WO2017065586A1 - Negative electrode active material and secondary battery including same - Google Patents

Negative electrode active material and secondary battery including same Download PDF

Info

Publication number
WO2017065586A1
WO2017065586A1 PCT/KR2016/011610 KR2016011610W WO2017065586A1 WO 2017065586 A1 WO2017065586 A1 WO 2017065586A1 KR 2016011610 W KR2016011610 W KR 2016011610W WO 2017065586 A1 WO2017065586 A1 WO 2017065586A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
carbon
electrode active
based active
Prior art date
Application number
PCT/KR2016/011610
Other languages
French (fr)
Korean (ko)
Inventor
최정현
이용주
김은경
김현철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160133663A external-priority patent/KR101931143B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL16855803T priority Critical patent/PL3322005T3/en
Priority to CN201680046820.1A priority patent/CN107925062B/en
Priority to EP16855803.9A priority patent/EP3322005B1/en
Priority to JP2018523727A priority patent/JP6689513B2/en
Priority to US15/748,289 priority patent/US10573892B2/en
Publication of WO2017065586A1 publication Critical patent/WO2017065586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material and a secondary battery including the same.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • a secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and transfers energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again during discharge by the first charge. Since it plays a role, it becomes possible to charge and discharge.
  • a lithium secondary battery has a structure in which a lithium electrolyte is impregnated into an electrode assembly including a cathode including a lithium transition metal oxide as an electrode active material, a cathode including a carbon-based active material, and a porous separator.
  • the positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil
  • the negative electrode is prepared by coating a negative electrode mixture including a carbon-based active material on a copper foil.
  • the first technical problem to be solved of the present invention by modifying the surface of the carbon-based active material to the oxygen functional group to attach the carbon-based active material and the silicon-based active material by using the electrostatic attraction between the oxygen functional group and the silicon-based active material, high conductivity, irreversible It is to provide a negative electrode active material particles having a low capacity.
  • the present invention provides a secondary battery, a battery module, and a battery pack including a negative electrode, a positive electrode, and an electrolyte to which a negative electrode mixture including the negative electrode active material particles is coated.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • a negative electrode active material particle including a core including a carbon-based active material and an oxygen functional group, and a shell surrounding the core and including a silicon-based active material.
  • the carbon-based active material may be spherical, the average diameter (D 50 ) may be 5.0 ⁇ m to 20.0 ⁇ m.
  • the carbon-based active material one or more selected from the group consisting of natural graphite, artificial graphite, hard carbon, and soft carbon may be used. Specifically, when spherical natural graphite is used, silicon may be well distributed on the surface of graphite. It can have an effect.
  • the oxygen functional group may be covalently bonded to the outermost carbon atom of the carbon-based active material.
  • the oxygen functional group has a negative charge due to oxygen having a high electronegativity, and since the silicon atoms and the electrostatic attraction of the positively charged silicon-based active material act, the carbon-based active material and the silicon-based active material exhibit excellent adhesion due to the oxygen functional group. Can be.
  • the oxygen functional group may be bonded at a ratio of 2.0 to 4.0% with respect to all covalently bondable sites of the outermost carbon atoms of the carbon-based active material. If the ratio is less than 2.0%, the oxygen-based functional groups and the oxygen-based functional groups that may exhibit electrostatic attraction are less, so that the adhesion between the carbon-based active material and the silicon-based active material is insignificant. There is a problem that the conductivity of the active material is lowered.
  • the ratio representing the extent to which the oxygen functional group is connected to the surface of the carbon-based active material may be quantitatively measured through X-ray photoelectron spectroscopy or an elemental analyzer.
  • the oxygen content of the surface of the carbon-based active material can be derived through X-ray photoelectron spectroscopy, and the binding ratio of the oxygen functional group to all covalently bondable sites of the outermost carbon atom of the carbon-based active material herein Corresponds to the oxygen content measured via X-ray photoelectron spectroscopy.
  • ultraviolet rays having a wavelength of 184.9 to 253.7 nm and an intensity of 0.02 to 0.05 W / cm 2 at a distance of 5 to 130 mm from the surface of the carbon-based active material are atmospheric pressure. It can be achieved by irradiating for 2 hours to 7 hours under ozone conditions.
  • the atmospheric pressure may mean a pressure of 1 atm, such as atmospheric pressure.
  • the oxygen functional group may be at least one of a hydrophilic group and a hydrophobic group.
  • the oxygen functional group reacts with the electrolyte, thereby reducing HF generation.
  • the shell including the silicon-based active material may be in the form of surrounding at least a portion of the core, specifically, in the form of surrounding the entire surface of the core, the shell may have a uniform thickness.
  • the shell may have a thickness of 0.02 ⁇ m to 0.1 ⁇ m. When the thickness of the shell is less than 0.02 ⁇ m, a slight increase in capacity of the negative electrode active material may occur, and when the thickness is greater than 0.1 ⁇ m, a problem may occur in that adhesive strength with the silicon-based active material decreases.
  • the negative electrode active material particles may further include a coating layer surrounding the shell and including at least one of a carbon-based material and a polymer.
  • the carbon-based material and the polymer may further improve the conductivity of the negative electrode active material, suppress the volume expansion of the negative electrode active material, and reduce the reaction with the electrolyte.
  • amorphous carbon may be used as the carbonaceous material and a conductive polymer may be used as the polymer, and the thickness of the coating layer may be 0.02 to 0.1 ⁇ m. Further, the coating layer may be 1 to 50% by weight based on the total weight of the negative electrode active material particles. If the coating layer is less than 1% by weight, there is a problem in that the volume expansion suppression and the conductivity improvement effect of the negative electrode active material are insignificant, and when it contains 50% by weight, it is difficult to detach lithium ions.
  • the step of ultraviolet-ozone treatment to the carbon-based active material (step 1); And forming a silicone-based active material shell on the ultraviolet-ozone treated carbon-based active material (step 2).
  • step 1 ultraviolet-ozone treatment is performed on the carbon-based active material, and the surface of the carbon-based active material may be oxidized by modifying the surface of the carbon-based active material with an oxygen functional group.
  • the UV-ozone treatment conditions are performed by irradiating ultraviolet rays having a wavelength of 150 to 270 nm and an intensity of 0.01 to 0.08 W / cm 2 at a pressure of ozone at atmospheric pressure at a distance of 1 to 150 mm from the carbon-based active material.
  • the atmospheric pressure may mean a pressure of 1 atm, such as atmospheric pressure.
  • the UV-ozone treatment conditions are ultraviolet rays having a wavelength of 184.9 to 253.7 nm and an intensity of 0.02 to 0.05 W / cm 2 at a distance of 5 to 130 mm from the carbon-based active material at an atmospheric pressure of ozone for 2 hours to By irradiating for 7 hours, the oxygen functional group may be bonded at a ratio of 2.0 to 4.0% with respect to all covalently bondable sites of the outermost carbon atoms of the carbonaceous active material.
  • a secondary battery including a negative electrode, a positive electrode, and an electrolyte to which a negative electrode mixture including the negative electrode active material particles is coated.
  • the secondary battery according to the present invention includes the negative electrode active material particles, and the negative electrode active material particles have a high capacity because of excellent adhesion between the carbon-based active material and the silicon-based active material due to the electrostatic attraction of the oxygen-based functional group and the silicon-based active material connected to the carbon-based active material, A high density negative electrode may be manufactured, and the secondary battery including the negative electrode may exhibit high cycle characteristics.
  • the positive electrode according to the present invention may be prepared by, for example, applying a positive electrode mixture made by mixing the positive electrode active material particles, the conductive material and the binder, a filler, and a solvent such as NMP on a positive electrode current collector, followed by drying and rolling.
  • the negative electrode may be prepared by applying a slurry prepared by mixing a negative electrode mixture including the negative electrode active material particles of the present invention to an organic solvent on a negative electrode current collector, followed by drying and rolling.
  • the positive electrode active material is not particularly limited, specifically, a lithium transition metal oxide may be used.
  • the lithium transition metal oxide include Li.Co-based composite oxides such as LiCoO 2 , Li.Ni.Co.Mn-based composite oxides such as LiNi x Co y Mn z O 2 , and Li.sub.2 such as LiNiO 2 .
  • Ni-based composite oxide may be mentioned, such as LiMn 2 O 4 of the Li-Mn composite oxide such, may be mixed alone or a plurality of them.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • graphite Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder and nickel powder
  • Conductive whiskeys such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the positive electrode or the negative electrode may have a form in which the positive electrode mixture or the negative electrode mixture is coated on a current collector.
  • the current collector is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl Lithium borate, imide and the like can be used.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high cycle characteristics, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle are included. Electric vehicles, including electric vehicles (Plug-in Hybrid Electric Vehicle, PHEV), or any one or more of the system for power storage can be used as a power source device.
  • Electric vehicles including electric vehicles (Plug-in Hybrid Electric Vehicle, PHEV), or any one or more of the system for power storage can be used as a power source device.
  • Step 1 Introduce Oxygen Functional Group on Surface of Carbon Based Active Material
  • the spherical natural graphite combined with the oxygen functional group prepared in step 1 was placed in a CVD chamber, silane gas was supplied, and heated at 460 ° C. to prepare an amorphous silicon coated shell having a thickness of 30 nm.
  • the amorphous silicon-coated spherical natural graphite was subjected to amorphous carbon coating at 900 ° C. using acetylene gas to finally prepare a negative electrode active material. At this time, using the TGA equipment, it was confirmed that the content of the coated carbon is 5% by weight relative to the total weight of the negative electrode active material.
  • a negative electrode mixture was prepared by mixing the negative electrode active material particles, carbon black as a conductive material, carboxylmethyl cellulose (CMC) as a binder, and styrene butadiene rubber (SBR) at a weight ratio of 95.8: 1: 1.7: 1.5.
  • the negative electrode mixture was coated on a copper current collector, and then dried and rolled in a vacuum oven at 130 ° C. to prepare a negative electrode.
  • EMC methyl ethyl carbonate
  • EC ethylene carbonate
  • Step 1 of Example 1 a secondary battery was manufactured in the same manner as in Example 1, except that ozone in the ultraviolet-ozone cleaner was irradiated for 1 hour instead of 3 hours.
  • Step 1 of Example 1 a secondary battery was manufactured in the same manner as in Example 1, except that ozone in the ultraviolet-ozone scrubber was irradiated for 8 hours instead of 3 hours.
  • the first two cycles were charged and discharged at 0.1 C, and charged and discharged at 0.5 C from 3 to 49 times. After charging and discharging was completed in the state of 50 cycles of charging (lithium in the negative electrode), the battery was disassembled and the thickness thereof was measured. In addition, the cycling efficiency was measured through the discharged capacity versus the charged capacity per cycle, which is shown in FIG. 1.
  • Example 1 having an oxygen content of 2.32% corresponding to 2 to 4% had a high initial efficiency compared to Examples 2 and 3, which did not satisfy the above range.
  • the secondary battery according to Example 1 improves the bonding force of the silicon graphite composite by allowing oxygen functional groups to exist at the interface between the silicon and the graphite composite, and thus, the lifespan characteristics are improved, compared to the secondary battery of Comparative Example 1. It can be seen that the thickness change rate can also be reduced.

