WO2017071186A1 - 移动网络的多链路带宽分配方法、装置及移动设备 - Google Patents

移动网络的多链路带宽分配方法、装置及移动设备 Download PDF

Info

Publication number
WO2017071186A1
WO2017071186A1 PCT/CN2016/082801 CN2016082801W WO2017071186A1 WO 2017071186 A1 WO2017071186 A1 WO 2017071186A1 CN 2016082801 W CN2016082801 W CN 2016082801W WO 2017071186 A1 WO2017071186 A1 WO 2017071186A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
bandwidth
signal strength
base station
mobile device
Prior art date
Application number
PCT/CN2016/082801
Other languages
English (en)
French (fr)
Inventor
杜兆峰
Original Assignee
乐视控股(北京)有限公司
乐卡汽车智能科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐卡汽车智能科技(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Priority to EP16753808.1A priority Critical patent/EP3179745A4/en
Publication of WO2017071186A1 publication Critical patent/WO2017071186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • H04L43/0841Round trip packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • H04L45/245Link aggregation, e.g. trunking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays

Definitions

  • the embodiments of the present invention relate to the field of link aggregation, and in particular, to a multi-link bandwidth allocation method, device, and mobile device for a mobile network.
  • the link aggregation technology is to bundle multiple physical ports into a logical port to implement load sharing of inbound/outbound traffic on member ports.
  • the switch detects that the link of one of the member ports is faulty, the switch stops sending packets on the port and recalculates the port that the packet is sent on the remaining link according to the load balancing policy. Calculate the packet sending port.
  • Link aggregation is an important technology in terms of increasing link bandwidth, achieving link transmission flexibility and redundancy.
  • the mobile Internet is covered by network coverage, signal strength, signal interference, and object coverage. Blocking and other factors, network stability is poor, data transmission fluctuations are large. If you use the same bandwidth allocation scheme as the wired network, the link aggregation effect will be poor, even if it is not as good as when using a single link.
  • the embodiments of the present invention provide a method, a device, and a mobile device for allocating a multi-link bandwidth of a mobile network, which are used to solve the defect that the stability of the link network is poor due to poor stability of the mobile network in the prior art, and the application is applicable. Efficient allocation of bandwidth in link aggregation technologies for mobile networks.
  • the embodiment of the present application provides a multi-link bandwidth allocation method for a mobile network based on signal strength, including:
  • the signal strength information includes a signal strength of the base station received by the mobile device at the current time and the received by the mobile device before the current time The trend of signal strength of the base station;
  • An embodiment of the present application provides a multi-link bandwidth allocation apparatus for a mobile network based on a signal strength, including:
  • a data acquisition module configured to acquire an operator base station connected to each link of the current time in the aggregation link, a theoretical bandwidth of each link, and a signal strength of the base station received by the mobile device information;
  • a bandwidth floating ratio calculation module configured to calculate, according to the obtained signal strength information of the base station that is received by the mobile device, a bandwidth ratio of each link in a next time interval, where the link bandwidth is floating The ratio of the bandwidth of each of the links in the aggregated link, where the signal strength information includes the signal strength of the base station received by the mobile device at the current moment and the current time a trend of a change in signal strength of the base station received by the mobile device;
  • a bandwidth prediction module configured to acquire, according to the link bandwidth floating ratio, a link bandwidth prediction value in the next time interval according to the theoretical bandwidth
  • a bandwidth allocation module configured to perform, according to the bandwidth prediction value of each link, a data transmission bandwidth allocation in the next time interval between the mobile device and the base station.
  • the embodiment of the present application provides a mobile device, which is located under the signal coverage of multiple mobile communication networks, and has an aggregated link established by multiple surrounding base stations, and the device includes:
  • a communication module configured to acquire a theoretical baseband of each of the carrier base stations and links of each link in the aggregated link at the current time
  • a radio frequency module configured to acquire signal strength information of the base station that is received by the mobile device at a current moment in an aggregation link
  • a processor configured to calculate, according to the obtained location information and the signal strength information, a bandwidth ratio of each link in a next time interval; and acquiring, according to the link bandwidth floating ratio, the theoretical bandwidth a link bandwidth prediction value in the next time interval; and the bandwidth prediction value according to each link is a data transmission bandwidth allocation in the next time interval between the mobile device and the base station.
  • the link bandwidth floating ratio indicates a bandwidth change of each link in the aggregated link.
  • the embodiment of the present application provides a mobile device, including a memory, and one or more processors, where the mobile device further includes:
  • One or more units the one or more units being stored in the memory and configured to be executed by the one or more processors, the one or more units including instructions for performing the following steps :
  • Embodiments of the present application provide a computer program product for use in conjunction with a mobile device, the computer program product comprising a computer readable storage medium and a computer program mechanism embedded therein, the computer program mechanism comprising instructions for performing the following steps :
  • the multi-link bandwidth allocation method, device and mobile device of the mobile network provided by the embodiment of the present application predict the state of each network accessed by the mobile device in real time according to the change of the signal strength of the mobile station received by the mobile device, and according to each The load capacity of the link dynamically adjusts the bandwidth of each link, fully considers the characteristics of the mobile Internet signal changing rapidly, and achieves load balancing of link aggregation in the mobile Internet, and implements a good link in the mobile Internet. Aggregation effect.
  • Embodiment 1 is a technical flowchart of Embodiment 1 of the present application.
  • Embodiment 2 is a technical flowchart of Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram of a device according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a device according to Embodiment 5 of the present application.
  • FIG. 5 is a schematic structural diagram of a mobile device according to Embodiment 6 of the present application.
  • FIG. 6 is a schematic structural diagram of a computer program product used in conjunction with a mobile device according to Embodiment 7 of the present application.
  • the steps involved in the methods of the embodiments of the present application illustrated in the drawings may be implemented in a computer system such as a set of computer executable instructions.
  • the method of the embodiment of the present application reflects a certain logical sequence of the technical solution of the present application at the time of execution in the flowchart shown, in general, the logical sequence is limited to being illustrated by the flowchart.
  • the logical order of the technical solutions of the present application may also be implemented in a manner different from that shown in the accompanying drawings.
  • each embodiment of the present application is a device for performing bandwidth allocation.
  • the device may be integrated on a mobile device, may be integrated in a server, or may exist independently.
  • This application includes but not only Limited to this.
  • the embodiments of the present application do not exist separately, and may be combined with each other or used in combination.
  • the second embodiment is the implementation of the first embodiment.
  • the technical solution of the embodiment of the present application can be implemented in the same manner.
  • the embodiment of the present application is described in a mobile in-vehicle device application scenario.
  • the specific application field of the present application is not limited thereto. For example, it may also be a scenario where a large amount of data is transmitted, such as a mobile phone download. .
  • FIG. 1 is a technical flowchart of Embodiment 1 of the present application. As shown in FIG. 1 , a multi-link bandwidth allocation method for a mobile network based on signal strength is implemented by the following steps:
  • Step 110 Acquire an operator base station connected to each link of the current time in the aggregation link, a theoretical bandwidth of each link, and signal strength information of the base station received by the mobile device.
  • the theoretical bandwidth may be calculated according to the following formula:
  • Each of the links obtains the packet loss rate of each link and the time of the network delay by sending/receiving an ICPM packet with the peer link aggregation device.
  • the network delay is in milliseconds (ms)
  • the Loss Tolerance or Packet Loss Rate is the ratio of the number of lost packets to the transmitted data set.
  • the calculation method of the packet loss rate is:
  • ICMP is the Internet Control Message Protocol (Internet Control Message Protocol) protocol. It is a sub-protocol of the TCP/IP protocol suite for passing control messages between IP hosts and routers.
  • the control message refers to the network itself, such as the network is unreachable, the host is reachable, and the route is available. Although these control messages do not transmit user data, they play an important role in the transmission of user data.
  • the base station to which each link is connected may be recorded, such as China Mobile, China Unicom or China Telecom.
  • the mobile device in the embodiment of the present application needs to be equipped with a satellite positioning function (such as GPS, GLONASS, Beidou, etc., single or multiple), and the mobile device stores location information of each mobile base station.
  • a satellite positioning function such as GPS, GLONASS, Beidou, etc., single or multiple
  • Step 120 Calculate, according to the obtained signal strength information, each link bandwidth floating ratio in a next time interval.
  • the link bandwidth floating ratio indicates a bandwidth change of each link in the aggregated link, where the signal strength information includes a signal of the base station received by the mobile device at the current moment. The strength and the trend of the signal strength of the base station received by the mobile device before the current time.
  • the signal strength information may be used to calculate a signal strength of each of the base stations received by the mobile device and a signal strength change value received by the mobile device by each of the base stations.
