WO2017065215A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2017065215A1
WO2017065215A1 PCT/JP2016/080377 JP2016080377W WO2017065215A1 WO 2017065215 A1 WO2017065215 A1 WO 2017065215A1 JP 2016080377 W JP2016080377 W JP 2016080377W WO 2017065215 A1 WO2017065215 A1 WO 2017065215A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
regeneration
processing target
supply unit
zone
Prior art date
Application number
PCT/JP2016/080377
Other languages
French (fr)
Japanese (ja)
Inventor
賢 糸山
卓 坂東
岡野 浩志
井上 宏志
彩子 黒田
Original Assignee
清水建設株式会社
株式会社西部技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設株式会社, 株式会社西部技研 filed Critical 清水建設株式会社
Priority to SG11201802965UA priority Critical patent/SG11201802965UA/en
Priority to CN201680059237.4A priority patent/CN108136320B/en
Publication of WO2017065215A1 publication Critical patent/WO2017065215A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an air conditioning system. This application claims priority on October 13, 2015 based on Japanese Patent Application No. 2015-202208 for which it applied to Japan, and uses the content here.
  • a desiccant rotor and its humidity control device (hereinafter simply referred to as a desiccant rotor device).
  • a desiccant rotor device a desiccant rotor in which an adsorbent or a sorbent material is supported on a cylindrical honeycomb structure rotates, and air to be dehumidified is, for example, one of the first air outlets of the rotating desiccant rotor. Pass through the semicircle to adsorb and sorb its moisture.
  • the heated air (regeneration air) is passed through the other semicircular part of the desiccant rotor from the second blower opening of the desiccant rotor, and moisture is desorbed from the adsorbent and sorbent, Regenerate the adsorbent and sorbent. By such circulation, air is dehumidified.
  • This invention is made
  • the inventor can absorb and desorb carbon dioxide from indoor air by using, for example, an amine-supporting solid absorbent as an amine-based absorbent among the adsorbents and absorbents conventionally used.
  • the present invention was completed by newly finding a suitable configuration and conditions for performing air conditioning based on this principle.
  • the air conditioning system includes a carbon dioxide absorbent that is an amine-carrying solid absorbent, and causes the absorbent to absorb carbon dioxide contained in the treatment target air when the treatment target air is ventilated.
  • a processing target air first supply unit that supplies the processing zone
  • a processing target air second supply unit that supplies the processing target air that has passed through the processing zone into the room, and outside air as the regeneration air to the regeneration zone
  • a regenerating air supply unit that supplies the regenerating air that has passed through the regenerating zone, and a regenerating air discharge unit that discharges the regenerating air to the outside of the room.
  • Serial enthalpy difference between the regeneration air supplied to the regeneration zone is characterized by being configured so as to 30kJ / kg (DA) or more.
  • FIG. 1 is a graph showing the relationship between the enthalpy difference between the air to be processed and the regeneration air and the carbon dioxide removal efficiency in the rotor having the above-described configuration. As shown in FIG. 1, the larger the enthalpy difference between the air to be treated and the air for regeneration, the higher the carbon dioxide removal efficiency. If the enthalpy difference between the air to be treated and the air for regeneration is 30 kJ / kg (DA) or more, the carbon dioxide removal efficiency is at least 30%, and the removal of carbon dioxide in a general building room is achieved. There is expected.
  • the enthalpy difference between the air to be treated supplied to the processing zone of the rotor and the air for regeneration supplied to the regeneration zone of the rotor is 30 kJ / kg or more.
  • the absorption performance of is improved. Therefore, carbon dioxide is satisfactorily removed from the processing target air supplied from the interior to the rotor by the processing target air first supply section, and the air from which the carbon dioxide has been removed (hereinafter also referred to as processed air) is the processing target air first. Returned into the room by the two supply units.
  • Such air circulation removes carbon dioxide in the indoor air and improves the air quality.
  • the air conditioning system wherein the processing target air first supply unit is sequentially provided with a total heat exchanger and a cooling device from the upstream side to the downstream side in the supply direction, and the regeneration air supply unit Share the total heat exchanger, and the regeneration air supply unit is provided with the total heat exchanger and the heating device sequentially from the upstream side to the downstream side in the supply direction.
  • the processing target air first supply unit is provided with a cooling device
  • the regeneration air supply unit is provided with a heating device, and a part of the indoor air. Is configured to be capable of being supplied to the regeneration air supply unit upstream of the heating device. 5.
  • the air conditioning system wherein the first air to be processed is provided with an air handling unit and a cooling device from the upstream side to the downstream side in the supply direction, and is supplied from the air handling unit. A part of the air supplied is supplied into the room, a remaining part of the air supplied from the air handling unit is supplied to the cooling device, and a heating device is provided in the regeneration air supply unit.
  • the air conditioning system according to claim 5 includes a compressor, an expansion valve, a condenser that condenses a heat medium that circulates between the compressor and the expansion valve, and an evaporator that expands the heat medium.
  • the enthalpy difference between the processing target air and the regeneration air is ensured as described above in consideration of existing or new buildings and indoor facilities, or the processing target air and the regeneration air A configuration for increasing the temperature difference from the air is provided. Therefore, carbon dioxide in the indoor air is removed and air quality is improved.
  • the air conditioning system of the present invention since the enthalpy difference between the processing target air and the regeneration air is ensured, the carbon dioxide absorption performance in the absorbent of the rotor is improved and the carbon dioxide in the indoor air is removed.
  • the indoor air quality can be improved.
  • the air conditioning system first includes an absorbent of carbon dioxide that is an amine-carrying solid absorbent, and the carbon dioxide contained in the processing target air when the processing target air is ventilated.
  • a rotor partitioned into a treatment zone 2 to be absorbed by the amine-carrying solid absorbent and a regeneration zone 4 to desorb carbon dioxide absorbed by the amine-carrying solid absorbent to the regeneration air when the regeneration air is ventilated. 1 is provided.
  • the rotor 1 is a honeycomb rotor, and is a cylindrical member obtained by corrugating (waving) a sheet and winding it into a rotor shape, and rotates about the axis along the direction of the black arrow shown in FIG. It is configured.
  • the rotor 1 includes an amine-supporting solid absorbent, specifically, a solid absorbent made of a weakly basic ion exchange resin having at least one of a primary amine and a secondary amine as a functional group.
  • Indoor air is supplied to the processing zone 2 of the rotor 1 as processing target air by a blower (not shown) or the like.
  • a blower not shown
  • carbon dioxide contained in the processing target air is absorbed by the amine-supporting solid absorbent in the rotor portion and separated and removed from the processing target air.
  • concentration of the carbon dioxide in process target air reduces.
  • the regeneration air is appropriately heated or humidified by a heater or the like, or heated and humidified, and supplied to the regeneration zone 4 of the rotor 1.
  • the regeneration air is ventilated through the regeneration zone 4, the carbon dioxide absorbed in the amine-supported solid absorbent in the rotor part is desorbed into the regeneration air, and the absorbent in the rotor part passing through the zone is regenerated.
  • the absorption and desorption of carbon dioxide by the amine-supported solid absorbent is caused by the reaction of the following formulas (1) and (2) in the case of the primary amine (R—NH 2 ), and the secondary amine (R 1 R In the case of 2- NH), it is generated by the reaction of the formulas (3) and (4).
  • the air conditioning system supplies the above-described rotor 1, the processing target air first supply unit that supplies indoor air as processing target air to the processing zone 2, and the processing target air that has passed through the processing zone 2 into the room.
  • the air conditioning system according to the present invention is configured such that the enthalpy difference between the processing target air supplied to the processing zone 2 and the regeneration air supplied to the regeneration zone 4 is 30 kJ / kg (DA) or more. Yes.
  • the enthalpy difference between the processing target air supplied to the processing zone 2 and the regeneration air supplied to the regeneration zone 4 is 30 kJ / kg (DA) or more, so that the solute solvent And the carbon dioxide absorption rate in the amine-supported solid absorbent increases.
  • the removal rate of carbon dioxide in the room is at least 30% or more.
  • the carbon dioxide removal rate in the room is 40% or more, which is more preferable.
  • the enthalpy difference between the processing target air and the regeneration air at least 30 kJ / kg (DA) or more, for example, based on the humidity of the processing target air and the regeneration air, It is preferable to set the temperature difference appropriately.
  • an air conditioning system configured so that the enthalpy difference between the processing target air and the regeneration air is 30 kJ / kg (DA) or more will be described.
  • the air conditioning system 10 ⁇ / b> A of the first embodiment includes a fan coil unit 12 that circulates the air in the room R.
  • 10 A of air conditioning systems of 1st embodiment may be provided with the installation which can circulate the air of room
  • the processing target air first supply unit 14 that connects the room R and the processing target air inlet side of the processing zone 2 of the rotor 1, total heat exchange is performed from the upstream side to the downstream side in the supply direction of the processing target air.
  • a vessel 16 and a cooling device 18 are sequentially provided.
  • Examples of the cooling device 18 include a cold water coil and a cooling coil.
  • the regeneration air supply unit 20 that connects the outdoor side and the regeneration air inlet side of the regeneration zone 4 of the rotor 1 shares the total heat exchanger 16, and the regeneration air supply unit 20 has a regeneration air supply direction.
  • a total heat exchanger 16 and a heating device 22 are sequentially provided from the upstream side toward the downstream side.
  • Examples of the heating device 22 include an electric heater, a hot water coil, a steam coil, and a heating humidifier (such as a pan-type humidifier and a steam humidifier).
  • the air conditioning system 10 ⁇ / b> A of the first embodiment includes a processing target air second supply unit 24 that connects the processing target air outlet side of the processing zone 2 of the rotor 1 and the room R, and a processing target of the regeneration zone 4 of the rotor 1. And a regeneration air discharge unit 26 for connecting the air outlet side and the outdoor side.
  • a processing target air second supply unit 24 that connects the processing target air outlet side of the processing zone 2 of the rotor 1 and the room R, and a processing target of the regeneration zone 4 of the rotor 1.
  • a regeneration air discharge unit 26 for connecting the air outlet side and the outdoor side.
  • supply of outside air and exhaust from the room R are performed independently of the circulation of the process target air by the process target air first supply unit 14 and the process target air second supply unit 24. Thereby, the air pressure in the room R is adjusted appropriately. Note that the air flow rate in such ventilation is fixed. Note that the configuration of the air conditioning system 10A shown in FIG.
  • the air in the room R is discharged to the processing target air first supply unit 14, and is supplied to the total heat exchanger 16 as the processing target air by the processing target air first supply unit 14. .
  • outside air introduced from the outside is supplied to the total heat exchanger 16 as regeneration air by the regeneration air supply unit 20.
  • total heat exchanger 16 total heat exchange is performed between the processing target air and the regeneration air. That is, exchange of sensible heat (temperature) and latent heat (humidity) is performed.
  • the enthalpy of the air to be treated decreases and the enthalpy of the regeneration air increases.
  • the processing target air whose enthalpy has decreased in the total heat exchanger 16 is supplied to the cooling device 18 by the processing target air first supply unit 14 and further cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1.
  • the regeneration air whose enthalpy has increased in the total heat exchanger 16 is supplied to the heating device 22 by the regeneration air supply unit 20 and further heated to a predetermined temperature to be introduced into the regeneration zone 4 of the rotor 1. It is supplied to the regeneration zone 4.
  • the predetermined temperature of the processing target air introduced into the processing zone 2 and the predetermined temperature of the regeneration air introduced into the regeneration zone 4 have an enthalpy difference between the processing target air and the regeneration air of at least 30 kJ / kg (DA).
  • the processing target air is supplied to the processing zone 2 in a state where the enthalpy difference between the processing target air and the regeneration air is applied, and the regeneration air is supplied to the regeneration zone 4. To be supplied.
  • carbon dioxide in the processing target air is absorbed by the amine-supporting solid absorbent contained in the rotor 1 and separated and removed from the processing target air.
  • the portion of the rotor 1 containing the amine-supported solid absorbent that has absorbed carbon dioxide moves to the region of the regeneration zone 4 by rotation, and the absorbed carbon dioxide is desorbed into the regeneration air that is ventilated through the regeneration zone 4. In this way, carbon dioxide is removed from the air to be treated, and carbon dioxide is contained in the regeneration air.
  • the processed air discharged from the processing zone 2 of the rotor 1 to the processing target air second supply unit 24 is supplied to the room R by the processing target air second supply unit 24.
  • the regeneration air discharged from the regeneration zone 4 of the rotor 1 to the regeneration air discharge unit 26 is exhausted to the outside by the regeneration air discharge unit 26.
  • the temperature of the room R is mainly adjusted by the fan coil unit 12, and the humidity of the room R is also adjusted as necessary. Adjusted.
  • the difference in enthalpy between the air to be treated and the air for regeneration is at least 30 kJ / kg (DA )
  • the settings of the cooling device 18 and the heating device 22 are appropriately changed so as to be the above.
  • the carbon dioxide concentration in the room R such as an office is set to 1000 PPM or less.
  • the room R has a floor area of 500 m 2 ⁇ height of 2.8 m and a size of 1400 m 3 , and it is assumed that 75 people are active in the room R.
  • the room R is supplied with outside air at a carbon dioxide concentration of 500 PPM and 1150 CMH (m 3 / h) from a blower (not shown), and exhausted from the room R to the room under the same conditions.
  • the processed air first supply section 14 3200 m 3 / h, temperature 22 ° C., 40% relative humidity (enthalpy 39 kJ / kg ( Assume that the air to be treated of DA)) is exhausted.
  • regeneration air is introduced from outside into the regeneration air supply unit 20 at 3200 m 3 / h, temperature 0 ° C., and relative humidity 50% (enthalpy 5 kJ / kg (DA)) using a blower (not shown). To do.
  • the total heat exchanger 16 reduces the enthalpy of the air to be processed to 14 kJ / kg (DA) and increases the enthalpy of the regeneration air to 29 kJ / kg (DA).
  • the cooling device 18 is turned off, and the processing target air of enthalpy 14 kJ / kg (DA) is supplied to the processing zone 2 of the rotor 1.