Abstract

The present invention relates to a negative electrode active material and a secondary battery including the same, and specifically, provides a negative electrode active material particle including a core, which includes a carbon-based active material and an oxygen functional group, and a shell, which surrounds the core and includes a silicon-based active material. The negative electrode active material particles according to the present invention include an oxygen functional group such that a silicon-based active material may adhere to the surface of a carbon-based active material. The oxygen functional group, being negatively charged due to the highly electronegative oxygen, pulls in the positively charged silicon atoms of the silicon-based active material via electrostatic attraction, and thus the silicon-based active material may be strongly adhered with the carbon-based active material. Moreover, since oxygen functional groups are bonded to 2.0 to 4.0% of the total number of covalently bondable sites on the outermost carbon atoms on the surface of the carbon-based active material, it is possible for the conductive properties of the negative electrode active material particle to not be degraded by the oxygen functional groups.

Description

음극 활물질 및 이를 포함하는 이차 전지Anode active material and secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2015년 10월 15일자 한국 특허 출원 제10-2015-0143861호 및 2016년 10월 14일자 한국 특허 출원 제10-2016-0133663호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2015-0143861 dated October 15, 2015 and Korean Patent Application No. 10-2016-0133663 dated October 14, 2016. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 음극 활물질 및 이를 포함하는 이차 전지에 관한 것이다.The present invention relates to a negative electrode active material and a secondary battery including the same.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy or clean energy is increasing, and the most actively researched fields are power generation and storage using electrochemical reactions.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 작동 전위를 나타내고 사이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.A representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing. Recently, as the development and demand of portable devices such as portable computers, portable telephones, and cameras increases, the demand for secondary batteries as a source of energy is rapidly increasing, and these secondary batteries exhibit high energy density and operating potential, and have a cycle life. Many researches have been conducted on this long, low self-discharge rate lithium battery and are commercially available and widely used.
일반적으로 이차 전지는 양극, 음극, 전해질로 구성되며, 첫 번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 카본 입자와 같은 음극 활물질 내에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.In general, a secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and transfers energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again during discharge by the first charge. Since it plays a role, it becomes possible to charge and discharge.
예를 들어, 리튬 이차전지는 전극 활물질로서 리튬 전이금속 산화물을 포함하는 양극과, 카본계 활물질을 포함하는 음극 및 다공성 분리막으로 이루어진 전극 조립체에 리튬 전해질이 함침되어 있는 구조로 이루어져 있다. 양극은 리튬 전이금속 산화물을 포함하는 양극 합제를 알루미늄 호일에 코팅하여 제조되며, 음극은 카본계 활물질을 포함하는 음극 합제를 구리 호일에 코팅하여 제조된다.For example, a lithium secondary battery has a structure in which a lithium electrolyte is impregnated into an electrode assembly including a cathode including a lithium transition metal oxide as an electrode active material, a cathode including a carbon-based active material, and a porous separator. The positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil, and the negative electrode is prepared by coating a negative electrode mixture including a carbon-based active material on a copper foil.
최근 고용량 소재로 연구되고 있는 규소계(Silicon) 물질 중, 실리콘 및 탄소 복합 활물질은, 탄소계 음극 활물질 표면에 규소계 물질을 올린 활물질로, 탄소계 음극 활물질이 가지는 이론 용량(372 mAh/g)보다 높은 용량과 함께 우수한 방전 효율(80 %)을 가지고 있어, 고용량 이차전지 소재로 각광받고 있다. Among silicon-based materials currently being studied as high-capacity materials, silicon and carbon composite active materials are active materials containing silicon-based materials on the surface of a carbon-based negative electrode active material, and theoretical capacity of the carbon-based negative electrode active material (372 mAh / g) It has high discharge capacity and excellent discharge efficiency (80%), making it a high-capacity secondary battery material.
하지만, 탄소와 규소 계면 간의 약한 접착력 때문에, 외곽의 규소층이 전극 제작 공정 중의 탄소에서 떨어지는 현상이 발생한다. 이러한 현상은 규소의 도전성을 저하시키고, 비가역 용량을 높이기 때문에, 용량과 효율 발현 저하를 일으킨다. However, due to the weak adhesion between the carbon and silicon interfaces, the phenomenon that the outer silicon layer falls from the carbon during the electrode fabrication process occurs. This phenomenon lowers the conductivity of the silicon and increases the irreversible capacity, resulting in a decrease in capacity and efficiency.
따라서, 탄소 및 규소의 접착력을 향상시키면서도, 우수한 도전성을 나타낼 수 있는 음극 활물질의 개발이 요구된다.Therefore, development of a negative electrode active material capable of exhibiting excellent conductivity while improving adhesion between carbon and silicon is required.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 공개특허 제10-2011-0100209호(Patent Document 1) Republic of Korea Patent Publication No. 10-2011-0100209
본 발명의 해결하고자 하는 제1 기술적 과제는, 탄소계 활물질의 표면을 산소 기능기로 개질하여 산소 기능기와 실리콘계 활물질 간의 정전기적 인력을 이용하여 탄소계 활물질과 실리콘계 활물질을 부착시킴으로써, 도전성이 높고, 비가역 용량이 낮은 음극 활물질 입자를 제공하는 것이다.The first technical problem to be solved of the present invention, by modifying the surface of the carbon-based active material to the oxygen functional group to attach the carbon-based active material and the silicon-based active material by using the electrostatic attraction between the oxygen functional group and the silicon-based active material, high conductivity, irreversible It is to provide a negative electrode active material particles having a low capacity.
본 발명의 해결하고자 하는 제2 기술적 과제는, 상기 음극 활물질 입자를 포함하는 이차 전지, 전지 모듈 및 전지 팩을 제공하는 것이다.The second technical problem to be solved of the present invention is to provide a secondary battery, a battery module and a battery pack including the negative electrode active material particles.
상기 과제를 해결하기 위하여, 본 발명은 탄소계 활물질 및 산소 기능기를 포함하는 코어, 및 상기 코어를 둘러싸고, 실리콘계 활물질을 포함하는 쉘을 포함하는 음극 활물질 입자를 제공한다.In order to solve the above problems, the present invention provides a negative electrode active material particles comprising a core comprising a carbon-based active material and an oxygen functional group, and a shell surrounding the core, the shell containing a silicon-based active material.