  • the signal strength of each of the base stations received by the mobile device and the signal strength change value received by the mobile device by each mobile station are used as a preset according to a preset expression. Determining the input of the expression, and determining the bandwidth floating ratio of each link based on the normalized reference value; or determining the signal strength of each of the base stations received by the mobile device according to a preset lookup table The mobile device receives the signal strength change value of each of the base stations as an input of the lookup table, and determines the bandwidth fluctuation ratio of each link.
  • Step 130 Acquire a link bandwidth prediction value in the next time interval according to the link bandwidth floating ratio in combination with the theoretical bandwidth.
  • the bandwidth prediction value the theoretical bandwidth of the link * (1 + bandwidth fluctuation ratio of the link)
  • step 110 the theoretical bandwidth of each link at the current time in the aggregated link has been obtained, and the bandwidth prediction value on each link in the next time interval can be calculated according to the link bandwidth floating ratio.
  • Step 140 Perform, according to the bandwidth prediction value of each link, a data transmission bandwidth allocation in the next time interval between the mobile device and the base station.
  • the bandwidth prediction values of each link are sorted from large to small, and within the preset time interval, when a chain carrying data is allocated If the bandwidth of the road has been used up, the next link in the sort is selected to carry the data.
  • the amount of bearer data of each link is proportionally allocated.
  • the load balancing of each link in the aggregation link is implemented. By adjusting the amount of data carried by the link in real time, efficient or maximum link aggregation can be achieved.
  • the state of each mobile network accessed by the mobile device is predicted in real time, and the bandwidth of each link is predicted by using the bandwidth of each link to implement dynamic adjustment of each link load.
  • a good link aggregation effect is also achieved in the network.
  • FIG. 2 is a technical flow chart of Embodiment 2 of the present application. The following part will be specifically described in conjunction with FIG. 2, which specifically illustrates a multi-link bandwidth allocation method based on signal strength in a mobile network according to an embodiment of the present application.
  • the carrier base station connected to each link at a time, the theoretical bandwidth of each link, and the signal strength information of the base station received by the mobile device are further implemented by the following steps 210 to 240;
  • the location information and the signal strength information are calculated by calculating the link bandwidth floating ratio in the next time interval by step 250.
  • the calculation of the link bandwidth prediction value and the bandwidth allocation are further implemented by steps 260 to 270.
  • Step 210 Connect the mobile device to each mobile operator network, establish an aggregation link with the peer link aggregation device, and record the carrier base station connected to each link.
  • the mobile device is a mobile terminal device with a wireless access function, such as a mobile phone, and a terminal that accesses the network through MIFI (English short name of My WiFi, meaning Chinese mobile wireless router) Such as cars.
  • the satellite positioning function of mobile devices is usually implemented by means of a satellite positioning system.
  • Common satellite positioning systems such as China's Beidou satellite navigation system (BDS), the United States' Global Positioning System (GPS), Russia's GLONASS satellite navigation system (GLONASS), and the European Galileo satellite navigation system (GALILEO), or Multi-network fusion systems for these single satellite positioning systems.
  • the base station is an operator base station that provides each link in the aggregated link for the mobile device.
  • Step 220 Periodically obtain network delay and packet loss rate of the mobile device on each link, and determine a current theoretical bandwidth of each link according to network delay and packet loss rate of each link.
  • the mobile device sends or receives ICMP (the Internet) through the peer link aggregation device.
  • Control Message Protocol Internet Control Message Protocol
  • packets are used to determine the network delay and packet loss rate on each link.
  • the current theoretical bandwidth of the link can be determined according to the following expression.
  • the unit of the network delay is ms, and the packet loss rate is a value greater than or equal to 0 and less than or equal to 1:
  • Step 230 Acquire a signal strength s i of the n base stations received by the mobile device at the current time by using a signal strength detection technology of the mobile network.
  • n is a positive integer greater than or equal to 2, indicating the number of base stations that can cover the mobile device.
  • i denotes the sequence number of the base station, and its value ranges from [1, n].
  • Step 240 Predict the mobile device in the next time interval according to the signal strength change trend of the base station received by the mobile device in a period of time before the current time, combined with the signal strength s i the signal strength of each base station received the change ⁇ s i.
  • the radio signal Since the radio signal is continuously attenuated during transmission, the greater the transmission distance, the greater the attenuation.
  • Signal strength is an important factor affecting wireless transmission. Its change has a great influence on the bandwidth of current wireless transmission. Therefore, the purpose of determining the change of signal strength is to quantitatively predict the change of bandwidth in the next time interval according to the change of intensity. .
  • the signal strength change trend of the base station received by the mobile device in the time period before the current time is mainly strong, weak, or unchanged, and may further include a changed acceleration.
  • the trend of the signal strength change can be calculated by the signal strength of each base station in each time interval of the previous period of time, and the relatively simple calculation method is mainly to calculate the average value of the signal strength in each time interval in the period of time. . In the process of calculation, the signal strength in each time interval can also be weighted.
  • the next time interval is a preset value, which may be 1 second or 1 minute.
  • the duration is not limited.
  • Step 250 Calculate the link bandwidth floating ratio in the next time interval according to the signal strength and the change value of the signal strength.
  • the bandwidth fluctuation ratio of the i-th link is mainly based on the current signal strength s i of the i-th base station received by the device, and the signal strength of the i-th base station received by the device.
  • the change ⁇ s i and the normalized reference value are used to determine the bandwidth fluctuation ratio of the ith link in the next time interval.
  • the bandwidth floating ratio of the i-th link can be calculated according to the following expression:
  • Bandwidth fluctuation ratio of the i-th link (R si ⁇ s i + R ⁇ s ⁇ ⁇ s i ) / base
  • R si is a weight used to weight the current signal strength s i of the i-th base station received by the mobile device
  • R ⁇ si is used to perform a signal strength change ⁇ s i of the i-th base station received by the mobile device.
  • Weighted weight, base normalized reference value are usually values greater than or equal to 0, where R si , R ⁇ si , and base can be determined by empirical values.
  • a lookup table can generally be constructed and the bandwidth floating ratio on each link can be determined by using a table lookup.
  • the lookup table records the correspondence between the current signal strength of the base station received by the mobile device and the change in signal strength and the bandwidth fluctuation ratio for each link. Moreover, in general, it is more efficient to determine the bandwidth fluctuation ratio on the link by looking up the table.
  • Step 260 Acquire a link bandwidth prediction value in the next time interval according to the link bandwidth floating ratio in combination with the theoretical bandwidth.
  • Step 270 Sort the bandwidth prediction values of each link according to the largest to the smallest, and select, when the bandwidth of the link that has been allocated data is used up, in the preset time interval. The next link in the ordering carries data.
  • the bandwidth of each link in the aggregated link in the next time interval is predicted, and the load of each link is adjusted in real time according to the predicted value, thereby achieving high efficiency.
  • Link aggregation effect by acquiring the signal strength information received by the mobile device, the bandwidth of each link in the aggregated link in the next time interval is predicted, and the load of each link is adjusted in real time according to the predicted value, thereby achieving high efficiency. Link aggregation effect.
  • a multi-link bandwidth allocation device for a mobile network based on signal strength includes a data acquisition module 31 and a bandwidth floating ratio calculation.
  • the data acquisition module 310 is configured to acquire a theoretical bandwidth of each link in the current link, a base station connected to each link, and a signal strength of the base station received by the mobile device.
  • the bandwidth floating ratio calculation module 320 is configured to calculate, according to the signal strength of the base station that is received by the mobile device at the current time, each link bandwidth floating ratio in a next time interval, where The link bandwidth floating ratio indicates a bandwidth change of each link in the aggregated link, where the signal strength information includes a signal strength of the base station received by the mobile device at the current time Determining a signal strength change trend of the base station received by the mobile device before the current moment;
  • the bandwidth prediction module 330 is configured to acquire, according to the link bandwidth floating ratio, the link bandwidth prediction value in the next time interval according to the theoretical bandwidth;
  • the bandwidth allocation module 340 is configured to perform, according to the bandwidth prediction value of each link, a data transmission bandwidth allocation in the next time interval between the mobile device and the base station.
  • the data acquisition module 310 further includes a bandwidth calculation sub-module 311, and the bandwidth calculation sub-module 311 is configured to: calculate the theoretical bandwidth according to the following formula:
  • Each of the links obtains the packet loss rate of each link and the time of the network delay by sending/receiving an ICPM packet with the peer link aggregation device.
  • the data acquisition module 310 further includes a signal strength change prediction sub-module 312.
