WO2017065275A1 - Separator-fitted adhesive tape and separator - Google Patents

Separator-fitted adhesive tape and separator Download PDF

Info

Publication number
WO2017065275A1
WO2017065275A1 PCT/JP2016/080539 JP2016080539W WO2017065275A1 WO 2017065275 A1 WO2017065275 A1 WO 2017065275A1 JP 2016080539 W JP2016080539 W JP 2016080539W WO 2017065275 A1 WO2017065275 A1 WO 2017065275A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive tape
separator
film
Prior art date
Application number
PCT/JP2016/080539
Other languages
French (fr)
Japanese (ja)
Inventor
啓輔 下北
尚史 小坂
賢輔 谷
みずほ 千葉
岡田 研一
宏尚 大竹
亜紀子 高橋
麻美 土井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016198520A external-priority patent/JP6836876B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201680060355.7A priority Critical patent/CN108137998A/en
Priority to EP16855528.2A priority patent/EP3363872A4/en
Publication of WO2017065275A1 publication Critical patent/WO2017065275A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present invention relates to an adhesive tape with a separator and a separator used therefor.
  • Non-adhesive and low-adhesive collectively as “low-adhesive”
  • the pressure-sensitive adhesive tape is partially provided, and in a state where the pressure-sensitive adhesive tape is placed on the adherend surface without applying pressure, the low-adhesive convex portion comes into contact with the adherend surface, and the pressure-sensitive adhesive Since the layer is unlikely to contact the adherend surface, the adhesive tape can be moved on the adherend surface, and the position of the adhesive tape can be adjusted. Then, after adjusting the position, when the pressure-sensitive adhesive tape is pressed, the low-adhesive convex portion is buried in the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer comes into contact with the adherend to develop an adhesive force. The adhesive tape can be adhered to the intended position.
  • the adhesive tape is wound and rolled in the final stage of production and then stored.
  • the pressure-sensitive adhesive tape is wound under pressure, so that pressure due to tightening is applied to the pressure-sensitive adhesive tape.
  • the rolls are also tightened by the rolls accumulated during storage and transportation of the produced rolls and changes in temperature and humidity.
  • the present invention has been made in view of the above circumstances, and the problem to be solved is that the protrusion height of the low-adhesive convex portion partially provided on the surface of the pressure-sensitive adhesive layer is sufficiently reduced. It is providing the adhesive tape with a separator which is suppressed. Moreover, it is providing the separator which can suppress the reduction
  • the separator having a compressive elastic modulus of a certain value or less is formed on the low-adhesive convex portion provided on the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape. It was found that the applied stress concentration can be sufficiently relaxed.
  • the present invention based on such knowledge is as follows.
  • An adhesive tape with a separator characterized by: [2] The separator according to the above [1], wherein the separator has a compressive stress at 200 ⁇ m compression of 0.1 MPa or less and a compressive stress at a deformation amount of 200 ⁇ m at the time of compression recovery after compression is 0.05 MPa or less.
  • a solid film or skin layer (b) is laminated on at least one surface of the porous film, and (c) a release treatment is applied to the surface of the solid film or skin layer.
  • the separator-attached pressure-sensitive adhesive tape according to the above [1] or [2].
  • the solid film is a resin solid film, and the tensile elastic modulus of the resin solid film or skin layer is E (N / m 2 ) and the thickness is T (m).
  • One or more resins in which the solid film is selected from the group consisting of high density polyethylene, low density polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer, and polyethylene terephthalate The pressure-sensitive adhesive tape with a separator according to any one of the above [3] to [5], which is a solid film containing.
  • the low-adhesive convex portion partially provided on the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape has a stripe-like, lattice-like or dot-like low-adhesiveness with a protruding height from the pressure-sensitive adhesive layer surface of 200 ⁇ m or less.
  • the solid film is a resin solid film, and the tensile elastic modulus of the resin solid film or skin layer is E (N / m 2 ), and the thickness is T (m).
  • One or more resins in which the solid film is selected from the group consisting of high-density polyethylene, low-density polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer, and polyethylene terephthalate
  • the separator according to any one of [13] to [15] above, wherein the separator is a solid film.
  • the separator has not only the protection of the pressure-sensitive adhesive layer surface but also the function of relaxing the stress concentration applied to the low-adhesive convex portion provided on the pressure-sensitive adhesive layer surface. Even if pressure is applied to the pressure-sensitive adhesive tape by stacking of the pressure-sensitive adhesive tapes that have been tightened or rewound, it is possible to sufficiently suppress the occurrence of the crushing of the low-adhesive convex portions or the embedding of the low-adhesive convex portions in the adhesive layer. Can do.
  • the pressure-sensitive adhesive tape with a separator of the present invention includes a pressure-sensitive adhesive tape in which a low-adhesive convex portion is partially provided on the pressure-sensitive adhesive layer surface, and a separator that protects the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape.
  • sheet means thin and wide
  • tape often means thin and thin
  • the "adhesive tape” in the present invention is not only a thin and thin adhesive member, It is used in a concept including an adhesive member having a thin and wide shape, which is often called an “adhesive sheet”.
  • FIG. 1 is a schematic perspective view of a first example of the adhesive tape constituting the separator-attached adhesive tape of the present invention.
  • the pressure-sensitive adhesive tape according to the present invention includes a pressure-sensitive adhesive layer 11 and a low-tackiness convex portion 12 partially provided on the surface of the pressure-sensitive adhesive layer 11 as shown in the pressure-sensitive adhesive tape 1 of the first example.
  • “low adhesiveness” in “low adhesive convexity” means non-adhesive (no tack), or the convexity 12 is lower tack than the adhesive layer 11. .
  • the pressure-sensitive adhesive tape 1 of the first example is a single-sided pressure-sensitive adhesive tape, and is a support on the surface of the pressure-sensitive adhesive layer 11 opposite to the surface on which the low-adhesive convex portion 12 is provided. 10.
  • FIG. 2 is a schematic cross-sectional view of the adhesive tape and the adherend for explaining a change in state when the adhesive tape 1 of FIG. 1 is applied to the adherend 3.
  • a low-adhesive convex portion 12 (hereinafter, “low-adhesive convex portion” is simply abbreviated as “convex portion”) is partially provided on the surface of the pressure-sensitive adhesive layer 11. Therefore, in a state where the adhesive tape 1 is placed on the surface of the adherend 3 (non-pressurized state), as shown in FIG. 3, and the adhesive layer 11 does not substantially contact the adherend 3, so that the adhesive tape 1 can be easily moved on the surface of the adherend 3.
  • FIG. 2C shows a state in which the adhesive tape 1 is adhered to the adherend 3 by applying sufficient pressure to the adhesive tape 1 placed on the surface of the adherend 3.
  • the adhesive tape 1 is attached to the adherend because the low adhesive convexity 12 is entirely embedded in the adhesive layer 11 by sufficient pressure applied to the adhesive tape 1. 3 is bonded with a sufficient adhesive force.
  • the pressure-sensitive adhesive tape in the pressure-sensitive adhesive tape with a separator of the present invention can be easily adjusted on the adherend until the position of adhesion to the adherend is finally determined. It can be adhered to the adherend with sufficient adhesive force.
  • the pressure-sensitive adhesive layer 11 of the pressure-sensitive adhesive tape 1 in the present invention is a pressure-sensitive pressure-sensitive adhesive layer containing a pressure-sensitive pressure-sensitive adhesive as a main component.
  • the pressure-sensitive adhesive (hereinafter also simply referred to as “adhesive”) is not particularly limited.
  • a rubber-based adhesive an acrylic adhesive
  • the pressure-sensitive adhesive include polyamide-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, ethylene-vinyl acetate copolymer-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives.
  • the acrylic pressure-sensitive adhesive is excellent in various properties such as heat resistance and weather resistance, and it is possible to express desired properties by selecting the kind of monomer component constituting the acrylic polymer. Therefore, it can be preferably used.
  • the acrylic pressure-sensitive adhesive is usually formed by a base polymer composed of (meth) acrylic acid alkyl ester as a main monomer component.
  • the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) Isobutyl acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-Methylhexyl acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester as necessary for the purpose of modifying cohesion, heat resistance, crosslinkability and the like. You may go out.
  • monomer components include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid and other carboxyl group-containing monomers; (meth) acrylic acid hydroxy Hydroxyl group-containing monomers such as butyl, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl methacrylate; Styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylprop
  • the acrylic copolymer can be produced by subjecting the above (meth) acrylic acid alkyl ester and, if necessary, other monomers to polymerization by a known appropriate method.
  • the molecular weight and the like of the acrylic copolymer are not particularly limited, and for example, those having a weight average molecular weight of 100,000 to 2,000,000, preferably 150,000 to 1,000,000, more preferably 300,000 to 1,000,000 can be used.
  • the pressure sensitive adhesive uses a polymer having an acidic group such as a carboxyl group as the base polymer, and a hydrophilicity imparted by adding a neutralizing agent to neutralize all or some of the acidic groups in the base polymer. It is good also as an adhesive.
  • the hydrophilic adhesive generally has little adhesive residue on the adherend, and even when adhesive residue is generated, it can be easily removed by washing with pure water.
  • the polymer having an acidic group is obtained by copolymerizing a monomer having an acidic group such as the above-mentioned carboxyl group-containing monomer when preparing the base polymer.
  • neutralizing agent examples include primary amines such as monoethylamine and monoethanolamine, secondary amines such as diethylamine and diethanolamine, triethylamine, triethanolamine, N, N, N′-trimethylethylenediamine, N-methyldiethanolamine, Examples thereof include organic amino compounds exhibiting alkalinity, such as tertiary amines such as N, N-diethylhydroxylamine.
  • the pressure-sensitive adhesive may contain a crosslinking agent as required.
  • the crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent, a metal salt crosslinking agent, and a carbodiimide crosslinking.
  • Crosslinkers such as an agent, an oxazoline crosslinker, an aziridine crosslinker, and an amine crosslinker can be used, and an epoxy crosslinker, an isocyanate crosslinker, and the like can be preferably used. You may use these individually or in combination of 2 or more types.
  • epoxy crosslinking agent examples include N, N, N ′, N′-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, 1,6 -Hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol Polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether Ter, adipic acid digly
  • isocyanate-based crosslinking agent examples include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate.
  • Aliphatic polyisocyanates such as hydrogenated tolylene diisocyanate and hydrogenated xylene diisocyanate; aromatics such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate And polyisocyanates.
  • the pressure-sensitive adhesive layer 11 may contain additives such as a plasticizer, a stabilizer, a filler lubricant, a colorant, an ultraviolet absorber, an antioxidant, and a colorant.
  • the pressure-sensitive adhesive layer 11 preferably has an elastic modulus of 0.01 to 10 MPa, more preferably 0.1 to 10 MPa in order to exhibit sufficient tack.
  • the pressure-sensitive adhesive tape 1 according to the present invention is in a state in which the low-adhesive convex portion 12 is embedded in the pressure-sensitive adhesive layer 11 when pressed, and the pressure-sensitive adhesive layer 11 contacts the adherend 3. It has a structure in which adhesive force is developed. Therefore, the relationship between the elastic modulus of the pressure-sensitive adhesive layer 11 and the elastic modulus of the low-adhesive convex portion 12 becomes important. As will be described later, in order to exert the position adjustment function, the low-adhesion convex portion 12 needs not to be deformed itself in a contact state with the adherend, and for that reason, an elastic modulus of 0.1 MPa or more.
  • the elastic modulus of the pressure-sensitive adhesive layer 11 is 0.01 to 10 MPa, both the position adjustment function and the adhesiveness are good while maintaining the balance with the elastic modulus (0.1 MPa or more) of the low-adhesive convex portion 12. Results.
  • the elasticity modulus of the adhesive layer of an adhesive tape is measured by the following method.
  • the thickness of the pressure-sensitive adhesive layer 11 is not particularly limited, but is preferably 10 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m, and particularly preferably 70 to 250 ⁇ m.
  • the pressure-sensitive adhesive tape is adhered with sufficient adhesive force when pressure-bonding the pressure-sensitive adhesive tape after position adjustment. The tape can be adhered to the adherend.
  • the low-adhesive convex portions 12 are provided in the form of dots on the surface of the pressure-sensitive adhesive layer 11.
  • 3 and 4 are main part plan views of the second and third examples of the adhesive tape in the present invention.
  • the low-adhesive convex portions 12 are provided in a stripe shape and a lattice shape, respectively. ing.
  • the low-adhesive convex portion 12 is only required to be provided in a uniform pattern on the entire surface of the pressure-sensitive adhesive layer 11, and the shape of the pattern is not particularly limited.
  • a dot shape, a stripe shape, a lattice shape, a net shape and the like are preferable.
  • “lattice” and “mesh” are “lattice” is a pattern of convex portions in which the planar shape of the hole (non-existing portion of the convex portion) is a square or a rectangle, Is different in that the planar shape of the hole (the non-existent portion of the convex portion) is a convex pattern that has a shape other than a square and a rectangle.
  • the shape of the hole portion may be all the same or may be different for each hole portion, but it is preferable that they are all the same.
  • each dot is a triangle, a quadrangle (for example, a square, a rectangle, a rhombus, a trapezoid, etc.), or a circle (for example, a perfect circle or a perfect circle) (Circle, ellipse shape, etc.), oval, regular polygon (square, etc.), star shape, etc., and the dot arrangement is not particularly limited, but is a square matrix, staggered, etc. Is preferred.
  • the dots (projections 12) having a circular planar shape are arranged in a staggered pattern.
  • the planar area of the dot (projecting portions 12) is preferably 0.007 ⁇ 20 mm 2, more preferably 0.2 ⁇ 1.8 mm 2.
  • the plane area of the dot (convex portion 12) may be the same for all the dots (convex portion 12) or may be different for each dot (convex portion 12). 12) is preferably the same.
  • the pitch (distance between the center points) between adjacent dots (convex portions 12) is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 mm.
  • each line portion is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 mm. Further, the width (D in FIG. 3) of the space between adjacent line parts (convex parts) is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 mm.
  • the widths of the vertical and horizontal line portions (convex portions) are each preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm. preferable.
  • the pitch between adjacent line parts (convex parts) in the vertical and horizontal directions is preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm. preferable.
  • the planar area, the width, and the like of the convex portion 12 are the area of the portion that becomes the maximum area of the convex portion 12 when the surface of the adhesive layer 11 is viewed from vertically above the surface of the adhesive layer 11, and the convex portion. This is the width of the portion having the maximum width of 12. Further, the convex portion 12 may have a flat surface or a non-flat surface at the tip that contacts the adherend 3.
  • the protrusion height of the low-adhesive convex portion 12 from the surface of the pressure-sensitive adhesive layer 11 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 130 ⁇ m or less. Moreover, Preferably it is 1 micrometer or more, More preferably, it is 10 micrometers or more. If the protruding height exceeds 200 ⁇ m, the adhesiveness or adhesive strength of the adhesive tape may be insufficient, and if the protruding height is less than 1 ⁇ m, the position adjustment function by the low-adhesive convex portion 12 is insufficient. There is a possibility.
  • the protrusion height of the convex portion 12 is preferably 3 to 100%, more preferably 10 to 100% of the thickness of the pressure-sensitive adhesive layer 11 based on the thickness of the pressure-sensitive adhesive layer 11. is there. If the protrusion height of the protrusion 12 is less than 3% of the protrusion height of the pressure-sensitive adhesive layer 11, the position adjustment function of the pressure-sensitive adhesive tape may be insufficient. If it exceeds 100% of the thickness of the layer, the adhesiveness and adhesive strength of the adhesive tape may be insufficient.
  • the occupancy ratio of the low-adhesive convex portions 12 on the surface of the pressure-sensitive adhesive layer 11 ([total area of convex portions 12 / area of the entire surface of the pressure-sensitive adhesive layer] ⁇ 100 (%)) is low. From the viewpoint of friction (that is, easy mobility on the adherend), 30 to 90% is preferable, and 40 to 80% is preferable.
  • the constituent material of the low-adhesive convex portion 12 can be selected according to the type of the adhesive constituting the adhesive layer 11. That is, non-adhesive (has no tack) or lower tack than the pressure-sensitive adhesive layer 11, is insoluble in the pressure-sensitive adhesive layer 11, and has any shape retaining property. Can do.
  • inorganic materials such as glass powder, glass fiber, silica beads, aluminum oxide beads, metal fibers, metal nets, synthetic resin beads, synthetic resin balloons, natural fibers, synthetic resin fibers, natural resins and / or synthetics Organic materials such as resin moldings (threads, nets, lattices), or pressure-sensitive adhesives with lower tack than the adhesive layer 11 (for example, rubber-based, acrylic-based, ethylene-vinyl acetate copolymer systems, etc.) ) And the like.
  • the constituent material of the low-adhesive convex part 12 can use 1 type (s) or 2 or more types.
  • the constituent material of the low-adhesive convex portion 12 has a lower tack than that of the pressure-sensitive adhesive layer 11, and the elastic modulus measured by the nanoindenter is that of the constituent material of the low-adhesive convex portion 12. It is larger than the elastic modulus of the layer 11.
  • the elastic modulus here is a composite elastic modulus obtained by a nanoindentation test using “TriboScope” manufactured by Nanoindenter HYSITRON.
  • the nanoindentation test is a process in which a Berkovich indenter (triangular pyramid diamond indenter) is gradually pushed into the subject until a predetermined maximum load Pmax is obtained by applying a load P (hereinafter referred to as a load process), and for a certain time at the maximum load Pmax.
  • the indenter load P and the indentation depth h obtained in the holding process (hereinafter referred to as the holding process), and after the holding, in the process of gradually unloading and extracting until the load P becomes 0 (hereinafter referred to as the unloading process) From the relationship, this is a test to measure the elastic properties of the subject.
  • the indentation depth h means the distance between the tip of the indenter and the surface of the test material in the initial state (the surface of the test material before the indenter is pushed in), and is based on the position where the indenter first contacts the surface of the test material. This corresponds to the displacement of the indenter.
  • the elasticity modulus of the convex part 12 and the adhesive layer 11 is calculated by the following formula
  • Er 1 / ⁇ ⁇ S / 2 ⁇ ( ⁇ / A) 1/2 (1)
  • Er is the elastic modulus
  • is a constant determined by the shape of the indenter
  • 1.034 is used in the case of a Barkovic indenter.
  • S represents the contact rigidity
  • represents the circumference
  • A represents the contact projection area between the indenter and the surface of the test material.
  • the elastic modulus of the adhesive layer is measured by bringing the indenter into contact with the surface of the adhesive layer of the test material (adhesive tape).
  • the elastic modulus of the convex portion is obtained by removing only the convex portion on the pressure-sensitive adhesive tape from the pressure-sensitive adhesive layer under an environment of ⁇ 100 ° C. or less using an ultramicrotome equipped with a diamond blade. It is measured by cutting out, fixing to a predetermined sample stage (made of SUS), and bringing an indenter into contact with the surface of the convex portion.
  • the contact rigidity S is calculated based on the relationship obtained in the unloading process among the relationship between the indenter load P and the indentation depth h obtained by the nanoindentation test. More specifically, the contact rigidity S is determined by the unloading process after the holding process after the indenter position reaches the maximum pressing depth hmax (the pressing depth when the maximum load Pmax is applied). It is defined by the slope of the unloading curve immediately after transition to. In other words, the contact rigidity S means the gradient (dP / dh) of the tangent line L to the unloading curve at the point (hmax, Pmax).
  • measurement and analysis of elastic modulus use measurement / analysis software TriboScanVer.8.0.0.4 manufactured by Hytron.
  • FIG. 6 shows a schematic side view of the convex portion 12 made of an aggregate of a plurality of coherent particles 20.
  • the aggregate (convex portion 12) of the plurality of cohesive particles 20 is a flat body having a curved upper surface and a circular plan view.
  • the aggregating particle means a particle having a predetermined cohesive force, and can be grasped as an aggregate of particles.
  • Examples of the plurality of cohesive particles 20 include a polymer particle group derived from a polymer emulsion, and the polymer particle group derived from the polymer emulsion includes a polymer particle group composed of particles having a single polymer composition, and / or And a polymer particle group composed of core-shell structure polymer particles having different polymer compositions in the core and the shell.
  • particles having a single polymer composition are also referred to as “non-core-shell structured polymer particles”.
  • an additive is not always necessary, but, for example, an epoxy-based crosslinking agent or a silane is added to the polymer emulsion in a range that does not affect the performance of the convex portion 12.
  • An additive such as a coupling agent may be added to increase the cohesive force of the polymer particle group.
  • the polymer emulsion that is the source of the polymer particles is obtained by emulsion polymerization, that is, by polymerizing the monomer emulsion.
  • the monomer component in the polymer emulsion (that is, the monomer constituting the monomer emulsion) preferably contains an alkyl acrylate ester and / or an alkyl alkyl methacrylate.
  • alkyl acrylates examples include ethyl acrylate, propyl acrylate, n-butyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and One or more kinds selected from lauryl acrylate are preferable.
  • alkyl methacrylate include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, n-methacrylate.
  • One or more selected from hexyl, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, and isobornyl methacrylate are preferred.
  • carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid, hydroxybutyl (meth) acrylate, and hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, and (4-hydroxymethylcyclohexyl) methyl methacrylate can be contained.
  • One or more carboxyl group-containing monomers and hydroxyl group-containing monomers can be used.
  • the core-shell structured polymer particle group is preferably composed of core-shell structured polymer particles having a shell elastic modulus higher than the core elastic modulus, and the core weight relative to the shell weight is 80% or less (preferably 80% or less, 10% % Or more) is preferably composed of core-shell structure polymer particles having a core-shell structure.
  • the low-adhesive convex portion 12 is constituted by the polymer particle group composed of the core-shell structure polymer particles in which the elastic modulus of the shell is set higher than the elastic modulus of the core. It becomes frictional and the position adjustment function by the low-adhesive convex part 12 is improved, and an appropriate elastic modulus can be obtained in relation to the pressure-sensitive adhesive layer 11.
  • FIG. 7 is a cross-sectional perspective view of the core-shell structure polymer particles 20 constituting the core-shell structure polymer particle group.
  • Each of the core-shell structure polymer particles 20 has an acrylic polymer (A1) in which the core 21 has an alkyl acrylate as a main monomer component.
  • the shell 22 is made of an acrylic polymer (A2) having an acrylic acid alkyl ester and a methacrylic acid alkyl ester as main monomer components.
  • the core-shell structure polymer particles 20 constituting the core-shell structure polymer particle group have a substantially spherical shape, and the average particle diameter “a” is appropriately changed in consideration of the maximum diameter “A” and the height “B” of the convex portion 12. (See FIG. 6).
  • the particle diameter of the cohesive particle 20 in consideration of the maximum diameter “A” and the height “B” of the convex portion 12 is preferably 100 nm or more, more preferably from the viewpoint of the viscosity of the aqueous dispersion (polymer emulsion). On the other hand, it is preferably 300 nm or less, more preferably 200 nm or less, from the viewpoint of the cohesiveness of the particles after drying (that is, after removing water from the aqueous dispersion (polymer emulsion)).
  • the maximum diameter “A” of the convex portion 12 is preferably 100 ⁇ m or more, more preferably 250 ⁇ m or more from the viewpoint of the shape stability of the convex portion, and preferably from the viewpoint of the adhesive strength of the adhesive tape. 3 mm or less, more preferably 2 mm or less, and the height “B” is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more from the viewpoint of stability of the position adjustment function, and from the viewpoint of adhesive force, preferably 100 ⁇ m. Below, more preferably 80 ⁇ m or less.
  • BA butyl acrylate
  • a copolymer obtained by copolymerizing (BA) with an alkyl acrylate other than butyl acrylate (BA) or an alkyl methacrylic acid ester is preferred.
  • alkyl acrylates other than butyl acrylate (BA), ethyl acrylate, propyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic acid are preferable.
  • examples thereof include n-octyl and lauryl acrylate, and the alkyl acrylate can be used alone or in combination of two or more.
  • alkyl acrylates having 3 to 9 carbon atoms in the alkyl group such as propyl acrylate, 2-ethylhexyl acrylate and n-octyl acrylate, are preferred.
  • the alkyl methacrylate is a component that is copolymerized mainly for the purpose of controlling the elastic modulus of the polymer.
  • the alkyl methacrylate has 1 to 18 carbon atoms in the alkyl group (for example, methyl methacrylate).
  • methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate and the like are preferable.
  • the alkyl methacrylates can be used alone or in combination of two or more.
  • the acrylic polymer (A1) preferably contains 60 to 100% by weight of the acrylic acid alkyl ester, more preferably 70 to 99.9% by weight, and more preferably 80 to 99% by weight in all monomer components. The content is more preferably 80 to 98% by weight.
  • the acrylic polymer (A1) may be copolymerized with a carboxyl group-containing monomer or a hydroxyl group-containing monomer in order to improve the adhesiveness of the pressure-sensitive adhesive and impart stability to the emulsion.
  • carboxyl group-containing monomer include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • the hydroxyl group-containing monomers include hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, ( 4-hydroxymethylcyclohexyl) methyl methacrylate and the like.
  • the carboxyl group-containing monomer and / or hydroxyl group-containing monomer is preferably contained in an amount of 0.1 to 8% by weight, more preferably 1 to 7% by weight, based on all monomer components constituting the acrylic polymer (A1).
  • the content is preferably 2 to 5% by weight, and more preferably.
  • the acrylic polymer (A2) mainly composed of an acrylic acid alkyl ester and a methacrylic acid alkyl ester constituting the shell preferably contains 30 to 95% by weight of the methacrylic acid alkyl ester in all the monomer components.
  • the content is more preferably 90% by weight, particularly preferably 40 to 80% by weight.
  • the alkyl methacrylate is an alkyl methacrylate having an alkyl group having 1 to 18 carbon atoms (for example, methyl methacrylate (MMA), ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, N-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, isobornyl methacrylate, etc.) are used.
  • MMA methyl methacrylate
  • ethyl methacrylate propyl methacrylate
  • n-butyl methacrylate t-butyl methacrylate
  • N-hexyl methacrylate cyclohexyl methacrylate
  • 2-ethylhexyl methacrylate 2-ethylhexy
  • methyl methacrylate (MMA), ethyl methacrylate, t-butyl methacrylate, isobornyl methacrylate and the like are preferable, and methyl methacrylate (MMA) is particularly preferable.
  • the acrylic acid alkyl ester is a component that is copolymerized mainly for the purpose of controlling the elastic modulus of the polymer.
  • the acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms is used.
  • the acrylic acid alkyl ester can be used alone or in combination of two or more.
  • alkyl acrylates having 3 to 9 carbon atoms such as propyl acrylate, butyl acrylate (BA), 2-ethylhexyl acrylate, and n-octyl acrylate are preferred, and butyl acrylate (BA Is particularly preferred.
  • the acrylic polymer (A2) may be copolymerized with a carboxyl group-containing monomer or a hydroxyl group-containing monomer in order to improve the adhesiveness of the pressure-sensitive adhesive and to impart stability to the emulsion.
  • carboxyl group-containing monomer include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • the hydroxyl group-containing monomers include hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, ( 4-hydroxymethylcyclohexyl) methyl methacrylate and the like.
  • the carboxyl group-containing monomer and / or the hydroxyl group-containing monomer is preferably contained in an amount of 0.1 to 8% by weight, preferably 1 to 7% by weight, based on all monomer components constituting the acrylic polymer (A2). More preferably, the content is 2 to 5% by weight.
  • the acrylic polymer (A2) preferably contains butyl acrylate (BA) and methyl methacrylate (MMA) as monomer components.
  • the acrylic polymer (A2) contains methacrylic methacrylate (BA) based on the weight (M) of butyl acrylate (BA) in the acrylic polymer (A2).
  • the “MMA ratio (%)”, which is the ratio (N / M) of the weight (N) of methyl acid (MMA), should be changed according to the adherend to which the adhesive tape is attached, the constituent material of the adhesive layer 11, etc. However, 100% or less is preferable, and 40 to 80% is more preferable.
  • the weight ratio between the shell 22 and the core 21 in the core-shell structure polymer particles and details of the core-shell structure can be analyzed by, for example, DSC measurement or TEM (3D-TEM) method.
  • the polymer emulsion that is the source of the polymer particle group consisting of the core-shell structure polymer particles is emulsion-polymerized, that is, polymerizes the monomer emulsion Can be obtained.
  • Emulsion polymerization for obtaining a polymer emulsion that is a source of polymer particles composed of non-core-shell structure polymer particles can be performed by a conventional method. That is, an emulsifier (surfactant), a radical polymerization initiator, a chain transfer agent and the like are appropriately blended with the above-mentioned monomers, for example, a batch charging method (batch polymerization method), a monomer dropping method, a monomer emulsion dropping, for example.
  • the emulsion polymerization is carried out by a known emulsion polymerization method such as a method. In the monomer dropping method, continuous dropping or divided dropping is appropriately selected.
  • Known emulsion polymerization methods can be combined as appropriate.
  • the reaction conditions and the like are appropriately selected, but the polymerization temperature is preferably about 40 to 95 ° C., for example, and the polymerization time is preferably about 30 minutes to 24 hours.
  • the emulsion polymerization for obtaining a polymer emulsion that is a source of the polymer particle group composed of the core-shell structure polymer particles is an emulsion polymerization for generating a polymer that becomes a core of the core-shell structure polymer particles, and becomes a generated core.
  • multi-stage emulsion polymerization is performed in which emulsion polymerization for producing a polymer to be a shell is performed.
  • Each emulsion polymerization can be carried out by a conventional method, and may be carried out according to the above-mentioned methods and conditions.
  • agglomerated particles polymer particle group consisting of core-shell structure polymer particles having a core-shell ratio of 50% and an MMA ratio of 50% is shown below.
  • Latemul E-118B (manufactured by Kao Corporation), which is a surfactant, per 100 parts by weight of butyl acrylate (BA)
  • BA butyl acrylate
  • a mixture of 205 parts by weight of ion-exchanged water was prepared, and a monomer emulsion A was prepared by stirring at 6000 rpm for 5 minutes in a nitrogen atmosphere using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • MMA methyl methacrylate
  • BA butyl acrylate
  • the prepared monomer emulsion A) was charged in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, a dropping device, and a stirring blade, and the reaction vessel was sufficiently purged with nitrogen while stirring.
  • the temperature was raised to 60 ° C., and 50 parts by weight of butyl acrylate (BA) was added with 0.1 parts by weight of a water-soluble azo polymerization initiator V-50 (manufactured by Wako Co., Ltd.) to give 60 ° C. While maintaining, polymerization was performed for 2 hours to obtain a copolymer to be a core layer.
  • BA butyl acrylate
  • V-50 water-soluble azo polymerization initiator
  • the monomer emulsion B was added dropwise over 2.5 hours while adding 0.5 parts by weight of V-50 to 50 parts by weight of butyl acrylate (BA) and keeping the temperature at 60 ° C. And an aqueous dispersion containing core-shell structure polymer particles having a solid content concentration of 40% was obtained.
  • the average particle diameter of the obtained core-shell structure polymer particles was 160 nm.
  • a method of dropping a polymer emulsion (emulsion liquid) on the surface of the pressure-sensitive adhesive layer 11 using a dispenser For example, a method of dropping a polymer emulsion (emulsion liquid) on the surface of the pressure-sensitive adhesive layer 11 using a dispenser, A general printing technique such as a method of transferring a polymer emulsion (emulsion liquid) to the surface of the pressure-sensitive adhesive layer 11 with a gravure roll engraved with a pattern corresponding to the pattern of the convex portion 12, screen printing, offset printing, flexographic printing, etc. And a method of printing a polymer emulsion (emulsion liquid).
  • the average particle size of the plurality of cohesive particles is preferably 100 nm or more, more preferably 120 nm or more, while the polymer emulsion From the viewpoint of the cohesiveness of the polymer particles after drying the (aqueous dispersion), it is preferably 300 nm or less, more preferably 200 nm or less.
  • the maximum diameter (symbol A in FIG. 6) of the convex portion 12 formed by the plurality of cohesive particles (polymer particle group derived from the polymer emulsion) 20 is preferably 100 nm or more from the viewpoint of the shape stability of the convex portion.
  • the thickness is preferably 250 nm or more, and preferably 3 mm or less, more preferably 2 mm or less in order to develop sufficient adhesive force after pressure bonding. Further, the height of the convex portion 12 (symbol B in FIG.
  • 6) is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of the stability of the position adjustment function of the adhesive tape 1, From the viewpoint of adhesive strength, it is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 80 ⁇ m or less.
  • the average particle diameter of the plurality of cohesive particles is measured by the following method. For several cohesive particles randomly extracted from a plurality of cohesive particles forming one convex portion 12, the diameter of each cohesive particle is measured by a laser diffraction scattering method. The process of adopting the value located in the center of the diameter of the coherent particles (that is, evaluating by the median diameter) is one cycle, and several median diameters obtained by repeating this cycle several times The average value is defined as the average particle size.
  • a convex portion made of a porous screen can be mentioned.
  • the porous screen refers to a porous (or perforated) sheet-like material.
  • the porous screen includes a net-like material.
  • porous screen examples are not particularly limited, and examples thereof include a plastic net, a fiber net, and a metal thread net.
  • a plastic sheet, a thin metal sheet, a woven fabric, a non-woven fabric, a paper or the like that has been subjected to perforation treatment can be used.
  • the shape of the hole or mesh of the porous screen is not particularly limited as long as the above characteristics can be exhibited.
  • the shape is triangular, quadrangular (for example, square, rectangular, rhombus, trapezoid, etc.), circular (for example, perfect circle, perfect circle) Near a circle, an elliptical shape, etc.).
  • the indefinite shape similar to the said shape may be sufficient.
  • all the holes or mesh shapes may be the same, or may be different for each hole.
  • the thickness of the porous screen is not particularly limited as long as it exhibits the above characteristics, but is preferably 10 to 200 ⁇ m, for example, and preferably 50 to 150 ⁇ m. If the thickness is less than 10 ⁇ m, the slipperiness may be deteriorated. On the other hand, if the thickness exceeds 200 ⁇ m, the adhesiveness and the slipperiness may not be compatible.
  • the material is not particularly limited, and examples thereof include synthetic resins (plastics) such as nylon, polyethylene, polypropylene, and polyester, natural fibers, and metal fibers.
  • synthetic resins such as nylon, polyethylene, polypropylene, and polyester, natural fibers, and metal fibers.
  • the basis weight is not particularly limited, but is preferably from 1.0 to 70 g / m 2 , preferably from 2.0 to 70 g / m 2 from the viewpoint of achieving both adhesion and slipperiness on the adhesive surface on which the porous screen is bonded. 20 g / m 2 .
  • the size of the mesh is not particularly limited, but is preferably 5 pieces / inch to 50 pieces / inch, preferably 20 pieces / inch from the viewpoint of achieving both adhesion and slipperiness on the adhesive surface on which the porous screen is bonded. Inch to 40 pieces / inch.
  • net commercial products examples include trade name “Net ND20” manufactured by Daisen Corporation.
  • the material is not particularly limited, but plastic and non-woven fabric are preferable from the viewpoint of compatibility between adhesiveness and slipperiness on the adhesive surface on which the porous screen is bonded.
  • the pore size of the porous screen is not particularly limited as long as the above characteristics can be exhibited, and the pore size may be common or may be different for each hole.
  • the size of such a hole is, for example, about 500 ⁇ m to 10 mm at the largest part of the hole.
  • the distribution of pores in the porous screen is not particularly limited as long as the above characteristics can be exhibited, and may be concentrated in a certain region or may be dispersed as a whole.
  • the distance between the holes of the porous screen is not particularly limited, and may be constant or may not be constant.
  • a convex portion made of solid particles can be mentioned.
  • solid particles include calcium carbonate, barium carbonate, calcium sulfate, aluminum sulfate, molybdenum disulfide, titanium oxide, alumina, silica, magnesium oxide, calcium oxide, calcium hydroxide, ferrous oxide, ferric oxide.
  • Inorganic solid particles such as glass beads; cured rubber, ebonite, lignin / phenol resin, styrene resin, vinyl chloride resin, (meth) acrylic resin, polypropylene resin, polyethylene resin, melamine resin, urea resin, other resins, etc.
  • Organic solid particles can be mentioned.
  • One kind or two or more kinds of solid particles can be used.
  • hollow solid particles can be used as long as the hollow particle walls are not crushed by the pressure applied by pressure.
  • hollow solid particles include urea resin balloons, melamine resin balloons, phenol resin balloons, polyvinylidene chloride balloons, organic balloons such as epoxy resin balloons; glass balloons, shirasu balloons, carbon balloons, alumina balloons, Examples thereof include hollow solid particles in which the hollow particle walls are not crushed by pressure bonding pressure such as an inorganic balloon such as a silica sand balloon.
  • the term “not crushed” is used in a sense that even a part of the hollow particle wall is broken and the gas in the hollow particles does not leak to the outside.
  • the solid particles preferably have an average particle diameter of 1 to 100 ⁇ m.
  • the average particle diameter of the solid particles can be measured by a laser diffraction / scattering method.
  • the particle size distribution of the inorganic filler can be created on a volume basis with a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter.
  • the measurement sample one obtained by dispersing solid particles in water by ultrasonic waves can be preferably used.
  • the pressure-sensitive adhesive tape 1 is a single-sided pressure-sensitive adhesive tape, as shown in FIG. 1, the surface of the adhesive layer 11 opposite to the surface on which the low-adhesive convex portion 12 is provided.
  • a support 10 is provided.
  • the support 10 is not particularly limited. Specifically, polyester (for example, polyethylene terephthalate (PET)), nylon, saran (trade name), polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate Examples thereof include a single film such as a polymer, polytetrafluoroethylene, and ionomer resin, a metal foil, or a laminate film obtained by laminating two or more films selected from these.
  • PET polyethylene terephthalate
  • nylon saran (trade name)
  • polyvinyl chloride polyethylene
  • polypropylene polypropylene
  • ethylene-vinyl acetate examples thereof include a single film such as a polymer, polytetrafluoroethylene
  • a laminate film of a nonporous film made of the above material and the following porous film is used as a support, and the porosity of the support is determined.
  • An adhesive layer may be formed on the adhesive film side.
  • porous film examples include paper, woven fabric, nonwoven fabric (for example, polyester (for example, polyethylene terephthalate (PET)) nonwoven fabric, etc.), the above film (for example, polyester (for example, polyethylene terephthalate (PET)), Nylon, Saran (trade name), polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polytetrafluoroethylene, ionomer resin or other single film, metal foil, or two or more films selected from these Examples include a film obtained by mechanically perforating a laminated film or the like, and paper, woven fabric, and nonwoven fabric (for example, polyester nonwoven fabric, polyethylene terephthalate nonwoven fabric, etc.) are particularly preferable from the viewpoint of flexibility of the support.
  • the basis weight thereof is preferably 5 to 30 g / m 2 from the viewpoint of improving the anchoring force
  • Laminate film on the support is a known laminate film production method such as thermal lamination method, dry lamination method, wet lamination method, extrusion (extrusion) lamination method, hot melt lamination, co-extrusion (coextrusion) lamination method, etc. Manufactured by.
  • the thickness of the support is not particularly limited, but is preferably 3 to 200 ⁇ m, more preferably 3 to 100 ⁇ m, from the viewpoint of versatility generally used as an adhesive tape.
  • the pressure-sensitive adhesive tape 1 has a low-tackiness convex portion 12 on the surface of the pressure-sensitive adhesive layer 11 and thus has low friction, and smoothly moves on the surface of the adherend 3 before being bonded. Can be made.
  • the frictional force of the adhesive tape is preferably 0.4 N / cm 2 or less. If the frictional force exceeds 0.4 N / cm 2 , position adjustment by sliding becomes difficult, and if it is 0.4 N / cm 2 or less, position adjustment can be performed without stress.
  • the frictional force is the frictional force of the low-adhesive convex portion 12 in contact with the surface of the adherend, and a method for measuring the frictional force will be described with reference to FIG.
  • a sample 1A which is a measurement target in FIG. 11, is obtained by adhering a pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer 11 with a convex portion to the one surface 10A ′ of the PET base material 10A.
  • a sample 1A cut in a 2 cm square is placed on a stainless steel plate (SUS304BA, thickness: 400 ⁇ m, length 100 mm, width 30 mm, mass 9.5 g) 3 as an adherend so that the convex portion 12 contacts.
  • a 2 cm ⁇ 10 cm PET substrate (lead) 15 is fixed on the sample 1A using a double-sided adhesive tape (not shown).
  • a 50 g weight 4 is placed above the other surface 10A ′′ of the PET substrate 10A so that a force is applied to the entire sample 1A substantially evenly, and the sample 1A is 300 mm / min in the horizontal direction with the weight 4 fixed.
  • the stress (N / cm 2 ) applied at the time of pulling is measured to obtain a frictional force, and the weight 4 is set to 50 g based on empirical values. It is an index for evaluating the position adjustment function, and when adjusting the position of the adhesive tape 1, the user presses the adhesive tape 1 against the surface (attachment surface) of the adherend 3 with a predetermined force.
  • the pressure applied to the adherend 3 from the adhesive tape 1 when the user operates the other surface 10A "side of the adhesive tape 1 is about 12.5 g in this case.
  • the weight of 50 g is based on the premise that the weight of the sample 1A does not substantially affect the stainless steel plate 3, and for example, using a support other than the PET base material, In the case where the thickness substantially affects the stainless steel plate 3, of course, such weight is subtracted from 50g.
  • FIG. 8 shows a schematic cross-sectional view of the main part in a state where the separator 2 is superimposed on the surface of the pressure-sensitive adhesive layer 11 of the pressure-sensitive adhesive tape 1.
  • the separator 2 covers the pressure-sensitive adhesive layer 11 and the low-adhesion convex portion 12 provided on the surface of the pressure-sensitive adhesive layer 11.
  • the separator 2 having a compression modulus of 1 MPa or less is used. That is, the separator 2 has a cushioning property of a certain level or more.
  • the separator 2 covering the surface of the pressure-sensitive adhesive layer 11 of the pressure-sensitive adhesive tape 1 has a cushioning property with a compression modulus of 1 MPa or less, so that the separator 2 is wound together with the pressure-sensitive adhesive tape 1 into a roll, stored, and wound. Even when pressure due to tightening is applied to the pressure-sensitive adhesive tape 1, as shown in FIG. 8, the stress concentration on the low-adhesion convex portion 12 provided on the surface of the pressure-sensitive adhesive layer 11 is relieved by the separator 2.
  • the compression elastic modulus of the separator 2 is more preferably 0.7 MPa or less, and particularly preferably 0.5 MPa or less.
  • the separator 2 satisfies the above-described compression elastic modulus, the compression stress at the time of 200 ⁇ m compression is 0.1 MPa or less, and the compression stress at the deformation amount of 200 ⁇ m at the time of compression recovery after compression is 0. What shows 05 Mpa or less is preferable.
  • the protruding height of the adhesive convex portion 12 is preferably 200 ⁇ m or less.
  • the compressive stress at the time of 200 ⁇ m compression of the separator 2 and the compressive stress at the time of compression recovery after compression of 200 ⁇ m are defined in terms of the compression amount of the separator 2 and the deformation amount at the time of compression recovery.
  • the compressive stress is sufficiently small when it corresponds to the maximum protrusion height (200 ⁇ m) in the preferred range of the protrusion height of the adhesive, if the protrusion height of the low adhesive protrusion 12 is 200 ⁇ m or less, the adhesive The stress acting on the low-adhesive convex portion 12 is sufficiently relieved by the pressure of the tape tightening, and the convex portion 12 is crushed and embedded in the adhesive layer 11 at a higher level. This is because it can be prevented.
  • the compressive stress at 200 ⁇ m compression of the separator 2 is more preferably 0.05 MPa or less, and particularly preferably 0.04 MPa or less. Further, the compressive stress at a deformation amount of 200 ⁇ m upon compression recovery after compression is more preferably 0.04 MPa or less, and particularly preferably 0.03 MPa or less.
  • the material and form of the separator 2 are not particularly limited as long as the separator 2 has the above-described compressive elastic modulus and compressive stress, but at least one surface of a film mainly composed of a porous film is easy to obtain cushioning properties. What performed the mold release process is preferable.
  • the “film mainly composed of a porous film” means a single porous film or a laminated film 50 of the porous film 51 and another film (layer) 52 shown in FIG. To do.
  • Reference numeral 53 in FIG. 9 denotes a release layer.
  • porous film 51 examples include (1) paper, woven fabric, nonwoven fabric (for example, polyester (for example, polyethylene terephthalate (PET)) nonwoven fabric), (2) polyester (for example, polyethylene terephthalate (PET)), nylon, and the like.
  • nonwoven fabric for example, polyester (for example, polyethylene terephthalate (PET)) nonwoven fabric
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • nylon and the like.
  • a film obtained by mechanically perforating a real film (3) polyolefin foam (for example, non-crosslinked polyethylene foam, crosslinked polyethylene foam, polypropylene foam, polyethylene (PE) and polypropylene (PP) Foam), polyester foam (for example, Polyethylene terephthalate foam, etc.), urethane foam (e.g., soft urethane foam, hard urethane foam, urethane-modified polyisocyanurate foams, polyisocyanurate foams, etc.), or rubber foam such foam films.
  • a foam film is preferable and a polyolefin foam film is more preferable because sufficient cushioning properties are easily obtained.
  • the porous film 51 has an apparent density measured in accordance with JIS K 7222 (2005) of preferably 500 kg / m 3 or less, and more preferably 200 kg / m 3 or less. If the porous film has such an apparent density, (a) a separator having a compression elastic modulus of 1 MPa or less, (b) a compression elastic modulus of 1 MPa or less, a compression stress at 200 ⁇ m compression of 0.1 MPa or less, and 200 ⁇ m compression. A separator having a compressive stress of 0.05 MPa or less at a deformation amount of 200 ⁇ m at the time of subsequent compression recovery is easily obtained.
  • the apparent density of the porous film is preferably 20 kg / m 3 or more, more preferably 30 kg / m 3 or more, from the viewpoint of preventing tearing or tearing due to tension applied during production.
  • the thickness of the porous film 51 is preferably 100 ⁇ m or more and more preferably 500 ⁇ m or more in order to disperse the stress applied to the convex portion. Further, from the viewpoint of the thickness when wound into a roll (that is, from the viewpoint of increasing the amount of winding of the pressure-sensitive adhesive sheet), it is preferably 2000 ⁇ m or less, more preferably 1500 ⁇ m or less, and even more preferably 1100 ⁇ m or less.
  • the porous film is a foam film
  • those having an average major axis of fine pores in the range of 10 to 1000 ⁇ m and an average minor axis in the range of 10 to 1000 ⁇ m are preferably used.
  • the porosity of the foam film is preferably 50 to 99%, more preferably 60 to 98% from the viewpoint of flexibility.
  • aperture ratio means the area ratio of micropores in the area of the film in a plane perpendicular to the thickness direction of the foam film.
  • Examples of the other film (layer) 52 include a metal or resin solid film, a skin layer, and the like.
  • a solid film made of metal or resin means a non-porous film made of metal or resin that has not been subjected to mechanical perforation. It should be noted that such a metal or resin film is included in the “solid film” even if it has micropores that are inevitably generated in the production stage of forming a metal or resin film.
  • polyester for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.
  • polyamide for example, nylon, etc.
  • the metal solid film include aluminum foil, copper foil, and stainless steel.
  • the solid film is preferably a resin solid film, more preferably a film formed from one or more resins selected from the group consisting of polyolefin, polyester and polyimide, and even more preferably. , Formed from one or more resins selected from the group consisting of polyethylene (high density polyethylene, low density polyethylene), polypropylene, ethylene / propylene copolymer, ethylene-vinyl acetate copolymer and polyethylene terephthalate It is a film.
  • the thickness of the metal or resin solid film is preferably 3 to 80 ⁇ m, more preferably 3 to 50 ⁇ m, and still more preferably from the viewpoints of maintaining the cushioning property of the porous film and stably forming the release layer. 10 to 50 ⁇ m.
  • the lamination of the solid film to the porous film is performed by a conventional method for producing a laminated film, such as a hot press process using a hot press machine or a continuous heat laminate process using a roll-to-roll process.
  • the “skin layer” is a porous thin layer having a porosity smaller than the porosity of the porous film (foam film) formed on the surface of the porous film (foam film).
  • the “perforation ratio” is the area ratio of micropores in the area of the thin layer on a plane perpendicular to the thickness direction of the porous film.
  • the porosity of the skin layer is preferably 10% or less, more preferably 5% or less, from the viewpoint of maintaining the cushioning property of the porous film (foam film) and stably forming the release layer.
  • the thickness of the skin layer is preferably 3 to 50 ⁇ m and more preferably 3 to 20 ⁇ m from the viewpoint of maintaining the cushioning property of the porous film (foam film) and stably forming the release layer.
  • the skin layer is usually formed by melting the surface layer portion of the porous film (foam film) 51.
  • a heating roll set at a temperature lower by about 5 to 20 ° C. than the melting point of the film and reducing the rotation speed of the heating roll from the running speed of the film, a skin layer is formed on the contact surface side of the heating roll of the film. Can be formed.
  • the solid film or skin layer of the separator is a convex portion formed on the surface of the adhesive tape, where the tensile elastic modulus of the solid film or skin layer is E (N / m 2 ) and the thickness is T (m). from the viewpoint of the stress is dispersed in, preferably has a value of E ⁇ T 3 is lower than 500 ⁇ N ⁇ m, more preferably those values of E ⁇ T 3 is lower than 62 ⁇ N ⁇ m, the E ⁇ T 3 It is even more preferable that the value is less than 10 ⁇ N ⁇ m.
  • “E ⁇ T 3 ” relates to the force necessary to bend the solid film or skin layer, and acts on the convex portion of the adhesive tape when an external force is applied to the separator-attached adhesive tape. Equivalent to the power of
  • the tensile elastic modulus of the solid film or skin layer is measured by the following method. From the separator, the solid film or skin layer as the surface layer is sliced and taken out with a razor blade (for example, a single blade trimming razor manufactured by GEM) and cut into a strip shape having a width of 10 mm and a length of 50 mm. The strip-shaped test piece obtained in this manner was pulled with a tensile tester (for example, a small tabletop tester Extest manufactured by Shimadzu Corporation) under an atmosphere of 23 ° C. under conditions of a distance between chucks of 50 mm and a tensile speed of 10 mm / min. The test is performed, and the tensile modulus is calculated from the slope of the curve immediately after the start of tension in the stress-strain curve at that time.
  • a tensile tester for example, a small tabletop tester Extest manufactured by Shimadzu Corporation
  • the release agent used for the release treatment of the separator is not particularly limited, and a fluorine release agent, a long-chain alkyl acrylate release agent, a silicone release agent, and the like are used.
  • a silicone release agent is preferable, and a curing method such as ultraviolet irradiation or electron beam irradiation is preferably used as the curing method.
  • cationically polymerizable UV-curable silicone-type release agents are preferable.
  • Cationic polymerizable UV curable silicone release agent is a mixture containing cationic polymerization type silicone (polyorganosiloxane having epoxy functional group in the molecule) and onium salt photoinitiator, but onium salt photoinitiator It is particularly preferable that the agent is made of a boron photoinitiator, and it is particularly good when such an onium salt photoinitiator is a cationic polymerizable UV curable silicone release agent comprising a boron photoinitiator. Peelability (release property) is obtained.
  • the cationic polymerization type silicone (polyorganosiloxane having an epoxy functional group in the molecule) has at least two epoxy functional groups in one molecule, and is linear or branched or A mixture thereof may be used.
  • the type of epoxy functional group contained in the polyorganosiloxane is not particularly limited as long as ring-opening cationic polymerization proceeds with an onium salt photoinitiator. Specific examples include ⁇ -glycidyloxypropyl group, ⁇ - (3,4-epoxycyclohexyl) ethyl group, ⁇ - (4-methyl-3,4 epoxy cyclohexyl) propyl group and the like.
  • Such cationic polymerization type silicone (polyorganosiloxane having an epoxy functional group in the molecule) is commercially available, and a commercially available product can be used.
  • a commercially available product can be used.
  • thermosetting addition type silicone release agent thermosetting addition type polysiloxane release agent
  • the thermosetting addition-type silicone release agent essentially comprises a polyorganosiloxane containing an alkenyl group as a functional group in the molecule (alkenyl group-containing silicone) and a polyorganosiloxane containing a hydrosilyl group as a functional group in the molecule. Ingredients.
  • the polyorganosiloxane having an alkenyl group as a functional group in the molecule a polyorganosiloxane having two or more alkenyl groups in the molecule is preferable.
  • the alkenyl group include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, and a hexenyl group.
  • the alkenyl group is usually bonded to a silicon atom (for example, a terminal silicon atom or a silicon atom inside the main chain) of the polyorganosiloxane forming the main chain or skeleton.
  • polyalkylalkylsiloxanes such as polydimethylsiloxane, polydiethylsiloxane, and polymethylethylsiloxane, and polyalkylarylsiloxanes.
  • a copolymer for example, poly (dimethylsiloxane-diethylsiloxane), etc. in which a plurality of silicon atom-containing monomer components are used may be used. Of these, polydimethylsiloxane is preferred.
  • polydimethylsiloxane having a vinyl group, hexenyl group or the like as a functional group is preferably exemplified.
  • the polyorganosiloxane crosslinking agent containing a hydrosilyl group as a functional group in the molecule is a polyorgano having a hydrogen atom bonded to a silicon atom (particularly, a silicon atom having a Si—H bond) in the molecule.
  • a siloxane, particularly a polyorganosiloxane having two or more silicon atoms having Si—H bonds in the molecule is preferred.
  • the silicon atom having the Si—H bond may be either a silicon atom in the main chain or a silicon atom in the side chain, that is, may be contained as a constituent unit of the main chain, or It may be contained as a constituent unit of the side chain.
  • the number of silicon atoms in the Si—H bond is not particularly limited as long as it is 2 or more.
  • Specific examples of the polyorganosiloxane crosslinking agent containing a hydrosilyl group as a functional group in the molecule are polymethylhydrogensiloxane and poly (dimethylsiloxane-methylhydrogensiloxane).
  • thermosetting silicone resin a reaction inhibitor (reaction retarder) may be used for the thermosetting silicone release treatment agent in order to impart storage stability at room temperature.
  • reaction inhibitor for example, when a thermosetting addition-type silicone release agent is used as the release agent, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-pentene- Examples include 3-ol, 3-methyl-3-penten-1-yne, and 3,5-dimethyl-3-hexen-1-yne.
  • a release control agent or the like may be used as necessary for the thermosetting silicone release treatment agent.
  • a release control agent such as MQ resin, polyorganosiloxane having no alkenyl group or hydrosilyl group (trimethylsiloxy group end-blocked polydimethylsiloxane, etc.) and the like may be added.
  • the content of these components in the release agent is not particularly limited, but is preferably 1 to 30% by weight based on the entire solid content.
  • the thermosetting silicone release agent usually contains a curing catalyst.
  • the curing catalyst is preferably a platinum-based catalyst that is generally used as a catalyst for thermosetting addition-type silicone. Among these, at least one platinum-based catalyst selected from chloroplatinic acid, platinum olefin complexes, and chloroplatinic acid olefin complexes is preferable.
  • the curing catalyst can be used as it is or in a form dissolved or dispersed in a solvent.
  • the blending amount (solid content) of the curing catalyst is preferably 0.05 to 0.55 parts by weight and preferably 0.06 to 0.50 parts by weight with respect to 100 parts by weight (resin content) of the thermosetting silicone resin. Further preferred. When the blending amount of the curing catalyst is less than 0.05 parts by weight, the curing rate is slow, and when it exceeds 0.55 parts by weight, the pot life is remarkably shortened.
  • an organic solvent is usually used for the coating liquid containing a release treatment agent used when providing the release treatment layer in order to improve the coatability.
  • the organic solvent is not particularly limited, and examples thereof include aliphatic or alicyclic hydrocarbon solvents such as cyclohexane, hexane, and heptane; aromatic hydrocarbon solvents such as toluene and xylene; ethyl acetate, methyl acetate, and the like. Ester solvents; ketone solvents such as acetone and methyl ethyl ketone; alcohol solvents such as methanol, ethanol and butanol can be used. These organic solvents may be used alone or in combination of two or more.
  • the thickness of the release layer 53 formed by the release treatment is from the viewpoint of excellent releasability (release property) and suppression of thickness unevenness (stable formation of the release layer).
  • the thickness is preferably 001 to 10 ⁇ m, more preferably 0.03 to 5 ⁇ m, and particularly preferably 0.1 to 1 ⁇ m.
  • the pressure-sensitive adhesive tape with a separator of the present invention is produced, for example, as follows. Protrusions are formed directly on the surface of the pressure-sensitive adhesive layer as a base, or a convex pattern is formed on the adhesive surface by transferring the convexes patterned on the peelable substrate to the surface of the adhesive. A separator is pasted together to make a roll and stored.
  • the separator 2 has a compressive elastic modulus of 1 MPa or less. It is possible to sufficiently suppress the embedding of the low-adhesive convex portion in the pressure-sensitive adhesive layer. For this reason, when peeling a separator from the rewound adhesive tape and sticking an adhesive tape on a to-be-adhered body, high adhesive force does not arise between an adhesive tape and an to-be-adhered body by presence of a low-adhesive convex part. As a result, the adhesive tape can be bonded to the intended position of the adherend with good workability.
  • the above is a description of the pressure-sensitive adhesive tape with a separator in which the separator 2 is superimposed on the surface opposite to the support of the pressure-sensitive adhesive layer 11 of the single-sided adhesive tape 1 having a support.
  • the separator 2 is superimposed on both sides of the pressure-sensitive adhesive tape 1 by superimposing separators 2 having a compression modulus of 1 MPa or less on both sides of the pressure-sensitive adhesive layer. It is possible to sufficiently suppress the occurrence of the crushing of the convex portions and the embedding of the low-adhesive convex portions in the adhesive layer.
  • the separator in the pressure-sensitive adhesive tape with a separator in the present invention may be a separator (so-called “single separator”) in which the separator is subjected to a double-sided release treatment. That is, the separator has a solid film or skin layer not only on the surface opposite to the pressure-sensitive adhesive layer (convex portion) of the pressure-sensitive adhesive tape of the film (porous film or the like) that is the main component of the separator, but also on the opposite surface. It may be a separator in a mode in which lamination and release treatment are performed, or a separator in a mode in which release processing is directly performed on the opposite surface.
  • Adhesive tape A Nitto Denko double-sided adhesive tape No. 515 (tape width: 5 mm) formed with low-adhesion convex portions.
  • -Adhesive layer (adhesive: acrylic adhesive, elastic modulus: 1.56 MPa, layer thickness: 250 ⁇ m) ⁇ Low-viscosity convex part (VERSATILE DESIGN (fishing line with a diameter of 150 ⁇ m) manufactured by Yamato Tegus Co., Ltd.) with a space part width of 4 mm arranged in a stripe shape and fixed by pressure by reciprocating a 5 kg roller (width 60 mm). Striped pattern (projection height: 127 ⁇ m, elastic modulus: 2024 MPa)). -Occupancy ratio of low-adhesion convex portions on the surface of the adhesive layer: 3.6%
  • a cationic polymerizable UV curable silicone release agent Shin-Etsu Chemical
  • High-density polyethylene film (thickness (T): 10 ⁇ m, tensile elastic modulus (E): 40 MPa, E ⁇ ) subjected to
  • Separator C One side of a polypropylene foam film (Nitto Denko SFC100, thickness: 0.5 mm, apparent density: 30 kg / m 3 ) is a cationic polymerizable UV curable silicone release agent (Shin-Etsu Chemical UV curable silicone X) -62-7622) to release the mold (release layer thickness: 1 ⁇ m).
  • the tensile elastic modulus of the solid film in the separators A, B, G to X was measured by the test method described above.
  • the compressive stress was measured by pressing from the direction perpendicular to the mold release surface against the center (temperature: 23 ° C., indenter area: 1 cm 2 , compression speed: 1 mm / min), and after reaching the target stress of 0.1 MPa, Compression recovery was achieved by moving a cylindrical indenter at a speed of 1 mm / min in the pulling direction.
  • Table 1 shows the measurement results of physical properties and characteristics of Examples and Comparative Examples.
  • Adhesive tape 1 Adhesive tape 2 Separator 3 Adhering body 10 Support body 11 Adhesive layer 12 Low-adhesion convex part 51 Porous film (foam film) 52 Other films (layers) 53 Release layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)

Abstract

Provided is a separator-fitted adhesive tape such that a decrease in the protrusion height of weakly adhesive protruding portions provided in parts of the adhesive layer surface is suppressed sufficiently. The separator-fitted adhesive tape comprises an adhesive tape provided with weakly adhesive protruding portions in parts of the adhesive layer surface, and a separator protecting the adhesive layer surface of the adhesive tape, the compressive elastic modulus of the separator being 1 MPa or lower.

Description

セパレーター付き粘着テープおよびセパレーターAdhesive tape and separator with separator
 本発明は、セパレーター付き粘着テープ、およびそれに用いられるセパレーターに関する。 The present invention relates to an adhesive tape with a separator and a separator used therefor.
 従来より、加圧接着型の粘着テープが知られている(例えば、特許文献1~3等)。この加圧接着型の粘着テープは、粘着剤層の表面に非粘着性又は微粘着性(以下、「非粘着性」及び「微粘着性」をまとめて「低粘着性」とも称する)の凸部が部分的に設けられた粘着テープであり、加圧せずに粘着テープが被着体表面に載置された状態では、低粘着性の凸部が被着体表面に当接し、粘着剤層が被着体表面に接触しにくいため、被着体表面上で粘着テープを移動させることができ、粘着テープの位置調整を行うことができる。そして、位置調整をした後、粘着テープを加圧すると、低粘着性の凸部が粘着剤層内に埋没し、粘着剤層が被着体に接触して接着力が発現し、被着体の意図した位置に粘着テープを接着することができる。 Conventionally, pressure-sensitive adhesive tapes are known (for example, Patent Documents 1 to 3). This pressure-adhesive pressure-sensitive adhesive tape has a non-adhesive or slightly-adhesive surface (hereinafter referred to as “non-adhesive” and “low-adhesive” collectively as “low-adhesive”) on the surface of the adhesive layer. The pressure-sensitive adhesive tape is partially provided, and in a state where the pressure-sensitive adhesive tape is placed on the adherend surface without applying pressure, the low-adhesive convex portion comes into contact with the adherend surface, and the pressure-sensitive adhesive Since the layer is unlikely to contact the adherend surface, the adhesive tape can be moved on the adherend surface, and the position of the adhesive tape can be adjusted. Then, after adjusting the position, when the pressure-sensitive adhesive tape is pressed, the low-adhesive convex portion is buried in the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer comes into contact with the adherend to develop an adhesive force. The adhesive tape can be adhered to the intended position.
 通常、粘着テープは製造の最終段階で巻回してロールにしてから保管される。このロールの作製時、粘着テープは加圧して巻かれることから粘着テープには巻き締りによる圧力が加わる。また、作製されたロールの保管や輸送時におけるロールの積み重ねや温湿度変化によってもロールに巻き締りが生じる。 Usually, the adhesive tape is wound and rolled in the final stage of production and then stored. During the production of this roll, the pressure-sensitive adhesive tape is wound under pressure, so that pressure due to tightening is applied to the pressure-sensitive adhesive tape. In addition, the rolls are also tightened by the rolls accumulated during storage and transportation of the produced rolls and changes in temperature and humidity.
特開平01-118584号公報Japanese Patent Application Laid-Open No. 01-118584 特開2010-215900号公報JP 2010-215900 A 特開2001-279200号公報JP 2001-279200 A
 本発明者等の検討によれば、加圧接着型の粘着テープのロールに上記のような巻き締りによる圧力が生じると、低粘着性の凸部の一部が粘着剤層に埋め込まれて、凸部の突出高さが減少するか、或いは、凸部が完全に粘着剤層に埋没することがあり、その結果、低粘着性の凸部による粘着テープの位置調整機能が低減或いは消失し、ロールから粘着テープを巻き戻して粘着テープを被着体表面に接着する際、粘着テープを被着体表面に載置するだけで粘着剤層が被着体に接触して接着力が発現してしまい、粘着テープの位置調整をスムーズに行うことができなくなる問題が生じることが分かった。また、保管したロールから巻き戻した粘着テープにおいて凸部の突出高さがある程度維持されていても、巻き戻した粘着テープを積み重ねて保管しておくと、積み重ねによる圧力により凸部の粘着剤層への埋没が生じて、上記と同様の問題が生じることがあることが分かった。 According to the study by the present inventors, when pressure due to the above-described winding tightening occurs in the pressure-adhesive pressure-sensitive adhesive tape roll, a part of the low-adhesive convex portion is embedded in the pressure-sensitive adhesive layer, The protrusion height of the convex portion is reduced, or the convex portion may be completely buried in the adhesive layer, and as a result, the position adjustment function of the adhesive tape by the low adhesive convex portion is reduced or eliminated, When the adhesive tape is rewound from the roll and adhered to the adherend surface, the adhesive layer comes into contact with the adherend just by placing the adhesive tape on the adherend surface, and an adhesive force is developed. Therefore, it has been found that there is a problem that the position adjustment of the adhesive tape cannot be performed smoothly. In addition, even if the protruding height of the convex portion is maintained to some extent in the adhesive tape that has been rewound from the stored roll, if the adhesive tape that has been rewound is stacked and stored, the pressure-sensitive adhesive layer of the convex portion is caused by the pressure caused by the stacking. It has been found that the same problem as described above may occur due to the burial.
 本発明は、上記のような事情に鑑みなされたもので、その解決しようとする課題は、粘着剤層表面に部分的に設けられた低粘着性の凸部の突出高さの減少が十分に抑制される、セパレーター付き粘着テープを提供することにある。
 また、セパレーター付き粘着テープに用いられる、粘着剤層表面に部分的に設けられた低粘着性の凸部の突出高さの減少を抑制できるセパレーターを提供することにある。
The present invention has been made in view of the above circumstances, and the problem to be solved is that the protrusion height of the low-adhesive convex portion partially provided on the surface of the pressure-sensitive adhesive layer is sufficiently reduced. It is providing the adhesive tape with a separator which is suppressed.
Moreover, it is providing the separator which can suppress the reduction | decrease in the protrusion height of the low adhesive convex part partially provided in the adhesive layer surface used for the adhesive tape with a separator.
 本発明者等は、上記の課題を解決するために鋭意研究した結果、圧縮弾性率が一定値以下のセパレーターであれば、粘着テープの粘着剤層表面に設けられた低粘着性の凸部に加わる応力集中を十分に緩和できることを見出した。かかる知見に基づく本発明は以下の通りである。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that the separator having a compressive elastic modulus of a certain value or less is formed on the low-adhesive convex portion provided on the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape. It was found that the applied stress concentration can be sufficiently relaxed. The present invention based on such knowledge is as follows.
[1] 粘着剤層表面に低粘着性の凸部が部分的に設けられた粘着テープと、該粘着テープの粘着剤層表面を保護するセパレーターとを有し、該セパレーターの圧縮弾性率が1MPa以下であることを特徴とする、セパレーター付き粘着テープ。
[2] セパレーターの200μm圧縮時の圧縮応力が0.1MPa以下であり、かつ、該圧縮後の圧縮回復時の変形量200μmにおける圧縮応力が0.05MPa以下である、上記[1]記載のセパレーター付き粘着テープ。
[3] セパレーターが、(a)多孔質フィルムの少なくとも片面に(b)中実フィルムまたはスキン層が積層され、該(b)中実フィルムまたはスキン層の表面に(c)離型処理が施されたものである、上記[1]または[2]のセパレーター付き粘着テープ。
[4] (a)多孔質フィルムが、ポリオレフィン発泡体、ポリエステル発泡体、ポリウレタン発泡体又はゴム系発泡体である、上記[3]記載のセパレーター付き粘着テープ。
[5] (b)中実フィルムが樹脂製の中実フィルムであり、該樹脂製の中実フィルムまたはスキン層の引張弾性率をE(N/m)、厚さをT(m)としたき、E×Tの値が500μN・m未満である、上記[4]記載のセパレーター付き粘着テープ。
[6] 中実フィルムが、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体及びポリエチレンテレフタレートからなる群から選択される1種又は2種以上の樹脂を含む中実フィルムである、上記[3]~[5]のいずれか1つに記載のセパレーター付き粘着テープ。
[7] 粘着テープの粘着剤層表面に部分的に設けられた低粘着性の凸部が、粘着剤層表面からの突出高さが200μm以下のストライプ状、格子状またはドット状の低粘着性パターンである、上記[1]~[6]のいずれか1つに記載のセパレーター付き粘着テープ。
[8] 粘着剤層の弾性率が0.01~10MPaである、上記[1]~[7]のいずれか1つに記載のセパレーター付き粘着テープ。
[9] 低粘着性の凸部の弾性率が0.1MPa以上である、上記[1]~[8]のいずれか1つに記載のセパレーター付き粘着テープ。
[10] 低粘着性の凸部の弾性率が粘着剤層の弾性率より高い、上記[1]~[9]のいずれか1つに記載のセパレーター付き粘着テープ。
[11] 粘着剤層表面に低粘着性の凸部が部分的に設けられた粘着テープの該粘着剤層表面を保護するセパレーターであって、圧縮弾性率が1MPa以下であることを特徴とする、セパレーター。
[12] 200μm圧縮時の圧縮応力が0.1MPa以下であり、かつ、該圧縮後の圧縮回復時の変形量200μmにおける圧縮応力が0.05MPa以下である、上記[11]記載のセパレーター。
[13] (a)多孔質フィルムの少なくとも片面に(b)中実フィルムまたはスキン層が積層され、該(b)中実フィルムまたはスキン層の表面に(c)離型処理が施されたものである、上記[11]または[12]記載のセパレーター。
[14] (a)多孔質フィルムが、ポリオレフィン発泡体、ポリエステル発泡体、ポリウレタン発泡体又はゴム系発泡体である、上記[13]記載のセパレーター。
[15] (b)中実フィルムが樹脂製の中実フィルムであり、該樹脂製の中実フィルムまたはスキン層の引張弾性率をE(N/m)、厚さをT(m)としたき、E×Tの値が500μN・m未満である、上記[14]記載のセパレーター。
[16] 中実フィルムが、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体及びポリエチレンテレフタレートからなる群から選択される1種又は2種以上の樹脂を含む中実フィルムである、上記[13]~[15]のいずれか1つに記載のセパレーター。
[1] A pressure-sensitive adhesive tape having a pressure-sensitive adhesive layer partially provided with a low-adhesive convex portion and a separator that protects the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape, and the separator has a compression modulus of 1 MPa An adhesive tape with a separator, characterized by:
[2] The separator according to the above [1], wherein the separator has a compressive stress at 200 μm compression of 0.1 MPa or less and a compressive stress at a deformation amount of 200 μm at the time of compression recovery after compression is 0.05 MPa or less. Adhesive tape with.
[3] In the separator, (a) a solid film or skin layer (b) is laminated on at least one surface of the porous film, and (c) a release treatment is applied to the surface of the solid film or skin layer. The separator-attached pressure-sensitive adhesive tape according to the above [1] or [2].
[4] (a) The adhesive tape with a separator according to the above [3], wherein the porous film is a polyolefin foam, a polyester foam, a polyurethane foam or a rubber foam.
[5] (b) The solid film is a resin solid film, and the tensile elastic modulus of the resin solid film or skin layer is E (N / m 2 ) and the thickness is T (m). The pressure-sensitive adhesive tape with a separator according to the above [4], wherein the value of E × T 3 is less than 500 μN · m.
[6] One or more resins in which the solid film is selected from the group consisting of high density polyethylene, low density polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer, and polyethylene terephthalate The pressure-sensitive adhesive tape with a separator according to any one of the above [3] to [5], which is a solid film containing.
[7] The low-adhesive convex portion partially provided on the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape has a stripe-like, lattice-like or dot-like low-adhesiveness with a protruding height from the pressure-sensitive adhesive layer surface of 200 μm or less. The adhesive tape with a separator according to any one of [1] to [6], which is a pattern.
[8] The pressure-sensitive adhesive tape with a separator according to any one of [1] to [7], wherein the elastic modulus of the pressure-sensitive adhesive layer is 0.01 to 10 MPa.
[9] The separator-attached adhesive tape according to any one of the above [1] to [8], wherein the elastic modulus of the low-adhesive convex portion is 0.1 MPa or more.
[10] The pressure-sensitive adhesive tape with a separator according to any one of the above [1] to [9], wherein the elastic modulus of the low-adhesive convex portion is higher than the elastic modulus of the pressure-sensitive adhesive layer.
[11] A separator for protecting the pressure-sensitive adhesive layer surface of a pressure-sensitive adhesive tape in which a low-adhesive convex portion is partially provided on the surface of the pressure-sensitive adhesive layer, wherein the compression elastic modulus is 1 MPa or less. ,separator.
[12] The separator according to [11] above, wherein the compressive stress at the time of 200 μm compression is 0.1 MPa or less, and the compressive stress at a deformation amount of 200 μm at the time of compression recovery after compression is 0.05 MPa or less.
[13] (a) A (b) solid film or skin layer is laminated on at least one surface of a porous film, and (c) a release treatment is applied to the surface of the (b) solid film or skin layer The separator according to [11] or [12] above.
[14] (a) The separator according to [13] above, wherein the porous film is a polyolefin foam, a polyester foam, a polyurethane foam or a rubber foam.
[15] (b) The solid film is a resin solid film, and the tensile elastic modulus of the resin solid film or skin layer is E (N / m 2 ), and the thickness is T (m). The separator according to [14] above, wherein the value of E × T 3 is less than 500 μN · m.
[16] One or more resins in which the solid film is selected from the group consisting of high-density polyethylene, low-density polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer, and polyethylene terephthalate The separator according to any one of [13] to [15] above, wherein the separator is a solid film.
 本発明によれば、セパレーターが粘着剤層表面の保護だけでなく、粘着剤層表面に設けられた低粘着性の凸部に加わる応力集中を緩和する機能を有するため、粘着テープのロールの巻き締りや巻き戻した粘着テープの積み重ねによって粘着テープに圧力が加わっても、低粘着性の凸部の潰れや低粘着性の凸部の粘着剤層への埋没が生じるのを十分に抑制することができる。このため、巻き戻した粘着テープからセパレーターを剥がして粘着テープを被着体に貼付する際、低粘着性の凸部の存在によって粘着テープを被着体との間に高い接着力が生じることなくスムーズに移動させることができ、その結果、被着体の意図した位置に粘着テープを作業性良く、接着することができる。 According to the present invention, the separator has not only the protection of the pressure-sensitive adhesive layer surface but also the function of relaxing the stress concentration applied to the low-adhesive convex portion provided on the pressure-sensitive adhesive layer surface. Even if pressure is applied to the pressure-sensitive adhesive tape by stacking of the pressure-sensitive adhesive tapes that have been tightened or rewound, it is possible to sufficiently suppress the occurrence of the crushing of the low-adhesive convex portions or the embedding of the low-adhesive convex portions in the adhesive layer. Can do. For this reason, when peeling a separator from the rewound adhesive tape and sticking an adhesive tape on a to-be-adhered body, high adhesive force does not arise between an adhesive tape and an to-be-adhered body by presence of a low-adhesive convex part. As a result, the adhesive tape can be bonded to the intended position of the adherend with good workability.
本発明における第1例の粘着テープの概略斜視図である。It is a schematic perspective view of the adhesive tape of the 1st example in this invention. 本発明における粘着テープの被着体への貼付作業時の状態変化を示す概略断面図である。It is a schematic sectional drawing which shows the state change at the time of the sticking operation | work to the to-be-adhered body of the adhesive tape in this invention. 本発明における第2例の粘着テープの平面図である。It is a top view of the adhesive tape of the 2nd example in the present invention. 本発明における第3例の粘着テープの平面図である。It is a top view of the adhesive tape of the 3rd example in the present invention. 本発明における粘着テープのドット状の凸部が千鳥状に配列された状態を示す平面図である。It is a top view which shows the state by which the dot-shaped convex part of the adhesive tape in this invention was arranged in zigzag form. 複数の凝集性粒子の集合体からなる凸部の概略側面図である。It is a schematic side view of the convex part which consists of an aggregate | assembly of several aggregating particle | grains. 凸部を構成するコアシェル構造ポリマー粒子を示す断面斜視図である。It is a cross-sectional perspective view which shows the core-shell structure polymer particle which comprises a convex part. 本発明のセパレーター付き粘着テープにおける粘着テープの凸部を有する粘着剤層の表面にセパレーターを重ね合わせた状態を示す要部概略断面図である。It is a principal part schematic sectional drawing which shows the state which accumulated the separator on the surface of the adhesive layer which has the convex part of the adhesive tape in the adhesive tape with a separator of this invention. 本発明のセパレーター付き粘着テープにおけるセパレーターの好適態様の概略断面図である。It is a schematic sectional drawing of the suitable aspect of the separator in the adhesive tape with a separator of this invention. 粘着剤層および凸部の弾性率の測定方法を説明する図である。It is a figure explaining the measuring method of the elastic modulus of an adhesive layer and a convex part. 凸部の摩擦力の測定方法を説明する図である。It is a figure explaining the measuring method of the frictional force of a convex part.
 以下、本発明をその好適な実施形態に即してより具体的に説明する。
 本発明のセパレーター付き粘着テープは、粘着剤層表面に低粘着性の凸部が部分的に設けられた粘着テープと、該粘着テープの粘着剤層表面を保護するセパレーターとを含む。
Hereinafter, the present invention will be described more specifically with reference to preferred embodiments thereof.
The pressure-sensitive adhesive tape with a separator of the present invention includes a pressure-sensitive adhesive tape in which a low-adhesive convex portion is partially provided on the pressure-sensitive adhesive layer surface, and a separator that protects the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape.
 なお、一般に、「シート」は薄くて広いもの、「テープ」は薄くて細いものを意味することが多いが、本発明でいう「粘着テープ」は、薄くて細い形状の粘着部材だけでなく、「粘着シート」と呼ばれることが多い、薄くて広い形状の粘着部材も含む概念で使用している。 In general, "sheet" means thin and wide, and "tape" often means thin and thin, but the "adhesive tape" in the present invention is not only a thin and thin adhesive member, It is used in a concept including an adhesive member having a thin and wide shape, which is often called an “adhesive sheet”.
 先ず、粘着テープについて詳しく説明する。 First, the adhesive tape will be described in detail.
1.粘着テープ
 図1は本発明のセパレーター付き粘着テープを構成する第1例の粘着テープの概略斜視図である。本発明における粘着テープはかかる第1例の粘着テープ1に示されるように、粘着剤層11と、該粘着剤層11の表面に部分的に設けられた低粘着性の凸部12とを含む。ここで、「低粘着性の凸部」における「低粘着性」とは、非粘着(タックを有しない)か、或いは、凸部12が粘着剤層11よりも低タックであることを意味する。
1. Adhesive Tape FIG. 1 is a schematic perspective view of a first example of the adhesive tape constituting the separator-attached adhesive tape of the present invention. The pressure-sensitive adhesive tape according to the present invention includes a pressure-sensitive adhesive layer 11 and a low-tackiness convex portion 12 partially provided on the surface of the pressure-sensitive adhesive layer 11 as shown in the pressure-sensitive adhesive tape 1 of the first example. . Here, “low adhesiveness” in “low adhesive convexity” means non-adhesive (no tack), or the convexity 12 is lower tack than the adhesive layer 11. .
 なお、本第1例(図1)の粘着テープ1は片面粘着タイプの粘着テープであり、粘着剤層11の低粘着性の凸部12が設けられた面とは反対側の面に支持体10を有している。 The pressure-sensitive adhesive tape 1 of the first example (FIG. 1) is a single-sided pressure-sensitive adhesive tape, and is a support on the surface of the pressure-sensitive adhesive layer 11 opposite to the surface on which the low-adhesive convex portion 12 is provided. 10.
 図2は図1の粘着テープ1の被着体3への貼付作業時の状態変化を説明するための粘着テープと被着体の概略断面図である。本発明における粘着テープは、粘着剤層11の表面に、低粘着性の凸部12(以下、「低粘着性の凸部」は単に「凸部」とも略称する)が部分的に設けられているので、粘着テープ1が被着体3の表面に載置された状態(非加圧の状態)では、図2(A)に示されるように、低粘着性の凸部12が被着体3に当接し、粘着剤層11が被着体3に実質的に接触しないので、被着体3の表面上で粘着テープ1を容易に移動させることができる。また、被着体3の表面に載置された粘着テープ1が微弱な圧力で加圧されたときは、図2(B)に示されるように、低粘着性の凸部12の一部が粘着剤層11内に埋没することから、粘着剤層11の表面から低粘着性の凸部12が露出した状態で粘着剤層11の一部が被着体3に接触し(図2(B)中、粘着剤層11と被着体3の接触領域は図示していない。)、低い接着力で粘着テープが被着体3に接着する。このため、被着体3に粘着テープ1を微弱な圧力で加圧して被着体3に仮止めした後(低い接着力で粘着テープを貼付けた後)、被着体3から粘着テープ1を容易に剥離することができ、また、剥離後は低粘着性の凸部12が露出しているので、被着体3の表面上で粘着テープ1を比較的容易に移動させることができる。図2(C)は、被着体3の表面に載置された粘着テープ1に十分な圧力を加えて被着体3に粘着テープ1を接着させた状態である。図2(C)に示されるように、粘着テープ1に加えられた十分な圧力により低粘着性の凸部12はその全体が粘着剤層11内に埋没するため、粘着テープ1が被着体3に十分な接着力で接着される。 FIG. 2 is a schematic cross-sectional view of the adhesive tape and the adherend for explaining a change in state when the adhesive tape 1 of FIG. 1 is applied to the adherend 3. In the pressure-sensitive adhesive tape of the present invention, a low-adhesive convex portion 12 (hereinafter, “low-adhesive convex portion” is simply abbreviated as “convex portion”) is partially provided on the surface of the pressure-sensitive adhesive layer 11. Therefore, in a state where the adhesive tape 1 is placed on the surface of the adherend 3 (non-pressurized state), as shown in FIG. 3, and the adhesive layer 11 does not substantially contact the adherend 3, so that the adhesive tape 1 can be easily moved on the surface of the adherend 3. In addition, when the adhesive tape 1 placed on the surface of the adherend 3 is pressed with a weak pressure, as shown in FIG. Since it is buried in the pressure-sensitive adhesive layer 11, a part of the pressure-sensitive adhesive layer 11 comes into contact with the adherend 3 with the low-adhesive convex portions 12 exposed from the surface of the pressure-sensitive adhesive layer 11 (FIG. 2 (B ), The contact area between the pressure-sensitive adhesive layer 11 and the adherend 3 is not shown.) The pressure-sensitive adhesive tape adheres to the adherend 3 with a low adhesive force. For this reason, the pressure-sensitive adhesive tape 1 is pressed onto the adherend 3 with a weak pressure and temporarily fixed to the adherend 3 (after the pressure-sensitive adhesive tape is pasted with a low adhesive force), and then the pressure-sensitive adhesive tape 1 is removed from the adherend 3. The adhesive tape 1 can be easily peeled, and after the peeling, the low-adhesive convex portion 12 is exposed, so that the adhesive tape 1 can be moved relatively easily on the surface of the adherend 3. FIG. 2C shows a state in which the adhesive tape 1 is adhered to the adherend 3 by applying sufficient pressure to the adhesive tape 1 placed on the surface of the adherend 3. As shown in FIG. 2C, the adhesive tape 1 is attached to the adherend because the low adhesive convexity 12 is entirely embedded in the adhesive layer 11 by sufficient pressure applied to the adhesive tape 1. 3 is bonded with a sufficient adhesive force.
 このように本発明のセパレーター付き粘着テープにおける粘着テープは、被着体への接着位置を最終的に決定するまでは、被着体上で容易に位置調整することができ、位置調整終了後は、被着体に十分な接着力で接着させることができる。 As described above, the pressure-sensitive adhesive tape in the pressure-sensitive adhesive tape with a separator of the present invention can be easily adjusted on the adherend until the position of adhesion to the adherend is finally determined. It can be adhered to the adherend with sufficient adhesive force.
[粘着剤層]
 本発明における粘着テープ1の粘着剤層11は、感圧性粘着剤を主成分として含有する感圧性粘着剤層である。感圧性粘着剤(以下、単に「粘着剤」とも略称する)としては、特に限定されるものではなく、例えば、粘着剤を構成するベースポリマーの種類によって、ゴム系粘着剤、アクリル系粘着剤、ポリアミド系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、エチレン-酢酸ビニル共重合体系粘着剤、ウレタン系粘着剤等が挙げられ、これら公知の粘着剤の中から適宜選択することができる。なかでも、アクリル系粘着剤は、耐熱性、耐候性等種々の特性に優れ、アクリル系重合体を構成するモノマー成分の種類等を選択することにより、所望の特性を発現させることが可能であるため、好適に使用することができる。
[Adhesive layer]
The pressure-sensitive adhesive layer 11 of the pressure-sensitive adhesive tape 1 in the present invention is a pressure-sensitive pressure-sensitive adhesive layer containing a pressure-sensitive pressure-sensitive adhesive as a main component. The pressure-sensitive adhesive (hereinafter also simply referred to as “adhesive”) is not particularly limited. For example, depending on the type of base polymer constituting the adhesive, a rubber-based adhesive, an acrylic adhesive, Examples of the pressure-sensitive adhesive include polyamide-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, ethylene-vinyl acetate copolymer-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives. Among these, the acrylic pressure-sensitive adhesive is excellent in various properties such as heat resistance and weather resistance, and it is possible to express desired properties by selecting the kind of monomer component constituting the acrylic polymer. Therefore, it can be preferably used.
 アクリル系粘着剤は、通常、(メタ)アクリル酸アルキルエステルを主モノマー成分として構成されるベースポリマーによって形成される。(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル等の(メタ)アクリル酸C1-20アルキルエステル(好ましくは(メタ)アクリル酸C2-12アルキルエステル、さらに好ましくは(メタ)アクリル酸C2-8アルキルエステル)等が挙げられる。(メタ)アクリル酸アルキルエステルは1種又は2種以上を選択して使用することができる。なお、本明細書において、「(メタ)アクリル」とは、「アクリル」及び「メタクリル」を意味する。 The acrylic pressure-sensitive adhesive is usually formed by a base polymer composed of (meth) acrylic acid alkyl ester as a main monomer component. Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) Isobutyl acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-Methylhexyl acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate , Dodecyl (meth) acrylate, tridecyl (meth) acrylate, (me ) Acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, octadecyl (meth) acrylate, nonadecyl (meth) eicosyl acrylate (meth) acrylic acid C 1-20 alkyl esters (preferably (meth ) Acrylic acid C 2-12 alkyl ester, more preferably (meth) acrylic acid C 2-8 alkyl ester). One or more (meth) acrylic acid alkyl esters can be selected and used. In the present specification, “(meth) acryl” means “acryl” and “methacryl”.
 アクリル系重合体は、凝集力、耐熱性、架橋性等の改質を目的として、必要に応じて(メタ)アクリル酸アルキルエステルと共重合可能な他の単量体成分に対応する単位を含んでいてもよい。このような単量体成分としては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマー;(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチルメタクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクロイルホスフェート等のリン酸基含有モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド等の(N-置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチル等の(メタ)アクリル酸アミノアルキル系モノマー;(メタ)アクリル酸アルコキシアルキル系モノマー;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミド等のイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー;酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N-ビニルカルボン酸アミド類、スチレン、α-メチルスチレン、N-ビニルカプロラクタム等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレート系モノマー;(メタ)アクリル酸グリシジル等のエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチルグリコール、(メタ)アクリル酸メトキシポリプロピレングリコール等のグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレート等の複素環、ハロゲン原子、ケイ素原子等を有するアクリル酸エステル系モノマー;ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ジビニルベンゼン、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレート等の多官能モノマー;イソプレン、ジブタジエン、イソブチレン等のオレフィン系モノマー;ビニルエーテル等のビニルエーテル系モノマー等が挙げられる。これらの単量体成分は1種又は2種以上を使用することができる。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester as necessary for the purpose of modifying cohesion, heat resistance, crosslinkability and the like. You may go out. Examples of such monomer components include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid and other carboxyl group-containing monomers; (meth) acrylic acid hydroxy Hydroxyl group-containing monomers such as butyl, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl methacrylate; Styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acrylic Sulfonic acid group-containing monomers such as yloxynaphthalene sulfonic acid; Phosphoric acid group-containing monomers such as 2-hydroxyethyl acroyl phosphate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-butyl (meth) acrylamide (N-substituted) amide monomers such as N-methylol (meth) acrylamide and N-methylolpropane (meth) acrylamide; aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, ( (Meth) acrylic acid aminoalkyl monomers such as t-butylaminoethyl methacrylate; (meth) acrylic alkoxyalkyl monomers; N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide etc Maleimide monomers: Itacone imides such as N-methyl itaconimide, N-ethyl itaconimide, N-butyl itaconimide, N-octyl itaconimide, N-2-ethylhexylitaconimide, N-cyclohexyl leuconconimide, N-lauryl itaconimide Succinimide monomers such as N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, N- (meth) acryloyl-8-oxyoctamethylene succinimide; vinyl acetate, propion Vinyl acid, N-vinyl pyrrolidone, methyl vinyl pyrrolidone, vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, vinyl pyrrole, vinyl imidazole , Vinyl oxazole, vinyl morpholine, N-vinyl carboxylic acid amides, vinyl monomers such as styrene, α-methyl styrene, N-vinyl caprolactam; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; (meth) acrylic acid Epoxy group-containing acrylic monomers such as glycidyl; glycol-based acrylic ester monomers such as (meth) acrylic acid polypropylene glycol, (meth) acrylic acid methoxyethyl glycol, (meth) acrylic acid methoxypolypropylene glycol; (meth) acrylic acid tetrahydrofur Acrylic acid ester monomers having heterocycles such as furyl, fluorine (meth) acrylate, silicone (meth) acrylate, halogen atoms, silicon atoms, etc .; hexanediol di (meth) Chryrate, (poly) ethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri Polyfunctional monomers such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy acrylate, polyester acrylate, urethane acrylate, divinylbenzene, butyl di (meth) acrylate, hexyl di (meth) acrylate; isoprene, dibutadiene, isobutylene, etc. Olefin-based monomers; vinyl ether-based monomers such as vinyl ether. These monomer components can be used alone or in combination of two or more.
 アクリル系共重合体は、上述の(メタ)アクリル酸アルキルエステルと、必要に応じてその他の単量体を公知適宜な方法により重合に付すことにより製造できる。アクリル系共重合体の分子量等は特に制限されず、例えば、重量平均分子量100000~2000000、好ましくは150000~1000000、さらに好ましくは300000~1000000の範囲であるものを使用できる。 The acrylic copolymer can be produced by subjecting the above (meth) acrylic acid alkyl ester and, if necessary, other monomers to polymerization by a known appropriate method. The molecular weight and the like of the acrylic copolymer are not particularly limited, and for example, those having a weight average molecular weight of 100,000 to 2,000,000, preferably 150,000 to 1,000,000, more preferably 300,000 to 1,000,000 can be used.
 粘着剤は、ベースポリマーとしてカルボキシル基等の酸性基を有するポリマーを使用し、中和剤を添加してベースポリマー中の酸性基の全部又は一部を中和することにより親水性を付与した親水性粘着剤としてもよい。親水性粘着剤は一般に被着体への糊残りが少なく、また、糊残りが生じた場合であっても、純水で洗浄することにより簡易に除去することができる。
 酸性基を有するポリマーは、ベースポリマーを調製する際に上述のカルボキシル基含有モノマー等の酸性基を有する単量体を共重合することにより得られる。
 中和剤としては、例えば、モノエチルアミン、モノエタノールアミン等の1級アミン、ジエチルアミン、ジエタノールアミン等の2級アミン、トリエチルアミン、トリエタノールアミン、N,N,N’-トリメチルエチレンジアミン、N-メチルジエタノールアミン、N,N-ジエチルヒドロキシルアミン等の3級アミン等、アルカリ性を示す有機アミノ化合物が挙げられる。
The pressure sensitive adhesive uses a polymer having an acidic group such as a carboxyl group as the base polymer, and a hydrophilicity imparted by adding a neutralizing agent to neutralize all or some of the acidic groups in the base polymer. It is good also as an adhesive. The hydrophilic adhesive generally has little adhesive residue on the adherend, and even when adhesive residue is generated, it can be easily removed by washing with pure water.
The polymer having an acidic group is obtained by copolymerizing a monomer having an acidic group such as the above-mentioned carboxyl group-containing monomer when preparing the base polymer.
Examples of the neutralizing agent include primary amines such as monoethylamine and monoethanolamine, secondary amines such as diethylamine and diethanolamine, triethylamine, triethanolamine, N, N, N′-trimethylethylenediamine, N-methyldiethanolamine, Examples thereof include organic amino compounds exhibiting alkalinity, such as tertiary amines such as N, N-diethylhydroxylamine.
 粘着剤は、必要に応じて架橋剤を含んでいてもよい。
 架橋剤としては、例えば、エポキシ系架橋剤、イソシアネート系架橋剤、メラミン系架橋剤、過酸化物系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤等の架橋剤を使用することができ、エポキシ系架橋剤、イソシアネート系架橋剤等を好適に使用することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。
 エポキシ系架橋剤としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-グリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテル、分子内にエポキシ基を2つ以上有するエポキシ樹脂等が挙げられる。
 イソシアネート系架橋剤としては、例えば、1,2-エチレンジイソシアネート、1,4-ブチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネート等の脂肪族ポリイソシアネート類;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート類等が挙げられる。
The pressure-sensitive adhesive may contain a crosslinking agent as required.
Examples of the crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, a melamine crosslinking agent, a peroxide crosslinking agent, a metal alkoxide crosslinking agent, a metal chelate crosslinking agent, a metal salt crosslinking agent, and a carbodiimide crosslinking. Crosslinkers such as an agent, an oxazoline crosslinker, an aziridine crosslinker, and an amine crosslinker can be used, and an epoxy crosslinker, an isocyanate crosslinker, and the like can be preferably used. You may use these individually or in combination of 2 or more types.
Examples of the epoxy crosslinking agent include N, N, N ′, N′-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, 1,6 -Hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol Polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether Ter, adipic acid diglycidyl ester, o-phthalic acid diglycidyl ester, triglycidyl-tris (2-hydroxyethyl) isocyanurate, resorcin diglycidyl ether, bisphenol-S-diglycidyl ether, two epoxy groups in the molecule Examples thereof include epoxy resins having the above.
Examples of the isocyanate-based crosslinking agent include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate. Aliphatic polyisocyanates such as hydrogenated tolylene diisocyanate and hydrogenated xylene diisocyanate; aromatics such as 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate And polyisocyanates.
 粘着剤層11は、可塑剤、安定剤、フィラー滑剤、着色剤、紫外線吸収剤、酸化防止剤、着色剤等の添加剤を含んでいてもよい。 The pressure-sensitive adhesive layer 11 may contain additives such as a plasticizer, a stabilizer, a filler lubricant, a colorant, an ultraviolet absorber, an antioxidant, and a colorant.
 本発明において、粘着剤層11は十分なタックを発現するために、弾性率が0.01~10MPaであるのが好ましく、0.1~10MPaであるのがより好ましい。 In the present invention, the pressure-sensitive adhesive layer 11 preferably has an elastic modulus of 0.01 to 10 MPa, more preferably 0.1 to 10 MPa in order to exhibit sufficient tack.
 また、前述のとおり、本発明における粘着テープ1は加圧時に低粘着性の凸部12が粘着剤層11内に埋め込まれた状態になり、粘着剤層11が被着体3に接触して接着力が発現する構成になっている。従って、粘着剤層11の弾性率と低粘着性の凸部12の弾性率の関係が重要になる。後述のとおり、低粘着性の凸部12は位置調整機能を発揮するためには、被着体との接触状態において、自体が変形しないことが必要であり、そのために0.1MPa以上の弾性率を有する。粘着剤層11の弾性率が0.01~10MPaであると、低粘着性の凸部12の弾性率(0.1MPa以上)とのバランスを保ちつつ、位置調整機能と接着性の双方に関して良好な結果が得られる。なお、粘着テープの粘着剤層の弾性率は下記の方法で測定される。 In addition, as described above, the pressure-sensitive adhesive tape 1 according to the present invention is in a state in which the low-adhesive convex portion 12 is embedded in the pressure-sensitive adhesive layer 11 when pressed, and the pressure-sensitive adhesive layer 11 contacts the adherend 3. It has a structure in which adhesive force is developed. Therefore, the relationship between the elastic modulus of the pressure-sensitive adhesive layer 11 and the elastic modulus of the low-adhesive convex portion 12 becomes important. As will be described later, in order to exert the position adjustment function, the low-adhesion convex portion 12 needs not to be deformed itself in a contact state with the adherend, and for that reason, an elastic modulus of 0.1 MPa or more. Have When the elastic modulus of the pressure-sensitive adhesive layer 11 is 0.01 to 10 MPa, both the position adjustment function and the adhesiveness are good while maintaining the balance with the elastic modulus (0.1 MPa or more) of the low-adhesive convex portion 12. Results. In addition, the elasticity modulus of the adhesive layer of an adhesive tape is measured by the following method.
 粘着剤層11の厚さは特に制限されないが、好ましくは10~1000μm、より好ましくは50~500μm、特に好ましくは70~250μmである。粘着剤層の厚さが上記の好ましい範囲内であると、低粘着性の凸部12による位置調整機能を維持しつつ、位置調整後の粘着テープの加圧接着時に十分な接着力にて粘着テープを被着体に接着することができる。 The thickness of the pressure-sensitive adhesive layer 11 is not particularly limited, but is preferably 10 to 1000 μm, more preferably 50 to 500 μm, and particularly preferably 70 to 250 μm. When the thickness of the pressure-sensitive adhesive layer is within the above-mentioned preferable range, while maintaining the position adjusting function by the low-tackiness convex portion 12, the pressure-sensitive adhesive tape is adhered with sufficient adhesive force when pressure-bonding the pressure-sensitive adhesive tape after position adjustment. The tape can be adhered to the adherend.
[低粘着性の凸部]
 上記第1例(図1)の粘着テープ1では、低粘着性の凸部12が粘着剤層11の表面にドット状に設けられている。また、図3、4は本発明における粘着テープの第2、第3例の要部平面図であり、これらの例では、低粘着性の凸部12は、ストライプ状、格子状にそれぞれ設けられている。本発明における粘着テープ1において、低粘着性の凸部12は、粘着剤層11の表面全体に一様なパターンで設けられていればよく、パターンの形状は特に限定されないが、パターン形成のしやすさの観点から、ドット状、ストライプ状、格子状、網状等が好ましい。なお、ここでいう、「格子状」と「網状」は、「格子状」が孔部(凸部の非存在部分)の平面形状が正方形や長方形になる凸部のパターンであり、「網状」が孔部(凸部の非存在部分)の平面形状が正方形及び長方形以外の形状になる凸部のパターンである点で相違する。凸部が網状の場合、孔部(凸部の非存在部分)の形状は、全て同じであってもよく、また孔部ごとに異なっていてもよいが、全て同じであるのが好ましい。
[Low adhesive convexity]
In the pressure-sensitive adhesive tape 1 of the first example (FIG. 1), the low-adhesive convex portions 12 are provided in the form of dots on the surface of the pressure-sensitive adhesive layer 11. 3 and 4 are main part plan views of the second and third examples of the adhesive tape in the present invention. In these examples, the low-adhesive convex portions 12 are provided in a stripe shape and a lattice shape, respectively. ing. In the pressure-sensitive adhesive tape 1 according to the present invention, the low-adhesive convex portion 12 is only required to be provided in a uniform pattern on the entire surface of the pressure-sensitive adhesive layer 11, and the shape of the pattern is not particularly limited. From the viewpoint of easiness, a dot shape, a stripe shape, a lattice shape, a net shape and the like are preferable. As used herein, “lattice” and “mesh” are “lattice” is a pattern of convex portions in which the planar shape of the hole (non-existing portion of the convex portion) is a square or a rectangle, Is different in that the planar shape of the hole (the non-existent portion of the convex portion) is a convex pattern that has a shape other than a square and a rectangle. When the convex portion is net-like, the shape of the hole portion (the non-existing portion of the convex portion) may be all the same or may be different for each hole portion, but it is preferable that they are all the same.
 凸部がドット状のパターンである場合、個々のドット(凸部)の平面形状は、三角形、四角形(例えば、正方形、長方形、ひし形、台形等)、円形(例えば、真円、真円に近い円、楕円形状等)、長円形、正多角形(正方形等)、星形等の種々の形状であってよく、また、ドットの配列形態は特に限定はされないが、正方行列状、千鳥状等が好ましい。なお、第1例(図1)の粘着テープ1では、平面形状が円形のドット(凸部12)が千鳥状に配列されている。 When the convex part is a dot-like pattern, the planar shape of each dot (convex part) is a triangle, a quadrangle (for example, a square, a rectangle, a rhombus, a trapezoid, etc.), or a circle (for example, a perfect circle or a perfect circle) (Circle, ellipse shape, etc.), oval, regular polygon (square, etc.), star shape, etc., and the dot arrangement is not particularly limited, but is a square matrix, staggered, etc. Is preferred. In the adhesive tape 1 of the first example (FIG. 1), the dots (projections 12) having a circular planar shape are arranged in a staggered pattern.
 凸部12がドット状のパターンである場合、ドット(凸部12)の平面面積は0.007~20mmが好ましく、0.2~1.8mmがより好ましい。なお、ドット(凸部12)の平面面積は全てのドット(凸部12)で同じであってもよいし、ドット(凸部12)ごとに異なっていてもよいが、全てのドット(凸部12)で同じであるのが好ましい。また、隣接するドット(凸部12)間のピッチ(中心点間の距離)は0.1~5mmが好ましく、0.2~2mmがより好ましい。
 なお、ドット(凸部12)が千鳥状に配列されている場合(図5)、ドット(凸部12)間のピッチは図5中のD1とD2である。
If the convex portion 12 is a dot-like pattern, the planar area of the dot (projecting portions 12) is preferably 0.007 ~ 20 mm 2, more preferably 0.2 ~ 1.8 mm 2. The plane area of the dot (convex portion 12) may be the same for all the dots (convex portion 12) or may be different for each dot (convex portion 12). 12) is preferably the same. Further, the pitch (distance between the center points) between adjacent dots (convex portions 12) is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 mm.
When dots (convex portions 12) are arranged in a staggered pattern (FIG. 5), the pitch between the dots (convex portions 12) is D1 and D2 in FIG.
 凸部12がストライプ状のパターンの場合、個々の線部(凸部)の幅は0.1~5mmが好ましく、0.2~2mmがより好ましい。また、隣接する線部(凸部)間のスペース部の幅(図3中のD)は0.1~5mmが好ましく、0.2~2mmがより好ましい。 When the convex portion 12 is a stripe pattern, the width of each line portion (convex portion) is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 mm. Further, the width (D in FIG. 3) of the space between adjacent line parts (convex parts) is preferably 0.1 to 5 mm, and more preferably 0.2 to 2 mm.
 凸部12が格子状のパターンの場合、縦、横の線部(凸部)の幅(図4中のW1、W2)は、それぞれ0.1~5mmが好ましく、0.2~2mmがより好ましい。また、縦、横における隣接する線部(凸部)間のピッチ(軸線間の距離(図4中のD1、D2))は、それぞれ0.1~5mmが好ましく、0.2~2mmがより好ましい。 In the case where the convex portion 12 is a lattice pattern, the widths of the vertical and horizontal line portions (convex portions) (W1 and W2 in FIG. 4) are each preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm. preferable. Further, the pitch between adjacent line parts (convex parts) in the vertical and horizontal directions (distances between the axis lines (D1, D2 in FIG. 4)) is preferably 0.1 to 5 mm, more preferably 0.2 to 2 mm. preferable.
 なお、上記凸部12の平面面積、幅等は、粘着剤層11の表面の鉛直上方から粘着剤層11の表面を見たときの凸部12の最大の面積となる部分の面積、凸部12の最大の幅となる部分の幅である。また、上記凸部12は被着体3と接触する先端は平坦面であっても非平坦面であってもよい。 In addition, the planar area, the width, and the like of the convex portion 12 are the area of the portion that becomes the maximum area of the convex portion 12 when the surface of the adhesive layer 11 is viewed from vertically above the surface of the adhesive layer 11, and the convex portion. This is the width of the portion having the maximum width of 12. Further, the convex portion 12 may have a flat surface or a non-flat surface at the tip that contacts the adherend 3.
 低粘着性の凸部12の粘着剤層11表面からの突出高さは、好ましくは200μm以下であり、より好ましくは150μm以下であり、特に好ましくは130μm以下である。また、好ましくは1μm以上であり、より好ましくは10μm以上である。突出高さが200μmを超える場合、粘着テープの粘着性や接着力が不十分となる可能性があり、突出高さが1μm未満では、低粘着性の凸部12による位置調整機能が不十分になる可能性がある。 The protrusion height of the low-adhesive convex portion 12 from the surface of the pressure-sensitive adhesive layer 11 is preferably 200 μm or less, more preferably 150 μm or less, and particularly preferably 130 μm or less. Moreover, Preferably it is 1 micrometer or more, More preferably, it is 10 micrometers or more. If the protruding height exceeds 200 μm, the adhesiveness or adhesive strength of the adhesive tape may be insufficient, and if the protruding height is less than 1 μm, the position adjustment function by the low-adhesive convex portion 12 is insufficient. There is a possibility.
 また、凸部12の突出高さは、粘着剤層11の厚さを基準にした場合、粘着剤層11の厚さの3~100%であることが好ましく、より好ましくは10~100%である。凸部12の突出高さが粘着剤層11の突出高さの3%未満であると、粘着テープの位置調整機能が不十分となる可能性があり、逆に凸部の厚さが粘着剤層の厚さの100%を超えると、粘着テープの粘着性や接着力が不十分となる可能性がある。 Further, the protrusion height of the convex portion 12 is preferably 3 to 100%, more preferably 10 to 100% of the thickness of the pressure-sensitive adhesive layer 11 based on the thickness of the pressure-sensitive adhesive layer 11. is there. If the protrusion height of the protrusion 12 is less than 3% of the protrusion height of the pressure-sensitive adhesive layer 11, the position adjustment function of the pressure-sensitive adhesive tape may be insufficient. If it exceeds 100% of the thickness of the layer, the adhesiveness and adhesive strength of the adhesive tape may be insufficient.
 粘着剤層11の表面における低粘着性の凸部12の占有率([凸部12の総面積/粘着剤層表面全体の面積]×100(%))は、粘着テープ1の接着性と低摩擦性(すなわち、被着体上での易移動性)の観点から30~90%が好ましく、好ましくは40~80%である。 The occupancy ratio of the low-adhesive convex portions 12 on the surface of the pressure-sensitive adhesive layer 11 ([total area of convex portions 12 / area of the entire surface of the pressure-sensitive adhesive layer] × 100 (%)) is low. From the viewpoint of friction (that is, easy mobility on the adherend), 30 to 90% is preferable, and 40 to 80% is preferable.
 低粘着性の凸部12の構成材料は、粘着剤層11を構成する粘着剤の種類に応じて選択することができる。すなわち、非粘着(タックを有しない)か、或いは、粘着剤層11よりも低タックであり、粘着剤層11に不溶であり、形状保持性を有するものであれば、いかなるものでも使用することができる。例えば、ガラス粉、ガラス繊維、シリカビーズ、酸化アルミニウムビーズ、金属繊維、金属網(ネット)等の無機材料や、合成樹脂ビーズ、合成樹脂バルーン、天然繊維、合成樹脂繊維、天然樹脂及び/または合成樹脂の成形体(糸、網体、格子体)等の有機材料、或いは、粘着剤層11よりも低タックの感圧性粘着剤(例えば、ゴム系、アクリル系、エチレン-酢酸ビニル共重合体系等)等が挙げられる。低粘着性の凸部12の構成材料は1種または2種以上を使用することができる。 The constituent material of the low-adhesive convex portion 12 can be selected according to the type of the adhesive constituting the adhesive layer 11. That is, non-adhesive (has no tack) or lower tack than the pressure-sensitive adhesive layer 11, is insoluble in the pressure-sensitive adhesive layer 11, and has any shape retaining property. Can do. For example, inorganic materials such as glass powder, glass fiber, silica beads, aluminum oxide beads, metal fibers, metal nets, synthetic resin beads, synthetic resin balloons, natural fibers, synthetic resin fibers, natural resins and / or synthetics Organic materials such as resin moldings (threads, nets, lattices), or pressure-sensitive adhesives with lower tack than the adhesive layer 11 (for example, rubber-based, acrylic-based, ethylene-vinyl acetate copolymer systems, etc.) ) And the like. The constituent material of the low-adhesive convex part 12 can use 1 type (s) or 2 or more types.
 なお、低粘着性の凸部12の構成材料が粘着剤層11よりも低タックであるとは、低粘着性の凸部12の構成材料により、ナノインデンターにより測定した弾性率が、粘着剤層11の弾性率より大きいことである。 Note that the constituent material of the low-adhesive convex portion 12 has a lower tack than that of the pressure-sensitive adhesive layer 11, and the elastic modulus measured by the nanoindenter is that of the constituent material of the low-adhesive convex portion 12. It is larger than the elastic modulus of the layer 11.
 低粘着性の凸部12が安定な位置調整機能を発揮するためには、被着体との接触状態において、自体が変形しにくいこと(=低タック)が重要であり、そのために、凸部12は弾性率が0.1MPa以上であることが好ましく、5MPa以上であることがさらに一層好ましい。凸部12の弾性率は以下の方法で測定される。 In order for the low-adhesive convex portion 12 to exhibit a stable position adjusting function, it is important that the convex portion 12 is not easily deformed (= low tack) in the contact state with the adherend. 12 has an elastic modulus of preferably 0.1 MPa or more, and more preferably 5 MPa or more. The elastic modulus of the convex portion 12 is measured by the following method.
<粘着剤層11及び凸部12の弾性率の測定方法>
 図10を参照して、粘着剤層11及び凸部12の弾性率の測定方法を説明する。
 ここでいう弾性率とは、ナノインデンターHYSITRON社製「TriboScope」を用いたナノインデンテーション試験によって得られる複合弾性率である。ナノインデンテーション試験は、バーコビッチ圧子(三角錐のダイヤモンド製圧子)を徐々に荷重Pをかけて所定の最大荷重Pmaxとなるまで被検体に押し込む過程(以下、負荷過程)、最大荷重Pmaxで一定時間保持する過程(以下、保持過程)、保持後、徐々に除荷して荷重Pが0になるまで引き抜く過程(以下、除荷過程)において得られる、圧子の荷重Pと押し込み深さhとの関係から、被検体の弾性的性質を測定する試験である。押し込み深さhは、圧子の先端と初期状態の被検材表面(圧子を押し込む前の被検材表面)との距離を意味し、圧子が被検材の表面に初めて接触した位置を基準とした圧子の変位量に相当する。
<Method for measuring elastic modulus of adhesive layer 11 and convex portion 12>
With reference to FIG. 10, the measuring method of the elastic modulus of the adhesive layer 11 and the convex part 12 is demonstrated.
The elastic modulus here is a composite elastic modulus obtained by a nanoindentation test using “TriboScope” manufactured by Nanoindenter HYSITRON. The nanoindentation test is a process in which a Berkovich indenter (triangular pyramid diamond indenter) is gradually pushed into the subject until a predetermined maximum load Pmax is obtained by applying a load P (hereinafter referred to as a load process), and for a certain time at the maximum load Pmax. The indenter load P and the indentation depth h obtained in the holding process (hereinafter referred to as the holding process), and after the holding, in the process of gradually unloading and extracting until the load P becomes 0 (hereinafter referred to as the unloading process) From the relationship, this is a test to measure the elastic properties of the subject. The indentation depth h means the distance between the tip of the indenter and the surface of the test material in the initial state (the surface of the test material before the indenter is pushed in), and is based on the position where the indenter first contacts the surface of the test material. This corresponds to the displacement of the indenter.
 凸部12及び粘着剤層11の弾性率は、上記のナノインデンテーション試験によって得られる圧子の荷重Pと押し込み深さhとの関係に基づき、以下の式(1)によって算出される。
 Er=1/β・S/2・(π/A)1/2・・・(1)
 ここで、上記の式(1)において、Erは弾性率を、βは圧子形状により決定される定数であり、バーコビッチ型圧子の場合β=1.034を用いる。Sは接触剛性率を、πは円周率を、Aは圧子と被検材表面との接触射影面積を示す。
The elasticity modulus of the convex part 12 and the adhesive layer 11 is calculated by the following formula | equation (1) based on the relationship between the load P of the indenter obtained by said nano indentation test, and the indentation depth h.
Er = 1 / β · S / 2 · (π / A) 1/2 (1)
Here, in the above equation (1), Er is the elastic modulus, β is a constant determined by the shape of the indenter, and β = 1.034 is used in the case of a Barkovic indenter. S represents the contact rigidity, π represents the circumference, and A represents the contact projection area between the indenter and the surface of the test material.
 圧子を被検材(粘着テープ)の粘着剤層の表面に接触させることで、粘着剤層の弾性率が測定される。また、凸部の弾性率は、粘着剤層の影響を除くため、例えば、ダイヤモンド刃を取り付けたウルトラミクロトームを用いて-100℃以下の環境下で粘着テープ上の凸部のみを粘着剤層から切り出し、所定の試料台(SUS製)に固定し、該凸部の表面に圧子を接触させることで測定される。 The elastic modulus of the adhesive layer is measured by bringing the indenter into contact with the surface of the adhesive layer of the test material (adhesive tape). In order to eliminate the influence of the pressure-sensitive adhesive layer, for example, the elastic modulus of the convex portion is obtained by removing only the convex portion on the pressure-sensitive adhesive tape from the pressure-sensitive adhesive layer under an environment of −100 ° C. or less using an ultramicrotome equipped with a diamond blade. It is measured by cutting out, fixing to a predetermined sample stage (made of SUS), and bringing an indenter into contact with the surface of the convex portion.
(接触剛性率)
 上記接触剛性率Sは、上記のナノインデンテーション試験によって得られる圧子の荷重Pと押し込み深さhとの関係の内、除荷過程で得られる関係に基づき算出される。より具体的に説明すれば、接触剛性率Sは、圧子の位置が最大押し込み深さhmax(最大荷重Pmaxをかけたときの押し込み深さ)に到達してから、保持過程の後に、除荷過程に遷移した直後の除荷曲線の傾きによって定義される。換言すれば、接触剛性率Sは、点(hmax、Pmax)における除荷曲線に対する接線Lの勾配(dP/dh)を意味する。
(Contact rigidity)
The contact rigidity S is calculated based on the relationship obtained in the unloading process among the relationship between the indenter load P and the indentation depth h obtained by the nanoindentation test. More specifically, the contact rigidity S is determined by the unloading process after the holding process after the indenter position reaches the maximum pressing depth hmax (the pressing depth when the maximum load Pmax is applied). It is defined by the slope of the unloading curve immediately after transition to. In other words, the contact rigidity S means the gradient (dP / dh) of the tangent line L to the unloading curve at the point (hmax, Pmax).
(接触射影面積)
 上記接触射影面積Aは、圧子の位置が最大押し込み深さhmaxに到達したときにおける圧子と被検材表面との接触部分の面積を、圧子の押し込み方向に射影した面積を意味する。なお、この接触部分の深さ(接触深さ)をhcとすると、バーコビッチ圧子の場合、接触射影面積Aは、以下の式(2)で近似できる。
 A=24.56・hc・・・(2)
 上記の接触深さhcは、最大押し込み深さhmax、最大荷重Pmax及び接触剛性率Sを用いて、以下の式(3)で表される。
 hc=hmax-0.75・Pmax/S・・・(3)
 尚、本発明におけるナノインデンテーション試験において測定と弾性率の解析はHystron社製の測定・解析ソフトTriboScanVer.8.0.0.4を用いる。
(Contact projection area)
The contact projection area A means an area obtained by projecting the area of the contact portion between the indenter and the surface of the test object when the position of the indenter reaches the maximum indentation depth hmax in the indenter indentation direction. If the depth of the contact portion (contact depth) is hc, the contact projection area A can be approximated by the following equation (2) in the case of a Barkovic indenter.
A = 24.56 · hc 2 (2)
The contact depth hc is expressed by the following equation (3) using the maximum indentation depth hmax, the maximum load Pmax, and the contact rigidity S.
hc = hmax−0.75 · Pmax / S (3)
In the nanoindentation test according to the present invention, measurement and analysis of elastic modulus use measurement / analysis software TriboScanVer.8.0.0.4 manufactured by Hytron.
(測定条件)
 負荷・除荷過程の押し込み速度200μN/sec
 保持時間15秒
 最大押込み深さ(除荷過程に遷移するときの押込み深さ)0.9~5μm
(Measurement condition)
Pushing speed of loading / unloading process 200μN / sec
Holding time 15 seconds Maximum indentation depth (indentation depth when transitioning to unloading process) 0.9-5μm
 本発明における低粘着性の凸部12の好適な一態様として、複数の凝集性粒子の集合体からなる凸部を挙げることができる。図6は複数の凝集性粒子20の集合体からなる凸部12の概略側面図を示す。複数の凝集性粒子20の集合体(凸部12)は、上面が湾曲面からなり、平面視が円形の扁平体である。なお、凝集性粒子とは、所定の凝集力を有する粒子を意味し、粒子の集合体として把握することもできる。複数の凝集性粒子20としては、例えば、ポリマーエマルション由来のポリマー粒子群を挙げることができ、該ポリマーエマルション由来のポリマー粒子群は、単一のポリマー組成の粒子からなるポリマー粒子群、及び/又は、コアとシェルでポリマー組成が異なるコアシェル構造ポリマー粒子からなるポリマー粒子群を含む。なお、以下の記載において、単一のポリマー組成の粒子は「非コアシェル構造ポリマー粒子」とも称する。ポリマーエマルション由来のポリマー粒子群はそれ自体で凝集能力を有するので、添加剤は必ずしも必要ではないが、凸部12の性能に影響を与えない範囲で、例えば、ポリマーエマルションにエポキシ系架橋剤やシランカップリング剤等の添加剤を加えて、ポリマー粒子群の凝集力を高めるようにしてもよい。 As a preferred embodiment of the low-adhesive convex portion 12 in the present invention, there can be mentioned a convex portion composed of an aggregate of a plurality of coherent particles. FIG. 6 shows a schematic side view of the convex portion 12 made of an aggregate of a plurality of coherent particles 20. The aggregate (convex portion 12) of the plurality of cohesive particles 20 is a flat body having a curved upper surface and a circular plan view. The aggregating particle means a particle having a predetermined cohesive force, and can be grasped as an aggregate of particles. Examples of the plurality of cohesive particles 20 include a polymer particle group derived from a polymer emulsion, and the polymer particle group derived from the polymer emulsion includes a polymer particle group composed of particles having a single polymer composition, and / or And a polymer particle group composed of core-shell structure polymer particles having different polymer compositions in the core and the shell. In the following description, particles having a single polymer composition are also referred to as “non-core-shell structured polymer particles”. Since the polymer particle group derived from the polymer emulsion itself has an aggregating ability, an additive is not always necessary, but, for example, an epoxy-based crosslinking agent or a silane is added to the polymer emulsion in a range that does not affect the performance of the convex portion 12. An additive such as a coupling agent may be added to increase the cohesive force of the polymer particle group.
 ポリマー粒子群の由来源であるポリマーエマルションは、乳化重合、すなわち、モノマーエマルションを重合することによって得られる。ポリマーエマルションにおけるモノマー成分(すなわち、モノマーエマルションを構成するモノマー)は、アクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルを含むことが好ましい。アクリル酸アルキルエステルとしては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、及びアクリル酸ラウリルから選ばれる1種または2種以上が好ましく、メタクリル酸アルキルエステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ラウリル、及びメタクリル酸イソボルニルから選ばれる1種または2種以上が好ましい。また、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基含有モノマーや、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチルメタクリレート等のヒドロキシル基含有モノマーを含有することができる。カルボキシル基含有モノマーおよびヒドロキシル基含有モノマーはそれぞれ1種または2種以上を使用できる。 The polymer emulsion that is the source of the polymer particles is obtained by emulsion polymerization, that is, by polymerizing the monomer emulsion. The monomer component in the polymer emulsion (that is, the monomer constituting the monomer emulsion) preferably contains an alkyl acrylate ester and / or an alkyl alkyl methacrylate. Examples of alkyl acrylates include ethyl acrylate, propyl acrylate, n-butyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and One or more kinds selected from lauryl acrylate are preferable. Examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, n-methacrylate. One or more selected from hexyl, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, and isobornyl methacrylate are preferred. In addition, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid, hydroxybutyl (meth) acrylate, and hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, and (4-hydroxymethylcyclohexyl) methyl methacrylate can be contained. One or more carboxyl group-containing monomers and hydroxyl group-containing monomers can be used.
 コアシェル構造ポリマー粒子群は、シェルの弾性率がコアの弾性率よりも高いコアシェル構造ポリマー粒子からなるものが好ましく、また、シェルの重量に対するコアの重量が80%以下(好ましくは80%以下、10%以上)のコアシェル構造を有するコアシェル構造ポリマー粒子からなるものが好ましい。シェルの弾性率をコアの弾性率より高く設定することにより、コアシェル構造ポリマー粒子の摩擦力が小さくなる。従って、低粘着性の凸部12が、シェルの弾性率をコアの弾性率よりも高く設定したコアシェル構造ポリマー粒子からなるポリマー粒子群により構成されることで、低粘着性の凸部12が低摩擦性になり、低粘着性の凸部12による位置調整機能が向上するとともに、粘着剤層11との関係で適切な弾性率を得ることができる。 The core-shell structured polymer particle group is preferably composed of core-shell structured polymer particles having a shell elastic modulus higher than the core elastic modulus, and the core weight relative to the shell weight is 80% or less (preferably 80% or less, 10% % Or more) is preferably composed of core-shell structure polymer particles having a core-shell structure. By setting the elastic modulus of the shell higher than the elastic modulus of the core, the frictional force of the core-shell structured polymer particles is reduced. Therefore, the low-adhesive convex portion 12 is constituted by the polymer particle group composed of the core-shell structure polymer particles in which the elastic modulus of the shell is set higher than the elastic modulus of the core. It becomes frictional and the position adjustment function by the low-adhesive convex part 12 is improved, and an appropriate elastic modulus can be obtained in relation to the pressure-sensitive adhesive layer 11.
 図7はコアシェル構造ポリマー粒子群を構成するコアシェル構造ポリマー粒子20の断面斜視図であり、個々のコアシェル構造ポリマー粒子20は、コア21がアクリル酸アルキルエステルを主たるモノマー成分とするアクリル系ポリマー(A1)で構成され、シェル22がアクリル酸アルキルエステルとメタクリル酸アルキルエステルを主たるモノマー成分とするアクリル系ポリマー(A2)で構成されているのが好ましい。コアシェル構造ポリマー粒子群を構成するコアシェル構造ポリマー粒子20は、略球状を有し、その平均粒子径「a」は凸部12の最大径「A」や高さ「B」を考慮して適宜変更することができる(図6参照)。例えば、凸部12の最大径「A」や高さ「B」を考慮した凝集性粒子20の粒子径は、水分散液(ポリマーエマルション)の粘度の観点から、好ましくは100nm以上、より好ましくは120nm以上であり、一方、乾燥後(すなわち、水分散液(ポリマーエマルション)から水分を除去した後)の粒子の凝集性の観点から、好ましくは300nm以下、より好ましくは200nm以下である。また、この場合の凸部12の最大径「A」は、凸部の形状安定性の観点から、好ましくは100μm以上、より好ましくは250μm以上であり、粘着テープの接着力の観点から、好ましくは3mm以下、より好ましくは2mm以下であり、高さ「B」は、位置調整機能の安定性の観点から、好ましくは1μm以上、より好ましくは10μm以上であり、接着力の観点から、好ましくは100μm以下、より好ましくは80μm以下である。 FIG. 7 is a cross-sectional perspective view of the core-shell structure polymer particles 20 constituting the core-shell structure polymer particle group. Each of the core-shell structure polymer particles 20 has an acrylic polymer (A1) in which the core 21 has an alkyl acrylate as a main monomer component. It is preferable that the shell 22 is made of an acrylic polymer (A2) having an acrylic acid alkyl ester and a methacrylic acid alkyl ester as main monomer components. The core-shell structure polymer particles 20 constituting the core-shell structure polymer particle group have a substantially spherical shape, and the average particle diameter “a” is appropriately changed in consideration of the maximum diameter “A” and the height “B” of the convex portion 12. (See FIG. 6). For example, the particle diameter of the cohesive particle 20 in consideration of the maximum diameter “A” and the height “B” of the convex portion 12 is preferably 100 nm or more, more preferably from the viewpoint of the viscosity of the aqueous dispersion (polymer emulsion). On the other hand, it is preferably 300 nm or less, more preferably 200 nm or less, from the viewpoint of the cohesiveness of the particles after drying (that is, after removing water from the aqueous dispersion (polymer emulsion)). In this case, the maximum diameter “A” of the convex portion 12 is preferably 100 μm or more, more preferably 250 μm or more from the viewpoint of the shape stability of the convex portion, and preferably from the viewpoint of the adhesive strength of the adhesive tape. 3 mm or less, more preferably 2 mm or less, and the height “B” is preferably 1 μm or more, more preferably 10 μm or more from the viewpoint of stability of the position adjustment function, and from the viewpoint of adhesive force, preferably 100 μm. Below, more preferably 80 μm or less.
<コア>
 コア21を構成する、アクリル酸アルキルエステルを主たるモノマー成分とするアクリル系ポリマー(A1)は、アクリル酸ブチル(BA)(=アクリル酸n-ブチル)のホモポリマーであるか、或いは、アクリル酸ブチル(BA)に、アクリル酸ブチル(BA)以外のアクリル酸アルキルエステルやメタクリル酸アルキルエステルが共重合したコポリマーであるのが好ましい。
<Core>
The acrylic polymer (A1) comprising the alkyl acrylate ester as the main monomer component constituting the core 21 is a homopolymer of butyl acrylate (BA) (= n-butyl acrylate) or butyl acrylate. A copolymer obtained by copolymerizing (BA) with an alkyl acrylate other than butyl acrylate (BA) or an alkyl methacrylic acid ester is preferred.
 アクリル酸ブチル(BA)以外のアクリル酸アルキルエステルとしては、好ましくは、アクリル酸エチル、アクリル酸プロピル、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ラウリル等が挙げられ、該アクリル酸アルキルエステルは1種または2種以上を組み合わせて用いることができる。なかでも、アクリル酸プロピル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル等のアルキル基の炭素数が3~9のアクリル酸アルキルエステルが好ましい。また、メタクリル酸アルキルエステルは、主にポリマーの弾性率を制御する目的で共重合される成分であり、好ましくは、アルキル基の炭素数が1~18のメタクリル酸アルキルエステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル 酸プロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ラウリル、メタクリル酸イソボルニル等)が使用される。なかでも、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸シクロヘキシル等が好ましい。該メタクリル酸アルキルエステルは1種または2種以上を組み合わせて用いることができる。 As alkyl acrylates other than butyl acrylate (BA), ethyl acrylate, propyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic acid are preferable. Examples thereof include n-octyl and lauryl acrylate, and the alkyl acrylate can be used alone or in combination of two or more. Of these, alkyl acrylates having 3 to 9 carbon atoms in the alkyl group, such as propyl acrylate, 2-ethylhexyl acrylate and n-octyl acrylate, are preferred. The alkyl methacrylate is a component that is copolymerized mainly for the purpose of controlling the elastic modulus of the polymer. Preferably, the alkyl methacrylate has 1 to 18 carbon atoms in the alkyl group (for example, methyl methacrylate). , Ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, isobornyl methacrylate Etc.) is used. Of these, methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate and the like are preferable. The alkyl methacrylates can be used alone or in combination of two or more.
 アクリル系ポリマー(A1)は、全モノマー成分中、アクリル酸アルキルエステルを60~100重量%含有することが好ましく、70~99.9重量%含有することがより好ましく、80~99重量%含有することがさらに好ましく、80~98重量%含有することが特に好ましい。 The acrylic polymer (A1) preferably contains 60 to 100% by weight of the acrylic acid alkyl ester, more preferably 70 to 99.9% by weight, and more preferably 80 to 99% by weight in all monomer components. The content is more preferably 80 to 98% by weight.
 また、アクリル系ポリマー(A1)は、粘着剤の接着性向上とエマルションへの安定性付与のために、カルボキシル基含有モノマーやヒドロキシル基含有モノマーが共重合されていてもよい。カルボキシル基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。また、ヒドロキシル基含有モノマーとしては、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチルメタクリレート等が挙げられる。カルボキシル基含有モノマーおよび/またはヒドロキシル基含有モノマーは、アクリル系ポリマー(A1)を構成する全モノマー成分中、0.1~8重量%含有することが好ましく、1~7重量%含有することがより好ましく、2~5重量%含有することがさらに好ましい。 In addition, the acrylic polymer (A1) may be copolymerized with a carboxyl group-containing monomer or a hydroxyl group-containing monomer in order to improve the adhesiveness of the pressure-sensitive adhesive and impart stability to the emulsion. Examples of the carboxyl group-containing monomer include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. The hydroxyl group-containing monomers include hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, ( 4-hydroxymethylcyclohexyl) methyl methacrylate and the like. The carboxyl group-containing monomer and / or hydroxyl group-containing monomer is preferably contained in an amount of 0.1 to 8% by weight, more preferably 1 to 7% by weight, based on all monomer components constituting the acrylic polymer (A1). The content is preferably 2 to 5% by weight, and more preferably.
<シェル>
 シェルを構成するアクリル酸アルキルエステルとメタクリル酸アルキルエステルを主たるモノマー成分とするアクリル系ポリマー(A2)は、全モノマー成分中、メタクリル酸アルキルエステルを30~95重量%含有することが好ましく、35~90重量%含有することがより好ましく、40~80重量%含有することが特に好ましい。メタクリル酸アルキルエステルは、アルキル基の炭素数が1~18のメタクリル酸アルキルエステル(例えば、メタクリル酸メチル(MMA)、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ラウリル、メタクリル酸イソボルニル等)が使用される。なかでも、メタクリル酸メチル(MMA)、メタクリル酸エチル、メタクリル酸t-ブチル、メタクリル酸イソボルニル等が好ましく、メタクリル酸メチル(MMA)が特に好ましい。
<Shell>
The acrylic polymer (A2) mainly composed of an acrylic acid alkyl ester and a methacrylic acid alkyl ester constituting the shell preferably contains 30 to 95% by weight of the methacrylic acid alkyl ester in all the monomer components. The content is more preferably 90% by weight, particularly preferably 40 to 80% by weight. The alkyl methacrylate is an alkyl methacrylate having an alkyl group having 1 to 18 carbon atoms (for example, methyl methacrylate (MMA), ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, N-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, isobornyl methacrylate, etc.) are used. Of these, methyl methacrylate (MMA), ethyl methacrylate, t-butyl methacrylate, isobornyl methacrylate and the like are preferable, and methyl methacrylate (MMA) is particularly preferable.
 また、アクリル系ポリマー(A2)において、アクリル酸アルキルエステルは、主にポリマーの弾性率を制御する目的で共重合される成分であり、アルキル基の炭素数が1~18のアクリル酸アルキルエステルが好ましく、アクリル酸アルキルエステルは単独でまたは2種類以上を組み合わせて用いることができる。アルキル基の炭素数が1~18のアクリル酸アルキルエステルの具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル(BA)(=アクリル酸n-ブチル)、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ラウリル、アクリル酸イソボルニル等を例示できる。これらの中でも、アクリル酸プロピル、アクリル酸ブチル(BA)、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル等のアルキル基の炭素数が3~9のアクリル酸アルキルエステルが好ましく、アクリル酸ブチル(BA)が特に好ましい。 In the acrylic polymer (A2), the acrylic acid alkyl ester is a component that is copolymerized mainly for the purpose of controlling the elastic modulus of the polymer. The acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms is used. Preferably, the acrylic acid alkyl ester can be used alone or in combination of two or more. Specific examples of the alkyl acrylate ester having 1 to 18 carbon atoms in the alkyl group include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate (BA) (= n-butyl acrylate), acrylic Examples thereof include t-butyl acid, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, lauryl acrylate, and isobornyl acrylate. Of these, alkyl acrylates having 3 to 9 carbon atoms such as propyl acrylate, butyl acrylate (BA), 2-ethylhexyl acrylate, and n-octyl acrylate are preferred, and butyl acrylate (BA Is particularly preferred.
 また、アクリル系ポリマー(A2)は、粘着剤の接着性向上と、エマルションへの安定性付与のために、カルボキシル基含有モノマーやヒドロキシル基含有モノマーが共重合されていてもよい。カルボキシル基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。また、ヒドロキシル基含有モノマーとしては、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチルメタクリレート等が挙げられる。カルボキシル基含有モノマーおよび/またはヒドロキシル基含有モノマーは、アクリル系ポリマー(A2)を構成する全モノマー成分中、0.1~8重量%合含有することが好ましく、1~7重量%含有することがより好ましく、2~5重量%含有することがさらに好ましい。 Further, the acrylic polymer (A2) may be copolymerized with a carboxyl group-containing monomer or a hydroxyl group-containing monomer in order to improve the adhesiveness of the pressure-sensitive adhesive and to impart stability to the emulsion. Examples of the carboxyl group-containing monomer include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. The hydroxyl group-containing monomers include hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxylauryl (meth) acrylate, ( 4-hydroxymethylcyclohexyl) methyl methacrylate and the like. The carboxyl group-containing monomer and / or the hydroxyl group-containing monomer is preferably contained in an amount of 0.1 to 8% by weight, preferably 1 to 7% by weight, based on all monomer components constituting the acrylic polymer (A2). More preferably, the content is 2 to 5% by weight.
 アクリル系ポリマー(A2)はモノマー成分としてアクリル酸ブチル(BA)とメタクリル酸メチル(MMA)を含むことが好ましく、アクリル系ポリマー(A2)中のアクリル酸ブチル(BA)の重量(M)に対するメタクリル酸メチル(MMA)の重量(N)の割合(N/M)である「MMA比率(%)」は粘着テープを貼り付ける被着体や粘着剤層11の構成材料等に応じて変更することができるが、100%以下が好ましく、40~80%がより好ましい。 The acrylic polymer (A2) preferably contains butyl acrylate (BA) and methyl methacrylate (MMA) as monomer components. The acrylic polymer (A2) contains methacrylic methacrylate (BA) based on the weight (M) of butyl acrylate (BA) in the acrylic polymer (A2). The “MMA ratio (%)”, which is the ratio (N / M) of the weight (N) of methyl acid (MMA), should be changed according to the adherend to which the adhesive tape is attached, the constituent material of the adhesive layer 11, etc. However, 100% or less is preferable, and 40 to 80% is more preferable.
 また、コアシェル構造ポリマー粒子における、シェル22の重量(K)に対するコア21の重量(L)の割合(L/K)である「コアシェル比率(%)」は100%以下が好ましく、20~80%がより好ましい。 The “core-shell ratio (%)”, which is the ratio (L / K) of the weight (L) of the core 21 to the weight (K) of the shell 22 in the core-shell structured polymer particles, is preferably 100% or less, and 20 to 80% Is more preferable.
 コアシェル構造ポリマー粒子におけるシェル22とコア21の重量比やコアシェル構造の詳細は、例えば、DSC測定やTEM(3D-TEM)法によって分析可能である。 The weight ratio between the shell 22 and the core 21 in the core-shell structure polymer particles and details of the core-shell structure can be analyzed by, for example, DSC measurement or TEM (3D-TEM) method.
 コアシェル構造ポリマー粒子からなるポリマー粒子群(コアシェル構造ポリマー粒子からなるポリマー粒子群、非コアシェル構造ポリマー粒子からなるポリマー粒子群)の由来源であるポリマーエマルションは、乳化重合、すなわち、モノマーエマルションを重合することによって得られる。 The polymer emulsion that is the source of the polymer particle group consisting of the core-shell structure polymer particles (the polymer particle group consisting of the core-shell structure polymer particles and the polymer particle group consisting of the non-core-shell structure polymer particles) is emulsion-polymerized, that is, polymerizes the monomer emulsion Can be obtained.
<乳化重合>
 非コアシェル構造ポリマー粒子からなるポリマー粒子群の由来源となるポリマーエマルションを得るための乳化重合は常法により行うことができる。すなわち、前述のモノマーとともに、乳化剤(界面活性剤)、ラジカル重合開始剤、必要に応じて連鎖移動剤等を適宜配合し、例えば、一括仕込み法(一括重合法)、モノマー滴下法、モノマーエマルション滴下法等の公知の乳化重合法にて乳化重合を行う。モノマー滴下法では、連続滴下又は分割滴下が適宜選択される。公知の乳化重合法は適宜組み合わせることができる。反応条件等は、適宜選択されるが、重合温度は、例えば、40~95℃程度であるのが好ましく、重合時間は30分間~24時間程度であるのが好ましい。
<Emulsion polymerization>
Emulsion polymerization for obtaining a polymer emulsion that is a source of polymer particles composed of non-core-shell structure polymer particles can be performed by a conventional method. That is, an emulsifier (surfactant), a radical polymerization initiator, a chain transfer agent and the like are appropriately blended with the above-mentioned monomers, for example, a batch charging method (batch polymerization method), a monomer dropping method, a monomer emulsion dropping, for example. The emulsion polymerization is carried out by a known emulsion polymerization method such as a method. In the monomer dropping method, continuous dropping or divided dropping is appropriately selected. Known emulsion polymerization methods can be combined as appropriate. The reaction conditions and the like are appropriately selected, but the polymerization temperature is preferably about 40 to 95 ° C., for example, and the polymerization time is preferably about 30 minutes to 24 hours.
 また、コアシェル構造ポリマー粒子からなるポリマー粒子群の由来源となるポリマーエマルションを得るための乳化重合は、コアシェル構造ポリマー粒子のコアとなるポリマーを生成するための乳化重合を行い、生成したコアとなるポリマーの存在下に、シェルとなるポリマーを生成するための乳化重合を行う、多段階の乳化重合を行う。それぞれの乳化重合は常法により行なうことができ、上述の方法、条件に従えば良い。 In addition, the emulsion polymerization for obtaining a polymer emulsion that is a source of the polymer particle group composed of the core-shell structure polymer particles is an emulsion polymerization for generating a polymer that becomes a core of the core-shell structure polymer particles, and becomes a generated core. In the presence of the polymer, multi-stage emulsion polymerization is performed in which emulsion polymerization for producing a polymer to be a shell is performed. Each emulsion polymerization can be carried out by a conventional method, and may be carried out according to the above-mentioned methods and conditions.
 一例として、コアシェル比率が50%で、且つ、MMA比率が50%の凝集性粒子(コアシェル構造ポリマー粒子からなるポリマー粒子群)を製造した例を以下に示す。 As an example, an example in which agglomerated particles (polymer particle group consisting of core-shell structure polymer particles) having a core-shell ratio of 50% and an MMA ratio of 50% is shown below.
 先ず、コアシェル構造ポリマー粒子のコアを作製するため、容器に原料として、アクリル酸ブチル(BA)100重量部に対して、界面活性剤であるラテムルE-118B(花王(株)製)3重量部、イオン交換水205重量部の混合物を調製し、ホモミキサー(特殊機化工業(株)製)を用い窒素雰囲気下で5分間、6000rpmで撹拌し、モノマーエマルションAを調製した。 First, in order to produce a core of core-shell structured polymer particles, as a raw material in a container, 3 parts by weight of Latemul E-118B (manufactured by Kao Corporation), which is a surfactant, per 100 parts by weight of butyl acrylate (BA) Then, a mixture of 205 parts by weight of ion-exchanged water was prepared, and a monomer emulsion A was prepared by stirring at 6000 rpm for 5 minutes in a nitrogen atmosphere using a homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.).
 次に、コアシェル構造ポリマー粒子のシェルを作製するため、別の容器にて、原料としてアクリル酸ブチル(BA)50重量部に対して、メタクリル酸メチル(MMA)50重量部、ラテムルE-118B1重量部、イオン交換水87.5部の混合物を調製し、ホモミキサーを用いて窒素雰囲気下で5分間、6000rpmで撹拌しモノマーエマルションBを調製した。 Next, in order to prepare a shell of core-shell structured polymer particles, in another container, 50 parts by weight of methyl methacrylate (MMA) and 1 part by weight of Latemul E-118B with respect to 50 parts by weight of butyl acrylate (BA) as raw materials. Part and 87.5 parts of ion-exchanged water were prepared, and a monomer emulsion B was prepared by stirring at 6000 rpm for 5 minutes under a nitrogen atmosphere using a homomixer.
 その後、冷却管、窒素導入管、温度計、滴下設備、及び撹拌羽根を備えた反応容器に、調製したモノマーエマルションA)を全量仕込み、撹拌しながら反応容器を十分に窒素置換した後、反応液を60℃まで昇温し、アクリル酸ブチル(BA)50重量部に対して水溶性アゾ重合開始剤であるV-50(和光(株)製)0.1重量部を添加して60℃を保ちながら2時間重合して、コア層となる共重合体を得た。次いで、アクリル酸ブチル(BA)50重量部に対してV-50を0.5重量部だけ更に添加して60℃に保ちながら、上記モノマーエマルションBを2.5時間かけて滴下して、シェルを形成し、固形分濃度40%のコアシェル構造ポリマー粒子を含有する水分散液を得た。得られたコアシェル構造ポリマー粒子の平均粒子径は160nmであった。 Thereafter, the prepared monomer emulsion A) was charged in a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, a dropping device, and a stirring blade, and the reaction vessel was sufficiently purged with nitrogen while stirring. The temperature was raised to 60 ° C., and 50 parts by weight of butyl acrylate (BA) was added with 0.1 parts by weight of a water-soluble azo polymerization initiator V-50 (manufactured by Wako Co., Ltd.) to give 60 ° C. While maintaining, polymerization was performed for 2 hours to obtain a copolymer to be a core layer. Next, the monomer emulsion B was added dropwise over 2.5 hours while adding 0.5 parts by weight of V-50 to 50 parts by weight of butyl acrylate (BA) and keeping the temperature at 60 ° C. And an aqueous dispersion containing core-shell structure polymer particles having a solid content concentration of 40% was obtained. The average particle diameter of the obtained core-shell structure polymer particles was 160 nm.
 複数の凝集性粒子(ポリマーエマルション由来のポリマー粒子群)20により、凸部12を形成する場合、例えば、粘着剤層11の表面にディスペンサーを用いてポリマーエマルション(エマルション液)を滴下する方法や、凸部12のパターンに対応するパターンが刻まれたグラビアロールでポリマーエマルション(エマルション液)を粘着剤層11の表面に転写する方法、スクリーン印刷やオフセット印刷、フレキソ印刷等の一般的な印刷技術を用いて、ポリマーエマルション(エマルション液)を印刷する方法等が挙げられる。複数の凝集性粒子(ポリマーエマルション由来のポリマー粒子群)における個々の粒子は、粒子の集合体となる前は略球状である。複数の凝集性粒子(ポリマーエマルション由来のポリマー粒子群)の平均粒子径は、ポリマーエマルション(水分散液)の粘度の観点から、好ましくは100nm以上、より好ましくは120nm以上であり、一方、ポリマーエマルション(水分散液)を乾燥させた後のポリマー粒子の凝集性の観点から、好ましくは300nm以下、より好ましくは200nm以下である。 When forming the convex portion 12 with a plurality of cohesive particles (polymer particle group derived from a polymer emulsion) 20, for example, a method of dropping a polymer emulsion (emulsion liquid) on the surface of the pressure-sensitive adhesive layer 11 using a dispenser, A general printing technique such as a method of transferring a polymer emulsion (emulsion liquid) to the surface of the pressure-sensitive adhesive layer 11 with a gravure roll engraved with a pattern corresponding to the pattern of the convex portion 12, screen printing, offset printing, flexographic printing, etc. And a method of printing a polymer emulsion (emulsion liquid). Individual particles in the plurality of cohesive particles (polymer particle group derived from the polymer emulsion) are substantially spherical before becoming an aggregate of particles. From the viewpoint of the viscosity of the polymer emulsion (aqueous dispersion), the average particle size of the plurality of cohesive particles (polymer particle group derived from the polymer emulsion) is preferably 100 nm or more, more preferably 120 nm or more, while the polymer emulsion From the viewpoint of the cohesiveness of the polymer particles after drying the (aqueous dispersion), it is preferably 300 nm or less, more preferably 200 nm or less.
 複数の凝集性粒子(ポリマーエマルション由来のポリマー粒子群)20により形成される凸部12の最大径(図6中の符号A)は凸部の形状安定性の観点から、好ましくは100nm以上、より好ましくは250nm以上であり、加圧接着後に十分な接着力を発現するために、好ましくは3mm以下、より好ましくは2mm以下である。また、凸部12の高さ(図6中の符号B)は粘着テープ1の位置調整機能の安定性の観点から、好ましくは1μm以上、より好ましくは10μm以上であり、粘着テープの粘着性や接着力の観点から、好ましくは200μm以下、より好ましくは100μm以下、特に好ましくは80μm以下である。 The maximum diameter (symbol A in FIG. 6) of the convex portion 12 formed by the plurality of cohesive particles (polymer particle group derived from the polymer emulsion) 20 is preferably 100 nm or more from the viewpoint of the shape stability of the convex portion. The thickness is preferably 250 nm or more, and preferably 3 mm or less, more preferably 2 mm or less in order to develop sufficient adhesive force after pressure bonding. Further, the height of the convex portion 12 (symbol B in FIG. 6) is preferably 1 μm or more, more preferably 10 μm or more, from the viewpoint of the stability of the position adjustment function of the adhesive tape 1, From the viewpoint of adhesive strength, it is preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 80 μm or less.
<平均粒子径の測定>
 複数の凝集性粒子(ポリマーエマルション由来のポリマー粒子群)の平均粒子径は以下の方法で測定される。ある1つの凸部12を形成する複数の凝集性粒子の中からランダムに抽出した数個の凝集性粒子につき、レーザー回折散乱法によって各凝集性粒子の径を測定し、測定された数個の凝集性粒子の径の中の中央に位置する値を採用する(つまり、メディアン径にて評価する)といった処理を1サイクルとして、このサイクルを数回繰り返すことによって得られた数個のメディアン径の平均値をもって平均粒子径とする。
<Measurement of average particle diameter>
The average particle diameter of the plurality of cohesive particles (polymer particle group derived from the polymer emulsion) is measured by the following method. For several cohesive particles randomly extracted from a plurality of cohesive particles forming one convex portion 12, the diameter of each cohesive particle is measured by a laser diffraction scattering method. The process of adopting the value located in the center of the diameter of the coherent particles (that is, evaluating by the median diameter) is one cycle, and several median diameters obtained by repeating this cycle several times The average value is defined as the average particle size.
 本発明における低粘着性の凸部12の他の好適な一態様として、ポーラススクリーンからなる凸部を挙げることができる。本発明においてポーラススクリーンとは、多孔質(又は孔の開いた)シート状物のことをいう。また、ポーラススクリーンには、網状物も含まれる。 As another preferred embodiment of the low-adhesive convex portion 12 in the present invention, a convex portion made of a porous screen can be mentioned. In the present invention, the porous screen refers to a porous (or perforated) sheet-like material. The porous screen includes a net-like material.
 ポーラススクリーンの具体例としては、特に制限されないが、例えば、プラスチックネット、繊維ネット、金属糸ネット等が挙げられる。また、例えばプラスチックシート、薄葉金属シート、織布、不織布、紙等に穿孔処理を施したもの等が挙げられる。 Specific examples of the porous screen are not particularly limited, and examples thereof include a plastic net, a fiber net, and a metal thread net. Moreover, for example, a plastic sheet, a thin metal sheet, a woven fabric, a non-woven fabric, a paper or the like that has been subjected to perforation treatment can be used.
 ポーラススクリーンの孔又は網目の形状としては、上記の特性を発揮できる限り特に制限されないが、例えば、三角形、四角形(例えば、正方形、長方形、ひし形、台形等)、円形(例えば、真円、真円に近い円、楕円形状等)等が挙げられる。また、前記形状に似ている不定形状であってもよい。なお、孔又は網目の形状は、全て同じであってもよく、また孔ごとに異なっていてもよい。 The shape of the hole or mesh of the porous screen is not particularly limited as long as the above characteristics can be exhibited. For example, the shape is triangular, quadrangular (for example, square, rectangular, rhombus, trapezoid, etc.), circular (for example, perfect circle, perfect circle) Near a circle, an elliptical shape, etc.). Moreover, the indefinite shape similar to the said shape may be sufficient. In addition, all the holes or mesh shapes may be the same, or may be different for each hole.
 ポーラススクリーンの厚さとしては、上記特性を発揮する限り特に制限されないが、例えば、10~200μmが好ましく、好ましくは、50~150μmである。厚さが10μm未満であると、滑り性が悪くなる場合があり、一方200μmを超えると、接着性と滑り性との両立ができなくなる場合がある。 The thickness of the porous screen is not particularly limited as long as it exhibits the above characteristics, but is preferably 10 to 200 μm, for example, and preferably 50 to 150 μm. If the thickness is less than 10 μm, the slipperiness may be deteriorated. On the other hand, if the thickness exceeds 200 μm, the adhesiveness and the slipperiness may not be compatible.
 ポーラススクリーンがネットである場合、その素材としては、特に制限されないが、ナイロン、ポリエチレン、ポリプロピレン、ポリエステル等の合成樹脂(プラスチック)、天然繊維、金属繊維等が挙げられる。 When the porous screen is a net, the material is not particularly limited, and examples thereof include synthetic resins (plastics) such as nylon, polyethylene, polypropylene, and polyester, natural fibers, and metal fibers.
 また、坪量は、特に制限されないが、ポーラススクリーンが貼り合わせられた粘着面における接着性と滑り性との両立という点から、1.0~70g/mが好ましく、好ましくは2.0~20g/mである。 The basis weight is not particularly limited, but is preferably from 1.0 to 70 g / m 2 , preferably from 2.0 to 70 g / m 2 from the viewpoint of achieving both adhesion and slipperiness on the adhesive surface on which the porous screen is bonded. 20 g / m 2 .
 網目の大きさは、特に制限されないが、ポーラススクリーンが貼り合わせられた粘着面における接着性と滑り性との両立という点から、5個/インチ~50個/インチが好ましく、好ましくは20個/インチ~40個/インチである。 The size of the mesh is not particularly limited, but is preferably 5 pieces / inch to 50 pieces / inch, preferably 20 pieces / inch from the viewpoint of achieving both adhesion and slipperiness on the adhesive surface on which the porous screen is bonded. Inch to 40 pieces / inch.
 このようなネットの市販品としては、例えば、商品名「ネットND20」株式会社ダイセン製等が挙げられる。 Examples of such net commercial products include trade name “Net ND20” manufactured by Daisen Corporation.
 ポーラススクリーンが孔を有するシートである場合、その素材としては、特に制限されないが、ポーラススクリーンが貼り合わせられた粘着面における接着性と滑り性との両立という点から、プラスチックや不織布が好ましい。 When the porous screen is a sheet having holes, the material is not particularly limited, but plastic and non-woven fabric are preferable from the viewpoint of compatibility between adhesiveness and slipperiness on the adhesive surface on which the porous screen is bonded.
 ポーラススクリーンの孔の大きさとしては、上記の特性を発揮できるかぎり特に制限されず、孔の大きさが共通していてもよいし、孔ごとに異なっていてもよい。このような孔の大きさとしては、例えば、孔の最も大きい部分で、500μm~10mm程度である。 The pore size of the porous screen is not particularly limited as long as the above characteristics can be exhibited, and the pore size may be common or may be different for each hole. The size of such a hole is, for example, about 500 μm to 10 mm at the largest part of the hole.
 ポーラススクリーンの孔の分布は、上記の特性を発揮できるかぎり特に制限されず、一定の領域に集中していてもよいし、また全体的に分散していてもよい。 The distribution of pores in the porous screen is not particularly limited as long as the above characteristics can be exhibited, and may be concentrated in a certain region or may be dispersed as a whole.
 ポーラススクリーンの孔部間の距離としては、特に制限されず、一定であってもよいし、一定でなくてもよい。 The distance between the holes of the porous screen is not particularly limited, and may be constant or may not be constant.
 本発明における低粘着性の凸部12の他の好適な一態様として、固体粒子からなる凸部を挙げることができる。 As another preferred embodiment of the low-adhesive convex portion 12 in the present invention, a convex portion made of solid particles can be mentioned.
 固体粒子の具体例としては、炭酸カルシウム、炭酸バリウム、硫酸カルシウム、硫酸アルミニウム、二硫化モリブデン、酸化チタン、アルミナ、シリカ、酸化マグネシウム、酸化カルシウム、水酸化カルシウム、酸化第一鉄、酸化第二鉄、ガラスビーズ等の無機質固体粒子;硬化ゴム、エボナイト、リグニン/フェノール樹脂、スチレン樹脂、塩化ビニル樹脂、(メタ)アクリル樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、メラミン樹脂、尿素樹脂、その他の樹脂類等の有機質固体粒子が挙げられる。固体粒子は1種または2種以上を使用できる。  Specific examples of solid particles include calcium carbonate, barium carbonate, calcium sulfate, aluminum sulfate, molybdenum disulfide, titanium oxide, alumina, silica, magnesium oxide, calcium oxide, calcium hydroxide, ferrous oxide, ferric oxide. , Inorganic solid particles such as glass beads; cured rubber, ebonite, lignin / phenol resin, styrene resin, vinyl chloride resin, (meth) acrylic resin, polypropylene resin, polyethylene resin, melamine resin, urea resin, other resins, etc. Organic solid particles can be mentioned. One kind or two or more kinds of solid particles can be used.
 また、固体粒子には、圧着圧力によって中空粒子壁が破砕されない限り、中空の固体粒子も使用できる。このような中空の固体粒子の例としては、尿素樹脂バルーン、メラミン樹脂バルーン、フェノール樹脂バルーン、ポリ塩化ビニリデンバルーン、エポキシ樹脂バルーンのような有機質バルーン;ガラスバルーン、シラスバルーン、炭素バルーン、アルミナバルーン、ケイ砂バルーンのような無機質バルーン等の圧着圧力によって中空粒子壁が破砕されない中空の固体粒子を挙げることができる。ここで「破砕されない」の語は、中空粒子壁の1部でも破損して、中空粒子の中の気体が外部に洩れることの無い意味で用いられるものである。  Also, as the solid particles, hollow solid particles can be used as long as the hollow particle walls are not crushed by the pressure applied by pressure. Examples of such hollow solid particles include urea resin balloons, melamine resin balloons, phenol resin balloons, polyvinylidene chloride balloons, organic balloons such as epoxy resin balloons; glass balloons, shirasu balloons, carbon balloons, alumina balloons, Examples thereof include hollow solid particles in which the hollow particle walls are not crushed by pressure bonding pressure such as an inorganic balloon such as a silica sand balloon. Here, the term “not crushed” is used in a sense that even a part of the hollow particle wall is broken and the gas in the hollow particles does not leak to the outside.
 固体粒子は平均粒子径が1~100μmであることが好ましい。固体粒子の平均粒子径は、レーザー回折・散乱法により測定することができる。具体的にはレーザー回折散乱式粒度分布測定装置により、無機充填剤の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、固体粒子を超音波により水中に分散させたものを好ましく使用することができる。 The solid particles preferably have an average particle diameter of 1 to 100 μm. The average particle diameter of the solid particles can be measured by a laser diffraction / scattering method. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis with a laser diffraction / scattering particle size distribution measuring apparatus, and the median diameter can be measured as the average particle diameter. As the measurement sample, one obtained by dispersing solid particles in water by ultrasonic waves can be preferably used.
 本発明において、粘着テープ1が片面粘着タイプの粘着テープである場合、図1に示されるように、着剤層11の低粘着性の凸部12が設けられた面とは反対側の面に支持体10を有する。支持体10は、特に限定はされないが、具体的には、ポリエステル(例えば、ポエチレンテレフタレート(PET)等)、ナイロン、サラン(商品名)、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリテトラフルオロエチレン、アイオノマー樹脂等の単独フィルム、金属箔、又はこれらから選ばれる2種以上のフィルムを積層したラミネートフィルム等が挙げられる。また、支持体と粘着剤層との接着性(投錨性)を向上させるために、上記材質からなる無孔性フィルムと下記の多孔性フィルムとのラミネートフィルムを支持体とし、該支持体の多孔性フィルム側に粘着剤層を形成するようにしてもよい。 In the present invention, when the pressure-sensitive adhesive tape 1 is a single-sided pressure-sensitive adhesive tape, as shown in FIG. 1, the surface of the adhesive layer 11 opposite to the surface on which the low-adhesive convex portion 12 is provided. A support 10 is provided. The support 10 is not particularly limited. Specifically, polyester (for example, polyethylene terephthalate (PET)), nylon, saran (trade name), polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate Examples thereof include a single film such as a polymer, polytetrafluoroethylene, and ionomer resin, a metal foil, or a laminate film obtained by laminating two or more films selected from these. Further, in order to improve the adhesion (throwing property) between the support and the pressure-sensitive adhesive layer, a laminate film of a nonporous film made of the above material and the following porous film is used as a support, and the porosity of the support is determined. An adhesive layer may be formed on the adhesive film side.
 多孔性フィルムとしては、例えば、紙、織布、不織布(例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET)等)不織布等)、上記のフィルム(例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET)等)、ナイロン、サラン(商品名)、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリテトラフルオロエチレン、アイオノマー樹脂等の単独フィルム、金属箔、又はこれらから選ばれる2種以上のフィルムを積層したラミネートフィルム等)に機械的に穿孔処理したフィルム等が挙げられ、特に紙、織布、不織布(例えば、ポリエステル不織布、ポリエチレンテレフタレート不織布等)が支持体の柔軟性の点から好ましい。多孔性フィルム、例えば、織布や不織布の場合、これらの目付量を5~30g/mとすることが投錨力の向上の点で好ましい。 Examples of the porous film include paper, woven fabric, nonwoven fabric (for example, polyester (for example, polyethylene terephthalate (PET)) nonwoven fabric, etc.), the above film (for example, polyester (for example, polyethylene terephthalate (PET)), Nylon, Saran (trade name), polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polytetrafluoroethylene, ionomer resin or other single film, metal foil, or two or more films selected from these Examples include a film obtained by mechanically perforating a laminated film or the like, and paper, woven fabric, and nonwoven fabric (for example, polyester nonwoven fabric, polyethylene terephthalate nonwoven fabric, etc.) are particularly preferable from the viewpoint of flexibility of the support. In the case of a porous film such as a woven fabric or a non-woven fabric, the basis weight thereof is preferably 5 to 30 g / m 2 from the viewpoint of improving the anchoring force.
 支持体におけるラミネートフィルムは、熱ラミネート法、ドライラミネート法、ウェットラミネート法、エクストルージョン(押し出し)ラミネート法、ホットメルトラミネート、コ・エクストルージョン(共押し出し)ラミネート法等の公知のラミネートフィルムの製造方法によって製造される。 Laminate film on the support is a known laminate film production method such as thermal lamination method, dry lamination method, wet lamination method, extrusion (extrusion) lamination method, hot melt lamination, co-extrusion (coextrusion) lamination method, etc. Manufactured by.
 支持体の厚みは、特に限定されないが、粘着テープとして一般的に用いられる、汎用性の観点から、好ましくは3~200μm、より好ましくは3~100μmである。 The thickness of the support is not particularly limited, but is preferably 3 to 200 μm, more preferably 3 to 100 μm, from the viewpoint of versatility generally used as an adhesive tape.
 本発明において、粘着テープ1は粘着剤層11表面に低粘着性の凸部12を有しているため低摩擦性であり、本接着する前は、被着体3の面上でスムーズに移動させることができる。粘着シート1を被着体3の面上で自由に移動させるには、粘着テープの摩擦力は、好ましくは0.4N/cm以下である。摩擦力が0.4N/cmを超えると、スライドによる位置調整が困難となり、0.4N/cm以下であるとストレス無く位置調整を行うことができる。摩擦力は被着体の面に接する低粘着性の凸部12の摩擦力であり、該摩擦力の測定方法を、図11を参照して、説明する。 In the present invention, the pressure-sensitive adhesive tape 1 has a low-tackiness convex portion 12 on the surface of the pressure-sensitive adhesive layer 11 and thus has low friction, and smoothly moves on the surface of the adherend 3 before being bonded. Can be made. In order to move the adhesive sheet 1 freely on the surface of the adherend 3, the frictional force of the adhesive tape is preferably 0.4 N / cm 2 or less. If the frictional force exceeds 0.4 N / cm 2 , position adjustment by sliding becomes difficult, and if it is 0.4 N / cm 2 or less, position adjustment can be performed without stress. The frictional force is the frictional force of the low-adhesive convex portion 12 in contact with the surface of the adherend, and a method for measuring the frictional force will be described with reference to FIG.
 図11中の測定対象であるサンプル1Aは、PET基材10Aの一方の面10A’に凸部付き粘着剤層11の凸部12のない側の粘着面が接着したものである。2cm四方に切断したサンプル1Aを、凸部12が接するように被着体であるステンレス板(SUS304BA、厚み:400μm、縦100mm、横30mm、質量9.5g)3の上に静置する。次いで、2cm×10cmのPET基材(導き)15をサンプル1A上に両面粘着テープ(図示せず)を用いて固定する。サンプル1Aの全体に略均等に力が加わるようにPET基材10Aの他方の面10A”の上方に50gの重り4を載せ、重り4を固定した状態で、サンプル1Aを水平方向に300mm/分の速度で引っ張った際にかかる応力(N/cm2)を測定して摩擦力とする。重り4の重さを50gに設定するのは経験値によるものである。摩擦力は粘着テープ1の位置調整機能を評価するための指標であり、粘着テープ1を位置調整するに際し、ユーザは粘着テープ1を被着体3の表面(被着面)に所定の力で押し付けた状態で被着体3の表面上で移動させることになるが、ユーザが粘着テープ1の他方の面10A”の側を操作する際に、粘着テープ1から被着体3に加わる圧力を、ここでは約12.5g/cm程度であると仮定し、この値から逆算することにより50gという値を得た。但し、50gという重さは、サンプル1Aの重さがステンレス板3に実質的に影響を与えないことを前提としたものであり、例えば、PET基材以外の支持体を使用して、その重さがステンレス板3に実質的に影響を与えるような場合には、勿論、そのような重さを50gから差し引くものとする。 A sample 1A, which is a measurement target in FIG. 11, is obtained by adhering a pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer 11 with a convex portion to the one surface 10A ′ of the PET base material 10A. A sample 1A cut in a 2 cm square is placed on a stainless steel plate (SUS304BA, thickness: 400 μm, length 100 mm, width 30 mm, mass 9.5 g) 3 as an adherend so that the convex portion 12 contacts. Next, a 2 cm × 10 cm PET substrate (lead) 15 is fixed on the sample 1A using a double-sided adhesive tape (not shown). A 50 g weight 4 is placed above the other surface 10A ″ of the PET substrate 10A so that a force is applied to the entire sample 1A substantially evenly, and the sample 1A is 300 mm / min in the horizontal direction with the weight 4 fixed. The stress (N / cm 2 ) applied at the time of pulling is measured to obtain a frictional force, and the weight 4 is set to 50 g based on empirical values. It is an index for evaluating the position adjustment function, and when adjusting the position of the adhesive tape 1, the user presses the adhesive tape 1 against the surface (attachment surface) of the adherend 3 with a predetermined force. The pressure applied to the adherend 3 from the adhesive tape 1 when the user operates the other surface 10A "side of the adhesive tape 1 is about 12.5 g in this case. Assuming that it is about / cm 2 , from this value A value of 50 g was obtained by reverse calculation. However, the weight of 50 g is based on the premise that the weight of the sample 1A does not substantially affect the stainless steel plate 3, and for example, using a support other than the PET base material, In the case where the thickness substantially affects the stainless steel plate 3, of course, such weight is subtracted from 50g.
2.セパレーター
 本発明のセパレーター付粘着テープは、粘着テープの粘着剤層表面を保護するセパレーターを有する。図8は粘着テープ1の粘着剤層11の表面にセパレーター2を重ね合わせた状態の要部概略断面図を示す。セパレーター2は、粘着剤層11と、粘着剤層11の表面に設けられた低粘着性の凸部12を覆う。
2. Separator The pressure-sensitive adhesive tape with a separator of the present invention has a separator that protects the surface of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape. FIG. 8 shows a schematic cross-sectional view of the main part in a state where the separator 2 is superimposed on the surface of the pressure-sensitive adhesive layer 11 of the pressure-sensitive adhesive tape 1. The separator 2 covers the pressure-sensitive adhesive layer 11 and the low-adhesion convex portion 12 provided on the surface of the pressure-sensitive adhesive layer 11.
 本発明において、セパレーター2は圧縮弾性率が1MPa以下のものが使用される。すなわち、セパレーター2は一定レベル以上のクッション性を備える。粘着テープ1の粘着剤層11の表面を覆うセパレーター2が圧縮弾性率が1MPa以下となるクッション性を有することで、セパレーター2が粘着テープ1とともに巻回されてロールにされて、保管され、巻き締りによる圧力が粘着テープ1に加わっても、図8に示されるように、セパレーター2によって粘着剤層11の表面に設けられた低粘着性の凸部12に対する応力集中が緩和されるため、凸部12が潰れたり、粘着剤層11に埋め込まれて、凸部12の突出高さが著しく減少してしまうのを防止することができる。セパレーター2の圧縮弾性率は、0.7MPa以下であることがより好ましく、特に好ましくは0.5MPa以下である。 In the present invention, the separator 2 having a compression modulus of 1 MPa or less is used. That is, the separator 2 has a cushioning property of a certain level or more. The separator 2 covering the surface of the pressure-sensitive adhesive layer 11 of the pressure-sensitive adhesive tape 1 has a cushioning property with a compression modulus of 1 MPa or less, so that the separator 2 is wound together with the pressure-sensitive adhesive tape 1 into a roll, stored, and wound. Even when pressure due to tightening is applied to the pressure-sensitive adhesive tape 1, as shown in FIG. 8, the stress concentration on the low-adhesion convex portion 12 provided on the surface of the pressure-sensitive adhesive layer 11 is relieved by the separator 2. It can prevent that the part 12 is crushed or embedded in the adhesive layer 11, and the protrusion height of the convex part 12 will reduce remarkably. The compression elastic modulus of the separator 2 is more preferably 0.7 MPa or less, and particularly preferably 0.5 MPa or less.
 本発明において、セパレーター2は、上記の圧縮弾性率を満たすとともに、200μm圧縮時の圧縮応力が0.1MPa以下であり、かつ、該圧縮後の圧縮回復時の変形量200μmにおける圧縮応力が0.05MPa以下を示すものが好ましい。 In the present invention, the separator 2 satisfies the above-described compression elastic modulus, the compression stress at the time of 200 μm compression is 0.1 MPa or less, and the compression stress at the deformation amount of 200 μm at the time of compression recovery after compression is 0. What shows 05 Mpa or less is preferable.
 前述のとおり、粘着テープの被着体への仮止めや、粘着テープを加圧して粘着テープを被着体に接着(本接着)する際の粘着テープの接着性を良好にする観点から、低粘着性の凸部12の突出高さは200μm以下であることが好ましい。セパレーター2の200μm圧縮時の圧縮応力及び200μm圧縮後の圧縮回復時の変形量200μmにおける圧縮応力を規定するのは、セパレーター2の圧縮量及び圧縮回復時の変形量を低粘着性の凸部12の突出高さの好適範囲の最大の突出高さ(200μm)に対応させたときの圧縮応力が十分に小さければ、低粘着性の凸部12の突出高さが200μm以下の場合には、粘着テープの巻き締りによる圧力によって低粘着性の凸部12に作用する応力が十分に緩和されて、凸部12の潰れや凸部12の粘着剤層11への埋入をより高いレべルで防止することができるためである。 As described above, from the viewpoint of improving the adhesive property of the pressure-sensitive adhesive tape when temporarily bonding the pressure-sensitive adhesive tape to the adherend or pressurizing the pressure-sensitive adhesive tape to adhere (mainly bond) the pressure-sensitive adhesive tape to the adherend. The protruding height of the adhesive convex portion 12 is preferably 200 μm or less. The compressive stress at the time of 200 μm compression of the separator 2 and the compressive stress at the time of compression recovery after compression of 200 μm are defined in terms of the compression amount of the separator 2 and the deformation amount at the time of compression recovery. If the compressive stress is sufficiently small when it corresponds to the maximum protrusion height (200 μm) in the preferred range of the protrusion height of the adhesive, if the protrusion height of the low adhesive protrusion 12 is 200 μm or less, the adhesive The stress acting on the low-adhesive convex portion 12 is sufficiently relieved by the pressure of the tape tightening, and the convex portion 12 is crushed and embedded in the adhesive layer 11 at a higher level. This is because it can be prevented.
 セパレーター2の200μm圧縮時の圧縮応力はより好ましくは0.05MPa以下であり、特に好ましくは0.04MPa以下である。また、圧縮後の圧縮回復時の変形量200μmにおける圧縮応力はより好ましくは0.04MPa以下であり、特に好ましくは0.03MPa以下である。 The compressive stress at 200 μm compression of the separator 2 is more preferably 0.05 MPa or less, and particularly preferably 0.04 MPa or less. Further, the compressive stress at a deformation amount of 200 μm upon compression recovery after compression is more preferably 0.04 MPa or less, and particularly preferably 0.03 MPa or less.
 セパレーター2は上記の圧縮弾性率および圧縮応力を有するものであれば、材質、形態等は特に限定はされないが、クッション性が得られやすい点から、多孔質フィルムを主体とするフィルムの少なくとも片面に離型処理を施したものが好ましい。ここで、「多孔質フィルムを主体とするフィルム」とは、多孔質フィルムの単体か、或いは、図9に示される、多孔質フィルム51と他のフィルム(層)52との積層フィルム50を意味する。図9中の符号53は離型層である。 The material and form of the separator 2 are not particularly limited as long as the separator 2 has the above-described compressive elastic modulus and compressive stress, but at least one surface of a film mainly composed of a porous film is easy to obtain cushioning properties. What performed the mold release process is preferable. Here, the “film mainly composed of a porous film” means a single porous film or a laminated film 50 of the porous film 51 and another film (layer) 52 shown in FIG. To do. Reference numeral 53 in FIG. 9 denotes a release layer.
 多孔質フィルム51としては、(1)紙、織布、不織布(例えば、ポリエステル(例えば、ポリエチレンテレフタレート(PET)等)不織布等)、(2)ポリエステル(例えば、ポリエチレンテレフタレート(PET)等)、ナイロン、サラン(商品名)、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリテトラフルオロエチレン、及びアイオノマーからなる群から選択される1種又は2種以上の樹脂を成分とする中実のフィルムに機械的に穿孔処理を施したフィルム、(3)ポリオレフィン発泡体(例えば、非架橋ポリエチレン発泡体、架橋ポリエチレン発泡体、ポリプロピレン発泡体、ポリエチレン(PE)及びポリプロピレン(PP)を成分とする発泡体等)、ポリエステル発泡体(例えば、ポリエチレンテレフタレート発泡体等)、ウレタン発泡体(例えば、軟質ウレタンフォーム、硬質ウレタンフォーム、ウレタン変性ポリイソシアヌレートフォーム、ポリイソシアヌレートフォーム等)、又はゴム系発泡体等の発泡体フィルム等が挙げられる。中でも、十分なクッション性が得られやすい点から、発泡体フィルムが好ましく、ポリオレフィン発泡体フィルムがより好ましい。 Examples of the porous film 51 include (1) paper, woven fabric, nonwoven fabric (for example, polyester (for example, polyethylene terephthalate (PET)) nonwoven fabric), (2) polyester (for example, polyethylene terephthalate (PET)), nylon, and the like. , Saran (trade name), polyvinyl chloride, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polytetrafluoroethylene, and one or more resins selected from the group consisting of ionomers A film obtained by mechanically perforating a real film, (3) polyolefin foam (for example, non-crosslinked polyethylene foam, crosslinked polyethylene foam, polypropylene foam, polyethylene (PE) and polypropylene (PP) Foam), polyester foam (for example, Polyethylene terephthalate foam, etc.), urethane foam (e.g., soft urethane foam, hard urethane foam, urethane-modified polyisocyanurate foams, polyisocyanurate foams, etc.), or rubber foam such foam films. Among these, a foam film is preferable and a polyolefin foam film is more preferable because sufficient cushioning properties are easily obtained.
 多孔質フィルム51は、JIS K 7222(2005)に準拠して測定される見かけ密度が500kg/m以下であるのが好ましく、200kg/m以下であるのがより好ましい。多孔質フィルムがかかる見かけ密度を有するものであれば、(a)圧縮弾性率が1MPa以下のセパレーター、(b)圧縮弾性率が1MPa以下、200μm圧縮時の圧縮応力が0.1MPa以下、200μm圧縮後の圧縮回復時の変形量200μmにおける圧縮応力が0.05MPa以下のセパレーターが得られやすい。また、多孔質フィルムの見かけ密度は、製造時にかかる張力での破れやちぎれ防ぐという観点から、20kg/m以上が好ましく、30kg/m以上がより好ましい。 The porous film 51 has an apparent density measured in accordance with JIS K 7222 (2005) of preferably 500 kg / m 3 or less, and more preferably 200 kg / m 3 or less. If the porous film has such an apparent density, (a) a separator having a compression elastic modulus of 1 MPa or less, (b) a compression elastic modulus of 1 MPa or less, a compression stress at 200 μm compression of 0.1 MPa or less, and 200 μm compression. A separator having a compressive stress of 0.05 MPa or less at a deformation amount of 200 μm at the time of subsequent compression recovery is easily obtained. In addition, the apparent density of the porous film is preferably 20 kg / m 3 or more, more preferably 30 kg / m 3 or more, from the viewpoint of preventing tearing or tearing due to tension applied during production.
 多孔質フィルム51の厚さは、凸部へかかる応力を分散するためには、100μm以上が好ましく、500μm以上がより好ましい。また、ロール状に巻き取った際の厚みの観点(すなわち、粘着シートの巻取り量を多くするという観点)から、2000μm以下が好ましく、1500μm以下がより好ましく、1100μm以下がさらに一層好ましい。 The thickness of the porous film 51 is preferably 100 μm or more and more preferably 500 μm or more in order to disperse the stress applied to the convex portion. Further, from the viewpoint of the thickness when wound into a roll (that is, from the viewpoint of increasing the amount of winding of the pressure-sensitive adhesive sheet), it is preferably 2000 μm or less, more preferably 1500 μm or less, and even more preferably 1100 μm or less.
 多孔質フィルムが発泡体フィルムである場合、微細孔の平均長径が10~1000μmの範囲にあり、平均短径が10~1000μmの範囲にあるものが好適に用いられる。発泡体フィルムの開孔率は、柔軟性の観点から50~99%が好ましく、より好ましくは60~98%である。ここで「開孔率」とは、発泡体フィルムの厚み方向と垂直な平面でのフィルムの面積中に占める微細孔の面積率を意味する。 When the porous film is a foam film, those having an average major axis of fine pores in the range of 10 to 1000 μm and an average minor axis in the range of 10 to 1000 μm are preferably used. The porosity of the foam film is preferably 50 to 99%, more preferably 60 to 98% from the viewpoint of flexibility. Here, “aperture ratio” means the area ratio of micropores in the area of the film in a plane perpendicular to the thickness direction of the foam film.
 他のフィルム(層)52としては、例えば、金属または樹脂製の中実フィルム、スキン層等が挙げられる。 Examples of the other film (layer) 52 include a metal or resin solid film, a skin layer, and the like.
 「金属または樹脂製の中実フィルム」とは、機械的に穿孔処理を施していない金属製または樹脂製の無孔フィルムを意味する。なお、金属または樹脂をフィルム化する製造段階で不可避的に発生する微細孔を有していても、そのような金属製または樹脂製のフィルムは「中実フィルム」に包含される。樹脂製の中実フィルムとしては、ポリエステル(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等);ポリアミド(例えば、ナイロン等);ポリ塩化ビニル(PVC);ポリ酢酸ビニル(PVAc);ポリ塩化ビニリデン;ポリオレフィン(例えば、ポリエチレン(高密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン、リアクターTPO、エチレン・プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)等);ポリイミド(PI);フッ素樹脂(例えば、ポリテトラフルオロエチレン等);セロハン及びアイオノマー樹脂(例えば、ポリエチレンユニット(E)とアクリル酸ユニット(A)を有するポリマーを金属(M)で架橋した樹脂等)等からなる群から選択される1種又は2種以上の樹脂から形成されたフィルムが挙げられる。また、金属製の中実フィルムとしては、アルミニウム箔、銅箔、ステンレス伯等が挙げられる。 “A solid film made of metal or resin” means a non-porous film made of metal or resin that has not been subjected to mechanical perforation. It should be noted that such a metal or resin film is included in the “solid film” even if it has micropores that are inevitably generated in the production stage of forming a metal or resin film. As the solid film made of resin, polyester (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.); polyamide (for example, nylon, etc.); polyvinyl chloride (PVC); polyvinyl acetate (PVAc); Polyvinylidene chloride; polyolefin (eg, polyethylene (high density polyethylene, low density polyethylene), polypropylene, reactor TPO, ethylene / propylene copolymer, ethylene-vinyl acetate copolymer (EVA), etc.); polyimide (PI); fluorine Resin (for example, polytetrafluoroethylene); cellophane and ionomer resin (for example, a resin having a polyethylene unit (E) and an acrylic acid unit (A) cross-linked with a metal (M)), etc. One kind to be done It formed from two or more resins films. Examples of the metal solid film include aluminum foil, copper foil, and stainless steel.
 中実フィルムは、樹脂製の中実フィルムが好ましく、より好ましくは、ポリオレフィン、ポリエステル及びポリイミドからなる群から選択される1種又は2種以上の樹脂から形成されたフィルムであり、さらに一層好ましくは、ポリエチレン(高密度ポリエチレン、低密度ポリエチレン)、ポリプロピレン、エチレン・プロピレン共重合体、エチレン-酢酸ビニル共重合体及びポリエチレンテレフタレートからなる群から選択される1種又は2種以上の樹脂から形成されたフィルムである。 The solid film is preferably a resin solid film, more preferably a film formed from one or more resins selected from the group consisting of polyolefin, polyester and polyimide, and even more preferably. , Formed from one or more resins selected from the group consisting of polyethylene (high density polyethylene, low density polyethylene), polypropylene, ethylene / propylene copolymer, ethylene-vinyl acetate copolymer and polyethylene terephthalate It is a film.
 金属または樹脂製の中実フィルムの厚みは、多孔質フィルムのクッション性の維持と、離型層の安定形成の観点から3~80μmが好ましく、より好ましくは3~50μmであり、さらに一層好ましくは10~50μmである。 The thickness of the metal or resin solid film is preferably 3 to 80 μm, more preferably 3 to 50 μm, and still more preferably from the viewpoints of maintaining the cushioning property of the porous film and stably forming the release layer. 10 to 50 μm.
 中実フィルムの多孔質フィルムへのラミネートは、熱プレス機による熱プレス加工、ロール・ツー・ロールでの連続熱ラミネート加工等の積層フィルムの常法の製法によって行われる。 The lamination of the solid film to the porous film is performed by a conventional method for producing a laminated film, such as a hot press process using a hot press machine or a continuous heat laminate process using a roll-to-roll process.
 「スキン層」とは、多孔質フィルム(発泡体フィルム)の表面に形成された、多孔質フィルム(発泡体フィルム)の開孔率よりも小さい開孔率の多孔質の薄層である。なお、「開孔率」とは、多孔質フィルムの厚み方向と垂直な平面での薄層の面積中に占める微細孔の面積率である。スキン層の開孔率は、多孔質フィルム(発泡体フィルム)のクッション性の維持と、離型層の安定形成の観点から10%以下が好ましく、5%以下がより好ましい。スキン層の厚さは多孔質フィルム(発泡体フィルム)のクッション性の維持と、離型層の安定形成の観点から3~50μmが好ましく、3~20μmがより好ましい。 The “skin layer” is a porous thin layer having a porosity smaller than the porosity of the porous film (foam film) formed on the surface of the porous film (foam film). The “perforation ratio” is the area ratio of micropores in the area of the thin layer on a plane perpendicular to the thickness direction of the porous film. The porosity of the skin layer is preferably 10% or less, more preferably 5% or less, from the viewpoint of maintaining the cushioning property of the porous film (foam film) and stably forming the release layer. The thickness of the skin layer is preferably 3 to 50 μm and more preferably 3 to 20 μm from the viewpoint of maintaining the cushioning property of the porous film (foam film) and stably forming the release layer.
 スキン層は、通常、多孔質フィルム(発泡体フィルム)51の表層部分を溶融することによって形成される。例えば、フィルムの融点よりも5~20℃程度低い温度に設定した加熱ロールを用い、加熱ロールの回転速度をフィルムの走行速度よりも低減させることによって、フィルムの加熱ロールの接触面側にスキン層を形成することができる。 The skin layer is usually formed by melting the surface layer portion of the porous film (foam film) 51. For example, by using a heating roll set at a temperature lower by about 5 to 20 ° C. than the melting point of the film and reducing the rotation speed of the heating roll from the running speed of the film, a skin layer is formed on the contact surface side of the heating roll of the film. Can be formed.
 一般に、フィルムや層の曲げ弾性率(R)と荷重、厚さには、
 R=PL/(4bTx)[式中、P:破断荷重(N)、L:曲げスパン(m)、b:試験片幅(m)、T:厚さ(m)、x:たわみ]という関係式がある。
 そして、一般的な樹脂では、曲げ弾性率(R)と引張弾性率(E)はほぼ等しい。
 また、粘着テープ表面の凸部の保護が十分になされるかは凸部にかかる荷重が重要である。
 そこで、破断荷重の値を凸部にかかる荷重とみなし、以下のパラメーターAにて、セパレーターの中実フィルムまたはスキン層の凸部の保護性能を示すこととした。
In general, the flexural modulus (R), load, and thickness of a film or layer include
R = PL 3 / (4bT 3 x) [where P: breaking load (N), L: bending span (m), b: specimen width (m), T: thickness (m), x: deflection ] Is a relational expression.
And in general resin, a bending elastic modulus (R) and a tensile elastic modulus (E) are substantially equal.
Further, the load applied to the convex portion is important for whether the convex portion on the surface of the adhesive tape is sufficiently protected.
Therefore, the value of the breaking load is regarded as the load applied to the convex portion, and the protective performance of the solid film of the separator or the convex portion of the skin layer is shown by the following parameter A.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、セパレーターの中実フィルムまたはスキン層は、中実フィルムまたはスキン層の引張弾性率をE(N/m)、厚さをT(m)としたき、粘着テープ表面に形成した凸部にかかる応力を分散するという観点から、E×Tの値が500μN・m未満であるものが好ましく、E×Tの値が62μN・m未満であるものがより好ましく、E×Tの値が10μN・m未満であるものがさらに一層好ましい。「E×T」は中実フィルムまたはスキン層を曲げるために必要な力と関係し、セパレーター付粘着テープに外力が印加されたときに粘着テープの凸部に作用する中実フィルムまたはスキン層の力に相当する。 That is, the solid film or skin layer of the separator is a convex portion formed on the surface of the adhesive tape, where the tensile elastic modulus of the solid film or skin layer is E (N / m 2 ) and the thickness is T (m). from the viewpoint of the stress is dispersed in, preferably has a value of E × T 3 is lower than 500μN · m, more preferably those values of E × T 3 is lower than 62μN · m, the E × T 3 It is even more preferable that the value is less than 10 μN · m. “E × T 3 ” relates to the force necessary to bend the solid film or skin layer, and acts on the convex portion of the adhesive tape when an external force is applied to the separator-attached adhesive tape. Equivalent to the power of
 中実フィルムまたはスキン層の引張弾性率は、以下の方法で測定される。セパレーターから、表面層である中実フィルムまたはスキン層をカミソリ刃(例えば、GEM社製の片刃トリミングカミソリ)でスライスして取り出し、それを巾10mm、長さ50mmの短冊状にカットする。こうして得られた短冊状の試験片を、23℃の雰囲気下で、チャック間距離50mm、引張速度10mm/minの条件で、引張試験機(例えば、島津製作所製小型卓上試験機Extest)にて引張試験を行い、その時の応力-ひずみ曲線における引張開始直後の曲線の傾きから引張弾性率を算出する。 The tensile elastic modulus of the solid film or skin layer is measured by the following method. From the separator, the solid film or skin layer as the surface layer is sliced and taken out with a razor blade (for example, a single blade trimming razor manufactured by GEM) and cut into a strip shape having a width of 10 mm and a length of 50 mm. The strip-shaped test piece obtained in this manner was pulled with a tensile tester (for example, a small tabletop tester Extest manufactured by Shimadzu Corporation) under an atmosphere of 23 ° C. under conditions of a distance between chucks of 50 mm and a tensile speed of 10 mm / min. The test is performed, and the tensile modulus is calculated from the slope of the curve immediately after the start of tension in the stress-strain curve at that time.
 セパレーターの離型処理に使用される、剥離剤としては、特に限定されず、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤、シリコーン系剥離剤等が使用される。中でも、シリコーン系剥離剤が好ましく、硬化方法としては、紫外線照射や電子線照射等の硬化方法を用いるのが好ましい。さらに、シリコーン系剥離剤の中でもカチオン重合性の紫外線硬化型シリコーン系剥離剤が好ましい。カチオン重合性の紫外線硬化型シリコーン系剥離剤は、カチオン重合型のシリコーン(分子内にエポキシ官能基を有するポリオルガノシロキサン)とオニウム塩系光開始剤を含む混合物であるが、オニウム塩系光開始剤がホウ素系光開始剤からなるものが特に好ましく、このようなオニウム塩系光開始剤がホウ素系光開始剤からなるカチオン重合性の紫外線硬化型シリコーン系剥離剤を使用することで特に良好な剥離性(離型性)が得られる。カチオン重合型のシリコーン(分子内にエポキシ官能基を有するポリオルガノシロキサン)は、1分子中に少なくとも2個のエポキシ官能基を有するものであって、直鎖状のもの、分岐鎖状のものまたはこれらの混合物であってもよい。ポリオルガノシロキサンに含有されるエポキシ官能基の種類は特に制限されないが、オニウム塩系光開始剤によって開環カチオン重合が進行するものであればよい。具体的には、γ-グリシジルオキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基、β-(4-メチル-3,4エポキシシクロヘキシル)プロピル基等が例示できる。かかるカチオン重合型のシリコーン(分子内にエポキシ官能基を有するポリオルガノシロキサン)は上市されており、市販品を使用することができる。例えば、東芝シリコーン社製のUV9315、UV9430、UV9300、TPR6500、TPR6501等、信越化学工業社製のX-62-7622、X-62-7629、X-62-7655、X-62-7660,X-62-7634A等、荒川化学社製のPoly200、Poly201、RCA200、RCA250、RCA251等を挙げることができる。 The release agent used for the release treatment of the separator is not particularly limited, and a fluorine release agent, a long-chain alkyl acrylate release agent, a silicone release agent, and the like are used. Among these, a silicone release agent is preferable, and a curing method such as ultraviolet irradiation or electron beam irradiation is preferably used as the curing method. Furthermore, among the silicone-based release agents, cationically polymerizable UV-curable silicone-type release agents are preferable. Cationic polymerizable UV curable silicone release agent is a mixture containing cationic polymerization type silicone (polyorganosiloxane having epoxy functional group in the molecule) and onium salt photoinitiator, but onium salt photoinitiator It is particularly preferable that the agent is made of a boron photoinitiator, and it is particularly good when such an onium salt photoinitiator is a cationic polymerizable UV curable silicone release agent comprising a boron photoinitiator. Peelability (release property) is obtained. The cationic polymerization type silicone (polyorganosiloxane having an epoxy functional group in the molecule) has at least two epoxy functional groups in one molecule, and is linear or branched or A mixture thereof may be used. The type of epoxy functional group contained in the polyorganosiloxane is not particularly limited as long as ring-opening cationic polymerization proceeds with an onium salt photoinitiator. Specific examples include γ-glycidyloxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group, β- (4-methyl-3,4 epoxy cyclohexyl) propyl group and the like. Such cationic polymerization type silicone (polyorganosiloxane having an epoxy functional group in the molecule) is commercially available, and a commercially available product can be used. For example, UV9315, UV9430, UV9300, TPR6500, TPR6501 manufactured by Toshiba Silicone, X-62-7622, X-62-7629, X-62-7655, X-62-7660, X- Examples include 62-7634A, Poly200, Poly201, RCA200, RCA250, and RCA251 manufactured by Arakawa Chemical Co., Ltd.
 また、シリコーン系剥離剤には、熱硬化性付加型シリコーン系剥離剤(熱硬化性付加型ポリシロキサン系剥離剤)を使用することもできる。熱硬化性付加型シリコーン系剥離剤は、分子中に官能基としてアルケニル基を含有するポリオルガノシロキサン(アルケニル基含有シリコーン)及び分子中に官能基としてヒドロシリル基を含有するポリオルガノシロキサンを必須の構成成分とする。 Further, as the silicone release agent, a thermosetting addition type silicone release agent (thermosetting addition type polysiloxane release agent) can also be used. The thermosetting addition-type silicone release agent essentially comprises a polyorganosiloxane containing an alkenyl group as a functional group in the molecule (alkenyl group-containing silicone) and a polyorganosiloxane containing a hydrosilyl group as a functional group in the molecule. Ingredients.
 上記分子中に官能基としてアルケニル基を含有するポリオルガノシロキサンとしては、中でも、分子中にアルケニル基を2個以上有しているポリオルガノシロキサンが好ましい。上記アルケニル基としては、例えば、ビニル基(エテニル基)、アリル基(2-プロペニル基)、ブテニル基、ペンテニル基、ヘキセニル基等が挙げられる。なお、上記アルケニル基は、通常、主鎖又は骨格を形成しているポリオルガノシロキサンのケイ素原子(例えば、末端のケイ素原子や、主鎖内部のケイ素原子等)に結合している。  As the polyorganosiloxane having an alkenyl group as a functional group in the molecule, a polyorganosiloxane having two or more alkenyl groups in the molecule is preferable. Examples of the alkenyl group include a vinyl group (ethenyl group), an allyl group (2-propenyl group), a butenyl group, a pentenyl group, and a hexenyl group. The alkenyl group is usually bonded to a silicon atom (for example, a terminal silicon atom or a silicon atom inside the main chain) of the polyorganosiloxane forming the main chain or skeleton.
 また、上記主鎖又は骨格を形成しているポリオルガノシロキサンとしては、例えば、ポリジメチルシロキサン、ポリジエチルシロキサン、ポリメチルエチルシロキサン等のポリアルキルアルキルシロキサン(ポリジアルキルシロキサン)や、ポリアルキルアリールシロキサンの他、ケイ素原子含有モノマー成分が複数種用いられている共重合体[例えば、ポリ(ジメチルシロキサン-ジエチルシロキサン)等]等が挙げられる。中でも、ポリジメチルシロキサンが好適である。即ち、分子中に官能基としてアルケニル基を含有するポリオルガノシロキサンとしては、具体的には、ビニル基、ヘキセニル基等を官能基として有するポリジメチルシロキサンが好ましく例示される。 Examples of the polyorganosiloxane forming the main chain or skeleton include polyalkylalkylsiloxanes (polydialkylsiloxanes) such as polydimethylsiloxane, polydiethylsiloxane, and polymethylethylsiloxane, and polyalkylarylsiloxanes. In addition, a copolymer [for example, poly (dimethylsiloxane-diethylsiloxane), etc.] in which a plurality of silicon atom-containing monomer components are used may be used. Of these, polydimethylsiloxane is preferred. That is, as the polyorganosiloxane containing an alkenyl group as a functional group in the molecule, specifically, polydimethylsiloxane having a vinyl group, hexenyl group or the like as a functional group is preferably exemplified.
 上記分子中に官能基としてヒドロシリル基を含有するポリオルガノシロキサン架橋剤は、分子中にケイ素原子に結合している水素原子(特に、Si-H結合を有するケイ素原子)を有しているポリオルガノシロキサンであり、特に分子中にSi-H結合を有するケイ素原子を2個以上有しているポリオルガノシロキサンが好ましい。上記Si-H結合を有するケイ素原子としては、主鎖中のケイ素原子、側鎖中のケイ素原子のいずれであってもよく、すなわち、主鎖の構成単位として含まれていてもよく、あるいは、側鎖の構成単位として含まれていてもよい。なお、Si-H結合のケイ素原子の数は、2個以上であれば特に制限されない。上記分子中に官能基としてヒドロシリル基を含有するポリオルガノシロキサン架橋剤としては、具体的には、ポリメチルハイドロジェンシロキサンやポリ(ジメチルシロキサン-メチルハイドロジェンシロキサン)等が好適である。  The polyorganosiloxane crosslinking agent containing a hydrosilyl group as a functional group in the molecule is a polyorgano having a hydrogen atom bonded to a silicon atom (particularly, a silicon atom having a Si—H bond) in the molecule. A siloxane, particularly a polyorganosiloxane having two or more silicon atoms having Si—H bonds in the molecule is preferred. The silicon atom having the Si—H bond may be either a silicon atom in the main chain or a silicon atom in the side chain, that is, may be contained as a constituent unit of the main chain, or It may be contained as a constituent unit of the side chain. The number of silicon atoms in the Si—H bond is not particularly limited as long as it is 2 or more. Specific examples of the polyorganosiloxane crosslinking agent containing a hydrosilyl group as a functional group in the molecule are polymethylhydrogensiloxane and poly (dimethylsiloxane-methylhydrogensiloxane).
 熱硬化型シリコーン系離型処理剤には、前記熱硬化型シリコーン系樹脂とともに、室温における保存安定性を付与するために反応抑制剤(反応遅延剤)が用いられていてもよい。該反応抑制剤としては、例えば、剥離剤として熱硬化性付加型シリコーン系剥離剤が用いられている場合、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ペンテン-3-オール、3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等が挙げられる。 In addition to the thermosetting silicone resin, a reaction inhibitor (reaction retarder) may be used for the thermosetting silicone release treatment agent in order to impart storage stability at room temperature. As the reaction inhibitor, for example, when a thermosetting addition-type silicone release agent is used as the release agent, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-pentene- Examples include 3-ol, 3-methyl-3-penten-1-yne, and 3,5-dimethyl-3-hexen-1-yne.
 また、熱硬化型シリコーン系離型処理剤には、上記成分の他にも必要に応じて、剥離コントロール剤等が用いられていてもよい。具体的には、MQレジン等の剥離コントロール剤、アルケニル基又はヒドロシリル基を有しないポリオルガノシロキサン(トリメチルシロキシ基末端封鎖ポリジメチルシロキサン等)等が添加されていてもよい。これらの成分の離型処理剤中の含有量は、特に限定されないが、固形分全体に対して、1~30重量%が好ましい。 In addition to the above components, a release control agent or the like may be used as necessary for the thermosetting silicone release treatment agent. Specifically, a release control agent such as MQ resin, polyorganosiloxane having no alkenyl group or hydrosilyl group (trimethylsiloxy group end-blocked polydimethylsiloxane, etc.) and the like may be added. The content of these components in the release agent is not particularly limited, but is preferably 1 to 30% by weight based on the entire solid content.
 熱硬化型シリコーン系離型処理剤は通常硬化触媒を含む。硬化触媒は熱硬化性付加型シリコーン用の触媒として一般的に用いられる白金系触媒を用いることが好ましい。中でも、塩化白金酸、白金のオレフィン錯体、塩化白金酸のオレフィン錯体から選ばれた少なくとも1つの白金系触媒が好ましい。硬化触媒はそのまま、又は溶剤に溶解又は分散した形態で使用できる。  The thermosetting silicone release agent usually contains a curing catalyst. The curing catalyst is preferably a platinum-based catalyst that is generally used as a catalyst for thermosetting addition-type silicone. Among these, at least one platinum-based catalyst selected from chloroplatinic acid, platinum olefin complexes, and chloroplatinic acid olefin complexes is preferable. The curing catalyst can be used as it is or in a form dissolved or dispersed in a solvent.
 硬化触媒の配合量(固形分)は、熱硬化型シリコーン系樹脂100重量部(樹脂分)に対して、0.05~0.55重量部が好ましく、0.06~0.50重量部がさらに好ましい。前記硬化触媒の配合量が0.05重量部未満であると硬化速度が遅くなり、0.55重量部を超えるとポットライフが著しく短くなる。 The blending amount (solid content) of the curing catalyst is preferably 0.05 to 0.55 parts by weight and preferably 0.06 to 0.50 parts by weight with respect to 100 parts by weight (resin content) of the thermosetting silicone resin. Further preferred. When the blending amount of the curing catalyst is less than 0.05 parts by weight, the curing rate is slow, and when it exceeds 0.55 parts by weight, the pot life is remarkably shortened.
 本発明において、離型処理層を設ける際に用いられる離型処理剤を含む塗工液には、塗工性を向上させるため、通常、有機溶剤が使用される。該有機溶剤としては、特に制限されず、例えば、シクロヘキサン、ヘキサン、ヘプタン等の脂肪族又は脂環式炭化水素系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;酢酸エチル、酢酸メチル等のエステル系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;メタノール、エタノール、ブタノール等のアルコール系溶剤等が使用できる。これらの有機溶剤は、単独で使用してもよいし、2種以上を混合使用してもよい。  In the present invention, an organic solvent is usually used for the coating liquid containing a release treatment agent used when providing the release treatment layer in order to improve the coatability. The organic solvent is not particularly limited, and examples thereof include aliphatic or alicyclic hydrocarbon solvents such as cyclohexane, hexane, and heptane; aromatic hydrocarbon solvents such as toluene and xylene; ethyl acetate, methyl acetate, and the like. Ester solvents; ketone solvents such as acetone and methyl ethyl ketone; alcohol solvents such as methanol, ethanol and butanol can be used. These organic solvents may be used alone or in combination of two or more.
 本発明におけるセパレーターにおいて、離型処理して形成される離型層53の厚さは、優れた剥離性(離型性)および厚みムラの抑制(離型層の安定形成)の観点から0.001~10μmが好ましく、より好ましくは0.03~5μmであり、特に好ましくは0.1~1μmである。 In the separator according to the present invention, the thickness of the release layer 53 formed by the release treatment is from the viewpoint of excellent releasability (release property) and suppression of thickness unevenness (stable formation of the release layer). The thickness is preferably 001 to 10 μm, more preferably 0.03 to 5 μm, and particularly preferably 0.1 to 1 μm.
 本発明のセパレーター付き粘着テープは、例えば、以下のようにして、製造される。
 ベースとなる粘着剤層表面に凸部を直接形成するか、または、剥離性基材にパターン形成した凸部を粘着剤表面に転写することで粘着剤面に凸部パターンを形成し、次にセパレーターを貼り合わせ、ロールにして、保管される。
The pressure-sensitive adhesive tape with a separator of the present invention is produced, for example, as follows.
Protrusions are formed directly on the surface of the pressure-sensitive adhesive layer as a base, or a convex pattern is formed on the adhesive surface by transferring the convexes patterned on the peelable substrate to the surface of the adhesive. A separator is pasted together to make a roll and stored.
 本発明のセパレーター付き粘着テープでは、粘着テープのロールの巻き締りにより、粘着テープに圧力が加わっても、セパレータ2の圧縮弾性率が1MPa以下であることから、低粘着性の凸部の潰れや低粘着性の凸部の粘着剤層への埋没が生じるのを十分に抑制することができる。このため、巻き戻した粘着テープからセパレーターを剥がして粘着テープを被着体に貼付する際、低粘着性の凸部の存在によって粘着テープを被着体との間に高い接着力が生じることなくスムーズに移動させることができ、その結果、被着体の意図した位置に粘着テープを作業性良く、接着することができる。 In the pressure-sensitive adhesive tape with a separator according to the present invention, even when pressure is applied to the pressure-sensitive adhesive tape by tightening the roll of the pressure-sensitive adhesive tape, the separator 2 has a compressive elastic modulus of 1 MPa or less. It is possible to sufficiently suppress the embedding of the low-adhesive convex portion in the pressure-sensitive adhesive layer. For this reason, when peeling a separator from the rewound adhesive tape and sticking an adhesive tape on a to-be-adhered body, high adhesive force does not arise between an adhesive tape and an to-be-adhered body by presence of a low-adhesive convex part. As a result, the adhesive tape can be bonded to the intended position of the adherend with good workability.
 以上は、支持体を有する片面接着型の粘着テープ1の粘着剤層11の支持体とは反対側の面にセパレーター2が重ね合わされたセパレーター付き粘着テープについて説明したが、粘着剤層の両面に低粘着性の凸部が形成された両面接着型の粘着テープの場合、粘着剤層の両面に圧縮弾性率が1MPa以下であるセパレーター2を重ね合わせることで、粘着テープ1の両面において、低粘着性の凸部の潰れや低粘着性の凸部の粘着剤層への埋没が生じるのを十分に抑制することができる。 The above is a description of the pressure-sensitive adhesive tape with a separator in which the separator 2 is superimposed on the surface opposite to the support of the pressure-sensitive adhesive layer 11 of the single-sided adhesive tape 1 having a support. In the case of a double-sided adhesive tape in which a low-adhesive convex portion is formed, low adhesiveness can be achieved on both sides of the pressure-sensitive adhesive tape 1 by superimposing separators 2 having a compression modulus of 1 MPa or less on both sides of the pressure-sensitive adhesive layer. It is possible to sufficiently suppress the occurrence of the crushing of the convex portions and the embedding of the low-adhesive convex portions in the adhesive layer.
 また、本発明におけるセパレーター付き粘着テープにおけるセパレーターは、セパレーターが両面離型処理されたセパレーター(所謂「シングルセパレーター」)であってもよい。すなわち、セパレーターが、セパレーターの主体となるフィルム(多孔質フィルム等)の粘着テープの粘着剤層(凸部)に対向する側の面だけでなく反対側の面にも中実フィルムまたはスキン層の積層と離型処理が施された態様のセパレーターであるか、或いは、該反対側の面に直接離型処理が施された態様のセパレーターであってもよい。 Further, the separator in the pressure-sensitive adhesive tape with a separator in the present invention may be a separator (so-called “single separator”) in which the separator is subjected to a double-sided release treatment. That is, the separator has a solid film or skin layer not only on the surface opposite to the pressure-sensitive adhesive layer (convex portion) of the pressure-sensitive adhesive tape of the film (porous film or the like) that is the main component of the separator, but also on the opposite surface. It may be a separator in a mode in which lamination and release treatment are performed, or a separator in a mode in which release processing is directly performed on the opposite surface.
 以下、実施例および比較例を示して本発明をより詳細に説明する。
[実施例1~22、比較例1、2]
 以下の粘着テープおよびセパレーターを使用した。
1.粘着テープA
 日東電工社製両面粘着テープNo.515(テープ幅:5mm)に低粘着性の凸部を形成したもの。
 ・粘着剤層(粘着剤:アクリル系粘着剤、弾性率:1.56MPa、層厚:250μm)
 ・低粘着性の凸部(山豊テグス社製VERSATILE DESIGN(直径150μmの釣り糸)をスペース部の幅を4mmにしてストライプ状に配列し、5kgローラー(巾60mm)を一往復することで圧着固定したストライプ状パターン(突出高さ:127μm、弾性率:2024MPa))。
 ・粘着剤層の表面における低粘着性の凸部の占有率:3.6%
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[Examples 1 to 22, Comparative Examples 1 and 2]
The following adhesive tapes and separators were used.
1. Adhesive tape A
Nitto Denko double-sided adhesive tape No. 515 (tape width: 5 mm) formed with low-adhesion convex portions.
-Adhesive layer (adhesive: acrylic adhesive, elastic modulus: 1.56 MPa, layer thickness: 250 μm)
・ Low-viscosity convex part (VERSATILE DESIGN (fishing line with a diameter of 150 μm) manufactured by Yamato Tegus Co., Ltd.) with a space part width of 4 mm arranged in a stripe shape and fixed by pressure by reciprocating a 5 kg roller (width 60 mm). Striped pattern (projection height: 127 μm, elastic modulus: 2024 MPa)).
-Occupancy ratio of low-adhesion convex portions on the surface of the adhesive layer: 3.6%
2.セパレーター
(1)セパレーターA
 非架橋ポリエチレン発泡体フィルム(酒井化学社製「エサノン」、フォーム層厚さ:0.5mm、見かけ密度:34kg/cm)に、片面をカチオン重合性の紫外線硬化型シリコーン系剥離剤(信越化学社製UV硬化型シリコーンX-62-7622)で離型処理(離型層厚さ:1μm)した高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の離型処理面とは反対側の面をラミネートした積層フィルム。
2. Separator (1) Separator A
Non-crosslinked polyethylene foam film (“Esanon” manufactured by Sakai Chemical Co., Ltd., foam layer thickness: 0.5 mm, apparent density: 34 kg / cm 3 ), one side of which is a cationic polymerizable UV curable silicone release agent (Shin-Etsu Chemical) High-density polyethylene film (thickness (T): 10 μm, tensile elastic modulus (E): 40 MPa, E ×) subjected to a release treatment (release layer thickness: 1 μm) by UV curable silicone X-6-7622 manufactured by KK (T 3 = 0.04 μN · m, solid film) laminated film on which the surface opposite to the release treatment surface is laminated.
(2)セパレーターB
 非架橋ポリエチレン発泡体フィルム(酒井化学社製「エサノン」、フォーム層厚さ:1.0mm、見かけ密度:34kg/cm)に、片面をカチオン重合性の紫外線硬化型シリコーン系剥離剤(信越化学社製UV硬化型シリコーンX-62-7622)で離型処理(離型層厚さ:1μm)した高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の離型処理面とは反対側の面をラミネートした積層フィルム。
(2) Separator B
Non-crosslinked polyethylene foam film (“Esanon” manufactured by Sakai Chemical Co., Ltd., foam layer thickness: 1.0 mm, apparent density: 34 kg / cm 3 ), one side of which is a cationic polymerizable UV curable silicone release agent (Shin-Etsu Chemical) High-density polyethylene film (thickness (T): 10 μm, tensile elastic modulus (E): 40 MPa, E ×) subjected to a release treatment (release layer thickness: 1 μm) by UV curable silicone X-6-7622 manufactured by KK (T 3 = 0.04 μN · m, solid film) laminated film on which the surface opposite to the release treatment surface is laminated.
(3)セパレーターC
 ポリプロピレン発泡体フィルム(日東電工社製SFC100、厚さ:0.5mm、見かけ密度:30kg/m)の片面をカチオン重合性の紫外線硬化型シリコーン系剥離剤(信越化学社製UV硬化型シリコーンX-62-7622)で離型処理(離型層厚さ:1μm)した。
(3) Separator C
One side of a polypropylene foam film (Nitto Denko SFC100, thickness: 0.5 mm, apparent density: 30 kg / m 3 ) is a cationic polymerizable UV curable silicone release agent (Shin-Etsu Chemical UV curable silicone X) -62-7622) to release the mold (release layer thickness: 1 μm).
(4)セパレーターD
 架橋ポリエチレン発泡体フィルム(積水化学社製ソフトロン#1001、厚さ:1mm、見かけ密度:96kg/m)の片面をカチオン重合性の紫外線硬化型シリコーン系剥離剤(信越化学社製UV硬化型シリコーンX-62-7622)で離型処理(離型層厚さ:1μm)した。
(4) Separator D
One side of a cross-linked polyethylene foam film (Softlon # 1001, manufactured by Sekisui Chemical Co., Ltd., thickness: 1 mm, apparent density: 96 kg / m 3 ) is a cationic polymerizable UV curable silicone release agent (UV curable type manufactured by Shin-Etsu Chemical Co., Ltd.) Silicone X-62-7622) was subjected to release treatment (release layer thickness: 1 μm).
(5)セパレーターE
 EPTゴム(入間川ゴム社製、厚さ:3.0mm)の片面をカチオン重合性の紫外線硬化型シリコーン系剥離剤(信越化学社製UV硬化型シリコーンX-62-7622)で離型処理(離型層厚さ:1μm)した。
(5) Separator E
One side of EPT rubber (manufactured by Irumagawa Rubber Co., Ltd., thickness: 3.0 mm) is subjected to a release treatment (release) with a cationic polymerizable UV curable silicone release agent (UV curable silicone X-6-7622 manufactured by Shin-Etsu Chemical Co., Ltd.). Mold layer thickness: 1 μm).
(6)セパレーターF
 ポリエステルフィルム(東レ社製ルミラーs10、厚さ:38μm)の片面をカチオン重合性の紫外線硬化型シリコーン系剥離剤(信越化学社製UV硬化型シリコーンX-62-7622)で離型処理(離型層厚さ:1μm)した。
(6) Separator F
One side of a polyester film (Lumirror s10 manufactured by Toray Industries, Inc., thickness: 38 μm) is subjected to a release treatment (release) with a cationic polymerizable UV curable silicone release agent (UV curable silicone X-6-7622 manufactured by Shin-Etsu Chemical Co., Ltd.). Layer thickness: 1 μm).
(7)セパレーターG
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、PETフィルム(厚さ(T):25μm、引張弾性率(E):4000MPa、E×T=62.5μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(7) Separator G
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a PET film (thickness (T): 25 μm, tensile elastic modulus (E): 4000 MPa, E × T 3 = 62.5 μN · m, a solid film).
(8)セパレーターH
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりにPETフィルム(厚さ(T):25μm、引張弾性率(E):4000MPa、E×T=62.5μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(8) Separator H
PET film (thickness (T): 25 μm) instead of high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film) , Tensile elastic modulus (E): 4000 MPa, E × T 3 = 62.5 μN · m, a solid film).
(9)セパレーターI
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、PETフィルム(厚さ(T):50μm、引張弾性率(E):4000MPa、E×T=500μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(9) Separator I
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a PET film (thickness (T): 50 μm, tensile elastic modulus (E): 4000 MPa, E × T 3 = 500 μN · m, a solid film), and a laminated film produced in the same manner as the separator A.
(10)セパレーターJ
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、PETフィルム(厚さ(T):50μm、引張弾性率(E):4000MPa、E×T=500μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(10) Separator J
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a PET film (thickness (T): 50 μm, tensile elastic modulus (E): 4000 MPa, E × T 3 = 500 μN · m, a laminated film produced in the same manner as the separator B except that a solid film) was used.
(11)セパレーターK
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、高密度ポリエチレンフィルム(厚さ(T):20μm、引張弾性率(E):40MPa、E×T=0.32μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(11) Separator K
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a high-density polyethylene film (thickness (T ): 20 μm, Tensile modulus (E): 40 MPa, E × T 3 = 0.32 μN · m, a solid film).
(12)セパレーターL
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、高密度ポリエチレンフィルム(厚さ(T):20μm、引張弾性率(E):40MPa、E×T=0.32μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(12) Separator L
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a high-density polyethylene film (thickness (T ): 20 μm, tensile elastic modulus (E): 40 MPa, E × T 3 = 0.32 μN · m, a solid film), and a laminated film produced in the same manner as separator B.
(13)セパレーターM
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、高密度ポリエチレンフィルム(厚さ(T):30μm、引張弾性率(E):40MPa、E×T=1.08μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(13) Separator M
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a high-density polyethylene film (thickness (T ): 30 μm, tensile elastic modulus (E): 40 MPa, E × T 3 = 1.08 μN · m, a solid film).
(14)セパレーターN
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、高密度ポリエチレンフィルム(厚さ(T):30μm、引張弾性率(E):40MPa、E×T=1.08μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(14) Separator N
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a high-density polyethylene film (thickness (T ): 30 μm, tensile elastic modulus (E): 40 MPa, E × T 3 = 1.08 μN · m, a solid film), and a laminated film produced in the same manner as separator B.
(15)セパレーターO
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、低密度ポリエチレンフィルム(厚さ(T):20μm、引張弾性率(E):20MPa、E×T=0.16μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(15) Separator O
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a low-density polyethylene film (thickness (T ): 20 μm, tensile elastic modulus (E): 20 MPa, E × T 3 = 0.16 μN · m, a solid film).
(16)セパレーターP
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、低密度ポリエチレンフィルム(厚さ(T):20μm、引張弾性率(E):20MPa、E×T=0.16μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(16) Separator P
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a low-density polyethylene film (thickness (T ): 20 μm, tensile elastic modulus (E): 20 MPa, E × T 3 = 0.16 μN · m, a solid film).
(17)セパレーターQ
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、低密度ポリエチレンフィルム(厚さ(T):30μm、引張弾性率(E):20MPa、E×T=0.54μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(17) Separator Q
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a low-density polyethylene film (thickness (T ): 30 μm, tensile elastic modulus (E): 20 MPa, E × T 3 = 0.54 μN · m, solid film), and a laminated film produced in the same manner as in the separator A.
(18)セパレーターR
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、低密度ポリエチレンフィルム(厚さ(T):30μm、引張弾性率(E):20MPa、E×T=0.54μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(18) Separator R
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a low-density polyethylene film (thickness (T ): 30 μm, Tensile modulus (E): 20 MPa, E × T 3 = 0.54 μN · m, a solid film).
(19)セパレーターS
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、PETフィルム(厚さ(T):75μm、引張弾性率(E):4000MPa、E×T=1687.5μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(19) Separator S
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a PET film (thickness (T): 75 μm, tensile elastic modulus (E): 4000 MPa, E × T 3 = 1687.5 μN · m, a solid film), and a laminated film produced in the same manner as the separator A.
(20)セパレーターT
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、PETフィルム(厚さ(T):75μm、引張弾性率(E):4000MPa、E×T=1687.5μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(20) Separator T
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a PET film (thickness (T): 75 μm, tensile elastic modulus (E): 4000 MPa, E × T 3 = 1687.5 μN · m, solid film), and a laminated film produced in the same manner as separator B.
(21)セパレーターU
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、高密度ポリエチレンフィルム(厚さ(T):50μm、引張弾性率(E):40MPa、E×T=5.0μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(21) Separator U
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a high-density polyethylene film (thickness (T ): 50 μm, Tensile modulus (E): 40 MPa, E × T 3 = 5.0 μN · m, a solid film).
(22)セパレーターV
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、高密度ポリエチレンフィルム(厚さ(T):50μm、引張弾性率(E):40MPa、E×T=5.0N・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(22) Separator V
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a high-density polyethylene film (thickness (T ): 50 μm, tensile elastic modulus (E): 40 MPa, E × T 3 = 5.0 N · m, a laminated film produced in the same manner as separator B except that it was used.
(23)セパレーターW
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、低密度ポリエチレンフィルム(厚さ(T):50μm、引張弾性率(E):20MPa、E×T=2.5μN・m、中実フィルム)を使用した以外はセパレーターAと同様にして作製された積層フィルム。
(23) Separator W
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a low-density polyethylene film (thickness (T ): 50 μm, tensile elastic modulus (E): 20 MPa, E × T 3 = 2.5 μN · m, a solid film).
(24)セパレーターX
 高密度ポリエチレンフィルム(厚さ(T):10μm、引張弾性率(E):40MPa、E×T=0.04μN・m、中実フィルム)の代わりに、低密度ポリエチレンフィルム(厚さ(T):50μm、引張弾性率(E):20MPa、E×T=2.5μN・m、中実フィルム)を使用した以外はセパレーターBと同様にして作製された積層フィルム。
(24) Separator X
Instead of a high-density polyethylene film (thickness (T): 10 μm, tensile modulus (E): 40 MPa, E × T 3 = 0.04 μN · m, solid film), a low-density polyethylene film (thickness (T ): 50 μm, tensile elastic modulus (E): 20 MPa, E × T 3 = 2.5 μN · m, a solid film).
 なお、セパレーターA、B、G~Xにおける中実フィルムの引張弾性率は前述の試験方法で測定した。 In addition, the tensile elastic modulus of the solid film in the separators A, B, G to X was measured by the test method described above.
3.セパレーターの圧縮弾性率、200μm圧縮時の圧縮応力、及び圧縮回復時の変形量200μmにおける圧縮応力(200μm回復時の圧縮応力)の測定
 オートグラフ(島津製作所製小型卓上試験機EXtest)を用いた圧縮試験を実施した。
 台(SUS製)上にセパレーター(4cm×4cm)を離型処理した面とは反対側の面を台に向けて載置し、円筒状の圧子(SUS製)をセパレーター(4cm×4cm)の中心部に対し、離型処理面に対する垂直方向から押し付けて圧縮応力を測定し(温度:23℃、圧子面積:1cm、圧縮速度:1mm/min)、目標応力0.1MPaに到達した後、引張り方向に速度1mm/minで円筒状の圧子を移動することで圧縮回復させた。
3. Measurement of compression modulus of separator, compression stress at 200 μm compression, and compression stress at 200 μm deformation (compression stress at 200 μm recovery) at compression recovery Compression using an autograph (Shimadzu small tabletop testing machine EXtest) The test was conducted.
Place the separator (4 cm x 4 cm) on the table (made of SUS) with the surface opposite to the surface on which the separator was released facing the table, and place the cylindrical indenter (made of SUS) on the separator (4 cm x 4 cm). The compressive stress was measured by pressing from the direction perpendicular to the mold release surface against the center (temperature: 23 ° C., indenter area: 1 cm 2 , compression speed: 1 mm / min), and after reaching the target stress of 0.1 MPa, Compression recovery was achieved by moving a cylindrical indenter at a speed of 1 mm / min in the pulling direction.
4.凸部潰れの評価
 粘着テープAの粘着剤層にセパレーターの離型層側を乗せ、セパレーターの背面に圧力0.1MPaを5分間加え、圧力を加える前後の凸部の高さをレーザー顕微鏡(オリンパス社製OLS4000)で測定した。
4). Evaluation of crushing projections Place the release layer side of the separator on the adhesive layer of the adhesive tape A, apply pressure 0.1 MPa to the back of the separator for 5 minutes, and measure the height of the projections before and after applying pressure with a laser microscope (Olympus (OLS4000 manufactured by the company).
5.摩擦力の評価
 前述の方法に従って、粘着テープAの粘着剤層表面の凸部の摩擦力を測定した。
5. Evaluation of friction force According to the above-mentioned method, the friction force of the convex part of the adhesive layer surface of the adhesive tape A was measured.
 実施例および比較例の物性・特性の測定結果を表1に示す。 Table 1 shows the measurement results of physical properties and characteristics of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1中の評価Aにおいて、「○」は良好(摩擦力が0.4N/cm以下)、「×」は不可(摩擦力が0.4N/cm超)。 In evaluation A in Table 1, “◯” indicates good (friction force is 0.4 N / cm or less), and “x” indicates impossibility (friction force exceeds 0.4 N / cm).
 表1中の評価Bにおいて、「◎」は最良(セパレーターの圧縮弾性率が1MPa以下、かつ、凸部高さ残存率が60%以上)、「○」は良好(セパレーターの圧縮弾性率が1MPa以下、かつ、凸部高さ残存率が40%以上、60%未満)、「△」は可(セパレーターの圧縮弾性率が1MPa以下、かつ、凸部高さ残存率が40%未満) In evaluation B in Table 1, “◎” is the best (the separator has a compressive modulus of elasticity of 1 MPa or less and the remaining height of the convex portion is 60% or more), and “◯” is good (the separator has a compressive modulus of elasticity of 1 MPa. The remaining height ratio of the protrusions is 40% or more and less than 60%), and “Δ” is acceptable (the separator has a compressive elastic modulus of 1 MPa or less and the protrusion height remaining ratio is less than 40%).
 1 粘着テープ
 2 セパレーター
 3 被着体
 10 支持体
 11 粘着剤層
 12 低粘着性の凸部
 51 多孔質フィルム(発泡体フィルム)
 52 他のフィルム(層)
 53 離型層
DESCRIPTION OF SYMBOLS 1 Adhesive tape 2 Separator 3 Adhering body 10 Support body 11 Adhesive layer 12 Low-adhesion convex part 51 Porous film (foam film)
52 Other films (layers)
53 Release layer
 本出願は日本で出願された特願2015-203009及び特願2016-198520を基礎としており、それらの内容は本明細書に全て包含される。 This application is based on Japanese Patent Application Nos. 2015-203090 and 2016-198520 filed in Japan, the contents of which are incorporated in full herein.

Claims (16)

  1.  粘着剤層表面に低粘着性の凸部が部分的に設けられた粘着テープと、該粘着テープの粘着剤層表面を保護するセパレーターとを有し、該セパレーターの圧縮弾性率が1MPa以下であることを特徴とする、セパレーター付き粘着テープ。 The pressure-sensitive adhesive layer has a pressure-sensitive adhesive tape partially provided with a low-adhesive convex portion, and a separator that protects the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape, and the compression elastic modulus of the separator is 1 MPa or less. An adhesive tape with a separator.
  2.  セパレーターの200μm圧縮時の圧縮応力が0.1MPa以下であり、かつ、該圧縮後の圧縮回復時の変形量200μmにおける圧縮応力が0.05MPa以下である、請求項1記載のセパレーター付き粘着テープ。 The pressure-sensitive adhesive tape with a separator according to claim 1, wherein the compression stress of the separator when compressed at 200 µm is 0.1 MPa or less, and the compression stress at a deformation amount of 200 µm at the time of compression recovery after compression is 0.05 MPa or less.
  3.  セパレーターが、(a)多孔質フィルムの少なくとも片面に(b)中実フィルムまたはスキン層が積層され、該(b)中実フィルムまたはスキン層の表面に(c)離型処理が施されたものである、請求項1又は2記載のセパレーター付き粘着テープ。 The separator is (a) a (b) solid film or skin layer laminated on at least one surface of a porous film, and (c) a release treatment is applied to the surface of the solid film or skin layer. The pressure-sensitive adhesive tape with a separator according to claim 1 or 2.
  4.  (a)多孔質フィルムが、ポリオレフィン発泡体、ポリエステル発泡体、ポリウレタン発泡体又はゴム系発泡体である、請求項3記載のセパレーター付き粘着テープ。 (A) The pressure-sensitive adhesive tape with a separator according to claim 3, wherein the porous film is a polyolefin foam, a polyester foam, a polyurethane foam or a rubber foam.
  5.  (b)中実フィルムが樹脂製の中実フィルムであり、該樹脂製の中実フィルムまたはスキン層の引張弾性率をE(N/m)、厚さをT(m)としたき、E×Tの値が500μN・m未満である、請求項4記載のセパレーター付き粘着テープ。 (B) The solid film is a resin solid film, and the tensile elastic modulus of the resin solid film or skin layer is E (N / m 2 ) and the thickness is T (m), The pressure-sensitive adhesive tape with a separator according to claim 4, wherein the value of E × T 3 is less than 500 μN · m.
  6.  中実フィルムが、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体及びポリエチレンテレフタレートからなる群から選択される1種又は2種以上の樹脂を含む中実フィルムである、請求項3~5のいずれか1項記載のセパレーター付き粘着テープ。 A solid film containing one or more resins selected from the group consisting of high density polyethylene, low density polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer and polyethylene terephthalate The pressure-sensitive adhesive tape with a separator according to any one of claims 3 to 5, which is a real film.
  7.  粘着テープの粘着剤層表面に部分的に設けられた低粘着性の凸部が、粘着剤層表面からの突出高さが200μm以下のストライプ状、格子状またはドット状の低粘着性パターンである、請求項1~6のいずれか1項記載のセパレーター付き粘着テープ。 The low-adhesive convex part partially provided on the pressure-sensitive adhesive layer surface of the pressure-sensitive adhesive tape is a stripe-like, grid-like or dot-like low-adhesive pattern with a protrusion height from the pressure-sensitive adhesive layer surface of 200 μm or less. The pressure-sensitive adhesive tape with a separator according to any one of claims 1 to 6.
  8.  粘着剤層の弾性率が0.01~10MPaである、請求項1~7のいずれか1項記載のセパレーター付き粘着テープ。 The pressure-sensitive adhesive tape with a separator according to any one of claims 1 to 7, wherein the elastic modulus of the pressure-sensitive adhesive layer is 0.01 to 10 MPa.
  9.  低粘着性の凸部の弾性率が0.1MPa以上である、請求項1~8のいずれか1項記載のセパレーター付き粘着テープ。 The pressure-sensitive adhesive tape with a separator according to any one of claims 1 to 8, wherein the low-viscosity convex portion has an elastic modulus of 0.1 MPa or more.
  10.  低粘着性の凸部の弾性率が粘着剤層の弾性率より高い、請求項1~9のいずれか1項記載のセパレーター付き粘着テープ。 The pressure-sensitive adhesive tape with a separator according to any one of claims 1 to 9, wherein the elastic modulus of the low-adhesive convex portion is higher than the elastic modulus of the pressure-sensitive adhesive layer.
  11.  粘着剤層表面に低粘着性の凸部が部分的に設けられた粘着テープの該粘着剤層表面を保護するセパレーターであって、圧縮弾性率が1MPa以下であることを特徴とする、セパレーター。 A separator for protecting the pressure-sensitive adhesive layer surface of a pressure-sensitive adhesive tape in which low-viscosity convex portions are partially provided on the pressure-sensitive adhesive layer surface, and having a compression modulus of 1 MPa or less.
  12.  200μm圧縮時の圧縮応力が0.1MPa以下であり、かつ、該圧縮後の圧縮回復時の変形量200μmにおける圧縮応力が0.05MPa以下である、請求項11記載のセパレーター。 The separator according to claim 11, wherein the compression stress at the time of 200 μm compression is 0.1 MPa or less, and the compression stress at a deformation amount of 200 μm at the time of compression recovery after the compression is 0.05 MPa or less.
  13.  (a)多孔質フィルムの少なくとも片面に(b)中実フィルムまたはスキン層が積層され、該(b)中実フィルムまたはスキン層の表面に(c)離型処理が施されたものである、請求項11又は12記載のセパレーター。 (A) (b) a solid film or skin layer is laminated on at least one surface of the porous film, and (c) a release treatment is performed on the surface of the solid film or skin layer. The separator according to claim 11 or 12.
  14.  (a)多孔質フィルムが、ポリオレフィン発泡体、ポリエステル発泡体、ポリウレタン発泡体又はゴム系発泡体である、請求項13記載のセパレーター。 (A) The separator according to claim 13, wherein the porous film is a polyolefin foam, a polyester foam, a polyurethane foam or a rubber foam.
  15.  (b)中実フィルムが樹脂製の中実フィルムであり、該樹脂製の中実フィルムまたはスキン層の引張弾性率をE(N/m)、厚さをT(m)としたき、E×Tの値が500μN・m未満である、請求項14記載のセパレーター。 (B) The solid film is a resin solid film, and the tensile elastic modulus of the resin solid film or skin layer is E (N / m 2 ) and the thickness is T (m), The separator according to claim 14, wherein the value of E × T 3 is less than 500 μN · m.
  16.  中実フィルムが、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、エチレン・酢酸ビニル共重合体及びポリエチレンテレフタレートからなる群から選択される1種又は2種以上の樹脂を含む中実フィルムである、請求項13~15のいずれか1項記載のセパレーター。 A solid film containing one or more resins selected from the group consisting of high density polyethylene, low density polyethylene, polypropylene, ethylene / propylene copolymer, ethylene / vinyl acetate copolymer and polyethylene terephthalate The separator according to any one of claims 13 to 15, which is a real film.
PCT/JP2016/080539 2015-10-14 2016-10-14 Separator-fitted adhesive tape and separator WO2017065275A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680060355.7A CN108137998A (en) 2015-10-14 2016-10-14 Adhesive tape and diaphragm with diaphragm
EP16855528.2A EP3363872A4 (en) 2015-10-14 2016-10-14 Separator-fitted adhesive tape and separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015203009 2015-10-14
JP2015-203009 2015-10-14
JP2016198520A JP6836876B2 (en) 2015-10-14 2016-10-06 Adhesive tape with separator and separator
JP2016-198520 2016-10-06

Publications (1)

Publication Number Publication Date
WO2017065275A1 true WO2017065275A1 (en) 2017-04-20

Family

ID=58517344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080539 WO2017065275A1 (en) 2015-10-14 2016-10-14 Separator-fitted adhesive tape and separator

Country Status (1)

Country Link
WO (1) WO2017065275A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043757A1 (en) * 2016-09-05 2018-03-08 日東電工株式会社 Pressure bonding-type adhesive member
WO2018043756A1 (en) * 2016-09-05 2018-03-08 日東電工株式会社 Pressure bonding-type adhesive member
JP2018065282A (en) * 2016-10-18 2018-04-26 日東電工株式会社 separator
JP2019070072A (en) * 2017-10-06 2019-05-09 日東電工株式会社 Adhesive sheet with release film
JP6539005B1 (en) * 2018-04-16 2019-07-03 株式会社寺岡製作所 Adhesive tape
WO2019202749A1 (en) 2018-04-16 2019-10-24 株式会社寺岡製作所 Pressure-sensitive adhesive tape
JP2019202496A (en) * 2018-05-24 2019-11-28 日東電工株式会社 Release film and adhesive tape
JP2019203089A (en) * 2018-05-24 2019-11-28 日東電工株式会社 Method for releasing release film
WO2023276391A1 (en) * 2021-07-02 2023-01-05 デンカ株式会社 Adhesive tape roll and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310057A (en) * 1994-05-18 1995-11-28 Nitto Denko Corp Adhesive sheet
JPH09227843A (en) * 1996-02-27 1997-09-02 Sekisui Chem Co Ltd Pressure-bondable pressure-sensitive adhesive sheet and pressure-sensitive-adhesive-laminated decorative board
JPH10219204A (en) * 1997-02-06 1998-08-18 Sekisui Chem Co Ltd Pressure adhesive type double-side tacky tape
JP2002149070A (en) * 2000-11-09 2002-05-22 Kiso Kasei Sangyo Kk Printing sheet with release sheet
JP2004002805A (en) * 2002-04-11 2004-01-08 Yupo Corp Self adhesive processing sheet
JP2008112713A (en) * 2006-10-02 2008-05-15 Hitachi Chem Co Ltd Anisotropic conductive film and crimping method
JP2015108121A (en) * 2013-10-21 2015-06-11 積水化学工業株式会社 Pressure adhesive type double-sided adhesive sheet capable of positioning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310057A (en) * 1994-05-18 1995-11-28 Nitto Denko Corp Adhesive sheet
JPH09227843A (en) * 1996-02-27 1997-09-02 Sekisui Chem Co Ltd Pressure-bondable pressure-sensitive adhesive sheet and pressure-sensitive-adhesive-laminated decorative board
JPH10219204A (en) * 1997-02-06 1998-08-18 Sekisui Chem Co Ltd Pressure adhesive type double-side tacky tape
JP2002149070A (en) * 2000-11-09 2002-05-22 Kiso Kasei Sangyo Kk Printing sheet with release sheet
JP2004002805A (en) * 2002-04-11 2004-01-08 Yupo Corp Self adhesive processing sheet
JP2008112713A (en) * 2006-10-02 2008-05-15 Hitachi Chem Co Ltd Anisotropic conductive film and crimping method
JP2015108121A (en) * 2013-10-21 2015-06-11 積水化学工業株式会社 Pressure adhesive type double-sided adhesive sheet capable of positioning

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043757A1 (en) * 2016-09-05 2018-03-08 日東電工株式会社 Pressure bonding-type adhesive member
WO2018043756A1 (en) * 2016-09-05 2018-03-08 日東電工株式会社 Pressure bonding-type adhesive member
JP2018039870A (en) * 2016-09-05 2018-03-15 日東電工株式会社 Pressure-bonding type adhesive member
JP2018039871A (en) * 2016-09-05 2018-03-15 日東電工株式会社 Pressure-bonding type adhesive member
JP2018065282A (en) * 2016-10-18 2018-04-26 日東電工株式会社 separator
WO2018074447A1 (en) * 2016-10-18 2018-04-26 日東電工株式会社 Separator
EP3530456A4 (en) * 2016-10-18 2020-04-29 Nitto Denko Corporation Separator
KR20190063477A (en) * 2016-10-18 2019-06-07 닛토덴코 가부시키가이샤 Separator
US11236254B2 (en) 2016-10-18 2022-02-01 Nitto Denko Corporation Separator
KR102403838B1 (en) 2016-10-18 2022-05-31 닛토덴코 가부시키가이샤 separator
JP2019070072A (en) * 2017-10-06 2019-05-09 日東電工株式会社 Adhesive sheet with release film
JP7240806B2 (en) 2017-10-06 2023-03-16 日東電工株式会社 Adhesive sheet with release film
WO2019202749A1 (en) 2018-04-16 2019-10-24 株式会社寺岡製作所 Pressure-sensitive adhesive tape
JP6539005B1 (en) * 2018-04-16 2019-07-03 株式会社寺岡製作所 Adhesive tape
JP2019202496A (en) * 2018-05-24 2019-11-28 日東電工株式会社 Release film and adhesive tape
CN112119134A (en) * 2018-05-24 2020-12-22 日东电工株式会社 Stripping method for stripping film
WO2019225048A1 (en) * 2018-05-24 2019-11-28 日東電工株式会社 Release film and adhesive tape
WO2019225049A1 (en) * 2018-05-24 2019-11-28 日東電工株式会社 Release method of release film
JP7091143B2 (en) 2018-05-24 2022-06-27 日東電工株式会社 Release film and adhesive tape
JP2019203089A (en) * 2018-05-24 2019-11-28 日東電工株式会社 Method for releasing release film
WO2023276391A1 (en) * 2021-07-02 2023-01-05 デンカ株式会社 Adhesive tape roll and manufacturing method therefor

Similar Documents

Publication Publication Date Title
WO2017065275A1 (en) Separator-fitted adhesive tape and separator
WO2018074447A1 (en) Separator
JP6836876B2 (en) Adhesive tape with separator and separator
JP6856374B2 (en) Surface protection sheet
TWI422662B (en) A heat-stripped double-sided adhesive tape or an adhesive sheet, and a method of processing the adhesive body
JP2016108534A (en) Adhesive sheet
JP2010037413A (en) Double-sided pressure-sensitive adhesive sheet, foam fixing method and laminate
WO2017159349A1 (en) Adhesive sheet for molding stage
EP1332191A2 (en) Heat-peelable pressure-sensitive adhesive sheet
JP6850093B2 (en) Pressurized adhesive type adhesive member
JP6227820B1 (en) Pressure adhesive type adhesive member
WO2018221336A1 (en) Adhesive sheet
JP5485083B2 (en) Thermosetting adhesive tape or sheet
JP2010070740A (en) Sheet material, falling/sliding preventing sheet, and sheet for fixing lightweight matter
JP2017200968A (en) Adhesive sheet with release liner
JP6832222B2 (en) Double-sided adhesive tape and its manufacturing method
JP6850092B2 (en) Pressurized adhesive type adhesive member
JP5328467B2 (en) Double-sided adhesive tape for fixing abrasive cloth
JP5537134B2 (en) Label adhesive sheet laminate and method for producing label adhesive sheet laminate
JP7091143B2 (en) Release film and adhesive tape
JP4937612B2 (en) Adhesive tapes and packaging adhesive tapes
JP2019137715A (en) Adhesive sheet and graphite sheet laminate
WO2022092090A1 (en) Resin for adhesive sheet, and adhesive sheet
JP6804568B2 (en) Pressurized adhesive tape
JP2015040225A (en) Adhesive sheet easy in removing residue thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855528

Country of ref document: EP