또한, 본 발명은 상기 음극 활물질 입자를 포함하는 음극 합제가 도포되어 있는 음극, 양극 및 전해액을 포함하는 이차 전지, 전지모듈 및 전지팩을 제공한다.In addition, the present invention provides a secondary battery, a battery module, and a battery pack including a negative electrode, a positive electrode, and an electrolyte to which a negative electrode mixture including the negative electrode active material particles is coated.
본 발명에 따른 음극 활물질 입자는 탄소계 활물질의 표면에 실리콘계 활물질을 부착할 수 있도록 산소 기능기를 포함한다. 상기 산소 기능기는 전기 음성도가 높은 산소로 인해 음전하를 띠기 때문에, 양전하를 띠는 실리콘계 활물질의 실리콘 원자를 정전기적 인력으로 끌어당기고, 이로 인해 실리콘계 활물질과 탄소계 활물질이 강하게 접착될 수 있다. 나아가, 상기 탄소계 활물질의 표면에는 최외곽 탄소 원자의 공유결합 가능한 모든 사이트에 대하여, 2.0 내지 4.0 %의 비율로 산소 기능기가 결합될 경우, 산소 기능기로 인해 음극 활물질 입자의 도전성이 저하되는 것을 방지할 수 있다.The negative electrode active material particle according to the present invention includes an oxygen functional group to attach the silicon-based active material to the surface of the carbon-based active material. Since the oxygen functional group has a negative charge due to oxygen having a high electronegativity, the silicon atom of the positively charged silicon-based active material is attracted to the electrostatic attraction, and thus the silicon-based active material and the carbon-based active material may be strongly bonded. Furthermore, when oxygen functional groups are bonded at a ratio of 2.0 to 4.0% with respect to all covalently bonded sites of the outermost carbon atoms on the surface of the carbon-based active material, the conductivity of the negative electrode active material particles is prevented from being lowered due to the oxygen functional groups. can do.
도 1은 본 명세서의 실시예 1 내지 3 및 비교예 1의 사이클 효율을 나타내는 그래프이다.1 is a graph showing the cycle efficiency of Examples 1 to 3 and Comparative Example 1 of the present specification.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
본 발명의 일 실시예에 따르면, 탄소계 활물질 및 산소 기능기를 포함하는 코어, 및 상기 코어를 둘러싸고, 실리콘계 활물질을 포함하는 쉘을 포함하는 음극 활물질 입자를 제공한다. According to an embodiment of the present invention, there is provided a negative electrode active material particle including a core including a carbon-based active material and an oxygen functional group, and a shell surrounding the core and including a silicon-based active material.
상기 탄소계 활물질은 구형일 수 있으며, 평균 직경(D50)은 5.0 ㎛ 내지 20.0 ㎛일 수 있다. 상기 탄소계 활물질로는 천연 흑연, 인조 흑연, 하드 카본, 소프트 카본으로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있으며, 구체적으로 구형화한 천연 흑연을 사용하면 실리콘이 흑연의 표면에 잘 분포할 수 있는 효과를 나타낼 수 있다. The carbon-based active material may be spherical, the average diameter (D 50 ) may be 5.0 ㎛ to 20.0 ㎛. As the carbon-based active material, one or more selected from the group consisting of natural graphite, artificial graphite, hard carbon, and soft carbon may be used. Specifically, when spherical natural graphite is used, silicon may be well distributed on the surface of graphite. It can have an effect.
상기 산소 기능기는 상기 탄소계 활물질의 최외곽 탄소 원자와 공유 결합된 것일 수 있다. 상기 산소 기능기는 전기 음성도가 높은 산소로 인해 음전하를 띠고, 양전하를 띠는 실리콘계 활물질의 실리콘 원자와 정전기적 인력이 작용하기 때문에, 결국 탄소계 활물질과 실리콘계 활물질이 산소 기능기로 인해 우수한 접착력을 나타낼 수 있다. The oxygen functional group may be covalently bonded to the outermost carbon atom of the carbon-based active material. The oxygen functional group has a negative charge due to oxygen having a high electronegativity, and since the silicon atoms and the electrostatic attraction of the positively charged silicon-based active material act, the carbon-based active material and the silicon-based active material exhibit excellent adhesion due to the oxygen functional group. Can be.
이때, 상기 산소 기능기는 상기 탄소계 활물질의 최외곽 탄소 원자의 공유결합 가능한 모든 사이트에 대하여, 2.0 내지 4.0 %의 비율로 결합될 수 있다. 만약, 2.0 % 미만의 비율로 결합되는 경우에는 실리콘계 활물질과 정전기적 인력을 나타낼 수 있는 산소 기능기가 적어 탄소계 활물질과 실리콘계 활물질과의 접착력이 미미한 문제점이 있고, 4.0 % 초과의 비율로 결합되는 경우에는 활물질의 도전성이 저하하는 문제점이 있다. In this case, the oxygen functional group may be bonded at a ratio of 2.0 to 4.0% with respect to all covalently bondable sites of the outermost carbon atoms of the carbon-based active material. If the ratio is less than 2.0%, the oxygen-based functional groups and the oxygen-based functional groups that may exhibit electrostatic attraction are less, so that the adhesion between the carbon-based active material and the silicon-based active material is insignificant. There is a problem that the conductivity of the active material is lowered.
상기 산소 기능기가 탄소계 활물질의 표면에 연결된 정도를 나타내는 비율은 X-선 광전자 분광법(X-ray Photoelectron Spectroscopy) 또는 원소 분석기(elemental analyzer)를 통해서 정량적으로 측정할 수 있다. 구체적으로, X-선 광전자 분광법을 통해 탄소계 활물질의 표면의 산소 함량을 도출할 수 있으며, 본 명세서에서 상기 탄소계 활물질의 최외곽 탄소 원자의 공유결합 가능한 모든 사이트에 대한 산소 기능기의 결합 비율은 X-선 광전자 분광법을 통해 측정된 상기 산소 함량에 해당된다. 상기 비율로 탄소계 활물질의 표면에 산소 기능기를 결합시키기 위해서는, 탄소계 활물질의 표면으로부터 5 내지 130 mm의 거리에서, 184.9 내지 253.7 nm의 파장 및 0.02 내지 0.05 W/㎠의 세기를 갖는 자외선을 상압의 오존 조건에서 2시간 내지 7시간 조사하는 것으로 달성할 수 있다. 여기서, 상압이란 대기압과 같은 1기압의 압력을 의미할 수 있다. The ratio representing the extent to which the oxygen functional group is connected to the surface of the carbon-based active material may be quantitatively measured through X-ray photoelectron spectroscopy or an elemental analyzer. Specifically, the oxygen content of the surface of the carbon-based active material can be derived through X-ray photoelectron spectroscopy, and the binding ratio of the oxygen functional group to all covalently bondable sites of the outermost carbon atom of the carbon-based active material herein Corresponds to the oxygen content measured via X-ray photoelectron spectroscopy. In order to bond oxygen functional groups to the surface of the carbon-based active material at the above ratio, ultraviolet rays having a wavelength of 184.9 to 253.7 nm and an intensity of 0.02 to 0.05 W / cm 2 at a distance of 5 to 130 mm from the surface of the carbon-based active material are atmospheric pressure. It can be achieved by irradiating for 2 hours to 7 hours under ozone conditions. Here, the atmospheric pressure may mean a pressure of 1 atm, such as atmospheric pressure.
상기 산소 기능기는 친수성기 및 소수성기 중 하나 이상일 수 있으며, 특히 친수성기와 소수성기가 함께 포함되는 경우에는 전해액과 반응하여, HF가 발생되는 것을 줄일 수 있는 효과가 있다. The oxygen functional group may be at least one of a hydrophilic group and a hydrophobic group. In particular, when the hydrophilic group and the hydrophobic group are included together, the oxygen functional group reacts with the electrolyte, thereby reducing HF generation.
