WO2017069430A1 - 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017069430A1
WO2017069430A1 PCT/KR2016/011063 KR2016011063W WO2017069430A1 WO 2017069430 A1 WO2017069430 A1 WO 2017069430A1 KR 2016011063 W KR2016011063 W KR 2016011063W WO 2017069430 A1 WO2017069430 A1 WO 2017069430A1
Authority
WO
WIPO (PCT)
Prior art keywords
discovery
message
relay
pc5d
prose
Prior art date
Application number
PCT/KR2016/011063
Other languages
English (en)
French (fr)
Inventor
김태훈
정성훈
김래영
김재현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/770,039 priority Critical patent/US10609744B2/en
Publication of WO2017069430A1 publication Critical patent/WO2017069430A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a discovery message in a direct communication between terminals (eg, ProSe communication) environment.
  • terminals eg, ProSe communication
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the present invention is to improve the discovery message transmission and reception method between terminals in the ProSe communication process.
  • Another object of the present invention is to reduce the waste of radio resources for ProSe communication due to transmission and reception of discovery messages.
  • ProSe communication method for solving the technical problem transmits a first PC5 discovery message including the identification information of the second UE to the second UE which is a relay UE established for the direct communication with the first UE. Receiving a second PC5 discovery message as a response to the first PC5 discovery message from the second UE, and performing a measurement on the connection with the second UE using the second PC5 discovery message. It includes.
  • the identification information of the second UE may include a ProSe relay UE ID parameter.
  • the performing of the measurement may be performed using a DeModulation Reference Signal (DMRS) of the Physical Sidelink Discovery Channel (PSCH).
  • DMRS DeModulation Reference Signal
  • PSCH Physical Sidelink Discovery Channel
  • the third UE that has received the first PC5 discovery message may not respond to the first PC5 discovery message.
  • Identification information of the second UE may be obtained from the second UE in the discovery process with the second UE.
  • the first UE and the second UE may communicate in a Model B discovery manner.
  • the first PC5 discovery message may be a discovery request message
  • the second PC5 discovery message may be a discovery response message
  • the UE for solving the technical problem includes a transmitter, a receiver, and a processor that is connected to and operate in connection with the transmitter and the receiver, wherein the processor is a relay UE that is established for direct communication with the first UE.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary view showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary view showing the structure of a radio interface protocol in a user plane.
  • 5 is a flowchart illustrating a random access procedure.
  • RRC radio resource control
  • FIG. 7 shows a basic path for two UEs to communicate in EPS.
  • FIG. 9 illustrates a communication path through an eNodeB between two UEs based on a process.
  • 11 is a diagram illustrating communication through a processor UE-to-Network Relay.
  • 12 is a diagram illustrating media traffic of group communication.
  • FIG. 13 shows a procedure of a remote UE performing direct communication through a UE-to-network relay.
  • FIG. 14 illustrates an example of a message type field included in a PC5 discovery message.
  • 15 to 17 are flowcharts illustrating a proposed embodiment.
  • FIG. 19 is a diagram illustrating a configuration of a node device according to an exemplary embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is a packet switched (PS) core network based on Internet Protocol (IP), and an access network such as LTE / UTRAN.
  • EPC Evolved Packet Core
  • PS packet switched
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell size.
  • UE User Equipment
  • the UE may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smart phone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • HNB Home NodeB
  • HeNB Home eNodeB: A base station of an EPS network, which is installed indoors and its coverage is micro cell size.
  • Mobility Management Entity A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • Packet Data Network-Gateway (PDN-GW) / PGW / P-GW A network node of an EPS network that performs UE IP address assignment, packet screening and filtering, charging data collection, and the like.
  • SGW Serving Gateway
  • S-GW network node of EPS network performing mobility anchor, packet routing, idle mode packet buffering, triggering MME to page UE, etc. .
  • PCRF Policy and Charging Rule Function
  • -OMA DM Open Mobile Alliance Device Management: A protocol designed for the management of mobile devices such as mobile phones, PDAs, portable computers, etc., including device configuration, firmware upgrade, error report, etc. Performs the function of.
  • OAM Operaation Administration and Maintenance
  • a group of network management functions that provides network fault indication, performance information, and data and diagnostics.
  • Non-Access Stratum Upper stratum of the control plane between the UE and the MME.
  • NAS Non-Access Stratum
  • AS Access-Stratum: Includes protocol stack between UE and radio (or access) network, and is in charge of data and network control signal transmission.
  • MO Management object
  • Packet Data Network A network in which a server supporting a specific service (eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • a server supporting a specific service eg, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • PDN connection A logical connection between the UE and the PDN, represented by one IP address (one IPv4 address and / or one IPv6 prefix).
  • APN Access Point Name: A string indicating or identifying a PDN. In order to access the requested service or network, it goes through a specific P-GW, which means a predefined name (string) in the network to find this P-GW. (For example, internet.mnc012.mcc345.gprs)
  • RAN Radio Access Network: a unit including a NodeB, an eNodeB and a Radio Network Controller (RNC) controlling them in a 3GPP network. It exists between UEs and provides a connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
  • Proximity Service (or ProSe Service or Proximity based Service): A service that enables discovery and direct communication between physically close devices or communication through a base station or a third party device. In this case, user plane data is exchanged through a direct data path without passing through a 3GPP core network (eg, EPC).
  • EPC 3GPP core network
  • ProSe communication means communication through ProSe communication path between two or more ProSe capable terminals. Unless specifically stated otherwise, ProSe communication means one of ProSe E-UTRA communication, ProSe-assisted WLAN direct communication between two terminals, ProSe group communication, or ProSe broadcast communication.
  • ProSe-assisted WLAN direct communication ProSe communication using a direct communication path
  • ProSe communication path As a communication path supporting ProSe communication, a ProSe E-UTRA communication path may be established between ProSe-enabled UEs or through a local eNB using E-UTRA. ProSe-assisted WLAN direct communication path can be established directly between ProSe-enabled UEs using WLAN.
  • EPC path (or infrastructure data path): user plane communication path through EPC
  • ProSe Discovery A process of identifying / verifying a nearby ProSe-enabled terminal using E-UTRA
  • ProSe Group Communication One-to-many ProSe communication using a common communication path between two or more ProSe-enabled terminals in close proximity.
  • ProSe UE-to-Network Relay ProSe-enabled public safety terminal acting as a communication relay between ProSe-enabled network using E-UTRA and ProSe-enabled public safety terminal
  • ProSe UE-to-UE Relay A ProSe-enabled public safety terminal operating as a ProSe communication relay between two or more ProSe-enabled public safety terminals.
  • Remote UE ProSe-enabled public safety that is connected to the EPC network via ProSe UE-to-Network Relay, ie provided with PDN connection, without being serviced by E-UTRAN in UE-to-Network Relay operation. Terminal. In a UE-to-UE relay operation, a ProSe-enabled public safety terminal that communicates with another ProSe-enabled public safety terminal through a ProSe UE-to-UE Relay.
  • ProSe-enabled Network A network that supports ProSe Discovery, ProSe Communication, and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled Network may be referred to simply as a network.
  • ProSe-enabled UE a terminal supporting ProSe discovery, ProSe communication and / or ProSe-assisted WLAN direct communication.
  • the ProSe-enabled UE and the ProSe-enabled Public Safety UE may be called terminals.
  • Proximity Satisfying proximity criteria defined in discovery and communication, respectively.
  • FIG. 1 is a diagram illustrating a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing enhanced data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • EPC IP Multimedia Subsystem
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • RANs defined before 3GPP Release-8 such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • Access to an IP service network eg, IMS.
  • FIG. 1 also shows various reference points (eg, S1-U, S1-MME, etc.).
  • reference points eg, S1-U, S1-MME, etc.
  • Table 1 summarizes the reference points shown in FIG. 1.
  • This reference point can be used in PLMN-to-PLMN-to-PLMN-to-for example (for PLMN-to-PLMN handover).
  • This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 Reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and SGW's 3GPP anchor functionality.It also provides user plane tunneling if no direct tunnel is established.
  • 3GPP Anchor function of Serving GW In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 Reference point providing user plane tunneling and tunnel management between the SGW and the PDN GW. It provides user plane tunneling and tunnel management between Serving GW and PDN GW.
  • the PDN may be an operator external public or private PDN or, for example, an in-operator PDN for the provision of IMS services. It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with associated control and mobility support between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and PDN GW.
  • FIG. 2 is an exemplary view showing the architecture of a general E-UTRAN and EPC.
  • the eNodeB routes resources to the gateway, scheduling and sending paging messages, scheduling and sending broadcast channels (BCHs), and uplink and downlink resources while the Radio Resource Control (RRC) connection is active.
  • Functions such as dynamic allocation to UE, configuration and provision for measurement of eNodeB, radio bearer control, radio admission control, and connection mobility control may be performed.
  • paging can be generated, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station. .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
  • one subframe is composed of a plurality of OFDM symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of OFDM symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the medium access control (MAC) layer of the second layer serves to map various logical channels to various transport channels, and also logical channels to map several logical channels to one transport channel. Perform the role of multiplexing.
  • the MAC layer is connected to the upper layer RLC layer by a logical channel, and the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and reconfiguration of radio bearers (abbreviated as RB) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • the UE If an RRC connection is established between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. .
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED state There are several cases in which a UE in RRC_IDLE state needs to establish an RRC connection. For example, a user's call attempt, a data transmission attempt, etc. are required or a paging message is received from E-UTRAN. Reply message transmission, and the like.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM Evolved Session Management
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or / and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is performed for the UE to obtain UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE sends the randomly selected random access preamble to the eNodeB.
  • the UE selects one of the 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with random access-RNTI (RA-RNTI). The UE receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is in a logical connection with an entity of the RRC layer of the eNodeB.
  • the RRC state is referred to as an RRC connected state.
  • the non-state is called the RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE.
  • the UE in the idle state can not be identified by the eNodeB, the core network (core network) is managed by the tracking area (Tracking Area) unit larger than the cell unit.
  • the tracking area is a collection unit of cells. That is, the idle state (UE) is determined only in the presence of the UE in a large area, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the connected state (connected state).
  • the UE When a user first powers up a UE, the UE first searches for an appropriate cell and then stays in an idle state in that cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure and transitions to an RRC connected state. .
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or uplink data transmission is required, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which a UE sends an RRC connection request message to an eNodeB, an eNodeB sends an RRC connection setup message to the UE, and a UE completes RRC connection setup to the eNodeB. (RRC connection setup complete) message is sent. This process will be described in more detail with reference to FIG. 6 as follows.
  • the eNB When the RRC connection request message is received from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection establishment message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connected mode.
  • the ProSe service refers to a service capable of discovery and direct communication between physically adjacent devices, communication through a base station, or communication through a third device.
  • FIG. 7 illustrates a default data path through which two UEs communicate in EPS. This basic route goes through the operator's base station (eNodeB) and the core network (ie, EPC). In the present invention, such a path will be referred to as an infrastructure data path (or EPC path). In addition, communication through such an infrastructure data path will be referred to as infrastructure communication.
  • eNodeB operator's base station
  • EPC core network
  • FIG. 8 shows a direct mode data path between two UEs based on a process. This direct mode communication path does not go through an eNodeB and a core network (ie, EPC) operated by an operator.
  • FIG. 8 (a) illustrates a case where UE-1 and UE-2 camp on different eNodeBs while transmitting and receiving data through a direct mode communication path.
  • FIG. 8 (b) illustrates camping on the same eNodeB.
  • FIG. 2 illustrates a case in which two UEs that are on exchange data via a direct mode communication path.
  • FIG. 9 shows a locally-routed data path through an eNodeB between two UEs based on a process.
  • the communication path through the eNodeB does not go through the core network (ie, EPC) operated by the operator.
  • EPC core network
  • the EPC may perform an EPC-level ProSe discovery procedure for determining whether proximity between two UEs and informing the UE of this.
  • ProSe Function is to determine whether two UEs are in close proximity and to inform the UE.