  • the signal strength change prediction sub-module 312 is configured to obtain, from the signal strength information, a signal strength of the base station received by the mobile device at the current moment, and a received by the mobile device before the current moment. a signal strength change trend of the base station; a signal strength of the base station received by the mobile device according to the current time, and a signal strength change trend of the base station received by the mobile device before the current time And predicting a change value of the signal strength of the base station received by the mobile device in the next time interval.
  • the bandwidth floating ratio calculation module 320 is further configured to: calculate the link bandwidth floating ratio in the next time interval according to the signal strength and the change value of the signal strength.
  • the bandwidth allocation module 340 is further configured to: sort the bandwidth prediction values of each link according to a maximum to a small, in the preset time interval, when the bearer data has been allocated. If the bandwidth of the link has been used up, the next link in the sort is selected to carry the data.
  • the data strength information received by the mobile device is obtained by the data acquisition module, and the bandwidth floating ratio calculation module and the bandwidth prediction module predict the state of each mobile network accessed by the mobile device in real time and predict each link.
  • the bandwidth realizes the dynamic adjustment of the load of each link, and also achieves a good link aggregation effect in the mobile network.
  • Step 410 The data acquisition module 310 records the base stations connected to each link after the mobile device connects to each mobile operator network and establishes an aggregation link with the peer link aggregation device.
  • Step 420 The data acquisition module 310 periodically obtains the network delay and the packet loss rate of the mobile device on each link, and determines, according to the network delay and the packet loss rate of each link, the bandwidth calculation sub-module 311. The current bandwidth of the link.
  • the mobile device determines the network delay and packet loss rate on each link by sending or receiving an ICMP (Internet Control Message Protocol) packet with the peer link aggregation device.
  • ICMP Internet Control Message Protocol
  • the current theoretical bandwidth of the link can be determined according to the following expression.
  • the unit of the network delay is ms, and the packet loss rate is a value greater than or equal to 0 and less than or equal to 1.
  • Step 430 The data acquisition module 310 acquires the signal strength s i of each of the base stations received by the mobile device at the current time by using a signal strength detection technology of the mobile network.
  • the base station is an operator base station that provides each link in the aggregated link for the mobile device.
  • n is a positive integer greater than or equal to 2, indicating the number of base stations that can cover the mobile device.
  • i denotes the sequence number of the base station, and its value ranges from [1, n].
  • the next time interval is a preset value, which may be 1 second or 1 minute.
  • the duration is not limited.
  • Step 440 The signal strength change prediction sub-module 312 predicts the mobile device in the next time interval according to a signal strength change trend of the base station received by the mobile device in a period of time before the current time. the signal strength of each base station received the change ⁇ s i.
  • the radio signal Since the radio signal is continuously attenuated during transmission, the greater the transmission distance, the greater the attenuation.
  • Signal strength is an important factor affecting wireless transmission. Its change has a great influence on the bandwidth of current wireless transmission. Therefore, the purpose of determining the change of signal strength is to quantitatively predict the change of bandwidth in the next time interval according to the change of intensity. .
  • the signal strength change trend of the base station received by the mobile device in the time period before the current time is mainly strong, weak, or unchanged, and may further include a changed acceleration.
  • the trend of the signal strength change can be calculated by the signal strength of each base station in each time interval of the previous period of time, and the relatively simple calculation method is mainly to calculate the average value of the signal strength in each time interval in the period of time. . In the process of calculation, the signal strength in each time interval can also be weighted.
  • Step 450 The bandwidth floating ratio calculation module 320 calculates the link bandwidth floating ratio in the next time interval according to the signal strength and the change value of the signal strength.
  • the bandwidth fluctuation ratio of the i-th link is mainly based on the current signal strength s i of the i-th base station received by the device, and the signal strength of the i-th base station received by the device.
  • the change ⁇ s i and the normalized reference value are used to determine the bandwidth fluctuation ratio of the ith link in the next time interval.
  • the bandwidth floating ratio of the i-th link can be calculated according to the following expression:
  • Bandwidth fluctuation ratio of the i-th link (R si ⁇ s i + R ⁇ s ⁇ ⁇ s i ) / base
  • R si is a weight used to weight the current signal strength s i of the i-th base station received by the mobile device
  • R ⁇ si is used to perform a signal strength change ⁇ s i of the i-th base station received by the mobile device.
  • Weighted weight, base normalized reference value are usually values greater than or equal to 0, where R si , R ⁇ si , and base can be determined by empirical values.
  • the lookup table records the correspondence between the distance between the mobile device and the base station, the position change of the mobile device relative to the base station, the current signal strength of the base station, and the signal strength change and the bandwidth fluctuation ratio for each link. Moreover, in general, it is more efficient to determine the bandwidth fluctuation ratio on the link by looking up the table.
  • Step 460 The bandwidth prediction module 330 acquires, according to the link bandwidth floating ratio, the link bandwidth prediction value in the next time interval according to the theoretical bandwidth.
  • Step 470 The bandwidth allocation module 340 sorts the bandwidth prediction values of each link according to the maximum to the smallest, in the preset time interval, when the bandwidth of the link that carries the data has been allocated. When used up, the next link in the sort is selected to carry data.
  • FIG. 4 is a schematic structural diagram of a device according to Embodiment 5 of the present application.
  • a mobile device in the embodiment of the present application is under the signal coverage of multiple mobile communication networks, and an aggregation link is established through multiple base stations in the vicinity.
  • the device includes a communication module 510, a radio frequency module 520, and a processor 530.
  • the communication module 510 is configured to obtain, by using a base station, a theoretical bandwidth of an operator base station and each link connected to each link in the aggregation link at the current time;
  • the radio frequency module 520 uses the signal detection technology of the mobile network to acquire the signal strength information of the base station received by the mobile device at the current moment in the aggregation link;
  • the processor 530 is connected to the communication module 510 and the radio frequency module 520, and calculates, according to the acquired location information and the signal strength information, a floating ratio of each link bandwidth in a next time interval;
  • the link bandwidth floating ratio is obtained by combining the theoretical bandwidth to obtain a link bandwidth prediction value in the next time interval; and the bandwidth prediction value of each link is performed between the mobile device and the base station.
  • the link bandwidth floating ratio indicates that the bandwidth of each link in the aggregated link changes. Situation.
  • the communication module 510 calculates the theoretical bandwidth according to the following formula:
  • Each of the links obtains the packet loss rate of each link and the time of the network delay by sending/receiving an ICPM packet with the peer link aggregation device.
  • the radio frequency module 520 is further configured to obtain, from the signal strength information, a signal strength of the base station that is received by the mobile device at the current moment, and that is received by the mobile device before the current moment. a trend of a change in signal strength of the base station;
  • the device further includes a memory 540, and the memory 540 is connected to the processor, and is configured to store a preset expression and a preset lookup table, so that the processor 530 is configured according to a preset. And using the change value of the signal strength and the signal strength as an input of the expression, and determining the bandwidth floating ratio of each link based on the normalized reference value; or according to a preset lookup table, The signal strength and the change value of the signal strength are used as inputs to the lookup table to determine the bandwidth fluctuation ratio of each link.
  • the processor 530 is further configured to sort the bandwidth prediction values of each link according to a maximum to a small, in the preset time interval, when a chain carrying data is allocated. If the bandwidth of the road has been used up, the next link in the sort is selected to carry the data.
  • the bandwidth floating ratio of the i-th link can be calculated according to the following expression:
  • Bandwidth fluctuation ratio of the i-th link (R si ⁇ s i + R ⁇ s ⁇ ⁇ s i ) / base
  • R si is a weight used to weight the current signal strength s i of the i-th base station received by the mobile device
  • R ⁇ si is used to perform a signal strength change ⁇ s i of the i-th base station received by the mobile device.
  • Weighted weight, base normalized reference value are usually greater than equal to 0, wherein R si, R ⁇ si and Base, the value may be determined empirically.
  • An in-vehicle device that is, the aforementioned mobile device with wireless link aggregation capability, it should be understood that in other application scenarios, the mobile device can also be a mobile phone, a PAD, a data backpack, a portable MIFI, a router, etc.), which has three Each mobile network module, the three mobile network modules are respectively connected to the carrier networks of China Mobile, China Unicom and China Telecom, respectively, with the base stations in the China Mobile network, the base stations in the China Unicom network, and the China Telecom network.
  • the base stations in each form a link
  • the in-vehicle device aggregates the three links together to form an aggregated link through technologies such as MPTCP (Multipath TCP, Multiple Parallel Transmission Protocol).
  • MPTCP Multipath TCP, Multiple Parallel Transmission Protocol
  • the in-vehicle device also obtains the current network standard and signal strength according to each mobile network module.