상기 친수성기는 하이드록실기 및 카르복실기 중 하나 이상이고, 상기 소수성기는 에테르기 및 카르보닐기 중 하나 이상일 수 있으나, 상기 산소 기능기가 이에 제한되는 것은 아니다. The hydrophilic group may be at least one of a hydroxyl group and a carboxyl group, and the hydrophobic group may be at least one of an ether group and a carbonyl group, but the oxygen functional group is not limited thereto.
상기 실리콘계 활물질을 포함하는 쉘은 상기 코어의 적어도 일부분을 감싸는 형태일 수 있으며, 구체적으로는 코어의 표면 전체를 감싸는 형태이며, 상기 쉘은 균일한 두께를 가질 수 있다. 상기 쉘의 두께는 0.02 ㎛ 내지 0.1 ㎛일 수 있다. 상기 쉘의 두께가 0.02 ㎛ 미만인 경우에는 음극 활물질의 용량 증가가 미미한 문제점이 발생할 수 있고, 0.1 ㎛ 초과인 경우에는 실리콘계 활물질과의 접착력이 저하하는 문제점이 발생할 수 있다. The shell including the silicon-based active material may be in the form of surrounding at least a portion of the core, specifically, in the form of surrounding the entire surface of the core, the shell may have a uniform thickness. The shell may have a thickness of 0.02 μm to 0.1 μm. When the thickness of the shell is less than 0.02 μm, a slight increase in capacity of the negative electrode active material may occur, and when the thickness is greater than 0.1 μm, a problem may occur in that adhesive strength with the silicon-based active material decreases.
상기 실리콘계 활물질로는 결정질 실리콘계 활물질, 비정질 실리콘계 활물질, 실리콘 산화물(SiOx, 0<x<2), 산화층이 코팅된 실리콘계 활물질로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있으며, 구체적으로 비정질 실리콘을 사용하면 상기 탄소계 활물질의 산소 기능기와 더욱 높은 정전기적 인력을 나타낼 수 있으나, 상기 실리콘계 활물질이 이에 한정되는 것은 아니다. As the silicon-based active material, at least one selected from the group consisting of a crystalline silicon active material, an amorphous silicon-based active material, a silicon oxide (SiO x , 0 <x <2), and an oxide layer-coated silicon-based active material may be used. Specifically, amorphous silicon may be used. When used, the oxygen functional group of the carbon-based active material may exhibit higher electrostatic attraction, but the silicon-based active material is not limited thereto.
상기 음극 활물질 입자는, 쉘을 둘러싸고, 탄소계 물질 및 고분자 중 하나 이상을 포함하는 코팅층을 더욱 포함할 수 있다. 상기 탄소계 물질 및 고분자는 음극 활물질의 도전성을 더욱 좋게 할 수 있고, 음극 활물질의 부피 팽창을 억제할 수 있으며 전해액과의 반응을 줄일 수 있다.The negative electrode active material particles may further include a coating layer surrounding the shell and including at least one of a carbon-based material and a polymer. The carbon-based material and the polymer may further improve the conductivity of the negative electrode active material, suppress the volume expansion of the negative electrode active material, and reduce the reaction with the electrolyte.
이때, 상기 탄소계 물질로는 비정질 탄소, 고분자로는 도전성 폴리머를 사용할 수 있고, 상기 코팅층의 두께는 0.02 내지 0.1 ㎛일 수 있다. 나아가, 상기 코팅층은, 상기 음극 활물질 입자 전체 중량에 대하여 1 내지 50 중량%일 수 있다. 만약, 상기 코팅층이 1 중량% 미만인 경우에는 음극 활물질의 부피 팽창 억제 및 도전성 향상 효과가 미미한 문제점이 있고, 50 중량%를 포함하는 경우에는 리튬 이온의 탈리가 어려운 문제점이 있다. In this case, amorphous carbon may be used as the carbonaceous material and a conductive polymer may be used as the polymer, and the thickness of the coating layer may be 0.02 to 0.1 μm. Further, the coating layer may be 1 to 50% by weight based on the total weight of the negative electrode active material particles. If the coating layer is less than 1% by weight, there is a problem in that the volume expansion suppression and the conductivity improvement effect of the negative electrode active material are insignificant, and when it contains 50% by weight, it is difficult to detach lithium ions.
본 발명에 따른 일 실시예에 있어서, 탄소계 활물질에 자외선-오존 처리하는 단계(단계 1); 및 상기 자외선-오존 처리된 탄소계 활물질 상에 실리콘계 활물질 쉘을 형성시키는 단계(단계 2);를 포함하는 음극 활물질 입자의 제조방법을 제공한다. In one embodiment according to the invention, the step of ultraviolet-ozone treatment to the carbon-based active material (step 1); And forming a silicone-based active material shell on the ultraviolet-ozone treated carbon-based active material (step 2).
상기 단계 1에서는 탄소계 활물질에 자외선-오존 처리를 수행하여, 탄소계 활물질의 표면을 산소 기능기로 개질함으로써, 탄소계 활물질의 표면에 산화를 수행할 수 있다. In step 1, ultraviolet-ozone treatment is performed on the carbon-based active material, and the surface of the carbon-based active material may be oxidized by modifying the surface of the carbon-based active material with an oxygen functional group.
이때, 상기 자외선-오존 처리 조건은 탄소계 활물질로부터 1 내지 150 mm의 거리에서, 150 내지 270 nm의 파장 및 0.01 내지 0.08 W/㎠의 세기를 갖는 자외선을 상압의 오존 조건에서 조사함으로써 수행되는 것일 수 있으며, 상기 조건으로 자외선-오존 처리를 수행하는 경우 실리콘계 활물질과의 접착력이 우수하게 나타나면서도 활물질의 도전성을 유지할 수 있다. 여기서, 상압이란 대기압과 같은 1기압의 압력을 의미할 수 있다.In this case, the UV-ozone treatment conditions are performed by irradiating ultraviolet rays having a wavelength of 150 to 270 nm and an intensity of 0.01 to 0.08 W / cm 2 at a pressure of ozone at atmospheric pressure at a distance of 1 to 150 mm from the carbon-based active material. When the UV-ozone treatment is performed under the above conditions, the adhesion of the active material with the silicon-based active material may be maintained while maintaining the conductivity of the active material. Here, the atmospheric pressure may mean a pressure of 1 atm, such as atmospheric pressure.
구체적으로는, 상기 자외선-오존 처리 조건은 탄소계 활물질로부터 5 내지 130 mm의 거리에서, 184.9 내지 253.7 nm의 파장 및 0.02 내지 0.05 W/㎠의 세기를 갖는 자외선을 상압의 오존 조건에서 2시간 내지 7시간 조사하는 것으로 상기 산소 기능기는 상기 탄소계 활물질의 최외곽 탄소 원자의 공유결합 가능한 모든 사이트에 대하여, 2.0 내지 4.0 %의 비율로 결합될 수 있다.Specifically, the UV-ozone treatment conditions are ultraviolet rays having a wavelength of 184.9 to 253.7 nm and an intensity of 0.02 to 0.05 W / cm 2 at a distance of 5 to 130 mm from the carbon-based active material at an atmospheric pressure of ozone for 2 hours to By irradiating for 7 hours, the oxygen functional group may be bonded at a ratio of 2.0 to 4.0% with respect to all covalently bondable sites of the outermost carbon atoms of the carbonaceous active material.
상기 단계 2에서는, 상기 자외선-오전 처리된 탄소계 활물질 상에 실리콘계 활물질 쉘을 형성시키는 단계이다. 상기 단계 2의 실리콘계 활물질 코팅층은, 실란, 트리클로로실란 및 염화실란으로 이루어진 군으로부터 선택된 1종 이상의 증기를 사용하는 화학 기상 증착법으로 형성하는 것일 수 있다. In the step 2, it is a step of forming a silicon-based active material shell on the ultraviolet-oil treated carbon-based active material. The silicon-based active material coating layer of step 2 may be formed by chemical vapor deposition using at least one vapor selected from the group consisting of silane, trichlorosilane and chloride silane.
본 발명의 일 실시예에 따르면, 상기 음극 활물질 입자를 포함하는 음극 합제가 도포되어 있는 음극, 양극 및 전해액을 포함하는 이차 전지를 제공한다.According to an embodiment of the present invention, there is provided a secondary battery including a negative electrode, a positive electrode, and an electrolyte to which a negative electrode mixture including the negative electrode active material particles is coated.