  • the ProSe function retrievals and stores process associated subscriber data and / or process associated subscriber data from the HSS, and performs EPC level process discovery and EPC secondary WLAN direct discovery, authentication and configuration for communication. Can be. It can also operate as a location service client to enable EPC level discovery and provide the UE with information to assist in WLAN direct discovery and communication. Handles EPC ProSe User IDs and Application Layer User IDs, and exchanges signals with 3rd party application servers for application registration identifier mapping. It exchanges signals with ProSe functions of other PLMNs for transmission of proximity requests, proximity alerts, and location reporting. In addition, the ProSe Function provisions various parameters required by the UE for ProSe discovery and ProSe communication. For details on ProSe Function, apply 3GPP TS 23.303.
  • FIG. 11 illustrates communication through a ProSe UE-to-Network Relay.
  • the remote UE is provided with connectivity to the EPC through the UE-to-Network Relay, thereby communicating with an application server (AS) or participating in group communication.
  • 12 shows an example in which a remote UE participates in group communication.
  • UEs 1 to 6 which are UEs belonging to the same group, may receive downlink traffic through unicast or MBMS for a specific media constituting group communication.
  • the remote UE although not in E-UTRAN coverage, sends media traffic to other group members (i.e., generates directional link traffic) by participating in a group communication via UE-to-Network Relay, or by another group member.
  • One media traffic can be received.
  • a GCS AS Group Communication Service Application Server
  • GC1 Global System for Mobile Communications
  • ii) reception of uplink data from a UE in unicast and iii) for all UEs in a group, using Unicast / MBMS delivery.
  • Data delivery iv) transmission of application level session information through the Rx interface to the PCRF, v) support for service continuity procedures for UEs switching between Unicast Delivery and MBMS Delivery.
  • GCS AS, Public Safety AS, GCSE AS Group Communication Service Enabler Application Server
  • GCS AS, Public Safety AS, GCSE AS Group Communication Service Enabler Application Server
  • the details of group communication shall apply mutatis mutandis to TS 23.468.
  • FIG. 13 shows a procedure of a remote UE performing direct communication through a UE-to-network relay.
  • a UE capable of operating as a ProSe UE-to-Network Relay may connect to the network and create a PDN connection to provide relay traffic to the remote UE.
  • a PDN connection supporting UE-to-Network Relay is used only for supporting relay traffic to a remote UE.
  • the relay UE creates a PDN connection through an initial connection to the E-UTRAN (S1310).
  • the relay UE obtains an IPv6 prefix through a prefix delegation function.
  • the relay UE performs a discovery procedure with the UE according to the model A or the model B with the remote UE (S1320).
  • the remote UE selects the relay UE found by the discovery procedure and establishes a one-to-one direct connection (S1330). If there is no PDN connection according to the relay UE ID or additional PDN connection is required for relay operation, the relay UE initiates a new PDN connection procedure (S1340).
  • an IPv6 prefix or an IPv4 address is assigned to the remote UE (S1350), and thus an uplink / downlink relay operation is started.
  • an IPv6 stateless address auto-configuration procedure is performed, which consists of signaling a router solicitation from the remote UE to the relay UE and signaling a router advertisement from the relay UE to the remote UE.
  • DHCPv4 discovery signaling from remote UE to relay UE
  • DHCPv4 offer signaling from relay UE to remote UE
  • DHCPv4 request signaling from remote UE to relay UE
  • IPv4 address allocation using DHCPv4 process consisting of ACK signaling (from relay UE to remote UE) is performed.
  • the relay UE performs a remote UE reporting procedure informing the MME that the remote UE is connected to it (S1360).
  • the MME notifies that the new remote UE is connected by performing a remote UE report notification procedure for the SGW and the PGW (S1370).
  • the remote UE communicates with the network through the relay UE (S1380).
  • Specific details of the above-described direct connection creation process shall apply mutatis mutandis to TS 23.303.
  • UE-to-Network Relay discovery may use a discovery method of Model A and Model B types. (See Section 6.1 (Solution for Direct Discovery (public safety use)) of TR 23.713 v1.4.0 and Section 5.3.1.2 (ProSe Direct Discovery Models) of TS 23.303)
  • Model A (“I am here") discovery defines the roles of ProSe-enabled UEs as an Announcing UE and a Monitoring UE.
  • the announce UE is a terminal that announces information that can be used by a terminal in the close proximity to which discovery is allowed, and the monitoring UE is a UE that receives information from the announce UE.
  • the announce UE broadcasts the discovery message at a preset discovery interval, which the monitoring UE reads and processes.
  • Model B (“who is there?" / "Are you there?") Discovery is a role of UEs, and defines a discoverer UE and a discovery UE.
  • the discoverer UE requests information that is of interest to discover, and the discovery UE is a UE that receives a discovery request and responds with information related to the discovery request.
  • the parameters / information included in the Direct Discovery message (ie, PC5-D message) are as follows.
  • PC5-D message Parameters included in the PC5 discovery message (PC5-D message) for UE-to-Network Relay Discovery Announcement in Model A discovery are shown in Table 2 below.
  • the Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B”.
  • the PC5-D message described above is distinguished from each other according to a method and a type used.
  • the PC5-D messages of Tables 2 to 7 each include a message type field indicating a message type.
  • FIG. 14 illustrates an example in which a message type field included in a PC5-D message is implemented, and Table 8 specifically shows a configuration of the message type field of FIG. 14.
  • the content type field value '0100' indicates a case where the PC5-D message is used for announcing in model A and discoveree operation in model B during UE-to-Network Relay Discovery.
  • the content type field value '0110' represents a case where the PC5-D message is used for announcing in model A and discoveree operation in model B during Group Member discovery.
  • ProSe UE ID The ProSe UE ID parameter is used to indicate the ID of the ProSe UE and consists of a 24-bit long bit string.
  • the ProSe Relay UE ID parameter is used to indicate the ID of a ProSe Relay UE and is composed of a 24-bit long bit string.
  • the User Info ID parameter indicates an ID of User Info defined in TS 23.303.
  • the Relay Service Code parameter identifies the service of the public safety application provided by the UE-to-Network relay.
  • the Radio Layer Information parameter includes information provided by the lower layer so that the remote UE can select the UE-to-Network Relay.
  • Target Info The Target Info parameter is used to provide information about the target discovery (user or group).
  • the Layer-2 Discovery Group ID parameter includes a link layer identifier of a discovery group to which the UE belongs.
  • PC5 discovery (PC5-D or PC5D) messages are used in various ways in a ProSe communication environment.
  • PC5D messages are also used for measurement. That is, when a remote UE and a relay UE are connected to perform direct communication, the remote UE periodically measures signal strength of an established direct link. This is because the remote UE needs to reselect the relay UE when the channel situation with the relay UE worsens.
  • the measurement using the PC5D message is performed even when the remote UE, which is not directly connected to another UE, establishes a new relay UE. That is, the remote UE performs the measurement using a PC5D message to select a relay UE having a good channel condition.
  • the measurement using the PC5D message for the selection / reselection of the relay UE may be performed using a DeModulation Reference Signal (DMRS) of the Physical Sidelink Discovery Channel (PSDCH).
  • DMRS DeModulation Reference Signal
  • PSDCH Physical Sidelink Discovery Channel
  • the relay UE when the remote UE transmits a PC5D request message including a relay service code parameter, the relay UE receives the relay service code of the received PC5D message. If the confirmed Relay Service Code is the same as the value set to the relay UE, the relay UE transmits a PC5D response message to the remote UE. That is, in the model B discovery method, when a remote UE transmits a PC5D request message to a corresponding relay UE to measure link quality with a relay UE currently making a connection, the relay UE receiving the PC5D transmits a PC5D request message. If the relay service code included in the request message matches the preset value, the PC5D response message is transmitted to the remote UE.
  • a relay UE (or serving relay UE) having a connection with a remote UE should transmit a response independently to each remote UE's request, and the PC5D request message sent by the remote UE may be transmitted to another relay other than the serving relay UE. It may also be delivered to the UE.
  • signaling overhead may occur in which the third relay UEs to which the Relay Service Code included in the PC5D request message of the remote UE matches match, which leads to waste of PC5 radio resources.
  • the following proposes a method for improving unnecessary operations and resource waste by dividing the purpose of PC5D message transmission.
  • the purpose of the PC5D message can be divided into the original purpose of discovery purpose and the other cases (including measurement purpose).
  • the remote / relay UE operates according to the conventional art, and when the PC5D message is received instead of the discovery purpose, the remote / relay UE is used for a new purpose. It works according to. Specifically, if the relay UE connecting to the remote UE receives the PC5D message for measurement purposes, the PC transmits the PC5D message to the corresponding remote UE and responds.
  • the remote UE measures the quality of the ProSe connection with the relay UE currently making the connection. However, in the case of a relay UE that does not establish a connection with any remote UE, if a PC5D message for measurement is received, the received PC5D message is discarded without being used for discovery or measurement.
  • three methods can be considered as a method of distinguishing the purpose of the PC5D message.
  • a method of adding an indication indicating a purpose to a PC5D message second, a method of modifying a PC5D message, and finally a method of defining a new PC5D message can be considered.
  • Each method can be applied independently or can be applied in combination with other methods.
  • the first method (a method of adding an indicator indicating a purpose to a conventional PC5D message) will be described in detail. Specifically, by adding a 1-bit indicator indicating the purpose of the PC5D message, the indicator can be set to '0' when the PC5D message is used for discovery purposes, and set to '1' if it is not for discovery purposes ( The value of the indicator may be set in reverse).
  • the PC5D messages described in Tables 2 to 4 may be implemented as shown in Tables 9 to 11 below.
  • Table 9 shows PC5D Announcement messages
  • Table 10 shows PC5D Solicitation messages
  • Table 11 shows PC5D Response messages.
  • the Discovery Type is set to "Restricted discovery”
  • the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response”
  • the Discovery Model is set to "Model A”.
  • the Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B”.
  • the 'Discovery Indication' parameters in Tables 9-11 are used to indicate the purpose of the PC5D message.
  • the value '0' or '1' of the parameter may indicate 'discovery purpose' or 'purpose other than discovery', respectively.
  • the second method (method of modifying a conventional PC5D message) will be described in detail.
  • 'non-discovery purpose' can be distinguished by modifying a message type field included in a conventional PC5D message.
  • 14 illustrates the configuration of the message type field described in Table 8 in detail, and is not 'discovery purpose' by modifying one or more of the discovery type field, content type field, and discovery model field among the illustrated message type fields.
  • the PC5D message may be transmitted according to the related art without modifying the corresponding field.
  • the message type field described in Table 8 may be configured as shown in Table 12 below.
  • the discovery type value indicates '11', it indicates that the corresponding PC5D message is not for discovery purposes.
  • the message type field of Table 8 may be configured as shown in Table 13 below.
  • Table 13 when the content type value indicates '1000', it indicates that the corresponding PC5D message is not for discovery purpose.
  • the fields of Table 8 may be configured as shown in Table 14.
  • Table 14 when the discovery model value indicates '11', it indicates that the corresponding PC5D message is not for discovery purposes.
  • the PC5D message may be implemented in a form in which some information (or values, parameters, fields) included in the conventional PC5D message is excluded or added.
  • an embodiment in which some information is excluded may be described, by selectively including some fields in the conventional PC5D message (that is, by selectively adding fields) to indicate the purpose of the PC5D message. For example, when a PC5D message is used for measurement, a specific field may be deleted and transmitted. When a PC5D message is used for discovery, a specific field may be included and transmitted.
  • Fields selectively included for each PC5D message described in Tables 2 to 4 may vary.
  • at least one of the fields 'Relay Service Code', 'Announcer Info', and 'ProSe Relay UE ID' may be excluded according to the purpose of the PC5D message.
  • at least one of 'Announcer Info' and 'ProSe Relay UE ID' should remain without being excluded.
  • Table 15 below shows an embodiment in which the Relay Service Code field is selectively included / excluded in the PC5D Announcement message of Table 2.
  • the Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model A”.
  • a 'Relay Service Code' or 'Discoverer Info' field may be excluded according to the purpose of the PC5D message.
  • Table 16 below shows an embodiment in which the Relay Service Code field is selectively included / excluded in the PC5D Solicitation message of Table 3.
  • the 'Relay UE ID' field is added to the PC5D Solicitation message, and may include identification information of the relay UE transmitting the PC5D Solicitation message.
  • the inclusion of the 'Relay UE ID' field may be understood that the PC5D message is used for measurement purposes and not for discovery purposes. This embodiment is shown in Table 17 below.
  • the Discovery Type is set to "Restricted discovery”
  • the Content Type is set to "UE-to-Network Relay Discovery Solicitation”
  • the Discovery Model is set to "Model B”.
  • At least one of the 'ProSe Relay UE ID', 'Relay Service Code' and 'Discoveree Info' fields may be excluded according to the purpose of the PC5D message in the PC5D Response message.
  • at least one of the 'Announcer Info' and 'ProSe Relay UE ID' fields should remain. For example, only the 'Relay Service Code' field may be excluded or the 'Relay Service Code' and 'Discoveree Info' fields may be excluded.
  • Table 18 and Table 19 below show embodiments in which the 'Relay Service Code' field is selectively included / excluded from the PC5D Response message of Table 4 (Table 18) and the 'Relay Service Code' and 'Discoveree Info' fields are optionally included. / Example (Table 19) excluded is shown, respectively.
  • the Discovery Type is set to "Restricted discovery"
  • the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response”
  • the Discovery Model is set to "Model B”.
  • the Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B”.
  • the conventional PC5D message is used only for discovery purposes, and newly defined discovery messages may be used for other purposes than discovery purposes.
  • the newly defined discovery message may exclude some information (or fields, parameters, and values) included in the conventional PC5D message.
