WO2017067371A1 - 一种多维度传感检测电路 - Google Patents

一种多维度传感检测电路 Download PDF

Info

Publication number
WO2017067371A1
WO2017067371A1 PCT/CN2016/100174 CN2016100174W WO2017067371A1 WO 2017067371 A1 WO2017067371 A1 WO 2017067371A1 CN 2016100174 W CN2016100174 W CN 2016100174W WO 2017067371 A1 WO2017067371 A1 WO 2017067371A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
data
operator
database
sensor
Prior art date
Application number
PCT/CN2016/100174
Other languages
English (en)
French (fr)
Inventor
冯道伟
钟江涛
陈福禄
Original Assignee
深圳市纬度节能服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市纬度节能服务有限公司 filed Critical 深圳市纬度节能服务有限公司
Publication of WO2017067371A1 publication Critical patent/WO2017067371A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion

Definitions

  • the utility model relates to the field of detection and control of water systems, in particular to a multi-dimensional sensing detection circuit.
  • the water system refers to the mechanical equipment that transports water or liquid as the energy carrier and working medium.
  • the most common water system equipment is the pump type.
  • the current pump equipment usually adopts mechanical valve regulation, intelligent electric valve adjustment, single or multi-machine fixed speed operation, parallel operation of large and small equipment, and operation and control methods using the number of equipment running. These methods are simple and direct, but due to Only considering the supply demand of the pump and ignoring the energy consumption of the device itself, the energy consumption is huge.
  • Inverter speed control technology applied to pump equipment usually adopts PID control algorithm.
  • PID controller control There are three main types of PID controller control commonly used: (1) external hardware type, general-purpose PID controller. The operation is simple, powerful, and the dynamic adjustment performance is good, but there are disadvantages that the PID adjustment is too frequent and the steady state performance is slightly poor.
  • Software type using a discrete form of PID control algorithm to do PID controller on the programmable controller.
  • (3) Use the built-in PID control function of the inverter.
  • the PID control algorithm can meet the general requirements.
  • the PID control algorithm is difficult to accurately control.
  • variable frequency speed control technology conventionally uses a single sensing device to measure the fixed point parameters (depending on the process requirements, the sensing device has temperature, temperature difference, pressure, differential pressure, flow, Speed and other functions), this method can only partially reflect the local basic condition of the overall system because it detects a basic parameter of a point.
  • the present invention provides a multi-dimensional sensing detection circuit.
  • a multi-dimensional sensing detection circuit comprising: an initial setting, a detecting part and an executing component, the detecting part comprising a first operator, a second operator, a PID regulator, a data comparison circuit, and a data adaptation An arithmetic circuit, an adaptive adjustment correction circuit, a database, a sensor A, a sensor B, and a sensor C, the database including a first database and a second database,
  • the initial setting is connected to the PID regulator by the first operator, the PID regulator output is connected to the second operator, and the second operator is connected to the data comparison circuit, the data
  • the other input end of the comparison circuit is connected to the output end of the system safety setting value, and the output end of the data comparison circuit is connected to the data adaptive operation circuit, and the input end of the data adaptive operation circuit is further connected to the sensor B
  • the first database the output of the data adaptive operation circuit is connected to the adaptive adjustment correction circuit, and the input end of the adaptive adjustment correction circuit is connected to an additional data adaptive operation circuit, and the additional data is adaptive
  • An input end of the operation circuit is connected to the inductor C and a second database, an output of the adaptive adjustment correction circuit is connected to the actuator, and an output of the actuator outputs a signal, and the output signal is further
  • the sensor A is connected to the first operator input.
  • the initial setting is input by a human-computer interaction interface.
  • the output of the inductor A is connected to the inverting input terminal of the first operator, and the initial setting is connected to the non-inverting input terminal of the first operator.
  • the PID regulator includes a proportional circuit, an integrating circuit, and a differentiating circuit, and the proportional circuit, the integrating circuit, and the differentiating circuit are respectively connected to the non-inverting input ends of the second computing unit.
  • the utility model has the three-in-one control model of the stepped logic control, the PID algorithm control and the algorithm self-learning function, and can adapt to the large and complicated water system with variable operating parameters.
  • This control model has good dynamic adjustability, stable output, and low power and wireless interference.
  • the utility model adopts a plurality of sensing devices to quickly detect various changes in the process steps of the water system equipment, summarizes the test results, and optimally matches the process demand values, and the sensing devices are distributed in different positions of the system pipeline. And convert the data of each sensor to the same global coordinate system, comprehensively monitor the operating conditions, operating energy consumption and demand parameters of the pump system, and restore the operating state of the pump system to the most accurate. Control provides a strong basis.
  • FIG. 1 is a schematic structural view of a multi-dimensional sensing detection circuit of the present invention.
  • the utility model provides a multi-dimensional sensing detection circuit.
  • FIG. 1 is a schematic structural view of a multi-dimensional sensing detection circuit of the present invention.
  • the multi-dimensional sensing detection circuit includes: an initial setting, a detecting portion, and an actuator.
  • the initial settings are entered by the human-machine interface.
  • the detecting part includes a first operator, a second operator, a PID regulator, a data comparison circuit, a data adaptive operation circuit, an adaptive adjustment correction circuit, a database, a sensor A, a sensor B, and a sensor C, and the database includes A database and a second database.
  • the initial setting output is connected to the first operator, the other input of the first operator is connected to the sensor A, the first operator output is connected to the PID regulator, and the PID regulator output is connected to the second operator.
  • the PID regulator includes a proportional circuit, an integrating circuit, and a differential circuit, and the proportional circuit, the integrating circuit, and the differential circuit are respectively connected to the non-inverting input terminals of the second computing unit.
  • the second operator is connected to the data comparison circuit, and the other input end of the data comparison circuit is connected to the output end of the system safety set value, the output end of the data comparison circuit is connected to the data adaptive operation circuit, and the input end of the data adaptive operation circuit is also connected to the induction And the first database, the output end of the data adaptive operation circuit is connected to the adaptive adjustment correction circuit, the input end of the adaptive adjustment correction circuit is connected to the additional data adaptive operation circuit, and the input end of the additional data adaptive operation circuit is connected to the sensor C and the second database.
  • the output of the adaptive adjustment correction circuit is connected to the actuator, and the output of the actuator is output, and the output signal is also connected to the input of the first operator through the sensor A.
  • the output of the inductor A is connected to the inverting input of the first operator, and the initial setting is connected to the non-inverting input of the first operator.
  • the pipeline uses a variety of sensing technologies and devices (3-6, depending on the production process, usage function and control requirements).
  • the sensing devices are distributed in different locations of the system pipeline to run the pump system. Comprehensive monitoring of working conditions, operating energy consumption, and demand parameters.
  • the operating parameters of the system and the setting of the system safety production parameters are set through the man-machine interface, and are sent to the PLC for data calculation via the communication protocol, and the set values and the real-time parameters of the current system are displayed on the man-machine interface.
  • the adjustment value obtained from point A is processed with the system security setting value, and then the feedback value of the sensor B and the database data are classified and screened according to the internal algorithm, and the function formula of the data processing is obtained, and the adjustment value is increased or decreased.
  • the floating calculation value is obtained according to the internal adaptive control algorithm to obtain the adjustment amount that satisfies the system safety requirements.
  • the sensor C (that is, the actual value of the end device of the system) is matched with the data operation function of the database, and the data adaptive operation is performed to obtain the deviation value of the actual demand of the end device.
  • the data is adaptively adjusted and corrected by the adjustment value that satisfies the system security requirements and the actual deviation value of the system end equipment. Finally, the adjustment data that meets the system security requirements and can match the requirements of the system end equipment is obtained, and is output after data conversion.
  • the actuator of the system performs precise adjustment of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