본 발명에 따른 이차 전지는 상기 음극 활물질 입자를 포함하며, 상기 음극 활물질 입자는 탄소계 활물질에 연결된 산소 기능기와 실리콘계 활물질의 정전기적 인력으로 인해 탄소계 활물질과 실리콘계 활물질 간의 접착력이 우수하기 때문에 고용량, 고밀도의 음극을 제작할 수 있으며, 상기 음극을 포함하는 이차 전지가 높은 사이클 특성을 나타낼 수 있다. The secondary battery according to the present invention includes the negative electrode active material particles, and the negative electrode active material particles have a high capacity because of excellent adhesion between the carbon-based active material and the silicon-based active material due to the electrostatic attraction of the oxygen-based functional group and the silicon-based active material connected to the carbon-based active material, A high density negative electrode may be manufactured, and the secondary battery including the negative electrode may exhibit high cycle characteristics.
본 발명에 따른 양극은 예를 들어, 양극 집전체 상에 상기 양극 활물질 입자, 도전재 및 바인더, 충진제와 NMP 등의 용매를 혼합하여 만든 양극 합제를 도포한 후 건조 및 압연하여 제조될 수 있다. 상기 음극은 본 발명의 음극 활물질 입자를 포함하는 음극 합제를 유기 용매에 혼합하여 만들어진 슬러리를 음극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다. The positive electrode according to the present invention may be prepared by, for example, applying a positive electrode mixture made by mixing the positive electrode active material particles, the conductive material and the binder, a filler, and a solvent such as NMP on a positive electrode current collector, followed by drying and rolling. The negative electrode may be prepared by applying a slurry prepared by mixing a negative electrode mixture including the negative electrode active material particles of the present invention to an organic solvent on a negative electrode current collector, followed by drying and rolling.
상기 양극 활물질은 특별히 한정되지 않지만, 구체적으로 리튬 전이금속 산화물을 사용할 수 있다. 상기 리튬 전이금속 산화물로는, 예를 들면, LiCoO2 등의 LiㆍCo계 복합 산화물, LiNixCoyMnzO2 등의 LiㆍNiㆍCoㆍMn계 복합 산화물, LiNiO2 등의 LiㆍNi계 복합 산화물, LiMn2O4 등의 LiㆍMn계 복합 산화물 등을 들 수 있고, 이들을 단독 또는 복수 개 혼합하여 사용할 수 있다.Although the positive electrode active material is not particularly limited, specifically, a lithium transition metal oxide may be used. Examples of the lithium transition metal oxide include Li.Co-based composite oxides such as LiCoO 2 , Li.Ni.Co.Mn-based composite oxides such as LiNi x Co y Mn z O 2 , and Li.sub.2 such as LiNiO 2 . Ni-based composite oxide may be mentioned, such as LiMn 2 O 4 of the Li-Mn composite oxide such, may be mixed alone or a plurality of them.
상기 도전재는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 양극 또는 음극은 집전체 상에 상기 양극 합제 또는 음극 합제가 도포되어 있는 형태일 수 있다. 상기 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode or the negative electrode may have a form in which the positive electrode mixture or the negative electrode mixture is coated on a current collector. The current collector is not particularly limited as long as it is conductive without causing chemical change in the battery. For example, the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
상기 전해액은 비수계 유기용매와 금속염을 포함할 수 있다. The electrolyte may include a non-aqueous organic solvent and a metal salt.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The metal salt may be a lithium salt, the lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl Lithium borate, imide and the like can be used.
본 발명의 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 높은 사이클 특성을 갖는 상기 이차전지를 포함하므로, 파워 툴(Power Tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차, 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다. According to another embodiment of the present invention, a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high cycle characteristics, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle are included. Electric vehicles, including electric vehicles (Plug-in Hybrid Electric Vehicle, PHEV), or any one or more of the system for power storage can be used as a power source device.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
<실시예 1> <Example 1>
단계 1: 탄소계 활물질의 표면에 산소 기능기 도입Step 1: Introduce Oxygen Functional Group on Surface of Carbon Based Active Material
자외선-오존 세정기 내에 평균입경(D50)이 15 ㎛인 구형 천연 흑연을 5.0 g 투입하여, 25℃, 1 기압에서 185 nm 파장 및 0.02 W/㎠ 세기를 갖는 자외선을 상압의 수분을 차단한 오존의 조건 내에서, 130 mm의 거리에서, 3 시간 동안 조사하여, -COOH 또는 -OH인 산소 기능기가 결합된 탄소계 활물질을 제조하였다.5.0 g of spherical natural graphite having an average particle diameter (D 50 ) of 15 μm was injected into the UV-ozone scrubber, and ozone which blocked moisture at atmospheric pressure from ultraviolet light having a wavelength of 185 nm and a strength of 0.02 W / cm 2 at 25 ° C. and 1 atm. Under the condition of, at a distance of 130 mm, irradiation for 3 hours, to prepare a carbon-based active material bonded to the oxygen functional group -COOH or -OH.
단계 2: 실리콘계 활물질 쉘의 제조Step 2: Preparation of Silicon-Based Active Material Shell
상기 단계 1에서 제조된 산소 기능기가 결합된 구형 천연 흑연을 CVD 챔버에 넣고, 실란 가스를 공급하고, 460℃ 에서 가열하여 두께가 30nm인 비정질 실리콘이 코팅된 쉘을 제조하였다. The spherical natural graphite combined with the oxygen functional group prepared in step 1 was placed in a CVD chamber, silane gas was supplied, and heated at 460 ° C. to prepare an amorphous silicon coated shell having a thickness of 30 nm.
단계 3: 탄소 코팅층의 제조Step 3: Preparation of Carbon Coating Layer
상기 비정질 실리콘이 코팅된 구형 천연 흑연에 아세틸렌 가스를 이용하여 900℃ 에서 비정질 탄소 코팅을 수행하여 최종적으로 음극 활물질을 제조하였다. 이때, TGA 장비를 사용하여, 코팅된 탄소의 함량은 음극 활물질 전체 중량에 대해 5 중량%인 것을 확인하였다.The amorphous silicon-coated spherical natural graphite was subjected to amorphous carbon coating at 900 ° C. using acetylene gas to finally prepare a negative electrode active material. At this time, using the TGA equipment, it was confirmed that the content of the coated carbon is 5% by weight relative to the total weight of the negative electrode active material.
단계 4: 이차 전지의 제조Step 4: Preparation of the Secondary Battery
상기 음극 활물질 입자, 도전재인 카본블랙, 바인더인 CMC(Carboxylmethyl cellulose) 및 SBR(Styrene butadiene rubber)을 95.8:1:1.7:1.5의 중량비로 혼합하여 음극 합제를 제조하였다. 상기 음극합제를 구리 집전체에 도포한 후, 130℃ 에서 진공오븐에서 건조하고 압연하여 음극을 제조하였다. 상기 음극과 Li 금속을 사용한 대극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 메틸에틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피비가 7:3인 혼합 용액에 0.5 중량%로 용해된 비닐렌 카보네이트를 용해 시키고, 1M 농도의 LiPF6가 용해된 전해액을 주입하여, 리튬 코인 하프 셀(coin half cell)을 제조하였다.A negative electrode mixture was prepared by mixing the negative electrode active material particles, carbon black as a conductive material, carboxylmethyl cellulose (CMC) as a binder, and styrene butadiene rubber (SBR) at a weight ratio of 95.8: 1: 1.7: 1.5. The negative electrode mixture was coated on a copper current collector, and then dried and rolled in a vacuum oven at 130 ° C. to prepare a negative electrode. Vinylene carbonate dissolved in 0.5% by weight in a mixed solution having a mixing volume ratio of methyl ethyl carbonate (EMC) and ethylene carbonate (EC) between 7: 3 by using the separator between the cathode and the counter electrode using Li metal. Was dissolved, and an electrolyte solution in which LiPF 6 was dissolved at a concentration of 1 M was injected to prepare a lithium coin half cell.