  • the newly defined discovery message may be implemented by excluding at least one of 'Relay Service Code', 'Announcer Info', and 'ProSe Relay UE ID' field from the PC5D Announcement message. At this time, one of the fields 'Announcer Info' and 'ProSe Relay UE ID' except for 'Relay Service Code' should remain in the newly defined discovery message.
  • the newly defined discovery message may be implemented by excluding a 'Relay Service Code' or 'Discoverer Info' field from the PC5D Solicitation message.
  • the newly defined discovery message may be implemented by excluding at least one of 'Relay Service Code', 'Discoveree Info', and 'ProSe Relay UE ID' fields from the PC5D Response message. At this time, at least one of the fields 'Announcer Info' and 'ProSe Relay UE ID' except for 'Relay Service Code' should remain.
  • the newly defined discovery message according to the above-described embodiment may be implemented according to any one of Tables 20 to 22 below.
  • Table 20 Information Element Type / Reference Presence Length (bits) Message Type (NOTE) Message Type M 8 ProSe Relay UE ID Binary M 24 Announcer Info Binary M TBD Radio Layer Information Binary M TBD
  • the 'Announcer Info' field may correspond to a 'Discoverer Info' field or a 'Discoveree Info' field of a conventional PC5D message.
  • Table 22 Information Element Type / Reference Presence Length (bits) Message Type (NOTE) Message Type M 8 ProSe Relay UE ID Binary M 24 Radio Layer Information Binary M TBD
  • FIG. 15 is a diagram illustrating an embodiment described above.
  • conventional PC5D messages are used for purposes other than discovery purposes.
  • the PC5D request message transmitted by the remote UE (UE 2) for measurement purposes is not connected to the relay UE (UE 1) connected to the remote UE (UE 2). Is delivered until. Accordingly, a message flooding phenomenon may occur in which relay UEs UE 3 not connected to the remote UE UE 2 transmit a PC5D response message to the remote UE.
  • a solution for including a relay UE ID in a PC5D solicitation message transmitted by a remote UE UE 2 is proposed to solve the problem in the model B discovery environment.
  • the PC5D solicitation message transmitted in S1510 of FIG. 15 includes a 'ProSe Relay UE ID' parameter (or field, value) described in Table 17.
  • FIG. The 'ProSe Relay UE ID' is an identifier of a relay UE UE 1 connected to a remote UE UE 2, and is received from UE 1 in a discovery process between UE 1 and UE 2.
  • the inclusion of the 'ProSe Relay UE ID' in the PC5D solicitation message in S1510 is completely distinct from the same parameter is not included in the conventional PC5D solicitation message described in Table 3. That is, UE 2 transmits the PC5D message without including the corresponding field when transmitting the PC5D message for discovery purposes, but the corresponding parameter is included in the PC5D message transmitted for measurement purposes other than the discovery purpose.
  • the UE 1 receiving the PC5D solicitation message including its UE ID knows that the PC5D message transmitted by the UE 2 is for measurement purposes, the UE 1 transmits a PC5D response message to the UE 2 so that the UE 2 measurement can be performed. (S1520).
  • UE 3 does not transmit any response signal to UE 2 since the 'ProSe Relay UE ID' included in the PC5D message transmitted by UE 2 is not its own (S1530).
  • the relay UE transmits the PC5D response message to the remote UE only when its 'ProSe Relay UE ID' is included in the PC5D solicitation message.
  • unnecessary PC5D response messages from UE 3 not connected to UE 2 are not transmitted or received, signaling overhead and waste of PC5 radio resources can be prevented.
  • UE 2 performs measurement by using the PC5D response message received from UE 1 (S1540). That is, UE 2 measures the radio connection quality with UE 1 using DMRS of the PSDCH, and determines whether to maintain connection with UE 1 according to the measured result. For example, if there is sufficient connection with UE 1, UE 2 maintains the connection with UE 1, but if the channel environment with UE 1 is poor, UE 2 'relays UE selection / reselection' process of finding a new relay UE. Perform (S1550).
  • the remote UE may set a predetermined timer T41xx (x is any value) for PC5D message transmission for periodic measurement of the radio connection quality with the relay UE.
  • the timer T41xx is started by being set to an initial value, and the initial value of the timer may be preset in the terminal, set from the network, or transferred from the serving relay UE to the remote UE through a PC5D message or a PC5S message.
  • the remote UE When the remote UE receives a PC5D response message from the serving relay UE while the timer T41xx is operating, the remote UE stops the timer, sets the initial value, and restarts it. The remote UE then uses the received PC5D message for measurement purposes. In other words, the remote UE recognizes the PC5D response message received while the timer T41xx is operating as a PC5D message for measurement purposes.
  • the remote UE transmits a PC5D solicitation message for measurement purposes to the serving relay UE.
  • the remote UE sets the timer to an initial value and starts a new one.
  • the remote UE can utilize the PC5D response message received during the timer operation for measurement purposes.
  • the remote UE may directly transmit a PC5D solicitation message for measurement to the relay UE to perform measurement.
  • the remote UE may set another timer T41ab (a and b are arbitrary values) together with the transmission of the PC5D solicitation message. If the PC5D response message is not received until the timer T41ab expires, the remote UE may retransmit the PC5D solicitation message to the relay UE.
  • the remote UE uses only the PC5D response message transmitted by the corresponding relay UE for measurement purposes, the transmission of the PC5D request message may increase for periodic measurement.
  • the remote UE also utilizes other PC5D messages transmitted from the relay UE for measurement purposes, it is possible to reduce the number / frequency of transmission of the PC5D request message transmitted for periodic measurement of the radio connection quality with the connected relay UE. That is, the PC5D message received while the timer is running is a message transmitted by the serving relay UE to another third remote UE, for example, a PC5D announcement message, a PC5D response message, a PC5D relay discovery additional information message, or a new PC5D message. It may be any one of.
  • the remote UE may stop the T41xx timer and measure the radio connection quality using the corresponding PC5D message.
  • the relay UE should continue to transmit the PC5D message even if it is already connected to at least one remote UE. That is, the relay UE must send a PC5D message periodically or aperiodically for measurement even if it does not want to make a connection with another UE other than the currently connected remote UE. Accordingly, unnecessary signaling overhead may occur when the third remote UE (that is, the remote UE not connected to the relay UE) receiving the PC5D message transmitted by the relay UE responds to the PC5D message.
  • the third remote UE receiving the PC5D message sends a direct communication request message to the relay UE to establish a connection with the relay UE. It means.
  • the relay UE does not have enough radio resources to support the additional remote UE, unlike the intention of the relay UE, unnecessary signaling overhead in which the third remote UE requests a direct connection to the relay UE Occurs.
  • the remote UE that has connected with the relay UE utilizes the PC5D message of the relay UE for measurement purposes, and there is no problem, but the third remote UE that has not connected is regarded as having found a relay UE that can establish a connection. Initiate connection establishment with the relay UE.
  • a direct communication reject message with reason # 4 'lack of resources for proposed link' is performed.
  • a direct communication release message may also be sent to the released remote UE.
  • the relay UE sends a PC5D message for measurement the above operation may be repeated. Both operations of the relay UE are not desirable operations for ProSe communication, and need to be prevented by generating unnecessary signaling overhead.
  • a relay UE when a relay UE transmits a PC5D message, 'when or not the UE suffers lack of resource to provide a connectivity service for additional remote UEs (or, ProSe-enabled public safety UEs)) ”may be indicated.
  • Such information may be included in the PC5D message in the form of an indicator, for example, may be implemented as a resource status indicator.
  • a remote UE that receives a PC5D message including information related to a resource of a relay UE (for example, a resource status indicator) uses the information in a relay selection / reselection process (remote UEs can use the Resource Status Indicator for relay selection). Accordingly, the remote UE preferentially selects a relay UE that does not have enough resources to select a service, thereby reducing unnecessary PC5 signaling overhead for direct connection establishment (PC5 signaling overheads could be reduced by selecting preferentially thee relay not suffering lack of resource).
  • PC5 signaling overheads could be reduced by selecting preferentially thee relay not suffering lack of resource.
  • UE 1 which is a relay UE, transmits a PC5D announcement message (S1610).
  • the PC5D announcement message is transmitted not only to the remote UE UE 2 that has connected with UE 1, but also to a third remote UE UE 3 that has not connected with UE 1.
  • the UE 1 indicates a status to indicate whether the UE has a resource that can be used to provide a connection service for an additional remote UE (or ProSe-enabled public safety UE).
  • Set the Resource Status Indicator bit (RSI) bit of the parameter UE 1 shall set the Resource Status Indicator bit of the Status Indicator parameter to indicate whether or not the UE 1 has resources available to provide a connectivity service for additional ProSe -enabled public safety UEs). That is, UE 1 includes the RSI in the PC5D announcement message and transmits it. In this case, the RSI included in the PC5D announcement message may indicate that UE 1 does not have enough resources to support the additional remote UE.
  • the UE 2 receiving the PC5D announcement message performs a measurement on the connection with the UE 1 using the PC5D message (S1620). As a result of performing this measurement, UE 2 may maintain the connection with UE 1 or select a new relay UE (S1630).
  • UE 3, the third remote UE may know whether UE 1 has resources to support itself by using the RSI included in the PC5D announcement message transmitted by UE 1.
  • UE 3 selects a relay UE in consideration of resources held by UE 1 (S1640). That is, if it is determined from the RSI that the resource of UE 1 is not sufficient, UE 3 may avoid unnecessary signaling with UE 1 by excluding UE 1 from the relay selection process. If it is confirmed from the RSI that UE 1 has sufficient resources to support UE 3, UE 3 transmits a direct connection request message to UE 1 (S1650).
  • FIG. 17 is demonstrated.
  • a remote UE UE 2 that has connected to a relay UE UE 1 transmits a PC5D solicitation message to UE 1 (S1710).
  • UE 1 transmits a PC5D response message to UE 2 (S1720).
  • UE 1 sets the RSI bit of the status indication parameter to indicate whether the UE has a resource available for providing connection service for an additional remote UE (or ProSe-enabled public safety UE) (UE 1 shall set the Resource Status Indicator bit of the Status Indicator parameter to indicate whether or not the UE has resources available to provide a connectivity service for additional ProSe-enabled public safety UEs). That is, UE 1 may include the RSI in the PC5D response message and transmit the same, indicating that there is not enough resource to support the additional remote UE.
  • the UE 2 receiving the PC5D response message performs a measurement on the connection with the UE 1 using the PC5D message (S1730). According to the measurement result, UE 2 maintains the connection with UE 1 or selects a new relay UE (S1740).
  • UE 3, the third remote UE may know whether UE 1 has a resource capable of supporting UE 3 from the RSI included in the PC5D response message transmitted by UE 1.
  • UE 3 selects a relay UE in consideration of the resource situation of UE 1 (S1750). Similar to the case of FIG. 16, if the resource of UE 1 is not sufficient, the process of transmitting the direct connection request message by UE 3 is omitted. If the resource of UE 1 is sufficient, UE 3 transmits the direct connection request message to UE 1. (S1760).
  • the remote UE receiving the RSI included in the PC5D announcement / response message considers the RSI bit value in selecting a relay UE (The UE may take the value of the Resource Status Indicator bit of the Status Indicator parameter of the PC5_DISCOVERY message for UE-to-Network Relay Discovery Announcement or PC5_DISCOVERY message for UE-to-Network Relay Discovery Response into account when deciding which ProSe UE-to-network relay to select).
  • each PC5D message is further configured to include a field for indicating an RSI value.
  • the RSI parameter is used to indicate the state of the relay UE and indicates whether the relay UE has a resource capable of providing service to an additional remote UE.
  • the bit value of the RSI parameter may be configured as shown in Table 25 below.
  • a 'Relay UE ID' parameter is included in a PC5D solicitation message transmitted by a remote UE and a 'RSI' parameter is included in a PC5D response message transmitted by a relay UE in response. It can also work in such a way.
  • FIG. 19 is a diagram illustrating a configuration of a node device according to an exemplary embodiment.
  • the terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device. Alternatively, the transceiver 110 may be implemented by being separated into a transmitter and a receiver.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100, and may be configured to perform a function of the terminal device 100 to process and process information to be transmitted and received with an external device.
  • the processor 120 may be configured to perform a terminal operation proposed in the present invention.
  • the memory 130 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the network node device 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data and information to an external device, and to receive various signals, data and information to an external device.
  • the network node device 200 may be connected to an external device by wire and / or wirelessly.
  • the transceiver 210 may be implemented by being separated into a transmitter and a receiver.
  • the processor 220 may control the overall operation of the network node device 200, and may be configured to perform a function of calculating and processing information to be transmitted / received with an external device.
  • the processor 220 may be configured to perform the network node operation proposed in the present invention.
  • the memory 230 may store the processed information for a predetermined time and may be replaced with a component such as a buffer (not shown).
  • the specific configuration of the terminal device 100 and the network device 200 as described above may be implemented so that the above-described matters described in various embodiments of the present invention can be applied independently or two or more embodiments are applied at the same time, overlapping The description is omitted for clarity.
  • Embodiments of the present invention described above may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • a method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). It may be implemented by field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of an apparatus, procedure, or function for performing the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the above-described communication method can be applied not only to 3GPP systems but also to various wireless communication systems including IEEE 802.16x and 802.11x systems. Furthermore, the proposed method can be applied to mmWave communication system using ultra high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Abstract

제1 UE와 직접 통신을 위한 연결이 수립된 제2 UE로 제2 UE의 식별 정보를 포함하는 제1 PC5 디스커버리 메시지를 전송하고, 제2 UE로부터 응답으로서 제2 PC5 디스커버리 메시지를 수신하고, 제2 PC5 디스커버리 메시지를 이용하여 제2 UE와의 연결에 대한 측정을 수행하는 ProSe 통신 방법 및 UE가 개시된다.

Description

무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 구체적으로는 단말 간의 직접 통신(예를 들어, ProSe 통신) 환경에서 디스커버리 메시지를 송수신하는 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명은 ProSe 통신 과정에서 단말 간의 디스커버리 메시지 송수신 방식을 개선하는 것이다.
본 발명의 또 다른 목적은 디스커버리 메시지가 불필요하게 송수신되는 시그널링 오버헤드를 개선하는 것이다.
본 발명의 또 다른 목적은 디스커버리 메시지의 송수신으로 인한 ProSe 통신용 무선 자원의 낭비를 줄이는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상기 기술적 과제를 해결하기 위한 ProSe 통신 방법은, 제1 UE와 직접 통신을 위한 연결이 수립된(established) 릴레이 UE인 제2 UE로 제2 UE의 식별 정보를 포함하는 제1 PC5 디스커버리 메시지를 전송하는 단계, 제2 UE로부터 제1 PC5 디스커버리 메시지에 대한 응답으로서 제2 PC5 디스커버리 메시지를 수신하는 단계, 및 제2 PC5 디스커버리 메시지를 이용하여 제2 UE와의 연결에 대한 측정(measurement)을 수행하는 단계를 포함한다.
제2 UE의 식별 정보는 ProSe 릴레이 UE ID 파라미터를 포함할 수 있다.
측정을 수행하는 단계는, PSDCH(Physical Sidelink Discovery Channel)의 DMRS(DeModulation Reference Signal)를 이용하여 수행될 수 있다.
제1 UE와의 직접 통신을 위한 연결이 수립되지 않았으나 제1 PC5 디스커버리 메시지를 수신한 제3 UE는, 제1 PC5 디스커버리 메시지에 대해 응답하지 않을 수 있다.
제2 UE의 식별 정보는 제2 UE와의 디스커버리 과정에서 제2 UE로부터 획득될 수 있다.
제1 UE와 제2 UE는 모델 B 디스커버리 방식으로 통신할 수 있다.
제1 PC5 디스커버리 메시지는 디스커버리 요청(solicitation) 메시지이며, 제2 PC5 디스커버리 메시지는 디스커버리 응답(response) 메시지일 수 있다.
상기 기술적 과제를 해결하기 위한 UE는, 송신부, 수신부, 및 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 프로세서는, 제1 UE와 직접 통신을 위한 연결이 수립된(established) 릴레이 UE인 제2 UE로, 제2 UE의 식별 정보를 포함하는 제1 PC5 디스커버리 메시지를 전송하고, 제2 UE로부터 제1 PC5 디스커버리 메시지에 대한 응답으로서 제2 PC5 디스커버리 메시지를 수신하고, 제2 PC5 디스커버리 메시지를 이용하여 제2 UE와의 연결에 대한 측정(measurement)을 수행한다.
본 발명의 실시 예들에 따르면 다음과 같은 효과를 기대할 수 있다.
첫째로, ProSe 통신에서 디스커버리 메시지가 불필요하게 송수신되는 시그널링 오버헤드를 줄일 수 있게 된다.
둘째로, ProSe 통신에서 디스커버리 메시지의 불필요한 전송을 줄일 수 있어, ProSe 통신용 무선 자원을 충분히 확보할 수 있게 된다.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선 자원 제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 EPS에서 두 UE가 통신하는 기본적인 경로를 도시한다.
도 8은 프로세에 기반한 두 UE 간의 직접 모드 통신 경로를 도시한다.
도 9는 프로세에 기반한 두 UE 간의 eNodeB를 거치는 통신 경로를 도시한다.
도 10에는 Non-Roaming Reference Architecture이 도시되어 있다.
도 11은 프로세 UE-to-Network Relay를 통한 커뮤니케이션을 나타낸 도면이다.
도 12는 그룹 커뮤니케이션의 미디어 트래픽을 나타낸 도면이다.
도 13은 리모트 UE가 UE-to-network relay를 통한 직접 통신을 수행하는 절차를 도시한다.
도 14는 PC5 디스커버리 메시지에 포함되는 메시지 타입 필드의 예를 도시한다.
도 15 내지 도 17은 제안하는 실시 예를 도시하는 흐름도이다.
도 18은 제안하는 실시 예에 따른 PC5 디스커버리 메시지의 특정 필드를 도시한다.
도 19 는 제안하는 실시 예에 따른 노드 장치의 구성을 도시하는 도면이다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시 예들은 IEEE 802.16 시스템의 표준 문서인 P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p 및 P802.16.1b 표준 문서들 중 하나 이상에 의해 뒷받침될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
먼저, 본 명세서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW/P-GW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway)/S-GW: 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- PCRF (Policy and Charging Rule Function): 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic) 으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS 네트워크의 네트워크 노드.
- OMA DM (Open Mobile Alliance Device Management): 핸드폰, PDA, 휴대용 컴퓨터 등과 같은 모바일 디바이스들 관리를 위해 디자인 된 프로토콜로써, 디바이스 설정(configuration), 펌웨어 업그레이드(firmware upgrade), 에러 보고 (Error Report)등의 기능을 수행함.
- OAM (Operation Administration and Maintenance): 네트웍 결함 표시, 성능정보, 그리고 데이터와 진단 기능을 제공하는 네트웍 관리 기능군.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차 및 IP 주소 관리 등을 지원한다.
- AS (Access-Stratum): UE와 radio(혹은 access) 네트워크간의 프로토콜 스텍을 포함하며, 데이터 및 네트워크 제어 신호 전송 등을 담당한다.
- NAS configuration MO (Management Object): NAS 기능(Functionality)과 연관된 파라미터들(parameters)을 UE에게 설정하는 과정에서 사용되는 MO (Management object).
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- APN (Access Point Name): PDN을 지칭하거나 구분하는 문자열. 요청한 서비스나 망에 접속하기 위해서는 특정 P-GW를 거치게 되는데, 이 P-GW를 찾을 수 있도록 망 내에서 미리 정의한 이름(문자열)을 의미한다. (예를 들어, internet.mnc012.mcc345.gprs)
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- ANDSF(Access Network Discovery and Selection Function): 하나의 네트워크 entity로써 사업자 단위로 단말이 사용가능한 access 를 발견하고 선택하도록 하는 Policy를 제공.
- Proximity Service(또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때, 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
- ProSe 커뮤니케이션: 둘 이상의 ProSe 가능한 단말들 사이의 ProSe 커뮤니케이션 경로를 통한 커뮤니케이션을 의미한다. 특별히 달리 언급되지 않는 한, ProSe 커뮤니케이션은 ProSe E-UTRA 커뮤니케이션, 두 단말 사이의 ProSe-assisted WLAN direct 커뮤니케이션, ProSe 그룹 커뮤니케이션 또는 ProSe 브로드캐스트 커뮤니케이션 중 하나를 의미한다.
- ProSe E-UTRA 커뮤니케이션 : ProSe E-UTRA 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션
- ProSe-assisted WLAN direct 커뮤니케이션: 직접 커뮤니케이션 경로를 사용한 ProSe 커뮤니케이션
- ProSe 커뮤니케이션 경로 : ProSe 커뮤니케이션을 지원하는 커뮤니케이션 경로로써, ProSe E-UTRA 커뮤니케이션 경로는 E-UTRA를 사용하여 ProSe-enabled UE들 사이에서 또는 로컬 eNB를 통해 수립될 수 있다. ProSe-assisted WLAN direct communication path는 WLAN을 사용하여 ProSe-enabled UEs 사이에서 직접 수립될 수 있다.
- EPC 경로(또는 infrastructure data path): EPC를 통한 사용자 평면 커뮤니케이션 경로
- ProSe 디스커버리: E-UTRA를 사용하여, 근접한 ProSe-enabled 단말을 식별/확인하는 과정
- ProSe Group Communication: 근접한 둘 이상의 ProSe-enabled 단말 사이에서, 공통 커뮤니케이션 경로를 사용하는 일 대 다 ProSe 커뮤니케이션
- ProSe UE-to-Network Relay : E-UTRA를 사용하는 ProSe-enabled 네트워크와 ProSe-enabled 퍼블릭 세이프티 단말 사이의 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말
- ProSe UE-to-UE Relay: 둘 이상의 ProSe-enabled 퍼블릭 세이프티 단말 사이에서 ProSe 커뮤니케이션 릴레이로 동작하는 ProSe-enabled 퍼블릭 세이프티 단말
- 리모트 UE(Remote UE): UE-to-Network Relay 동작에서는 E-UTRAN에 의해 서비스 받지 않고 ProSe UE-to-Network Relay를 통해 EPC 네트워크에 연결되는, 즉 PDN 연결을 제공받는 ProSe-enabled 퍼블릭 세이프티 단말. UE-to-UE Relay 동작에서는 ProSe UE-to-UE Relay를 통해 다른 ProSe-enabled 퍼블릭 세이프티 단말과 통신하는 ProSe-enabled 퍼블릭 세이프티 단말.
- ProSe-enabled Network: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 네트워크. 이하에서는 ProSe-enabled Network 를 간단히 네트워크라고 지칭할 수 있다.
- ProSe-enabled UE: ProSe 디스커버리, ProSe 커뮤니케이션 및/또는 ProSe-assisted WLAN 직접 통신을 지원하는 단말. 이하에서는 ProSe-enabled UE 및 ProSe-enabled Public Safety UE를 단말이라 칭할 수 있다.
- Proximity: 디스커버리와 커뮤니케이션에서 각각 정의되는 proximity 판정 기준을 만족하는 것
1. EPC (Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티(capability)를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1은 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
표 1
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 방송 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면의 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브캐리어(subcarrier)로 구성된다. 여기서, 하나의 서브프레임(subframe)은 시간 축 상에 복수의 OFDM 심볼 (symbol)들과 복수의 서브캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 OFDM 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel) 등으로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저, 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선 자원 제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 베어러(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 수립된(established) 경우 단말은 RRC연결 모드(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 ESM (Evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 수행된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
2. ProSe 서비스(Proximity Service)
앞서 설명했듯이, 프로세(ProSe) 서비스는 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스를 의미한다.
도 7은 EPS에서 두 UE가 통신하는 기본적인 경로 (default data path)를 도시하고 있다. 이러한 기본적인 경로는 사업자가 운영하는 기지국(eNodeB) 및 core network(즉, EPC)을 거친다. 본 발명에서는 이러한 경로를 인프라스트럭처 데이터 경로(infrastructure data path) (또는 EPC path)라고 부르기로 한다. 또한, 이러한 인프라스트럭처 데이터 경로를 통한 통신을 인프라스트럭처 통신이라고 부르기로 한다.
도 8은 프로세에 기반한 두 UE 간의 직접 모드 통신 경로(direct mode data path)를 보여준다. 이러한 직접 모드 통신 경로는 사업자가 운영하는 eNodeB 및 core network (즉, EPC)을 거치지 않는다. 도 8(a)는 UE-1과 UE-2가 각각 다른 eNodeB에 캠프 온 (camp-on) 하고 있으면서 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를, 도 8(b)는 동일한 eNodeB에 캠프 온 하고 있는 두 UE가 직접 모드 통신 경로를 통해 데이터를 주고 받는 경우를 도시하고 있다.
도 9는 프로세에 기반한 두 UE 간의 eNodeB를 거치는 통신 경로(locally-routed data path)를 보여준다. 이러한 eNodeB를 거치는 통신 경로는 사업자가 운영하는 core network (즉, EPC)은 거치지 않는다.
도 10에는 Non-Roaming Reference Architecture가 도시되어 있다. 도 10과 같은 구조에서, EPC는 두 UE의 근접(proximity) 여부를 결정하여 이를 UE에게 알려주는 EPC-level ProSe 디스커버리 절차를 수행할 수 있다. 이러한 EPC-level ProSe 디스커버리를 위해 두 UE의 근접 여부를 결정하고 이를 UE에게 알려주는 역할을 수행하도록 하는 것이 ProSe Function이다.
ProSe function은 프로세 연관된 서브스크라이버 데이터 및/또는 HSS로부터의 프로세 연관된 서브스크라이버 데이터를 retrieval하여 저장하고, EPC 레벨 프로세 디스커버리 및 EPC 보조 WLAN 다이렉트 디스커버리, 커뮤니케이션을 위한 인증 및 구성을 수행할 수 있다. 또한, EPC 레벨 디스커버리를 가능하게 하는 위치 서비스 클라이언트로 동작할 수 있으며, UE에게 WLAN 다이렉트 디스커버리 및 커뮤니케이션을 보조하는 정보를 제공할 수 있다. EPC ProSe User IDs 및 Application Layer User ID를 핸들링하고, 애플리케이션 등록 identifier 매핑을 위한 3rd 파티 애플리케이션 서버와의 신호를 교환한다. 근접 요청의 전송, 근접 alerts 및 위치 보고를 위해, 다른 PLMNs의 ProSe function과의 신호를 교환한다. 이외에도 ProSe Function은 단말이 ProSe 디스커버리 및 ProSe 커뮤니케이션에 필요로 하는 다양한 파라미터를 provision한다. ProSe Function에 대한 자세한 사항은 3GPP TS 23.303 내용을 준용한다.
도 11은 ProSe UE-to-Network Relay를 통한 커뮤니케이션을 나타내고 있다. 리모트 UE는 UE-to-Network Relay를 통해 EPC로의 연결성을 제공받음으로서, 어플리케이션 서버(Application Server, AS)와 통신하거나 그룹 커뮤니케이션에 참여할 수 있다. 도 12는 리모트 UE가 그룹 커뮤니케이션에 참여하는 예시를 도시한다. 도 12에서 동일한 그룹에 속한 UE들인 UE-1 ~ UE-6가 그룹 커뮤니케이션을 구성하는 특정 미디어에 대해 유니캐스트 또는 MBMS로 하향링크 트래픽을 전달받을 수 있다. 결국 리모트 UE는 비록 E-UTRAN 커버리지에 있지는 않으나 UE-to-Network Relay를 통해 그룹 커뮤니케이션에 참여함으로써 다른 그룹 멤버 들에게 미디어 트래픽을 전송하거나(즉, 샹향링크 트래픽을 생성), 다른 그룹 멤버가 전송한 미디어 트래픽을 수신할 수 있다. 도 12에서 GCS AS(Group Communication Service Application Server)는 i) GC1 signalling의 교환, ii) 유니캐스트로 UE로부터 상향링크 데이터의 수신, iii) Unicast/MBMS delivery를 사용하여, 그룹에 속한 모든 UE들에 데이터 전달, iv) PCRF로의 Rx 인터페이스를 통한, 애플리케이션 레벨 세션 정보의 전송, v) Unicast Delivery and MBMS Delivery 사이에서 스위치하는 UE를 위한 서비스 연속성 절차를 위한 지원 등의 역할을 수행할 수 있다. GCS AS, Public Safety AS, GCSE AS(Group Communication Service Enabler Application Server)는 모두 같은 의미를 가지는 것으로 해석될 수 있으며 다수의 UE들이 참여하는 통신을 제어/관리하는 AS를 포함하는 의미로 해석될 수 있다. 그룹 커뮤니케이션에 대한 자세한 사항은 TS 23.468 내용을 준용한다.
도 13은 리모트 UE가 UE-to-network relay를 통한 직접 통신을 수행하는 절차를 도시한다. ProSe UE-to-Network Relay 로 동작가능한 UE는 네트워크에 접속하여 리모트 UE에 릴레이 트래픽을 제공하기 위해 PDN 연결을 생성할 수 있다. UE-to-Network Relay를 지원하는 PDN 연결은 리모트 UE로의 릴레이 트래픽을 지원하기 위한 용도로만 사용된다.