  • the module corresponding to the China Mobile network is connected to the 4G network, and the signal strength is -50dBm; the module corresponding to the China Telecom network is connected to the 3G network, and the signal strength is -70dBm; the module corresponding to the China Unicom network is connected.
  • the 2G network is entered and the signal strength is -90dBm.
  • the rate of change of the wireless signal is estimated.
  • the China Mobile network is -10 dBm/s; the China Telecom network is 5 dBm/s; and the China Unicom network is 2 dBm/s.
  • the lookup table can be used to predict the bandwidth fluctuation ratio of each mobile network in the next second interval.
  • the bandwidth floating ratio of China Mobile network is -10%, and the bandwidth floating ratio of China Telecom network is 5%.
  • China Unicom Network The bandwidth floating ratio is 2%.
  • the actual bandwidth of the link between the in-vehicle device and the base station in the China Mobile network is 4 Mbps, and the actual bandwidth of the link between the in-vehicle device and the base station of the China Telecom network is 1 Mbps, and the in-vehicle device and China Unicom network
  • the actual bandwidth of the link between the base stations is 200 Kbps.
  • the bandwidth of the link between the in-vehicle device and the base station of the China Mobile network is The bandwidth of the link between the in-vehicle device and the base station of the China Telecom network is 1.05 Mbps, and the bandwidth of the link between the in-vehicle device and the base station of the China Unicom network is 204 Kbps. Accordingly, the in-vehicle device will perform data distribution in accordance with the prediction of the respective bandwidths of the three links in the next second.
  • FIG. 5 is a schematic structural diagram of a mobile device according to Embodiment 6 of the present application.
  • the embodiment of the present application provides a mobile device, including a memory 610, and one or more processors 620, where the mobile device further includes:
  • One or more units the one or more units being stored in the memory 610 and configured to be executed by the one or more processors 620, the one or more units including steps for performing the following steps Instructions:
  • the embodiment of the present application predicts the state of each network accessed by the mobile device according to the change of the signal strength of the mobile station received by the mobile device, and dynamically adjusts the bandwidth of each link according to the load capacity of each link at the time, and fully considers the mobile internet.
  • the characteristics of the network with rapid signal changes have achieved load balancing of link aggregation in the mobile Internet, and achieved good link aggregation in the mobile Internet.
  • the one or more units in the embodiment include instructions for performing the steps in the first embodiment and the second embodiment.
  • the steps in the first embodiment and the second embodiment For the corresponding content, refer to the first embodiment and the second embodiment. I won't go into details here.
  • FIG. 6 is a schematic structural diagram of a computer program product used in conjunction with a mobile device according to Embodiment 7 of the present application.
  • the embodiment of the present application provides a computer program product for use in combination with a mobile device, where the computer program product includes A computer readable storage medium 710 and a computer program mechanism embodied therein, the computer program mechanism comprising instructions to perform the following steps:
  • the embodiment of the present application predicts the state of each network accessed by the mobile device according to the change of the signal strength of the mobile station received by the mobile device, and dynamically adjusts the bandwidth of each link according to the load capacity of each link at the time, and fully considers the mobile internet.
  • the characteristics of the network with rapid signal changes have achieved load balancing of link aggregation in the mobile Internet, and achieved good link aggregation in the mobile Internet.
  • the computer program mechanism in this embodiment includes the instructions for performing the steps in the first embodiment and the second embodiment.
  • the instructions for performing the steps in the first embodiment and the second embodiment For the corresponding content, refer to the first embodiment and the second embodiment, and details are not described herein. .
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs. The purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种移动网络的多链路带宽分配方法、装置及移动设备。其中,所述方法包括:获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比;根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。由此本申请实施例实现了移动互联网中链路聚合的负载均衡,在移动互联网中实现了良好的链路聚合效果。

Description

移动网络的多链路带宽分配方法、装置及移动设备
交叉引用
本申请引用于2015年10月30日递交的名称为“基于信号强度的移动网络的多链路带宽分配方法及装置”的第201510729392.X号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请实施例涉及链路聚合领域,尤其涉及一种移动网络的多链路带宽分配方法、装置及移动设备。
背景技术
链路聚合技术,是指将多个物理端口捆绑在一起,成为一个逻辑端口,以实现出/入流量在各成员端口中的负荷分担。当交换机检测到其中一个成员端口的链路发生故障时,就停止在此端口上发送报文,并根据负荷分担策略在剩下链路中重新计算报文发送的端口,故障端口恢复后再次重新计算报文发送端口。链路聚合在增加链路带宽、实现链路传输弹性和冗余等方面是一项很重要的技术。
现有的链路聚合方案多用于有线数据交换网络。由于有线网络的网络稳定性较高,所以链路上带宽分配的方案一般较为简单,例如采用循环平均分配或基于各链路带宽按比例分配等分配方案,都能达到较好的聚合效果。