  • the heating device 22 is turned on, the enthalpy 29 kJ / kg (DA) regeneration air is heated to 45 ° C., the enthalpy is increased to 58 kJ / kg (DA), and supplied to the regeneration zone 4 of the rotor 1. Due to the enthalpy difference between the air to be treated and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 39%, and the carbon dioxide concentration in the room R is reduced to 867 PPM.
  • the enthalpy of the air to be treated is 52 kJ / kg (DA)
  • the enthalpy of the regeneration air is 86 kJ / kg (DA).
  • the cooling device 18 is turned on, the air to be treated is cooled to 14 ° C., the enthalpy is reduced to 38 kJ / kg (DA), and supplied to the treatment zone 2 of the rotor 1.
  • the heating device 22 is turned off, and the regeneration air of enthalpy 86 kJ / kg (DA) is supplied to the regeneration zone 4 of the rotor 1.
  • the carbon dioxide removal rate of the rotor 1 is 41%, and the carbon dioxide concentration in the room R is reduced to 837 PPM. Therefore, even in the summer, the standard that the carbon dioxide concentration in the room R such as the office is 1000 PPM or less is sufficiently achieved as stipulated in the Building Management Law.
  • the air conditioning system 10A of the first embodiment described above in the processing target air first supply unit 14, the enthalpy of processing target air supplied to the processing zone 2 of the rotor 1 is reduced, and in the regeneration air supply unit 20, The enthalpy of regeneration air supplied to the regeneration zone 4 of the rotor 1 increases. Particularly in winter, the total heat exchanger 16 is operated to reduce the enthalpy of the air to be treated and at the same time increase the enthalpy of the regeneration air. Thereby, an enthalpy difference is provided between the air to be processed and the air for regeneration.
  • the enthalpy difference between the processing target air and the regeneration air is at least 30 kJ / kg (DA ) This can be ensured.
  • the reactions of the formulas (1) to (4) in the rotor 1 are promoted, and the carbon dioxide absorption performance in the amine-supported solid absorbent contained in the rotor 1 is improved (see FIG. 1). Accordingly, the carbon dioxide is satisfactorily removed from the processing target air, and the processed air is returned to the room R by the processing target air second supply unit 24.
  • Such air circulation can remove carbon dioxide in the air in the room R and improve the air quality.
  • the air conditioning system 10A of the first embodiment includes the total heat exchanger 16
  • the regeneration air that is, outside air
  • the processing target air that is, indoor air
  • the enthalpy both temperature and humidity
  • the air conditioning system 10A of the first embodiment can achieve power saving compared to an air conditioning system in which the air in the room R is simply mixed with the outside air, for example, as in the air conditioning system 10B of the second embodiment described later.
  • the enthalpy difference between the air to be treated and the regenerating air is particularly large in winter, the carbon dioxide removal performance in winter can be improved efficiently.
  • the processing target air first supply unit 14 is provided with a cooling device 18, and the regeneration air supply unit 20 is provided with a heating device 22. A part of the air in the room R can be supplied to the regeneration air supply unit 20 on the upstream side of the heating device 22.
  • an indoor exhaust unit 28 for exhausting air independently from the processing target air first supply unit 14 from the room R joins the regeneration air supply unit 20 via the bypass unit 30.
  • the indoor exhaust unit 28, the bypass unit 30, and the regeneration air supply unit 20 are provided with dampers for adjusting the air flow rate.
  • the air in the room R is divided into the process target air first supply unit 14 and the indoor exhaust unit 28 and is discharged.
  • the air discharged to the indoor exhaust unit 28 can be directly supplied to the regeneration air supply unit 20 by the bypass unit 30.
  • all the air exhausted to the indoor exhaust unit 28 is supplied to the regeneration air supply unit 20 in winter and the like, and all the air exhausted to the indoor exhaust unit 28 is outdoor in the summer etc.
  • Exhaust. The outside air introduced from the outside is mixed with the air in the room R from the bypass unit 30 in the regeneration air supply unit 20, and the enthalpy increases.
  • the processing target air exhausted from the room R is supplied to the cooling device 18 by the processing target air first supply unit 14 and further cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1, enthalpy is reduced, and the rotor 1 processing zone 2.
  • the regeneration air mixed with the air in the room R and increased in enthalpy is supplied to the heating device 22 by the regeneration air supply unit 20 and further heated to a predetermined enthalpy introduced into the regeneration zone 4 of the rotor 1. Is supplied to the regeneration zone 4. In this manner, with the enthalpy difference between the processing target air and the regeneration air being applied, the processing target air is supplied to the processing zone 2 and the regeneration air is supplied to the regeneration zone 4.
  • the conditions such as the size of the room R and the supply / exhaust air are the same as the design conditions of the air conditioning system 10A of the first embodiment.
  • a blower not shown or the like, from the room R to the processing target air first supply unit 14, 3200 m 3 / h, temperature 22 ° C., relative humidity 40% (enthalpy 39 kJ / kg (DA )) Is assumed to be discharged.
  • regeneration air is introduced from outside into the regeneration air supply unit 20 at 1250 m 3 / h, a temperature of 0 ° C., and a relative humidity of 50% (enthalpy 5 kJ / kg (DA)) using a blower (not shown).
  • 100% of the air in the room R exhausted to the indoor exhaust section 28 is introduced into the bypass section 30, and 1150 m 3 / h, temperature 22 ° C., relative humidity 40% (enthalpy 39 kJ / kg (DA)) into the regeneration air supply section 20 )
  • the cooling device 18 is turned on, the processing target air is cooled to 9 ° C., the enthalpy is reduced to 25 kJ / kg (DA), and supplied to the processing zone 2 of the rotor 1.
  • the heating device 22 is also turned on, the regeneration air is heated to 45 ° C., the enthalpy is increased to 55 kJ / kg (DA), and supplied to the regeneration zone 4 of the rotor 1. Due to such enthalpy difference between the air to be treated and the air for regeneration, the carbon dioxide removal rate of the rotor 1 is reduced to 31% and the carbon dioxide concentration in the room R is reduced to 968 PPM.
  • the air in the room R is not introduced from the indoor exhaust part 28 to the bypass part 30, and the air 3 introduced into the indoor exhaust part 28 is exhausted 100%.
  • the processing target air and the regeneration air are supplied to the rotor 1. Due to the enthalpy difference between the processing target air and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 41%, and the carbon dioxide concentration in the room R is reduced to 837 PPM.
  • the processing target air that is cooled by the cooling device 18 in the processing target air first supply unit 14 and is supplied to the processing zone 2 of the rotor 1, and the indoor exhaust unit 28.
  • the enthalpy is increased by mixing with the air in the room R bypassed from the refrigeration, and is heated by the heating device 22 in the regeneration air supply unit 20 to increase the enthalpy and supplied to the regeneration zone 4 of the rotor 1.
  • An enthalpy difference is given to the air.
  • the enthalpy difference between the processing target air and the regeneration air should be secured at least 30 kJ / kg (DA) or more while adjusting the settings of the cooling device 18 and the heating device 22. Can do. Therefore, the same effect as the air conditioning system 10A of the first embodiment can be obtained.
  • the processing target air first supply unit 14 includes an air handling unit 32, cooling from the upstream side toward the downstream side in the supply direction of the processing target air.
  • a device 18 is provided, a part of the air supplied from the air handling unit 32 is supplied to the room R, the remainder of the air supplied from the air handling unit 32 is supplied to the cooling device 18, and the regeneration air supply unit 20 Is provided with a heating device 22.
  • the air handling unit 32 one generally used in an air conditioning system can be applied.
  • the regeneration air supply unit 20 is provided with a heating device 34 and a humidifier 36 on the upstream side of the heating device 22 from the upstream side to the downstream side in the regeneration air supply direction.
  • the generation of odors can be suppressed without shortening the life of the rotor 1, and the enthalpy difference between the air to be treated and the air for regeneration can be 30 kJ / kg (DA) or more. .
  • the air in the room R is supplied to the air handling unit 32 by the processing target air first supply unit 14.
  • Part of the processing target air discharged from the air handling unit 32 is returned to the room R.
  • the temperature of the room R is mainly adjusted by the air returned from the air handling unit 32 to the room R, and the humidity of the room R is also adjusted as necessary. In consideration of this point, it is preferable to appropriately set conditions such as the temperature and humidity of the air to be processed discharged from the air handling unit 32.
  • the remaining portion of the processing target air discharged from the air handling unit 32 is supplied to the cooling device 18 by the processing target air first supply unit 14 and further cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1.
  • the regeneration air is supplied to the heating device 22 by the regeneration air supply unit 20, further heated to a predetermined temperature to be introduced into the regeneration zone 4 of the rotor 1, and supplied to the regeneration zone 4 of the rotor 1.
  • the processing target air is supplied to the processing zone 2 and the regeneration air is supplied to the regeneration zone 4.
  • Conditions such as the size of the room R and supply / exhaust air are the same as those of the design conditions of the air conditioning system 10A of the first embodiment.
  • Conditions in the winter season using a blower (not shown) or the like, 13600 m 3 / h, temperature 22 ° C., relative humidity 40% (enthalpy 39 kJ / kg (DA )) Is assumed to be discharged.
  • regeneration air is introduced from outside into the regeneration air supply unit 20 at 2400 m 3 / h, temperature 0 ° C., and relative humidity 50% (enthalpy 5 kJ / kg (DA)) using a blower (not shown).
  • a blower not shown
  • the air handling unit 32 the conditions of the processing target air supplied from the room R to the processing target air first supply unit 14 are maintained.
  • the cooling device 18 is turned on, and the air to be treated at 22 ° C. after being adjusted by the air handling unit 32 is cooled to 11 ° C. (enthalpy 27 kJ / kg (DA)) and supplied to the treatment zone 2 of the rotor 1. .
  • the heating device 34, the humidifier 36 and the heating device 22 are also turned on, and the enthalpy of regeneration air is increased to 75 kJ / kg (DA) and supplied to the regeneration zone 4 of the rotor 1. Due to the enthalpy difference between the air to be treated and the regeneration air, the carbon dioxide removal rate of the rotor 1 is reduced to 41% and the carbon dioxide concentration in the room R is reduced to 842 PPM.
  • the air handling unit 32 appropriately changes the conditions of the processing target air supplied from the room R to the processing target air first supply unit 14, and the air conditioning system 10A of the first embodiment and The processing target air and the regeneration air are supplied to the rotor 1 as in the example of the design conditions in the summer of the air conditioning system 10B of the second embodiment. Due to the enthalpy difference between the processing target air and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 41%, and the carbon dioxide concentration in the room R is reduced to 837 PPM.
  • An enthalpy difference is given between the air and the regenerating air supplied to the regeneration zone 4 of the rotor 1 by being heated by the heating device 34, the humidifier 36 and the heating device 22 in the regeneration air supply unit 20.
  • part of the processing target air that has passed through the air handling unit 32 in the processing target air first supply unit 14 is returned to the room R, so that air circulation in the room R is performed. It is done efficiently.
  • the air handling unit 32 has the function of the fan coil unit 12 as well. Therefore, it is possible to further save the space of the air conditioning system 10B with a simple configuration. Further, the fan coil unit 12 is not required.
  • the air conditioning system 10D of the fourth embodiment includes a fan coil unit 12, a compressor 42, an expansion valve 44, and a heat medium that circulates between the compressor 42 and the expansion valve 44 (illustration).
  • a heat pump 40 having a condenser 46 for condensing (substantially) and an evaporator 48 for expanding the heat medium.
  • the processing target air passes through the evaporator 48 in the processing target air first supply unit 14, and the regeneration air passes through the condenser 46 in the regeneration air supply unit 20.
  • the heat pump 40 what is generally used in an air conditioning system can be applied.
  • the air in the room R is supplied to the evaporator 48 of the heat pump 40 as processing target air by the processing target air first supply unit 14 and passes through the evaporator 48.
  • the processing target air is cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1 due to a temperature drop of the heat medium expanding in the evaporator 48 and supplied to the processing zone 2 of the rotor 1.
  • the regeneration air is supplied to the condenser 46 of the heat pump 40 by the regeneration air supply unit 20 and passes through the condenser 46.
  • the regeneration air is heated to a predetermined temperature to be introduced into the regeneration zone 4 of the rotor 1 by the heat of the heat medium condensed by the condenser 46 and supplied to the regeneration zone 4 of the rotor 1.
  • the processing target air is supplied to the processing zone 2 and the regeneration air is supplied to the regeneration zone 4.
  • the compressor 42 can create an enthalpy difference between the processing target air and the regeneration air arbitrarily or optimally by adjusting the output with an inverter.
  • a humidifier 36 is provided downstream of the condenser 46 in the regeneration air supply unit 20, and an evaporator 50 of the heat pump 40 is also provided in the regeneration air discharge unit 26.
  • the heat pump 40 the heat is recovered from the evaporator 48 and the evaporator 50 while adjusting the amount by the two-way valves 52 and 54, and the heat is supplied to the condenser 46.
  • the necessary amount of heat can be given to the regeneration air.
  • the heating temperature in the condenser 46 is limited in principle by the heat pump 40, but by humidifying the humidifier 36, the enthalpy of the regeneration air can be further increased below the limit temperature. Thereby, the enthalpy difference between the processing target air and the regeneration air can be appropriately adjusted without overcooling the processing target air.
  • Conditions such as the size of the room R and supply / exhaust air are the same as those of the design conditions of the air conditioning system 10A of the first embodiment.
  • the temperature 22 ° C., 40% relative humidity (enthalpy 39 kJ / kg ( DA)) processing target air is discharged.
  • regeneration air is introduced from outside into the regeneration air supply unit 20 at 3200 m 3 / h, a temperature of 0 ° C., and a relative humidity of 50%.
  • the air to be processed at 22 ° C. is cooled to 11 ° C. and supplied to the processing zone 2 of the rotor 1.
  • the air for regeneration at 0 ° C. is heated to 50 ° C. or higher by the condenser 46 of the heat pump 40 and supplied to the regeneration zone 4 of the rotor 1. Due to such an enthalpy difference between the air to be treated and the air for regeneration, the carbon dioxide removal rate of the rotor 1 is 30% or more, as in the example of the design conditions of the air conditioning system 10A of the first embodiment.
  • the conditions of the evaporator 48 and the condenser 46 are appropriately changed using the compressor 42 and the expansion valve 44 of the heat pump 40, and the air conditioning system 10A of the first embodiment described above and the like.
  • the processing target air and the regeneration air are supplied to the rotor 1. Due to the enthalpy difference between the processing target air and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 30% or more, as in the example of the design conditions of the air conditioning system 10A of the first embodiment described above. In other words, the conditions of the processing target air and the regeneration air are adjusted so that the carbon dioxide removal rate of the rotor 1 is 30% or more.
  • the above is secured. Therefore, the same effect as the air conditioning system 10A of the first embodiment can be obtained.
  • the heat pump is utilized as the heat pump 40 described above, so that the number of facilities to be added is reduced and the air conditioning system 10A is installed as a retrofit, and the room interior R Can effectively remove carbon dioxide.
  • the present invention is not limited to the specific embodiments described above, and changes may be made within the scope of the gist of the present invention described in the claims. May be.
  • the configuration of the air conditioning system according to the present invention is not limited to the above-described embodiments, and can be appropriately changed as long as the enthalpy difference between the processing target air and the regeneration air is 30 kJ / kg (DA) or more.
  • the above-described embodiments may be appropriately combined according to the facilities and conditions of the building where the air conditioning system according to the present invention is installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Central Air Conditioning (AREA)
  • Gas Separation By Absorption (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning system (10A) according to the present invention comprises: a rotor (1) having a processing zone (2) in which carbon dioxide is absorbed by an absorbent containing an amine-supporting solid absorbent, and having a regeneration zone (4) in which carbon dioxide absorbed by the absorbent is desorbed into regeneration air; a first process-air supply part (14) that supplies air from a room (R) to the processing zone (2) as process air; a second process-air supply part (24) that supplies, to the room (R), the process air that has passed through the processing zone; and a regeneration air supply part (20) that supplies exterior air to the regeneration zone as regeneration air. The enthalpy difference between the process air supplied to the processing zone and the regeneration air supplied to the regeneration zone is at least 30 kJ/kg (DA).

Description

空調システムAir conditioning system
 本発明は、空調システムに関する。本願は、2015年10月13日に、日本に出願された特願2015-202208号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an air conditioning system. This application claims priority on October 13, 2015 based on Japanese Patent Application No. 2015-202208 for which it applied to Japan, and uses the content here.
 近年、電力を使用せずに冷房領域の冷却空気を生成する空調システムの一つとして、デシカント空調システムが提案されている(例えば、特許文献1参照)。 Recently, a desiccant air conditioning system has been proposed as one of air conditioning systems that generate cooling air in a cooling area without using electric power (see, for example, Patent Document 1).
 デシカント空調システムでは、デシカントロータおよびその調湿装置(以下、単にデシカントロータ装置という)によって調湿が行われる。
 一般に、デシカントロータ装置では、円柱状のハニカム構造体に吸着材や収着材を担持させたデシカントロータが回転し、除湿すべき空気を回転中のデシカントロータの第一の送風口から例えば一方の半円部に通過させて、その水分を吸着および収着させる。また、デシカントロータ装置では、デシカントロータの第二の送風口から加熱空気(再生用空気)をデシカントロータの他方の半円部に通過させ、吸着材や収着材から水分を脱着させることにより、吸着材や収着材を再生する。このような循環によって、空気が除湿される。
In the desiccant air conditioning system, humidity is controlled by a desiccant rotor and its humidity control device (hereinafter simply referred to as a desiccant rotor device).
In general, in a desiccant rotor device, a desiccant rotor in which an adsorbent or a sorbent material is supported on a cylindrical honeycomb structure rotates, and air to be dehumidified is, for example, one of the first air outlets of the rotating desiccant rotor. Pass through the semicircle to adsorb and sorb its moisture. Further, in the desiccant rotor device, the heated air (regeneration air) is passed through the other semicircular part of the desiccant rotor from the second blower opening of the desiccant rotor, and moisture is desorbed from the adsorbent and sorbent, Regenerate the adsorbent and sorbent. By such circulation, air is dehumidified.
特開2002-126441号公報JP 2002-126441 A
 上述のように、従来のデシカントロータを用いた空調技術では、空調を行う対象の室内の除湿はなされるが、室内の空気質のさらなる改善が求められている。
 特に、大気汚染が深刻化している国や地域では、室内に外気を直接供給することができず、室内の空気を活用することとなる。ところが、室内では活動している人間が二酸化炭素を排出するので、時間の経過に伴い、空気中の二酸化炭素の量が増え、室内の人間の不快感が高まる。従って、室内の空気から二酸化炭素を除去する技術が望まれている。
As described above, in the air conditioning technology using the conventional desiccant rotor, although the room to be air-conditioned is dehumidified, further improvement in the indoor air quality is required.
In particular, in countries and regions where air pollution has become serious, it is not possible to directly supply outside air into the room, and indoor air is used. However, since a person who is active in the room emits carbon dioxide, the amount of carbon dioxide in the air increases with the passage of time, and the discomfort of the person in the room increases. Therefore, a technique for removing carbon dioxide from indoor air is desired.
 本発明は、上記事情に鑑みてなされたものであり、室内の空気中の二酸化炭素を除去し、空気質を高めることができる空調システムを提供する。
 発明者は、従来使用されている吸着剤および吸収剤のうち、アミン系の吸収剤として例えばアミン担持固体吸収剤を用いることで、室内の空気から二酸化炭素を吸収するとともに脱離することができるという原理に着目し、この原理に基づいて空調を行う好適な構成および条件を新たに見出し、本発明を完成させた。
This invention is made | formed in view of the said situation, and provides the air conditioning system which can remove the carbon dioxide in indoor air and can improve air quality.
The inventor can absorb and desorb carbon dioxide from indoor air by using, for example, an amine-supporting solid absorbent as an amine-based absorbent among the adsorbents and absorbents conventionally used. The present invention was completed by newly finding a suitable configuration and conditions for performing air conditioning based on this principle.
 請求項1記載の空調システムは、アミン担持固体吸収剤である二酸化炭素の吸収剤を含み、処理対象空気が通風された際に前記処理対象空気に含まれる二酸化炭素を前記吸収剤に吸収させる処理ゾーンと、再生用空気が通風された際に、前記吸収剤が吸収した二酸化炭素を前記再生用空気に脱離させる再生ゾーンとに区画されたロータと、室内の空気を前記処理対象空気として前記処理ゾーンに供給する処理対象空気第一供給部と、前記処理ゾーンを通過した前記処理対象空気を前記室内に供給する処理対象空気第二供給部と、外気を前記再生用空気として前記再生ゾーンに供給する再生用空気供給部と、前記再生ゾーンを通過した前記再生用空気を室外に排出する再生用空気排出部と、を備え、前記処理ゾーンに供給される処理対象空気と前記再生ゾーンに供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成されていることを特徴とする。
 図1は、上述の構成を備えたロータにおける処理対象空気と再生用空気とのエンタルピー差と、二酸化炭素の除去効率との関係を示したグラフである。図1に示すように、処理対象空気と再生用空気とのエンタルピー差が大きくなる程、二酸化炭素の除去効率は向上する。そして、処理対象空気と再生用空気とのエンタルピー差が30kJ/kg(DA)以上であれば、二酸化炭素の除去効率は少なくとも30%以上になり、一般的な建物の室内における二酸化炭素の除去達成が期待される。
The air conditioning system according to claim 1 includes a carbon dioxide absorbent that is an amine-carrying solid absorbent, and causes the absorbent to absorb carbon dioxide contained in the treatment target air when the treatment target air is ventilated. A rotor divided into a zone, a regeneration zone that desorbs carbon dioxide absorbed by the absorbent into the regeneration air when the regeneration air is ventilated, and indoor air as the processing target air A processing target air first supply unit that supplies the processing zone, a processing target air second supply unit that supplies the processing target air that has passed through the processing zone into the room, and outside air as the regeneration air to the regeneration zone A regenerating air supply unit that supplies the regenerating air that has passed through the regenerating zone, and a regenerating air discharge unit that discharges the regenerating air to the outside of the room. Serial enthalpy difference between the regeneration air supplied to the regeneration zone is characterized by being configured so as to 30kJ / kg (DA) or more.
FIG. 1 is a graph showing the relationship between the enthalpy difference between the air to be processed and the regeneration air and the carbon dioxide removal efficiency in the rotor having the above-described configuration. As shown in FIG. 1, the larger the enthalpy difference between the air to be treated and the air for regeneration, the higher the carbon dioxide removal efficiency. If the enthalpy difference between the air to be treated and the air for regeneration is 30 kJ / kg (DA) or more, the carbon dioxide removal efficiency is at least 30%, and the removal of carbon dioxide in a general building room is achieved. There is expected.
 上述の空調システムでは、ロータの処理ゾーンに供給される処理対象空気とロータの再生ゾーンに供給される再生用空気とのエンタルピー差が30kJ/kg以上であるため、アミン担持固体吸収剤における二酸化炭素の吸収性能が向上する。従って、処理対象空気第一供給部によって室内からロータに供給された処理対象空気から二酸化炭素が良好に除去され、二酸化炭素が除去された空気(以下、処理済空気ともいう)が処理対象空気第二供給部によって室内に戻される。このような空気の循環により、室内の空気中の二酸化炭素は除去され、空気質が向上する。 In the air conditioning system described above, the enthalpy difference between the air to be treated supplied to the processing zone of the rotor and the air for regeneration supplied to the regeneration zone of the rotor is 30 kJ / kg or more. The absorption performance of is improved. Therefore, carbon dioxide is satisfactorily removed from the processing target air supplied from the interior to the rotor by the processing target air first supply section, and the air from which the carbon dioxide has been removed (hereinafter also referred to as processed air) is the processing target air first. Returned into the room by the two supply units. Such air circulation removes carbon dioxide in the indoor air and improves the air quality.
 請求項2記載の空調システムにおいて、前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、全熱交換器、冷却装置が順次設けられ、前記再生用空気供給部は前記全熱交換器を共有し、前記再生用空気供給部には、供給方向の上流側から下流側に向けて、前記全熱交換器、加熱装置が順次設けられていることを特徴とする。
 また、請求項3記載の空調システムにおいて、前記処理対象空気第一供給部には、冷却装置が設けられ、前記再生用空気供給部には、加熱装置が設けられ、前記室内の空気の一部が前記加熱装置よりも上流側の前記再生用空気供給部に供給可能に構成されていることを特徴とする。
 また、請求項4記載の空調システムにおいて、前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、エアハンドリングユニット、冷却装置が設けられ、前記エアハンドリングユニットから供給された空気の一部は前記室内に供給され、前記エアハンドリングユニットから供給された空気の残部は前記冷却装置に供給され、前記再生用空気供給部には、加熱装置が設けられていることを特徴とする。
 また、請求項5記載の空調システムは、圧縮機と、膨張弁と、前記圧縮機および前記膨張弁との間で循環する熱媒体を凝縮させる凝縮器と前記熱媒体を膨張させる蒸発器とを有するヒートポンプを備え、前記処理対象空気第一供給部において、前記処理対象空気は前記蒸発器を通過し、前記再生用空気供給部において、前記再生用空気は前記凝縮器を通過するように構成されていることを特徴とする。
3. The air conditioning system according to claim 2, wherein the processing target air first supply unit is sequentially provided with a total heat exchanger and a cooling device from the upstream side to the downstream side in the supply direction, and the regeneration air supply unit Share the total heat exchanger, and the regeneration air supply unit is provided with the total heat exchanger and the heating device sequentially from the upstream side to the downstream side in the supply direction. .
The air conditioning system according to claim 3, wherein the processing target air first supply unit is provided with a cooling device, the regeneration air supply unit is provided with a heating device, and a part of the indoor air. Is configured to be capable of being supplied to the regeneration air supply unit upstream of the heating device.
5. The air conditioning system according to claim 4, wherein the first air to be processed is provided with an air handling unit and a cooling device from the upstream side to the downstream side in the supply direction, and is supplied from the air handling unit. A part of the air supplied is supplied into the room, a remaining part of the air supplied from the air handling unit is supplied to the cooling device, and a heating device is provided in the regeneration air supply unit. Features.
The air conditioning system according to claim 5 includes a compressor, an expansion valve, a condenser that condenses a heat medium that circulates between the compressor and the expansion valve, and an evaporator that expands the heat medium. A heat pump having a heat pump, wherein the processing target air passes through the evaporator in the processing target air first supply unit, and the regeneration air passes through the condenser in the regeneration air supply unit. It is characterized by.
 上記の各空調システムには、既設又は新設の建物や室内の設備などを考慮して、上述のように処理対象空気と再生用空気とのエンタルピー差が確保される、或いは処理対象空気と再生用空気との温度差が大きくなるようにするための構成が設けられている。従って、室内の空気中の二酸化炭素は除去され、空気質が向上する。 In each of the above air conditioning systems, the enthalpy difference between the processing target air and the regeneration air is ensured as described above in consideration of existing or new buildings and indoor facilities, or the processing target air and the regeneration air A configuration for increasing the temperature difference from the air is provided. Therefore, carbon dioxide in the indoor air is removed and air quality is improved.
 本発明の空調システムによれば、処理対象空気と再生用空気とのエンタルピー差が確保されているため、ロータの吸収剤における二酸化炭素の吸収性能を向上させ、室内の空気中の二酸化炭素を除去し、室内の空気質を高めることができる。 According to the air conditioning system of the present invention, since the enthalpy difference between the processing target air and the regeneration air is ensured, the carbon dioxide absorption performance in the absorbent of the rotor is improved and the carbon dioxide in the indoor air is removed. The indoor air quality can be improved.
本発明に係る空調システムが備えるロータ処理対象空気と再生用空気とのエンタルピー差と二酸化炭素の除去効率との関係を示したグラフである。It is the graph which showed the relationship between the enthalpy difference of the rotor process target air with which the air-conditioning system which concerns on this invention and regeneration air, and the removal efficiency of a carbon dioxide. 本発明に係る空調システムが備えるロータの概略図である。It is a schematic diagram of a rotor with which an air-conditioning system concerning the present invention is provided. 本発明に係る空調システムの第一実施形態を示す概略図である。It is a schematic diagram showing a first embodiment of an air-conditioning system concerning the present invention. 本発明に係る空調システムの第二実施形態を示す概略図である。It is the schematic which shows 2nd embodiment of the air conditioning system which concerns on this invention. 本発明に係る空調システムの第三実施形態を示す概略図である。It is the schematic which shows 3rd embodiment of the air conditioning system which concerns on this invention. 本発明に係る空調システムの第四実施形態を示す概略図である。It is the schematic which shows 4th embodiment of the air conditioning system which concerns on this invention.
 以下、本発明に係る空調システムおよびその実施形態について、図面を参照し、具体的に説明する。 Hereinafter, an air conditioning system and an embodiment thereof according to the present invention will be specifically described with reference to the drawings.
 本発明に係る空調システムは、先ず、図2に示すように、アミン担持固体吸収剤である二酸化炭素の吸収剤を含み、処理対象空気が通風された際に処理対象空気に含まれる二酸化炭素をアミン担持固体吸収剤に吸収させる処理ゾーン2と、再生用空気が通風された際に、アミン担持固体吸収剤が吸収した二酸化炭素を再生用空気に脱離させる再生ゾーン4とに区画されたロータ1を備えている。 As shown in FIG. 2, the air conditioning system according to the present invention first includes an absorbent of carbon dioxide that is an amine-carrying solid absorbent, and the carbon dioxide contained in the processing target air when the processing target air is ventilated. A rotor partitioned into a treatment zone 2 to be absorbed by the amine-carrying solid absorbent and a regeneration zone 4 to desorb carbon dioxide absorbed by the amine-carrying solid absorbent to the regeneration air when the regeneration air is ventilated. 1 is provided.
 ロータ1は、ハニカムロータであり、シートをコルゲート(波付け)加工し、ロータ状に巻き付け加工した円筒形の部材であり、軸線を中心として図2に示す黒矢印の方向に沿って回転するように構成されている。ロータ1は、アミン担持固体吸収剤、詳しくは一級アミンと二級アミンの少なくとも一方を官能基として有する弱塩基性イオン交換樹脂からなる固体吸収剤を含んでいる。 The rotor 1 is a honeycomb rotor, and is a cylindrical member obtained by corrugating (waving) a sheet and winding it into a rotor shape, and rotates about the axis along the direction of the black arrow shown in FIG. It is configured. The rotor 1 includes an amine-supporting solid absorbent, specifically, a solid absorbent made of a weakly basic ion exchange resin having at least one of a primary amine and a secondary amine as a functional group.
 ロータ1の処理ゾーン2には、不図示のブロアなどによって処理対象空気として室内の空気が供給される。処理対象空気が処理ゾーン2に通風されると、処理対象空気に含まれる二酸化炭素がロータ部分のアミン担持固体吸収剤に吸収されて処理対象空気から分離除去される。これにより、処理対象空気中の二酸化炭素の濃度は低減する。
 再生用空気はヒータなどにより適切に加温または加湿されるか、加温および加湿され、ロータ1の再生ゾーン4に供給される。再生用空気が再生ゾーン4に通風されると、ロータ部分のアミン担持固体吸収剤に吸収された二酸化炭素が再生用空気に脱離し、ゾーン内を通過するロータ部分の吸収剤は再生される。
Indoor air is supplied to the processing zone 2 of the rotor 1 as processing target air by a blower (not shown) or the like. When the processing target air is ventilated to the processing zone 2, carbon dioxide contained in the processing target air is absorbed by the amine-supporting solid absorbent in the rotor portion and separated and removed from the processing target air. Thereby, the density | concentration of the carbon dioxide in process target air reduces.
The regeneration air is appropriately heated or humidified by a heater or the like, or heated and humidified, and supplied to the regeneration zone 4 of the rotor 1. When the regeneration air is ventilated through the regeneration zone 4, the carbon dioxide absorbed in the amine-supported solid absorbent in the rotor part is desorbed into the regeneration air, and the absorbent in the rotor part passing through the zone is regenerated.
 アミン担持固体吸収剤による二酸化炭素の吸収及び脱離は、一級アミン(R-NH)の場合は次に示す(1)式及び(2)式の反応によって生じ、二級アミン(R-NH)の場合は(3)式及び(4)式の反応によって生じる。 The absorption and desorption of carbon dioxide by the amine-supported solid absorbent is caused by the reaction of the following formulas (1) and (2) in the case of the primary amine (R—NH 2 ), and the secondary amine (R 1 R In the case of 2- NH), it is generated by the reaction of the formulas (3) and (4).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上述の反応が起こると、アミン-二酸化炭素-水系の連続誘導体モデルができると推測される。つまり、溶質としてのHCO 分子の周りに連続誘導体としての溶媒が生成され、溶質分子の電荷分布が周りの溶媒に分極を引き起こす。連続誘導体モデルでは、このような溶質溶媒間の相互作用により、より低温条件下で上述の(1)式から(4)式を促進させることで、吸収速度や放散速度の反応性が高くなる。従って、低温度の再生温度で適度な湿度があれば、溶質溶媒間の相互作用が促進され、アミン担持固体吸収剤における二酸化炭素の吸収率(即ち、アミン担持固体吸収剤における二酸化炭素の除去性能)が高くなる。 When the above reaction occurs, it is presumed that a continuous derivative model of amine-carbon dioxide-water system can be formed. That, HCO as solute 3 - solvent as a continuous derivative around the molecules are generated, the charge distribution of the solute molecules causes the polarization in a solvent around. In the continuous derivative model, the reactivity of the absorption rate and the diffusion rate is increased by promoting the above-described formulas (1) to (4) under a lower temperature condition due to the interaction between the solute solvents. Therefore, if there is moderate humidity at a low regeneration temperature, the interaction between the solute solvents is promoted, and the carbon dioxide absorption rate in the amine-supported solid absorbent (that is, the carbon dioxide removal performance in the amine-supported solid absorbent). ) Becomes higher.
 本発明に係る空調システムは、上述したロータ1と、室内の空気を処理対象空気として処理ゾーン2に供給する処理対象空気第一供給部と、処理ゾーン2を通過した処理対象空気を室内に供給する処理対象空気第二供給部と、外気を再生用空気として再生ゾーン4に供給する再生用空気供給部と、再生ゾーンを通過した再生用空気を室外に排出する再生用空気排出部と、を備えている。また、本発明に係る空調システムは、処理ゾーン2に供給される処理対象空気と再生ゾーン4に供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成されている。
 即ち、本発明に係る空調システムでは、処理ゾーン2に供給される処理対象空気と再生ゾーン4に供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上となることで、溶質溶媒間の相互作用が促進され、アミン担持固体吸収剤における二酸化炭素の吸収率が高くなる。これにより、室内における二酸化炭素の除去率が少なくとも30%以上になる。また、処理対象空気と再生用空気とのエンタルピー差が45kJ/kg(DA)以上になれば、室内における二酸化炭素の除去率が40%以上になり、より好ましい。
 上述のように処理対象空気と再生用空気とのエンタルピー差を少なくとも30kJ/kg(DA)以上とするために、例えば処理対象空気と再生用空気の湿度をふまえ、処理対象空気と再生用空気との温度差を好適に設定することが好ましい。以下、処理対象空気と再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成された空調システムの実施形態について、説明する。
The air conditioning system according to the present invention supplies the above-described rotor 1, the processing target air first supply unit that supplies indoor air as processing target air to the processing zone 2, and the processing target air that has passed through the processing zone 2 into the room. A processing target air second supply unit, a regeneration air supply unit that supplies outside air as regeneration air to the regeneration zone 4, and a regeneration air discharge unit that exhausts the regeneration air that has passed through the regeneration zone to the outside. I have. The air conditioning system according to the present invention is configured such that the enthalpy difference between the processing target air supplied to the processing zone 2 and the regeneration air supplied to the regeneration zone 4 is 30 kJ / kg (DA) or more. Yes.
That is, in the air conditioning system according to the present invention, the enthalpy difference between the processing target air supplied to the processing zone 2 and the regeneration air supplied to the regeneration zone 4 is 30 kJ / kg (DA) or more, so that the solute solvent And the carbon dioxide absorption rate in the amine-supported solid absorbent increases. Thereby, the removal rate of carbon dioxide in the room is at least 30% or more. Moreover, if the enthalpy difference between the air to be treated and the air for regeneration is 45 kJ / kg (DA) or more, the carbon dioxide removal rate in the room is 40% or more, which is more preferable.
As described above, in order to make the enthalpy difference between the processing target air and the regeneration air at least 30 kJ / kg (DA) or more, for example, based on the humidity of the processing target air and the regeneration air, It is preferable to set the temperature difference appropriately. Hereinafter, an embodiment of an air conditioning system configured so that the enthalpy difference between the processing target air and the regeneration air is 30 kJ / kg (DA) or more will be described.
(第一実施形態)
 先ず、本発明に係る空調システムの第一実施形態について、説明する。
 図3に示すように、第一実施形態の空調システム10Aは、室内Rの空気を循環させるファンコイルユニット12を備えている。なお、第一実施形態の空調システム10Aは、ファンコイルユニット12に替えて、パッケージエアコンなどの室内Rの空気を循環させることが可能な設備を備えていてもよい。
 室内Rとロータ1の処理ゾーン2の処理対象空気の入口側とを接続する処理対象空気第一供給部14には、処理対象空気の供給方向の上流側から下流側に向けて、全熱交換器16、冷却装置18が順次設けられている。冷却装置18としては、例えば冷水コイル、冷却コイルが挙げられる。室外とロータ1の再生ゾーン4の再生用空気入口側とを接続する再生用空気供給部20は全熱交換器16を共有し、再生用空気供給部20には、再生用空気の供給方向の上流側から下流側に向けて、全熱交換器16、加熱装置22が順次設けられている。加熱装置22としては、例えば電気ヒータ、温水コイル、蒸気コイル、加熱式加湿器(パン型加湿器、蒸気加湿器等)が挙げられる。
 また、第一実施形態の空調システム10Aは、ロータ1の処理ゾーン2の処理対象空気出口側と室内Rとを接続する処理対象空気第二供給部24と、ロータ1の再生ゾーン4の処理対象空気出口側と室外とを接続する再生用空気排出部26と、を備えている。
 室内Rでは、処理対象空気第一供給部14及び処理対象空気第二供給部24による処理対象空気の循環とは独立して、外気の供給及び室内Rからの排気が行われる。これにより、室内Rの空気圧等が適切に調節される。なお、このような換気における空気の流量等は固定されている。
 なお、図3に示す空調システム10Aの構成は、冬期のように室内Rの空気のエンタルピーよりも外気のエンタルピーの方が低いと想定して考えられたものである。夏期のように室内Rの空気のエンタルピーよりも外気の温度の方が高い場合は、処理対象空気第一供給部14の全熱交換器16は省略する。以下の説明では、処理対象空気第一供給部14の全熱交換器16が設けられ、室内Rの空気のエンタルピーよりも外気のエンタルピーの方が低いと想定する。
(First embodiment)
First, a first embodiment of an air conditioning system according to the present invention will be described.
As shown in FIG. 3, the air conditioning system 10 </ b> A of the first embodiment includes a fan coil unit 12 that circulates the air in the room R. In addition, 10 A of air conditioning systems of 1st embodiment may be provided with the installation which can circulate the air of room | chamber R, such as a package air conditioner, instead of the fan coil unit 12.
In the processing target air first supply unit 14 that connects the room R and the processing target air inlet side of the processing zone 2 of the rotor 1, total heat exchange is performed from the upstream side to the downstream side in the supply direction of the processing target air. A vessel 16 and a cooling device 18 are sequentially provided. Examples of the cooling device 18 include a cold water coil and a cooling coil. The regeneration air supply unit 20 that connects the outdoor side and the regeneration air inlet side of the regeneration zone 4 of the rotor 1 shares the total heat exchanger 16, and the regeneration air supply unit 20 has a regeneration air supply direction. A total heat exchanger 16 and a heating device 22 are sequentially provided from the upstream side toward the downstream side. Examples of the heating device 22 include an electric heater, a hot water coil, a steam coil, and a heating humidifier (such as a pan-type humidifier and a steam humidifier).
The air conditioning system 10 </ b> A of the first embodiment includes a processing target air second supply unit 24 that connects the processing target air outlet side of the processing zone 2 of the rotor 1 and the room R, and a processing target of the regeneration zone 4 of the rotor 1. And a regeneration air discharge unit 26 for connecting the air outlet side and the outdoor side.
In the room R, supply of outside air and exhaust from the room R are performed independently of the circulation of the process target air by the process target air first supply unit 14 and the process target air second supply unit 24. Thereby, the air pressure in the room R is adjusted appropriately. Note that the air flow rate in such ventilation is fixed.
Note that the configuration of the air conditioning system 10A shown in FIG. 3 is considered assuming that the enthalpy of the outside air is lower than the enthalpy of the air in the room R as in winter. When the temperature of the outside air is higher than the enthalpy of the air in the room R as in summer, the total heat exchanger 16 of the processing target air first supply unit 14 is omitted. In the following description, it is assumed that the total heat exchanger 16 of the processing target air first supply unit 14 is provided and the enthalpy of the outside air is lower than the enthalpy of the air in the room R.