먼저, 릴레이UE는 E-UTRAN 에 초기 접속을 통해 PDN 연결을 생성하며(S1310), IPv6의 경우 릴레이 UE는 prefix delegation function 을 통해서 IPv6 프리픽스(prefix)를 획득한다. 이어서, 릴레이 UE는 모델 A 또는 모델 B에 따른 UE와의 디스커버리 절차를 리모트 UE와 수행한다(S1320). 리모트 UE는 디스커버리 절차에 의해 발견된 릴레이 UE를 선택하고 one-to-one 직접 연결을 수립(establish)한다(S1330). 릴레이 UE ID에 따른 PDN 연결이 없거나 릴레이 동작을 위한 추가적인 PDN 연결이 필요한 경우, 릴레이 UE는 새로운 PDN 연결 절차를 개시한다(S1340).
이어서, IPv6 프리픽스 또는 IPv4 주소가 리모트 UE에 할당되며(S1350), 이에 따라 상향링크/하향링크 릴레이 동작이 시작된다. IPv6 프리픽스가 할당되는 경우, 리모트 UE로부터의 릴레이 UE로의 라우터 요청(router solicitation) 시그널링과 릴레이 UE로부터 리모트 UE로의 라우터 광고(router advertisement) 시그널링으로 구성되는 IPv6 stateless address auto-configuration 과정이 수행된다. IPv4 주소가 할당되는 경우, DHCPv4 디스커버리 시그널링(from 리모트 UE to 릴레이 UE), DHCPv4 제공(offer) 시그널링(from 릴레이 UE to 리모트 UE), DHCPv4 요청(request) 시그널링(from 리모트 UE to 릴레이 UE), DHCPv4 ACK 시그널링(from 릴레이 UE to 리모트 UE)으로 구성되는 IPv4 address allocation using DHCPv4 과정이 수행된다.
이어서, 릴레이 UE는 리모트 UE가 자신에게 연결되었음을 MME에 알리는 리모트 UE 보고 절차를 수행한다(S1360). MME는 SGW 및 PGW에 대하여 리모트 UE 보고 알림 절차를 수행함으로써 새로운 리모트 UE가 연결되었음을 알린다(S1370). 이어서, 리모트 UE는 네트워크와 릴레이 UE를 통해서 통신을 수행한다(S1380). 상술한 직접 연결 생성 과정의 구체적인 내용은 TS 23.303 을 준용한다.
한편, UE-to-Network Relay 디스커버리는 Model A 및 Model B 형태의 디스커버리 방식을 사용할 수 있다. (TR 23.713 v1.4.0의 6.1절 (Solution for Direct Discovery (public safety use)) 및 TS 23.303의 5.3.1.2 절 (ProSe Direct Discovery Models) 참고)
모델(model) A ("I am here") 디스커버리는 ProSe-enabled UE들의 역할을 어나운싱(Announcing) UE와 모니터링(Monitoring) UE로 정의한다. 어나운싱 UE는 디스커버가 허용된 근접 거리에 있는 단말에 의해 사용될 수 있는 정보들을 어나운스하는 단말이고, 모니터링 UE는 어나운싱 UE로부터 정보를 수신하는 UE이다. 어나운싱 UE는 디스커버리 메시지를 미리 설정된 디스커버리 인터벌에서 브로드캐스트하며, 모니터링 UE는 이를 읽고 프로세스한다.
모델(model) B ("who is there?" / "are you there?") 디스커버리는 UE들의 역할로써, 디스커버러(Discoverer) UE와 디스커버리(Discoveree) UE을 정의한다. 디스커버러 UE는 디스커버하는데 흥미있는 정보들을 요청하며, 디스커버리 UE는 디스커버 요청을 수신하고, 디스커버 요청에 관련된 정보들로 응답하는 UE이다. UE-to-Network Relay Discovery 동작 및 UE-to-UE Relay Discovery 동작 시, Direct Discovery 메시지(즉, PC5-D 메시지)에 포함되는 파라미터/정보들은 다음과 같다.
Model A 디스커버리에서 UE-to-Network Relay Discovery Announcement 를 위한 PC5 디스커버리 메시지(PC5-D message)에 포함되는 파라미터들은 다음 표 2와 같다.
표 2
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Announcer Info Binary M TBD
Relay Service Code Binary M TBD
Radio Layer Information Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model A".
Model B 디스커버리에서 UE-to-Network Relay Discovery Solicitation을 위한 PC5 디스커버리 메시지에 포함되는 파라미터들은 다음 표 3과 같다.
표 3
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Discoverer Info Binary M TBD
Relay Service Code Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Solicitation" and the Discovery Model is set to "Model B".
Model B 디스커버리에서 UE-to-Network Relay Discovery Response를 위한 PC5 디스커버리 메시지에 포함되는 파라미터들은 다음 표 4와 같다.
표 4
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Discoveree Info Binary M TBD
Relay Service Code Binary M TBD
Radio Layer Information Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B".
Model A 디스커버리에서 Group Member Discovery Announcement 를 위한 PC5 디스커버리 메시지에 포함되는 파라미터들은 다음 표 5와 같다.
표 5
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe UE ID Binary M 24
Announcer Info Binary M TBD
Layer-2 Discovery Group ID Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "Group Member Discovery Announcement or Group Member Discovery Response" and the Discovery Model is set to "Model A".
Model B 디스커버리에서 Group Member Discovery Solicitation을 위한 PC5 디스커버리 메시지에 포함되는 파라미터들은 다음 표 6과 같다.
표 6
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Discoverer Info Binary M TBD
Layer-2 Discovery Group ID Binary M TBD
Target Info Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "Group Member Discovery Solicitation" and the Discovery Model is set to "Model B".
Model B 디스커버리에서 Group Member Discovery Response를 위한 PC5 디스커버리 메시지에 포함되는 파라미터들은 다음 표 7과 같다.
표 7
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Prose UE ID Binary M 24
Discoveree Info Binary M TBD
Layer-2 Discovery Group ID Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "Group Member Discovery Announcement or Group Member Discovery Response" and the Discovery Model is set to "Model B".
한편, 상술한 PC5-D 메시지는 사용되는 방식과 타입에 따라 서로 구별되며, 표 2 내지 표 7의 PC5-D 메시지에는 메시지의 타입을 나타내는 메시지 타입(message type) 필드가 각각 포함된다. 도 14는 PC5-D 메시지에 포함되는 메시지 타입 필드가 구현되는 일 예를 도시하며, 표 8은 도 14의 메시지 타입 필드의 구성을 구체적으로 나타낸다.
표 8
Discovery type value (octet 1)
Bit 8 Bit 7 parameter
0 0 Reserved
0 1 Open Discovery
1 0 Restricted Discovery
1 1 Reserved
Content type value (octet 1)
Bit 6 Bit 5 Bit 4 Bit 3 parameter
0 0 0 0 announce/response
0 0 0 1 query
0 0 1 0 application-controlled extension enabled
0 0 1 1 reserved
0 1 0 0 UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response
0 1 0 1 UE-to-Network Relay Dicovery Solicitation
0 1 1 0 Group Member Discovery Announcement or Group Member Discovery Response
0 1 1 1 Group Member Discovery Solicitation
1 0 0 0 Reserved
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved
Discovery model value (octet 1)
Bit 2 Bit 1 parameter
0 0 Reserved
0 1 Model A
1 0 Model B
1 1 Reserved
표 8에 의하면, 컨텐트 타입 필드 값 '0100' 은 UE-to-Network Relay Discovery 과정에서 PC5-D 메시지가 모델 A에서의 announcing 과 모델 B의 discoveree 동작에 사용되는 경우를 나타낸다. 컨텐트 타입 필드 값 '0110' 은 Group Member discovery 과정에서 PC5-D 메시지가 모델 A에서의 announcing 과 모델 B의 discoveree 동작에 사용되는 경우를 나타낸다.
이어서, 표 2 내지 표 7에서 PC5-D 메시지에 포함된 각 파라미터들에 대해 구체적으로 설명한다.
- ProSe UE ID: ProSe UE ID 파라미터는 ProSe UE의 ID를 나타내기 위해 이용되며, 24비트 길이의 비트 스트링으로 구성된다.
- ProSe Relay UE ID: ProSe Relay UE ID 파라미터는 ProSe Relay UE의 ID를 나타내기 위해 이용되며, 24 비트 길이의 비트 스트링으로 구성된다.
- User Info ID: User Info ID 파라미터는 TS 23.303에 정의된 User Info의 ID를 나타낸다.
- Relay Service Code: Relay Service Code 파라미터는 UE-to-Network relay 가 제공하는 퍼블릭 세이프티 어플리케이션의 서비스를 식별하는 파라미터이다.
- Radio Layer Information: Radio Layer Information 파라미터는 리모트 UE가 UE-to-Network Relay를 선택할 수 있도록 하위계층에 의해 제공된 정보를 포함한다.
- Target Info: Target Info 파라미터는 대상 디스커버리(사용자 또는 그룹)에 대한 정보를 제공하기 위해 이용된다.
- Layer-2 Discovery Group ID: Layer-2 Discovery Group ID 파라미터는 UE가 속하는 디스커버리 그룹의 연결 계층(link layer) 식별자를 포함한다.
3. 제안하는 ProSe 통신 방법 1
PC5 디스커버리(PC5-D 또는 PC5D) 메시지는 ProSe 통신 환경에서 다양한 방식으로 이용됨은 앞서 설명한 바 있다. 한편, ProSe 통신 환경에서 PC5D 메시지는 측정(measurement) 용도로도 사용된다. 즉, 리모트 UE(remote UE)와 릴레이 UE(relay UE)가 연결되어 직접 통신을 수행하는 경우, 리모트 UE는 수립된 직접 연결(established direct link)의 신호 세기를 주기적으로 측정한다. 이는, 릴레이 UE와의 채널 상황이 나빠지는 경우 리모트 UE가 릴레이 UE를 재선택(reselect) 해야하기 때문이다.
또는, 다른 UE와 직접 연결이 수립되지 않은 리모트 UE가 새로운 릴레이 UE를 찾는 과정에서도 PC5D 메시지를 이용한 측정이 수행된다. 즉, 리모트 UE는 채널 상황이 충분히 좋은 릴레이 UE를 선택(select)하기 위해 PC5D 메시지를 이용하여 측정을 수행한다.
이와 같이, 릴레이 UE의 선택/재선택을 위해 PC5D 메시지를 이용하는 측정은 PSDCH(Physical Sidelink Discovery Channel)의 DMRS(DeModulation Reference Signal)를 이용하여 수행될 수 있다. ProSe 통신에서는 현재 연결이 수립된 릴레이 UE뿐만 아니라, 연결을 맺고있지 않은 릴레이 UE의 신호 세기도 측정해야 한다. 따라서, 리모트 UE는 신호 세기가 측정된 메시지가 어떠한 서비스를 제공하는 릴레이 UE로부터의 메시지인지 알 필요가 있기 때문에, Relay Service Code 파라미터를 포함하는 PC5D 메시지가 측정 과정에 이용된다.
한편, 모델 B 디스커버리 방식에 의하면, 리모트 UE가 Relay Service Code 파라미터를 포함하는 PC5D 요청 메시지(solicitation message)를 전송하면, 이를 수신한 릴레이 UE는 수신한 PC5D 메시지의 Relay Service Code를 확인한다. 확인된 Relay Service Code가 자신에게 설정된 값과 동일한 경우, 릴레이 UE는 리모트 UE에게 PC5D 응답 메시지를 전송한다. 즉, 모델 B 디스커버리 방식에서 리모트 UE가 현재 연결을 맺고 있는 릴레이 UE와의 연결 품질(link quality) 측정을 위해 해당 릴레이 UE로 PC5D 요청 메시지(solicitation message)를 전송하는 경우, 이를 수신한 릴레이 UE는 PC5D 요청 메시지에 포함된 Relay Service Code가 자신에게 기설정된 값과 일치하면 PC5D 응답 메시지를 리모트 UE로 전송하게 된다. 이러한 과정에서, 리모트 UE와 연결을 맺고 있는 릴레이 UE(또는, 서빙 릴레이 UE)는 각 리모트 UE의 요청에 독립적으로 응답을 전송해야 하는데, 리모트 UE가 전송한 PC5D 요청 메시지가 서빙 릴레이 UE외의 다른 릴레이 UE에도 전달될 수 있다. 이러한 경우, 리모트 UE의 PC5D 요청 메시지에 포함된 Relay Service Code가 일치하는 제3 의 릴레이 UE들이 응답하게 되는 시그널링 오버헤드가 발생할 수 있으며, 이는 PC5 무선 자원의 낭비로 이어진다.
따라서, 이하에서는 PC5D 메시지가 전송될 때 그 목적을 구분함으로써 불필요한 동작과 자원 낭비를 개선하는 방법을 제안한다. PC5D 메시지의 목적은 본래 목적인 디스커버리 목적인 경우와 그 이외의 경우(측정 목적 포함)로 구분할 수 있다. 제안하는 실시 예에 따라 PC5D 메시지의 목적이 구분되는 경우, 디스커버리 목적의 PC5D 메시지가 수신되면 리모트/릴레이 UE는 종래에 따라 동작하고, 디스커버리 목적이 아닌 PC5D 메시지가 수신되면 리모트/릴레이 UE는 새로운 목적에 따라 동작한다. 구체적으로, 리모트 UE와 연결을 맺고 있는 릴레이 UE가 측정 목적의 PC5D 메시지를 수신한다면 해당 리모트 UE에게 PC5D 메시지를 전송하여 응답한다. 이를 수신한 리모트 UE는 현재 연결을 맺고있는 릴레이 UE와의 ProSe 연결의 품질을 측정하게 된다. 그러나, 어떤 리모트 UE와도 연결을 맺지 않은 릴레이 UE의 경우 측정 목적의 PC5D 메시지를 수신한다면, 수신된 PC5D 메시지를 디스커버리 용도나 측정 용도로 사용하지 않고 폐기(discard)한다.
한편, PC5D 메시지의 목적을 구분하는 방법으로서 크게 3가지 방안을 고려할 수 있다. 첫째로, PC5D 메시지에 목적을 나타내는 indication을 추가하는 방식, 둘째로, PC5D 메시지를 수정하는 방식, 마지막으로 새로운 PC5D 메시지를 정의하는 방식을 생각해볼 수 있으며, 이하에서 하나씩 구체적으로 설명한다. 각 방식들은 독립적으로 적용되거나, 다른 방식과 함께 복합적으로 적용될 수 있다.
첫번째 방식(종래 PC5D 메시지에 목적을 나타내는 지시자를 추가하는 방식)을 구체적으로 설명한다. 구체적으로, PC5D 메시지의 목적을 나타내는 1비트의 지시자를 추가함으로써, PC5D 메시지가 디스커버리 목적으로 이용되는 경우 지시자를 '0'으로 설정하고, 디스커버리 목적이 아닌 경우 지시자를 '1'로 설정할 수 있다(지시자의 값은 반대로 설정될 수도 있다).
제안하는 방식에 의하면, 표 2 내지 표 4에서 설명한 PC5D 메시지는 아래의 표 9 내지 표 11과 같이 구현될 수 있다. 표 9는 PC5D Announcement 메시지를 나타내고, 표 10은 PC5D Solicitation 메시지를 나타내고, 표 11은 PC5D Response 메시지를 나타낸다.
표 9
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Announcer Info Binary M TBD
Relay Service Code Binary M TBD
Radio Layer Information Binary M TBD
Discovery Indication Binary M 1
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model A".
표 10
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Discoverer Info Binary M TBD
Relay Service Code Binary M TBD
Discovery Indication Binary M 1
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Solicitation" and the Discovery Model is set to "Model B".
표 11
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Discoveree Info Binary M TBD
Relay Service Code Binary M TBD
Radio Layer Information Binary M TBD
Discovery Indication Binary M 1
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B".
표 9 내지 표 11에서의 'Discovery Indication' 파라미터는 PC5D 메시지의 목적을 나타내기 위해 사용된다. 파라미터의 값 '0' 또는 '1'은 각각 '디스커버리 목적' 또는 '디스커버리 외의 목적'을 나타낼 수 있다.
두번째 방식(종래의 PC5D 메시지를 수정하는 방식)을 구체적으로 설명한다. 제안하는 실시 예에 의하면, 종래의 PC5D 메시지에 포함된 메시지 타입 필드를 수정함으로써 '디스커버리 목적이 아닌 경우'를 구분할 수 있다. 도 14는 표 8에서 설명한 메시지 타입 필드의 구성이 구체적으로 도시되며, 도시된 메시지 타입 필드 중 디스커버리 타입 필드, 컨텐트 타입 필드, 및 디스커버리 모델 필드 중 하나 이상을 수정함으로써 '디스커버리 목적이 아님(No Discovery)'을 나타낼 수 있다. 디스커버리 목적으로 PC5D 메시지가 사용되는 경우, 해당 필드를 수정하지 않고 종래에 따라 PC5D 메시지가 전송될 수 있다.
구체적으로 예를 들어 설명하면, 메시지 타입 필드 내의 디스커버리 타입 필드에 '디스커버리 목적이 아님'을 표시하는 경우, 표 8에서 설명한 메시지 타입 필드는 아래의 표 12와 같이 구성될 수 있다. 표 12에서 디스커버리 타입 값이 '11'을 나타내는 경우, 해당 PC5D 메시지는 디스커버리 목적이 아님을 나타낸다.
표 12
Discovery type value (octet 1)
Bit 8 Bit 7 parameter
0 0 Reserved
0 1 Open Discovery
1 0 Restricted Discovery
1 1 No Discovery
Content type value (octet 1)
Bit 6 Bit 5 Bit 4 Bit 3 parameter
0 0 0 0 announce/response
0 0 0 1 query
0 0 1 0 application-controlled extension enabled
0 0 1 1 reserved
0 1 0 0 UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response
0 1 0 1 UE-to-Network Relay Dicovery Solicitation
0 1 1 0 Group Member Discovery Announcement or Group Member Discovery Response
0 1 1 1 Group Member Discovery Solicitation
1 0 0 0 Reserved
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved
Discovery model value (octet 1)
Bit 2 Bit 1 parameter
0 0 Reserved
0 1 Model A
1 0 Model B
1 1 Reserved
다른 예로, 메시지 타입 필드 내의 컨텐트 타입 필드에 '디스커버리 목적이 아님'을 표시하는 경우, 표 8의 메시지 타입 필드는 아래 표 13과 같이 구성될 수 있다. 표 13에서 컨텐트 타입 값이 '1000'을 나타내는 경우, 해당 PC5D 메시지는 디스커버리 목적이 아님을 나타낸다.
표 13
Discovery type value (octet 1)
Bit 8 Bit 7 parameter
0 0 Reserved
0 1 Open Discovery
1 0 Restricted Discovery
1 1 Reserved
Content type value (octet 1)
Bit 6 Bit 5 Bit 4 Bit 3 parameter
0 0 0 0 announce/response
0 0 0 1 query
0 0 1 0 application-controlled extension enabled
0 0 1 1 reserved
0 1 0 0 UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response
0 1 0 1 UE-to-Network Relay Dicovery Solicitation
0 1 1 0 Group Member Discovery Announcement or Group Member Discovery Response
0 1 1 1 Group Member Discovery Solicitation
1 0 0 0 No Discovery
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved
Discovery model value (octet 1)
Bit 2 Bit 1 parameter
0 0 Reserved
0 1 Model A
1 0 Model B
1 1 Reserved
또 다른 예로, 메시지 타입 필드 내의 디스커버리 모델 필드에 '디스커버리 목적이 아님'을 표시하는 경우, 표 8의 필드는 표 14와 같이 구성될 수 있다. 표 14에서 디스커버리 모델 값이 '11'을 나타내는 경우, 해당 PC5D 메시지는 디스커버리 목적이 아님을 나타낸다.
표 14
Discovery type value (octet 1)
Bit 8 Bit 7 parameter
0 0 Reserved
0 1 Open Discovery
1 0 Restricted Discovery
1 1 Reserved
Content type value (octet 1)
Bit 6 Bit 5 Bit 4 Bit 3 parameter
0 0 0 0 announce/response
0 0 0 1 query
0 0 1 0 application-controlled extension enabled
0 0 1 1 reserved
0 1 0 0 UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response
0 1 0 1 UE-to-Network Relay Dicovery Solicitation
0 1 1 0 Group Member Discovery Announcement or Group Member Discovery Response
0 1 1 1 Group Member Discovery Solicitation
1 0 0 0 Reserved
1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved
Discovery model value (octet 1)
Bit 2 Bit 1 parameter
0 0 Reserved
0 1 Model A
1 0 Model B
1 1 No Discovery
2번째 방식에서, PC5D 메시지를 수정하여 PC5D 목적을 알리는 또 다른 방식을 생각해볼 수도 있다. PC5D 메시지에서 메시지 타입 파라미터(또는, 필드)를 제외한 다른 파라미터(또는, 필드)를 수정함으로써, PC5D 메시지의 목적을 표시할 수 있다. 수정된 PC5D 메시지는 종래 PC5D 메시지에 포함되는 일부 정보(또는, 값, 파라미터, 필드)가 제외하거나 추가되는 형태로 구현될 수 있다.
일부 정보가 제외되는 실시 예를 먼저 설명하면, 종래의 PC5D 메시지에서 일부 필드를 선택적으로 포함시킴으로써(즉, 필드를 optional 하게 추가함으로써) PC5D 메시지의 목적을 표시할 수 있다. 예를 들어, PC5D 메시지가 측정 용도로 사용되는 경우 특정 필드를 삭제하고 전송할 수 있으며, PC5D 메시지가 디스커버리 용도로 사용되는 경우 특정 필드를 포함시켜 전송할 수 있다.
표 2 내지 표 4에서 설명한 PC5D 메시지 각각 별로 선택적으로 포함되는 필드가 달라질 수 있다. 먼저, PC5D Announcement 메시지에서는 PC5D 메시지의 목적에 따라 'Relay Service Code', 'Announcer Info' 및 'ProSe Relay UE ID' 필드 중 적어도 하나가 제외될 수 있다. 이때, 'Announcer Info' 및 'ProSe Relay UE ID' 중 적어도 하나는 제외되지 않고 남아있어야 한다. 예를 들어, 디스커버리 목적이 아닌 경우, PC5D 메시지에서 'Relay Service Code' 필드만 제외되거나 'Relay Service Code' 및 'Announcer Info' 필드가 제외될 수 있다. 아래의 표 15는 표 2의 PC5D Announcement 메시지에서 Relay Service Code 필드가 선택적으로 포함/제외되는 실시 예를 나타낸다.
표 15
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Announcer Info Binary M TBD
Relay Service Code Binary O TBD
Radio Layer Information Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model A".
이어서, PC5D Solicitation 메시지에서는 PC5D 메시지의 목적에 따라 'Relay Service Code' 또는 'Discoverer Info' 필드가 제외될 수 있다. 아래의 표 16은 표 3의 PC5D Solicitation 메시지에서 Relay Service Code 필드가 선택적으로 포함/제외되는 실시 예를 나타낸다.
표 16
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Discoverer Info Binary M TBD
Relay Service Code Binary O TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Solicitation" and the Discovery Model is set to "Model B".
한편, PC5D Solicitation 메시지에서 표 16과 같이 일부 필드가 제외되는 실시 예와는 반대로, 일부 필드가 추가되는 방식 또한 생각해볼 수 있다. 즉, PC5D Solicitation 메시지에 'Relay UE ID' 필드가 추가되어, PC5D Solicitation 메시지를 전송하는 릴레이 UE의 식별 정보가 포함될 수 있다. 'Relay UE ID' 필드가 포함되는 것은 PC5D 메시지는 디스커버리 목적이 아니고 측정 목적으로 이용되는 것으로 이해될 수 있다. 이러한 실시 예가 아래의 표 17에 표시된다.
표 17
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Discoverer Info Binary O TBD
Relay Service Code Binary O TBD
ProSe Relay UE ID Binary O 24
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Solicitation" and the Discovery Model is set to "Model B".
마지막으로, PC5D Response 메시지에서 PC5D 메시지의 목적에 따라 'ProSe Relay UE ID', 'Relay Service Code' 및 'Discoveree Info' 필드 중 적어도 하나가 제외될 수 있다. 이때, 'Announcer Info' 및 'ProSe Relay UE ID' 필드 중 적어도 하나는 남아있어야 한다. 예를 들어, 'Relay Service Code' 필드만 제외되거나, 'Relay Service Code' 및 'Discoveree Info' 필드가 제외될 수 있다.
아래의 표 18 및 표 19는 표 4의 PC5D Response 메시지에서 'Relay Service Code' 필드가 선택적으로 포함/제외되는 실시 예(표 18)와 'Relay Service Code' 및 'Discoveree Info' 필드가 선택적으로 포함/제외되는 실시 예(표 19)를 각각 나타낸다.
표 18
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Discoveree Info Binary M TBD
Relay Service Code Binary O TBD
Radio Layer Information Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B".
표 19
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Discoveree Info Binary O TBD
Relay Service Code Binary O TBD
Radio Layer Information Binary M TBD
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B".
이어서, 세번째 방식(새로운 PC5D 메시지를 정의하는 방식)을 설명한다. 세번째 방식에 의하면, 종래의 PC5D 메시지는 디스커버리 목적인 경우에만 사용되고, 디스커버리 목적 이외의 경우에는 새로 정의되는 디스커버리 메시지를 사용할 수 있다. 새로 정의되는 디스커버리 메시지에는 종래 PC5D 메시지에 포함되는 일부 정보(또는, 필드, 파라미터, 값)가 제외될 수 있다.
구체적으로, 새로 정의되는 디스커버리 메시지는 PC5D Announcement 메시지에서 'Relay Service Code', 'Announcer Info', 및 'ProSe Relay UE ID' 필드 중 적어도 하나가 제외되어 구현될 수 있다. 이때, 새로 정의되는 디스커버리 메시지에는 'Relay Service Code'를 제외한 'Announcer Info' 및 'ProSe Relay UE ID' 필드 중 하나는 남아 있어야 한다. 또는, 새로 정의되는 디스커버리 메시지는 PC5D Solicitation 메시지에서 'Relay Service Code' 또는 'Discoverer Info' 필드가 제외되어 구현될 수 있다. 또는, 새로 정의되는 디스커버리 메시지는 PC5D Response 메시지에서 'Relay Service Code', 'Discoveree Info', 및 'ProSe Relay UE ID' 필드 중 적어도 하나가 제외되어 구현될 수 있다. 이때, 'Relay Service Code'를 제외한 'Announcer Info' 및 'ProSe Relay UE ID' 필드 중 적어도 하나는 남아 있어야 한다.
상술한 실시 예에 의한 새로 정의되는 디스커버리 메시지는 다음의 표 20 내지 표 22 중 어느 하나에 따라 구현될 수 있다.
표 20
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Announcer Info Binary M TBD
Radio Layer Information Binary M TBD
표 21
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
Announcer Info Binary M TBD
Radio Layer Information Binary M TBD
표 21에서 'Announcer Info' 필드는 종래 PC5D 메시지의 'Discoverer Info' 필드 또는 'Discoveree Info' 필드에 대응할 수 있다.
표 22
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Radio Layer Information Binary M TBD
도 15는 이상에서 설명한 일 실시 예를 도시하는 도면이다. 앞서 설명했듯이, 종래의 PC5D 메시지는 디스커버리 목적 이외의 목적으로도 활용된다. 이때, 모델 B 디스커버리 환경에서 리모트 UE(UE 2)가 측정 용도로 전송하는 PC5D 요청(solicitation) 메시지는 리모트 UE(UE 2)와 연결된 릴레이 UE(UE 1)외에도 연결되지 않은 릴레이 UE(UE 3)에 까지 전달된다. 이에 따라, 리모트 UE(UE 2)와 연결되지 않은 릴레이 UE(UE 3)들이 리모트 UE로 PC5D 응답(response) 메시지를 전송하게 되는 메시지 플루딩(message flooding) 현상이 발생할 수 있다.
도 15에 도시된 실시 예에서는, 이러한 모델 B 디스커버리 환경에서의 문제점을 해결하기 위해 리모트 UE(UE 2)가 전송하는 PC5D solicitation 메시지에 릴레이 UE ID를 포함시키는 방안을 제안한다.
도 15의 S1510에서 전송되는 PC5D solicitation 메시지는 표 17에서 설명한 'ProSe Relay UE ID' 파라미터(또는, 필드, 값)를 포함한다. 이러한 'ProSe Relay UE ID'는 리모트 UE(UE 2)와 연결된 릴레이 UE(UE 1)의 식별자이며, UE 1과 UE 2간의 디스커버리 과정에서 UE 1로부터 수신된다. 한편, S1510에서 PC5D solicitation 메시지에 'ProSe Relay UE ID'가 포함되는 것은 표 3에서 설명한 종래의 PC5D solicitation 메시지에 동일 파라미터가 포함되지 않는 것과 완전히 구별된다. 즉, UE 2는 PC5D 메시지를 디스커버리 목적으로 전송하는 경우에는 해당 필드를 포함시키지 않은 채로 전송하지만, 디스커버리 목적 외의 측정 목적으로 전송되는 PC5D 메시지에는 해당 파라미터가 포함된다.
자신의 UE ID가 포함된 PC5D solicitation 메시지를 수신한 UE 1은 UE 2가 전송한 PC5D 메시지가 측정 목적임을 알 수 있기 때문에, UE 2의 측정이 수행될 수 있도록 PC5D response 메시지를 UE 2로 전송한다(S1520). 반면에, UE 3은 UE 2가 전송한 PC5D 메시지에 포함된 'ProSe Relay UE ID' 가 자신의 것이 아니기 때문에, UE 2로 아무런 응답 신호를 전송하지 않는다(S1530). 다시 말해서, 릴레이 UE는 PC5D solicitation 메시지에 자신의 'ProSe Relay UE ID'가 포함된 경우에만 PC5D response 메시지를 리모트 UE로 전송한다. 이와 같이, 제안하는 실시 예에 의하면 UE 2와 연결을 맺지 않은 UE 3으로부터의 불필요한 PC5D response 메시지가 송수신되지 않기 때문에, 시그널링 오버헤드와 PC5 무선 자원의 낭비를 방지할 수 있게 된다.
한편, UE 2는 UE 1로부터 수신된 PC5D response 메시지를 이용하여 측정을 수행한다(S1540). 즉, UE 2는 PSDCH의 DMRS 를 이용하여 UE 1과의 무선 연결 품질을 측정하고, 측정된 결과에 따라 UE 1과의 연결을 유지할지 여부를 결정한다. 예를 들어, UE 1과의 연결이 충분한 경우 UE 2는 UE 1과의 연결을 유지하지만, UE 1과의 채널 환경이 좋지 않다면 UE 2는 새로운 릴레이 UE를 찾는 '릴레이 UE 선택/재선택' 과정을 수행한다(S1550).
도 15와는 별도로, 모델 B 디스커버리 환경에서 현재 연결된 릴레이 UE와의 무선 연결 품질을 측정하기 위해 전송되는 PC5D solicitation 메시지의 전송 횟수/빈도를 줄이는 방법을 제안한다. 리모트 UE가 릴레이 UE와의 연결을 수립한 이후, 리모트 UE는 릴레이 UE와의 무선 연결 품질의 주기적인 측정 목적의 PC5D 메시지 전송을 위해 소정의 타이머 T41xx(x는 임의의 값)를 설정할 수 있다. 타이머 T41xx는 초기값으로 설정되어 개시되며, 타이머의 초기값은 단말에 미리 설정되거나, 네트워크로부터 설정되거나, PC5D 메시지 또는 PC5S 메시지를 통해 서빙 릴레이 UE로부터 리모트 UE로 전달될 수 있다.
타이머 T41xx가 동작하는 동안 리모트 UE가 서빙 릴레이 UE로부터 PC5D 응답(response) 메시지를 수신하는 경우, 리모트 UE는 타이머를 중지하고 초기값으로 설정한뒤 재시작한다. 그리고, 리모트 UE는 수신된 PC5D 메시지를 측정 용도로 사용한다. 다시 말해서, 리모트 UE는 타이머 T41xx 가 동작하는 동안 수신된 PC5D 응답 메시지를 측정 용도의 PC5D 메시지로 인지하는 것이다.
한편, 타이머 T41xx가 만료될 때까지 리모트 UE가 서빙 릴레이 UE로부터 PC5D 메시지를 수신하지 못하는 경우, 리모트 UE는 측정 용도의 PC5D solicitation 메시지를 서빙 릴레이 UE로 전송한다. PC5D solicitation 메시지에 대한 응답으로서 PC5D response 메시지가 수신되는 경우, 리모트 UE는 타이머를 초기값으로 설정하고, 새로 시작한다.
정리하면, 리모트 UE는 소정의 타이머를 설정함으로써, 타이머 동작 도중에 수신되는 PC5D 응답 메시지를 측정 용도로 활용할 수 있다. 또한, 리모트 UE는 타이머가 만료되면 직접 릴레이 UE에 측정 용도의 PC5D solicitation 메시지를 전송하여 측정을 수행할 수도 있다.
한편, 상술한 실시 예에서 PC5D solicitation 메시지가 성공적으로 릴레이 UE에 전송되었는지 파악하기 위하여, 리모트 UE는 PC5D solicitation 메시지의 전송과 함께 또 다른 타이머 T41ab(a, b는 임의의 값)를 설정할 수 있다. 타이머 T41ab가 만료될 때까지 PC5D response 메시지가 수신되지 않는 경우, 리모트 UE는 릴레이 UE로 PC5D solicitation 메시지를 재전송할 수 있다.