随着移动互联网的发展,无线局域网(WLAN)及移动运营商的移动通信网络的信号质量、覆盖范围以及传输速率等都有了很大程度的提高。为了进一步提高移动互联网的数据传输速率、数据传输的实时性及稳定性,采用多移动网络链路聚合技术进行数据传输的方案应运而生。
但是,移动互联网受网络覆盖范围、信号强度、信号干扰以及物体遮 挡等因素,网络稳定性较差,数据传输的波动较大。如果使用和有线网络相同的带宽分配方案,链路聚合效果会很差,甚至还不如使用单条链路时的传输效果。
因此,如何在移动互联网络中使用链路聚合技术来高效、合理地分配链路并承载数据,以达到较好的聚合效果成为亟待解决的技术问题之一。
发明内容
本申请实施例提供一种移动网络的多链路带宽分配方法、装置及移动设备,用以解决现有技术移动网络稳定性差,数据波动较大导致的链路聚合效果差的缺陷,实现了适用于移动网络的链路聚合技术中带宽的高效分配。
本申请实施例提供一种基于信号强度的移动网络的多链路带宽分配方法,包括:
获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;其中,所述信号强度信息包括所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
本申请实施例提供一种基于信号强度的移动网络的多链路带宽分配装置,包括:
数据获取模块,用于获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度 信息;
带宽浮动比计算模块,用于根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;其中,所述信号强度信息包括所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
带宽预测模块,用于根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
带宽分配模块,用于根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
本申请实施例提供一种移动设备,处于多个移动通信网络的信号覆盖下,通过周围的多个基站建立有聚合链路,所述设备包括:
通信模块,用于获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽;
射频模块,用于获取聚合链路中当前时刻所述移动设备接收到的所述基站的信号强度信息;
处理器,用于根据获取到的所述位置信息以及所述信号强度信息计算下一时间间隔内的各所述链路带宽浮动比;根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况。
本申请实施例提供一种移动设备,包括存储器,以及一个或者多个处理器,其中,移动设备还包括:
一个或多个单元,所述一个或多个单元被存储在所述存储器中并被配置成由所述一个或多个处理器执行,所述一个或多个单元包括用于执行以下步骤的指令:
获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;
根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
本申请实施例提供一种与移动设备结合使用的计算机程序产品,所述计算机程序产品包括计算机可读的存储介质和内嵌于其中的计算机程序机制,所述计算机程序机制包括执行以下步骤的指令:
获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;
根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
本申请实施例提供的一种移动网络的多链路带宽分配方法、装置及移动设备,根据移动设备接收到基站的信号强度变化,实时预测移动设备所接入的各网络的状态,并根据各链路当时的负载能力动态调整各链路的带宽,充分考虑了移动互联网信号变化迅速的网络特点,良好地实现了移动互联网中链路聚合的负载均衡,在移动互联网中实现了良好的链路聚合效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一的技术流程图;
图2为本申请实施例二的技术流程图;
图3为本申请实施例三的装置结构示意图;
图4为本申请实施例五的设备结构示意图;
图5为本申请实施例六的移动设备的结构示意图;
图6是本申请实施例七的与移动设备结合使用的计算机程序产品的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,附图所示出的本申请实施例的方法所包含的步骤,可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然本申请实施例的方法在所示的流程图中体现出了本申请的技术方案在执行时的一定的逻辑顺序,但通常而言,该逻辑顺序仅限于通过该流程图所示出的实施例。在本申请的另一些实施例中,本申请的技术方案的逻辑顺序也可以以不同于附图所示的方式来实现。
需要说明的是,本申请各实施例的执行主体,是用来执行带宽分配的装置,这台装置可以集成在移动设备上,也可以集成在服务器中,也可以独立存在,本申请包括但不仅限于此。当然,本申请的各实施例也并非单独存在,可以相互融合补充或组合使用,例如实施例二是对实施例一的进 一步细化,二者组合使用同样能实现本申请实施例的技术方案。为了便于阅读者理解此方案,本申请的实施例以移动的车载设备应用场景来描述,但是,本申请的具体应用领域不限制于此,例如,还可以是手机下载等有大量数据传输的场景。
实施例一
图1为本申请实施例一的技术流程图,如图1所示,本申请实施例一种基于信号强度的移动网络的多链路带宽分配方法主要通过以下的步骤实现:
步骤110:获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息。
本申请实施例中,可以根据以下公式计算所述理论带宽:
Figure PCTCN2016082801-appb-000001
其中,各所述链路通过与对端链路聚合设备发送/接受ICPM报文获取各所述链路的所述丢包率与所述网络延时的时间。网络延时的单位为毫秒(ms),丢包率(Loss Tolerance或Packet Loss Rate)是指所丢失数据包数量占所发送数据组的比率。丢包率的计算方法是:
Figure PCTCN2016082801-appb-000002
ICMP是(Internet Control Message Protocol)Internet控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。
当移动设备连接至运营商网络,与对端链路聚合设备建立聚合链路后,可记录当前各链路连接的基站,如***、***或者中国电信等等。
本申请实施例中的所述移动设备需要配备卫星定位功能(如GPS、GLONASS、北斗等单一或多合一),且所述移动设备中存储各移动基站位置信息。以下部分涉及到的所述移动设备将不再做进一步的解释。
步骤120:根据获取到的所述信号强度信息计算下一时间间隔内的各所述链路带宽浮动比。
其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;其中,所述信号强度信息包括所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势。
通过所述信号强度信息可以计算出所述移动设备接收到的各所述基站的信号强度以及所述移动设备接收到各所述基站的信号强度变化值。
计算所述链路带宽浮动比时,根据预设的表达式,将所述移动设备接收到的各所述基站的信号强度以及所述移动设备接收到各所述基站的信号强度变化值作为所述表达式的输入,并基于归一化参考值,确定各链路的所述带宽浮动比率;或者根据预设的查找表,将所述移动设备接收到的各所述基站的信号强度以及所述移动设备接收到各所述基站的信号强度变化值化作为所述查找表的输入,确定各链路的所述带宽浮动比率。
步骤130:根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值。
具体的,带宽预测值=链路的理论带宽*(1+链路的带宽浮动比率)
在步骤110中,已经获取聚合链路中当前时刻各链路的理论带宽,根据所述链路带宽浮动比即可计算出下一时间间隔内每条链路上的带宽预测值。
步骤140:根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
得到各链路的所述带宽预测值后,将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
根据不同链路的预测带宽值来按比例分配各链路的承载数据量,便可 实现聚合链路中各条链路的负载均衡,通过实时调整链路承载的数据量,便可达到高效或最大的链路聚合效果。
本实施例中,通过获取移动设备接收到的信号强度信息,实时预测移动设备接入的各移动网络的状态并以此预测每条链路的带宽实现了各链路负载的动态调整,在移动网络中也实现了良好的链路聚合效果。
实施例二
图2是本申请实施例二的技术流程图,以下部分将结合图2,具体地阐述本申请实施例一种基于信号强度的移动网络的多链路带宽分配方法中,获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息进一步由以下的步骤210~步骤240实现;根据获取到的所述位置信息以及所述信号强度信息计算下一时间间隔内的各所述链路带宽浮动比进一步由步骤250步骤实现;计算链路带宽预测值以及带宽分配进一步由步骤260~步骤270实现。
步骤210:将移动设备连接各移动运营商网络,与对端链路聚合设备建立聚合链路并记录各链路连接的运营商基站。
本申请实施例中,所述移动设备是可移动的、具有无线接入功能的终端设备,比如可以是手机、通过MIFI(My WiFi的英文简称,中文含义为移动无线路由器)接入网络的终端比如汽车等。移动设备的卫星定位功能通常借助于卫星定位***来实现。常见的卫星定位***比如中国的北斗卫星导航***(BDS)、美国的全球定位***(GPS)、俄罗斯的格洛纳斯卫星导航***(GLONASS)以及欧洲的伽利略卫星导航***(GALILEO),或者是这些单一的卫星定位***的多网融合***。
本申请实施例中,所述的基站是为该移动设备提供所述聚合链路中各链路的运营商基站。
步骤220:周期性地获得移动设备在各链路上的网络延时和丢包率,并根据各链路的网络延时以及丢包率等来确定各链路的当前理论带宽。
其中,移动设备通过与对端链路聚合设备发送或接收ICMP((Internet  Control Message Protocol,Internet控制报文协议)报文等方式,来确定各链路上的网络延时和丢包率。
具体地,链路的当前理论带宽,可以根据如下表达式来确定。
Figure PCTCN2016082801-appb-000003
其中,网络延时的单位为ms,丢包率是一个大于等于0且小于等于1的数值:
Figure PCTCN2016082801-appb-000004
步骤230:利用移动网络的信号强度检测技术,获取所述移动设备在当前时刻接收到的n个所述基站的信号强度si
其中,n为大于等于2的正整数,表示能够覆盖所述移动设备的基站的数量。i表示所述基站的序号,其取值范围在为[1,n]。
步骤240:根据所述当前时刻之前的一段时间内的所述移动设备接收到的所述基站的信号强度变化趋势,结合所述信号强度si,预测所述下一个时间间隔内所述移动设备接收到的各所述基站的信号强度变化Δsi
由于无线电信号会在传输过程中不断衰减,传输距离越远衰减越大。信号强度是影响无线传输的重要因素,它的变化对于当前无线传输的带宽有较大的影响,因此确定信号强度变化的目的,就是根据强度变化来定量地预测下一时间间隔内带宽的变化量。
其中,所述当前时刻之前的一段时间内的所述移动设备接收到的所述基站的信号强度变化趋势,主要为变强、变弱或者不变化,进一步地还可以包括变化的加速度等。所述信号强度变化趋势,可以通过各基站在所述前一段时间中各时间间隔内的信号强度计算得来,比较简单的计算方式主要是计算这一段时间中各时间间隔内信号强度的平均值。在计算的过程中,还可以对各时间间隔内的信号强度进行加权处理。
本申请实施例中,所述下一个时间间隔为预设值,可以为1秒也可以是1分钟,当然,时间间隔越短,预测值的准确度越高,本申请实施例对时间间隔的时长并不做限制。
步骤250:根据所述信号强度、所述信号强度的变化值计算所述下一时间间隔内的所述链路带宽浮动比。
在本申请实施例中,对于第i条链路的带宽浮动比率,主要根据所述设备接收到的第i个基站当前的信号强度si、所述设备接收到的第i个基站的信号强度变化Δsi以及归一化参考值,来确定所述下一个时间间隔内的该第i条链路的带宽浮动比率。