 第一実施形態の空調システム10Aでは、室内Rの空気は、処理対象空気第一供給部14に排出され、処理対象空気第一供給部14によって処理対象空気として全熱交換器16に供給される。一方、室外から導入された外気は再生用空気供給部20によって再生用空気として全熱交換器16に供給される。全熱交換器16では、処理対象空気と再生用空気との間で全熱交換が行われる。すなわち、顕熱(温度)と潜熱(湿度)の交換が行われる。そのため、処理対象空気のエンタルピーは減少し、再生用空気のエンタルピーは増加する。
 全熱交換器16でエンタルピーが減少した処理対象空気は、処理対象空気第一供給部14によって冷却装置18に供給され、ロータ1の処理ゾーン2に導入する所定の温度までさらに冷却され、ロータ1の処理ゾーン2に供給される。全熱交換器16でエンタルピーが増加した再生用空気は、再生用空気供給部20によって加熱装置22に供給され、ロータ1の再生ゾーン4に導入する所定の温度までさらに加温され、ロータ1の再生ゾーン4に供給される。処理ゾーン2に導入する処理対象空気の所定の温度、及び、再生ゾーン4に導入する再生用空気の所定の温度は、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上となるように設定する。
 第一実施形態の空調システム10Aでは、上述したように処理対象空気と再生用空気とのエンタルピー差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。
In the air conditioning system 10A of the first embodiment, the air in the room R is discharged to the processing target air first supply unit 14, and is supplied to the total heat exchanger 16 as the processing target air by the processing target air first supply unit 14. . On the other hand, outside air introduced from the outside is supplied to the total heat exchanger 16 as regeneration air by the regeneration air supply unit 20. In the total heat exchanger 16, total heat exchange is performed between the processing target air and the regeneration air. That is, exchange of sensible heat (temperature) and latent heat (humidity) is performed. As a result, the enthalpy of the air to be treated decreases and the enthalpy of the regeneration air increases.
The processing target air whose enthalpy has decreased in the total heat exchanger 16 is supplied to the cooling device 18 by the processing target air first supply unit 14 and further cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1. To the processing zone 2. The regeneration air whose enthalpy has increased in the total heat exchanger 16 is supplied to the heating device 22 by the regeneration air supply unit 20 and further heated to a predetermined temperature to be introduced into the regeneration zone 4 of the rotor 1. It is supplied to the regeneration zone 4. The predetermined temperature of the processing target air introduced into the processing zone 2 and the predetermined temperature of the regeneration air introduced into the regeneration zone 4 have an enthalpy difference between the processing target air and the regeneration air of at least 30 kJ / kg (DA). Set as above.
In the air conditioning system 10A of the first embodiment, as described above, the processing target air is supplied to the processing zone 2 in a state where the enthalpy difference between the processing target air and the regeneration air is applied, and the regeneration air is supplied to the regeneration zone 4. To be supplied.
 ロータ1の処理ゾーン2では、処理対象空気中の二酸化炭素がロータ1に含まれるアミン担持固体吸収剤に吸収され、処理対象空気から分離除去される。二酸化炭素を吸収したアミン担持固体吸収剤を含むロータ1の部分は回転により再生ゾーン4の領域に移動し、吸収した二酸化炭素が再生ゾーン4に通風される再生用空気に脱離する。このようにして、処理対象空気から二酸化炭素が除去され、二酸化炭素は再生用空気に含有される。 In the processing zone 2 of the rotor 1, carbon dioxide in the processing target air is absorbed by the amine-supporting solid absorbent contained in the rotor 1 and separated and removed from the processing target air. The portion of the rotor 1 containing the amine-supported solid absorbent that has absorbed carbon dioxide moves to the region of the regeneration zone 4 by rotation, and the absorbed carbon dioxide is desorbed into the regeneration air that is ventilated through the regeneration zone 4. In this way, carbon dioxide is removed from the air to be treated, and carbon dioxide is contained in the regeneration air.
 ロータ1の処理ゾーン2から処理対象空気第二供給部24に排出された処理済空気は、処理対象空気第二供給部24によって、室内Rに供給される。ロータ1の再生ゾーン4から再生用空気排出部26に排出された再生用空気は、再生用空気排出部26によって室外へ排気される。
 処理対象空気第二供給部24によって室内Rに供給される処理済空気の温度を勘案して、ファンコイルユニット12により、主に室内Rの温度が調整され、必要に応じて室内Rの湿度も調節される。また、冬期と夏期との間、所謂中間期は、室内Rの空気のエンタルピーと外気のエンタルピーとの高低差を考慮し、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上となるように、冷却装置18及び加熱装置22の設定を適宜変更する。
The processed air discharged from the processing zone 2 of the rotor 1 to the processing target air second supply unit 24 is supplied to the room R by the processing target air second supply unit 24. The regeneration air discharged from the regeneration zone 4 of the rotor 1 to the regeneration air discharge unit 26 is exhausted to the outside by the regeneration air discharge unit 26.
Considering the temperature of the processed air supplied to the room R by the second air to be processed 24, the temperature of the room R is mainly adjusted by the fan coil unit 12, and the humidity of the room R is also adjusted as necessary. Adjusted. Also, in the so-called intermediate period between winter and summer, the difference in enthalpy between the air to be treated and the air for regeneration is at least 30 kJ / kg (DA ) The settings of the cooling device 18 and the heating device 22 are appropriately changed so as to be the above.
 空調システム10Aでの設定条件の一例を示す。ビル管理法に定められているように、オフィス等の室内Rの二酸化炭素濃度を1000PPM以下に設定する。例えば、室内Rは、床面積500m×高さ2.8mの1400mの大きさを有し、室内Rに75人が活動していると想定する。このような室内Rで発生する二酸化炭素の量は15m/h(=0.02m/人・h×75人)である。3200m/hで室内Rの二酸化炭素を30%除去することで、室内Rの二酸化炭素濃度を1000PPM以下に維持することができる。
 なお、室内Rには、二酸化炭素濃度500PPM、不図示の送風機から1150CMH(m/h)で外気が供給されると共に、同じ条件で室内Rから室外に排気が行われるものとする。
An example of setting conditions in the air conditioning system 10A is shown. As stipulated in the Building Management Law, the carbon dioxide concentration in the room R such as an office is set to 1000 PPM or less. For example, the room R has a floor area of 500 m 2 × height of 2.8 m and a size of 1400 m 3 , and it is assumed that 75 people are active in the room R. The amount of carbon dioxide generated in such chamber R is 15m 3 /h(=0.02m 3 / person · h × 75 people). By removing 30% of carbon dioxide in the room R at 3200 m 3 / h, the carbon dioxide concentration in the room R can be maintained at 1000 PPM or less.
The room R is supplied with outside air at a carbon dioxide concentration of 500 PPM and 1150 CMH (m 3 / h) from a blower (not shown), and exhausted from the room R to the room under the same conditions.
 上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから、処理対象空気第一供給部14に3200m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。
 一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度0℃、相対湿度50%(エンタルピー5kJ/kg(DA))で導入すると想定する。全熱交換器16によって、処理対象空気のエンタルピーを14kJ/kg(DA)に減少し、再生用空気のエンタルピーを29kJ/kg(DA)に増加する。
 冷却装置18はOFF状態とし、エンタルピー14kJ/kg(DA)の処理対象空気をロータ1の処理ゾーン2に供給する。加熱装置22はON状態とし、エンタルピー29kJ/kg(DA)の再生用空気を45℃まで加温し、エンタルピーを58kJ/kg(DA)まで増加し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は39%となり、室内Rの二酸化炭素濃度は867PPMに低減する。
In the above conditions, in the case of winter, using a blower (not shown) or the like, from the room R, the processed air first supply section 14 3200 m 3 / h, temperature 22 ° C., 40% relative humidity (enthalpy 39 kJ / kg ( Assume that the air to be treated of DA)) is exhausted.
On the other hand, it is assumed that regeneration air is introduced from outside into the regeneration air supply unit 20 at 3200 m 3 / h, temperature 0 ° C., and relative humidity 50% (enthalpy 5 kJ / kg (DA)) using a blower (not shown). To do. The total heat exchanger 16 reduces the enthalpy of the air to be processed to 14 kJ / kg (DA) and increases the enthalpy of the regeneration air to 29 kJ / kg (DA).
The cooling device 18 is turned off, and the processing target air of enthalpy 14 kJ / kg (DA) is supplied to the processing zone 2 of the rotor 1. The heating device 22 is turned on, the enthalpy 29 kJ / kg (DA) regeneration air is heated to 45 ° C., the enthalpy is increased to 58 kJ / kg (DA), and supplied to the regeneration zone 4 of the rotor 1. Due to the enthalpy difference between the air to be treated and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 39%, and the carbon dioxide concentration in the room R is reduced to 867 PPM.
 上述の条件において、夏期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度26℃、相対湿度50%(エンタルピー52kJ/kg(DA))の処理対象空気が排出されると想定する。
 一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度34℃、相対湿度60%(エンタルピー86kJ/kg(DA))で導入すると想定する。前述のように夏期は全熱交換器16による熱交換は行わない。従って、処理対象空気のエンタルピーは52kJ/kg(DA)であり、再生用空気のエンタルピーは86kJ/kg(DA)である。冷却装置18はON状態とし、処理対象空気を14℃に冷却し、エンタルピーを38kJ/kg(DA)に減少し、ロータ1の処理ゾーン2に供給する。加熱装置22はOFF状態とし、エンタルピー86kJ/kg(DA)の再生用空気をロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%となり、室内Rの二酸化炭素濃度は837PPMに低減する。従って、夏期であっても、ビル管理法に定められているように、オフィス等の室内Rの二酸化炭素濃度を1000PPM以下とする基準は充分に達成される。
Under the above-mentioned conditions, in summer, using a blower (not shown) or the like, from the room R to the processing target air first supply unit 14, 3200 m 3 / h, temperature 26 ° C., relative humidity 50% (enthalpy 52 kJ / kg (DA )) Is assumed to be discharged.
On the other hand, it is assumed that regeneration air is introduced from outside into the regeneration air supply unit 20 at 3200 m 3 / h, temperature 34 ° C., and relative humidity 60% (enthalpy 86 kJ / kg (DA)) using a blower (not shown). To do. As described above, heat exchange by the total heat exchanger 16 is not performed in summer. Therefore, the enthalpy of the air to be treated is 52 kJ / kg (DA), and the enthalpy of the regeneration air is 86 kJ / kg (DA). The cooling device 18 is turned on, the air to be treated is cooled to 14 ° C., the enthalpy is reduced to 38 kJ / kg (DA), and supplied to the treatment zone 2 of the rotor 1. The heating device 22 is turned off, and the regeneration air of enthalpy 86 kJ / kg (DA) is supplied to the regeneration zone 4 of the rotor 1. Due to the enthalpy difference between the air to be treated and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 41%, and the carbon dioxide concentration in the room R is reduced to 837 PPM. Therefore, even in the summer, the standard that the carbon dioxide concentration in the room R such as the office is 1000 PPM or less is sufficiently achieved as stipulated in the Building Management Law.
 上述した第一実施形態の空調システム10Aによれば、処理対象空気第一供給部14において、ロータ1の処理ゾーン2に供給する処理対象空気のエンタルピーが減少し、再生用空気供給部20において、ロータ1の再生ゾーン4に供給する再生用空気のエンタルピーが増加する。特に冬期では、全熱交換器16を稼働させることで、処理対象空気のエンタルピーを減少させると同時に、再生用空気のエンタルピーを増加させる。これにより、処理対象空気と再生用空気との間にエンタルピー差が付与される。外気の温度や相対湿度を考慮して、全熱交換器16、冷却装置18及び加熱装置22の設定等を調整しながら、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上で確保することができる。その結果、ロータ1における(1)式から(4)式の反応が促進され、ロータ1に含まれるアミン担持固体吸収剤における二酸化炭素の吸収性能が向上する(図1参照)。従って、処理対象空気から二酸化炭素が良好に除去され、処理済空気が処理対象空気第二供給部24によって室内Rに戻される。このような空気の循環により、室内Rの空気中の二酸化炭素を除去し、空気質を向上させることができる。
 また、第一実施形態の空調システム10Aは全熱交換器16を備えているので、再生用空気(即ち、外気)が処理対象空気(即ち、室内空気)とエンタルピー交換(温度及び湿度の双方)を行う。そのため、第一実施形態の空調システム10Aは、例えば後述する第二実施形態の空調システム10Bのように室内Rの空気を外気と混合しただけの空調システムよりも省電力化を図ることができる。そして、冬期は特に処理対象空気と再生用空気とのエンタルピー差が大きいので、冬期の二酸化炭素の除去性能を効率良く高めることができる。
According to the air conditioning system 10A of the first embodiment described above, in the processing target air first supply unit 14, the enthalpy of processing target air supplied to the processing zone 2 of the rotor 1 is reduced, and in the regeneration air supply unit 20, The enthalpy of regeneration air supplied to the regeneration zone 4 of the rotor 1 increases. Particularly in winter, the total heat exchanger 16 is operated to reduce the enthalpy of the air to be treated and at the same time increase the enthalpy of the regeneration air. Thereby, an enthalpy difference is provided between the air to be processed and the air for regeneration. While adjusting the settings of the total heat exchanger 16, the cooling device 18 and the heating device 22 in consideration of the temperature and relative humidity of the outside air, the enthalpy difference between the processing target air and the regeneration air is at least 30 kJ / kg (DA ) This can be ensured. As a result, the reactions of the formulas (1) to (4) in the rotor 1 are promoted, and the carbon dioxide absorption performance in the amine-supported solid absorbent contained in the rotor 1 is improved (see FIG. 1). Accordingly, the carbon dioxide is satisfactorily removed from the processing target air, and the processed air is returned to the room R by the processing target air second supply unit 24. Such air circulation can remove carbon dioxide in the air in the room R and improve the air quality.
In addition, since the air conditioning system 10A of the first embodiment includes the total heat exchanger 16, the regeneration air (that is, outside air) is replaced with the processing target air (that is, indoor air) and the enthalpy (both temperature and humidity). I do. Therefore, the air conditioning system 10A of the first embodiment can achieve power saving compared to an air conditioning system in which the air in the room R is simply mixed with the outside air, for example, as in the air conditioning system 10B of the second embodiment described later. And since the enthalpy difference between the air to be treated and the regenerating air is particularly large in winter, the carbon dioxide removal performance in winter can be improved efficiently.
(第二実施形態)
 次いで、本発明に係る空調システムの第二実施形態について、説明する。なお、第二実施形態の空調システム10Bの構成要素において、第一実施形態の空調システム10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
 図4に示すように、第二実施形態の空調システム10Bでは、処理対象空気第一供給部14には、冷却装置18が設けられ、再生用空気供給部20には、加熱装置22が設けられ、室内Rの空気の一部が加熱装置22よりも上流側の再生用空気供給部20に供給可能に構成されている。詳しくは、室内Rから処理対象空気第一供給部14とは独立して排気を行うための室内排気部28がバイパス部30を介して再生用空気供給部20と合流している。室内排気部28、バイパス部30及び再生用空気供給部20には、空気の流量を調節するためのダンパーが設けられている。
(Second embodiment)
Next, a second embodiment of the air conditioning system according to the present invention will be described. In addition, in the component of the air conditioning system 10B of 2nd embodiment, about the component same as the component of 10A of air conditioning systems of 1st embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 4, in the air conditioning system 10 </ b> B of the second embodiment, the processing target air first supply unit 14 is provided with a cooling device 18, and the regeneration air supply unit 20 is provided with a heating device 22. A part of the air in the room R can be supplied to the regeneration air supply unit 20 on the upstream side of the heating device 22. Specifically, an indoor exhaust unit 28 for exhausting air independently from the processing target air first supply unit 14 from the room R joins the regeneration air supply unit 20 via the bypass unit 30. The indoor exhaust unit 28, the bypass unit 30, and the regeneration air supply unit 20 are provided with dampers for adjusting the air flow rate.
 第二実施形態の空調システム10Bでは、室内Rの空気は、処理対象空気第一供給部14と室内排気部28に分けて排出される。室内排気部28に排出された空気は、バイパス部30によって再生用空気供給部20に直接供給可能とされている。季節や室外の環境に応じて、冬期等には室内排気部28に排出された空気全部を再生用空気供給部20に供給し、夏期等には室内排気部28に排出された空気全部を室外に排気する。室外から導入された外気は再生用空気供給部20において、バイパス部30からの室内Rの空気と混合され、エンタルピーが増加する。
 室内Rから排出された処理対象空気は、処理対象空気第一供給部14によって冷却装置18に供給され、ロータ1の処理ゾーン2に導入する所定の温度までさらに冷却され、エンタルピーが減少し、ロータ1の処理ゾーン2に供給される。室内Rの空気と混合しエンタルピーが増加した再生用空気は、再生用空気供給部20によって加熱装置22に供給され、ロータ1の再生ゾーン4に導入する所定のエンタルピーまでさらに加温され、ロータ1の再生ゾーン4に供給される。
 このように処理対象空気と再生用空気とのエンタルピー差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。
In the air conditioning system 10 </ b> B of the second embodiment, the air in the room R is divided into the process target air first supply unit 14 and the indoor exhaust unit 28 and is discharged. The air discharged to the indoor exhaust unit 28 can be directly supplied to the regeneration air supply unit 20 by the bypass unit 30. Depending on the season and outdoor environment, all the air exhausted to the indoor exhaust unit 28 is supplied to the regeneration air supply unit 20 in winter and the like, and all the air exhausted to the indoor exhaust unit 28 is outdoor in the summer etc. Exhaust. The outside air introduced from the outside is mixed with the air in the room R from the bypass unit 30 in the regeneration air supply unit 20, and the enthalpy increases.
The processing target air exhausted from the room R is supplied to the cooling device 18 by the processing target air first supply unit 14 and further cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1, enthalpy is reduced, and the rotor 1 processing zone 2. The regeneration air mixed with the air in the room R and increased in enthalpy is supplied to the heating device 22 by the regeneration air supply unit 20 and further heated to a predetermined enthalpy introduced into the regeneration zone 4 of the rotor 1. Is supplied to the regeneration zone 4.
In this manner, with the enthalpy difference between the processing target air and the regeneration air being applied, the processing target air is supplied to the processing zone 2 and the regeneration air is supplied to the regeneration zone 4.
 ロータ1における処理対象空気と再生用空気との間の二酸化炭素のやりとり、及びロータ1を通過後の処理済空気及び再生用空気の流れは、第一実施形態の空調システム10Aと同様である。 The exchange of carbon dioxide between the processing target air and the regeneration air in the rotor 1 and the flow of the processed air and the regeneration air after passing through the rotor 1 are the same as those in the air conditioning system 10A of the first embodiment.
 空調システム10Bでの設定条件の一例を示す。室内Rの大きさおよび給気排気等の条件は、第一実施形態の空調システム10Aの設計条件の一例と同様とする。
 上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。
 一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を1250m/h、温度0℃、相対湿度50%(エンタルピー5kJ/kg(DA))で導入すると想定する。室内排気部28に排出された室内Rの空気をバイパス部30に100%導入し、再生用空気供給部20に1150m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))で供給する。これにより、再生用空気のエンタルピーは17kJ/kg(DA)に増加する。冷却装置18はON状態とし、処理対象空気を9℃に冷却して、エンタルピーを25kJ/kg(DA)に減少し、ロータ1の処理ゾーン2に供給する。加熱装置22もON状態とし、再生用空気を45℃まで加温して、エンタルピーを55kJ/kg(DA)に増加し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は31%、室内Rの二酸化炭素濃度は968PPMに低減する。
An example of setting conditions in the air conditioning system 10B is shown. The conditions such as the size of the room R and the supply / exhaust air are the same as the design conditions of the air conditioning system 10A of the first embodiment.
Under the above-mentioned conditions, in the winter season, using a blower (not shown) or the like, from the room R to the processing target air first supply unit 14, 3200 m 3 / h, temperature 22 ° C., relative humidity 40% (enthalpy 39 kJ / kg (DA )) Is assumed to be discharged.
On the other hand, it is assumed that regeneration air is introduced from outside into the regeneration air supply unit 20 at 1250 m 3 / h, a temperature of 0 ° C., and a relative humidity of 50% (enthalpy 5 kJ / kg (DA)) using a blower (not shown). To do. 100% of the air in the room R exhausted to the indoor exhaust section 28 is introduced into the bypass section 30, and 1150 m 3 / h, temperature 22 ° C., relative humidity 40% (enthalpy 39 kJ / kg (DA)) into the regeneration air supply section 20 ) This increases the enthalpy of the regeneration air to 17 kJ / kg (DA). The cooling device 18 is turned on, the processing target air is cooled to 9 ° C., the enthalpy is reduced to 25 kJ / kg (DA), and supplied to the processing zone 2 of the rotor 1. The heating device 22 is also turned on, the regeneration air is heated to 45 ° C., the enthalpy is increased to 55 kJ / kg (DA), and supplied to the regeneration zone 4 of the rotor 1. Due to such enthalpy difference between the air to be treated and the air for regeneration, the carbon dioxide removal rate of the rotor 1 is reduced to 31% and the carbon dioxide concentration in the room R is reduced to 968 PPM.
 上述の条件において、夏期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度26℃、相対湿度50%(エンタルピー52kJ/kg(DA))の処理対象空気が排出されると想定する。
 一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度34℃、相対湿度60%(エンタルピー86kJ/kg(DA))で導入すると想定する。
 夏期の場合は、室内排気部28からバイパス部30への室内Rの空気の導入は行わず、室内排気部28に導入された空気3を100%排気する。そして、第一実施形態の空調システム10Aの設計条件の一例と同様に、処理対象空気及び再生用空気をロータ1に供給する。処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%となり、室内Rの二酸化炭素濃度は837PPMに低減する。
Under the above-mentioned conditions, in summer, using a blower (not shown) or the like, from the room R to the processing target air first supply unit 14, 3200 m 3 / h, temperature 26 ° C., relative humidity 50% (enthalpy 52 kJ / kg (DA )) Is assumed to be discharged.
On the other hand, it is assumed that regeneration air is introduced from outside into the regeneration air supply unit 20 at 3200 m 3 / h, temperature 34 ° C., and relative humidity 60% (enthalpy 86 kJ / kg (DA)) using a blower (not shown). To do.
In the summer season, the air in the room R is not introduced from the indoor exhaust part 28 to the bypass part 30, and the air 3 introduced into the indoor exhaust part 28 is exhausted 100%. Then, similarly to the example of the design condition of the air conditioning system 10 </ b> A of the first embodiment, the processing target air and the regeneration air are supplied to the rotor 1. Due to the enthalpy difference between the processing target air and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 41%, and the carbon dioxide concentration in the room R is reduced to 837 PPM.
 上記説明した第二実施形態の空調システム10Bによれば、処理対象空気第一供給部14において冷却装置18で冷却され、ロータ1の処理ゾーン2に供給される処理対象空気と、室内排気部28からバイパスされた室内Rの空気との混合でエンタルピーが増加すると共に、再生用空気供給部20において加熱装置22で加温され、エンタルピーが増加し、ロータ1の再生ゾーン4に供給される再生用空気との間にエンタルピー差が付与される。外気の温度や相対湿度を考慮して、冷却装置18及び加熱装置22の設定等を調整しながら、処理対象空気と再生用空気とのエンタルピー差を少なくとも30kJ/kg(DA)以上で確保することができる。そのため、第一実施形態の空調システム10Aと同様の効果が得られる。 According to the air conditioning system 10B of the second embodiment described above, the processing target air that is cooled by the cooling device 18 in the processing target air first supply unit 14 and is supplied to the processing zone 2 of the rotor 1, and the indoor exhaust unit 28. The enthalpy is increased by mixing with the air in the room R bypassed from the refrigeration, and is heated by the heating device 22 in the regeneration air supply unit 20 to increase the enthalpy and supplied to the regeneration zone 4 of the rotor 1. An enthalpy difference is given to the air. In consideration of the temperature and relative humidity of the outside air, the enthalpy difference between the processing target air and the regeneration air should be secured at least 30 kJ / kg (DA) or more while adjusting the settings of the cooling device 18 and the heating device 22. Can do. Therefore, the same effect as the air conditioning system 10A of the first embodiment can be obtained.
(第三実施形態)
 次いで、本発明に係る空調システムの第三実施形態について、説明する。なお、第三実施形態の空調システム10Cの構成要素において、第一実施形態の空調システム10Aまたは第二実施形態の空調システム10Bの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
 図5に示すように、第三実施形態の空調システム10Cでは、処理対象空気第一供給部14には、処理対象空気の供給方向の上流側から下流側に向けて、エアハンドリングユニット32、冷却装置18が設けられ、エアハンドリングユニット32から供給された空気の一部は室内Rに供給され、エアハンドリングユニット32から供給された空気の残部は冷却装置18に供給され、再生用空気供給部20には、加熱装置22が設けられている。
 エアハンドリングユニット32としては、空調システムにおいて一般に使用されているものを適用することができる。
 再生用空気供給部20には、加熱装置22の上流側に、再生用空気の供給方向の上流側から下流側に向けて、加熱装置34と、加湿器36が設けられている。これにより、例えば冬期であっても、ロータ1の寿命を縮めることなく、臭いの発生等も抑え、処理対象空気と再生用空気とのエンタルピー差を30kJ/kg(DA)以上にすることができる。
(Third embodiment)
Next, a third embodiment of the air conditioning system according to the present invention will be described. In addition, in the component of the air conditioning system 10C of 3rd embodiment, about the component same as the component of the air conditioning system 10A of 1st embodiment or the air conditioning system 10B of 2nd embodiment, the same code | symbol is attached | subjected, The description is omitted.
As shown in FIG. 5, in the air conditioning system 10 </ b> C of the third embodiment, the processing target air first supply unit 14 includes an air handling unit 32, cooling from the upstream side toward the downstream side in the supply direction of the processing target air. A device 18 is provided, a part of the air supplied from the air handling unit 32 is supplied to the room R, the remainder of the air supplied from the air handling unit 32 is supplied to the cooling device 18, and the regeneration air supply unit 20 Is provided with a heating device 22.
As the air handling unit 32, one generally used in an air conditioning system can be applied.
The regeneration air supply unit 20 is provided with a heating device 34 and a humidifier 36 on the upstream side of the heating device 22 from the upstream side to the downstream side in the regeneration air supply direction. Thereby, for example, even in winter, the generation of odors can be suppressed without shortening the life of the rotor 1, and the enthalpy difference between the air to be treated and the air for regeneration can be 30 kJ / kg (DA) or more. .
 第三実施形態の空調システム10Cでは、室内Rの空気は、処理対象空気第一供給部14によってエアハンドリングユニット32に供給される。エアハンドリングユニット32から排出された処理対象空気の一部は、室内Rに戻される。エアハンドリングユニット32から室内Rに戻される空気により、主に室内Rの温度が調整され、必要に応じて室内Rの湿度も調節される。この点を考慮して、エアハンドリングユニット32から排出する処理対象空気の温度や湿度等の条件を適切に設定することが好ましい。
 エアハンドリングユニット32から排出された処理対象空気の残部は、処理対象空気第一供給部14によって冷却装置18に供給され、ロータ1の処理ゾーン2に導入する所定の温度までさらに冷却され、ロータ1の処理ゾーン2に供給される。一方、再生用空気は、再生用空気供給部20によって加熱装置22に供給され、ロータ1の再生ゾーン4に導入する所定の温度までさらに加温され、ロータ1の再生ゾーン4に供給される。
 このように処理対象空気と再生用空気とのエンタルピー差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。
In the air conditioning system 10 </ b> C of the third embodiment, the air in the room R is supplied to the air handling unit 32 by the processing target air first supply unit 14. Part of the processing target air discharged from the air handling unit 32 is returned to the room R. The temperature of the room R is mainly adjusted by the air returned from the air handling unit 32 to the room R, and the humidity of the room R is also adjusted as necessary. In consideration of this point, it is preferable to appropriately set conditions such as the temperature and humidity of the air to be processed discharged from the air handling unit 32.
The remaining portion of the processing target air discharged from the air handling unit 32 is supplied to the cooling device 18 by the processing target air first supply unit 14 and further cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1. To the processing zone 2. On the other hand, the regeneration air is supplied to the heating device 22 by the regeneration air supply unit 20, further heated to a predetermined temperature to be introduced into the regeneration zone 4 of the rotor 1, and supplied to the regeneration zone 4 of the rotor 1.
In this manner, with the enthalpy difference between the processing target air and the regeneration air being applied, the processing target air is supplied to the processing zone 2 and the regeneration air is supplied to the regeneration zone 4.
 ロータ1における処理対象空気と再生用空気との間の二酸化炭素のやりとり、及びロータ1を通過後の処理済空気及び再生用空気の流れは、第一実施形態の空調システム10Aと同様である。 The exchange of carbon dioxide between the processing target air and the regeneration air in the rotor 1 and the flow of the processed air and the regeneration air after passing through the rotor 1 are the same as those in the air conditioning system 10A of the first embodiment.
 空調システム10Cでの設定条件の一例を示す。室内Rの大きさ及び給気排気等の条件は、第一実施形態の空調システム10Aの設計条件の一例と同様とする。
 上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に13600m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。
 一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を2400m/h、温度0℃、相対湿度50%(エンタルピー5kJ/kg(DA))で導入すると想定する。エアハンドリングユニット32では、室内Rから処理対象空気第一供給部14に供給された処理対象空気の条件を保持する。冷却装置18はON状態とし、エアハンドリングユニット32で調整された後の22℃の処理対象空気を11℃(エンタルピー27kJ/kg(DA))に冷却して、ロータ1の処理ゾーン2に供給する。加熱装置34と加湿器36と加熱装置22もON状態とし、再生用空気のエンタルピーを75kJ/kg(DA)に増加し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%、室内Rの二酸化炭素濃度は842PPMに低減する。
An example of setting conditions in the air conditioning system 10C is shown. Conditions such as the size of the room R and supply / exhaust air are the same as those of the design conditions of the air conditioning system 10A of the first embodiment.
Under the above-mentioned conditions, in the winter season, using a blower (not shown) or the like, 13600 m 3 / h, temperature 22 ° C., relative humidity 40% (enthalpy 39 kJ / kg (DA )) Is assumed to be discharged.
On the other hand, it is assumed that regeneration air is introduced from outside into the regeneration air supply unit 20 at 2400 m 3 / h, temperature 0 ° C., and relative humidity 50% (enthalpy 5 kJ / kg (DA)) using a blower (not shown). To do. In the air handling unit 32, the conditions of the processing target air supplied from the room R to the processing target air first supply unit 14 are maintained. The cooling device 18 is turned on, and the air to be treated at 22 ° C. after being adjusted by the air handling unit 32 is cooled to 11 ° C. (enthalpy 27 kJ / kg (DA)) and supplied to the treatment zone 2 of the rotor 1. . The heating device 34, the humidifier 36 and the heating device 22 are also turned on, and the enthalpy of regeneration air is increased to 75 kJ / kg (DA) and supplied to the regeneration zone 4 of the rotor 1. Due to the enthalpy difference between the air to be treated and the regeneration air, the carbon dioxide removal rate of the rotor 1 is reduced to 41% and the carbon dioxide concentration in the room R is reduced to 842 PPM.
 上述の条件において、夏期の場合は、エアハンドリングユニット32で、室内Rから処理対象空気第一供給部14に供給された処理対象空気の条件を適宜変更し、第一実施形態の空調システム10A及び第二実施形態の空調システム10Bの夏期における設計条件の一例と同様に、処理対象空気及び再生用空気をロータ1に供給する。処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%となり、室内Rの二酸化炭素濃度は837PPMに低減する。 In the above-described conditions, in the summer, the air handling unit 32 appropriately changes the conditions of the processing target air supplied from the room R to the processing target air first supply unit 14, and the air conditioning system 10A of the first embodiment and The processing target air and the regeneration air are supplied to the rotor 1 as in the example of the design conditions in the summer of the air conditioning system 10B of the second embodiment. Due to the enthalpy difference between the processing target air and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 41%, and the carbon dioxide concentration in the room R is reduced to 837 PPM.
 上述した第三実施形態の空調システム10Cによれば、処理対象空気第一供給部14においてエアハンドリングユニット32を通過して冷却装置18で冷却され、ロータ1の処理ゾーン2に供給される処理対象空気と、再生用空気供給部20において加熱装置34と、加湿器36及び加熱装置22で加温され、ロータ1の再生ゾーン4に供給される再生用空気との間にエンタルピー差が付与される。
 また、第三実施形態の空調システム10Cによれば、処理対象空気第一供給部14においてエアハンドリングユニット32を通過した処理対象空気の一部が室内Rに戻されるので、室内Rの空気循環が効率良く行われる。さらに、第三実施形態の空調システム10Cによれば、第二実施形態の空調システム10Bと同様に全熱交換器16を用いずに済み、加えてエアハンドリングユニット32がファンコイルユニット12の機能も兼ねるので、簡易な構成で空調システム10Bのより一層の省スペース化を図ることができる。また、ファンコイルユニット12は必要とされない。
According to the air conditioning system 10 </ b> C of the third embodiment described above, the processing target that is passed through the air handling unit 32 in the processing target air first supply unit 14, cooled by the cooling device 18, and supplied to the processing zone 2 of the rotor 1. An enthalpy difference is given between the air and the regenerating air supplied to the regeneration zone 4 of the rotor 1 by being heated by the heating device 34, the humidifier 36 and the heating device 22 in the regeneration air supply unit 20. .
Further, according to the air conditioning system 10C of the third embodiment, part of the processing target air that has passed through the air handling unit 32 in the processing target air first supply unit 14 is returned to the room R, so that air circulation in the room R is performed. It is done efficiently. Furthermore, according to the air conditioning system 10C of the third embodiment, it is not necessary to use the total heat exchanger 16 as in the air conditioning system 10B of the second embodiment. In addition, the air handling unit 32 has the function of the fan coil unit 12 as well. Therefore, it is possible to further save the space of the air conditioning system 10B with a simple configuration. Further, the fan coil unit 12 is not required.
(第四実施形態)
 次いで、本発明に係る空調システムの第四実施形態について、説明する。なお、第四実施形態の空調システム10Dの構成要素において、第一実施形態の空調システム10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
 図6に示すように、第四実施形態の空調システム10Dは、ファンコイルユニット12と、圧縮機42と、膨張弁44と、圧縮機42及び膨張弁44との間で循環する熱媒体(図示略)を凝縮させる凝縮器46と熱媒体を膨張させる蒸発器48とを有するヒートポンプ40を備えている。空調システム10Dでは、処理対象空気第一供給部14において、処理対象空気は蒸発器48を通過し、再生用空気供給部20において、再生用空気は凝縮器46を通過するように構成されている。
 ヒートポンプ40としては、空調システムにおいて一般に使用されているものを適用することができる。
(Fourth embodiment)
Next, a fourth embodiment of the air conditioning system according to the present invention will be described. In addition, in the component of air conditioning system 10D of 4th embodiment, the same code | symbol is attached | subjected about the component same as the component of air conditioning system 10A of 1st embodiment, and the description is abbreviate | omitted.
As shown in FIG. 6, the air conditioning system 10D of the fourth embodiment includes a fan coil unit 12, a compressor 42, an expansion valve 44, and a heat medium that circulates between the compressor 42 and the expansion valve 44 (illustration). A heat pump 40 having a condenser 46 for condensing (substantially) and an evaporator 48 for expanding the heat medium. In the air conditioning system 10 </ b> D, the processing target air passes through the evaporator 48 in the processing target air first supply unit 14, and the regeneration air passes through the condenser 46 in the regeneration air supply unit 20. .
As the heat pump 40, what is generally used in an air conditioning system can be applied.
 第四実施形態の空調システム10Dでは、室内Rの空気は、処理対象空気第一供給部14によって、処理対象空気としてヒートポンプ40の蒸発器48に供給され、蒸発器48を通過する。処理対象空気は、蒸発器48で膨張する熱媒体の温度低下によってロータ1の処理ゾーン2に導入する所定の温度まで冷却され、ロータ1の処理ゾーン2に供給される。一方、再生用空気は、再生用空気供給部20によって、ヒートポンプ40の凝縮器46に供給され、凝縮器46を通過する。再生用空気は、凝縮器46で凝縮される熱媒体の熱によってロータ1の再生ゾーン4に導入する所定の温度まで加温され、ロータ1の再生ゾーン4に供給される。
 このように処理対象空気と再生用空気との温度差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。圧縮機42はインバーターにより出力を調整することで、任意に、或いは最適な処理対象空気と再生用空気とのエンタルピー差をつくることができる。
In the air conditioning system 10 </ b> D of the fourth embodiment, the air in the room R is supplied to the evaporator 48 of the heat pump 40 as processing target air by the processing target air first supply unit 14 and passes through the evaporator 48. The processing target air is cooled to a predetermined temperature to be introduced into the processing zone 2 of the rotor 1 due to a temperature drop of the heat medium expanding in the evaporator 48 and supplied to the processing zone 2 of the rotor 1. On the other hand, the regeneration air is supplied to the condenser 46 of the heat pump 40 by the regeneration air supply unit 20 and passes through the condenser 46. The regeneration air is heated to a predetermined temperature to be introduced into the regeneration zone 4 of the rotor 1 by the heat of the heat medium condensed by the condenser 46 and supplied to the regeneration zone 4 of the rotor 1.
In this manner, with the temperature difference between the processing target air and the regeneration air being applied, the processing target air is supplied to the processing zone 2 and the regeneration air is supplied to the regeneration zone 4. The compressor 42 can create an enthalpy difference between the processing target air and the regeneration air arbitrarily or optimally by adjusting the output with an inverter.
 また、図6に示すように、再生用空気供給部20において凝縮器46の下流側に加湿器36が設けられ、再生用空気排出部26にもヒートポンプ40の蒸発器50が設けられていることが好ましい。ヒートポンプ40において、二方弁52,54で量を調節しながら蒸発器48と蒸発器50から熱を回収して、凝縮器46に熱を供給することで、利用できる熱量が少ない冬期であっても、必要な分の熱を再生用空気に与えることができる。また、凝縮器46での加熱温度はヒートポンプ40の原理的に限界が有るが、加湿器36で加湿することにより、限界温度以下においてさらに再生用空気のエンタルピーを上げることができる。これにより、処理対象空気を冷やし過ぎず、処理対象空気と再生用空気とのエンタルピー差を適切に調節することができる。 Further, as shown in FIG. 6, a humidifier 36 is provided downstream of the condenser 46 in the regeneration air supply unit 20, and an evaporator 50 of the heat pump 40 is also provided in the regeneration air discharge unit 26. Is preferred. In the heat pump 40, the heat is recovered from the evaporator 48 and the evaporator 50 while adjusting the amount by the two- way valves 52 and 54, and the heat is supplied to the condenser 46. However, the necessary amount of heat can be given to the regeneration air. The heating temperature in the condenser 46 is limited in principle by the heat pump 40, but by humidifying the humidifier 36, the enthalpy of the regeneration air can be further increased below the limit temperature. Thereby, the enthalpy difference between the processing target air and the regeneration air can be appropriately adjusted without overcooling the processing target air.
 ロータ1における処理対象空気と再生用空気との間の二酸化炭素のやりとり、及びロータ1を通過後の処理済空気及び再生用空気の流れは、第一実施形態の空調システム10Aと同様である。 The exchange of carbon dioxide between the processing target air and the regeneration air in the rotor 1 and the flow of the processed air and the regeneration air after passing through the rotor 1 are the same as those in the air conditioning system 10A of the first embodiment.
 空調システム10Dでの設定条件の一例を示す。室内Rの大きさ及び給気排気等の条件は、第一実施形態の空調システム10Aの設計条件の一例と同様とする。
 上述の条件においては、冬期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出される。一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気が3200m/h、温度0℃、相対湿度50%で導入される。ヒートポンプ40の蒸発器48(熱量:27kJ/kg)では、22℃の処理対象空気を11℃に冷却して、ロータ1の処理ゾーン2に供給する。ヒートポンプ40の凝縮器46によって、0℃の再生用空気を50℃以上まで加温し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、第一実施形態の空調システム10Aの設計条件の一例と同様に、ロータ1の二酸化炭素の除去率は30%以上となる。
An example of setting conditions in the air conditioning system 10D is shown. Conditions such as the size of the room R and supply / exhaust air are the same as those of the design conditions of the air conditioning system 10A of the first embodiment.
In the condition described above, when the winter, by using a blower or the like (not shown), 3200 m 3 / h to the processing target air first supply unit 14 from the room R, the temperature 22 ° C., 40% relative humidity (enthalpy 39 kJ / kg ( DA)) processing target air is discharged. On the other hand, using a blower (not shown) or the like, regeneration air is introduced from outside into the regeneration air supply unit 20 at 3200 m 3 / h, a temperature of 0 ° C., and a relative humidity of 50%. In the evaporator 48 (amount of heat: 27 kJ / kg) of the heat pump 40, the air to be processed at 22 ° C. is cooled to 11 ° C. and supplied to the processing zone 2 of the rotor 1. The air for regeneration at 0 ° C. is heated to 50 ° C. or higher by the condenser 46 of the heat pump 40 and supplied to the regeneration zone 4 of the rotor 1. Due to such an enthalpy difference between the air to be treated and the air for regeneration, the carbon dioxide removal rate of the rotor 1 is 30% or more, as in the example of the design conditions of the air conditioning system 10A of the first embodiment.
 上述の条件において、夏期の場合は、ヒートポンプ40の圧縮機42及び膨張弁44を用いて、蒸発器48及び凝縮器46の条件を適当に変更し、上述した第一実施形態の空調システム10A等の設計条件の一例と同様に、処理対象空気及び再生用空気をロータ1に供給する。処理対象空気と再生用空気とのエンタルピー差により、上述した第一実施形態の空調システム10A等の設計条件の一例と同様に、ロータ1の二酸化炭素の除去率は30%以上となる。言い換えれば、ロータ1の二酸化炭素の除去率が30%以上となるように、処理対象空気及び再生用空気の条件等を調節する。 In the above-described conditions, in the summer, the conditions of the evaporator 48 and the condenser 46 are appropriately changed using the compressor 42 and the expansion valve 44 of the heat pump 40, and the air conditioning system 10A of the first embodiment described above and the like. Similarly to the example of the design conditions, the processing target air and the regeneration air are supplied to the rotor 1. Due to the enthalpy difference between the processing target air and the regeneration air, the carbon dioxide removal rate of the rotor 1 is 30% or more, as in the example of the design conditions of the air conditioning system 10A of the first embodiment described above. In other words, the conditions of the processing target air and the regeneration air are adjusted so that the carbon dioxide removal rate of the rotor 1 is 30% or more.
 上述した第四実施形態の空調システム10Dによれば、処理対象空気第一供給部14においてヒートポンプ40の蒸発器48で冷却され、ロータ1の処理ゾーン2に供給される処理対象空気と、ヒートポンプ40の凝縮器46で加温され、ロータ1の再生ゾーン4に供給される再生用空気との間にエンタルピー差が付与され、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上で確保される。そのため、第一実施形態の空調システム10Aと同様の効果が得られる。
 また、既にヒートポンプが設けられた建物等に対しては、そのヒートポンプを上記説明したヒートポンプ40として活用することで、追加する設備数を抑えて空調システム10Aを後付で設置し、建物の室内Rの二酸化炭素を効果的に除去することができる。
According to the air conditioning system 10D of the fourth embodiment described above, the processing target air that is cooled by the evaporator 48 of the heat pump 40 in the processing target air first supply unit 14 and supplied to the processing zone 2 of the rotor 1, and the heat pump 40. An enthalpy difference is given to the regeneration air that is heated by the condenser 46 and supplied to the regeneration zone 4 of the rotor 1, and the enthalpy difference between the processing object air and the regeneration air is at least 30 kJ / kg (DA ) The above is secured. Therefore, the same effect as the air conditioning system 10A of the first embodiment can be obtained.
In addition, for a building or the like already provided with a heat pump, the heat pump is utilized as the heat pump 40 described above, so that the number of facilities to be added is reduced and the air conditioning system 10A is installed as a retrofit, and the room interior R Can effectively remove carbon dioxide.
 以上、本発明の好ましい実施形態について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更されてもよい。
 例えば、本発明に係る空調システムの構成は、上述の各実施形態に限定されず、処理対象空気と再生用空気とのエンタルピー差が30kJ/kg(DA)以上になれば、適宜変更可能である。また、本発明に係る空調システムを設置する建築物の設備や条件に応じて、上述の実施形態を適宜組み合わせてもよい。
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments described above, and changes may be made within the scope of the gist of the present invention described in the claims. May be.
For example, the configuration of the air conditioning system according to the present invention is not limited to the above-described embodiments, and can be appropriately changed as long as the enthalpy difference between the processing target air and the regeneration air is 30 kJ / kg (DA) or more. . In addition, the above-described embodiments may be appropriately combined according to the facilities and conditions of the building where the air conditioning system according to the present invention is installed.
1 ロータ
2 処理ゾーン
4 再生ゾーン
10A,10B,10C,10D 空調システム
14 処理対象空気第一供給部
16 全熱交換器
18 冷却装置
20 再生用空気供給部
22 加熱装置
24 処理対象空気第二供給部
26 再生用空気排出部
32 エアハンドリングユニット
40 ヒートポンプ
42 圧縮機
44 膨張弁
46 凝縮器
48 蒸発器
DESCRIPTION OF SYMBOLS 1 Rotor 2 Processing zone 4 Regeneration zone 10A, 10B, 10C, 10D Air conditioning system 14 Process target air 1st supply part 16 Total heat exchanger 18 Cooling device 20 Regeneration air supply part 22 Heating device 24 Process target air 2nd supply part 26 Regenerating Air Discharge Unit 32 Air Handling Unit 40 Heat Pump 42 Compressor 44 Expansion Valve 46 Condenser 48 Evaporator

Claims (5)

  1.  アミン担持固体吸収剤である二酸化炭素の吸収剤を含み、処理対象空気が通風された際に前記処理対象空気に含まれる二酸化炭素を前記吸収剤に吸収させる処理ゾーンと、再生用空気が通風された際に、前記吸収剤が吸収した二酸化炭素を前記再生用空気に脱離させる再生ゾーンとに区画されたロータと、
     室内の空気を前記処理対象空気として前記処理ゾーンに供給する処理対象空気第一供給部と、
     前記処理ゾーンを通過した前記処理対象空気を前記室内に供給する処理対象空気第二供給部と、
     外気を前記再生用空気として前記再生ゾーンに供給する再生用空気供給部と、
     前記再生ゾーンを通過した前記再生用空気を室外に排出する再生用空気排出部と、
     を備え、
     前記処理ゾーンに供給される処理対象空気と前記再生ゾーンに供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成されていることを特徴とする空調システム。
    A treatment zone that contains an absorbent of carbon dioxide that is an amine-carrying solid absorbent and that absorbs carbon dioxide contained in the treatment target air when the treatment target air is vented, and regeneration air is ventilated. A rotor divided into a regeneration zone for desorbing carbon dioxide absorbed by the absorbent into the regeneration air,
    A processing target air first supply unit that supplies indoor air as the processing target air to the processing zone;
    A processing target air second supply unit configured to supply the processing target air that has passed through the processing zone into the room;
    A regeneration air supply unit for supplying outside air as the regeneration air to the regeneration zone;
    A regeneration air discharge unit for discharging the regeneration air that has passed through the regeneration zone to the outside;
    With
    An air conditioning system characterized in that an enthalpy difference between the processing target air supplied to the processing zone and the regeneration air supplied to the regeneration zone is 30 kJ / kg (DA) or more.
  2.  前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、全熱交換器、冷却装置が順次設けられ、
     前記再生用空気供給部は前記全熱交換器を共有し、
     前記再生用空気供給部には、供給方向の上流側から下流側に向けて、前記全熱交換器、加熱装置が順次設けられていることを特徴とする請求項1に記載の空調システム。
    A total heat exchanger and a cooling device are sequentially provided from the upstream side in the supply direction to the downstream side in the supply target air first supply unit,
    The regeneration air supply unit shares the total heat exchanger,
    2. The air conditioning system according to claim 1, wherein the regeneration air supply unit is provided with the total heat exchanger and the heating device sequentially from the upstream side to the downstream side in the supply direction.
  3.  前記処理対象空気第一供給部には、冷却装置が設けられ、
     前記再生用空気供給部には、加熱装置が設けられ、
     前記室内の空気の一部が前記加熱装置よりも上流側の前記再生用空気供給部に供給されることを特徴とする請求項1に記載の空調システム。
    The processing target air first supply unit is provided with a cooling device,
    The regeneration air supply unit is provided with a heating device,
    2. The air conditioning system according to claim 1, wherein a part of the indoor air is supplied to the regeneration air supply unit upstream of the heating device.
  4.  前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、エアハンドリングユニット、冷却装置が設けられ、
     前記エアハンドリングユニットから供給された空気の一部は前記室内に供給され、
     前記エアハンドリングユニットから供給された空気の残部は前記冷却装置に供給され、
     前記再生用空気供給部には、加熱装置が設けられていることを特徴とする請求項1に記載の空調システム。
    The processing target air first supply unit is provided with an air handling unit and a cooling device from the upstream side to the downstream side in the supply direction,
    A part of the air supplied from the air handling unit is supplied into the room,
    The remainder of the air supplied from the air handling unit is supplied to the cooling device,
    The air conditioning system according to claim 1, wherein the regeneration air supply unit is provided with a heating device.
  5.  圧縮機と、膨張弁と、前記圧縮機及び前記膨張弁との間で循環する熱媒体を凝縮させる凝縮器と前記熱媒体を膨張させる蒸発器とを有するヒートポンプを備え、
     前記処理対象空気第一供給部において、前記処理対象空気は前記蒸発器を通過し、
     前記再生用空気供給部において、前記再生用空気は前記凝縮器を通過するように構成されていることを特徴とする請求項1に記載の空調システム。
    A heat pump having a compressor, an expansion valve, a condenser for condensing the heat medium circulating between the compressor and the expansion valve, and an evaporator for expanding the heat medium;
    In the processing target air first supply unit, the processing target air passes through the evaporator,
    The air conditioning system according to claim 1, wherein the regeneration air is configured to pass through the condenser in the regeneration air supply unit.
PCT/JP2016/080377 2015-10-13 2016-10-13 Air conditioning system WO2017065215A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201802965UA SG11201802965UA (en) 2015-10-13 2016-10-13 Air conditioning system
CN201680059237.4A CN108136320B (en) 2015-10-13 2016-10-13 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015202208A JP6652806B2 (en) 2015-10-13 2015-10-13 Air conditioning system
JP2015-202208 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017065215A1 true WO2017065215A1 (en) 2017-04-20

Family

ID=58518336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080377 WO2017065215A1 (en) 2015-10-13 2016-10-13 Air conditioning system

Country Status (5)

Country Link
JP (1) JP6652806B2 (en)
CN (1) CN108136320B (en)
SG (1) SG11201802965UA (en)
TW (1) TWI702367B (en)
WO (1) WO2017065215A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494696A (en) * 2017-04-27 2019-11-22 川崎重工业株式会社 Air cleaning system
EP3878541A1 (en) * 2020-03-09 2021-09-15 Molecule RND Limited Carbon dioxide and humidity capture system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713301B2 (en) * 2016-03-01 2020-06-24 株式会社西部技研 Absorption type removal/concentration device
JP2019052808A (en) * 2017-09-15 2019-04-04 清水建設株式会社 Air conditioner and air conditioning system
JP7455566B2 (en) 2019-12-13 2024-03-26 株式会社西部技研 Gas removal concentrator
CN111023505A (en) * 2019-12-20 2020-04-17 青岛海信日立空调***有限公司 Central humidification system
CN114270106A (en) * 2020-03-11 2022-04-01 株式会社西部技研 Absorption type removing/concentrating device
JP7265103B1 (en) * 2022-07-15 2023-04-25 三菱電機株式会社 Carbon dioxide capture system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183433U (en) * 1984-11-08 1986-06-02
WO2010100739A1 (en) * 2009-03-05 2010-09-10 株式会社西部技研 Air conditioner
JP2011094821A (en) * 2009-10-27 2011-05-12 Seibu Giken Co Ltd Air conditioning device
US20120288429A1 (en) * 2011-05-11 2012-11-15 Maohong Fan Bi-Directional Reactor and Supported Monoethenalamine for CO2 Separation
US20130213229A1 (en) * 2012-02-17 2013-08-22 Archon Technologies Ltd. Sorbents for the recovery and stripping of acid gases
JP5795423B1 (en) * 2014-12-19 2015-10-14 株式会社西部技研 Absorption type removal and concentration equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315694A (en) * 2006-05-26 2007-12-06 Mayekawa Mfg Co Ltd Desiccant air conditioning system and its operating method
JP2011058676A (en) * 2009-09-08 2011-03-24 Shimizu Corp Air conditioning system
TWI541478B (en) * 2009-10-27 2016-07-11 Seibu Giken Kk Air conditioning unit
JP5635886B2 (en) * 2010-11-29 2014-12-03 アズビル株式会社 Desiccant air conditioning system and operation method thereof
KR20140068181A (en) * 2011-09-12 2014-06-05 브리-에어 (아시아) 프라이빗 리미티드 Apparatus and method for control of solid desiccant dehumidifiers
CN103827589B (en) * 2011-09-29 2016-10-19 大金工业株式会社 Dehumidification system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183433U (en) * 1984-11-08 1986-06-02
WO2010100739A1 (en) * 2009-03-05 2010-09-10 株式会社西部技研 Air conditioner
JP2011094821A (en) * 2009-10-27 2011-05-12 Seibu Giken Co Ltd Air conditioning device
US20120288429A1 (en) * 2011-05-11 2012-11-15 Maohong Fan Bi-Directional Reactor and Supported Monoethenalamine for CO2 Separation
US20130213229A1 (en) * 2012-02-17 2013-08-22 Archon Technologies Ltd. Sorbents for the recovery and stripping of acid gases
JP5795423B1 (en) * 2014-12-19 2015-10-14 株式会社西部技研 Absorption type removal and concentration equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110494696A (en) * 2017-04-27 2019-11-22 川崎重工业株式会社 Air cleaning system
CN110494696B (en) * 2017-04-27 2022-04-29 川崎重工业株式会社 Air purification system
US11413573B2 (en) 2017-04-27 2022-08-16 Kawasaki Jukogyo Kabushiki Kaisha Air purifying system
EP3878541A1 (en) * 2020-03-09 2021-09-15 Molecule RND Limited Carbon dioxide and humidity capture system and method
WO2021180645A1 (en) * 2020-03-09 2021-09-16 Molecule Rnd Limited Carbon dioxide and humidity capture system and method

Also Published As

Publication number Publication date
TW201719083A (en) 2017-06-01
JP2017075715A (en) 2017-04-20
CN108136320A (en) 2018-06-08
JP6652806B2 (en) 2020-02-26
TWI702367B (en) 2020-08-21
CN108136320B (en) 2021-11-02
SG11201802965UA (en) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2017065215A1 (en) Air conditioning system
KR102546428B1 (en) Ventilating and air conditioning device
EP3617606B1 (en) Ventilation system
JP4857901B2 (en) Desiccant air conditioning system
JP2005525528A (en) Sorptive heat exchanger and associated cooling sorption method
JP4729409B2 (en) Desiccant ventilation system
JP2009275955A (en) Desiccant air-conditioning device
JP2011163682A (en) Indirect evaporation cooling type outdoor air conditioner system
JP2009097837A (en) Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
US10274210B2 (en) Heat pump humidifier and dehumidifier system and method
JP2011033302A (en) Humidity control ventilator
JP5089254B2 (en) Humidity conditioning air conditioning system for automobiles
JP2006266518A (en) Air conditioning system
JP5019261B2 (en) Desiccant air conditioner
KR101420595B1 (en) Desiccant air conditioner
JP4011724B2 (en) Desiccant air conditioning method
JP2001056132A (en) Air-conditioning device
JP2008304113A (en) Humidifying air-conditioning system
JP2008030014A (en) Reverse osmosis membrane fluid desiccant apparatus
JP5917787B2 (en) Air conditioning system
JP2009030974A (en) Small desiccant air conditioning system
JP2008201199A (en) Air conditioner for vehicle
KR102597628B1 (en) Hybrid Desiccant Dehumidifier Without Regenerative Exhaust And Dehumidification Method
JP2010145007A (en) Desiccant air conditioning system, and method for desiccant air conditioning using the same
JP2012006415A (en) Air conditioner for railroad vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201802965U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855468

Country of ref document: EP

Kind code of ref document: A1