이때, 리모트 UE가 해당 릴레이 UE가 전송하는 PC5D 응답 메시지만 측정 목적으로 사용한다면, 주기적인 측정을 위해 PC5D 요청 메시지의 전송이 많아질 수 있다. 이를 개선하기 위해, 리모트 UE가 릴레이 UE로부터 전송되는 다른 PC5D 메시지도 측정 용도로 활용한다면, 연결된 릴레이 UE와의 무선 연결 품질의 주기적 측정을 위해 전송되는 PC5D 요청 메시지의 전송 횟수/빈도를 줄일 수 있다. 즉, 타이머가 동작하는 도중에 수신된 PC5D 메시지는 서빙 릴레이 UE가 다른 제3의 리모트 UE에 전송하는 메시지이며, 예를 들어 PC5D announcement 메시지, PC5D response 메시지, PC5D relay discovery additional information 메시지, 또는 새로운PC5D 메시지 중 어느 하나일 수 있다. 리모트 UE가 상술한 종류의 PC5D 메시지 중 어느 하나를 현재 연결된 릴레이 UE로부터 수신한 경우, 리모트 UE는 T41xx 타이머를 중단하고 해당 PC5D 메시지를 이용하여 무선 연결 품질을 측정할 수 있다.
4. 제안하는 ProSe 통신 방법 2
앞서 설명한 방식과는 별도로 릴레이 UE 입장에서 살펴보면, 릴레이 UE는 하나 이상의 리모트 UE와 이미 연결을 맺고 있는 상태라 하더라도, PC5D 메시지를 계속 전송해야 한다. 즉, 릴레이 UE는 현재 연결된 리모트 UE외의 다른 UE와 더 연결을 맺기 원하지 않는 경우에도 측정을 위해서 PC5D 메시지를 주기적 또는 비주기적으로 전송해야만 한다. 이에 따라, 릴레이 UE가 전송한 PC5D 메시지를 수신한 제3의 리모트 UE(즉, 릴레이 UE와 연결을 맺지 않은 리모트 UE)가 PC5D 메시지에 응답함으로써 불필요한 시그널링 오버헤드가 발생할 수 있다.
릴레이 UE와 연결을 맺지 않은 제3의 리모트 UE가 응답한다는 것은, PC5D 메시지를 수신한 제3의 리모트 UE가 릴레이 UE와 연결을 맺기 위해 릴레이 UE로 직접 연결 요청 메시지(direct communication request message)를 전송함을 의미한다. 이때, 릴레이 UE가 추가적인 리모트 UE를 지원할 수 있는 충분한 무선 자원을 확보하지 못한 상태인 경우, 릴레이 UE의 의도와는 달리 제3의 리모트 UE가 릴레이 UE로 직접 연결을 요청하게 되는 불필요한 시그널링 오버헤드가 발생한다. 다시 말해서, 릴레이 UE와 연결을 맺은 리모트 UE는 릴레이 UE의 PC5D 메시지를 측정 용도로 활용하여 문제가 없으나, 연결을 맺지 않은 제3의 리모트 UE는 연결을 맺을 수 있는 릴레이 UE를 발견한 것으로 간주하여 릴레이 UE와 연결 설정을 개시한다.
한편, 릴레이 UE는 추가적인 리모트 UE를 지원할 수 있는 자원이 부족한 상태이기 때문에, 이유 #4 '요청된 연결을 위한 자원 부족(lack of resources for proposed link)'와 함께 직접 연결 거절 메시지(direct communication reject message)를 제3의 리모트 UE로 전송하게 된다. 또는, 릴레이 UE는 연결 중인 리모트 UE 일부와의 연결을 해제(release)하고, 이유 #2 '피어 UE와의 직접 연결이 더 이상 허용되지 않음(direct communication with the peer UE is no longer allowed)'와 함께 직접 연결 해제 메시지(direct communication release message)를 해제된 리모트 UE로 전송할 수도 있다. 다시, 릴레이 UE가 측정을 위해 PC5D 메시지를 전송하게 되면, 상술한 동작이 반복될 수 있다. 이러한 릴레이 UE의 두 가지 동작은 모두 ProSe 통신상 바람직한 동작이 아니며, 불필요한 시그널링 오버헤드까지 발생시켜 방지될 필요가 있다.
제안하는 실시 예에 의하면, 릴레이 UE는 PC5D 메시지를 전송할 때 '릴레이 UE가 추가적인 리모트 UE에 서비스를 제공할 수 있는 자원이 부족한지 여부(whether or not the UE suffers lack of resource to provide a connectivity service for additional remote UEs(or, ProSe-enabled public safety UEs))'에 대한 정보를 지시할 수 있다. 이러한 정보는 지시자 형태로 PC5D 메시지에 포함될 수 있으며, 예를 들어 자원 상태 지시자(resource status indicator)로 구현될 수 있다.
한편, 릴레이 UE의 자원에 관련된 정보(예를 들어, 자원 상태 지시자)를 포함하는 PC5D 메시지를 수신한 리모트 UE는 릴레이 선택/재선택 과정에서 해당 정보를 이용한다(remote UEs can use the Resource Status Indicator for relay selection). 이에 따라, 리모트 UE는 자신에게 서비스를 선택할 자원이 부족하지 않은 릴레이 UE를 우선적으로 선택하게 되어, 직접 연결 설정을 위한 불필요한 PC5 시그널링 오버헤드가 줄어들게 된다(PC5 signaling overheads could be reduced by selecting preferentially thee relay not suffering lack of resource).
상술한 실시 예는 모델 A 디스커버리와 모델 B 디스커버리에 모두 적용될 수 있으며, 이하에서는 도 16 및 도 17을 이용하여 구체적인 과정을 설명한다.
먼저, 도 16에 도시된 모델 A 환경에서, 릴레이 UE인 UE 1은 PC5D announcement 메시지를 전송한다(S1610). 이러한 PC5D announcement 메시지는 UE 1과 연결을 맺은 리모트 UE(UE 2)에 전송될 뿐만 아니라, UE 1과 연결을 맺지 않은 제3의 리모트 UE(UE 3)에도 전송된다.
제안하는 실시 예에 의하면, S1610 과정에서 UE 1은 UE가 추가적인 리모트 UE(또는, ProSe-enabled public safety UE)를 위한 연결 서비스를 제공하는 데에 사용할 수 있는 자원을 보유했는지 여부를 나타내도록 상태 지시 파라미터중 자원 상태 지시자(RSI: Resource Status Indicator) 비트를 설정한다(UE 1 shall set the Resource Status Indicator bit of the Status Indicator parameter to indicate whether or not the UE 1 has resources available to provide a connectivity service for additional ProSe-enabled public safety UEs). 즉, UE 1은 PC5D announcement 메시지에 RSI를 포함시켜 전송한다. 이때, PC5D announcement 메시지에 포함된 RSI는 UE 1이 추가적인 리모트 UE를 지원할 수 있는 자원이 충분하지 않음을 나타낼 수 있다.
한편, PC5D announcement 메시지를 수신한 UE 2는 PC5D 메시지를 이용하여 UE 1과의 연결에 대한 측정을 수행한다(S1620). 이러한 측정 수행 결과, UE 2는 UE 1과의 연결을 유지하거나 새로운 릴레이 UE를 선택할 수 있게 된다(S1630). 반면에, 제3의 리모트 UE인 UE 3은 UE 1이 전송한 PC5D announcement 메시지에 포함된 RSI를 이용하여 UE 1이 자신을 지원할 수 있는 자원을 보유했는지 알 수 있다. UE 3은 UE 1이 보유한 자원을 고려하여 릴레이 UE를 선택한다(S1640). 즉, RSI로부터 UE 1의 자원이 충분하지 않은 상황임이 확인되면, UE 3은 릴레이 선택 과정에서 UE 1를 제외함으로써 UE 1과의 불필요한 시그널링 과정을 피할 수 있다. 만약 RSI로부터 UE 1이 UE 3을 지원하기에 충분한 자원을 보유했음이 확인되면, UE 3은 UE 1로 직접 연결 요청 메시지를 전송한다(S1650).
이어서, 도 17을 설명한다. 도 17에 도시된 모델 B 환경에서 릴레이 UE(UE 1)과 연결을 맺은 리모트 UE(UE 2)는 PC5D solicitation 메시지를 UE 1으로 전송한다(S1710). 이에 응답하여, UE 1은 PC5D response 메시지를 UE 2로 전송한다(S1720). 이때, UE 1은 UE가 추가적인 리모트 UE(또는, ProSe-enabled public safety UE)를 위한 연결 서비스를 제공하는 데에 사용할 수 있는 자원을 보유했는지 여부를 나타내도록 상태 지시 파라미터의 RSI 비트를 설정한다(UE 1 shall set the Resource Status Indicator bit of the Status Indicator parameter to indicate whether or not the UE has resources available to provide a connectivity service for additional ProSe-enabled public safety UEs). 즉, UE 1은 PC5D response 메시지에 RSI를 포함시켜 전송함으로써, 자신이 추가적인 리모트 UE를 지원할 수 있는 자원이 충분하지 않음을 나타낼 수 있다.
PC5D response 메시지를 수신한 UE 2는 PC5D 메시지를 이용하여 UE 1과의 연결에 대한 측정을 수행한다(S1730). 이러한 측정 결과에 따라 UE 2는 UE 1과의 연결을 유지하거나 새로운 릴레이 UE를 선택한다(S1740). 반면에, 제3의 리모트 UE 인 UE 3은 UE 1이 전송한 PC5D response 메시지에 포함된 RSI로부터, UE 1이 UE 3을 지원할 수 있는 자원을 보유했는지 알 수 있다. UE 3은 UE 1의 자원 상황을 고려하여 릴레이 UE를 선택한다(S1750). 도 16의 경우와 유사하게, UE 1의 자원이 충분하지 않은 경우 UE 3에 의한 직접 연결 요청 메시지 전송 과정은 생략되며, UE 1의 자원이 충분하다면 UE 3은 UE 1으로 직접 연결 요청 메시지를 전송한다(S1760).
제안하는 실시 예를 정리하면, PC5D announcement/response 메시지에 포함된 RSI를 수신한 리모트 UE는 릴레이 UE를 선택하는 과정에서 RSI 비트 값을 고려한다(The UE may take the value of the Resource Status Indicator bit of the Status Indicator parameter of the PC5_DISCOVERY message for UE-to-Network Relay Discovery Announcement or PC5_DISCOVERY message for UE-to-Network Relay Discovery Response into account when deciding which ProSe UE-to-network relay to select).
제안하는 실시 예에 따른 PC5D announcement 메시지와 PC5D response 메시지는 아래의 표 23 및 표 24와 같이 각각 구성될 수 있다. 표 23 및 표 24에 의하면, 각각의 PC5D 메시지는 RSI 값을 나타내기 위한 필드를 더 포함하도록 구성된다.
표 23
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Announcer Info Binary M 48
Relay Service Code Binary M 24
Status Indicator Binary M 8
Spare Binary M 80
MIC Binary M 32
UTC-based Counter LSB Binary M 8
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model A".
표 24
Information Element Type/Reference Presence Length (bits)
Message Type (NOTE) Message Type M 8
ProSe Relay UE ID Binary M 24
Discoveree Info Binary M 48
Relay Service Code Binary M 24
Status Indicator Binary M 8
Spare Binary M 80
MIC Binary M 32
UTC-based Counter LSB Binary M 8
Note: The Discovery Type is set to "Restricted discovery", the Content Type is set to "UE-to-Network Relay Discovery Announcement or UE-to-Network Relay Discovery Response" and the Discovery Model is set to "Model B".
도 18은 PC5D 메시지에 포함된 RSI 값을 나타내는 필드의 구성 예를 도시한다. 앞서 설명했듯이, RSI 파라미터는 릴레이 UE의 상태를 나타내기 위해 이용되며, 릴레이 UE가 추가적인 리모트 UE에 서비스를 제공할 수 있는 자원을 보유했는지 여부를 나타낸다. RSI 파라미터의 비트 값은 아래의 표 25와 같이 구성될 수 있다.
표 25
Status Indicator
Bit 8
0 UE가 추가적인 리모트 UE를 지원하기 위한 충분한 자원을 보유하지 않음
1 UE가 추가적인 리모트 UE를 지원하기 위한 충분한 자원을 보유함
Bit 1-7 Reserved (coded as zero)
한편, 앞서 도 15에서 설명한 실시 예와 도 16및 도 17에서 설명한 실시 예는 각각 독립적으로 적용되는 것으로 설명하였으나, 두 가지 실시 예가 복합적으로 적용되는 것 또한 얼마든지 가능하다. 즉, 모델 B 디스커버리 방식에서 리모트 UE가 전송하는 PC5D 요청(solicitation) 메시지에 'Relay UE ID' 파라미터가 포함되고, 이에 응답하여 릴레이 UE가 전송하는 PC5D 응답(response) 메시지에 'RSI' 파라미터가 포함되는 방식으로도 동작할 수 있다.
5. 장치 구성
도 19는 제안하는 실시 예에 따른 노드 장치의 구성을 도시하는 도면이다.
제안하는 실시 예에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 또는, 송수신장치(110)는 송신부와 수신부로 분리되어 구현될 수도 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
도 19를 참조하면 제안하는 실시 예에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)는 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 송수신장치(210)는 송신부와 수신부로 분리되어 구현될 수도 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 통신 방법은 3GPP 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 ProSe-enabled UE(Proximity Service-enabled User Equipment)인 제1 UE가 ProSe 통신을 수행하는 방법에 있어서,
    상기 제1 UE와 직접 통신을 위한 연결이 수립된(established) 릴레이 UE인 제2 UE로, 상기 제2 UE의 식별 정보를 포함하는 제1 PC5 디스커버리 메시지를 전송하는 단계;
    상기 제2 UE로부터 상기 제1 PC5 디스커버리 메시지에 대한 응답으로서 제2 PC5 디스커버리 메시지를 수신하는 단계; 및
    상기 제2 PC5 디스커버리 메시지를 이용하여 상기 제2 UE와의 연결에 대한 측정(measurement)을 수행하는 단계를 포함하는, ProSe 통신 방법.
  2. 제1항에 있어서,
    상기 제2 UE의 식별 정보는 ProSe 릴레이 UE ID 파라미터를 포함하는 것인, ProSe 통신 방법.
  3. 제1항에 있어서,
    상기 측정을 수행하는 단계는, PSDCH(Physical Sidelink Discovery Channel)의 DMRS(DeModulation Reference Signal)를 이용하여 수행되는 것인, ProSe 통신 방법.
  4. 제1항에 있어서,
    상기 제1 UE와의 직접 통신을 위한 연결이 수립되지 않았으나 상기 제1 PC5 디스커버리 메시지를 수신한 제3 UE는, 상기 제1 PC5 디스커버리 메시지에 대해 응답하지 않는 것인, ProSe 통신 방법.
  5. 제1항에 있어서,
    상기 제2 UE의 식별 정보는 상기 제2 UE와의 디스커버리 과정에서 상기 제2 UE로부터 획득되는 것인, ProSe 통신 방법.
  6. 제1항에 있어서,
    상기 제1 UE와 상기 제2 UE는 모델 B 디스커버리 방식으로 통신하는 것인, ProSe 통신 방법.
  7. 제1항에 있어서,
    상기 제1 PC5 디스커버리 메시지는 디스커버리 요청(solicitation) 메시지이며, 상기 제2 PC5 디스커버리 메시지는 디스커버리 응답(response) 메시지인 것인, ProSe 통신 방법.
  8. 무선 통신 시스템에서 ProSe-enabled UE(Proximity Service-enabled User Equipment)인 제1 UE에 있어서,
    송신부;
    수신부; 및
    상기 송신부 및 상기 수신부와 연결되어 동작하는 프로세서를 포함하되,
    상기 프로세서는,
    상기 제1 UE와 직접 통신을 위한 연결이 수립된(established) 릴레이 UE인 제2 UE로, 상기 제2 UE의 식별 정보를 포함하는 제1 PC5 디스커버리 메시지를 전송하고,
    상기 제2 UE로부터 상기 제1 PC5 디스커버리 메시지에 대한 응답으로서 제2 PC5 디스커버리 메시지를 수신하고,
    상기 제2 PC5 디스커버리 메시지를 이용하여 상기 제2 UE와의 연결에 대한 측정(measurement)을 수행하는 것인, UE.
  9. 제8항에 있어서,
    상기 제2 UE의 식별 정보는 ProSe 릴레이 UE ID 파라미터를 포함하는 것인, UE.
  10. 제8항에 있어서,
    상기 프로세서는, PSDCH(Physical Sidelink Discovery Channel)의 DMRS(DeModulation Reference Signal)를 이용하여 상기 측정을 수행하는 것인, UE.
  11. 제8항에 있어서,
    상기 제1 UE와의 직접 통신을 위한 연결이 수립되지 않았으나 상기 제1 PC5 디스커버리 메시지를 수신한 제3 UE는, 상기 제1 PC5 디스커버리 메시지에 대해 응답하지 않는 것인, UE.
  12. 제8항에 있어서,
    상기 제2 UE의 식별 정보는 상기 제2 UE와의 디스커버리 과정에서 상기 제2 UE로부터 획득되는 것인, UE.
  13. 제8항에 있어서,
    상기 제1 UE와 상기 제2 UE는 모델 B 디스커버리 방식으로 통신하는 것인, UE.
  14. 제8항에 있어서,
    상기 제1 PC5 디스커버리 메시지는 디스커버리 요청(solicitation) 메시지이며, 상기 제2 PC5 디스커버리 메시지는 디스커버리 응답(response) 메시지인 것인, UE.
PCT/KR2016/011063 2015-10-22 2016-10-04 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치 WO2017069430A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,039 US10609744B2 (en) 2015-10-22 2016-10-04 Method for direct communication between terminals in wireless communication system and apparatus for method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562244748P 2015-10-22 2015-10-22
US62/244,748 2015-10-22
US201562253134P 2015-11-10 2015-11-10
US62/253,134 2015-11-10
US201662278936P 2016-01-14 2016-01-14
US62/278,936 2016-01-14