一种多维度传感检测电路,包括初始设定、检测部分和执行元件,检测部分包括第一运算器、第二运算器、PID调节器、数据比较电路、数据自适应运算电路、自适应调整校正电路、数据库、感应器A、感应器B以及感应器C,数据库包括第一数据库和第二数据库。该多维度传感检测电路采用多个传感装置对水***设备工艺环节的各种变化量进行快速检测,其动态调节性好,数据精准,输出稳定,且受电源及无线干扰小。

Description

一种多维度传感检测电路
技术领域
本实用新型涉及水***的检测控制领域,尤其涉及一种多维度传感检测电路。
背景技术
水***是指以输送水或液体为能量载体与工作介质的机械设备,最常见的水***设备为泵类。目前的水泵设备,通常采用机械阀门调节、智能电动阀调节、单机或多机定速运行、大小设备搭配并列运行、利用设备的运行台数调节等运行及控制方式,这些方法简单、直接,但由于只考虑水泵供应需求而忽略设备本身的能源消耗情况,使得能耗浪费巨大。
随着国家对节能降耗的要求、用能单位能耗费用的突显以及电机节能技术的提升,各种基于电机节能的高效电机产品、变频器调速控制技术、PID闭环反馈控制技术、电机模糊控制技术等节能措施应用而生,特别是变频器无级调速控制技术得到了非常广泛的应用。通过对变频器调速控制技术和PID闭环反馈控制等技术做了详细调研及分析,这些技术在泵类设备上应用后,能有效降低传统方式下的泵类设备运行能耗,达到一定的节能效果。但这类节能技术在实际应用中还存在一些问题,使电机能源控制精准度还留下很大空间:
1、在泵类设备上应用的变频器调速控制技术,通常采用PID控制算法,普遍使用的PID控制器控制形式主要有3种:(1)外置硬件型,通用PID节调器。操作简单、功能强大、动态调节性能好,但存在PID调节过于频繁、稳态性能稍差的缺点。(2)软件型,使用离散形式的PID控制算法在可编程序控制器上做PID控制器。(3)使用变频器内置PID控制功能。对于简单的泵类设备采用变频无级调速控制方式而言,PID控制算法是可以满足一般要求的。但应用于相对庞大而复杂,运行参数多变,且延时大、时变、非线性、多变量的***时,PID控制算法就很难精确的进行控制。
2、依据泵类设备的工艺要求,应用变频调速控制技术常规采用单一传感装置对固定点进行参数测量(依据工艺要求的不同,传感装置有温度、温差、压力、压差、流量、速度等功能),这种方式由于检测的是一个点的一个基础参数,只能局部的反映整体***的局部基本状况。
实用新型内容
为了克服现有的技术的不足, 本实用新型提供一种多维度传感检测电路。
本实用新型技术方案如下所述:
一种多维度传感检测电路,其特征在于,包括初始设定、检测部分和执行元件,所述检测部分包括第一运算器、第二运算器、PID调节器、数据比较电路、数据自适应运算电路、自适应调整校正电路、数据库、感应器A、感应器B以及感应器C,所述数据库包括第一数据库和第二数据库,
所述初始设定通过所述第一运算器连接所述PID调节器,所述PID调节器输出端连接所述第二运算器,所述第二运算器连接所述数据比较电路,所述数据比较电路另一输入端连接***安全设定值的输出端,所述数据比较电路的输出端连接所述数据自适应运算电路,所述数据自适应运算电路的输入端还连接所述感应器B和所述第一数据库,所述数据自适应运算电路的输出端连接所述自适应调整校正电路,所述自适应调整校正电路的输入端连接附加数据自适应运算电路,所述附加数据自适应运算电路的输入端连接所述感应器C和第二数据库,所述自适应调整校正电路的输出端连接所述执行元件,所述执行元件的输出端输出信号,所述输出信号还通过所述感应器A连接所述第一运算器输入端。
进一步的,所述初始设定由人机交互界面进行输入。
进一步的,所述感应器A输出端连接所述第一运算器反相输入端,所述初始设定连接所述第一运算器同相输入端。
进一步的,所述PID调节器包括比例电路、积分电路以及微分电路,所述比例电路、所述积分电路以及所述微分电路分别连接所述第二运算器的同相输入端。
根据上述结构的本实用新型,其有益效果在于,本实用新型采用阶梯式逻辑控制、PID算法控制以及算法自学习功能三合一的控制模型,能适应庞大而复杂,运行参数多变的水***设备节能控制***。这种控制模型动态调节性好好,输出稳定,且受电源及无线干扰小。
本实用新型采用多个传感装置对水***设备工艺环节的各种变化量进行快速检测,将检测结果进行汇总分析,并与工艺需求值进行最佳匹配传感装置分布在***管道的不同位置,并将每个传感器的数据转换到相同的全局坐标系下,对水泵***的运行工况、运行能耗、需求参数进行全面监测,能最真实的还原水泵***的运行状态,为***的精准控制提供有力依据。
附图说明
图1为本实用新型多维度传感检测电路的结构示意图。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
本实用新型提供一种多维度传感检测电路。
参照图1,图1为本实用新型多维度传感检测电路的结构示意图。
在本实施例中,该多维度传感检测电路包括:初始设定、检测部分和执行元件。
初始设定由人机交互界面进行输入。检测部分包括第一运算器、第二运算器、PID调节器、数据比较电路、数据自适应运算电路、自适应调整校正电路、数据库、感应器A、感应器B以及感应器C,数据库包括第一数据库和第二数据库。
初始设定输出端连接第一运算器,第一运算器另一输入端连接感应器A,第一运算器输出端连接PID调节器,PID调节器输出端连接第二运算器。PID调节器包括比例电路、积分电路以及微分电路,比例电路、积分电路以及微分电路分别连接第二运算器的同相输入端。
第二运算器连接数据比较电路,数据比较电路另一输入端连接***安全设定值的输出端,数据比较电路的输出端连接数据自适应运算电路,数据自适应运算电路的输入端还连接感应器B和第一数据库,数据自适应运算电路的输出端连接自适应调整校正电路,自适应调整校正电路的输入端连接附加数据自适应运算电路,附加数据自适应运算电路的输入端连接感应器C和第二数据库。
自适应调整校正电路的输出端连接执行元件,执行元件的输出端输出信号,输出信号还通过感应器A连接第一运算器输入端。
优选的,感应器A输出端连接第一运算器反相输入端,初始设定连接第一运算器同相输入端。
本实用新型的原理为:
1、在水泵***现场管道采用多种传感技术与装置(3-6个,视生产工艺、使用功能与控制需求而定),传感装置分布在***管道的不同位置,对水泵***的运行工况、运行能耗、需求参数进行全面监测。
2、通过人机界面进行***的运行参数以及***安全生产参数的设置,并经由通讯协议送入PLC进行数据运算,同时在人机界面显示设定值以及当前***的实时参数。
3、当***处于运行状态时,首先进行数据的读取刷新,根据当前的感应器A检测值进行数据的初步PID运算,得到由A点检测数据的***调节值。
4、由A点得到的调节值与***安全设置值进行数据处理,然后根据内部算法进行检感应器B的反馈值与数据库资料的分类筛选,得到数据处理的函数式,得到调节值的增减浮动计算值,根据内部自适应控制算法得出得到了满足***安全要求的调整量。
5、由感应器C(即***末端设备实际值)跟数据库进行数据运算函数的匹配,执行数据自适应运算,得出末端设备实际需求的偏差值。
6、将满足***安全要求的调整值和***末端设备的实际偏差值进行数据的自适应调整校正,最后得到即满足***安全要求又能匹配***末端设备需求的调节数据,经过数据转换后输出到***的执行机构进行***的精确调节。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本实用新型所附权利要求的保护范围。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (4)

  1. 一种多维度传感检测电路,其特征在于,包括初始设定、检测部分和执行元件,所述检测部分包括第一运算器、第二运算器、PID调节器、数据比较电路、数据自适应运算电路、自适应调整校正电路、数据库、感应器A、感应器B以及感应器C,所述数据库包括第一数据库和第二数据库,
    所述初始设定通过所述第一运算器连接所述PID调节器,所述PID调节器输出端连接所述第二运算器,所述第二运算器连接所述数据比较电路,所述数据比较电路另一输入端连接***安全设定值的输出端,所述数据比较电路的输出端连接所述数据自适应运算电路,所述数据自适应运算电路的输入端还连接所述感应器B和所述第一数据库,所述数据自适应运算电路的输出端连接所述自适应调整校正电路,所述自适应调整校正电路的输入端连接附加数据自适应运算电路,所述附加数据自适应运算电路的输入端连接所述感应器C和第二数据库,所述自适应调整校正电路的输出端连接所述执行元件,所述执行元件的输出端输出信号,所述输出信号还通过所述感应器A连接所述第一运算器输入端。
  2. 根据权利要求1所述的多维度传感检测电路,其特征在于,所述初始设定由人机交互界面进行输入。
  3. 根据权利要求1所述的多维度传感检测电路,其特征在于,所述感应器A输出端连接所述第一运算器反相输入端,所述初始设定连接所述第一运算器同相输入端。
  4. 根据权利要求1所述的多维度传感检测电路,其特征在于,所述PID调节器包括比例电路、积分电路以及微分电路,所述比例电路、所述积分电路以及所述微分电路分别连接所述第二运算器的同相输入端。
PCT/CN2016/100174 2015-10-23 2016-09-26 一种多维度传感检测电路 WO2017067371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520828627.6U CN205101218U (zh) 2015-10-23 2015-10-23 一种多维度传感检测电路
CN201520828627.6 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017067371A1 true WO2017067371A1 (zh) 2017-04-27

Family

ID=55517000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100174 WO2017067371A1 (zh) 2015-10-23 2016-09-26 一种多维度传感检测电路

Country Status (2)

Country Link
CN (1) CN205101218U (zh)
WO (1) WO2017067371A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205101218U (zh) * 2015-10-23 2016-03-23 深圳市纬度节能服务有限公司 一种多维度传感检测电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267453A (ja) * 1989-04-10 1990-11-01 Matsushita Electric Ind Co Ltd 給湯装置
CN201330716Y (zh) * 2008-12-30 2009-10-21 江苏省镇江船厂有限责任公司 船用中央冷却***海水泵控制电路
CN201461354U (zh) * 2009-06-15 2010-05-12 上海远动科技有限公司 水泵变频调节闭环控制***
CN101710245A (zh) * 2009-12-03 2010-05-19 徐州雷奥医疗设备有限公司 基于pid控制的自聚焦透镜离子交换温度控制方法及装置
JP2012052444A (ja) * 2010-08-31 2012-03-15 Fuji Electric Co Ltd 給水装置
CN103556677A (zh) * 2013-09-10 2014-02-05 台州神能电器有限公司 一种高效变频恒压供水***的控制方法
CN205101218U (zh) * 2015-10-23 2016-03-23 深圳市纬度节能服务有限公司 一种多维度传感检测电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267453A (ja) * 1989-04-10 1990-11-01 Matsushita Electric Ind Co Ltd 給湯装置
CN201330716Y (zh) * 2008-12-30 2009-10-21 江苏省镇江船厂有限责任公司 船用中央冷却***海水泵控制电路
CN201461354U (zh) * 2009-06-15 2010-05-12 上海远动科技有限公司 水泵变频调节闭环控制***
CN101710245A (zh) * 2009-12-03 2010-05-19 徐州雷奥医疗设备有限公司 基于pid控制的自聚焦透镜离子交换温度控制方法及装置
JP2012052444A (ja) * 2010-08-31 2012-03-15 Fuji Electric Co Ltd 給水装置
CN103556677A (zh) * 2013-09-10 2014-02-05 台州神能电器有限公司 一种高效变频恒压供水***的控制方法
CN205101218U (zh) * 2015-10-23 2016-03-23 深圳市纬度节能服务有限公司 一种多维度传感检测电路

Also Published As

Publication number Publication date
CN205101218U (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN201972199U (zh) 供水***中的自动恒压装置
CN201520044U (zh) 全自动高效的注塑机控制器
CN203909191U (zh) 一种基于arm和fpga的电能质量分析***
CN105553231A (zh) 一种开关电源多机并联均流方法
CN204677410U (zh) 智慧水泵数字化监控设备
CN204595181U (zh) 基于tms320f2812直流电子负载的装置
CN104712378A (zh) 火电机组主蒸汽压力闭环节能控制方法和***
WO2017067371A1 (zh) 一种多维度传感检测电路
CN203533800U (zh) 一种中央空调装置的模糊控制***
WO2013063830A1 (zh) 基于网络传输的数字式电弧炉电极控制方法及***
WO2017067367A1 (zh) 一种水***的节能集中控制***
CN104476744A (zh) 一种注塑机节能伺服控制***
CN104868483B (zh) 一种基于dsp的磁控电抗器控制方法及***
CN106208095A (zh) 一种负载平衡方法、负载平衡装置及驱电器
CN205049625U (zh) 一种具有电压控制环的功率信号发生装置
CN202111474U (zh) 带预测快速响应的有源滤波器闭环控制***
Fang Design and implementation of constant pressure water supply monitoring system based on STM32
CN203453027U (zh) 空压机安全智能控制***
CN207866916U (zh) 电馈伺服节能设备节能率自动测试***
CN203248345U (zh) 空压机组智能节能控制***
CN203573110U (zh) 一种基于分时段智能pid调节器的变频调速供水***
CN203289369U (zh) 直流电源数字化调节电路
Zeng et al. Coordinated control system of multi-level belt conveyors for promotion the energy efficiency based on IoT-Technology
Zhao et al. Design of a data acquisition system for building electrical fault diagnosis
CN201579965U (zh) 一种注塑机装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.09.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16856804

Country of ref document: EP

Kind code of ref document: A1