作为一种示意,第i条链路的带宽浮动比率可以根据如下表达式来进行计算:
第i条链路的带宽浮动比=(Rsi×si+RΔs×Δsi)/base
其中,Rsi是用来对移动设备接收到的第i个基站当前的信号强度si进行加权的权重,RΔsi是用来对移动设备接收到的第i个基站的信号强度变化Δsi进行加权的权重,base归一化参考值。这些权重通常都是大于等于0的值,其中Rsi、RΔsi以及base,可以通过经验值进行确定。
在实际应用中,为了更加准确地获得第i条链路的带宽浮动比率,通常可以构造查找表并在使用时通过查表的方式来确定各条链路上的带宽浮动比率。该查找表中记录有对于每条链路而言,移动设备接收到的基站当前的信号强度以及信号强度变化等与带宽浮动比率的对应关系。而且,通常来讲,通过查表的方式来确定链路上的带宽浮动比率,效率也会更高。
步骤260:根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值。
根据各链路的当前带宽以及各链路的链路带宽浮动比率,获得下一个时间间隔内各链路的带宽预测值。具体地,下一个时间间隔内某链路的带宽预测值=该链路的当前带宽*(1+该链路的带宽浮动比率)。
步骤270:将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
本实施例中,通过获取移动设备接收到的信号强度信息来预测下一时间间隔内聚合链路中每条链路的带宽,并根据预测值对各链路的负载实时进行调整,从而达到高效的链路聚合效果。
实施例三
图3是本申请实施例三的装置结构示意图,结合图3所示,本申请实施例一种基于信号强度的移动网络的多链路带宽分配装置,主要包括数据获取模块31、带宽浮动比计算模块320、带宽预测模块330、带宽分配模块340。
所述数据获取模块310,用于获取聚合链路中当前时刻各链路的理论带宽、各所述链路连接的基站以及所述移动设备接收到的所述基站的信号强度;
所述带宽浮动比计算模块320,用于根据获取到所述当前时刻所述移动设备接收到的所述基站的信号强度计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;其中,所述信号强度信息包括所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
所述带宽预测模块330,用于根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
所述带宽分配模块340,用于根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
进一步地,所述数据获取模块310进一步包括带宽计算子模块311,所述带宽计算子模块311用于:根据以下公式计算所述理论带宽:
其中,各所述链路通过与对端链路聚合设备发送/接受ICPM报文获取各所述链路的所述丢包率与所述网络延时的时间。
进一步地,所述数据获取模块310进一步包括信号强度变化预测子模块312。
所述信号强度变化预测子模块312,用于从所述信号强度信息中获取所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;根据所述当前时刻所述移动设备接收到的所述基站的信号强度,并结合所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势,预测所述下一时间间隔内所述移动设备接收到的所述基站的信号强度的变化值。
进一步地,所述带宽浮动比计算模块320进一步用于:根据所述信号强度、所述信号强度的变化值计算所述下一时间间隔内的所述链路带宽浮动比。
进一步地,所述带宽分配模块340进一步用于:将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
本实施例中,通过数据获取模块获取移动设备接收到的信号强度信息,由带宽浮动比计算模块和带宽预测模块实时预测移动设备接入的各移动网络的状态并以此预测每条链路的带宽实现了各链路负载的动态调整,在移动网络中也实现了良好的链路聚合效果。
实施例四
以下部分将通过一个更加具体的实施例进一步阐述本申请一种基于信号强度的移动网络的多链路带宽分配装置中,各模块的功能及其交互过程。
步骤410:数据获取模块310,在移动设备连接各移动运营商网络,与对端链路聚合设备建立聚合链路后记录各链路连接的基站。
步骤420:数据获取模块310周期性地获得移动设备在各链路上的网络延时和丢包率,由带宽计算子模块311并根据各链路的网络延时以及丢包率等来确定各链路的当前带宽。
其中,移动设备通过与对端链路聚合设备发送或接收ICMP((Internet Control Message Protocol,Internet控制报文协议)报文等方式,来确定各链路上的网络延时和丢包率。
具体地,链路的当前理论带宽,可以根据如下表达式来确定。
Figure PCTCN2016082801-appb-000006
其中,网络延时的单位为ms,丢包率是一个大于等于0且小于等于1的数值。
Figure PCTCN2016082801-appb-000007
步骤430:数据获取模块310,利用移动网络的信号强度检测技术,获取所述移动设备在当前时刻接收到各所述基站的信号强度si
本申请实施例中,所述的基站是为该移动设备提供所述聚合链路中各链路的运营商基站。
其中,n为大于等于2的正整数,表示能够覆盖所述移动设备的基站的数量。i表示所述基站的序号,其取值范围在为[1,n]。
本申请实施例中,所述下一个时间间隔为预设值,可以为1秒也可以是1分钟,当然,时间间隔越短,预测值的准确度越高,本申请实施例对时间间隔的时长并不做限制。
步骤440:信号强度变化预测子模块312,根据所述当前时刻之前的 一段时间内的所述移动设备接收到的所述基站的信号强度变化趋势,预测所述下一个时间间隔内所述移动设备接收到的各所述基站的信号强度变化Δsi
由于无线电信号会在传输过程中不断衰减,传输距离越远衰减越大。信号强度是影响无线传输的重要因素,它的变化对于当前无线传输的带宽有较大的影响,因此确定信号强度变化的目的,就是根据强度变化来定量地预测下一时间间隔内带宽的变化量。
其中,所述当前时刻之前的一段时间内的所述移动设备接收到的所述基站的信号强度变化趋势,主要为变强、变弱或者不变化,进一步地还可以包括变化的加速度等。所述信号强度变化趋势,可以通过各基站在所述前一段时间中各时间间隔内的信号强度计算得来,比较简单的计算方式主要是计算这一段时间中各时间间隔内信号强度的平均值。在计算的过程中,还可以对各时间间隔内的信号强度进行加权处理。
步骤450:带宽浮动比计算模块320,根据所述信号强度、所述信号强度的变化值计算所述下一时间间隔内的所述链路带宽浮动比。
在本申请实施例中,对于第i条链路的带宽浮动比率,主要根据所述设备接收到的第i个基站当前的信号强度si、所述设备接收到的第i个基站的信号强度变化Δsi以及归一化参考值,来确定所述下一个时间间隔内的该第i条链路的带宽浮动比率。
作为一种示意,第i条链路的带宽浮动比率可以根据如下表达式来进行计算:
第i条链路的带宽浮动比=(Rsi×si+RΔs×Δsi)/base
其中,Rsi是用来对移动设备接收到的第i个基站当前的信号强度si进行加权的权重,RΔsi是用来对移动设备接收到的第i个基站的信号强度变化Δsi进行加权的权重,base归一化参考值。这些权重通常都是大于等于0的值,其中Rsi、RΔsi以及base,可以通过经验值进行确定。
在实际应用中,为了更加准确地获得第i条链路的带宽浮动比率,通 常可以构造查找表并在使用时通过查表的方式来确定各条链路上的带宽浮动比率。该查找表中记录有对于每条链路而言,移动设备与基站的距离、移动设备相对于基站的位置变化、基站当前的信号强度以及信号强度变化等与带宽浮动比率的对应关系。而且,通常来讲,通过查表的方式来确定链路上的带宽浮动比率,效率也会更高。
步骤460:带宽预测模块330,根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
根据各链路的当前带宽以及各链路的链路带宽浮动比率,获得下一个时间间隔内各链路的带宽预测值。具体地,下一个时间间隔内某链路的带宽预测值=该链路的当前带宽*(1+该链路的带宽浮动比率)。
步骤470:带宽分配模块340,将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
实施例五
图4是本申请实施例五的设备结构示意图,结合图4,本申请实施例一种移动设备,处于多个移动通信网络的信号覆盖下,通过周围的多个基站建立有聚合链路,所述设备包括通信模块510、射频模块520、处理器530。
所述通信模块510通过与基站进行通信,用于获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽;
所述射频模块520利用移动网络的信号检测技术获取聚合链路中当前时刻所述移动设备接收到的所述基站的信号强度信息;
所述处理器530与所述通信模块510、射频模块520相连接并根据获取到的所述位置信息以及所述信号强度信息计算下一时间间隔内的各所述链路带宽浮动比;根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变 化情况。
具体地,所述通信模块510根据以下公式计算所述理论带宽:
Figure PCTCN2016082801-appb-000008
其中,各所述链路通过与对端链路聚合设备发送/接受ICPM报文获取各所述链路的所述丢包率与所述网络延时的时间。
具体地,所述射频模块520,进一步用于从所述信号强度信息中获取所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
根据所述当前时刻所述移动设备接收到的所述基站的信号强度,并结合所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势预测所述下一时间间隔内所述移动设备接收到的所述基站的信号强度的变化值。
具体地,所述设备进一步包括存储器540,所述存储器540与所述处理器相连接,用于存储预设的表达式以及预设的查找表,以使得所述处理器530根据预设的表达式,将所述信号强度、所述信号强度的变化值作为所述表达式的输入,并基于归一化参考值,确定各链路的所述带宽浮动比率;或根据预设的查找表,将所述信号强度、所述信号强度的变化值作为所述查找表的输入,确定各链路的所述带宽浮动比率。
具体地,所述处理器530,进一步用于将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
作为一种示意,第i条链路的带宽浮动比率可以根据如下表达式来进行计算:
第i条链路的带宽浮动比=(Rsi×si+RΔs×Δsi)/base
其中,Rsi是用来对移动设备接收到的第i个基站当前的信号强度si进行加权的权重,RΔsi是用来对移动设备接收到的第i个基站的信号强度变化Δsi进行加权的权重,base归一化参考值。这些权重通常都是大于等于0的值,其中Rsi、RΔsi以及base,可以通过经验值进行确定。
应用实例
以下部分将通过一个具体的应用实例来进一步对本申请实施例进行阐述。一台车载设备(也即具有无线链路聚合能力的前述的移动设备,应当理解,在其他应用场景中该移动设备还可以为手机、PAD、数据背包、随身MIFI、路由器等终端),它有三个各移动网络模块,这三个移动网络模块一一对应地接入***、***和中国电信的运营商网络,分别与***网络中的基站、***网络中的基站以及中国电信网络中的基站各自形成链路,车载设备通过MPTCP(Multipath TCP,多路并行传输协议)等技术,将这三条链路聚合在一起形成聚合链路。
当前此设备被携带在高速公路上使用,有大量数据需要通过设备进行发送和接收。在时间点t0,车载设备还据各移动网络模块获得当前的网络制式和信号强度。当前,对应于***网络的模块接入的是4G网络,信号强度为-50dBm;对应于中国电信网络的模块接入的是3G网络,信号强度为-70dBm;对应于***网络的模块接入的是2G网络,信号强度为-90dBm。根据车载设备距离基站的位置、相对基站的运动速度以及信号强度,估算出无线信号的变化速率,***网络为-10dBm/s;中国电信网络为5dBm/s;***网络为2dBm/s。
基于以上数据,使用查表可以预测各移动网络下一秒的时间间隔内的带宽浮动比率,***网络的带宽浮动比率为-10%,中国电信网络的带宽浮动比率为5%,***网络的带宽浮动比率为2%。在t0时间点,车载设备与***网络中的基站之间的链路的实际带宽为4Mbps,车载设备与中国电信网络的基站之间的链路的实际带宽为1Mbps,车载设备与***网络的基站之间的链路的实际带宽为200Kbps。根据浮动比率预测获得下一秒时,车载设备与***网络的基站之间的链路的带宽为 3.6Mbps,车载设备与中国电信网络的基站之间的链路的带宽为1.05Mbps,车载设备与***网络的基站之间的链路的带宽为204Kbps。据此,车载设备在下一秒内,将按照预测这三条链路各自的带宽进行数据分配。
