意图;
图1b是本发明实施例提供的一种组网结构示意图;
图2是本发明实施例提供的一种通信方法的流程图;
图3是本发明实施例提供的另一种通信方法的流程图;
图4a是本发明实施例提供的两个小区的波束的示意图;
图4b是本发明实施例提供的两个小区的频率配置示意图;
图5是本发明实施例提供的又一种通信方法的流程图;
图6是本发明实施例提供的一种通信装置的结构示意图;
图7是本发明实施例提供的另一种通信装置的结构示意图;
图8是本发明实施例提供的又一种通信装置的结构示意图;
图9是本发明实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
为了便于理解本发明的方案,下面以蜂窝通信***为例,对本发明的组网结构进行描述。
应理解,本发明实施例的蜂窝通信***包括但不限于:全球移动通讯(Global System of Mobile communication,简称为“GSM”)***、码分多址(Code Division Multiple Access,简称为“CDMA”)***、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)***、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)***、LTE频分双工(Frequency Division Duplex,简称为“FDD”)***、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信***(Universal Mobile Telecommunication System,简称为 “UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信***等。
在蜂窝通信网络中,基站可以采用全向天线来实现小区覆盖,也可以采用多根定向天线来实现小区覆盖。本发明实施例将以采用120度定向天线实现小区覆盖的基站进行详细说明,即,一个基站配置有3根定向天线,这3根定向天线的指向不同,每根天线覆盖120°范围。本发明实施例中的定向天线可以是单根天线,也可以是多个天线单元构成的智能天线。
图1a显示了现有的三扇区蜂窝组网方式,在图1a中,三角形表示基站,如图1a所示,基站的覆盖范围按照六边形划分,每个六边形对应一个小区,每个基站设置在3个六边形的公共交接点处,一根定向天线对应一个小区(即一个六边形),一个基站可以覆盖3个小区。假设这3个小区的传输带宽均配置为a兆。
图1b显示了本发明的蜂窝组网结构,在图1b中,同样采用三角形代表基站,图1b中从三角形延伸出的黑色粗线条表示天线。以基站4为例进行具体说明,如图1b所示,基站4具有三根定向天线1a、1b和1c,基站4设置在六边形10的中部区域,每根定向天线的覆盖区域划分为2个小区,例如,定向天线1a的覆盖区域划分为小区11a、11b,从而基站1可以覆盖6个小区(对应7个六边形)。从图1b可以看出,小区11a、11b均不是规则的六边形,但是,当多个小区形成在一起时,可以量化为六边形,从而形成多个标准的蜂窝集合。
图1b所示组网方式中,通过对定向天线发射的波束进行空间定向处理,使得一根定向天线可以产生两个方向的波束,一个方向的波束覆盖一个小区,进而使得一根定向天线可以覆盖两个小区。在图1b中,一根天线的覆盖区域可以覆盖两个小区,其中每个小区的传输带宽可以分别配置(例如配置为a兆),此时这一根定向天线的覆盖区域的传输带宽则为2a兆,为图1a所示的一根天线的覆盖区域的传输带宽(a兆)的2倍,即在一根天线的覆盖区域内,传输带宽成倍提升,容易知道,传输带宽越大,***容量越大,从而图1b所示组网方式显著提升了通信***的***容量。
需要说明的是,在图1b所示蜂窝组网方式中,一个定向天线产生两个方向的波束,在其他蜂窝组网方式中,一个定向天线可以产生多于两个方向的波束,例如三个、四个方向的波束,本发明对此并不限制;此时,一个定向天线 可以覆盖3个小区、4个小区或更多个小区。同样地,以每个小区的传输带宽为a兆为例,此时,一个定向天线的覆盖区域内的传输带宽为3a兆、4a兆,为图1a所示的一根天线的覆盖区域的传输带宽(a兆)的3倍、4倍或更多倍,也就是说,通信***的***容量与图1b所示组网方式相比,有了更大的提升。
本发明实施例通过将一个天线的覆盖区域划分为多个小区且各个小区均配置有自己的传输带宽,从而对于同一根天线的覆盖区域而言,其可以使用的总传输带宽得到了显著增加,进而可以显著提高通信***的***容量,并且本发明实施例通过对基带信号的处理实现覆盖小区的波束的定向,因此可以基于现有的基站天线结构实现,不会增加天线***的硬件成本。
下面结合具体实施例对本发明进行进一步说明。
图2显示了本发明实施例的一种通信方法,该方法可以由任何合适的装置执行,例如由基站执行,但本发明不限于此。该方法可以适用于蜂窝通信***。参见图2,该方法包括:
步骤S101:基站将第一天线的覆盖区域划分为至少两个小区。
在本实施例中,每个小区均配置有自己的小区标识(例如物理小区标识(Physical Cell Identifier,简称“PCI”)以及频域资源(即传输带宽)。
其中,该基站具有至少一个天线,该天线可以是定向天线,也可以是全向天线。当该天线是全向天线时,基站具有一个天线;当该天线是定向天线时,基站具有至少两个天线,例如,可以具有三个120度定向天线。
第一天线为所述至少一根天线中的任一个,用于发送其覆盖区域内的小区的时频资源上承载的数据。
按照香农(shannon)原理,传输数据需要一定的带宽和时间,其中,带宽为频域资源,时间为时域资源,本发明实施例中的时频资源即从时域和频域两个维度来定义小区用于传输数据的无线资源。
频域资源可以采用信道资源描述,通常分为业务信道资源和控制信道资源。
步骤S102:基站对至少两个小区的时频资源上承载的数据进行加权处理,以将至少两个小区的时频资源上承载的数据映射到第一天线的通道上。
通过该步骤S102,可以对发射两个小区的时频资源上承载的数据的波束进行波束成形。
步骤S103:基站将加权处理后的至少两个小区的时频资源上承载的数据进行合并,得到合并后的数据。
步骤S104:基站通过第一天线发射至少两个定向波束,该至少两个定向波束用于发送合并后的数据,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应,至少两个定向波束的方向由基站根据定向波束对应的小区中的所有终端的位置分布进行指向;或者,基站通过第一天线发射一个定向波束,该一个定向波束用于发送合并后的数据,该一个定向波束的波束方向由基站根据至少两个小区中的单个终端的位置进行指向。
例如,若一个小区中的所有终端均位于该小区的左侧,另一个小区中的所有终端位于该小区的右侧,则第一天线发射两个定向波束,且一个定向波束指向一个小区的左侧,另一个定向波束指向另一个小区的右侧;若终端位于两个相邻小区的重叠区域,则第一天线发射一个定向波束,该定向波束对准两个相邻小区的重叠区域。
在实现时,该步骤S104还可以包括:
基站通过第一天线发射至少两个定向波束,该至少两个定向波束用于发送合并后的数据,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应,至少两个定向波束对准各自对应的小区内的一个终端,例如,以两个波束对应两个小区为例,一个定向波束对准小区A中的终端a,另一个定向波束对准小区B中的终端b。
本发明实施例中,基站采用第一天线发射的指向不同的至少两个波束发送至少两个小区的数据,第一天线发射的至少两个波束与第一天线覆盖区域划分出的至少两个小区一一对应,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且本发明实施例通过对基带信号的处理实现覆盖小区的波束的定向,因此可以基于现有的基站天线结构实现,不会增加天线***的硬件成本。另外,基站可以根据小区中终端的实际位置分布来决定第一天线发射一个定向波束还是多个定向波束,实现灵活。
图3显示了本发明实施例的另一种通信方法,图3所示的通信方法为图2所示通信方法的进一步具体说明。本实施例的方法可以基于图1b所示的组网结构实现,在本实施例中,将以一个天线覆盖两个小区为例进行具体说明,这 两个小区为第一小区和第二小区,当然,本发明并不以此为限。参见图3,该方法包括:
步骤S201:基站将第一天线的覆盖区域划分为两个小区。
在本实施例中,每个小区均配置有自己的小区标识(例如物理小区标识(Physical Cell Identifier,简称“PCI”)以及频域资源(即传输带宽)。
其中,该基站具有至少一个天线,该天线可以是定向天线,也可以是全向天线。当该天线是全向天线时,基站具有一个天线;当该天线是定向天线时,基站具有至少两个天线,例如,可以具有三个120度定向天线。
第一天线为所述至少一根天线中的任一个,用于发送其覆盖区域内的小区的时频资源上承载的数据。
按照香农(shannon)原理,传输数据需要一定的带宽和时间,其中,带宽为频域资源,时间为时域资源,本发明实施例中的时频资源即从时域和频域两个维度来定义小区用于传输数据的无线资源。
频域资源可以采用信道资源描述,通常分为业务信道资源和控制信道资源。
下面以LTE***为例进行具体说明,在LTE***中,控制信道资源包括公共类控制信道资源和用户类控制信道资源。其中,公共类控制信道资源主要包括物理广播信道(Physical Broadcast Channel,简称“PBCH”)、主同步信道、辅同步信道、以及部分物理下行控制信道(Physical Downlink Control Channel,简称“PDCCH”),用户类控制资源主要包括PDCCH和物理HARQ指示信道(Physical Hybrid ARQ Indicator Channel,简称“PHICH”),当然,本发明对此并不限制,在其他通信***中,可以仅区分控制信道资源和用户信道资源,而不对控制信道资源进行进一步区分。
步骤S202,基站对两个小区的时频资源上承载的数据进行加权处理,以将两个小区的时频资源上承载的数据映射到第一天线的通道上。
通过该步骤S202,可以对发射两个小区的时频资源上承载的数据的波束进行波束成形。
具体地,该步骤S202可以包括:
基站将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到时频资源映射到第一天线的各个通道上的数据。使得当第一天线发送各个小区的时频资源上承载的数据时,形成两个方向不同的波束。
其中,每个小区的定向波束权值向量中的权值的个数与天线通道的个数相同且一一对应设置。
实现时,定向波束权值向量还用于控制定向波束的发射功率,发射功率根据网络关键性能指标(Key Performance Indicator,简称“KPI”)进行设置,其中,KPI包括小区中的终端分布、业务类型、流量负载等。通过根据KPI确定定向波束的发射功率,进而确定发射功率对应的定向波束权值向量,从而使得定向波束达到最优覆盖和容量收益。
进一步地,基站将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到时频资源映射到第一天线的各个通道上的数据,可以包括:
基站将各个小区的时频资源上承载的数据分别与本小区的小区波束权值向量相乘,该小区波束权值向量用于形成覆盖各自对应的小区(部分或全部)的定向波束;
基站将各个小区的时频资源块上承载的数据分别与本小区的业务波束权值向量相乘,该业务波束权值向量用于形成对准本小区内的终端的定向波束。
其中,小区波束权值向量按照天线的基本阵列方向图、波束指向、主瓣宽度、旁瓣抑制度等指标生成,可以通过天线形成多个覆盖上区域互补的独立波束。在实现时,小区波束权值向量的确定可以根据天线指标进行调整,本发明对此不做限制。在一种实现方式中,可以将两个小区的小区波束权值向量设置成正交形式,以使得覆盖上述两个小区的波束相干性非常小,即波束之间的重叠部分少。
其中,业务波束权值向量为本小区内时频域资源所分配终端的信道特征分解得到的波束权值;或者业务波束权值向量为本小区内时频域资源所分配终端反馈的权值码本。
下面以8通道天线为例,说明通过设置两个小区的小区波束权值向量,实现两个小区的广播信号的定向覆盖。以LTE***为例,时频资源由多个时频资源块组成,时频资源块是LTE***中资源调度的最小单位,则对于每个时频资源块上的数据,具体可以采用以下公式进行加权处理:
Figure PCTCN2016103406-appb-000001
其中,(ns,k,l)为时频资源块的索引,ns表示时隙,k表示载波,l表示符号,通过索引(ns,k,l)可以对资源块进行唯一标识;Yi(ns,k,l)表示时频资源块(ns,k,l)对应第i个通道的数据;n为小区标号,Sector n表示小区n,
Figure PCTCN2016103406-appb-000002
表示小区n的端口m(小区的端口是指用于发送小区的参考信号的逻辑端口)发送的数据;
Figure PCTCN2016103406-appb-000003
Figure PCTCN2016103406-appb-000004
表示小区0的波束权值;
Figure PCTCN2016103406-appb-000005
Figure PCTCN2016103406-appb-000006
表示小区1的波束权值。
每个小区的波束权值向量中的权值均与天线的通道对应,权值与哪个通道对应,即将加权处理后的数据映射到哪个通道上。采用以上公式处理后,第一天线发射的波束如图4a所示,从图4a可以看出,此时第一天线发射了两个指向不同的波束51和52,两个波束各覆盖一个小区,且两个波束之间的重叠部分较小。
同样以8通道天线为例,分别说明如何对采用联合分配方式的时频资源和采用独立分配方式的时频资源进行加权处理,以形成对准终端的波束:
1,对采用独立分配方式的时频资源上承载的数据进行独立加权处理:
Figure PCTCN2016103406-appb-000007
其中,ns表示时隙,k表示载波,l表示符号,通过索引(ns,k,l)可以对资源块进行唯一标识,
Figure PCTCN2016103406-appb-000008
表示小区X的终端的数据流m对应时频资源块(ns,k,l)的数据,Yi(ns,k,l)表示是时频资源块(ns,k,l)对应第i个通道的数据。
2,对采用联合分配方式进行分配的时频资源上承载的数据进行联合加权处理:
Figure PCTCN2016103406-appb-000009
其中,ns表示时隙,k表示载波,l表示符号,通过索引(ns,k,l)可以对资源块进行唯一标识,
Figure PCTCN2016103406-appb-000010
表示小区n中终端的数据流m对应时频资源块(ns,k,l)的数据,Yi(ns,k,l)表示是时频资源块(ns,k,l)对应第i个通道的数据。
对准驻留在两个小区内的终端的波束时采用的权值向量(即业务波束权值向量)可以根据实际需求设置,其目的是使天线发射的波束对准终端,其具体实现为本领域技术人员熟知,故本发明对此不再详细描述。
容易知道,在步骤S202之前,本实施例的方法还可以包括:基站分配两个小区的时频资源。
分配时频资源,是指确定时频资源上承载的数据。
具体地,基站分配两个小区的时频资源可以采用如下方式中的至少一种实现:
将两个小区的时频资源分别进行独立调度(下文简称为独立调度);
采用两个小区中相同的时频资源承载相同的数据,或者,采用两个小区中 相同的时频资源中的一个承载数据,而两个小区中相同的时频资源中的其他时频资源不承载数据(下文简称为联合调度)。
其中,独立调度是指将小区的时频资源分配给本小区或者驻留在本小区内的终端,且不同的小区之间的资源调度互不影响;例如,基站将第一小区的时频资源分配给第一小区,用于承载第一小区的数据,而基站将第二小区的时频资源分配给第二小区,用于承载第二小区的数据。
联合调度是指将两个小区中的相同的时频资源分配给同一终端(容易知道,该终端驻留在两个小区中的一个中);例如,对于第一小区和第二小区,终端A处于第一小区和第二小区的重叠区域,此时,将第一小区和第二小区的时频资源都分配给终端A,第一小区和第二小区的时频资源都用于承载发送给终端A的数据。
或者,联合调度是指对于相同的时频资源,两个小区中仅有一个小区使用该时频资源,而另一小区不使用该时频资源;例如,对于第一小区和第二小区,终端A处于第一小区和第二小区的重叠区域,此时,将第一小区的时频资源分配给终端A,用于承载发送给终端A的数据,而将第二小区的时频资源空出不使用。
联合调度通常用于为两个小区的交叠区域的终端分配资源,这样可以减少处于两个相邻小区的重叠覆盖范围内的终端之间的信道干扰。容易知道,理想情况下,两个小区的重叠区域很小或者甚至不存在重叠区域,此时,可以仅采用独立分配的方式分配控制信道资源。
步骤S203:基站将加权处理后的两个小区的时频资源上承载的数据合并,得到合并后的数据。
需要说明的是,在本实施例中,两个小区可以采用相同的频段,两个小区也可以采用互不重叠的频段,以达到异频干扰协调的调度效果。
进一步地,当两个小区采用互不重叠的频段时,可以采用以下两种方式设置两个小区的工作频段:
第一种,不同的小区采用不同的频点,如图4b所示,基站2配置有三根定向天线,每根定向天线对应两个小区,其中一个小区采用的频点为f0,另一个小区采用的频点为f1,并且,相邻的小区采用的频点不同;
第二种,设置一个频段集合,该频段集合中包括多个不同的频段,基站从该频段集合中动态为小区选择其采用的频段。
该步骤S203可以通过如下方式实现:
当两个小区采用相同的频段时,将相同频点的数据按照以下公式进行处理:(s1+s2+……+Sn)*ejw0t,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w0是S1~Sn的频点信息,ejw0t表示将信号调制到频率为w0的载波上;
当两个小区采用互不重叠的频段时,将不同频点的数据按照以下公式进行处理:S1*ejw1t+S2*ejw2t+……+Sn*ejw3t,其中,n表示第一天线覆盖的小区的个数,S1~Sn表示来自于各个小区的信号,w1是S1的频点信息,w2是S2的频点信息,……,wn是Sn的频点信息,ejwnt表示将信号调制到频率为wn的载波上。
更进一步地,在该步骤S203的一种具体实现方式中,其可以包括:
对各个小区的时频资源上承载的数据以小区为单位分别进行组帧,得到各个小区的帧数据;
对两个小区的帧数据进行功率归一化加和处理。
更具体地,在这种具体实现方式中,先将每个小区的数据按照上述步骤S202,分别进行加权处理,并映射到相应的天线通道上。然后分别对各个通道映射的数据进行组帧,得到每个小区内各个通道的帧数据。其次,对得到的每个小区内各个通道的帧数据分别进行快速傅立叶逆变换(Inverse Fast Fourier Transform,简称“IFFT”)处理。最后,将相同通道上的经过IFFT处理后的帧数据进行功率归一化加和处理,随后经过中射频处理后,通过天线辐射到空口。
需要说明的是,该实现方式适用于多个小区采用相同的频段的情况。功率归一化加和处理包括功率归一化处理和加和处理两个处理过程,其先后顺序本实施例不做限制,可以先进行归一化处理,再进行加和处理,也可以先进行加和处理,再进行归一化处理。
在该实现方式中,对数据进行功率归一化处理可以避免数字域功率过高导致射频拉远单元的功率超限。
更进一步地,在该步骤S203的另一种具体实现方式中,其可以包括:
以通道为单位,将两个小区的时频资源上承载的数据同时进行组帧,得到两个小区的帧数据。
在本实施例中,先将各个小区的数据按照上述步骤S202,进行加权处理,并映射到相应的天线通道上。然后,将两个小区映射到相同的天线通道上的数 据组帧,得到两个小区的帧数据。最后,将两个小区的帧数据进行IFFT处理和中射频处理后,通过天线辐射到空口。
该实现方式适用于多个小区采用相同的频段的情况。
此时,该步骤S203具体包括:
更进一步地,在该步骤S203的又一种具体实现方式中,其可以包括:
对各个小区内的时频资源上承载的数据分别进行组帧,得到各个小区的帧数据;
对携带各个小区的帧数据的时频资源进行变频合路处理。
具体的,先将各个小区的数据按照上述S202分别进行加权处理,并映射到相应的天线通道上。然后,分别对各个通道映射的数据进行组帧,得到每个小区内各个通道的帧数据。然后,将得到的每个小区内各个通道的帧数据分别进行IFFT处理,并将IFFT处理后的两个小区的帧数据进行中频多载波合路处理。最后将中频多载波合路处理后的帧数据经过射频处理后,通过天线辐射到空口。其中,中频多载波合路处理,是指将两个小区的载波上变频,然后将上变频后的载波合路。合路是指将不同频段的信号组合到一起输出。
该实现方式适用于两个小区采用互不重叠的频段的情况。
步骤S204:基站通过第一天线发射两个定向波束,这两个定向波束用于发送合并后的数据,两个定向波束的指向各不相同,且两个定向波束和两个小区一一对应;或者,基站通过第一天线发射一个定向波束,该一个定向波束用于发送合并后的数据,该一个定向波束的波束方向由基站根据至少两个小区中的单个终端的位置进行指向。
其中,当基站通过第一天线发射两个波束时,至少两个定向波束的方向可以由基站根据定向波束对应的小区中的所有终端的位置分布进行指向,也可以由基站根据定向波束对应的小区中的单个终端的位置分布进行指向。
进一步地,当天线发射前述采用小区波束权值向量加权处理后的数据时,形成的两个定向波束分别覆盖各自对应的小区或者覆盖各自对应的小区的部分区域(例如中部或者左侧或者右侧),这种情况即为根据定向波束对应的小区中的所有终端的位置分布进行指向;当天线发射前述采用业务波束权值加权处理后的数据时,形成的两个定向波束分别对准各自对应的小区内的终端,这种情况即是根据定向波束对应的小区中的单个终端的位置分布进行指向。
步骤S205:基站通过第一天线接收信号。该步骤205为可选步骤。
步骤S206:基站处理第一天线的所有通道接收到的信号,得到两个小区的接收数据。该步骤S206为可选步骤。
本发明实施例中,基站采用第一天线发射的指向不同的至少两个波束发送至少两个小区的数据,第一天线发射的至少两个波束与第一天线覆盖区域划分出的至少两个小区一一对应,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且本发明实施例通过对基带信号的处理实现覆盖小区的波束的定向,因此可以基于现有的基站天线结构实现,不会增加天线***的硬件成本。另外,基站可以根据小区中终端的实际位置分布来决定第一天线发射一个定向波束还是多个定向波束,实现灵活。
图5显示了本发明实施例的又一种通信方法,如图5所示,该方法包括:
步骤S301:基站将第二天线的覆盖区域划分为至少两个小区。
其中,该基站具有至少一个天线,该天线可以是定向天线,也可以是全向天线。当该天线是全向天线时,基站具有一个天线;当该天线是定向天线时,基站具有至少两个天线,例如,可以具有三个120度定向天线。第二天线为所述至少一根天线中的任一个,用于接收其覆盖区域内的小区的时频资源上承载的数据。
第二天线和图2或图3所示实施例中的第一天线可以为同一天线。
步骤S302:基站通过第二天线接收信号。
步骤S303:基站处理第二天线的所有通道接收到的信号,得到至少两个小区的接收数据。
该步骤S303可以包括:
基站以小区为单位,对第二天线所有通道接收到的信号进行单小区处理;
基站对第二天线所有通道接收到的信号同时进行至少两个小区处理。
其中,基站以小区为单位,对第二天线所有通道接收到的信号进行单小区处理,包括:
基站采用各个小区的资源分配参数,分别对第二天线所有通道接收到的信号进行处理,得到各个小区的接收数据,例如,基站采用第一小区的资源分配参数,对所有通道接收到的信号进行处理,得到第一小区的接收数据;然后,基站采用第二小区的资源分配参数,再次对所有通道接收到的信号进行处理, 得到第二小区的接收数据。小区的资源分配参数用于指示小区的时频资源分配的分配状况。单小区处理适用于,相邻的小区将相同的时频资源分别分配给了各自小区内的终端的情况。
其中,基站采用所有小区的资源分配参数,对第二天线所有通道接收到的信号进行联合检测处理,联合检测处理是指,基站采用所有小区的资源分配参数同时对第二天线所有通道接收到的信号进行处理,得到各个小区的接收数据。例如,第一小区的资源分配参数和第二小区的资源分配参数,同时对所有通道接收到的信号进行处理,得到第一小区和第二小区的接收数据。联合处理适用于,相邻的小区将相同的时频资源分配给了各自小区内的终端的情况,或者相邻的小区中仅有一个小区的终端使用某个时频资源的情况。实现时,联合检测处理可以采用干扰抑制合并技术。
需要说明的是,本实施例中的第二天线与图2和图3所示实施例中的第一天线可以为同一天线,也可以为独立的不同的天线。
本发明实施例中,基站采用第二天线接收至少两个小区的信号,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且,基站可以采用不到的方式对第二天线接收到的信号进行处理,得到至少两个小区的接收数据,适用性广。
图6显示了本发明实施例提供的一种通信装置,该通信装置可以为基站,如图6所示,该通信装置包括:
处理模块401,用于将基站的第一天线的覆盖区域划分为至少两个小区,基站具有至少一根天线,第一天线为至少一根天线中的任一根;对至少两个小区的时频资源上承载的数据进行加权处理,以将至少两个小区的时频资源上承载的数据映射到第一天线的通道上;将加权处理后的至少两个小区的时频资源上承载的数据合并,得到合并后的数据;
发射模块402,用于通过第一天线发射至少两个定向波束,至少两个定向波束用于发送合并后的数据,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应,至少两个定向波束的波束方向根据定向波束对应的小区中的所有终端的位置分布进行指向;或者,通过第一天线发射一个定向波束,一个定向波束用于发送合并后的数据,一个定向波束的波束方向根据至少两个小区中的单个终端的位置进行指向。
实现时,发射模块402还可以用于通过第一天线发射至少两个定向波束,该至少两个定向波束用于发送合并后的数据,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应,至少两个定向波束对准各自对应的小区内的一个终端,例如,以两个波束对应两个小区为例,一个定向波束对准小区A中的终端a,另一个定向波束对准小区B中的终端b。
本发明实施例中,基站采用第一天线发射的指向不同的至少两个波束发送至少两个小区的数据,第一天线发射的至少两个波束与第一天线覆盖区域划分出的至少两个小区一一对应,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且本发明实施例通过对基带信号的处理实现覆盖小区的波束的定向,因此可以基于现有的基站天线结构实现,不会增加天线***的硬件成本。另外,基站可以根据小区中终端的实际位置分布来决定第一天线发射一个定向波束还是多个定向波束,实现灵活。
图7显示了本发明实施例提供的另一种通信装置,该通信装置可以为基站,如图7所示,该通信装置包括:
处理模块501,用于将基站的第一天线的覆盖区域划分为至少两个小区,基站具有至少一根天线,第一天线为至少一根天线中的任一根;对至少两个小区的时频资源上承载的数据进行加权处理,以将至少两个小区的时频资源上承载的数据映射到第一天线的通道上;用于将加权处理后的至少两个小区的时频资源上承载的数据合并,得到合并后的数据;
发射模块502,用于通过第一天线发射至少两个定向波束,至少两个定向波束用于发送处理模块501得到的合并后的数据,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应,至少两个定向波束的波束方向根据定向波束对应的小区中的所有终端的位置分布进行指向;或者,通过第一天线发射一个定向波束,一个定向波束用于发送处理模块501得到的合并后的数据,一个定向波束的波束方向根据至少两个小区中的单个终端的位置进行指向。
在本实施例的一种实现方式中,处理模块501可以具体用于,将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到时频资源映射到第一天线的各个通道上的数据。
具体地,处理模块501,可以具体用于将各个小区的时频资源上承载的数据分别与本小区的小区波束权值向量相乘,小区波束权值向量用于形成覆盖各自对应的小区或者覆盖各自对应的小区的部分区域的定向波束;或者,用于将各个小区的时频资源块上承载的数据分别与本小区的业务波束权值向量相乘,业务波束权值向量用于形成对准本小区内的终端的定向波束。
可选地,业务波束权值向量可以为本小区内时频域资源所分配终端的信道特征分解得到的波束权值;或者业务波束权值向量可以为本小区内时频域资源所分配终端反馈的权值码本。
可选地,定向波束权值向量还可以用于控制定向波束的发射功率,发射功率根据网络关键性能指标确定。
在本实施例的另一种实现方式中,至少两个小区可以采用相同的频段或者至少两个小区可以采用互不重叠的频段。
在本实施例的又一种实现方式中,处理模块501可以具体用于:
当至少两个小区采用相同的频段时,将相同频点的数据按照以下公式进行处理:(s1+s2+……+Sn)*ejw0t,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w0是S1~Sn的频点信息;
当至少两个小区采用互不重叠的频段时,将不同频点的数据按照以下公式进行处理:S1*ejw1t+S2*ejw2t+……+Sn*ejwnt,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w1是S1的频点信息,w2是S2的频点信息,……,wn是Sn的频点信息。
本发明实施例中,基站采用第一天线发射的指向不同的至少两个波束发送至少两个小区的数据,第一天线发射的至少两个波束与第一天线覆盖区域划分出的至少两个小区一一对应,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且本发明实施例通过对基带信号的处理实现覆盖小区的波束的定向,因此可以基于现有的基站天线结构实现,不会增加天线***的硬件成本。另外,基站可以根据小区中终端的实际位置分布来决定第一天线发射一个定向波束还是多个定向波束,实现灵活。
图8显示了本发明实施例提供的又一种通信装置,如图8所示,该通信装置包括:
接收模块601,用于通过第二天线接收信号;
处理模块602,用于将第二天线的覆盖区域划分为至少两个小区,基站具有至少一根天线,第二天线为至少一根天线中的任一根;处理第二天线的所有通道接收到的信号,得到至少两个小区的接收数据。
在本实施例中,处理模块602具体用于以小区为单位,分别对第二天线所有通道接收到的信号进行单小区处理;或者,用于对第二天线所有通道接收到的信号同时进行联合检测处理。
本发明实施例中,基站采用第二天线接收至少两个小区的信号,这些小区均配置有自己的传输带宽,对于一根天线的覆盖区域而言,可以使用的总传输带宽显著增加,从而实现了网络容量的提升。并且,基站可以采用不到的方式对第二天线接收到的信号进行处理,得到至少两个小区的接收数据,适用性广。
图9显示了本发明实施例提供的又一种通信装置,该通信装置可以为基站或者基站的一部分,例如BBU,如图9所示,基站700包括至少一根天线701、射频模块702(射频拉远单元(Radio Remote Unit,简称RRU)或者(射频单元(Radio Frequency Unit,简称RFU))、基带单元(Building Base band Unit,简称BBU)703。BBU 703与射频模块702连接,射频模块702通过电缆与天线701连接。在下行链路方向,BBU 703输出基带信号至射频模块702。射频模块702将基带信号变频到中频信号,再将中频信号变频到射频信号,然后采用功放单元(例如射频功率放大器)将射频信号放大,最后将放大后的射频信号通过天线701发射出去。在上行链路方向,来自终端的射频信号经天线701传递至射频模块702。射频模块702先将射频信号放大,再变频到中频信号,接着变频到基带信号,然后将基带信号输出至BBU 703。
具体地,射频模块702可以包括数字中频合路模块、数模转换器(Digital to Analog Converter,简称DAC)、收发信机模块和多载波功放(Multiple Carrier Power Amplifier,简称MCPA)模块。BBU703传递多路数字基带信号给数字中频合路模块,数字中频合路模块采用数字中频技术将处理后的多路数字基带信号进行变频和合路处理,得到一路数字中频信号。DAC对得到的一路数字中频信号进行数模转换,并输出给收发信机模块。收发信机模块完成中频信号到射频信号的变换。MCPA对经收发信机模块变换后的射频信号进行放大,并将放大后的射频信号输出至天线701发射。
在本实施例中,BBU703包括通信接口704、处理器705、存储器706、以及通信总线707。
通信总线707用于实现处理器705、存储器706、以及通信接口704之间的连接通信。
通信接口704实现处理器705与其它模块(例如射频模块702、天线701)之间的通信连接,可以使用同轴电缆等。
存储器706可用于存储软件程序以及应用模块,处理器705通过运行存储在存储器706的软件程序以及应用模块,从而执行该装置的各种功能应用以及数据处理。存储器706可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如将第一天线的覆盖区域划分为至少两个小区等)等;存储数据区可存储根据该设备的使用所创建的数据(比如基站对至少两个小区的时频资源上承载的数据进行合并后的数据)等。此外,存储器706可以包括高速RAM(Random Access Memory,随机存取存储器),还可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器705是基站700的控制中心,利用各种接口和线路连接整个装置的各个部分,通过运行或执行存储在存储器706内的软件程序和/或应用模块,以及调用存储在存储器706内的数据,执行基站700的各种功能和处理数据,从而对基站700进行整体监控。
具体地,通过运行或执行存储在存储器706内的软件程序和/或应用模块,以及调用存储在存储器706内的数据,处理器705可以实现,将基站的第一天线的覆盖区域划分为至少两个小区,基站具有至少一根天线,第一天线为至少一根天线中的任一根;对划分出的至少两个小区的时频资源上承载的数据进行加权处理,以将至少两个小区的时频资源上承载的数据映射到第一天线的通道上;将加权处理后的至少两个小区的时频资源上承载的数据合并,得到合并后的数据;通过第一天线发射至少两个定向波束,至少两个定向波束用于发送合并后的数据,至少两个定向波束的指向各不相同,至少两个定向波束与至少两个小区一一对应,至少两个定向波束的波束方向根据定向波束对应的小区中的所有终端的位置分布进行指向;或者,通过第一天线发射一个定向波束,一个定向波束用于发送合并后的数据,一个定向波束的波束方向根据至少两个小区中的单个终端的位置进行指向。
进一步地,处理器705可以实现,将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到时频资源映射到第一天线的各个通道上的数据。
更进一步地,处理器705可以实现,将各个小区的时频资源上承载的数据分别与本小区的小区波束权值向量相乘,小区波束权值向量用于形成覆盖各自对应的小区或者覆盖各自对应的小区的部分区域的定向波束;将各个小区的时频资源块上承载的数据分别与本小区的业务波束权值向量相乘,业务波束权值向量用于形成对准本小区内的终端的定向波束。
其中,业务波束权值向量可以为本小区内时频域资源所分配终端的信道特征分解得到的波束权值;或者业务波束权值向量可以为本小区内时频域资源所分配终端反馈的权值码本。
优选地,定向波束权值向量还可以用于控制定向波束的发射功率,发射功率根据网络关键性能指标确定。
可选地,至少两个小区可以采用相同的频段或者至少两个小区可以采用互不重叠的频段。
进一步地,处理器705可以实现,当至少两个小区采用相同的频段时,将相同频点的数据按照以下公式进行处理:(s1+s2+……+Sn)*ejw0t,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w0是S1~Sn的频点信息,ejw0t表示将信号调制到频率为w0的载波上;当至少两个小区采用互不重叠的频段时,将不同频点的数据按照以下公式进行处理:S1*ejw1t+S2*ejw2t+……+Sn*ejwnt,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w1是S1的频点信息,w2是S2的频点信息,……,wn是Sn的频点信息,ejwnt表示将信号调制到频率为wn的载波上。
在其它实施例中,处理器705可以实现,将第二天线的覆盖区域划分为至少两个小区,基站具有至少一根天线,第二天线为至少一根天线中的任一根;通过第二天线接收信号;处理第二天线的所有通道接收到的信号,得到至少两个小区的接收数据。
进一步地,处理器705可以实现,以小区为单位,分别对第二天线所有通道接收到的信号进行单小区处理;对第二天线所有通道接收到的信号同时进行联合检测处理。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器706,上述指令可由基站700的处理器705执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由基站的处理器执行时,使得基站能够执行图2、图3和图5至少一个对应的实施例的方法。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是:上述实施例提供的通信装置在实现通信时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的通信装置与通信方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种通信方法,其特征在于,所述方法包括:
    基站将第一天线的覆盖区域划分为至少两个小区,所述基站具有至少一根天线,所述第一天线为所述至少一根天线中的任一根;
    所述基站对所述至少两个小区的时频资源上承载的数据进行加权处理,以将所述至少两个小区的时频资源上承载的数据映射到所述第一天线的通道上;
    所述基站将加权处理后的所述至少两个小区的时频资源上承载的数据合并,得到合并后的数据;
    所述基站通过所述第一天线发射至少两个定向波束,所述至少两个定向波束用于发送所述合并后的数据,所述至少两个定向波束的指向各不相同,所述至少两个定向波束与所述至少两个小区一一对应,所述至少两个定向波束的波束方向由所述基站根据所述定向波束对应的小区中的所有终端的位置分布进行指向;
    或者,所述基站通过所述第一天线发射一个定向波束,所述一个定向波束用于发送所述合并后的数据,所述一个定向波束的波束方向由所述基站根据所述至少两个小区中的单个终端的位置进行指向。
  2. 根据权利要求1所述的方法,其特征在于,所述基站对所述至少两个小区的时频资源上承载的数据进行加权处理,包括:
    所述基站将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到所述时频资源映射到所述第一天线的各个通道上的数据。
  3. 根据权利要求2所述的方法,其特征在于,所述基站将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到所述时频资源映射到所述第一天线的各个通道上的数据,包括:
    所述基站将各个小区的时频资源上承载的数据分别与所述本小区的小区波束权值向量相乘,所述小区波束权值向量用于形成覆盖各自对应的小区或者覆盖各自对应的小区的部分区域的定向波束;或者,
    所述基站将各个小区的时频资源块上承载的数据分别与本小区的业务波束权值向量相乘,所述业务波束权值向量用于形成对准本小区内的终端的定向波 束。
  4. 根据权利要求3所述的方法,其特征在于,所述业务波束权值向量为所述本小区内时频域资源所分配终端的信道特征分解得到的波束权值;或者所述业务波束权值向量为所述本小区内时频域资源所分配终端反馈的权值码本。
  5. 根据权利要求3所述的方法,其特征在于,所述定向波束权值向量还用于控制所述定向波束的发射功率,所述发射功率根据网络关键性能指标KPI确定。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述至少两个小区采用相同的频段或者所述至少两个小区采用互不重叠的频段。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述基站对所述至少两个小区的时频资源上承载的数据进行合并,包括:
    当所述至少两个小区采用相同的频段时,将相同频点的数据按照以下公式进行处理:(s1+s2+……+Sn)*ejw0t,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w0是S1~Sn的频点信息,ejw0t表示将信号调制到频率为w0的载波上;
    当所述至少两个小区采用互不重叠的频段时,将不同频点的数据按照以下公式进行处理:S1*ejw1t+S2*ejw2t+……+Sn*ejwnt,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w1是S1的频点信息,w2是S2的频点信息,……,wn是Sn的频点信息,ejwnt表示将信号调制到频率为wn的载波上。
  8. 一种通信方法,其特征在于,所述方法包括:
    基站将第二天线的覆盖区域划分为至少两个小区,所述基站具有至少一根天线,所述第二天线为所述至少一根天线中的任一根;
    基站通过所述第二天线接收信号;
    所述基站处理所述第二天线的所有通道接收到的信号,得到所述至少两个小区的接收数据。
  9. 根据权利要求8所述的方法,其特征在于,所述基站处理所述第二天线的所有通道接收到的信号,得到所述至少两个小区的接收数据,包括:
    所述基站以小区为单位,分别对所述第二天线所有通道接收到的信号进行单小区处理;或者,
    所述基站对所述第二天线所有通道接收到的信号同时进行联合检测处理。
  10. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于将基站的第一天线的覆盖区域划分为至少两个小区,所述基站具有至少一根天线,所述第一天线为所述至少一根天线中的任一根;对所述至少两个小区的时频资源上承载的数据进行加权处理,以将所述至少两个小区的时频资源上承载的数据映射到所述第一天线的通道上;将加权处理后的至少两个小区的时频资源上承载的数据合并,得到合并后的数据;
    发射模块,用于通过所述第一天线发射至少两个定向波束,所述至少两个定向波束用于发送所述处理模块得到的所述合并后的数据,所述至少两个定向波束的指向各不相同,所述至少两个定向波束与所述至少两个小区一一对应,所述至少两个定向波束的波束方向根据所述定向波束对应的小区中的所有终端的位置分布进行指向;或者,通过所述第一天线发射一个定向波束,所述一个定向波束用于发送所述处理模块得到的所述合并后的数据,所述一个定向波束的波束方向根据所述至少两个小区中的单个终端的位置进行指向。
  11. 根据权利要求10所述的装置,其特征在于,所述处理模块,具体用于将各个小区的时频资源上承载的数据分别与本小区的定向波束权值向量相乘,得到所述时频资源映射到所述第一天线的各个通道上的数据。
  12. 根据权利要求11所述的装置,其特征在于,所述处理模块,具体用于将各个小区的时频资源上承载的数据分别与所述本小区的小区波束权值向量相乘,所述小区波束权值向量用于形成覆盖各自对应的小区或者覆盖各自对应的小区的部分区域的定向波束;将各个小区的时频资源块上承载的数据分别与本小区的业务波束权值向量相乘,所述业务波束权值向量用于形成对准本小区内的终端的定向波束。
  13. 根据要求12所述的装置,其特征在于,所述业务波束权值向量为所述本小区内时频域资源所分配终端的信道特征分解得到的波束权值;或者所述业务波束权值向量为所述本小区内时频域资源所分配终端反馈的权值码本。
  14. 根据要求12所述的装置,其特征在于,所述定向波束权值向量还用于控制所述定向波束的发射功率,所述发射功率根据网络关键性能指标KPI确定。
  15. 根据权利要求10-14任一项所述的装置,其特征在于,所述至少两个小区采用相同的频段或者所述至少两个小区采用互不重叠的频段。
  16. 根据权利要求10-15任一项所述的装置,其特征在于,所述处理模块,具体用于:
    当所述至少两个小区采用相同的频段时,将相同频点的数据按照以下公式进行处理:(s1+s2+……+Sn)*ejw0t,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w0是S1~Sn的频点信息,ejw0t表示将信号调制到频率为w0的载波上;
    当所述至少两个小区采用互不重叠的频段时,将不同频点的数据按照以下公式进行处理:S1*ejw1t+S2*ejw2t+……+Sn*ejwnt,其中,n表示第一天线覆盖的小区的个数,n≥2,S1~Sn表示来自于各个小区的信号,w1是S1的频点信息,w2是S2的频点信息,……,wn是Sn的频点信息,ejwnt表示将信号调制到频率为wn的载波上。
  17. 一种通信装置,其特征在于,所述装置包括:
    接收模块,用于通过所述第二天线接收信号;
    处理模块,用于将第二天线的覆盖区域划分为至少两个小区,所述基站具有至少一根天线,所述第二天线为所述至少一根天线中的任一根;处理所述第二天线的所有通道接收到的信号,得到所述至少两个小区的接收数据。
  18. 根据权利要求17所述的装置,其特征在于,所述处理模块,具体用于以小区为单位,分别对所述第二天线所有通道接收到的信号进行单小区处理; 或者,用于对所述第二天线所有通道接收到的信号同时进行联合检测处理。
PCT/CN2016/103406 2015-10-29 2016-10-26 通信方法和装置 WO2017071587A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112018008399-2A BR112018008399A2 (zh) 2015-10-29 2016-10-26 Communication method and device
JP2018521943A JP6675618B2 (ja) 2015-10-29 2016-10-26 通信方法および装置
EP16859022.2A EP3361770B1 (en) 2015-10-29 2016-10-26 Communication method and device
ES16859022T ES2790524T3 (es) 2015-10-29 2016-10-26 Método y dispositivo de comunicación
US15/963,735 US10879976B2 (en) 2015-10-29 2018-04-26 Communications method and apparatus
SA518391460A SA518391460B1 (ar) 2015-10-29 2018-04-29 طريقة وجهاز اتصالات

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510715884.3 2015-10-29
CN201510715884.3A CN106658515B (zh) 2015-10-29 2015-10-29 通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/963,735 Continuation US10879976B2 (en) 2015-10-29 2018-04-26 Communications method and apparatus

Publications (1)

Publication Number Publication Date
WO2017071587A1 true WO2017071587A1 (zh) 2017-05-04

Family

ID=58631321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103406 WO2017071587A1 (zh) 2015-10-29 2016-10-26 通信方法和装置

Country Status (8)

Country Link
US (1) US10879976B2 (zh)
EP (1) EP3361770B1 (zh)
JP (1) JP6675618B2 (zh)
CN (1) CN106658515B (zh)
BR (1) BR112018008399A2 (zh)
ES (1) ES2790524T3 (zh)
SA (1) SA518391460B1 (zh)
WO (1) WO2017071587A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155193B (zh) * 2016-03-02 2020-05-08 华为技术有限公司 一种定向链路的维护方法及站点sta
CN106255123B (zh) * 2016-09-09 2022-10-21 宇龙计算机通信科技(深圳)有限公司 通信方法和通信装置
US10798626B2 (en) * 2018-02-21 2020-10-06 Cellwize Wireless Technologies Ltd. Method of managing a cellular network and system thereof
US11357050B2 (en) * 2018-09-24 2022-06-07 Nxp Usa, Inc. Optimal beamforming in millimeter-wave cellular networks using multiple random access preambles
US11646783B2 (en) * 2018-09-24 2023-05-09 Nxp Usa, Inc. Optimal beamforming in millimeter-wave cellular networks using a single composite random access preamble
WO2020107154A1 (zh) * 2018-11-26 2020-06-04 华为技术有限公司 数据传输方法、装置及计算机存储介质
CN111246573B (zh) * 2018-11-28 2023-04-25 ***通信集团浙江有限公司 一种减少大规模阵列天线基站小区间干扰的方法及装置
CN112118580B (zh) * 2019-06-19 2024-06-04 华为技术有限公司 频谱资源分配方法及装置
US20240022920A1 (en) * 2022-07-13 2024-01-18 Industrial Technology Research Institute Method for configuring radio units in hierarchical network and electronic device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201478445U (zh) * 2009-07-31 2010-05-19 深圳市京华信通信技术有限公司 一种新型宽带全向天线
EP2452474A2 (en) * 2009-04-23 2012-05-16 QUALCOMM Incorporated Sounding reference signal for coordinated multi-point operation
CN104219684A (zh) * 2013-05-29 2014-12-17 中兴通讯股份有限公司 一种小区组网的方法及装置
CN104871439A (zh) * 2013-01-21 2015-08-26 英特尔公司 经由共用天线阵列进行无线回程和接入通信的设备、***和方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043270B2 (en) * 2001-08-13 2006-05-09 Andrew Corporation Shared tower system for accomodating multiple service providers
JP4143011B2 (ja) * 2003-09-17 2008-09-03 松下電器産業株式会社 キャリアセンス多重アクセス方法、無線基地局装置及び無線端末装置
KR20050083104A (ko) * 2004-02-21 2005-08-25 삼성전자주식회사 이동통신 시스템에서 기지국의 섹터 운용 방법 및 그 장치
JP4560088B2 (ja) 2004-12-31 2010-10-13 中興通訊股▲ふん▼有限公司 アンテナアレーを有する無線通信システムのジョイント検出方法及び基地局
US20060252461A1 (en) * 2005-05-06 2006-11-09 Grant Neil G Controlling wireless communications from a multi-sector antenna of a base station
JP5340968B2 (ja) 2007-03-22 2013-11-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) アンテナアレイの第1のセクタにおけるセクタ化次数の増加
KR101119249B1 (ko) * 2008-03-26 2012-03-19 서강대학교산학협력단 분산 안테나 시스템에서 신호 처리 장치 및 방법
US8107965B2 (en) * 2009-05-14 2012-01-31 Telefonaktiebolaget L M Ericsson (Publ) Distributed computation of precoding weights for coordinated multipoint transmission on the downlink
US8457698B2 (en) * 2011-01-05 2013-06-04 Alcatel Lucent Antenna array for supporting multiple beam architectures
EP2705715B1 (en) 2011-05-06 2017-09-27 Nokia Solutions and Networks Oy Arrangements for controlling antennas
US9042276B1 (en) * 2013-12-05 2015-05-26 Magnolia Broadband Inc. Multiple co-located multi-user-MIMO access points
JP6300927B2 (ja) 2013-12-09 2018-03-28 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 信号を処理する方法及び基地局
US9762343B2 (en) * 2015-01-30 2017-09-12 Telefonaktiebolaget L M Ericsson (Publ) Interference rejection for improved cell detection
EP3326405B1 (en) * 2015-07-22 2022-06-01 Telefonaktiebolaget LM Ericsson (publ) Antenna settings in wireless communications networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2452474A2 (en) * 2009-04-23 2012-05-16 QUALCOMM Incorporated Sounding reference signal for coordinated multi-point operation
CN201478445U (zh) * 2009-07-31 2010-05-19 深圳市京华信通信技术有限公司 一种新型宽带全向天线
CN104871439A (zh) * 2013-01-21 2015-08-26 英特尔公司 经由共用天线阵列进行无线回程和接入通信的设备、***和方法
CN104219684A (zh) * 2013-05-29 2014-12-17 中兴通讯股份有限公司 一种小区组网的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3361770A4 *

Also Published As

Publication number Publication date
EP3361770A4 (en) 2018-10-31
BR112018008399A2 (zh) 2018-10-23
CN106658515B (zh) 2020-04-21
CN106658515A (zh) 2017-05-10
ES2790524T3 (es) 2020-10-28
EP3361770B1 (en) 2020-03-18
EP3361770A1 (en) 2018-08-15
JP2018538726A (ja) 2018-12-27
SA518391460B1 (ar) 2021-11-03
US20180248604A1 (en) 2018-08-30
JP6675618B2 (ja) 2020-04-01
US10879976B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2017071587A1 (zh) 通信方法和装置
EP3817479A1 (en) Communication method and communication apparatus
JP5077024B2 (ja) 送信方法および無線基地局
US20160164587A1 (en) Method and System for Sharing Antenna between Multiple Operators and Radio Frequency and Digital Conversion Unit
WO2018094746A1 (zh) 一种基站发送数据的方法、bbu和rhub
CN105453642A (zh) 异构网络中的通信方法、宏基站、微基站和用户设备
CN114073032A (zh) 多载波动态频谱共享下的无线电接入技术间负载均衡
US20210410142A1 (en) Communication Method and Device
EP3005809B1 (en) Method for allocating resource for device for wireless communication and base station for same
WO2019047228A1 (en) INFORMATION TRANSMISSION SYSTEM
CN111602445B (zh) 通信的方法、网络设备和终端设备
WO2018082632A1 (zh) 上行参考信号发送方法、装置、基站及用户设备
US11757518B2 (en) Multi-level beam scheduling in a wireless communications circuit, particularly for a wireless communications system (WCS)
US8054790B2 (en) Frequency mapping for a wireless communication system
US11502802B2 (en) Transmission method and device and reception method and device for downlink data, and storage medium
WO2018191892A1 (zh) 传输信号的方法、网络设备和终端设备
WO2022001963A1 (zh) 通信资源调度方法和装置
WO2022151494A1 (zh) 一种传输参数确定方法及装置
CN106572473B (zh) 一种移动通讯网络覆盖的实现方法和装置
WO2021250755A1 (ja) 情報処理方法、情報処理装置、無線通信システム、及び情報処理プログラム
CN115885558A (zh) 配置辅助上行链路sul的方法和装置
WO2021098291A1 (zh) 一种虚拟天线映射方法及网络设备
CN113676424B (zh) 通信装置和信道估计方法
US11172372B2 (en) Information transmission method and apparatus
WO2023077310A1 (en) Method, device and computer readable medium for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018521943

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008399

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016859022

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018008399

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180426