<실시예 2><Example 2>
실시예 1의 단계 1에서, 자외선-오존 세정기 내에서의 오존을 3시간이 아니라 1시간 조사한 것을 제외하고는, 실시예 1과 동일하게 이차 전지를 제조하였다.In Step 1 of Example 1, a secondary battery was manufactured in the same manner as in Example 1, except that ozone in the ultraviolet-ozone cleaner was irradiated for 1 hour instead of 3 hours.
<실시예 3><Example 3>
실시예 1의 단계 1에서, 자외선-오존 세정기 내에서의 오존을 3시간이 아니라 8시간 조사한 것을 제외하고는, 실시예 1과 동일하게 이차 전지를 제조하였다.In Step 1 of Example 1, a secondary battery was manufactured in the same manner as in Example 1, except that ozone in the ultraviolet-ozone scrubber was irradiated for 8 hours instead of 3 hours.
<비교예 1> 산소 기능기가 없는 음극 활물질 입자의 제조Comparative Example 1 Preparation of Anode Active Material Particles Without Oxygen Functional Group
상기 실시예 1의 단계 1에서 산소 기능기를 도입하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 이차 전지를 제조하였다. A secondary battery was manufactured in the same manner as in Example 1, except that no oxygen functional group was introduced in Step 1 of Example 1.
<실험예 1>Experimental Example 1
상기 실시예 1 및 비교예 1의 단계 1에서 제조된 탄소계 활물질의 표면에 산소 함량을 X-선 광전자 분광법(X-ray Photoelectron Spectroscopy)으로 측정하고, 그 결과를 표 1에 나타내었다.Oxygen content was measured on the surfaces of the carbon-based active materials prepared in Example 1 and Comparative Example 1 by X-ray photoelectron spectroscopy, and the results are shown in Table 1 below.
산소 함량(%)Oxygen content (%)
실시예 1Example 1 2.322.32
실시예 2Example 2 1.041.04
실시예 3Example 3 5.305.30
비교예 1Comparative Example 1 0.050.05
표 1에 나타낸 바와 같이 실시예 1의 산소 함량이 비교예 1에 비해 약 45배 높게 나타나, 실시예 1의 단계 1의 자외선-오존 처리에 의해, 탄소계 활물질의 표면에 산소를 포함하는 산소 기능기가 형성되었음을 확인할 수 있다. 또한, 오존 조사 시간이 3시간으로, 2시간 내지 7시간을 만족한 실시예 1의 경우, 산소 함량이 2.32%이였다. 반면, 오존 조사 시간이 2시간 내지 7시간을 만족하지 못한 실시예 2 및 3은 산소함량이 1.04%로 적거나, 5.30%로 많은 것을 알 수 있다.As shown in Table 1, the oxygen content of Example 1 was about 45 times higher than that of Comparative Example 1, and the oxygen function including oxygen on the surface of the carbon-based active material by the ultraviolet-ozone treatment of Step 1 of Example 1 It can be confirmed that the group is formed. In addition, in the case of Example 1 in which the ozone irradiation time was 3 hours and satisfied 2 hours to 7 hours, the oxygen content was 2.32%. On the other hand, Examples 2 and 3 in which the ozone irradiation time does not satisfy 2 hours to 7 hours can be seen that the oxygen content is as low as 1.04%, or as much as 5.30%.
<실험예 2> 용량 특성Experimental Example 2 Capacity Characteristics
상기 실시예 1 및 비교예 1에서 제조된 이차 전지를 하기의 방법으로 평가 한 뒤, 그 결과를 하기 표 2에 나타내었다. After evaluating the secondary batteries prepared in Example 1 and Comparative Example 1 by the following method, the results are shown in Table 2 below.
충방전 평가 방법Charge / discharge evaluation method
충전 CC(정전류)/CV(정전압) (5mV/0.005C current cut-off) 조건Charge CC (Constant Current) / CV (Constant Voltage) (5mV / 0.005C current cut-off) conditions
방전 CC(정전류) 조건 1.5VDischarge CC (Constant Current) Condition 1.5 V
첫 2회 사이클은 0.1 C로 충방전 하였고, 3회부터 49회까지는 0.5 C로 충방전을 수행하였다. 50 회 사이클 충전(리튬이 음극에 들어있는 상태)상태에서 충방전을 종료하고, 전지를 분해하여 두께를 측정한 후, 전극두께 변화율을 계산하였다. 아울러, 사이클 효율(Cycling efficiency)은 각 사이클 당 충전된 용량 대비 방전된 용량을 통하여 측정되었으며, 이를 도 1에 나타내었다.The first two cycles were charged and discharged at 0.1 C, and charged and discharged at 0.5 C from 3 to 49 times. After charging and discharging was completed in the state of 50 cycles of charging (lithium in the negative electrode), the battery was disassembled and the thickness thereof was measured. In addition, the cycling efficiency was measured through the discharged capacity versus the charged capacity per cycle, which is shown in FIG. 1.
방전 용량[mAh/g]Discharge Capacity [mAh / g] 초기 효율[%]Initial Efficiency [%] 용량 유지율 (%)(49번째 방전용량/1번째 방전용량 ×100)Capacity retention rate (%) (49th discharge capacity / 1th discharge capacity × 100) 전극 두께변화율(%)(두께 변화량/최초두께)(50th 충전)Electrode thickness change rate (%) (thickness change amount / initial thickness) (50th charge)
실시예 1Example 1 514514 9191 8484 9090
실시예 2Example 2 506506 8686 6060 105105
실시예 3Example 3 505505 8787 7575 110110
비교예 1Comparative Example 1 503503 8585 5151 149149
표 2에 나타낸 바와 같이, 실시예 1 내지 3이 비교예 1에 비교하여 용량 유지율 및 전극 두께 변화율이 향상된 것을 알 수 있다.As shown in Table 2, it can be seen that Examples 1 to 3 have improved capacity retention rate and electrode thickness change rate compared to Comparative Example 1.
구체적으로, 초기 효율의 경우 비교예 1에 비해, 실시예 1 내지 3이 높다. 또한, 산소 함량이 2.32%로 2 내지 4%에 해당하는 실시예 1의 경우, 상기 범위를 만족하지 못하는 실시예 2 및 3에 비해 높은 초기 효율을 가졌다. Specifically, in the case of the initial efficiency, Examples 1 to 3 are higher than Comparative Example 1. In addition, Example 1 having an oxygen content of 2.32% corresponding to 2 to 4% had a high initial efficiency compared to Examples 2 and 3, which did not satisfy the above range.
이를 통해, 실시예 1에 따른 이차전지는 실리콘과 흑연 복합체 계면에 산소 작용기를 존재하게 함으로써, 실리콘 흑연 복합체의 결합력을 향상 시키기 때문에, 비교예 1의 이차전지에 비해서, 수명 특성이 개선되고, 전극 두께 변화율도 감소할 수 있음을 알 수 있다.As a result, the secondary battery according to Example 1 improves the bonding force of the silicon graphite composite by allowing oxygen functional groups to exist at the interface between the silicon and the graphite composite, and thus, the lifespan characteristics are improved, compared to the secondary battery of Comparative Example 1. It can be seen that the thickness change rate can also be reduced.
도 1을 참조하여 사이클 효율을 비교하면, 실시예 1 내지 3에 비해 비교예 1의 사이클 특성이 열악함을 알 수 있다. 또한, 산소 함량이 2%보다 적은 실시예 2의 경우도 실시예 1에 비해 사이클 특성이 다소 열악하였다. 나아가, 산소 함량이 4%보다 높은 실시예 3의 경우, 대부분의 사이클에서 실시예 1의 효율보다 낮음을 알 수 있다.Comparing the cycle efficiency with reference to Figure 1, it can be seen that the cycle characteristics of Comparative Example 1 is poor compared to Examples 1 to 3. In addition, in the case of Example 2 having an oxygen content of less than 2%, the cycle characteristics were slightly worse than those in Example 1. Furthermore, for Example 3, where the oxygen content is higher than 4%, it can be seen that it is lower than the efficiency of Example 1 in most cycles.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니며, 이하의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.