实施例六
图5是本申请实施例六一种移动设备的结构示意图,结合图5,本申请实施例提供一种移动设备,包括存储器610,以及一个或者多个处理器620,其中,移动设备还包括:
一个或多个单元,所述一个或多个单元被存储在所述存储器610中并被配置成由所述一个或多个处理器620执行,所述一个或多个单元包括用于执行以下步骤的指令:
获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;
根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
本申请实施例根据移动设备接收到基站的信号强度变化,实时预测移动设备所接入的各网络的状态,并根据各链路当时的负载能力动态调整各链路的带宽,充分考虑了移动互联网信号变化迅速的网络特点,良好地实现了移动互联网中链路聚合的负载均衡,在移动互联网中实现了良好的链路聚合效果。
这里需要说明的是:本实施例中所述一个或多个单元包括用于执行上述实施例一和实施例二中各步骤的指令,相应的内容可参见上述实施例一和实施例二,此处不再赘述。
实施例七
图6是本申请实施例七一种与移动设备结合使用的计算机程序产品的结构示意图,结合图6,本申请实施例提供一种与移动设备结合使用的计算机程序产品,所述计算机程序产品包括计算机可读的存储介质710和内嵌于其中的计算机程序机制,所述计算机程序机制包括执行以下步骤的指令:
获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;
根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
本申请实施例根据移动设备接收到基站的信号强度变化,实时预测移动设备所接入的各网络的状态,并根据各链路当时的负载能力动态调整各链路的带宽,充分考虑了移动互联网信号变化迅速的网络特点,良好地实现了移动互联网中链路聚合的负载均衡,在移动互联网中实现了良好的链路聚合效果。
这里需要说明的是:本实施例中所述计算机程序机制包括执行上述实施例一和实施例二中各步骤的指令,相应的内容可参见上述实施例一和实施例二,此处不再赘述。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种基于信号强度的移动网络的多链路带宽分配方法,其特征在于,所述方法包括如下步骤:
    获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
    根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;
    根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
    根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
  2. 根据权利要求1所述的方法,其特征在于,获取聚合链路中当前时刻各链路的理论带宽,进一步包括:
    根据以下公式计算所述理论带宽:
    Figure PCTCN2016082801-appb-100001
    其中,各所述链路通过与对端链路聚合设备发送/接受ICPM报文获取各所述链路的所述丢包率与所述网络延时的时间。
  3. 根据权利要求1所述的方法,其特征在于,计算下一时间间隔内的各所述链路带宽浮动比,进一步包括:
    从所述信号强度信息中获取所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
    根据所述当前时刻所述移动设备接收到的所述基站的信号强度,并结合所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势所述基站预测所述下一时间间隔内所述移动设备接收到的所述基站的 信号强度的变化值;
    根据所述信号强度、所述信号强度的变化值计算所述下一时间间隔内的所述链路带宽浮动比。
  4. 根据权利要求3所述的方法,计算所述下一时间间隔内的所述链路带宽浮动比进一步包括:
    根据预设的表达式,将所述信号强度、所述信号强度的变化值作为所述表达式的输入,并基于归一化参考值,确定各链路的所述带宽浮动比率;或
    根据预设的查找表,将所述信号强度、所述信号强度的变化值作为所述查找表的输入,确定各链路的所述带宽浮动比率。
  5. 根据权利要求1所述的方法,其特征在于,根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行数据传输带宽的分配,进一步包括:
    将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
  6. 一种基于信号强度的移动网络的多链路带宽分配装置,其特征在于,所述装置包括:
    数据获取模块,用于获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽、所述移动设备接收到的所述基站的信号强度信息;
    带宽浮动比计算模块,用于根据获取到的所述移动设备接收到的所述基站的信号强度信息计算下一时间间隔内的各所述链路带宽浮动比,其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况;其中,所述信号强度信息包括所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
    带宽预测模块,用于根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;
    带宽分配模块,用于根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配。
  7. 根据权利要求6所述的装置,其特征在于,所述数据获取模块进一步包括带宽计算子模块,所述带宽计算子模块用于:
    根据以下公式计算所述理论带宽:
    Figure PCTCN2016082801-appb-100002
    其中,各所述链路通过与对端链路聚合设备发送/接受ICPM报文获取各所述链路的所述丢包率与所述网络延时的时间。
  8. 根据权利要求6所述的装置,其特征在于,所述数据获取模块进一步包括信号强度变化预测子模块:
    所述信号强度变化预测子模块,用于从所述信号强度信息中获取所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势;
    根据所述当前时刻所述移动设备接收到的所述基站的信号强度,并结合所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势所述基站预测所述下一时间间隔内所述移动设备接收到的所述基站的信号强度的变化值;
    根据所述信号强度、所述信号强度的变化值计算所述下一时间间隔内的所述链路带宽浮动比。
  9. 根据权利要求8所述的装置,所述带宽浮动比计算模块进一步用于:
    根据预设的表达式,将所述信号强度、所述信号强度的变化值作为所述表达式的输入,并基于归一化参考值,确定各链路的所述带宽浮动比率;或
    根据预设的查找表,将所述信号强度、所述信号强度的变化值作为所述查找表的输入,确定各链路的所述带宽浮动比率。
  10. 根据权利要求6所述的装置,其特征在于,所述带宽分配模块进一步用于:
    将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
  11. 一种移动设备,处于多个移动通信网络的信号覆盖下,通过周围的多个基站建立有聚合链路,所述设备包括:
    通信模块,用于获取聚合链路中当前时刻各所述链路连接的运营商基站、各链路的理论带宽;
    射频模块,用于获取聚合链路中当前时刻所述移动设备接收到的所述基站的信号强度信息;
    处理器,用于根据获取到的所述位置信息以及所述信号强度信息计算下一时间间隔内的各所述链路带宽浮动比;根据所述链路带宽浮动比,结合所述理论带宽获取所述下一时间间隔内的链路带宽预测值;根据各链路的所述带宽预测值为所述移动设备和所述基站之间进行所述下一时间间隔内的数据传输带宽分配;
    其中,所述链路带宽浮动比表示所述聚合链路中各所述链路的带宽变化情况。
  12. 根据权利要求11所述的设备,其特征在于,所述通信模块根据以下公式计算所述理论带宽:
    Figure PCTCN2016082801-appb-100003
    其中,各所述链路通过与对端链路聚合设备发送/接受ICPM报文获取各所述链路的所述丢包率与所述网络延时的时间。
  13. 根据权利要求11所述的设备,其特征在于,
    所述射频模块,进一步用于从所述信号强度信息中获取所述当前时刻所述移动设备接收到的所述基站的信号强度以及所述当前时刻之前所述 移动设备接收到的所述基站的信号强度变化趋势;
    根据所述当前时刻所述移动设备接收到的所述基站的信号强度,并结合所述当前时刻之前所述移动设备接收到的所述基站的信号强度变化趋势预测所述下一时间间隔内所述移动设备接收到的所述基站的信号强度的变化值。
  14. 根据权利要求11所述的设备,其特征在于,
    所述处理器,进一步用于根据预设的表达式,将所述信号强度、所述信号强度的变化值作为所述表达式的输入,并基于归一化参考值,确定各链路的所述带宽浮动比率;或
    根据预设的查找表,将所述信号强度、所述信号强度的变化值作为所述查找表的输入,确定各链路的所述带宽浮动比率。
  15. 根据权利要求11所述的设备,其特征在于,
    所述处理器,进一步用于将各所述链路的所述带宽预测值按照从大到小进行排序,在所述预设的时间间隔内,当已分配了承载数据的链路的带宽已用完,则选择所述排序中的下一条链路来承载数据。
PCT/CN2016/082801 2015-10-30 2016-05-20 移动网络的多链路带宽分配方法、装置及移动设备 WO2017071186A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16753808.1A EP3179745A4 (en) 2015-10-30 2016-05-20 Multi-link bandwidth allocation method and apparatus for mobile network, and mobile device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510729392.X 2015-10-30
CN201510729392.XA CN105898799B (zh) 2015-10-30 2015-10-30 基于信号强度的移动网络的多链路带宽分配方法及装置

Publications (1)

Publication Number Publication Date
WO2017071186A1 true WO2017071186A1 (zh) 2017-05-04

Family

ID=57002301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082801 WO2017071186A1 (zh) 2015-10-30 2016-05-20 移动网络的多链路带宽分配方法、装置及移动设备

Country Status (4)

Country Link
US (1) US20170127408A1 (zh)
EP (1) EP3179745A4 (zh)
CN (1) CN105898799B (zh)
WO (1) WO2017071186A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068217A (zh) * 2021-03-16 2021-07-02 广东电网有限责任公司广州供电局 基于电力无线通信模块的基站状态监测方法及相关装置
CN114039979A (zh) * 2021-11-22 2022-02-11 华平智慧信息技术(深圳)有限公司 一种链路聚合中负载均衡的方法、装置、设备及存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389513B2 (en) * 2017-01-26 2019-08-20 Hewlett Packard Enterprise Development Lp Dynamic adjustment of wait time values
CN107342899B (zh) * 2017-07-10 2020-02-21 西安电子科技大学 蜂窝网聚合链路控制方法
CN111213401B (zh) * 2017-08-18 2023-08-29 诺基亚技术有限公司 用于无线混合接入网络的业务分布控制
US11140368B2 (en) 2017-08-25 2021-10-05 Advanced Micro Devices, Inc. Custom beamforming during a vertical blanking interval
US10680927B2 (en) * 2017-08-25 2020-06-09 Advanced Micro Devices, Inc. Adaptive beam assessment to predict available link bandwidth
US11539908B2 (en) 2017-09-29 2022-12-27 Advanced Micro Devices, Inc. Adjustable modulation coding scheme to increase video stream robustness
CN107920021B (zh) * 2017-10-26 2020-10-30 西安电子科技大学 基于蜂窝链路聚合的链路优选方法
US11218910B2 (en) * 2017-12-04 2022-01-04 Telefonaktiebolaget Lm Ericsson (Publ) First node and a second node and methods of operating the same
US11398856B2 (en) 2017-12-05 2022-07-26 Advanced Micro Devices, Inc. Beamforming techniques to choose transceivers in a wireless mesh network
US10938503B2 (en) 2017-12-22 2021-03-02 Advanced Micro Devices, Inc. Video codec data recovery techniques for lossy wireless links
CN108366104B (zh) * 2018-01-29 2020-11-13 北京奇艺世纪科技有限公司 一种数据下载控制方法和装置
CN110351771A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 提高网络吞吐率的方法、装置、***、设备和介质
US10959111B2 (en) 2019-02-28 2021-03-23 Advanced Micro Devices, Inc. Virtual reality beamforming
CN110446234B (zh) * 2019-06-24 2021-01-29 华为技术有限公司 一种主从型混合组网的通信方法、装置及***
CN110740075B (zh) * 2019-09-06 2021-06-22 北京直真科技股份有限公司 一种以太网聚合链路精细化拨测与质量分析的方法
CN114629841B (zh) * 2020-11-27 2023-05-16 华为技术有限公司 通信方法、装置及***
US11699408B2 (en) 2020-12-22 2023-07-11 Ati Technologies Ulc Performing asynchronous memory clock changes on multi-display systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098301A (zh) * 2011-01-06 2011-06-15 复旦大学 多链路自适应的数据传输方法与***
US20110296006A1 (en) * 2010-04-06 2011-12-01 Qualcomm Incorporated Cooperative bandwidth aggregation using multipath transport
CN104065468A (zh) * 2014-06-26 2014-09-24 北京邮电大学 无线设备中基于多路径的数据传输、路径选择方法和装置
CN104753627A (zh) * 2013-12-26 2015-07-01 中兴通讯股份有限公司 多路径传输方法、***及数据发送装置和数据接收装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7027400B2 (en) * 2001-06-26 2006-04-11 Flarion Technologies, Inc. Messages and control methods for controlling resource allocation and flow admission control in a mobile communications system
KR20070080265A (ko) * 2006-02-07 2007-08-10 삼성전자주식회사 다중 홉 릴레이 방식을 사용하는 무선 접속 통신시스템에서 기회적 패킷 스케줄링 장치 및 방법
US20070298811A1 (en) * 2006-06-21 2007-12-27 Lockheed Martin Corporation System for predicting bandwidth capacity
JP5423689B2 (ja) * 2009-02-09 2014-02-19 日本電気株式会社 経路制御システム、経路制御装置、通信装置、経路制御方法およびプログラム
CN102694619B (zh) * 2011-03-24 2014-11-19 北京大学 数据包传输速率的调整方法、装置及***
CN103841041B (zh) * 2012-11-23 2018-12-28 中兴通讯股份有限公司 一种多流业务并发传输控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110296006A1 (en) * 2010-04-06 2011-12-01 Qualcomm Incorporated Cooperative bandwidth aggregation using multipath transport
CN102098301A (zh) * 2011-01-06 2011-06-15 复旦大学 多链路自适应的数据传输方法与***
CN104753627A (zh) * 2013-12-26 2015-07-01 中兴通讯股份有限公司 多路径传输方法、***及数据发送装置和数据接收装置
CN104065468A (zh) * 2014-06-26 2014-09-24 北京邮电大学 无线设备中基于多路径的数据传输、路径选择方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3179745A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113068217A (zh) * 2021-03-16 2021-07-02 广东电网有限责任公司广州供电局 基于电力无线通信模块的基站状态监测方法及相关装置
CN113068217B (zh) * 2021-03-16 2022-08-02 广东电网有限责任公司广州供电局 基于电力无线通信模块的基站状态监测方法及相关装置
CN114039979A (zh) * 2021-11-22 2022-02-11 华平智慧信息技术(深圳)有限公司 一种链路聚合中负载均衡的方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN105898799A (zh) 2016-08-24
EP3179745A1 (en) 2017-06-14
CN105898799B (zh) 2019-04-30
EP3179745A4 (en) 2017-08-09
US20170127408A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2017071186A1 (zh) 移动网络的多链路带宽分配方法、装置及移动设备
US11026247B2 (en) Transmitting data based on flow input from base station
US10531361B1 (en) Method and apparatus for connection pooling and distribution across networks
US9432873B2 (en) Differentiation of traffic flows for uplink transmission
CN110915181B (zh) 用于多连接性控制的方法和网络元件
US20170085484A1 (en) Method and devices for controlling usage of multi-path tcp
WO2016091298A1 (en) Updating flow-specific qos policies based on information reported from base station
US9998947B2 (en) Intelligent handling of voice calls from mobile voice client devices
EP3247142B1 (en) Wireless communication system
KR20140125149A (ko) 데이터 오프로딩 장치 및 방법
CN105916105B (zh) 基于位置信息的移动网络多链路带宽分配方法及装置
Hagos The performance of network-controlled mobile data offloading from LTE to WiFi networks
US20190124547A1 (en) Controlling a Congestion Window Value for a Wireless Device in a Heterogeneous Network
US9750072B2 (en) Mobile device and communication control method
US10673651B2 (en) Method and device for quality of service regulation
US10771596B2 (en) Service data transmission method and apparatus
Kumar et al. Device‐centric data reordering and buffer management for mobile Internet using Multipath Transmission Control Protocol
WO2016198112A1 (en) Nodes and methods for handling packet flows
WO2022166577A1 (zh) 丢包率的检测方法、通信装置及通信***
CN113691410B (zh) 网络性能数据的获取方法、装置和服务器
KR101659730B1 (ko) 모바일 네트워크의 트래픽을 절감하기 위한 방법, 장치 및 시스템
KR20160050636A (ko) 지능형 로밍 트래픽 관리 장치 및 방법
KR20160049705A (ko) 로밍 트래픽 관리장치 및 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016753808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016753808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE