WO2017069393A1 - Cnt purification method using fluidized bed reactor - Google Patents

Cnt purification method using fluidized bed reactor Download PDF

Info

Publication number
WO2017069393A1
WO2017069393A1 PCT/KR2016/009568 KR2016009568W WO2017069393A1 WO 2017069393 A1 WO2017069393 A1 WO 2017069393A1 KR 2016009568 W KR2016009568 W KR 2016009568W WO 2017069393 A1 WO2017069393 A1 WO 2017069393A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
gas
purification method
fluidized bed
halogen
Prior art date
Application number
PCT/KR2016/009568
Other languages
French (fr)
Korean (ko)
Inventor
김욱영
강경연
조동현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680004658.7A priority Critical patent/CN107108222A/en
Publication of WO2017069393A1 publication Critical patent/WO2017069393A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique

Definitions

  • the present invention relates to a carbon nanotube (CNT) purification method using a fluidized bed reactor.
  • CNT carbon nanotube
  • CNT is also widely used as a conductive additive in electronic products such as batteries, conductive inks, and conductive polymers.
  • electronic products such as batteries, conductive inks, and conductive polymers.
  • impurities other than CNT when added together, the quality of the product may be degraded and an unexpected defect may be generated. Therefore, in the CNT synthesis, it is important to remove impurities such as residual metal catalyst or amorphous carbon which may occur during the CNT synthesis process. In particular, it is necessary to remove the metal catalyst to prevent problems related to quality and defects.
  • the metal removal process in the conventional CNT refining process adopts a method using a wet fixed bed using liquid acid and a dry fixed bed injecting chlorine gas into a box-type furnace at high temperature.
  • the metal removal method using the liquid acid may generate waste acid as a by-product, and may cause problems such as environmental pollution and waste acid treatment.
  • the metal removal method using the heating furnace has the disadvantage that the output of the product may be reduced due to the consumption of raw materials such as cooling gas and time to control the heating and cooling of the heating furnace.
  • Another object of the present invention is to provide a CNT treated by the above method.
  • the present invention is a fluidized bed reactor having a gas inlet and outlet, and a carbon nanotube (CNT) inlet and outlet, the carbon nanotubes containing impurities containing residual metal under an inert gas atmosphere
  • a carbon nanotube (CNT) purification method that reacts with a halogen-containing gas to remove it.
  • the purification method includes a first step of heating a carbon nanotube containing impurities including a residual metal to a first temperature (T1) under an inert gas atmosphere and reacting with a halogen-containing gas to halogenate the impurities; And a second step of heating to a second temperature (T2) higher than the first temperature to evaporate the halogenated impurity to remove through a gas outlet, and to obtain purified carbon nanotubes through a CNT outlet.
  • the first temperature (T1) may be 600 °C to 1000 °C.
  • the second temperature T2 may be greater than or equal to T1 + 100 ° C.
  • the purification method may be carried out in a continuous process using one fluidized bed reactor.
  • the purification method may be performed in a continuous process using two fluidized bed reactors, the first step process may be carried out in the first fluidized bed reactor, the second step process may be carried out in the second fluidized bed reactor.
  • the method may further include cooling the purified CNT discharged through the CNT outlet.
  • the halogen-containing gas may be a gas containing fluorine, chlorine, bromine, iodine or a mixture thereof.
  • the halogen-containing gas may be a gas containing chlorine gas or trichloromethane gas or a mixed component thereof.
  • the inert gas may be a gas containing nitrogen, helium, neon, argon, krypton, xenon, radon or mixed components thereof.
  • the gas injection method may be a purge method, a pulse method, a continuous injection method or a combination of these injection methods.
  • the pressure of the inert gas may be 500torr to 800torr.
  • the pressure of the halogen-containing gas may be 500torr to 900torr.
  • the method may further include neutralizing the halogenated impurity recovered from the gas outlet.
  • the neutralization treatment includes silver nitrate (AgNO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), sodium chloride (NaCl), potassium thiocyanate (KSCN), ammonium thiocyanate (NH 4 SCN), aluminum salt compounds , Sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), or a combination thereof.
  • the reactor is operated at a higher density than the CNT purification method using a heating furnace such as a conventional box furnace. Since the contact between the powder and the gas can be made effectively, the time taken for the CNT purification process can be shortened, and impurities such as a metal catalyst in the CNT can be effectively purified.
  • Figure 1 schematically shows a carbon nanotube purification system according to the present invention.
  • FIG. 2 is an SEM image of CNTs according to Preparation Example 1 and Example 1.
  • FIG. 2 is an SEM image of CNTs according to Preparation Example 1 and Example 1.
  • injection may be used interchangeably with “injection, infusion” within this specification and may be understood to mean flowing or injecting liquid, gas, or heat to where necessary. have.
  • CNT carbon nanotube
  • impurities may be removed through a purification step, which is a post-treatment of CNT synthesis.
  • Impurities that may be included in the synthesized CNTs may include amorphous carbon materials, fullerenes, graphite, metal catalysts, and the like, and generally, CNTs are purified by removing such impurities by chemical and physical methods.
  • CNT purification method using a fluidized bed reactor according to the present invention in a fluidized bed reactor having a gas inlet and outlet, and a carbon nanotube (CNT) inlet and outlet, inert carbon nanotubes containing impurities containing residual metal It is characterized by removing by reacting with a halogen-containing gas under a gas atmosphere.
  • CNT carbon nanotube
  • FIG. 1 schematically shows a carbon nanotube purification system as an embodiment of the present invention.
  • the purification method according to the present invention is a chemical agent for raising the carbon nanotubes containing impurities including residual metal to a first temperature (T1) under an inert gas atmosphere, reacting with a halogen-containing gas to halogenate the impurities Stage 1; And a second step of heating to a second temperature (T2) higher than the first temperature to evaporate the halogenated impurities to remove through a gas outlet, and to obtain purified carbon nanotubes through a CNT outlet.
  • T1 first temperature
  • T2 second temperature
  • the first step may include the step of purging the amount of halogen-containing gas and inert gas in a fluidized bed reactor at a constant concentration according to the flow conditions, then raising the temperature to the first temperature (T1), reacting for a predetermined time and purging Can be.
  • the first step after the inside of the fluidized bed reactor is generated in an inert gas atmosphere, the addition of the inert gas is stopped, the halogen-containing gas is added, and the temperature is raised to the first temperature T1 to form a fluidized bed or the fluidized bed. It may include the step of purging after the reaction for a certain time in a closed state of the reactor.
  • the closed state may mean a state in which all the valves of the fluidized bed reactor are closed or no gas is introduced or discharged in the reactor, and may include a vacuum atmosphere, and the vacuum atmosphere may mean a pressure of 1 torr or less. Can be.
  • the transferring may be purging with one or more gases selected from a halogen containing gas or an inert gas, for example, purging with an inert gas after reacting under the flow conditions, and reacting in the closed condition.
  • purging may be purged with an inert gas, but is not limited thereto.
  • the step of adding a halogen-containing gas, adding an inert gas, and raising the temperature to the first temperature T1 may be performed in any order within the first step.
  • the first step may appropriately include the order and number of times of the reaction under the flow conditions and the reaction under a closed condition.
  • the first temperature T1 may be 600 ° C to 1000 ° C.
  • the halogenation reaction with respect to the metal impurities including the catalyst metal in the carbon material may not be smooth.
  • the second step may include removing a halogenated impurity containing a halogenated metal or the like from the first step, and may include raising the temperature to a second temperature T2.
  • the second step may include adding a halogen-containing gas under an inert gas atmosphere or a vacuum atmosphere to react and remove impurities.
  • the order and number of the inert gas atmosphere formation or the vacuum atmosphere formation and the halogen-containing gas addition are not particularly limited, and may be alternately or repeated as appropriate.
  • the second temperature (T2) may be higher than the first temperature, specifically, T2 may be a temperature of T1 + 100 °C or more.
  • the second temperature T2 may be, for example, a temperature range of 700 ° C. to 1500 ° C., and more specifically, may be 900 ° C. to 1400 ° C.
  • the removal reaction of impurities including halogenated metals is not smooth, and residual metals and halogenated metals remain in the carbon nanotubes and become impurities. It can act, which may be a factor to lower the physical properties of the carbon nanotubes.
  • the graphitization of the catalyst by the residual metal occurs at a temperature above the substrate range, it may not be easy to remove impurities such as metal.
  • the first step and the second step are not particularly limited in the order and number of times, and according to the crystallinity of the CNT to be purified and the type, purification rate, and the like of the catalytic metal used for CNT synthesis. Can be appropriately selected.
  • the catalyst metal is not particularly limited as long as it is a material that promotes the growth of carbon nanotubes.
  • the catalyst metal include at least one metal selected from the group consisting of Groups 3 to 12 of the Group 18 periodic table.
  • it may be at least one metal selected from the group consisting of Groups 3, 5, 6, 8, 9, and 10, specifically, iron (Fe), nickel (Ni), cobalt (Co), Selected from chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V), titanium (Ti), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt) and rare earth elements
  • It may be at least one metal. Since a material having a higher boiling point for the first temperature and the second temperature may require more energy, a material that can be treated with low energy in terms of efficiency may be preferable.
  • carbon nanotube purification according to the present invention may be carried out in a continuous process through one fluidized bed reactor.
  • the process including the first step and the second step may be carried out in one fluidized bed reactor, and the fluidized bed reactor may specifically include a gas inlet 10 and an outlet 30 and carbon nanotubes (CNT). It may be provided with an inlet and outlet 20.
  • the fluidized bed reactor may specifically include a gas inlet 10 and an outlet 30 and carbon nanotubes (CNT). It may be provided with an inlet and outlet 20.
  • CNT carbon nanotubes
  • the carbon nanotube purification of the present invention may be performed in a continuous process using two fluidized bed reactors.
  • the first step process may be performed in a first fluidized bed reactor
  • the second step process may be performed in a second fluidized bed reactor.
  • the reaction time of the first step may be maintained, for example, for 10 minutes to 1 hour, the halogenation process of the residual metal within the above range can be made more completely, the reaction time is It can be adjusted according to the size of the carbon nanotubes and the reactor.
  • reaction time of the second step may be maintained for 30 minutes to 300 minutes, and may be appropriately adjusted within a range capable of removing only impurities including residual metal and the like without affecting carbon nanotubes.
  • the treatment time and temperature may be appropriately adjusted by those skilled in the art according to the crystallinity of CNTs to be purified and the type of catalyst metal used for CNT synthesis.
  • the method may further include cooling the purified carbon nanotubes through a purification method including the first and second steps.
  • Figure 1 may further include the step of recovering the gas discharged from the gas outlet 30 to remove and neutralize the halogen-containing material. Since the gas discharged after the purification reaction contains a halogen material and other impurities, it may be removed by precipitation by neutralizing the halogen material using a wet scrubber 300 or the like.
  • a solution containing nitric acid or sulfuric acid may be used.
  • silver nitrate (AgNO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), sodium chloride (NaCl), thiocyanic acid Halides are removed using an aqueous solution of a material selected from potassium (KSCN), ammonium thiocyanate (NH 4 SCN), aluminum salt compounds, sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), or a combination thereof It is possible, but is not limited to the above examples.
  • the pressure of the halogen-containing gas may be supplied to 500torr to 900torr, for example, 600torr to 800torr, more specifically may be to supply at a pressure of 600torr to 700torr.
  • the pressure of the inert gas may be supplied to 500torr to 800torr, for example, 600torr to 800torr, more specifically may be to supply at a pressure of 600torr to 700torr.
  • the flow rates of the halogen-containing gas and the inert gas as described above can be shortened at high concentrations of halogen gas and can be long at low conditions, and can be appropriately adjusted by the user.
  • the reactivity of the halogen gas may also be affected by the environmental conditions such as the reactor material, it may be appropriately adjusted according to the environmental conditions such as the material, catalyst, reaction temperature of the reactor.
  • the halogen-containing gas may be a gas containing fluorine, chlorine, bromine, yorod or a mixture thereof, for example, chlorine-containing gas may be used, and more specifically, chlorine gas Or a gas containing trichloromethane gas or a mixed component thereof.
  • halogen-containing gas halogen ions having a high electron affinity can be used to remove impurities, particularly metal-containing impurities.
  • halogen ions have high reactivity with iron-containing impurities, and thus, these characteristics can be used to After reacting these, impurities covalently bonded with halogen ions and metal ions can be selectively removed as reaction products.
  • the inert gas may include, for example, a gas containing nitrogen, helium, neon, argon, krypton, xenon, radon, or a mixed component thereof, and specifically, nitrogen gas may be used. Since the inert gas is chemically very stable and does not want to exchange or share electrons, the inert gas may serve to flow and move the CNTs due to the inflow of the gas without reacting with the CNTs.
  • the gases may be introduced into the fluidized bed reactor 100 after being heated through a preheater, as shown in FIG.
  • halogen gas, inert gas, etc. used in the CNT purification method using a fluidized bed reactor can also be recycled and used.
  • the injection method of the gas is not particularly limited, and may include a purge method, a pulse method, a continuous input method or an injection method in combination thereof.
  • the purge method may include a method of intermittently and continuously injecting a gas
  • the pulse method may include a method of injecting a predetermined amount of gas at a predetermined period.
  • the continuous input method may include a method of injecting a gas at a specific speed, the gas injection method as described above may be used in combination.
  • the CNT purification method according to the present invention has the advantage that the purification process and the cooling process may be separated and processed, that is, the step in which the purification process is performed and the step in which the cooling process is performed may be processed in separate spaces.
  • the purification process may mean a step of reacting the halogen-containing gas and impurities
  • the cooling process may mean a step of lowering the temperature of the CNT after the purification process.
  • the cooling process, the carbon nanotubes from which impurities are removed according to the present invention may be processed after moving to the cooling and recovery tank 100 through the CNT outlet 20.
  • the method of treating the cooling due to natural convection by cutting off the heat supply to the heating furnace may take a long time to decrease the temperature, and thus the cooling water or the cooling gas consumed may increase.
  • the CNTs recovered after the purification process are moved to separate the cooling process, so that the energy heated for the purification process can be used as it is in the next batch, while the next purification process is in progress. Since the recovered CNTs can be cooled, sufficient cooling time can be ensured. Accordingly, when the purification process and the cooling process are separately processed according to the present invention, it is possible to save the time taken for the recovery through the purification of CNTs and raw materials such as cooling water and cooling gas.
  • the fluidized bed reactor 100 used in the present invention is not particularly limited and may be any valve that can be easily opened and closed to easily form a gas atmosphere in the reactor under flow conditions and closed conditions.
  • the purification process according to the present invention can be operated under flow conditions and closed conditions, the amount of gas consumed by performing the CNT purification process under flow conditions or closed conditions using an inert gas and a halogen-containing gas. Can be reduced, so that the process can be carried out efficiently.
  • CNTs purified with high purity by the method as described above may exhibit the best performance in various fields.
  • CNTs have many application fields such as medical or engineering micro components, electronic devices, batteries, etc., in particular, electronic materials, etc., may cause disadvantages that may cause defects and deterioration in performance when impurities are contained. Therefore, when using the CNT purification method according to the present invention and the CNT purified by this method, this problem can be minimized.
  • the carbon nanotubes according to the present invention may be prepared by growing carbon nanotubes by chemical vapor deposition (CVD) through decomposition of a carbon source using a supported catalyst, and the catalyst metal supported on the supported catalyst is carbon nanotubes. It will not be restrict
  • a catalyst metal for example, at least one metal selected from the group consisting of Groups 3 to 12 of the Group 18 type periodic table recommended by IUPAC in 1990 is mentioned. Among them, at least one metal selected from the group consisting of Groups 3, 5, 6, 8, 9, and 10 is preferable, and iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), and molybdenum are preferred. At least one metal selected from (Mo), tungsten (W), vanadium (V), titanium (Ti), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt) and rare earth elements Particularly preferred.
  • a catalyst metal precursor inorganic salts, such as nitrate, sulfate, and carbonate of a catalyst metal
  • organic salts such as acetate, organic complexes, such as an acetylacetone complex, an organometallic compound, etc. It will not specifically limit, if it is a compound containing a catalyst metal.
  • the metal catalyst may further include one or more metals selected from iron (Fe), molybdenum (Mo), chromium (Cr), and vanadium (V) based on cobalt (Co).
  • Carbon nanotube synthesis was tested in a laboratory scale fluidized bed reactor using a Co / Fe / Mo / V / Al-containing metal catalyst for CNT synthesis.
  • the CNT synthesis catalyst prepared in the above process and CNT are mixed and mounted in the middle of a quartz tube having an inner diameter of 55 mm, and then heated to 700 ° C. in a nitrogen atmosphere, and then maintained.
  • Nitrogen, ethylene and hydrogen gas was synthesized for 2 hours while flowing at a flow rate of 900sccm to synthesize an entangled (non-bundle) type carbon nanotube aggregate.
  • a photograph of the prepared CNTs is shown in Preparation Example 1 of FIG. 2.
  • the reactor internal temperature was raised to 900 ° C while injecting N 2 at a flow rate of 1000 sccm.
  • the halogen-containing gases Cl 2 and N 2 are injected at a flow rate of 1000 sccm at a 1: 1 ratio for 5 minutes, and then only N 2 gas is supplied at 1000 sccm for 10 minutes.
  • the process of supplying N 2 gas is repeated three times.
  • the sample is transferred to a second 1200 ° C. high temperature reactor, held for 30 minutes under flow conditions of an N 2 gas atmosphere, and then cooled.
  • the carbon nanotubes of the examples and the comparative examples were analyzed by inductively coupled plasma spectrometry (ICP), and the contents of Fe, Co, Mo, V, and Cr in the carbon nanotubes were measured and shown in Table 1 below.
  • ICP inductively coupled plasma spectrometry
  • the CNT purification method according to the present invention it can be confirmed that the gas raw material and time consumed in the process can be saved, and the efficient process can be performed.

Abstract

The present invention relates to a CNT purification method wherein carbon nanotubes containing impurities including residual metal are subjected to a reaction with halogen-containing gas under an inert gas atmosphere in a fluidized bed reactor, so as to remove the impurities. The method according to the present invention can operate the reactor at a higher density, as compared to a conventional CNT purification method using a heating furnace, by using a flow condition and a sealing condition in combination, and can thus effectively purify CNTs from impurities such as a metal catalyst within the CNTs while reducing the time required for the CNT purification process.

Description

유동층 반응기를 이용한 CNT 정제 방법CNT Purification Method Using Fluidized Bed Reactor
본 출원은 2015.10.23자 한국 특허 출원 제10-2015-0147657호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0147657, filed on October 23, 2015, and all contents disclosed in the literature of that Korean patent application are incorporated as part of this specification.
본 발명은 유동층 반응기를 이용한 탄소나노튜브(CNT) 정제 방법에 관한 것이다.The present invention relates to a carbon nanotube (CNT) purification method using a fluidized bed reactor.
CNT는 전지나 전도성 잉크, 전도성 고분자 등의 전자제품에 전도성 첨가제로도 많이 사용되고 있는데, 정밀화학 제품의 경우 CNT 외의 불순물이 함께 첨가될 경우, 제품의 품질을 떨어뜨리고 예상치 못한 불량을 발생시킬 수 있다. 그러므로 CNT 합성에서 잔여 금속촉매 또는 CNT 합성 공정 중 발생할 수 있는 비정질탄소 등의 불순물을 제거시키는 것은 제품의 품질 향상을 위해 중요하다. 특히 금속촉매를 제거해야만 품질 및 불량에 관한 문제를 미연에 방지할 수 있다.CNT is also widely used as a conductive additive in electronic products such as batteries, conductive inks, and conductive polymers. In the case of fine chemical products, when impurities other than CNT are added together, the quality of the product may be degraded and an unexpected defect may be generated. Therefore, in the CNT synthesis, it is important to remove impurities such as residual metal catalyst or amorphous carbon which may occur during the CNT synthesis process. In particular, it is necessary to remove the metal catalyst to prevent problems related to quality and defects.
기존의 CNT 정제 공정에서의 금속제거 공정은 액상 산(acid)을 이용하는 습식 고정층을 이용한 방법과 고온에서 염소기체를 박스형 가열로(furnace)에 주입하는 건식 고정층을 이용한 방법을 채택하고 있다.The metal removal process in the conventional CNT refining process adopts a method using a wet fixed bed using liquid acid and a dry fixed bed injecting chlorine gas into a box-type furnace at high temperature.
구체적으로, 상기 액상의 산을 이용하는 금속 제거 방법은 부산물로서 폐산을 발생시킬 수 있으며, 환경오염 및 폐산의 처리와 같은 문제를 초래할 우려가 있다. 또한, 상기 가열로를 이용하는 금속 제거 방법은 가열로의 가열 및 냉각을 제어하는 데에 냉각기체 등의 원료와 시간 등이 소비됨으로 인해 제품의 생산량이 떨어질 수 있다는 단점을 가지고 있다.Specifically, the metal removal method using the liquid acid may generate waste acid as a by-product, and may cause problems such as environmental pollution and waste acid treatment. In addition, the metal removal method using the heating furnace has the disadvantage that the output of the product may be reduced due to the consumption of raw materials such as cooling gas and time to control the heating and cooling of the heating furnace.
따라서, 부산물의 생성을 최소화하면서 공정에 걸리는 시간을 단축할 수 있는 CNT 정제 방법에 대한 기술 개발이 요구된다.Therefore, there is a need for a technology development for a CNT purification method that can shorten the time required for the process while minimizing the production of by-products.
본 발명의 목적은 유동층 반응기를 이용하여 CNT를 정제할 수 있는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for purifying CNTs using a fluidized bed reactor.
또한, 본 발명의 다른 목적은 상기와 같은 방법에 의해 처리된 CNT를 제공하는 것이다.Another object of the present invention is to provide a CNT treated by the above method.
상기 과제를 해결하기 위하여, 본 발명은 기체 주입구 및 배출구와, 탄소나노튜브(CNT) 주입구 및 배출구를 구비한 유동층 반응기 내에서, 잔류 금속을 포함하는 불순물이 함유된 탄소나노튜브를 불활성 기체 분위기 하에 할로겐 함유 기체와 반응시켜 제거하는 탄소나노튜브(CNT) 정제 방법을 제공한다.In order to solve the above problems, the present invention is a fluidized bed reactor having a gas inlet and outlet, and a carbon nanotube (CNT) inlet and outlet, the carbon nanotubes containing impurities containing residual metal under an inert gas atmosphere Provided is a carbon nanotube (CNT) purification method that reacts with a halogen-containing gas to remove it.
상기 정제 방법은 잔류 금속을 포함한 불순물이 함유된 탄소나노튜브를 불활성 기체 분위기 하에 제1온도(T1)로 승온하여, 할로겐 함유 기체와 반응시켜 불순물을 할로겐화하는 제1단계; 및 상기 제1온도보다 높은 제2온도(T2)로 가열하여 상기 할로겐화 불순물을 증발시켜 기체 배출구를 통해 제거하고, 정제된 탄소나노튜브를 CNT 배출구를 통해 얻는 제2단계;를 포함하는 것일 수 있다. The purification method includes a first step of heating a carbon nanotube containing impurities including a residual metal to a first temperature (T1) under an inert gas atmosphere and reacting with a halogen-containing gas to halogenate the impurities; And a second step of heating to a second temperature (T2) higher than the first temperature to evaporate the halogenated impurity to remove through a gas outlet, and to obtain purified carbon nanotubes through a CNT outlet. .
일구현예에 따르면, 상기 제1온도(T1)는 600℃ 내지 1000℃일 수 있다. According to one embodiment, the first temperature (T1) may be 600 ℃ to 1000 ℃.
또한, 상기 제2온도(T2)는 T1+100℃ 이상일 수 있다.In addition, the second temperature T2 may be greater than or equal to T1 + 100 ° C.
일 구현예에 따르면, 상기 정제 방법은 하나의 유동층 반응기를 이용하여 연속공정으로 실시될 수 있다.According to one embodiment, the purification method may be carried out in a continuous process using one fluidized bed reactor.
또한, 상기 정제 방법이 2개의 유동층 반응기를 이용하여 연속공정으로 실시되며, 제1단계 공정이 제1유동층반응기에서 실시되고, 상기 제2단계 공정이 제2유동층반응기에서 실시되는 것일 수 있다.In addition, the purification method may be performed in a continuous process using two fluidized bed reactors, the first step process may be carried out in the first fluidized bed reactor, the second step process may be carried out in the second fluidized bed reactor.
일구현예에 따르면, CNT 배출구를 통해 배출된 정제된 CNT를 냉각하는 단계를 더 포함할 수 있다.According to one embodiment, the method may further include cooling the purified CNT discharged through the CNT outlet.
일구현예에 따르면, 상기 할로겐 함유 기체가 불소, 염소, 브롬, 요오드 또는 이들의 혼합 성분을 함유하는 기체일 수 있다.According to one embodiment, the halogen-containing gas may be a gas containing fluorine, chlorine, bromine, iodine or a mixture thereof.
또한, 상기 할로겐 함유 기체가 염소가스 또는 트리클로로메탄 가스 또는 이들의 혼합 성분을 함유하는 기체일 수 있다.In addition, the halogen-containing gas may be a gas containing chlorine gas or trichloromethane gas or a mixed component thereof.
일구현예에 따르면, 상기 불활성 기체가 질소, 헬륨, 네온, 아르곤, 크립톤, 제논, 라돈 또는 이들의 혼합 성분을 함유하는 기체일 수 있다.According to one embodiment, the inert gas may be a gas containing nitrogen, helium, neon, argon, krypton, xenon, radon or mixed components thereof.
일구현예에 따르면, 상기 기체의 주입 방식이 퍼지 방식, 펄스 방식, 연속투입 방식 또는 이들을 조합한 주입 방식일 수 있다.According to one embodiment, the gas injection method may be a purge method, a pulse method, a continuous injection method or a combination of these injection methods.
일구현예에 따르면, 상기 불활성 기체의 압력이 500torr 내지 800torr일 수 있다.According to one embodiment, the pressure of the inert gas may be 500torr to 800torr.
일구현예에 따르면, 상기 할로겐 함유 기체의 압력이 500torr 내지 900torr일 수 있다.According to one embodiment, the pressure of the halogen-containing gas may be 500torr to 900torr.
일구현예에 따르면, 상기 기체 배출구로부터 회수된 할로겐화 불순물을 중화 처리하는 단계를 더 포함할 수 있다.According to one embodiment, the method may further include neutralizing the halogenated impurity recovered from the gas outlet.
또한, 상기 중화 처리는, 질산은(AgNO3), 티오황산나트륨(Na2S2O3), 염화나트륨(NaCl), 티오시안산칼륨(KSCN), 티오시안산암모늄(NH4SCN), 알루미늄염계 화합물, 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 또는 이들의 조합으로부터 선택된 화합물을 이용하여 실시할 수 있다.In addition, the neutralization treatment includes silver nitrate (AgNO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), sodium chloride (NaCl), potassium thiocyanate (KSCN), ammonium thiocyanate (NH 4 SCN), aluminum salt compounds , Sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), or a combination thereof.