Claims (18)

  1. 탄소계 활물질 및 산소 기능기를 포함하는 코어, 및A core comprising a carbon-based active material and an oxygen functional group, and
    상기 코어를 둘러싸고, 실리콘계 활물질을 포함하는 쉘을 포함하는 음극 활물질 입자. An anode active material particle surrounding the core, and comprising a shell containing a silicon-based active material.
  2. 제1항에 있어서,The method of claim 1,
    상기 산소 기능기는 친수성기 및 소수성기 중 하나 이상인 것을 특징으로 하는 음극 활물질 입자. The oxygen functional group is an anode active material particles, characterized in that at least one of a hydrophilic group and a hydrophobic group.
  3. 제2항에 있어서,The method of claim 2,
    상기 친수성기는 하이드록실기 및 카르복실기 중 하나 이상이고, 상기 소수성기는 에테르기 및 카르보닐기 중 하나 이상인 것을 특징으로 하는 음극 활물질 입자. The hydrophilic group is at least one of a hydroxyl group and a carboxyl group, the hydrophobic group is an anode active material particles, characterized in that at least one of an ether group and a carbonyl group.
  4. 제1항에 있어서,The method of claim 1,
    상기 산소 기능기는 상기 탄소계 활물질의 최외곽 탄소 원자와 공유 결합된 것을 특징으로 하는 음극 활물질 입자. The oxygen functional group negative electrode active material particles, characterized in that the covalently bonded to the outermost carbon atoms of the carbon-based active material.
  5. 제1항에 있어서The method of claim 1
    상기 산소 기능기는 상기 탄소계 활물질의 최외곽 탄소 원자의 공유결합 가능한 모든 사이트에 대하여, 2.0 내지 4.0 %의 비율로 결합된 것을 특징으로 하는 음극 활물질 입자. The oxygen functional group is negative electrode active material particles, characterized in that bonded to the ratio of 2.0 to 4.0% of all the covalently bonded sites of the outermost carbon atoms of the carbon-based active material.
  6. 제1항에 있어서,The method of claim 1,
    상기 음극 활물질 입자는, 쉘을 둘러싸고, 탄소계 물질 및 고분자 중 하나 이상을 포함하는 코팅층을 더욱 포함하는 것을 특징으로 하는 음극 활물질 입자. The negative electrode active material particles, the negative electrode active material particles surrounding the shell, further comprising a coating layer comprising at least one of a carbon-based material and a polymer.
  7. 제6항에 있어서,The method of claim 6,
    상기 탄소계 물질은 비정질 탄소이고, 상기 고분자는 도전성 폴리머인 것을 특징으로 하는 음극 활물질 입자. The carbon-based material is amorphous carbon, the polymer is a negative electrode active material particles, characterized in that the conductive polymer.
  8. 제6항에 있어서,The method of claim 6,
    상기 코팅층은, 상기 음극 활물질 입자 전체 중량에 대하여 1 내지 50 중량%인 것을 특징으로 하는 음극 활물질 입자. The coating layer, the negative electrode active material particles, characterized in that 1 to 50% by weight based on the total weight of the negative electrode active material particles.
  9. 제1항에 있어서,The method of claim 1,
    상기 탄소계 활물질은 천연흑연, 인조흑연, 하드카본, 및 소프트카본으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 음극 활물질 입자. The carbon-based active material is negative electrode active material particles, characterized in that at least one selected from the group consisting of natural graphite, artificial graphite, hard carbon, and soft carbon.
  10. 제1항에 있어서,The method of claim 1,
    상기 쉘의 두께는 0.02 ㎛ 내지 0.1 ㎛인 것을 특징으로 하는 음극 활물질 입자. The shell is negative electrode active material particles, characterized in that the thickness of 0.02 ㎛ to 0.1 ㎛.
  11. 탄소계 활물질에 자외선-오존 처리하는 단계(단계 1); 및Ultraviolet-ozone treatment on the carbon-based active material (step 1); And
    상기 자외선-오존 처리된 탄소계 활물질 상에 실리콘계 활물질 쉘을 형성시키는 단계(단계 2);를 포함하는 음극 활물질 입자의 제조방법.Forming a silicon-based active material shell on the ultraviolet-ozone treated carbon-based active material (step 2);
  12. 제11항에 있어서,The method of claim 11,
    상기 자외선-오존 처리 조건은 1 내지 150 mm의 거리에서, 150 내지 270 nm의 파장 및 0.01 내지 0.08 W/㎠의 세기를 갖는 자외선을 오존 조건에서 조사함으로써 수행되는 것을 특징으로 하는 음극 활물질 입자의 제조방법. The UV-ozone treatment conditions are performed by irradiating ultraviolet rays having a wavelength of 150 to 270 nm and an intensity of 0.01 to 0.08 W / cm 2 under ozone conditions at a distance of 1 to 150 mm. Way.
  13. 제11항에 있어서,The method of claim 11,
    상기 자외선-오존 처리 조건은 5 내지 130 mm의 거리에서, 184.9 내지 253.7 nm의 파장 및 0.02 내지 0.05 W/㎠의 세기를 갖는 자외선을 오존 조건에서 2시간 내지 7시간 조사함으로써 수행되는 것을 특징으로 하는 음극 활물질 입자의 제조방법.The UV-ozone treatment conditions are carried out by irradiating UV light having a wavelength of 184.9 to 253.7 nm and an intensity of 0.02 to 0.05 W / cm 2 at a distance of 5 to 130 mm under ozone conditions for 2 to 7 hours. Method for producing negative electrode active material particles.
  14. 제11항에 있어서,The method of claim 11,
    상기 단계 2의 실리콘계 활물질 쉘은, 실란, 트리클로로실란 및 염화실란으로 이루어진 군으로부터 선택된 1종 이상의 증기를 사용하여 화학 기상 증착법으로 형성하는 것을 특징으로 하는 음극 활물질 입자의 제조방법. The method of claim 2, wherein the silicon-based active material shell is formed by chemical vapor deposition using one or more vapors selected from the group consisting of silane, trichlorosilane, and chloride silane.
  15. 제1항의 음극 활물질 입자를 포함하는 음극 합제가 도포되어 있는 음극, 양극 및 전해액을 포함하는 이차 전지.A secondary battery comprising a negative electrode, a positive electrode, and an electrolytic solution to which the negative electrode mixture containing the negative electrode active material particles of claim 1 is coated.
  16. 제15항의 이차 전지를 단위 셀로 포함하는 전지 모듈.A battery module comprising the secondary battery of claim 15 as a unit cell.
  17. 제16항의 전지 모듈을 포함하며, 중대형 디바이스의 전원으로 사용되는 것을 특징으로 하는 전지 팩.A battery pack comprising the battery module of claim 16 and used as a power source for medium and large devices.
  18. 제17항에 있어서, The method of claim 17,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지 팩.The medium-to-large device is a battery pack is selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles and power storage systems.
PCT/KR2016/011610 2015-10-15 2016-10-17 Negative electrode active material and secondary battery including same WO2017065586A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL16855803T PL3322005T3 (en) 2015-10-15 2016-10-17 Negative electrode active material and secondary battery including same
CN201680046820.1A CN107925062B (en) 2015-10-15 2016-10-17 Negative active material and secondary battery comprising same
EP16855803.9A EP3322005B1 (en) 2015-10-15 2016-10-17 Negative electrode active material and secondary battery including same
JP2018523727A JP6689513B2 (en) 2015-10-15 2016-10-17 Negative electrode active material and secondary battery including the same
US15/748,289 US10573892B2 (en) 2015-10-15 2016-10-17 Negative electrode active material and secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150143861 2015-10-15
KR10-2015-0143861 2015-10-15
KR1020160133663A KR101931143B1 (en) 2015-10-15 2016-10-14 Negative electrode active material and secondary battery comprising the same
KR10-2016-0133663 2016-10-14