Publications (1)

Publication Number Publication Date
WO2017069430A1 true WO2017069430A1 (ko) 2017-04-27

Family

ID=58557621

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/011063 WO2017069430A1 (ko) 2015-10-22 2016-10-04 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
PCT/KR2016/011172 WO2017069435A1 (ko) 2015-10-22 2016-10-06 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011172 WO2017069435A1 (ko) 2015-10-22 2016-10-06 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (2) US10609744B2 (ko)
WO (2) WO2017069430A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686674B (zh) * 2015-11-05 2019-12-13 索尼公司 无线通信***中的电子设备和无线通信方法
US10764811B2 (en) * 2016-05-27 2020-09-01 Huawei Technologies Co., Ltd. Method for handover to relay node, related device, and system
US11452154B2 (en) * 2016-11-17 2022-09-20 Huawei Technologies Co., Ltd. Indication method and related device
WO2018142861A1 (ja) * 2017-02-03 2018-08-09 日本電気株式会社 通信処理システム、通信処理方法、通信処理装置、通信端末およびそれらの制御方法と制御プログラム
WO2018150514A1 (ja) * 2017-02-16 2018-08-23 日本電気株式会社 無線アドホックネットワークにおける通信端末、通信方法及び通信プログラム
DE102018210279A1 (de) * 2018-06-25 2020-01-02 Robert Bosch Gmbh Erstes Endgerät, Verfahren zum Betreiben des ersten Endgeräts, zweites Endgerät und Verfahren zum Betreiben des zweiten Endgeräts
CN112970275A (zh) 2018-11-02 2021-06-15 鸿颖创新有限公司 下一代无线网络侧链路测量报告的方法和用户设备
CN111107606B (zh) * 2019-01-18 2021-07-20 维沃软件技术有限公司 接口可用性上报、指示方法和设备
WO2021031090A1 (zh) * 2019-08-19 2021-02-25 华为技术有限公司 一种侧行链路通信方法及装置
CN114557043A (zh) * 2019-10-22 2022-05-27 Oppo广东移动通信有限公司 无线通信方法和终端设备
US11632665B2 (en) * 2019-11-06 2023-04-18 Qualcomm Incorporated Proximity services session authorization and provisioning support over a 5G system
CN113133085B (zh) * 2019-12-30 2022-05-13 华为技术有限公司 建立连接和获取中继服务代码的方法和通信装置
WO2021134163A1 (en) * 2019-12-30 2021-07-08 Mediatek Singapore Pte. Ltd. Methods and apparatus of early packet filtering for sidelink ue discovery
US11924895B2 (en) * 2020-02-14 2024-03-05 Qualcomm Incorporated Techniques for new radio layer two relay
US20210400745A1 (en) * 2020-06-18 2021-12-23 Asustek Computer Inc. Method and apparatus for performing a pc5 unicast link establishment procedure in a wireless communication system
US11477848B2 (en) * 2020-06-29 2022-10-18 At&T Intellectual Property I, L.P. Disseminating alerts or other notifications using ProSe direct discovery signaling
EP4199643A4 (en) * 2020-08-14 2023-08-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, AND TERMINAL
WO2022057605A1 (en) * 2020-09-20 2022-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods and terminal devices for enhanced discovery procedure
US11259350B1 (en) * 2020-09-21 2022-02-22 Asustek Computer Inc. Method and apparatus for supporting UE-to-network relay communication in a wireless communication system
WO2022072775A2 (en) * 2020-10-01 2022-04-07 Idac Holdings, Inc. Relay discovery and selection
WO2022082629A1 (en) * 2020-10-22 2022-04-28 Apple Inc. Sidelink discovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020460A1 (en) * 2013-08-07 2015-02-12 Lg Electronics Inc. Method and apparatus for performing device-to-device discovery in wireless communication system
WO2015115822A1 (ko) * 2014-01-29 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 중계 기능 상태 보고 방법 및 상기 방법을 이용하는 단말

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091418A2 (ko) 2010-12-27 2012-07-05 한국전자통신연구원 단말간 직접 통신 및 단말 릴레잉 방법
US20160037568A1 (en) 2013-03-29 2016-02-04 Sami-Jukka Hakola Method and apparatus for reestablishing communication with a network
US9622035B2 (en) 2013-07-04 2017-04-11 Lg Electronics Inc. Relay control method for proximity service and device therefor
KR102083322B1 (ko) 2013-08-22 2020-03-03 삼성전자주식회사 이동 통신 시스템에서 고립 사용자 단말기에 대한 디바이스-투-디바이스 통신 기반 서비스 제공 장치 및 방법
WO2015065132A1 (ko) 2013-11-01 2015-05-07 엘지전자(주) 무선 통신 시스템에서 디스커버리 메시지를 전송하는 방법 및 이를 위한 장치
CN104812075A (zh) 2014-01-27 2015-07-29 中兴通讯股份有限公司 设备发现信号的发送方法、装置及***
WO2015115824A1 (ko) 2014-01-29 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 중계 동작 상태 보고 방법 및 상기 방법을 이용하는 단말
KR20150094325A (ko) 2014-02-11 2015-08-19 삼성전자주식회사 UE-relay 동작에 있어 power saving을 위한 통신 방법
EP3141004B1 (en) 2014-05-07 2019-11-27 Interdigital Patent Holdings, Inc. Systems, methods and instrumentalities for enabling machine type communication group communication
WO2016021942A1 (en) 2014-08-06 2016-02-11 Samsung Electronics Co., Ltd. Signal transmission/reception method and apparatus of d2d terminal
US9414338B2 (en) 2014-08-07 2016-08-09 Alcatel Lucent Notification of relay capabilities for UE-to-network relay functions
TWI607646B (zh) 2014-10-01 2017-12-01 財團法人工業技術研究院 適用於鄰近服務伺服器及無線裝置的動態准入控制方法以及使用所述方法的相關裝置
WO2016073984A2 (en) 2014-11-07 2016-05-12 Interdigital Patent Holdings, Inc. Optimizations for relay communications
US9955334B2 (en) 2015-01-09 2018-04-24 Acer Incorporated Method of performing proximity discovery for network entity and user equipment
CN107736061A (zh) * 2015-01-16 2018-02-23 夏普株式会社 为侧链路通信选择同步信号源的方法及装置
CN105992364B (zh) 2015-03-02 2019-06-11 中兴通讯股份有限公司 资源处理方法及装置
US9893894B2 (en) 2015-03-13 2018-02-13 Intel IP Corporation Systems, methods, and devices for secure device-to-device discovery and communication
US11284337B2 (en) 2015-03-27 2022-03-22 Qualcomm Incorporated Selection of proximity services relay
US10237904B2 (en) 2015-03-27 2019-03-19 Qualcomm Incorporated Proximity service signaling protocol
US9980226B2 (en) 2015-04-03 2018-05-22 Qualcomm Incorporated Discovery resource pool management in proximity based services
US20180092017A1 (en) * 2015-04-08 2018-03-29 Interdigital Patent Holdings, Inc. Realizing Mobile Relays For Device-to-Device (D2D) Communications
US9867027B2 (en) 2015-05-08 2018-01-09 Acer Incorporated Apparatuses and methods for proximity-based service (prose) user equipment (UE)-to network relay
US10212651B2 (en) 2015-05-14 2019-02-19 Qualcomm Incorporated Systems, methods, and devices for link quality based relay selection
WO2016185967A1 (ja) * 2015-05-15 2016-11-24 京セラ株式会社 基地局及び無線端末
WO2016184370A1 (zh) 2015-05-15 2016-11-24 中兴通讯股份有限公司 更换中继节点的方法及***、d2d用户设备及控制节点
US10027729B2 (en) 2015-05-22 2018-07-17 Qualcomm Incorporated Unicast support in prose direct device-to-device communication
CN106304173B (zh) 2015-05-25 2020-01-24 上海诺基亚贝尔股份有限公司 在d2d用户设备中用于测量无线链路质量的方法
KR102512634B1 (ko) 2015-06-10 2023-03-23 삼성전자주식회사 단말간 직접 통신 방법 및 장치
EP3121974B1 (en) 2015-07-24 2019-11-27 Panasonic Intellectual Property Corporation of America Improved prose relay ue activation
ES2897648T3 (es) 2015-08-19 2022-03-02 Nokia Technologies Oy Control de uso de UE retransmisor
EP3142453B1 (en) 2015-09-08 2018-05-16 ASUSTek Computer Inc. Method and apparatus for triggering radio bearer release by a relay ue (user equipment) in a wireless communication system
RU2693014C1 (ru) 2015-09-23 2019-07-01 Сони Корпорейшн Терминал, способ и система
EP3148285B1 (en) * 2015-09-25 2019-04-17 Panasonic Intellectual Property Corporation of America Improved radio bearer mapping for proximity services ue to network relay with associated priority signalling
CN108141900B (zh) * 2015-10-01 2022-05-17 索尼公司 电信设备和方法
CN116137745A (zh) 2015-10-02 2023-05-19 索尼公司 电信设备和方法
US10257677B2 (en) 2015-10-16 2019-04-09 Qualcomm Incorporated System and method for device-to-device communication with evolved machine type communication
US9900765B2 (en) 2016-06-02 2018-02-20 Apple Inc. Method and apparatus for creating and using a roaming list based on a user roaming plan

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020460A1 (en) * 2013-08-07 2015-02-12 Lg Electronics Inc. Method and apparatus for performing device-to-device discovery in wireless communication system
WO2015115822A1 (ko) * 2014-01-29 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 중계 기능 상태 보고 방법 및 상기 방법을 이용하는 단말

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG-SA: Study on Architectural Enhancements to Support MCPTT Services (Release 13)", 3GPP TR 23.779 V0.4.0, 2 December 2014 (2014-12-02), XP050912904 *
"3GPP; TSG-SA; Study on Extended Architecture Support for Proximity-based Services (Release 13", 3GPP TR 23.713 V13.0.0, 22 September 2015 (2015-09-22), XP050996009 *
CATT: "Correction of TTL Related to the Discovery Filter", S2-150297, SA WG2 MEETING #107, 20 January 2015 (2015-01-20), Sorrento, Italy, XP050942269 *

Also Published As

Publication number Publication date
WO2017069435A1 (ko) 2017-04-27
US10609744B2 (en) 2020-03-31
US20180317077A1 (en) 2018-11-01
US10674553B2 (en) 2020-06-02
US20180317268A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2017069430A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신 방법 및 이를 위한 장치
WO2017052335A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치
WO2017074012A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2018169343A1 (ko) 페이징을 수행하는 방법 및 기지국, 페이징을 지원하는 방법 및 네트워크 엔티티
WO2018199611A1 (ko) 네트워크로의 등록 요청 전송 방법 및 사용자기기, 그리고 등록 요청 수신 방법 및 네트워크 기기
WO2017171427A1 (ko) 시스템 정보 전송 방법 및 기지국과 시스템 정보 수신 방법 및 사용자기기
WO2017146523A1 (ko) 네트워크로의 연결 요청 방법 및 사용자기기
WO2017191973A1 (ko) 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치
WO2016105004A1 (ko) 무선 통신 시스템에서 nbifom 캐퍼빌리티를 송수신하는 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2016190672A1 (ko) 무선 통신 시스템에서 후원 연결을 위한 접속 절차를 수행하는 방법 및 단말
WO2017043854A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 지원하는 방법 및 이를 위한 장치
WO2018066919A1 (ko) 네트워크로의 연결 방법 및 사용자기기
WO2017007104A1 (ko) V2x 통신 시스템에서 단말의 통신 방법 및 단말
WO2016024773A1 (ko) 무선 통신 시스템에서 릴레이 선택 방법 및 이를 위한 장치
WO2015002456A1 (ko) 근접 서비스를 위해 중계기를 선택 또는 재선택하는 방법
WO2014084596A1 (ko) Ims 기반 서비스 연결 방법
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2017200299A1 (ko) 단말의 셀 재선택 절차 수행 방법 및 이를 지원하는 장치
WO2015137631A1 (ko) 근접 서비스 수행 방법 및 사용자 장치
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2016111603A1 (ko) 무선 통신 시스템에서 pdn 연결 복구에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2016144009A1 (ko) 무선 통신 시스템에서 네트워크 트래픽을 제어하는 방법 및 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770039

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857688

Country of ref document: EP

Kind code of ref document: A1