일구현에에 따르면, 상기와 같은 방법에 의해 정제된 CNT를 제공할 수 있다.According to one embodiment, it is possible to provide purified CNTs by the above method.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of embodiments of the present invention are included in the following detailed description.
본 발명에 따른 유동층 반응기를 이용한 CNT 정제 방법에 의하면, 유동층을 사용하여 CNT의 정제반응을 수행함으로써 종래의 박스형(box furnace)과 같은 가열로를 이용한 CNT 정제방법에 비해 반응기를 더욱 높은 밀도로 운전하여 분체 및 기체의 접촉을 효과적으로 이루어지도록 할 수 있으므로, CNT의 정제 공정에 걸리는 시간을 단축하면서도, CNT 내 금속 촉매 등과 같은 불순물을 효과적으로 정제할 수 있다. According to the CNT purification method using the fluidized bed reactor according to the present invention, by performing the CNT purification reaction using the fluidized bed, the reactor is operated at a higher density than the CNT purification method using a heating furnace such as a conventional box furnace. Since the contact between the powder and the gas can be made effectively, the time taken for the CNT purification process can be shortened, and impurities such as a metal catalyst in the CNT can be effectively purified.
도 1은 본 발명에 따른 탄소나노튜브 정제 시스템을 개략적으로 도시한 것이다.Figure 1 schematically shows a carbon nanotube purification system according to the present invention.
도 2는 제조예 1 및 실시예 1에 따른 CNT의 SEM 이미지이다. 2 is an SEM image of CNTs according to Preparation Example 1 and Example 1. FIG.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에 사용된 "투입"의 용어는 본 명세서 내에 "유입, 주입"과 함께 혼용하여 기재될 수 있으며, 액체, 기체 또는 열 등을 필요한 곳으로 흘러 들여보내거나 넣는 것을 의미하는 것으로 이해될 수 있다.As used herein, the term "injection" may be used interchangeably with "injection, infusion" within this specification and may be understood to mean flowing or injecting liquid, gas, or heat to where necessary. have.
이하, 본 발명의 구현예에 따른 CNT(carbon nanotube) 정제 방법에 대하여 보다 상세하게 설명한다.Hereinafter, a carbon nanotube (CNT) purification method according to an embodiment of the present invention will be described in more detail.
고순도의 CNT를 얻기 위하여 CNT 합성의 후처리인 정제단계를 통해 불순물을 제거할 수 있다. 상기 합성된 CNT에 포함될 수 있는 불순물로는 비정질 탄소물질, 플러렌, 그래파이트, 금속촉매 등을 함유할 수 있으며, 일반적으로 화학적 방법 및 물리적 방법 등으로 이러한 불순물을 제거함으로써 CNT를 정제하고 있다. In order to obtain high purity CNTs, impurities may be removed through a purification step, which is a post-treatment of CNT synthesis. Impurities that may be included in the synthesized CNTs may include amorphous carbon materials, fullerenes, graphite, metal catalysts, and the like, and generally, CNTs are purified by removing such impurities by chemical and physical methods.
본 발명에 따른 유동층 반응기를 이용한 CNT 정제 방법은, 기체 주입구 및 배출구와, 탄소나노튜브(CNT) 주입구 및 배출구를 구비한 유동층 반응기 내에서, 잔류 금속을 포함하는 불순물이 함유된 탄소나노튜브를 불활성 기체 분위기 하에 할로겐 함유 기체와 반응시켜 제거하는 것을 특징으로 한다. CNT purification method using a fluidized bed reactor according to the present invention, in a fluidized bed reactor having a gas inlet and outlet, and a carbon nanotube (CNT) inlet and outlet, inert carbon nanotubes containing impurities containing residual metal It is characterized by removing by reacting with a halogen-containing gas under a gas atmosphere.
도 1은 본 발명의 일구현예로서, 탄소나노튜브 정제 시스템을 개략적으로 도시한다.1 schematically shows a carbon nanotube purification system as an embodiment of the present invention.
일구현예에 따르면, 본 발명에 따른 정제 방법은 잔류 금속을 포함한 불순물이 함유된 탄소나노튜브를 불활성 기체 분위기 하에 제1온도(T1)로 승온하여, 할로겐 함유 기체와 반응시켜 불순물을 할로겐화하는 제1단계; 및 상기 제1온도보다 높은 제2온도(T2)로 가열하여 상기 할로겐화 불순물을 증발시켜 기체 배출구를 통해 제거하고, 정제된 탄소나노튜브를 CNT 배출구를 통해 얻는 제2단계;를 포함할 수 있다.According to one embodiment, the purification method according to the present invention is a chemical agent for raising the carbon nanotubes containing impurities including residual metal to a first temperature (T1) under an inert gas atmosphere, reacting with a halogen-containing gas to halogenate the impurities Stage 1; And a second step of heating to a second temperature (T2) higher than the first temperature to evaporate the halogenated impurities to remove through a gas outlet, and to obtain purified carbon nanotubes through a CNT outlet.
상기 제1단계는 유동층 반응기 내에 할로겐 함유 기체와 불활성 기체의 양을 유동 조건에 맞게 일정 농도로 투입한 후, 제1온도(T1)로 승온시켜, 일정 시간 동안 반응시킨 후 퍼지하는 단계를 포함할 수 있다.The first step may include the step of purging the amount of halogen-containing gas and inert gas in a fluidized bed reactor at a constant concentration according to the flow conditions, then raising the temperature to the first temperature (T1), reacting for a predetermined time and purging Can be.
또한, 상기 제1단계는 유동층 반응기 내를 불활성 기체 분위기로 생성한 후, 불활성 기체의 투입을 중지시키고, 할로겐 함유 기체를 투입하고, 제1온도(T1)로 승온시켜, 유동층이 형성된 분위기 또는 유동층 반응기를 밀폐시킨 상태로 일정 시간 반응 후 퍼지하는 단계를 포함할 수 있다.In addition, in the first step, after the inside of the fluidized bed reactor is generated in an inert gas atmosphere, the addition of the inert gas is stopped, the halogen-containing gas is added, and the temperature is raised to the first temperature T1 to form a fluidized bed or the fluidized bed. It may include the step of purging after the reaction for a certain time in a closed state of the reactor.
상기 밀폐시킨 상태는 유동층 반응기의 밸브를 모두 닫은 상태 또는 반응기 내에서 기체의 유입 및 배출이 없는 상태를 의미할 수 있고, 진공 분위기를 포함할 수 있으며, 상기 진공 분위기는 1torr 이하의 압력을 의미할 수 있다.The closed state may mean a state in which all the valves of the fluidized bed reactor are closed or no gas is introduced or discharged in the reactor, and may include a vacuum atmosphere, and the vacuum atmosphere may mean a pressure of 1 torr or less. Can be.
상기 이송시키는 단계는 할로겐 함유 기체 또는 불활성 기체로부터 선택되는 하나 이상의 기체로 퍼지하는 것일 수 있으며, 예를 들어, 상기 유동 조건에서 반응시키는 단계 후 불활성 기체로 퍼지할 수 있으며, 상기 밀폐된 조건에서 반응시키는 단계 후 불활성 기체로 퍼지할 수 있으나, 이에 한정되는 것은 아니다.The transferring may be purging with one or more gases selected from a halogen containing gas or an inert gas, for example, purging with an inert gas after reacting under the flow conditions, and reacting in the closed condition. After the step of purging may be purged with an inert gas, but is not limited thereto.
상기 제1단계에 포함되는 단계 중 할로겐 함유 기체 투입, 불활성 기체 투입 및 제1온도(T1)로 승온시키는 단계는 제1단계 내에서 순서에 상관없이 진행될 수 있다. 또한, 상기 제1단계는 상기 유동 조건에서 반응시키는 단계 및 밀폐 조건에서 반응시키는 단계의 순서 및 횟수를 적절히 선택하여 포함할 수 있다.Among the steps included in the first step, the step of adding a halogen-containing gas, adding an inert gas, and raising the temperature to the first temperature T1 may be performed in any order within the first step. In addition, the first step may appropriately include the order and number of times of the reaction under the flow conditions and the reaction under a closed condition.
일구현예에 따르면 상기 제1온도(T1)는 600℃ 내지 1000℃일 수 있다. 제1온도(T1)가 상기의 온도 범위 미만인 경우에는, 탄소 재료 중의 촉매 금속 등을 포함하는 금속 불순물에 대한 할로겐화 반응이 원활하지 않을 수 있다.According to an embodiment, the first temperature T1 may be 600 ° C to 1000 ° C. When the first temperature T1 is less than the above temperature range, the halogenation reaction with respect to the metal impurities including the catalyst metal in the carbon material may not be smooth.
상기 제2단계는, 상기 제1단계로부터 할로겐화된 금속 등이 포함된 할로겐화 불순물을 제거하기 위한 단계로서, 제2온도(T2)로 승온시키는 단계를 포함할 수 있다. 상기 제2단계는 불활성 기체 분위기 또는 진공 분위기 하에 할로겐 함유 기체를 투입하여 불순물을 반응시켜 제거하는 단계를 포함할 수 있다. 상기 불활성 기체 분위기 형성 또는 진공 분위기 형성 그리고 할로겐 함유 기체 투입의 순서와 횟수는 특별한 제한이 없으며, 교대 또는 적절한 횟수로 반복될 수 있다.The second step may include removing a halogenated impurity containing a halogenated metal or the like from the first step, and may include raising the temperature to a second temperature T2. The second step may include adding a halogen-containing gas under an inert gas atmosphere or a vacuum atmosphere to react and remove impurities. The order and number of the inert gas atmosphere formation or the vacuum atmosphere formation and the halogen-containing gas addition are not particularly limited, and may be alternately or repeated as appropriate.
일구현예에 따르면, 상기 제2온도(T2)는 제1온도보다 높은 온도일 수 있으며, 구체적으로, T2는 T1+100℃ 이상의 온도일 수 있다. 상기 제2온도(T2)는 예를 들어, 700℃ 내지 1500℃의 온도 범위일 수 있으며, 더욱 구체적으로 예를 들면, 900℃ 내지 1400℃일 수 있다. 제2온도(T2)가 상기 기재 범위 이하 또는 제1온도 보다 낮은 온도일 경우 할로겐화된 금속 등을 포함하는 불순물의 제거 반응이 원활하지 않아 잔류 금속 및 할로겐화된 금속이 탄소나노튜브에 잔류하여 불순물로 작용할 수 있어, 이는 탄소나노튜브의 물성을 저하시키는 요인이 될 수 있다. 또한, 상기 기재 범위 이상의 온도에서는 잔류금속에 의한 촉매의 흑연화가 발생하여, 금속 등의 불순물 제거가 용이하지 않을 수 있다.According to one embodiment, the second temperature (T2) may be higher than the first temperature, specifically, T2 may be a temperature of T1 + 100 ℃ or more. The second temperature T2 may be, for example, a temperature range of 700 ° C. to 1500 ° C., and more specifically, may be 900 ° C. to 1400 ° C. When the second temperature T2 is lower than the substrate range or lower than the first temperature, the removal reaction of impurities including halogenated metals is not smooth, and residual metals and halogenated metals remain in the carbon nanotubes and become impurities. It can act, which may be a factor to lower the physical properties of the carbon nanotubes. In addition, the graphitization of the catalyst by the residual metal occurs at a temperature above the substrate range, it may not be easy to remove impurities such as metal.
상기 제1단계 및 제2단계는 본 발명에 따른 CNT 정제 방법에 있어서, 그 순서 및 횟수가 특별히 제한되지 않으며, 정제 대상인 CNT의 결정도와 CNT 합성에 사용된 촉매 금속의 종류, 정제율 등에 따라 당업자에 의해 적절하게 선택될 수 있다.In the CNT purification method according to the present invention, the first step and the second step are not particularly limited in the order and number of times, and according to the crystallinity of the CNT to be purified and the type, purification rate, and the like of the catalytic metal used for CNT synthesis. Can be appropriately selected.
상기 촉매 금속은 탄소나노튜브의 성장을 촉진시키는 물질이라면 특별히 제한되지 않으며, 예를 들어, 18족형 원소 주기율표의 3 내지 12족으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속을 들 수 있다. 예들 들면, 그 중에서도 3, 5, 6, 8, 9, 10족으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속일 수 있으며, 구체적으로, 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 티타늄(Ti), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 백금(Pt) 및 희토류 원소로부터 선택되는 적어도 1종의 금속일 수 있다. 상기 제1온도 및 제2온도에 대해 끓는점이 높은 물질일수록 에너지가 많이 필요할 수 있으므로, 효율면에서 낮은 에너지로 처리할 수 있는 물질이 바람직할 수 있다.The catalyst metal is not particularly limited as long as it is a material that promotes the growth of carbon nanotubes. Examples of the catalyst metal include at least one metal selected from the group consisting of Groups 3 to 12 of the Group 18 periodic table. For example, it may be at least one metal selected from the group consisting of Groups 3, 5, 6, 8, 9, and 10, specifically, iron (Fe), nickel (Ni), cobalt (Co), Selected from chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V), titanium (Ti), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt) and rare earth elements It may be at least one metal. Since a material having a higher boiling point for the first temperature and the second temperature may require more energy, a material that can be treated with low energy in terms of efficiency may be preferable.
일구현예에 따르면, 본 발명에 따른 탄소나노튜브 정제는 하나의 유동층 반응기를 통하여 연속공정으로 실시되는 것일 수 있다. According to one embodiment, carbon nanotube purification according to the present invention may be carried out in a continuous process through one fluidized bed reactor.
상기 제1단계 및 제2단계를 포함하는 공정이 하나의 유동층 반응기 내에서 실시되는 것일 수 있으며, 상기 유동층 반응기는 구체적으로, 기체 주입구(10) 및 배출구(30)와, 탄소나노튜브(CNT) 주입구 및 배출구(20)를 구비하는 것일 수 있다.The process including the first step and the second step may be carried out in one fluidized bed reactor, and the fluidized bed reactor may specifically include a gas inlet 10 and an outlet 30 and carbon nanotubes (CNT). It may be provided with an inlet and outlet 20.
또한, 일구현예에 따르면, 본 발명의 탄소나노튜브 정제는 2개의 유동층 반응기를 이용하여 연속공정으로 실시되는 것일 수 있다. 구체적으로, 상기 제1단계 공정은 제1유동층반응기에서 실시되는 것이고, 상기 제2단계 공정은 제2유동층 반응기에서 실시되는 것일 수 있다.In addition, according to one embodiment, the carbon nanotube purification of the present invention may be performed in a continuous process using two fluidized bed reactors. Specifically, the first step process may be performed in a first fluidized bed reactor, and the second step process may be performed in a second fluidized bed reactor.
일구현예에 따르면, 상기 제1단계의 반응 시간은 예를 들어, 10분 내지 1시간 동안 유지시킬 수 있으며, 상기 범위 내에서 잔류 금속의 할로겐화 공정이 보다 완전히 이루어지도록 할 수 있으며, 반응 시간은 탄소나노튜브 및 반응기의 크기에 따라 조절할 수 있다.According to one embodiment, the reaction time of the first step may be maintained, for example, for 10 minutes to 1 hour, the halogenation process of the residual metal within the above range can be made more completely, the reaction time is It can be adjusted according to the size of the carbon nanotubes and the reactor.
또한, 상기 제2단계의 반응 시간은 30 분 내지 300 분간 유지시킬 수 있으며, 탄소나노튜브에 영향을 주지 않고 잔류 금속 등을 포함하는 불순물만을 제거할 수 있는 범위 내에서 적절히 조절될 수 있다.In addition, the reaction time of the second step may be maintained for 30 minutes to 300 minutes, and may be appropriately adjusted within a range capable of removing only impurities including residual metal and the like without affecting carbon nanotubes.
상기 처리 시간 및 온도는 정제 대상인 CNT의 결정도와 CNT 합성에 사용된 촉매 금속의 종류 등에 따라 당업자에 의해 적절하게 조절될 수 있다.The treatment time and temperature may be appropriately adjusted by those skilled in the art according to the crystallinity of CNTs to be purified and the type of catalyst metal used for CNT synthesis.
상기 각각의 공정은 임의로 조합하여 실시될 수 있으며, 특정 공정을 반복하여 실시하는 것도 가능하다. Each of the above processes may be carried out in any combination, it is also possible to repeat the specific process.
일구현예에 따르면, 상기 제1단계 및 제2단계를 포함하는 정제 방법을 통해 정제된 탄소나노튜브를 냉각시키는 단계를 더 포함할 수 있다.According to one embodiment, the method may further include cooling the purified carbon nanotubes through a purification method including the first and second steps.
또한, 일구현예에 따르면, 도 1에 도시된 바와 같이 상기 기체 배출구(30)로부터 배출된 기체를 회수하여 할로겐 함유 물질을 제거 및 중화하는 단계를 더 포함할 수 있다. 정제 반응 후 배출되는 기체는 할로겐 물질과 기타 불순물을 함유하므로 습식 스크러버(300) 등을 이용하여 할로겐 물질을 중화하여 침전으로 제거될 수 있다. In addition, according to one embodiment, as shown in Figure 1 may further include the step of recovering the gas discharged from the gas outlet 30 to remove and neutralize the halogen-containing material. Since the gas discharged after the purification reaction contains a halogen material and other impurities, it may be removed by precipitation by neutralizing the halogen material using a wet scrubber 300 or the like.
상기 중화용액으로는 예를 들어, 질산, 황산 등을 포함하는 용액을 사용할 수 있으며, 구체적으로는 질산은(AgNO3), 티오황산나트륨(Na2S2O3), 염화나트륨(NaCl), 티오시안산칼륨(KSCN), 티오시안산암모늄(NH4SCN), 알루미늄염계 화합물, 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 또는 이들의 조합으로부터 선택되는 물질의 수용액을 사용하여 할로겐화물을 제거할 수 있으나, 상기 예시에 제한되지는 않는다.As the neutralizing solution, for example, a solution containing nitric acid or sulfuric acid may be used. Specifically, silver nitrate (AgNO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), sodium chloride (NaCl), thiocyanic acid Halides are removed using an aqueous solution of a material selected from potassium (KSCN), ammonium thiocyanate (NH 4 SCN), aluminum salt compounds, sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), or a combination thereof It is possible, but is not limited to the above examples.
일구현예에 따르면, 상기 할로겐 함유 기체의 압력을 500torr 내지 900torr까지 공급하는 것일 수 있으며, 예를 들어, 600torr 내지 800torr, 더욱 구체적인 예로 600torr 내지 700torr의 압력으로 공급하는 것일 수 있다.According to one embodiment, the pressure of the halogen-containing gas may be supplied to 500torr to 900torr, for example, 600torr to 800torr, more specifically may be to supply at a pressure of 600torr to 700torr.
또한, 상기 불활성 기체의 압력을 500torr 내지 800torr까지 공급하는 것일 수 있으며, 예를 들어, 600torr 내지 800torr, 더욱 구체적인 예로 600torr 내지 700torr의 압력으로 공급하는 것일 수 있다.In addition, the pressure of the inert gas may be supplied to 500torr to 800torr, for example, 600torr to 800torr, more specifically may be to supply at a pressure of 600torr to 700torr.
상기와 같은 할로겐 함유 기체 및 불활성 기체의 유량은 할로겐 기체의 농도가 높은 조건에서 정제 시간이 짧아질 수 있고, 낮은 조건에서 길어질 수 있으므로, 사용자에 의해 적절하게 조절될 수 있다. 또한, 반응기 재질 등의 환경 조건에 따라서도 할로겐 기체의 반응성이 영향을 받을 수 있으므로, 반응기의 재질, 촉매, 반응 온도 등의 환경 조건에 따라 적절하게 조절될 수 있다.The flow rates of the halogen-containing gas and the inert gas as described above can be shortened at high concentrations of halogen gas and can be long at low conditions, and can be appropriately adjusted by the user. In addition, since the reactivity of the halogen gas may also be affected by the environmental conditions such as the reactor material, it may be appropriately adjusted according to the environmental conditions such as the material, catalyst, reaction temperature of the reactor.
일구현예에 따르면, 상기 할로겐 함유 기체는 불소, 염소, 브롬, 요로드 또는 이들의 혼합 성분을 함유하는 기체일 수 있으며, 예를 들어, 염소 함유 기체를 사용할 수 있고, 더욱 구체적인 예로, 염소가스 또는 트리클로로메탄 가스 또는 이들의 혼합 성분을 함유하는 기체를 들 수 있다. 이러한 할로겐 함유 기체를 사용함으로써, 전자 친화성이 큰 할로겐 이온은 불순물, 특히 금속 함유 불순물을 제거하는 데 사용할 수 있으며, 예를 들어 할로겐 이온은 철 함유 불순물과의 반응성이 크므로 이러한 특성을 이용하여 이들을 반응시킨 후 반응 생성물로써 할로겐 이온과 금속 이온이 공유결합된 불순물을 선택적으로 제거할 수 있다.According to one embodiment, the halogen-containing gas may be a gas containing fluorine, chlorine, bromine, yorod or a mixture thereof, for example, chlorine-containing gas may be used, and more specifically, chlorine gas Or a gas containing trichloromethane gas or a mixed component thereof. By using such a halogen-containing gas, halogen ions having a high electron affinity can be used to remove impurities, particularly metal-containing impurities. For example, halogen ions have high reactivity with iron-containing impurities, and thus, these characteristics can be used to After reacting these, impurities covalently bonded with halogen ions and metal ions can be selectively removed as reaction products.
또한, 상기 불활성 기체는 예를 들어, 질소, 헬륨, 네온, 아르곤, 크립톤, 제논, 라돈 또는 이들의 혼합 성분을 함유하는 기체를 포함할 수 있으며, 구체적으로는 질소 기체를 사용할 수 있다. 이러한 불활성 기체는 화학적으로 매우 안정하여 전자를 주고 받거나 공유하지 않으려는 성질을 가지므로, CNT와의 반응 없이 기체의 유입으로 인해 CNT를 유동 및 이동할 수 있도록 하는 역할을 할 수 있다.In addition, the inert gas may include, for example, a gas containing nitrogen, helium, neon, argon, krypton, xenon, radon, or a mixed component thereof, and specifically, nitrogen gas may be used. Since the inert gas is chemically very stable and does not want to exchange or share electrons, the inert gas may serve to flow and move the CNTs due to the inflow of the gas without reacting with the CNTs.
상기 기체들은 도 1에 도시된 바와 같이, 예비 가열기를 통해 가열된 후 유동층 반응기(100)에 투입될 수 있다. The gases may be introduced into the fluidized bed reactor 100 after being heated through a preheater, as shown in FIG.
또한, 유동층 반응기를 이용한 CNT 정제 방법에 사용되는 할로겐 기체, 불활성 기체 등은 재순환하여 사용하는 것도 가능하다. In addition, halogen gas, inert gas, etc. used in the CNT purification method using a fluidized bed reactor can also be recycled and used.
상기 기체의 주입 방식은 특별히 제한되지 않으며, 퍼지 방식, 펄스 방식, 연속 투입 방식 또는 이들을 조합한 주입 방식을 포함할 수 있다. 예를 들어, 상기 퍼지 방식은 기체를 간헐적 및 연속적으로 주입하는 방식을 포함할 수 있고, 상기 펄스 방식은 일정량의 기체를 일정 주기로 주입하는 방식을 포함할 수 있다. 또한, 상기 연속 투입 방식은 특정 속도로 기체를 주입하는 방식을 포함할 수 있으며, 상기와 같은 기체 주입 방식은 조합하여 사용할 수 있다.The injection method of the gas is not particularly limited, and may include a purge method, a pulse method, a continuous input method or an injection method in combination thereof. For example, the purge method may include a method of intermittently and continuously injecting a gas, and the pulse method may include a method of injecting a predetermined amount of gas at a predetermined period. In addition, the continuous input method may include a method of injecting a gas at a specific speed, the gas injection method as described above may be used in combination.
본 발명에 따른 CNT 정제 방법은 정제공정과 냉각공정이 분리되어 처리될 수 있으며, 즉, 정제공정이 수행되는 단계와 냉각공정이 수행되는 단계가 각각 분리된 공간에서 처리될 수 있다는 장점이 있다. 여기서 정제공정은 할로겐 함유 기체와 불순물이 반응하는 단계를 의미하며, 상기 냉각공정은 정제공정 후의 CNT의 온도를 하강하는 단계를 의미할 수 있다. 예를 들어, 상기 냉각공정은, 본 발명에 따라 불순물이 제거된 탄소나노튜브를 CNT 배출구(20)를 통해 냉각 및 회수조(100)로 이동시킨 후 처리하는 것일 수 있다.The CNT purification method according to the present invention has the advantage that the purification process and the cooling process may be separated and processed, that is, the step in which the purification process is performed and the step in which the cooling process is performed may be processed in separate spaces. Here, the purification process may mean a step of reacting the halogen-containing gas and impurities, and the cooling process may mean a step of lowering the temperature of the CNT after the purification process. For example, the cooling process, the carbon nanotubes from which impurities are removed according to the present invention may be processed after moving to the cooling and recovery tank 100 through the CNT outlet 20.
종래의 일반적인 냉각공정으로 가열로의 열 공급을 차단하여 자연대류로 인한 냉각을 처리하는 방법은 온도 하강에 걸리는 시간이 길어질 수 있으며, 이에 따라 소비되는 냉각수 또는 냉각가스 또한 증가할 수 있다. 이에 비해 본 발명에 따른 방법에 의하면, 정제공정 후 회수된 CNT를 이동시켜 냉각공정을 분리하여 처리함으로써, 정제공정을 위해 가열했던 에너지를 다음 배치에 그대로 사용할 수 있고, 다음 정제공정이 진행되는 중에 회수된 CNT를 냉각할 수 있으므로, 충분한 냉각시간을 확보할 수 있다. 따라서 본 발명에 따라 정제공정과 냉각공정을 분리하여 처리하는 경우, CNT의 정제를 통한 회수에 걸리는 시간과 냉각수, 냉각가스 등의 원료를 절약할 수 있다.In the conventional general cooling process, the method of treating the cooling due to natural convection by cutting off the heat supply to the heating furnace may take a long time to decrease the temperature, and thus the cooling water or the cooling gas consumed may increase. In contrast, according to the method according to the present invention, the CNTs recovered after the purification process are moved to separate the cooling process, so that the energy heated for the purification process can be used as it is in the next batch, while the next purification process is in progress. Since the recovered CNTs can be cooled, sufficient cooling time can be ensured. Accordingly, when the purification process and the cooling process are separately processed according to the present invention, it is possible to save the time taken for the recovery through the purification of CNTs and raw materials such as cooling water and cooling gas.
본 발명에 사용되는 유동층 반응기(100)는 특별히 한정되지는 않으며, 밸브 개폐가 용이하여 반응기 내 기체 분위기를 유동 조건 및 밀폐 조건으로 용이하게 형성할 수 있는 것이라면 무방하다.The fluidized bed reactor 100 used in the present invention is not particularly limited and may be any valve that can be easily opened and closed to easily form a gas atmosphere in the reactor under flow conditions and closed conditions.
상기와 같이, 본 발명에 따른 정제공정은 유동 조건 및 밀폐 조건에서 운전될 수 있으며, 불활성 기체 및 할로겐 함유 기체를 사용하여 유동 조건 또는 밀폐 조건 하에 CNT의 정제 공정을 실시함에 따라 소비되는 기체의 양을 감소시킬 수 있으므로, 공정을 효율적으로 실시할 수 있다.As described above, the purification process according to the present invention can be operated under flow conditions and closed conditions, the amount of gas consumed by performing the CNT purification process under flow conditions or closed conditions using an inert gas and a halogen-containing gas. Can be reduced, so that the process can be carried out efficiently.
본 발명에 따르면, 전술한 바와 같은 방법에 의해 고순도로 정제된 CNT를 제공할 수 있으며, 이러한 CNT는 다양한 분야에서 최상의 성능을 나타낼 수 있다. 예를 들어, CNT는 의학 또는 공학용 미세 부품, 전자소자, 전지 등으로 많은 응용분야를 가지고 있으며, 특히 전자소재 등의 경우, 특성상 불순물이 함유되는 경우 불량 및 성능 저하를 야기할 수 있는 단점이 발생할 수 있으므로, 본 발명에 따른 CNT 정제 방법 및 이러한 방법으로 정제된 CNT를 사용하는 경우, 이러한 문제점을 최소화할 수 있다.According to the present invention, it is possible to provide CNTs purified with high purity by the method as described above, and such CNTs may exhibit the best performance in various fields. For example, CNTs have many application fields such as medical or engineering micro components, electronic devices, batteries, etc., in particular, electronic materials, etc., may cause disadvantages that may cause defects and deterioration in performance when impurities are contained. Therefore, when using the CNT purification method according to the present invention and the CNT purified by this method, this problem can be minimized.
본 발명에 따른 탄소나노튜브는 담지촉매를 이용하여 탄소 공급원의 분해를 통한 화학적 기상 합성법(CVD)으로 탄소나노튜브를 성장시켜 제조된 것일 수 있으며, 상기 담지 촉매에 담지된 촉매 금속은 탄소나노튜브의 성장을 촉진시키는 물질이면 특별히 제한되지 않는다. The carbon nanotubes according to the present invention may be prepared by growing carbon nanotubes by chemical vapor deposition (CVD) through decomposition of a carbon source using a supported catalyst, and the catalyst metal supported on the supported catalyst is carbon nanotubes. It will not be restrict | limited in particular, if it is a substance which accelerates growth of.
이러한 촉매 금속으로서는 예를 들면, IUPAC이 1990년에 권고한 18족형 원소 주기율표의 3 내지 12족으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속을 들 수 있다. 그 중에서도 3, 5, 6, 8, 9, 10족으로 이루어지는 군으로부터 선택되는 적어도 1종의 금속이 바람직하며, 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 티타늄(Ti), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 백금(Pt) 및 희토류 원소로부터 선택되는 적어도 1종의 금속이 특히 바람직하다. 또한, 이들 촉매로서 작용하는 금속 원소를 함유하는 화합물, 즉 촉매 금속 전구체로서는 촉매 금속의 질산염, 황산염, 탄산염 등의 무기염류, 초산염 등의 유기염, 아세틸아세톤 착체 등의 유기 착체, 유기 금속 화합물 등 촉매 금속을 함유하는 화합물이면 특별히 한정되지 않는다.As such a catalyst metal, for example, at least one metal selected from the group consisting of Groups 3 to 12 of the Group 18 type periodic table recommended by IUPAC in 1990 is mentioned. Among them, at least one metal selected from the group consisting of Groups 3, 5, 6, 8, 9, and 10 is preferable, and iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), and molybdenum are preferred. At least one metal selected from (Mo), tungsten (W), vanadium (V), titanium (Ti), ruthenium (Ru), rhodium (Rh), palladium (Pd), platinum (Pt) and rare earth elements Particularly preferred. Moreover, as a compound containing metal elements which act as these catalysts, ie, a catalyst metal precursor, inorganic salts, such as nitrate, sulfate, and carbonate of a catalyst metal, organic salts, such as acetate, organic complexes, such as an acetylacetone complex, an organometallic compound, etc. It will not specifically limit, if it is a compound containing a catalyst metal.
이들 촉매 금속 및 촉매 금속 전구체 화합물을 2종 이상 사용함으로써 반응 활성을 조절하는 것은 널리 알려져 있다. 예를 들어, 철(Fe), 코발트(Co) 및 니켈(Ni)로부터 선택되는 하나이상의 원소와 티타늄(Ti), 바나듐(V) 및 크롬(Cr)으로부터 선택되는 원소와 몰리브덴(Mo) 및 텅스텐(W)으로부터 선택되는 원소를 조합한 것을 예시할 수 있다. 바람직하게는 코발트(Co)를 주 성분으로 하며, 철(Fe), 몰리브덴(Mo), 크롬(Cr) 및 바나듐(V)에서 선택되는 하나 이상의 금속을 더 포함하는 금속 촉매일 수 있다.It is well known to control reaction activity by using 2 or more types of these catalyst metals and catalyst metal precursor compounds. For example, at least one element selected from iron (Fe), cobalt (Co) and nickel (Ni), and an element selected from titanium (Ti), vanadium (V) and chromium (Cr) and molybdenum (Mo) and tungsten What combined the element chosen from (W) can be illustrated. Preferably, the metal catalyst may further include one or more metals selected from iron (Fe), molybdenum (Mo), chromium (Cr), and vanadium (V) based on cobalt (Co).
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
제조예 1 : 탄소나노튜브(CNT)의 제조Preparation Example 1 Preparation of Carbon Nanotubes (CNT)
CNT합성용 Co/Fe/Mo/V/Al 함유 금속촉매를 이용하여 실험실 규모의 유동층 반응장치 에서 탄소나노튜브 합성을 시험하였다. 구체적으로 상기 공정에서 제조된 CNT 합성용 촉매와 CNT를 섞어 직경 55 mm의 내경을 갖는 석영관의 중간부에 장착한 후, 질소 분위기에서 700℃까지 승온한 다음 유지시키고, 질소와 에틸렌, 수소가스를 각 900sccm의 유속으로 흘리면서 2시간 동안 합성하여 인탱글(비번들)타입의 탄소나노튜브 응집체를 합성하였다. 제조된 CNT의 사진을 도 2의 제조예 1에 나타내었다. Carbon nanotube synthesis was tested in a laboratory scale fluidized bed reactor using a Co / Fe / Mo / V / Al-containing metal catalyst for CNT synthesis. Specifically, the CNT synthesis catalyst prepared in the above process and CNT are mixed and mounted in the middle of a quartz tube having an inner diameter of 55 mm, and then heated to 700 ° C. in a nitrogen atmosphere, and then maintained. Nitrogen, ethylene and hydrogen gas Was synthesized for 2 hours while flowing at a flow rate of 900sccm to synthesize an entangled (non-bundle) type carbon nanotube aggregate. A photograph of the prepared CNTs is shown in Preparation Example 1 of FIG. 2.
실시예 1 내지 2 및 비교예 1 : 탄소나노튜브의 정제Examples 1-2 and Comparative Example 1: Purification of Carbon Nanotubes
실시예 1Example 1
제조예 1 에서 제조된 탄소나노튜브 20g를 유동층 반응기에 배치하였다. 1000sccm의 유속으로 N2를 주입하면서 반응기 내부 온도를 900℃까지 상승시켰다. 다음으로, 할로겐 함유 기체 Cl2와 N2를 1:1 비율로 1000sccm의 유속으로 30분 동안 공급하였다. 20 g of carbon nanotubes prepared in Preparation Example 1 were placed in a fluidized bed reactor. The reactor internal temperature was raised to 900 ° C while injecting N 2 at a flow rate of 1000 sccm. Next, halogen-containing gases Cl 2 and N 2 were supplied at a flow rate of 1000 sccm at a ratio of 1: 1 for 30 minutes.
이 후, N2만을 주입한 후, 제2의 1200℃의 고온 반응기로 시료를 이송시킨 다음, N2 기체 분위기의 유동 조건으로 30분간 유지시킨 후 냉각시켰다. 본 공정을 거친 CNT의 사진을 도 2의 실시예 1의 사진으로 나타내었다.After injecting only N 2 , the sample was transferred to a second high temperature reactor at 1200 ° C., and then cooled under a flow condition of N 2 gas atmosphere for 30 minutes. Photographs of CNTs subjected to this process are shown in the photographs of Example 1 of FIG. 2.
실시예 2Example 2
상기 제조예 1에서 제조된 탄소나노튜브 20g를 유동층 반응기에 배치하였다. 20 g of carbon nanotubes prepared in Preparation Example 1 were disposed in a fluidized bed reactor.
1000sccm의 유속으로 N2를 주입하면서 반응기 내부 온도를 900℃까지 상승시켰다. 다음으로, 할로겐 함유 기체 Cl2와 N2를 1:1 비율로 1000sccm의 유속으로 5분 동안 주입한 후, N2 가스만 1000sccm으로 10분 동안 공급한다. 다시 Cl2가스와 N2 혼합가스를 주입한 다음, N2 가스를 공급하는 공정을 3회 반복한다. N2만을 주입한 후, 제2의 1200℃의 고온 반응기로 시료를 이송시킨 다음, N2 기체 분위기의 유동 조건으로 30분간 유지시킨 후, 냉각시킨다.The reactor internal temperature was raised to 900 ° C while injecting N 2 at a flow rate of 1000 sccm. Next, the halogen-containing gases Cl 2 and N 2 are injected at a flow rate of 1000 sccm at a 1: 1 ratio for 5 minutes, and then only N 2 gas is supplied at 1000 sccm for 10 minutes. After again injecting Cl 2 gas and N 2 mixed gas, the process of supplying N 2 gas is repeated three times. After injecting only N 2 , the sample is transferred to a second 1200 ° C. high temperature reactor, held for 30 minutes under flow conditions of an N 2 gas atmosphere, and then cooled.
비교예 1Comparative Example 1
상기 제조예 1에서 제조된 탄소나노튜브 20g을 유동층 반응기에 배치하였다. 20 g of carbon nanotubes prepared in Preparation Example 1 were disposed in a fluidized bed reactor.
상기 반응기 내부를 불활성 기체 N2 분위기로 퍼지한 후 1500℃까지 온도를 상승시켰다. 1시간 후, N2 분위기의 고정층 조건에서 자연 냉각하여, 열처리만을 이용한 금속 이물 제거 공정을 진행하였다.After purging the inside of the reactor with an inert gas N 2 atmosphere, the temperature was raised to 1500 ° C. After 1 hour, the mixture was naturally cooled in a fixed bed condition of an N 2 atmosphere, and a metal foreign material removing process using only heat treatment was performed.
상기 실시예 및 비교예의 탄소나노튜브를 ICP(Inductively coupled plasma spectrometry)로 분석하여, 탄소나노튜브 내에 존재하는 Fe, Co, Mo, V, Cr의 함량을 측정하여 하기 표 1에 나타내었다.The carbon nanotubes of the examples and the comparative examples were analyzed by inductively coupled plasma spectrometry (ICP), and the contents of Fe, Co, Mo, V, and Cr in the carbon nanotubes were measured and shown in Table 1 below.
구분division 할로겐 함유 기체Halogen-containing gas 처리온도Processing temperature 반응 분위기Reaction atmosphere ICP(ppm)ICP (ppm)
T1T1 T2T2 FeFe CoCo MoMo VV AlAl
실시예 1Example 1 Cl2/N2 Cl 2 / N 2 900900 12001200 Cl2/N2연속 주입Cl 2 / N 2 continuous injection <10<10 120120 <10<10 <10<10 <10<10
실시예 2Example 2 Cl2/N2 Cl 2 / N 2 900900 12001200 Cl2/N2펄스주입Cl 2 / N 2 pulse injection <10<10 <10<10 <10<10 <10<10 <10<10
비교예 1Comparative Example 1 -- 15001500 15001500 N2 N 2 300300 10001000 5050 3030 80008000
상기에서 확인할 수 있는 바와 같이, 본 발명에 따른 CNT 정제방법에 의하면, 공정에 소비되는 기체 원료 및 시간을 절약할 수 있으며, 효율적인 공정을 진행할 수 있음을 확인할 수 있다.As can be seen above, according to the CNT purification method according to the present invention, it can be confirmed that the gas raw material and time consumed in the process can be saved, and the efficient process can be performed.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail specific parts of the present invention, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (16)

  1. 기체 주입구 및 배출구와, 탄소나노튜브(CNT) 주입구 및 배출구를 구비한 유동층 반응기 내에서,In a fluidized bed reactor having a gas inlet and outlet, and a carbon nanotube (CNT) inlet and outlet,
    잔류 금속을 포함하는 불순물이 함유된 탄소나노튜브를 불활성 기체 분위기 하에 할로겐 함유 기체와 반응시켜 제거하는 것을 특징으로 하는 탄소나노튜브(CNT) 정제 방법.A method of purifying carbon nanotubes (CNT), wherein the carbon nanotubes containing impurities including residual metals are removed by reaction with a halogen-containing gas under an inert gas atmosphere.
  2. 제1항에 있어서,The method of claim 1,
    상기 정제 방법은The purification method is
    잔류 금속을 포함한 불순물이 함유된 탄소나노튜브를 불활성 기체 분위기 하에 제1온도(T1)로 승온하여, 할로겐 함유 기체와 반응시켜 불순물을 할로겐화하는 제1단계; 및A first step of heating a carbon nanotube containing impurities including residual metal to a first temperature (T1) under an inert gas atmosphere and reacting with a halogen-containing gas to halogenate the impurities; And
    상기 제1온도보다 높은 제2온도(T2)로 가열하여 상기 할로겐화 불순물을 증발시켜 기체 배출구를 통해 제거하고, 정제된 탄소나노튜브를 CNT 배출구를 통해 얻는 제2단계;A second step of heating to a second temperature (T2) higher than the first temperature to evaporate the halogenated impurities to remove them through a gas outlet, and to obtain purified carbon nanotubes through a CNT outlet;
    를 포함하는 것인 탄소나노튜브(CNT) 정제 방법.Carbon nanotube (CNT) purification method comprising a.
  3. 제2항에 있어서,The method of claim 2,
    상기 제1온도(T1)가 600℃ 내지 1000℃인 것인 CNT 정제 방법.CNT purification method of the first temperature (T1) is 600 ℃ to 1000 ℃.
  4. 제2항에 있어서,The method of claim 2,
    상기 제2온도(T2)가 T1+100℃ 이상인 것인 CNT 정제 방법.CNT purification method of the second temperature (T2) is T1 + 100 ℃ or more.
  5. 제2항에 있어서, The method of claim 2,
    상기 정제 방법은 하나의 유동층 반응기를 이용하여 연속공정으로 실시되는 것인 CNT 정제 방법.The purification method is a CNT purification method that is carried out in a continuous process using one fluidized bed reactor.
  6. 제2항에 있어서, The method of claim 2,
    상기 정제 방법이 2개의 유동층 반응기를 이용하여 연속공정으로 실시되며, 제1단계 공정이 제1유동층반응기에서 실시되고, 상기 제2단계 공정이 제2유동층반응기에서 실시되는 것인 CNT 정제 방법.Wherein said purification process is carried out in a continuous process using two fluidized bed reactors, wherein the first stage process is carried out in a first fluidized bed reactor and the second stage process is carried out in a second fluidized bed reactor.
  7. 제1항에 있어서, The method of claim 1,
    CNT 배출구를 통해 배출된 정제된 CNT를 냉각하는 단계를 더 포함하는 것인 CNT 정제 방법.CNT purification method further comprising the step of cooling the purified CNT discharged through the CNT outlet.
  8. 제1항에 있어서,The method of claim 1,
    상기 할로겐 함유 기체가 불소, 염소, 브롬, 요오드 또는 이들의 혼합 성분을 함유하는 기체인 것인 CNT 정제 방법.And said halogen-containing gas is a gas containing fluorine, chlorine, bromine, iodine or a mixture thereof.
  9. 제1항에 있어서,The method of claim 1,
    상기 할로겐 함유 기체가 염소가스 또는 트리클로로메탄 가스 또는 이들의 혼합 성분을 함유하는 기체인 것인 CNT 정제 방법.The halogen-containing gas is a gas containing chlorine gas or trichloromethane gas or a mixed component thereof.
  10. 제1항에 있어서,The method of claim 1,
    상기 불활성 기체가 질소, 헬륨, 네온, 아르곤, 크립톤, 제논, 라돈 또는 이들의 혼합 성분을 함유하는 기체인 것인 CNT 정제 방법.Wherein said inert gas is a gas containing nitrogen, helium, neon, argon, krypton, xenon, radon, or a mixture thereof.
  11. 제1항에 있어서,The method of claim 1,
    상기 기체의 주입 방식이 퍼지 방식, 펄스 방식, 연속투입 방식 또는 이들을 조합한 주입 방식을 포함하는 것인 CNT 정제 방법.CNT purification method that the injection method of the gas comprises a purge method, a pulse method, a continuous injection method or a combination of these injection methods.
  12. 제1항에 있어서,The method of claim 1,
    상기 불활성 기체의 압력이 500torr 내지 800torr인 CNT 정제 방법.CNT purification method of 500 tortor to 800torr pressure of the inert gas.
  13. 제1항에 있어서,The method of claim 1,
    상기 할로겐 함유 기체의 압력이 500torr 내지 900torr인 CNT 정제 방법.CNT purification method of the halogen-containing gas is 500torr to 900torr.
  14. 제1항에 있어서,The method of claim 1,
    상기 기체 배출구로부터 회수된 할로겐화 불순물을 중화 처리하는 단계를 더 포함하는 것인 CNT 정제 방법.CNT purification method further comprising the step of neutralizing the halogenated impurities recovered from the gas outlet.
  15. 제14항에 있어서,The method of claim 14,
    상기 중화 처리는, 질산은(AgNO3), 티오황산나트륨(Na2S2O3), 염화나트륨(NaCl), 티오시안산칼륨(KSCN), 티오시안산암모늄(NH4SCN), 알루미늄염계 화합물, 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 또는 이들의 조합으로부터 선택된 화합물을 이용하여 실시되는 것인 CNT 정제 방법.The neutralization treatment includes silver nitrate (AgNO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), sodium chloride (NaCl), potassium thiocyanate (KSCN), ammonium thiocyanate (NH 4 SCN), aluminum salt compound, hydroxide CNT purification method carried out using a compound selected from sodium (NaOH), calcium hydroxide (Ca (OH) 2 ) or a combination thereof.
  16. 제1항 내지 제15항 중 어느 한 항의 CNT 정제 방법에 의해 정제된 CNT.CNT purified by the CNT purification method of any one of claims 1-15.
PCT/KR2016/009568 2015-10-23 2016-08-29 Cnt purification method using fluidized bed reactor WO2017069393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680004658.7A CN107108222A (en) 2015-10-23 2016-08-29 Utilize the CNT purification process of fluidized-bed reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0147657 2015-10-23
KR1020150147657A KR102017279B1 (en) 2015-10-23 2015-10-23 Method for purifying CNT using a fluidized bed reactor

Publications (1)

Publication Number Publication Date
WO2017069393A1 true WO2017069393A1 (en) 2017-04-27

Family

ID=58557717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009568 WO2017069393A1 (en) 2015-10-23 2016-08-29 Cnt purification method using fluidized bed reactor

Country Status (3)

Country Link
KR (1) KR102017279B1 (en)
CN (1) CN107108222A (en)
WO (1) WO2017069393A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116281964A (en) * 2023-05-22 2023-06-23 湖南科晶新能源科技有限公司 Efficient carbon nano tube purification method and purification equipment
WO2023159697A1 (en) * 2022-02-23 2023-08-31 无锡东恒新能源科技有限公司 Apparatus and method for purifying carbon nanotubes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946704B (en) * 2018-08-20 2020-03-31 山东晶石大展纳米科技有限公司 Method and device for continuously preparing high-purity carbon nano tube
CN110655063A (en) * 2019-11-07 2020-01-07 赛福纳米科技(徐州)有限公司 Carbon nanotube purification device and purification method
CN111362255B (en) * 2020-03-10 2021-10-22 内蒙古骏成新能源科技有限公司 Carbon nano tube fluidization purification process method and fluidized bed reaction device
CN111498835A (en) * 2020-04-27 2020-08-07 内蒙古骏成新能源科技有限公司 Horizontal fluidizing device for gas-phase purification of carbon nano tube and fluidizing purification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159944A1 (en) * 2001-02-12 2002-10-31 William Marsh Rice University Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
CN1475438A (en) * 2003-07-18 2004-02-18 清华大学 Purification method of carbon nano pipe and its device
US20080219913A1 (en) * 2004-06-21 2008-09-11 Drexel University Methods for Bulk Synthesis of Carbon Nanotubes
US20100119436A1 (en) * 2007-03-13 2010-05-13 Toyo Tanso Co., Ltd. Purification method for carbon material containing carbon nanotubes, carbon material produced by the same method, and resin molding, fiber, heat sink, slider, material for field electron emission source, conduction aid for electrode, catalyst support......
KR20140069014A (en) * 2011-09-06 2014-06-09 사우스웨스트 나노테크놀로지스, 인크. Single wall carbon nanotube purification process and improved single wall carbon nanotubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631744A (en) * 2007-03-13 2010-01-20 东洋炭素株式会社 Method for purifying carbon material containing carbon nanotube, carbon material obtained by the purification method, and resin molded body, fiber, heat sink, sliding member, field emission source mat
CN103407984A (en) * 2013-07-16 2013-11-27 清华大学 Carbon nano-tube purification method based on weak oxidizing atmosphere oxidation assisted acid treatment
CN104401963A (en) * 2014-10-27 2015-03-11 山东诚合新材料有限公司 Carbon nanotube purification method capable of removing residual metals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159944A1 (en) * 2001-02-12 2002-10-31 William Marsh Rice University Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
CN1475438A (en) * 2003-07-18 2004-02-18 清华大学 Purification method of carbon nano pipe and its device
US20080219913A1 (en) * 2004-06-21 2008-09-11 Drexel University Methods for Bulk Synthesis of Carbon Nanotubes
US20100119436A1 (en) * 2007-03-13 2010-05-13 Toyo Tanso Co., Ltd. Purification method for carbon material containing carbon nanotubes, carbon material produced by the same method, and resin molding, fiber, heat sink, slider, material for field electron emission source, conduction aid for electrode, catalyst support......
KR20140069014A (en) * 2011-09-06 2014-06-09 사우스웨스트 나노테크놀로지스, 인크. Single wall carbon nanotube purification process and improved single wall carbon nanotubes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023159697A1 (en) * 2022-02-23 2023-08-31 无锡东恒新能源科技有限公司 Apparatus and method for purifying carbon nanotubes
CN116281964A (en) * 2023-05-22 2023-06-23 湖南科晶新能源科技有限公司 Efficient carbon nano tube purification method and purification equipment
CN116281964B (en) * 2023-05-22 2023-08-11 湖南科晶新能源科技有限公司 Efficient carbon nano tube purification method and purification equipment

Also Published As

Publication number Publication date
CN107108222A (en) 2017-08-29
KR102017279B1 (en) 2019-10-21
KR20170047486A (en) 2017-05-08

Similar Documents

Publication Publication Date Title
WO2017069393A1 (en) Cnt purification method using fluidized bed reactor
WO2015016412A1 (en) Mos2 thin film and method for manufacturing same
WO2017039132A1 (en) Method for purification of carbon nanotubes
KR20010066815A (en) Massive purification method of carbon nanotubes
US7488875B2 (en) Process for purifying carbon nanotubes made on refractory oxide supports
US20210261414A1 (en) Process and apparatus for purifying bnnt
US7824474B2 (en) Molded Cu-ZSM5 zeolite adsorbent, method of activating the same, temperature swing adsorption apparatus, and method of purifying gas
KR100318353B1 (en) How to purify exhaust gas
WO2017018667A1 (en) Carbon nanotubes having improved thermal stability
CN111362255B (en) Carbon nano tube fluidization purification process method and fluidized bed reaction device
WO2017048053A1 (en) Carbon nanotube having improved crystallizability
WO2023171918A1 (en) Molybdenum oxyhalide and preparation method thereof
CN103597583B (en) The cleaning method of semiconductor manufacturing apparatus member, the rinser of semiconductor manufacturing apparatus member and epitaxially growing equipment
JPS5939708A (en) Manufacture of fine silicon carbide powder
CN113501598A (en) Preparation process of activated carbon-based carbon nanotube based on hydrogen peroxide wastewater treatment
WO2021049680A1 (en) Method for mass synthesis of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized thereby
WO2010050668A2 (en) Method for preparing high purity copper oxide containing a trace amount of chlorine from waste liquid containing cu(nh3)4cl2
CN112573534A (en) NON type molecular sieve and preparation method and application thereof
JP2010524870A (en) Palladium (0) -dibenzylideneacetone complex
CN112626497B (en) Preparation method of SbOCl material based on ALD technology
JP2700412B2 (en) Hydride gas purification method
JP4463972B2 (en) Method for producing electroless platinum plating solution, electroless platinum plating solution and electroless platinum plating method
JP3292251B2 (en) Steam purification method
JP2020164348A (en) Method for producing high-purity polycrystalline silicon
CN117926226A (en) Pretreatment process for growing oxide film based on atomic layer deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857651

Country of ref document: EP

Kind code of ref document: A1