Publications (1)

Publication Number Publication Date
WO2017065586A1 true WO2017065586A1 (en) 2017-04-20

Family

ID=58517494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011610 WO2017065586A1 (en) 2015-10-15 2016-10-17 Negative electrode active material and secondary battery including same

Country Status (1)

Country Link
WO (1) WO2017065586A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492522A (en) * 2018-06-04 2020-08-04 株式会社Lg化学 Battery cell, secondary battery, and method for manufacturing battery cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202403A1 (en) * 2005-09-06 2007-08-30 Eun-Suok Oh Composite binder containing carbon nanotube and lithium secondary battery employing the same
KR20070111521A (en) * 2005-03-14 2007-11-21 데구사 게엠베하 Method for producing coated carbon particles and use of the latter in anode materials for lithium-ion batteries
KR100994181B1 (en) * 2006-10-31 2010-11-15 주식회사 엘지화학 Enhancement of electro-conductivity of conducting material in lithium ion battery
US20120282527A1 (en) * 2011-05-04 2012-11-08 Khalil Amine Composite materials for battery applications
KR20140070416A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070111521A (en) * 2005-03-14 2007-11-21 데구사 게엠베하 Method for producing coated carbon particles and use of the latter in anode materials for lithium-ion batteries
US20070202403A1 (en) * 2005-09-06 2007-08-30 Eun-Suok Oh Composite binder containing carbon nanotube and lithium secondary battery employing the same
KR100994181B1 (en) * 2006-10-31 2010-11-15 주식회사 엘지화학 Enhancement of electro-conductivity of conducting material in lithium ion battery
US20120282527A1 (en) * 2011-05-04 2012-11-08 Khalil Amine Composite materials for battery applications
KR20140070416A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492522A (en) * 2018-06-04 2020-08-04 株式会社Lg化学 Battery cell, secondary battery, and method for manufacturing battery cell
US11631846B2 (en) 2018-06-04 2023-04-18 Lg Energy Solutions, Ltd. Battery cell, secondary battery, and method of manufacturing battery cell
CN111492522B (en) * 2018-06-04 2023-06-06 株式会社Lg新能源 Battery cell, secondary battery and method for manufacturing battery cell

Similar Documents

Publication Publication Date Title
WO2017164702A1 (en) Negative electrode and method for manufacturing same
WO2016148383A1 (en) Electrode with multilayer structure and lithium secondary battery having same
WO2010079962A2 (en) Positive electrode active material for lithium secondary battery
WO2010079965A2 (en) Positive electrode active material for lithium secondary battery
WO2019078690A2 (en) Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
WO2010079958A2 (en) Positive electrode active material for lithium secondary battery
WO2014182036A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2010079949A2 (en) Positive electrode active material for lithium secondary battery
WO2012161476A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2010079963A2 (en) Positive electrode active material and lithium secondary battery comprising the same
WO2013009078A9 (en) High-energy lithium secondary battery having improved energy density characteristics
WO2014196816A1 (en) Novel secondary battery
WO2017171425A1 (en) Cathode active material particles including core containing lithium cobalt oxide and coating layer containing boron and fluorine, and method for preparing same
WO2014010854A1 (en) High voltage anode active material and lithium secondary battery including same
WO2014081252A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2018203599A1 (en) Anode active material, anode comprising anode active material, secondary battery comprising anode, and method for preparing anode active material
WO2015012640A1 (en) Electrode for secondary battery having improved energy density and lithium secondary battery comprising same
WO2015016506A1 (en) Electrode active material having improved energy density and lithium secondary battery including same
WO2013157832A1 (en) Method of manufacturing electrode for lithium secondary cell and electrode manufactured by using same
WO2018088735A1 (en) Anode and method for fabricating same
WO2015141997A1 (en) Positive electrode active material and lithium secondary battery comprising same
WO2019093820A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2015016540A1 (en) Electrode for secondary battery and lithium secondary battery comprising same
WO2014081221A1 (en) Lithium secondary battery
WO2012008774A2 (en) Negative electrode for a secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018523727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15748289

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016855803

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE