WO2017064778A1 - Polyacetal resin composition, fastening member and slide fastener - Google Patents

Polyacetal resin composition, fastening member and slide fastener Download PDF

Info

Publication number
WO2017064778A1
WO2017064778A1 PCT/JP2015/079092 JP2015079092W WO2017064778A1 WO 2017064778 A1 WO2017064778 A1 WO 2017064778A1 JP 2015079092 W JP2015079092 W JP 2015079092W WO 2017064778 A1 WO2017064778 A1 WO 2017064778A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
resin composition
mass
fatty acid
parts
Prior art date
Application number
PCT/JP2015/079092
Other languages
French (fr)
Japanese (ja)
Inventor
俊幸 浅見
清香 中村
武士 吉川
Original Assignee
Ykk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ykk株式会社 filed Critical Ykk株式会社
Priority to PCT/JP2015/079092 priority Critical patent/WO2017064778A1/en
Priority to TW105132708A priority patent/TWI653283B/en
Publication of WO2017064778A1 publication Critical patent/WO2017064778A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a polyacetal resin composition. Moreover, this invention relates to the fastening member which consists of a molded object of a polyacetal resin composition. Moreover, this invention relates to the slide fastener provided with the said fastening member.
  • the slide fastener is an opening / closing tool for articles used in daily necessities such as clothing, bags, shoes and miscellaneous goods, as well as in industrial goods such as water tanks, fishing nets and space suits.
  • a slide fastener is a pair of long fastener tapes, a number of elements that are meshing parts of fasteners attached along one side edge of each tape, and opening and closing of the fasteners by meshing or separating opposing elements. It consists mainly of three parts of a slider that controls
  • One method of attaching an element to a fastener tape is a method of injection molding a synthetic resin on a core portion formed on one side edge of the fastener tape.
  • a polyacetal (polyoxymethylene) resin is known as a kind of material constituting the element (Patent Document 3: Japanese Patent Application Laid-Open No. 2007-021023).
  • Polyacetal resin is an engineering resin that has an excellent balance of strength, elastic modulus, creep characteristics, impact resistance, and repeated fatigue characteristics, and is a resin that is widely used in various mechanical parts and OA equipment.
  • JP-A-5-125256 and WO01 / 032775 describe that a polyacetal resin can be used as a fastener material, and glass fibers may be added as a reinforcing agent or an inorganic filler.
  • the inorganic filler is preferably in the range of 0.5 to 100 parts by weight, more preferably in the range of 2 to 80 parts by weight with respect to 100 parts by weight of the polyoxymethylene resin. If the amount is less than 0.5 part by weight, the reinforcing effect of the filler is insufficient, and if it exceeds 100 parts by weight, the surface appearance is deteriorated and the molding processability and impact resistance are lowered.
  • JP 2003-219903 A proposes to use a polyacetal resin copolymer having a melting point of 150 to 163 ° C. and improved toughness for the fastener element.
  • additives such as antioxidants, flame retardants, mold release agents, antistatic agents, colorants, lubricants, lubricants, plasticizers, heat stabilizers, weather resistance, as long as the effect of the polyacetal resin is not impaired.
  • Agents, rust inhibitors, nucleating agents such as boron nitride and talc, glass fibers and glass beads, reinforcing materials such as potassium titanate, welastonite, calcium carbonate, and pigments have been added to polyacetal resins. It is described that compounds can be added.
  • the heat stabilizer a compound containing formaldehyde-reactive nitrogen or a polymer thereof is mentioned, and it is disclosed that the polyamide resin corresponds to the compound.
  • Japanese Patent No. 3109753 for the purpose of providing a resin composition comprising a polyacetal resin and a polyamide resin as resin components and having both excellent high rigidity and slidability, (A) a polyacetal resin 90 to (C) 0.05 to 20 parts by weight of dispersant and (D) filler per 100 parts by weight of the resin component consisting of 50% by weight and (B) 10 to 50% by weight of polyamide resin having a melting point of 230 ° C. or less A resin composition comprising 5 to 40 parts by weight of an agent, wherein the domain of the polyamide resin is dispersed in a matrix of a polyacetal resin having a maximum particle size of 0.03 to 10 ⁇ m and a maximum aspect ratio of 2 or less A resin composition is proposed.
  • This document describes that when the amount of the polyacetal resin used exceeds 90% by weight, the properties of the polyamide resin are not sufficiently exhibited and the object of the invention cannot be achieved.
  • a slide fastener provided with an element produced by injection molding a polyacetal resin has a problem that the lateral pulling strength of the chain is weaker than that of a coil fastener. For this reason, it was necessary to increase the size of the element in articles that require strength, such as wrinkles.
  • an element having a small thickness is produced by injection molding of polyacetal resin, it is easy to be in a “foot open” state in which the tape clamping portion of the element is deformed and opened when measuring the chain transverse pulling strength. For this reason, it is desirable to provide an element made of polyacetal resin with improved strength.
  • Japanese Patent Application Laid-Open No. 5-125256 and WO01 / 032775 describe that glass fibers can be blended in fasteners made of polyacetal resin, but glass fibers are blended in small parts such as fastener elements. Even in such a case, it is difficult to orient the glass fibers in a certain direction, and the adhesiveness between the glass fibers and the polyacetal resin is poor, so that there is a problem that the lateral pulling strength of the chain does not increase as expected. There is also a problem that the glass fiber blended in the element wears the slider that receives friction with the element.
  • JP 2003-219903 A and Japanese Patent No. 3109753 disclose the use of polyamide as an additive.
  • Japanese Patent Application Laid-Open No. 2003-219903 only suggests using polyamide as a heat stabilizer. Further, there is no consideration as to under what conditions the polyamide should be blended in the polyacetal resin.
  • Japanese Patent No. 3109753 it is said that high rigidity and slidability are ensured by dispersing polyamide having a predetermined particle size and aspect ratio in a polyacetal resin using a dispersant. It is hard to say that it is the best.
  • the present invention was created based on the above circumstances, and an object of the present invention is to improve the mechanical properties of the polyacetal resin composition, particularly the tensile strength and the flexural modulus, by a method different from the prior art. Another object of the present invention is to provide a fastener element having improved transverse pulling strength using the polyacetal resin composition according to the present invention as a material. Another object of the present invention is to provide a fastener stringer including the fastener element according to the present invention. Another object of the present invention is to provide a slide fastener including the element according to the present invention.
  • the present inventor conducted intensive research to solve the above-mentioned problems.
  • a small amount of polymerized fatty acid-based polyamide is blended in a polyacetal resin composition containing a polyacetal resin and glass fibers
  • the molded article of the polyacetal resin composition It was found that the tensile strength was significantly improved.
  • the said polyacetal resin composition was shape-processed and a fastener element was produced, it turned out that the significant improvement effect of chain lateral pulling strength can be acquired. It has also been found that such a strength improvement effect cannot be obtained by the technique of dispersing a large amount of polyamide proposed in Japanese Patent No. 3109753.
  • the present invention has been completed based on the above findings.
  • the present invention is a polyacetal resin composition
  • a polyacetal resin composition comprising a polyacetal resin, a polymerized fatty acid-based polyamide resin, and glass fibers, wherein the polyamide resin has a melting point of 195 ° C. or less, and the total of the polyacetal resin and the polyamide resin
  • the polyacetal resin is 96.5-98.5 parts by mass
  • the polyamide resin is 1.5-3.5 parts by mass
  • the glass fiber is 15-35 parts by mass
  • the crosslinking agent is 0-0.
  • This is a polyacetal resin composition having a blending ratio of 04 parts by mass.
  • the polymerized fatty acid polyamide resin has a melt flow rate (MFR) at 200 ° C. of 400 g / 10 min or more.
  • the water absorption rate at 23 ° C. of the polymerized fatty acid-based polyamide resin is 2% or less.
  • the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber is 5 to 20%.
  • polyacetal resin composition according to the present invention, 0.01 to 0.04 parts by mass of a crosslinking agent is contained with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid polyamide resin.
  • the total content of the polyacetal resin, the polymerized fatty acid-based polyamide resin and the glass fiber in the polyacetal resin composition is 90% by mass or more.
  • the average fiber diameter of the glass fibers is 5 to 15 ⁇ m.
  • the melt flow rate (MFR) at 200 ° C. is 15 to 30 g / 10 min.
  • a dumbbell test piece (dimension JIS K7139: 2009 type A) is molded and subjected to a tensile test in accordance with JIS K7162: 1994.
  • the tensile strength is 55 MPa or more.
  • a dumbbell specimen (dimension JIS K7139: 2009 type A) was molded and subjected to a three-point bending test in accordance with JIS K7171: 2008.
  • the bending elastic modulus is 3200 MPa or more.
  • the present invention is a fastening member made of a molded product of the polyacetal resin composition according to the present invention.
  • the fastening member is a fastener element.
  • the fastener element has a thickness t of 2.6 mm or less, a lateral length l of 4.5 mm or less, and a longitudinal length m of 3. 2 mm or less.
  • the present invention is a fastener stringer provided with the fastening member according to the present invention.
  • the present invention is a slide fastener including the fastening member according to the present invention.
  • the present invention is an article provided with the slide fastener according to the present invention.
  • a polyacetal resin molded product having excellent tensile strength and flexural modulus can be obtained.
  • the polyacetal resin composition according to the present invention as the material of the element constituting the fastener chain, it is possible to significantly improve the lateral pulling strength of the fastener chain, which was a weak point when using the polyacetal resin for the element. is there.
  • the polyacetal resin, the polymerized fatty acid-based polyamide resin, and the glass fiber are contained, and the polyacetal resin is 96.96 parts in total with respect to 100 parts by mass of the polyacetal resin and the polyamide resin. 5 to 98.5 parts by mass, 1.5 to 3.5 parts by mass of polyamide resin, 15 to 35 parts by mass of glass fiber, and 0 to 0.04 parts by mass of a crosslinking agent.
  • “ ⁇ ” is considered to include numerical values of an upper limit and a lower limit. That is, when the polyacetal resin is 96.5 to 98.5 parts by mass, this means that the polyacetal resin is included in the range of 96.5 parts by mass to 98.5 parts by mass.
  • Polyacetal resin is a polymer compound having an oxymethylene group (—CH 2 O—) as a main structural unit.
  • Polyacetal resins that can be used in the present invention include, but are not limited to, polyacetal homopolymers and polyacetal copolymers. Although it does not limit as a polyacetal homopolymer, The polyacetal homopolymer obtained by homopolymerizing a formaldehyde monomer or a cyclic oligomer of formaldehyde is mentioned as a representative example.
  • polyacetal copolymer although not limited, the polyacetal copolymer obtained by copolymerizing a formaldehyde monomer or a cyclic oligomer of formaldehyde, and cyclic ether and / or cyclic formal is mentioned as a representative example.
  • the cyclic oligomer of formaldehyde include formaldehyde trimer (trioxane) and tetramer (tetraoxane).
  • cyclic ether and cyclic formal examples include glycols such as ethylene oxide, propylene oxide, epichlorohydrin, 1,3-dioxolane and 1,4-butanediol formal, and cyclic formals of diglycol.
  • polyacetal copolymer a branched polyacetal copolymer obtained by copolymerizing a monofunctional glycidyl ether, or a polyacetal copolymer having a crosslinked structure obtained by copolymerizing a polyfunctional glycidyl ether can also be used.
  • the polyacetal homopolymer has a block component obtained by polymerizing a formaldehyde monomer or a cyclic oligomer of formaldehyde in the presence of a compound having a functional group such as a hydroxyl group at both ends or one end, for example, polyalkylene glycol.
  • a compound having a functional group such as a hydroxyl group at both ends or one end, for example, a hydrogenated polybutadiene glycol, a formaldehyde monomer or a cyclic oligomer of formaldehyde, a cyclic ether and / or a cyclic formal.
  • a polyacetal copolymer having a block component obtained by copolymerization with can also be used.
  • any of a polyacetal homopolymer and a polyacetal copolymer may be used and is not particularly limited. These polyacetal resins may be used alone or in combination of two or more.
  • the polyacetal resin preferably has a blending ratio of 96.5 to 98.5 parts by weight, and a blending ratio of 97 to 98 parts by weight with respect to a total of 100 parts by weight of the polyacetal resin and the polymerized fatty acid-based polyamide resin. Is more preferable.
  • the molded product of the resin composition can have an excellent balance between tensile strength and flexural modulus, and the fastener chain lateral pulling strength when the resin composition is molded into a fastener element. Can be improved significantly.
  • Polymerized fatty acid polyamide resin When a trace amount of polymerized fatty acid-based polyamide is blended in the polyacetal resin composition containing the polyacetal resin and glass fiber, the tensile strength of the molded article of the polyacetal resin composition is significantly improved. Although it is not intended that the present invention be limited by theory, it is thought that this is because the polymerized fatty acid-based polyamide resin functions as a compatibilizing agent and the adhesion between the polyacetal resin and the glass fiber is increased. FIG.
  • Polymerized fatty acid-based polyamide resin refers to a polyamide resin composed of a polycondensate of polymerized fatty acid and diamine.
  • the polymerized fatty acid is a polymer of unsaturated fatty acid or obtained by hydrogenating this polymer.
  • the polymerized fatty acid has, for example, 10 to 24 carbon atoms, and has a double bond or triple bond. Examples thereof include dimers (dimer acids) of monobasic fatty acids having one or more or hydrogenated products thereof.
  • dimer acid examples include octenoic acid, undecenoic acid, tetradecadienoic acid, hexadecadienoic acid, octadecadienoic acid (linoleic acid, etc.), eicosadienoic acid, docosadienoic acid, octadecatrienoic acid (linolenic acid, etc.), eicos Satetraenoic acid (such as arachidonic acid), tetradecenoic acid (such as tuzuic acid, mascoic acid, myristoleic acid), hexadecenoic acid (such as palmitoleic acid), octadecenoic acid (such as oleic acid, elaidic acid, vaccenic acid), eicosenoic acid Dimers such as gadoleic acid (such as gadoleic acid) and docosenoic acid (such as erucic acid, cetreic acid,
  • the dimer acid may be a raw material of a tall oil fatty acid, soybean oil fatty acid, palm oil fatty acid, rice bran oil fatty acid, linseed oil fatty acid or the like, which is a mixture of unsaturated fatty acids.
  • Polymerized fatty acid-based polyamide resins may be used alone or in combination of two or more. Furthermore, a copolymer obtained by an arbitrary combination of repeating units of polyamide can also be used.
  • melt point Although there is no restriction
  • the melting point of is preferably 195 ° C. or lower.
  • the melting point varies depending on the molecular weight of the polymerized fatty acid polyamide resin. Since the melting point is close to that of the polyacetal resin (melting point of about 175 ° C.) when the melting point is 195 ° C.
  • the polymerized fatty acid-based polyamide resin is homogeneously dispersed in the matrix of the polyacetal resin and easily forms a compatible solution during melt kneading. Become. In addition, it becomes possible to perform injection molding at a low temperature, and it is possible to prevent the fastener tape from being shrunk by heat during the injection molding and generating undulations.
  • the melting point of the polymerized fatty acid polyamide resin is preferably within ⁇ 20 ° C., more preferably within ⁇ 15 ° C., more preferably within ⁇ 10 ° C. relative to the melting point of the polyacetal resin.
  • An example of a melting point of a preferable polymerized fatty acid-based polyamide resin is 160 to 195 ° C.
  • the melting point of the polymerized fatty acid polyamide resin is the temperature at the top of the endothermic peak when the endothermic amount is measured by DSC (differential scanning calorimeter).
  • DSC differential scanning calorimeter
  • MFR Melt flow rate
  • the amount of the polymerized fatty acid-based polyamide resin to be added is small, there is no particular problem due to the high MFR.
  • the MFR of the highly fluid polymerized fatty acid-based polyamide resin used for hot melt is 2000 g / 10 min or less, and typically 1000 g / 10 min or less.
  • MFR is measured at 200 ° C. and a measurement load of 21.18 N in accordance with JIS K7210: 1999 (Method A).
  • the advantage that the strength reduction due to water absorption can be suppressed due to the low water absorption rate of the polymerized fatty acid-based polyamide resin is obtained.
  • the water absorption here is the water absorption after the polymerized fatty acid polyamide resin is immersed in water at 23 ° C. for 24 hours.
  • the water absorption at 23 ° C. is preferably 2% or less, more preferably 1.5% or less, still more preferably 1.0% or less, for example, 0%. .5 to 2%.
  • the water absorption is measured according to JIS K7209: 2000 (Method A).
  • a square plate-like test piece having a side of 50 ⁇ 1 mm and a thickness of 3 ⁇ 0.2 mm is produced by injection molding. Thereafter, the test piece is dried in an oven adjusted to 50 ° C. for 24 hours, placed in a desiccator, cooled to room temperature, and then weighed to a unit of 0.1 mg. Next, a test piece is put into a container containing distilled water, immersed at 23 ° C. for 24 hours, and again weighed to a unit of 0.1 mg. Calculate from the weight change rate before and after treatment.
  • the polymerized fatty acid-based polyamide resin preferably has a blending ratio of 1.5 to 3.5 parts by mass with respect to a total of 100 parts by mass of the polyacetal resin and the polymerized fatty acid-based polyamide resin. It is more preferable to set the blending ratio to ⁇ 3.0 parts by mass, and it is even more preferable to set the blending ratio to 1.8 to 2.5 parts by mass.
  • the molded product of the resin composition can have an excellent balance between tensile strength and flexural modulus, and the fastener chain lateral pulling strength when the resin composition is molded into a fastener element. Can be improved significantly.
  • Glass fiber> By blending a predetermined amount of glass fiber with the polyacetal resin, the strength can be improved while maintaining fluidity of a certain level or more.
  • Glass fibers that can be suitably used in the present invention include glass such as E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High strength glass), and alkali-resistant glass.
  • E glass Electrode glass
  • C glass C glass
  • a glass Alkali glass
  • S glass High strength glass
  • alkali-resistant glass One obtained by spinning into a filament shape can be mentioned.
  • the glass monofilament used in the present invention is preferably one obtained by melt spinning E glass into a filament form from the viewpoint of the reinforcing effect. These may be used alone or in combination of two or more.
  • the content of the glass fiber is preferably 35 parts by mass or less, and more preferably 30 parts by mass or less with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid-based polyamide resin.
  • the blending amount of the glass fiber in consideration of the blending amount of the polymerized fatty acid polyamide resin.
  • the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber By setting the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber to 2% or more, preferably 5% or more, more preferably 8% or more, the adhesion between the polyacetal resin and the glass fiber appears uniformly, and the effect of improving the mechanical strength is exhibited.
  • the advantage of expression is obtained.
  • the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber to 20% or less, preferably 15% or less, more preferably 12% or less, it is possible to suppress a decrease in mechanical strength due to the addition of excessive polymerized fatty acid-based polyamide resin. The advantage is obtained.
  • the average fiber diameter of the glass fiber also significantly affects the strength of the fastening member and the wear resistance of the fastener.
  • the average fiber diameter of the glass fibers in the fastening member is less than 5 ⁇ m, it is difficult to obtain a sufficient reinforcing effect. Further, the wear resistance of the fastening member is improved as the average fiber diameter of the glass fiber is larger. Therefore, the average fiber diameter of the glass fibers is preferably 5 ⁇ m or more, and more preferably 6 ⁇ m or more.
  • the average fiber diameter of the glass fibers in the fastening member is preferably 15 ⁇ m or less, more preferably 11 ⁇ m or less, still more preferably 10 ⁇ m or less, and even more preferably 9 ⁇ m or less.
  • the average fiber diameter of the glass fibers in the fastening member can be measured by the following method. After removing the resin component by firing the fastening member in an electric furnace maintained at 600 ° C. for 2 hours, the center of each length of 100 glass fibers arbitrarily selected by observation with a scanning electron microscope (SEM) It is given as an arithmetic average when the fiber diameter (diameter) of the part is measured at a magnification of 100 times. Without firing, the fiber diameter of the glass fiber in the resin may be similarly measured using a microfocus X-ray fluoroscopy / CT apparatus.
  • SEM scanning electron microscope
  • the fiber diameter of the glass fiber does not change even after kneading into the resin or injection molding, so if the average fiber diameter of the glass fiber before kneading is measurable, it is the average fiber diameter of the glass fiber in the fastening member. be equivalent to.
  • the glass fiber is generally composed of a surface coated with a sizing agent.
  • a sizing agent By coating the glass fiber with the sizing agent, there is an advantage that the adhesion with the resin is increased and the effect of improving the strength is enhanced.
  • the sizing agent include, but are not limited to, urethane-based, polyester-based, acrylic-based, epoxy-based, and other various coupling agents. More preferred are urethane, acrylic and silane coupling agents, and even more preferred is a urethane coupling agent.
  • coupling agents include silane coupling agents, titanate coupling agents, aluminum coupling agents, chromium coupling agents, zirconium coupling agents, borane coupling agents, and the like, preferably silane cups.
  • silane coupling agent examples include triethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, etc., preferably ⁇ -aminopropyltriethoxysi
  • cross-linking agent Although the crosslinking agent is not an essential component, the flowability of the resin composition according to the present invention can be improved without impairing the mechanical properties by adding a small amount, thereby improving moldability. If the amount of the crosslinking agent added is too large, attention must be paid because the effect of improving the mechanical properties due to the addition of the polymerized fatty acid polyamide resin is reduced. From this point of view, the crosslinking agent can be added in an amount of 0 to 0.04 parts by mass and 0.01 to 0.04 parts by mass with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid polyamide resin. It is preferable to add 0.01 to 0.03 parts by mass.
  • crosslinking agent a known crosslinking agent can be used, and is not particularly limited.
  • organic peroxides, sulfur compounds, phenol resin compounds, quinoid compounds, bismaleimide compounds, isocyanate compounds, thiuram compounds examples thereof include compounds, morpholine disulfide, and hydrosilicone compounds.
  • the total content of the polyacetal resin, the polymerized fatty acid polyamide resin and the glass fiber in the polyacetal resin composition is typically 90% by mass or more, more typically 95%. It is at least mass%. The total content can be 98% by mass or more, and further can be 100% by mass.
  • conventional additives such as dyes, pigments, heat stabilizers, weathering agents, and hydrolysis agents are added in a total amount of 10% by mass or less, typically 5% by mass or less, and more typically. Specifically, it may be added so as to be 2% by mass or less.
  • the resin composition according to the present invention can be produced by melt-kneading the above-described constituent components using an apparatus such as a single screw extrusion kneader, a twin screw kneading extruder, and a kneader.
  • the melt kneading is preferably performed at a temperature equal to or higher than the melting point of the polyacetal resin and the polyamide resin in order to obtain a homogeneous resin composition.
  • the melt kneading process temperature may be 180-220 ° C.
  • a molded body having a desired shape can be produced by a conventional molding means such as injection molding.
  • a method is generally employed in which an element row is injection-molded on one side edge of the fastener tape and the element row is fixed to the fastener tape simultaneously with the injection molding.
  • the polyacetal resin composition according to the present invention has a melt flow rate (MFR) of 15 g / 10 min or more when measured at 200 ° C. and a measurement load of 21.18 N in accordance with JIS K7210: 1999 (Method A). It is.
  • MFR melt flow rate
  • the MFR is preferably 17 g / 10 min or more, more preferably 20 g / 10 min or more.
  • the MFR is preferably 40 g / 10 min or less, more preferably 30 g / 10 min or less, for example, 10 to 25 g. / 10 min.
  • a 200 mm square ⁇ 4 mm thick plate is produced with a press machine (a mini test press manufactured by Toyo Seiki Seisakusho Co., Ltd. was used). Then, it is molded into a dumbbell test piece (dimension JIS K7139: 2009 type A), and the tensile strength is 55 MPa or more when a tensile test is performed according to JIS K7162: 1994.
  • the tensile strength is preferably 56 MPa or more. However, if the tensile strength is excessively increased, the balance with the flexural modulus decreases, so the tensile strength is preferably 60 MPa or less, more preferably 58 MPa or less.
  • the polyacetal resin composition according to the present invention is a 200 mm square x 4 mm thick plate produced by a press machine (mini test press manufactured by Toyo Seiki Seisakusho) in which pellets are heated to 200 ° C.
  • the bending elastic modulus is 3200 MPa or more when a three-point bending test is performed in accordance with JIS K7171: 2008.
  • the flexural modulus is preferably 3300 MPa or more, more preferably 3400 MPa or more, even more preferably 3500 MPa or more, and even more preferably 3600 MPa or more.
  • the bending elastic modulus is preferably 4000 MPa or less, more preferably 3800 MPa or less.
  • FIG. 1 is a schematic diagram of a slide fastener, in which a pair of fastener tapes 2 having a core portion 21 formed on one side edge side and an element 3 attached to the core portion 21 of the fastener tape 2 at a predetermined interval.
  • the upper stopper 4 and the lower stopper 5 fixed to the core 21 of the fastener tape 2 at the upper end and lower end of the row of the elements 3 and the row of the pair of elements 3 facing each other; Is provided with a slider 6 that is slidable in the vertical direction to engage and disengage.
  • the element 3, the upper stopper 4, the lower stopper 5, and the slider 6 can be configured by the fastening member according to the present invention.
  • a device in which a row of elements 3 is attached along one side edge of a single fastener tape 2 is called a fastener stringer, and a device in which the rows of elements 3 of a pair of fastener stringers are engaged with each other is called a fastener chain.
  • the lower stopper 5 may be a break-and-fit insert made up of a butterfly stick, a box stick, and a box, and the pair of slide fastener chains can be separated by an opening operation of the slider 6.
  • the insulating material used for the fastener tape 2 is not limited, but may be a natural resin or a synthetic resin. Generally, the fastener tape 2 is formed by weaving or knitting these fibers. As the material of the fastener tape 2, typically, polyester, polyamide, polypropylene, acrylic, or the like can be used. Among these, polyester is preferable in terms of excellent lateral pulling strength.
  • FIG. 2 and 3 show a partial view of a fastener stringer 1 in which a row of elements 3 for a slide fastener according to the present invention is clamped and fixed to a core portion 21 provided on one side edge of a fastener tape 2 by injection molding.
  • a schematic diagram is shown.
  • the pitch p of the elements 3 represents the length between the center lines of the adjacent elements 3.
  • the lateral length l of the element 3 represents the maximum distance in a direction perpendicular to the element arrangement direction and parallel to the surface of the fastener tape (in the present invention, this direction is referred to as “lateral direction”).
  • FIG. 4 shows a partial front view when elements of a pair of fastener stringers are engaged with each other to form a fastener chain.
  • the chain width w represents the maximum distance between the tips 3b of the leg portions of the lateral elements when the opposing elements are engaged with each other.
  • the size of the element 3 for the slide fastener according to the present invention is not particularly limited.
  • the adhesion between the polyacetal resin and the glass fiber is small even in a small element in which the reinforcing effect due to the orientation of the reinforcing fibers is difficult to occur. Therefore, the reinforcing effect can be exhibited regardless of the orientation of the glass fiber.
  • the size of such a small element is expressed by a lateral length l, a longitudinal length m and a thickness t
  • the lateral length l is generally 4.5 mm or less, and smaller elements are 4.1 mm or less.
  • the longitudinal length m is generally 3.2 mm or less, and smaller elements are 2.7 mm or less,
  • the thickness t is generally 2.6 mm or less, for smaller elements it is 2.4 mm or less, for smaller elements It is 2.2 mm or less, for example, 1.5 to 2.6 mm.
  • the pitch p when the size of the element 3 is expressed by the pitch p, the pitch p is generally 3.5 mm or less, the smaller element is 3.0 mm or less, the smaller element is 2.5 mm or less, for example, 2 .2 to 3.5 mm.
  • the chain width w when the size of the element 3 is expressed by the chain width w, the chain width w is generally 6.3 mm or less, the smaller element is 5.9 mm or less, and the smaller element is 5.5 mm or less. For example, it is 4.5 to 6.3 mm.
  • ⁇ Slide fasteners can be attached to various items, and function especially as an opening / closing tool.
  • the article to which the slide fastener is attached is not particularly limited, and examples thereof include daily necessaries such as clothing, bags, shoes, and miscellaneous goods, and industrial articles such as water storage tanks, fishing nets, and space suits.
  • the embodiment at the time of applying the polyacetal resin composition concerning the present invention to a slide fastener was mainly described, use of the polyacetal resin composition concerning the present invention is not necessarily limited to a slide fastener. It can also be applied as a fastening member such as a snap fastener, a hook-and-loop fastener, a rail fastener or the like. Furthermore, the polyacetal resin composition according to the present invention can be applied to resin molded products such as buckles, eggplant rings, string stoppers, ball chains, and the like, windows, terrace doors, upper and lower frames and screens of shojis, door knobs of doors. It can also be used for building members such as sliding door handles, crescent handles, and door pulleys.
  • Polyacetal resin Trade name “Tenac C 8520” (Asahi Kasei Chemicals Corporation), melting point 167 ° C.
  • Polymerized fatty acid polyamide resin trade name “PA-280R” (T & K TOKA, Inc.), MFR 1300 g / 10 min (measuring load 21.18 N, 200 ° C.), melting point 169 ° C., water absorption at 23 ° C.
  • Polymerized fatty acid-based polyamide resin trade name “PA-40L” (T & K TOKA Co., Ltd.), MFR 80 g / 10 min (measuring load 21.18 N, 200 ° C.), melting point 197 ° C., water absorption rate at 23 ° C. 1.7% Organic peroxide (1,1-di (t-butylperoxy) cyclohexane): trade name “PERHEXA (registered trademark) C-40” (Nippon Yushi Co., Ltd.) ⁇ Glass fiber (E glass monofilament with urethane sizing agent attached): Trade name “ECS03 T-651DE” (Nippon Electric Glass Co., Ltd.), average fiber diameter ⁇ 6.5 ⁇ m
  • the above materials are put into a twin-screw kneading extruder so as to have the mass composition shown in Table 1, melt-kneaded at a melt kneading temperature of 200 ° C. and a screw rotation speed of 200 rpm, extruded with a strand, and cooled in a cooling water tank.
  • the pellets of each polyacetal resin composition of Examples and Comparative Examples were obtained by pelletizing with a pelletizer.
  • a 200 mm sq. X 4 mm thick plate is produced from the pellets with a press machine (mini test press manufactured by Toyo Seiki Seisakusho) heated to 200 ° C., and a dumbbell specimen (dimension JIS K7139: 2009 type A) is cut therefrom.
  • a fastener using a pellet chain as a material of an element using a fastener chain manufacturing apparatus in which a large number of element molds are arranged by a fixed mold and a movable mold, and the elements can be continuously injection-molded on a tape.
  • a chain (chain thickness (t) of 1.9 mm, chain width (w) of 5.7 mm, element pitch (p) of 2.4 mm) was produced.
  • ⁇ Bending elastic modulus (conforms to JIS K7171: 2008)>
  • the dumbbell test piece was subjected to a bending tester, a three-point bending test (distance between fulcrum supporting the test piece: 6.4 mm) was performed at a bending speed of 2 mm / min, and a load-deflection curve was drawn to obtain a bending elastic modulus.
  • ⁇ Chain pulling strength> In accordance with JIS S3015: 2007, the lateral pulling strength of the fastener chain was measured.
  • Comparative Example 5 is an example in which polyacetal resin and glass fiber are simply blended, and is an example serving as a reference for comparison.
  • Comparative Example 1 the blended amounts of the polymerized fatty acid-based polyamide resin and the glass fiber were too small, the bending elastic modulus was lower than that of Comparative Example 5, and the lateral pulling strength of the fastener chain was reduced.
  • Comparative Example 2 the blended amounts of polymerized fatty acid-based polyamide resin and glass fiber were too large. Although the flexural modulus increased significantly compared to Comparative Example 5, the tensile strength decreased and the lateral pulling strength of the fastener chain decreased.
  • Comparative Example 3 since the blending amount of the glass fiber was small, the bending elastic modulus was lowered, and the transverse pulling strength of the fastener chain was lowered. In Comparative Example 4, the amount of glass fiber was too large, so that the tensile strength was lowered and the lateral pulling strength of the fastener chain was lowered. In Comparative Example 6, the blending amount of the glass fiber was appropriate, but since the blending amount of the polymerized fatty acid-based polyamide resin was too small, the increase in the lateral pulling strength of the fastener chain with respect to Comparative Example 5 was limited.
  • Comparative Example 7 the blending amount of the glass fiber was appropriate, but since the blending amount of the polymerized fatty acid-based polyamide resin was too large, the increase in the lateral pulling strength of the fastener chain with respect to Comparative Example 5 was limited.
  • Comparative Example 8 a different polymerized fatty acid-based polyamide resin was used. However, since the melting point was high and the fluidity was low, it was not well dispersed and the increase in the lateral pulling strength of the fastener chain was limited.
  • Comparative Example 9 an organic peroxide as a crosslinking agent was added without adding a polymerized fatty acid-based polyamide resin, but the lateral pulling strength of the fastener chain was lower than that in Comparative Example 5.
  • Comparative Example 10 the blending amounts of the polymerized fatty acid-based polyamide resin and the glass fiber were appropriate, but the increase in the lateral pulling strength of the fastener chain relative to Comparative Example 5 was limited because the amount of organic peroxide added was too large. there were.
  • Example 1 since the blending amount of each component was appropriate, both the tensile strength and the flexural modulus were excellent, and the lateral pulling strength of the fastener chain was significantly increased compared to Comparative Example 3. . Further, in Example 4, the addition of an appropriate amount of a crosslinking agent showed an improvement in fluidity with almost no loss of the transverse pulling strength.

Abstract

To improve mechanical characteristics of a polyacetal resin composition, especially the tensile strength and bending elasticity. A polyacetal resin composition which contains a polyacetal resin, a polymerized fatty acid polyamide resin and glass fibers, and wherein: the polyamide resin has a melting point of 195°C or less; and 96.5-98.5 parts by mass of the polyacetal resin, 1.5-3.5 parts by mass of the polyamide resin, 15-35 parts by mass of the glass fibers and 0-0.04 part by mass of a crosslinking agent are blended per 100 parts by mass of the total of the polyacetal resin and the polyamide resin.

Description

ポリアセタール樹脂組成物、ファスニング部材及びスライドファスナーPolyacetal resin composition, fastening member and slide fastener
 本発明はポリアセタール樹脂組成物に関する。また、本発明はポリアセタール樹脂組成物の成形体からなるファスニング部材に関する。また、本発明は当該ファスニング部材を備えたスライドファスナーに関する。 The present invention relates to a polyacetal resin composition. Moreover, this invention relates to the fastening member which consists of a molded object of a polyacetal resin composition. Moreover, this invention relates to the slide fastener provided with the said fastening member.
 スライドファスナーは衣料品、鞄類、靴類及び雑貨品といった身近な日用品の他、貯水タンク、漁網及び宇宙服といった産業用品においても使用される物品の開閉具である。スライドファスナーは一般に、一対の長尺ファスナーテープ、各テープの一側縁に沿って取着されるファスナーの噛合部分である多数のエレメント、及び対向するエレメント同士を噛合又は分離することによりファスナーの開閉を制御するスライダーの三つの部分から主として構成される。 The slide fastener is an opening / closing tool for articles used in daily necessities such as clothing, bags, shoes and miscellaneous goods, as well as in industrial goods such as water tanks, fishing nets and space suits. In general, a slide fastener is a pair of long fastener tapes, a number of elements that are meshing parts of fasteners attached along one side edge of each tape, and opening and closing of the fasteners by meshing or separating opposing elements. It consists mainly of three parts of a slider that controls
 ファスナーテープへのエレメント取付方法の一つに、ファスナーテープの一側縁に形成された芯部に合成樹脂を射出成形する方法がある。エレメントを構成する材料の一種としてポリアセタール(ポリオキシメチレン)樹脂が知られている(特許文献3:特開2007-021023号公報)。ポリアセタール樹脂は、強度、弾性率、クリープ特性、耐衝撃性及び繰り返し疲労特性のバランスに優れたエンジニアリング樹脂であり、各種の機構部品をはじめ、OA機器等に広く使用されている樹脂である。 One method of attaching an element to a fastener tape is a method of injection molding a synthetic resin on a core portion formed on one side edge of the fastener tape. A polyacetal (polyoxymethylene) resin is known as a kind of material constituting the element (Patent Document 3: Japanese Patent Application Laid-Open No. 2007-021023). Polyacetal resin is an engineering resin that has an excellent balance of strength, elastic modulus, creep characteristics, impact resistance, and repeated fatigue characteristics, and is a resin that is widely used in various mechanical parts and OA equipment.
 特開平5-125256号公報及びWO01/032775にはファスナー材料として、ポリアセタール樹脂が使用でき、強化剤又は無機充填剤としてガラス繊維を添加してもよいことが記載されている。WO01/032775には更に、無機充填剤はポリオキシメチレン樹脂100重量部に対して、0.5~100重量部の範囲とすることが好ましく、より好ましくは2~80重量部の範囲であること、0.5重量部未満では充填剤の補強効果が不十分であり、100重量部を超えると表面外観の悪化とともに成形加工性や耐衝撃性が低下するため好ましくないことが記載されている。 JP-A-5-125256 and WO01 / 032775 describe that a polyacetal resin can be used as a fastener material, and glass fibers may be added as a reinforcing agent or an inorganic filler. In WO01 / 032775, the inorganic filler is preferably in the range of 0.5 to 100 parts by weight, more preferably in the range of 2 to 80 parts by weight with respect to 100 parts by weight of the polyoxymethylene resin. If the amount is less than 0.5 part by weight, the reinforcing effect of the filler is insufficient, and if it exceeds 100 parts by weight, the surface appearance is deteriorated and the molding processability and impact resistance are lowered.
 特開2003-219903号公報では、150~163℃の融点を持つ靱性の改良されたポリアセタール樹脂コポリマーをファスナーエレメントに使用することを提案している。当該ポリアセタール樹脂にはその効果が損なわない範囲で従来公知の添加剤、例えば酸化防止剤、難燃剤、離型剤、帯電防止剤、着色剤、潤滑剤、滑剤、可塑剤、熱安定剤、耐候剤、防錆剤、窒化硼素やタルク等の核形成剤、ガラスファイバーやガラスビーズ、チタン酸カリウイスカー、ウェラストナイト、炭酸カルシウム等の強化材、顔料など、従来からポリアセタール樹脂に添加されている化合物を添加し得ることが記載されている。熱安定剤として、ホルムアルデヒド反応性窒素を含む化合物またはその重合体が挙げられており、ポリアミド樹脂がそれに該当することが開示されている。 JP 2003-219903 A proposes to use a polyacetal resin copolymer having a melting point of 150 to 163 ° C. and improved toughness for the fastener element. Conventionally known additives such as antioxidants, flame retardants, mold release agents, antistatic agents, colorants, lubricants, lubricants, plasticizers, heat stabilizers, weather resistance, as long as the effect of the polyacetal resin is not impaired. Agents, rust inhibitors, nucleating agents such as boron nitride and talc, glass fibers and glass beads, reinforcing materials such as potassium titanate, welastonite, calcium carbonate, and pigments have been added to polyacetal resins. It is described that compounds can be added. As the heat stabilizer, a compound containing formaldehyde-reactive nitrogen or a polymer thereof is mentioned, and it is disclosed that the polyamide resin corresponds to the compound.
 特許第3109753号公報には、ポリアセタール樹脂とポリアミド樹脂とを樹脂成分とし、かつ優れた高剛性と摺動性とを合わせもつ樹脂組成物を提供することを目的として、(A)ポリアセタール樹脂90~50重量%と(B)融点230℃以下のポリアミド樹脂10~50重量%とから成る樹脂成分に対し、その100重量部当り、(C)分散剤0.05~20重量部及び(D)充てん剤5~40重量部を配合して成る樹脂組成物であって、該ポリアミド樹脂のドメインが最大粒径0.03~10μm、最大アスペクト比2以下でポリアセタール樹脂のマトリックス中に分散しているポリアセタール樹脂組成物を提案している。当該文献には、ポリアセタール樹脂の使用量が90重量%を超えるとポリアミド樹脂の特性が十分に発揮されなくなり、発明の目的が達せられないことが記載されている。 In Japanese Patent No. 3109753, for the purpose of providing a resin composition comprising a polyacetal resin and a polyamide resin as resin components and having both excellent high rigidity and slidability, (A) a polyacetal resin 90 to (C) 0.05 to 20 parts by weight of dispersant and (D) filler per 100 parts by weight of the resin component consisting of 50% by weight and (B) 10 to 50% by weight of polyamide resin having a melting point of 230 ° C. or less A resin composition comprising 5 to 40 parts by weight of an agent, wherein the domain of the polyamide resin is dispersed in a matrix of a polyacetal resin having a maximum particle size of 0.03 to 10 μm and a maximum aspect ratio of 2 or less A resin composition is proposed. This document describes that when the amount of the polyacetal resin used exceeds 90% by weight, the properties of the polyamide resin are not sufficiently exhibited and the object of the invention cannot be achieved.
特開平5-125256号公報Japanese Patent Laid-Open No. 5-125256 WO01/032775号WO01 / 032775 特開2007-021023号公報JP 2007-021023 A 特開2003-219903号公報JP 2003-219903 A 特許第3109753号公報Japanese Patent No. 3109753
 従来、ポリアセタール樹脂を射出成形することで作製されたエレメントを備えるスライドファスナーは、コイルファスナーに比べてチェーン横引き強度が弱いという課題を有していた。このため、鞄など強度が必要な物品では、エレメントのサイズを大きくする必要があった。特に、ポリアセタール樹脂の射出成形により厚みの薄いエレメントを作製すると、チェーン横引き強度測定時に、エレメントのテープ挟持部分が変形して開いてしまう“足開き”の状態になりやすい。このため、強度の改善されたポリアセタール樹脂製のエレメントが提供されることが望ましい。 Conventionally, a slide fastener provided with an element produced by injection molding a polyacetal resin has a problem that the lateral pulling strength of the chain is weaker than that of a coil fastener. For this reason, it was necessary to increase the size of the element in articles that require strength, such as wrinkles. In particular, when an element having a small thickness is produced by injection molding of polyacetal resin, it is easy to be in a “foot open” state in which the tape clamping portion of the element is deformed and opened when measuring the chain transverse pulling strength. For this reason, it is desirable to provide an element made of polyacetal resin with improved strength.
 この点、特開平5-125256号公報及びWO01/032775にはポリアセタール樹脂を材料とするファスナーにガラス繊維を配合し得ることが記載されているものの、ファスナーエレメントのように小さな部品にガラス繊維を配合してもガラス繊維を一定の方向に配向させるのが難しく、また、ガラス繊維とポリアセタール樹脂の密着性が悪いため、チェーン横引き強度が期待したほど上昇しないという問題があった。また、エレメントに配合したガラス繊維によって、エレメントとの摩擦を受けたスライダーが摩耗してしまうという問題もあった。 In this regard, Japanese Patent Application Laid-Open No. 5-125256 and WO01 / 032775 describe that glass fibers can be blended in fasteners made of polyacetal resin, but glass fibers are blended in small parts such as fastener elements. Even in such a case, it is difficult to orient the glass fibers in a certain direction, and the adhesiveness between the glass fibers and the polyacetal resin is poor, so that there is a problem that the lateral pulling strength of the chain does not increase as expected. There is also a problem that the glass fiber blended in the element wears the slider that receives friction with the element.
 特開2003-219903号公報及び特許第3109753号公報にはポリアミドを添加剤として使用することを開示する。しかしながら、特開2003-219903号公報にはポリアミドを熱安定剤として使用することを示唆するにとどまる。また、どのような条件でポリアセタール樹脂中にポリアミドを配合させるべきかについての考察がない。特許第3109753号公報では所定の粒径及びアスペクト比をもつポリアミドを分散剤を用いてポリアセタール樹脂中に分散させることで、高剛性と摺動性を確保されるとされているものの、当該手法が最良であるとは言い難い。 JP 2003-219903 A and Japanese Patent No. 3109753 disclose the use of polyamide as an additive. However, Japanese Patent Application Laid-Open No. 2003-219903 only suggests using polyamide as a heat stabilizer. Further, there is no consideration as to under what conditions the polyamide should be blended in the polyacetal resin. In Japanese Patent No. 3109753, it is said that high rigidity and slidability are ensured by dispersing polyamide having a predetermined particle size and aspect ratio in a polyacetal resin using a dispersant. It is hard to say that it is the best.
 本発明は上記事情を背景に創作されたものであり、従来技術とは異なる手法によりポリアセタール樹脂組成物の機械的特性、特に引張強度及び曲げ弾性率を改善することを課題の一つとする。また、本発明は本発明に係るポリアセタール樹脂組成物を材料とした横引き強度の改善されたファスナーエレメントを提供することを別の課題の一つとする。また、本発明は本発明に係るファスナーエレメントを備えたファスナーストリンガーを提供することを別の課題の一つとする。また、本発明は本発明に係るエレメントを備えたスライドファスナーを提供することを更に別の課題の一つとする。 The present invention was created based on the above circumstances, and an object of the present invention is to improve the mechanical properties of the polyacetal resin composition, particularly the tensile strength and the flexural modulus, by a method different from the prior art. Another object of the present invention is to provide a fastener element having improved transverse pulling strength using the polyacetal resin composition according to the present invention as a material. Another object of the present invention is to provide a fastener stringer including the fastener element according to the present invention. Another object of the present invention is to provide a slide fastener including the element according to the present invention.
 本発明者は上記課題を解決するために鋭意研究を行ったところ、ポリアセタール樹脂とガラス繊維を含有するポリアセタール樹脂組成物中に微量の重合脂肪酸系ポリアミドを配合すると、ポリアセタール樹脂組成物の成形体の引張強度が有意に向上することが分かった。そして、当該ポリアセタール樹脂組成物を成形加工してファスナーエレメントを作製した場合、チェーン横引き強度の有意な向上効果を得ることができることが分かった。このような強度向上効果は、特許第3109753号公報が提案する多量のポリアミドを分散させる手法では得られないことも分かった。本発明は上記知見を基礎として完成したものである。 The present inventor conducted intensive research to solve the above-mentioned problems. When a small amount of polymerized fatty acid-based polyamide is blended in a polyacetal resin composition containing a polyacetal resin and glass fibers, the molded article of the polyacetal resin composition It was found that the tensile strength was significantly improved. And when the said polyacetal resin composition was shape-processed and a fastener element was produced, it turned out that the significant improvement effect of chain lateral pulling strength can be acquired. It has also been found that such a strength improvement effect cannot be obtained by the technique of dispersing a large amount of polyamide proposed in Japanese Patent No. 3109753. The present invention has been completed based on the above findings.
 本発明は一側面において、ポリアセタール樹脂、重合脂肪酸系ポリアミド樹脂、及びガラス繊維を含有するポリアセタール樹脂組成物であって、前記ポリアミド樹脂の融点が195℃以下であり、ポリアセタール樹脂及び前記ポリアミド樹脂の合計100質量部に対して、ポリアセタール樹脂を96.5~98.5質量部、前記ポリアミド樹脂を1.5~3.5質量部、ガラス繊維を15~35質量部、架橋剤を0~0.04質量部の配合比としたポリアセタール樹脂組成物である。 In one aspect, the present invention is a polyacetal resin composition comprising a polyacetal resin, a polymerized fatty acid-based polyamide resin, and glass fibers, wherein the polyamide resin has a melting point of 195 ° C. or less, and the total of the polyacetal resin and the polyamide resin The polyacetal resin is 96.5-98.5 parts by mass, the polyamide resin is 1.5-3.5 parts by mass, the glass fiber is 15-35 parts by mass, and the crosslinking agent is 0-0. This is a polyacetal resin composition having a blending ratio of 04 parts by mass.
 本発明に係るポリアセタール樹脂組成物の一実施形態においては、重合脂肪酸系ポリアミド樹脂の200℃におけるメルトフローレート(MFR)が400g/10min以上である。 In one embodiment of the polyacetal resin composition according to the present invention, the polymerized fatty acid polyamide resin has a melt flow rate (MFR) at 200 ° C. of 400 g / 10 min or more.
 本発明に係るポリアセタール樹脂組成物の別の一実施形態においては、重合脂肪酸系ポリアミド樹脂の23℃における吸水率が2%以下である。 In another embodiment of the polyacetal resin composition according to the present invention, the water absorption rate at 23 ° C. of the polymerized fatty acid-based polyamide resin is 2% or less.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、ガラス繊維に対する重合脂肪酸系ポリアミド樹脂の質量比が5~20%である。 In yet another embodiment of the polyacetal resin composition according to the present invention, the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber is 5 to 20%.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、ポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して、架橋剤を0.01~0.04質量部含有する。 In yet another embodiment of the polyacetal resin composition according to the present invention, 0.01 to 0.04 parts by mass of a crosslinking agent is contained with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid polyamide resin.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、ポリアセタール樹脂組成物中のポリアセタール樹脂、重合脂肪酸系ポリアミド樹脂及びガラス繊維の合計含有量が90質量%以上である。 In yet another embodiment of the polyacetal resin composition according to the present invention, the total content of the polyacetal resin, the polymerized fatty acid-based polyamide resin and the glass fiber in the polyacetal resin composition is 90% by mass or more.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、ガラス繊維の平均繊維径が5~15μmである。 In yet another embodiment of the polyacetal resin composition according to the present invention, the average fiber diameter of the glass fibers is 5 to 15 μm.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、200℃におけるメルトフローレート(MFR)が15~30g/10minである。 In yet another embodiment of the polyacetal resin composition according to the present invention, the melt flow rate (MFR) at 200 ° C. is 15 to 30 g / 10 min.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、ダンベル試験片(寸法JIS K7139:2009 タイプA)に成形加工し、JIS K7162:1994に準拠して引張試験を実施したときの引張強度が55MPa以上である。 In still another embodiment of the polyacetal resin composition according to the present invention, a dumbbell test piece (dimension JIS K7139: 2009 type A) is molded and subjected to a tensile test in accordance with JIS K7162: 1994. The tensile strength is 55 MPa or more.
 本発明に係るポリアセタール樹脂組成物の更に別の一実施形態においては、ダンベル試験片(寸法JIS K7139:2009 タイプA)に成形加工し、JIS K7171:2008に準拠して3点曲げ試験を実施したときの曲げ弾性率が3200MPa以上である。 In yet another embodiment of the polyacetal resin composition according to the present invention, a dumbbell specimen (dimension JIS K7139: 2009 type A) was molded and subjected to a three-point bending test in accordance with JIS K7171: 2008. The bending elastic modulus is 3200 MPa or more.
 本発明は別の一側面において、本発明に係るのポリアセタール樹脂組成物の成形体からなるファスニング部材である。 In another aspect, the present invention is a fastening member made of a molded product of the polyacetal resin composition according to the present invention.
 本発明に係るファスニング部材の一実施形態においては、ファスニング部材はファスナーエレメントである。 In one embodiment of the fastening member according to the present invention, the fastening member is a fastener element.
 本発明に係るファスニング部材の別の一実施形態においては、ファスナーエレメントは、厚みtが2.6mm以下であり、横方向長さlが4.5mm以下であり、縦方向長さmが3.2mm以下である。 In another embodiment of the fastening member according to the present invention, the fastener element has a thickness t of 2.6 mm or less, a lateral length l of 4.5 mm or less, and a longitudinal length m of 3. 2 mm or less.
 本発明は更に別の一側面において、本発明に係るファスニング部材を備えたファスナーストリンガーである。 In yet another aspect, the present invention is a fastener stringer provided with the fastening member according to the present invention.
 本発明は更に別の一側面において、本発明に係るファスニング部材を備えたスライドファスナーである。 In yet another aspect, the present invention is a slide fastener including the fastening member according to the present invention.
 本発明は更に別の一側面において、本発明に係るスライドファスナーを備えた物品である。 In yet another aspect, the present invention is an article provided with the slide fastener according to the present invention.
 本発明により、引張強度と曲げ弾性率が共に優れたポリアセタール樹脂成形品が得られる。ファスナーチェーンを構成するエレメントの材料として本発明に係るポリアセタール樹脂組成物を用いることで、ポリアセタール樹脂をエレメントに使用する際の弱点であったファスナーチェーンの横引き強度を有意に改善することが可能である。 According to the present invention, a polyacetal resin molded product having excellent tensile strength and flexural modulus can be obtained. By using the polyacetal resin composition according to the present invention as the material of the element constituting the fastener chain, it is possible to significantly improve the lateral pulling strength of the fastener chain, which was a weak point when using the polyacetal resin for the element. is there.
本発明に係るエレメントを備えたスライドファスナーの正面図の一例である。It is an example of the front view of the slide fastener provided with the element which concerns on this invention. 本発明に係るエレメントを備えたファスナーストリンガーの部分正面図の一例である。It is an example of the partial front view of the fastener stringer provided with the element which concerns on this invention. 本発明に係るエレメントを備えたファスナーストリンガーの部分側面図の一例である。It is an example of the partial side view of the fastener stringer provided with the element which concerns on this invention. 本発明に係るエレメントを備えたファスナーチェーンの部分正面図の一例である。It is an example of the partial front view of the fastener chain provided with the element which concerns on this invention. ポリアセタール樹脂組成物のSEM写真の例である。(a)は重合脂肪酸系ポリアミド樹脂未添加の場合の写真であり、(b)は重合脂肪酸系ポリアミド樹脂を適量添加した場合の写真である。It is an example of the SEM photograph of a polyacetal resin composition. (A) is a photograph when the polymerized fatty acid-based polyamide resin is not added, and (b) is a photograph when an appropriate amount of the polymerized fatty acid-based polyamide resin is added.
 本発明に係るポリアセタール樹脂組成物の一実施形態においては、ポリアセタール樹脂、重合脂肪酸系ポリアミド樹脂、及びガラス繊維を含有し、ポリアセタール樹脂及びポリアミド樹脂の合計100質量部に対して、ポリアセタール樹脂を96.5~98.5質量部、ポリアミド樹脂を1.5~3.5質量部、ガラス繊維を15~35質量部、架橋剤を0~0.04質量部含有する。なお、本明細書においては、「~」は上限及び下限の数値も含むものとして考える。つまり、ポリアセタール樹脂を96.5~98.5質量部とした場合、これはポリアセタール樹脂を96.5質量部以上98.5質量部以下の範囲で含まれるという意味である。 In one embodiment of the polyacetal resin composition according to the present invention, the polyacetal resin, the polymerized fatty acid-based polyamide resin, and the glass fiber are contained, and the polyacetal resin is 96.96 parts in total with respect to 100 parts by mass of the polyacetal resin and the polyamide resin. 5 to 98.5 parts by mass, 1.5 to 3.5 parts by mass of polyamide resin, 15 to 35 parts by mass of glass fiber, and 0 to 0.04 parts by mass of a crosslinking agent. In the present specification, “˜” is considered to include numerical values of an upper limit and a lower limit. That is, when the polyacetal resin is 96.5 to 98.5 parts by mass, this means that the polyacetal resin is included in the range of 96.5 parts by mass to 98.5 parts by mass.
<1.ポリアセタール樹脂>
(種類)
 ポリアセタール樹脂はオキシメチレン基(-CH2O-)を主たる構成単位とする高分子化合物である。本発明で使用可能なポリアセタール樹脂としては、限定的ではないが、ポリアセタールホモポリマーやポリアセタールコポリマーが挙げられる。ポリアセタールホモポリマーとしては、限定的ではないが、ホルムアルデヒド単量体又はホルムアルデヒドの環状オリゴマーを単独重合して得られるポリアセタールホモポリマーが代表例として挙げられる。また、ポリアセタールコポリマーとしては、限定的ではないが、ホルムアルデヒド単量体又はホルムアルデヒドの環状オリゴマーと、環状エーテル及び/又は環状ホルマールとを共重合させて得られるポリアセタールコポリマーが代表例として挙げられる。ホルムアルデヒドの環状オリゴマーとしては、ホルムアルデヒドの3量体(トリオキサン)や4量体(テトラオキサン)等が挙げられる。環状エーテル及び環状ホルマールとしては、例えば、エチレンオキサイド、プロピレンオキサイド、エピクロルヒドリン、1,3-ジオキソランや1,4-ブタンジオールホルマールなどのグリコールやジグリコールの環状ホルマール等が挙げられる。
<1. Polyacetal resin>
(type)
The polyacetal resin is a polymer compound having an oxymethylene group (—CH 2 O—) as a main structural unit. Polyacetal resins that can be used in the present invention include, but are not limited to, polyacetal homopolymers and polyacetal copolymers. Although it does not limit as a polyacetal homopolymer, The polyacetal homopolymer obtained by homopolymerizing a formaldehyde monomer or a cyclic oligomer of formaldehyde is mentioned as a representative example. Moreover, as a polyacetal copolymer, although not limited, the polyacetal copolymer obtained by copolymerizing a formaldehyde monomer or a cyclic oligomer of formaldehyde, and cyclic ether and / or cyclic formal is mentioned as a representative example. Examples of the cyclic oligomer of formaldehyde include formaldehyde trimer (trioxane) and tetramer (tetraoxane). Examples of the cyclic ether and cyclic formal include glycols such as ethylene oxide, propylene oxide, epichlorohydrin, 1,3-dioxolane and 1,4-butanediol formal, and cyclic formals of diglycol.
 さらに、ポリアセタールコポリマーとしては、単官能グリシジルエーテルを共重合させて得られる分岐を有するポリアセタールコポリマーや、多官能グリシジルエーテルを共重合させて得られる架橋構造を有するポリアセタールコポリマーも用いることができる。 Furthermore, as the polyacetal copolymer, a branched polyacetal copolymer obtained by copolymerizing a monofunctional glycidyl ether, or a polyacetal copolymer having a crosslinked structure obtained by copolymerizing a polyfunctional glycidyl ether can also be used.
 さらに、ポリアセタールホモポリマーとしては、両末端又は片末端に水酸基などの官能基を有する化合物、例えばポリアルキレングリコールの存在下、ホルムアルデヒド単量体又はホルムアルデヒドの環状オリゴマーを重合して得られるブロック成分を有するポリアセタールホモポリマーも用いることができる。また、ポリアセタールコポリマーとしては、同じく両末端又は片末端に水酸基などの官能基を有する化合物、例えば水素添加ポリブタジエングリコールの存在下、ホルムアルデヒド単量体又はホルムアルデヒドの環状オリゴマーと、環状エーテル及び/又は環状ホルマールとを共重合させて得られるブロック成分を有するポリアセタールコポリマーも用いることができる。 Furthermore, the polyacetal homopolymer has a block component obtained by polymerizing a formaldehyde monomer or a cyclic oligomer of formaldehyde in the presence of a compound having a functional group such as a hydroxyl group at both ends or one end, for example, polyalkylene glycol. Polyacetal homopolymers can also be used. The polyacetal copolymer also includes a compound having a functional group such as a hydroxyl group at both ends or one end, for example, a hydrogenated polybutadiene glycol, a formaldehyde monomer or a cyclic oligomer of formaldehyde, a cyclic ether and / or a cyclic formal. A polyacetal copolymer having a block component obtained by copolymerization with can also be used.
 以上のように、本発明においては、ポリアセタールホモポリマーやポリアセタールコポリマーのいずれを用いてもよく、特に限定するものではない。これらのポリアセタール樹脂は、1種単独で用いてもよく、2種以上併用してもよい。 As described above, in the present invention, any of a polyacetal homopolymer and a polyacetal copolymer may be used and is not particularly limited. These polyacetal resins may be used alone or in combination of two or more.
(含有量)
 ポリアセタール樹脂は、ポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して、96.5~98.5質量部の配合比とすることが好ましく、97~98質量部の配合比とすることがより好ましい。当該配合比とすることにより、当該樹脂組成物の成形品は引張強度と曲げ弾性率の優れたバランスを有することができ、当該樹脂組成物をファスナーエレメントに成形加工した際にファスナーチェーン横引き強度を有意に向上させることができる。
(Content)
The polyacetal resin preferably has a blending ratio of 96.5 to 98.5 parts by weight, and a blending ratio of 97 to 98 parts by weight with respect to a total of 100 parts by weight of the polyacetal resin and the polymerized fatty acid-based polyamide resin. Is more preferable. By setting the blend ratio, the molded product of the resin composition can have an excellent balance between tensile strength and flexural modulus, and the fastener chain lateral pulling strength when the resin composition is molded into a fastener element. Can be improved significantly.
<2.重合脂肪酸系ポリアミド樹脂>
 ポリアセタール樹脂とガラス繊維を含有するポリアセタール樹脂組成物中に微量の重合脂肪酸系ポリアミドを配合すると、ポリアセタール樹脂組成物の成形体の引張強度が有意に向上する。理論によって本発明が限定されることを意図するものではないが、これは重合脂肪酸系ポリアミド樹脂が相溶化剤として機能し、ポリアセタール樹脂とガラス繊維の密着性が上昇したことによるものと思料する。図5に、重合脂肪酸系ポリアミド樹脂を添加していない場合(図中(a))と重合脂肪酸系ポリアミド樹脂を適量添加した場合(図中(b))のそれぞれのポリアセタール樹脂組成物の電子顕微鏡(SEM)写真の例(倍率1000)を掲載する。重合脂肪酸系ポリアミド樹脂未添加の場合にはポリアセタール樹脂とガラス繊維の間に隙間ができており密着性が悪く、ガラス繊維の抜けの跡も目立つ。これに対し、重合脂肪酸系ポリアミド樹脂を適量加えることによりポリアセタール樹脂とガラス繊維の間の隙間が埋められて密着性が向上していることがわかる。
<2. Polymerized fatty acid polyamide resin>
When a trace amount of polymerized fatty acid-based polyamide is blended in the polyacetal resin composition containing the polyacetal resin and glass fiber, the tensile strength of the molded article of the polyacetal resin composition is significantly improved. Although it is not intended that the present invention be limited by theory, it is thought that this is because the polymerized fatty acid-based polyamide resin functions as a compatibilizing agent and the adhesion between the polyacetal resin and the glass fiber is increased. FIG. 5 shows an electron microscope of each polyacetal resin composition when the polymerized fatty acid-based polyamide resin is not added ((a) in the figure) and when an appropriate amount of the polymerized fatty acid-based polyamide resin is added ((b) in the figure). (SEM) An example of a photograph (magnification 1000) is provided. When the polymerized fatty acid-based polyamide resin is not added, a gap is formed between the polyacetal resin and the glass fiber, the adhesion is poor, and the trace of the glass fiber is also noticeable. On the other hand, it can be seen that by adding an appropriate amount of the polymerized fatty acid-based polyamide resin, the gap between the polyacetal resin and the glass fiber is filled and the adhesion is improved.
 重合脂肪酸系ポリアミド樹脂とは、重合脂肪酸とジアミンとの重縮合体で構成されるポリアミド樹脂を言う。重合脂肪酸とは、不飽和脂肪酸の重合体、又はこの重合体を水素添加して得られるものであり、重合脂肪酸としては、例えば10~24の炭素数を有し、二重結合又は三重結合を1個以上有する一塩基性脂肪酸の二量体(ダイマー酸)又はその水素添加物が挙げられる。ダイマー酸としては、例えば、オクテン酸、ウンデセン酸、テトラデカジエン酸、ヘキサデカジエン酸、オクタデカジエン酸(リノール酸等)、エイコサジエン酸、ドコサジエン酸、オクタデカトリエン酸(リノレン酸等)、エイコサテトラエン酸(アラキドン酸等)、テトラデセン酸(ツズ酸、マッコウ酸、ミリストオレイン酸)、ヘキサデセン酸(パルミトレイン酸等)、オクタデセン酸(オレイン酸、エライジン酸、バクセン酸等)、エイコセン酸(ガドレイン酸等)、ドコセン酸(エルカ酸、セトレイン酸、ブラシジン酸等)等の二量体が挙げられる。また、ダイマー酸は不飽和脂肪酸の混合物であるトール油脂肪酸、大豆油脂肪酸、パーム油脂肪酸、米ぬか油脂肪酸、亜麻仁油脂肪酸などを原料としたものであってもよい。重合脂肪酸系ポリアミド樹脂は単独で用いても2種以上を混合して用いてもよい。更に、ポリアミドの繰返単位の任意の組合せで得られる共重合体も用いることができる。 Polymerized fatty acid-based polyamide resin refers to a polyamide resin composed of a polycondensate of polymerized fatty acid and diamine. The polymerized fatty acid is a polymer of unsaturated fatty acid or obtained by hydrogenating this polymer. The polymerized fatty acid has, for example, 10 to 24 carbon atoms, and has a double bond or triple bond. Examples thereof include dimers (dimer acids) of monobasic fatty acids having one or more or hydrogenated products thereof. Examples of the dimer acid include octenoic acid, undecenoic acid, tetradecadienoic acid, hexadecadienoic acid, octadecadienoic acid (linoleic acid, etc.), eicosadienoic acid, docosadienoic acid, octadecatrienoic acid (linolenic acid, etc.), eicos Satetraenoic acid (such as arachidonic acid), tetradecenoic acid (such as tuzuic acid, mascoic acid, myristoleic acid), hexadecenoic acid (such as palmitoleic acid), octadecenoic acid (such as oleic acid, elaidic acid, vaccenic acid), eicosenoic acid Dimers such as gadoleic acid (such as gadoleic acid) and docosenoic acid (such as erucic acid, cetreic acid, brassic acid). The dimer acid may be a raw material of a tall oil fatty acid, soybean oil fatty acid, palm oil fatty acid, rice bran oil fatty acid, linseed oil fatty acid or the like, which is a mixture of unsaturated fatty acids. Polymerized fatty acid-based polyamide resins may be used alone or in combination of two or more. Furthermore, a copolymer obtained by an arbitrary combination of repeating units of polyamide can also be used.
(1)融点
 本発明において使用可能な重合脂肪酸系ポリアミド樹脂は特に制限はないが、樹脂組成物の成形体の引張強度と曲げ弾性率の優れたバランスを付与する観点から、重合脂肪酸系ポリアミド樹脂の融点が195℃以下であることが好ましい。融点は重合脂肪酸系ポリアミド樹脂の分子量などに影響を受けて変化する。融点が195℃以下であることによってポリアセタール樹脂(融点175℃程度)と融点が近くなるので、溶融混練時に重合脂肪酸系ポリアミド樹脂がポリアセタール樹脂のマトリクス中に均質に分散して相溶体を形成しやすくなる。また、低温での射出成形が可能となり、射出成形時にファスナーテープが熱によって収縮し、波打ちが発生するのを防止可能となる。重合脂肪酸系ポリアミド樹脂の融点は好ましくはポリアセタール樹脂の融点に対して±20℃以内であり、より好ましくは±15℃以内であり、より好ましくは±10℃以内である。好ましい重合脂肪酸系ポリアミド樹脂の融点の例は160~195℃である。
(1) Melting point Although there is no restriction | limiting in particular in the polymeric fatty acid type polyamide resin which can be used in this invention, From a viewpoint which provides the outstanding balance of the tensile strength of a molded object of a resin composition, and a bending elastic modulus, polymeric fatty acid type polyamide resin The melting point of is preferably 195 ° C. or lower. The melting point varies depending on the molecular weight of the polymerized fatty acid polyamide resin. Since the melting point is close to that of the polyacetal resin (melting point of about 175 ° C.) when the melting point is 195 ° C. or less, the polymerized fatty acid-based polyamide resin is homogeneously dispersed in the matrix of the polyacetal resin and easily forms a compatible solution during melt kneading. Become. In addition, it becomes possible to perform injection molding at a low temperature, and it is possible to prevent the fastener tape from being shrunk by heat during the injection molding and generating undulations. The melting point of the polymerized fatty acid polyamide resin is preferably within ± 20 ° C., more preferably within ± 15 ° C., more preferably within ± 10 ° C. relative to the melting point of the polyacetal resin. An example of a melting point of a preferable polymerized fatty acid-based polyamide resin is 160 to 195 ° C.
 本発明において、重合脂肪酸系ポリアミド樹脂の融点はDSC(示差走査熱量計)により吸熱量を測定したときの吸熱ピークトップの温度とする。複数の重合脂肪酸系ポリアミド樹脂を使用している場合、最も高温側の吸熱ピークトップの温度を融点とする。 In the present invention, the melting point of the polymerized fatty acid polyamide resin is the temperature at the top of the endothermic peak when the endothermic amount is measured by DSC (differential scanning calorimeter). When a plurality of polymerized fatty acid-based polyamide resins are used, the endothermic peak top temperature on the highest temperature side is defined as the melting point.
(2)メルトフローレート(MFR)
 MFRも重合脂肪酸系ポリアミド樹脂の分子量などに影響を受けて変化する。MFRが過度に低くなると流動性の良いポリアセタール樹脂に対し分散しづらくなる。このため本来ガラス繊維とポリアセタール樹脂との密着性を上げる効果のある重合脂肪酸系ポリアミド樹脂が偏在し機械強度が十分に発現しなくなる。具体的には、重合脂肪酸系ポリアミド樹脂の200℃における好ましいMFRは400g/10min以上であり、より好ましいMFRは600g/10min以上である。本発明においては、添加する重合脂肪酸系ポリアミド樹脂の量が少ないため、MFRが高いことによる不具合は特にない。このため、MFRの上限は特に設定されないが、ホットメルト用のような高流動性の重合脂肪酸系ポリアミド樹脂のMFRは2000g/10min以下であり、典型的には1000g/10min以下である。本発明においては、MFRはJIS K7210:1999(A法)に準拠して200℃、測定荷重21.18Nで測定する。
(2) Melt flow rate (MFR)
MFR also changes depending on the molecular weight of the polymerized fatty acid polyamide resin. When the MFR is excessively low, it is difficult to disperse the polyacetal resin having good fluidity. For this reason, the polymerized fatty acid-based polyamide resin that originally has the effect of increasing the adhesion between the glass fiber and the polyacetal resin is unevenly distributed, and the mechanical strength is not sufficiently exhibited. Specifically, the preferable MFR at 200 ° C. of the polymerized fatty acid-based polyamide resin is 400 g / 10 min or more, and the more preferable MFR is 600 g / 10 min or more. In the present invention, since the amount of the polymerized fatty acid-based polyamide resin to be added is small, there is no particular problem due to the high MFR. For this reason, although the upper limit of MFR is not particularly set, the MFR of the highly fluid polymerized fatty acid-based polyamide resin used for hot melt is 2000 g / 10 min or less, and typically 1000 g / 10 min or less. In the present invention, MFR is measured at 200 ° C. and a measurement load of 21.18 N in accordance with JIS K7210: 1999 (Method A).
(3)吸水率
 重合脂肪酸系ポリアミド樹脂の吸水率が小さいことで吸水による強度低下を抑えられるという利点が得られる。ここでいう吸水率は23℃の水中に重合脂肪酸系ポリアミド樹脂を24時間浸漬した後の吸水率である。吸水率は具体的には、23℃における吸水率が2%以下であることが好ましく、1.5%以下であることがより好ましく、1.0%以下であることが更により好ましく、例えば0.5~2%とすることができる。吸水率はJIS K7209:2000(A法)に準拠して測定する。まず射出成形にて1辺が50±1mm、厚み3±0.2mmの正方形の板状の試験片を作製する。その後、当該試験片を50℃に調整したオーブンにて24時間乾燥しデシケータに入れて室温まで冷却した後、0.1mgの単位まで量る。次に蒸留水を入れた容器に試験片を入れ、23℃、24時間浸漬し、再び0.1mgの単位まで量る。処理前後の重量変化率から計算する。
(3) Water absorption rate The advantage that the strength reduction due to water absorption can be suppressed due to the low water absorption rate of the polymerized fatty acid-based polyamide resin is obtained. The water absorption here is the water absorption after the polymerized fatty acid polyamide resin is immersed in water at 23 ° C. for 24 hours. Specifically, the water absorption at 23 ° C. is preferably 2% or less, more preferably 1.5% or less, still more preferably 1.0% or less, for example, 0%. .5 to 2%. The water absorption is measured according to JIS K7209: 2000 (Method A). First, a square plate-like test piece having a side of 50 ± 1 mm and a thickness of 3 ± 0.2 mm is produced by injection molding. Thereafter, the test piece is dried in an oven adjusted to 50 ° C. for 24 hours, placed in a desiccator, cooled to room temperature, and then weighed to a unit of 0.1 mg. Next, a test piece is put into a container containing distilled water, immersed at 23 ° C. for 24 hours, and again weighed to a unit of 0.1 mg. Calculate from the weight change rate before and after treatment.
(4)含有量
 重合脂肪酸系ポリアミド樹脂は、ポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して、1.5~3.5質量部の配合比とすることが好ましく、1.6~3.0質量部の配合比とすることがより好ましく、1.8~2.5質量部の配合比とすることが更により好ましい。当該配合比とすることにより、当該樹脂組成物の成形品は引張強度と曲げ弾性率の優れたバランスを有することができ、当該樹脂組成物をファスナーエレメントに成形加工した際にファスナーチェーン横引き強度を有意に向上させることができる。
(4) Content The polymerized fatty acid-based polyamide resin preferably has a blending ratio of 1.5 to 3.5 parts by mass with respect to a total of 100 parts by mass of the polyacetal resin and the polymerized fatty acid-based polyamide resin. It is more preferable to set the blending ratio to ˜3.0 parts by mass, and it is even more preferable to set the blending ratio to 1.8 to 2.5 parts by mass. By setting the blend ratio, the molded product of the resin composition can have an excellent balance between tensile strength and flexural modulus, and the fastener chain lateral pulling strength when the resin composition is molded into a fastener element. Can be improved significantly.
<3.ガラス繊維>
(材質)
 ガラス繊維をポリアセタール樹脂に所定量配合することにより、一定以上の流動性を保持しつつ、強度を向上させることができる。本発明で好適に使用可能なガラス繊維としては、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)及び耐アルカリガラス等のガラスを溶融紡糸してフィラメント状にしたものが挙げられる。本発明で用いられるガラスモノフィラメントは、補強効果の観点から、Eガラスを溶融紡糸してフィラメント状にしたものが好ましい。これらは単独で使用してもよいし、2種類以上を組み合わせて使用しても良い。
<3. Glass fiber>
(Material)
By blending a predetermined amount of glass fiber with the polyacetal resin, the strength can be improved while maintaining fluidity of a certain level or more. Glass fibers that can be suitably used in the present invention include glass such as E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High strength glass), and alkali-resistant glass. One obtained by spinning into a filament shape can be mentioned. The glass monofilament used in the present invention is preferably one obtained by melt spinning E glass into a filament form from the viewpoint of the reinforcing effect. These may be used alone or in combination of two or more.
(含有量)
 ファスニング部材を形成している樹脂組成物中にガラス繊維を配合することで引張強度や曲げ弾性率などの機械的特性を向上することができる。具体的には、ガラス繊維の含有量はポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して15質量部以上とすることで機械的特性の有意な改良効果が見込める。ガラス繊維の含有量はポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して15質量部以上とすることが好ましく、20質量部以上とすることがより好ましい。一方で、ガラス繊維の含有量が過剰になると引張強度の向上効果が低下するとともに、高級感のある光沢を得るのが難しくなる。また、ガラス繊維を入れると熱安定性が悪くなる傾向にある。そこで、ガラス繊維の含有量はポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して35質量部以下とすることが好ましく、30質量部以下とすることがより好ましい。
(Content)
Mechanical properties such as tensile strength and flexural modulus can be improved by blending glass fibers into the resin composition forming the fastening member. Specifically, a significant improvement effect of mechanical properties can be expected by setting the glass fiber content to 15 parts by mass or more with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid polyamide resin. The content of the glass fiber is preferably 15 parts by mass or more, more preferably 20 parts by mass or more with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid polyamide resin. On the other hand, when the glass fiber content is excessive, the effect of improving the tensile strength is lowered, and it is difficult to obtain a high-quality gloss. Moreover, when glass fiber is added, the thermal stability tends to deteriorate. Therefore, the content of the glass fiber is preferably 35 parts by mass or less, and more preferably 30 parts by mass or less with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid-based polyamide resin.
 また、ガラス繊維の配合量は重合脂肪酸系ポリアミド樹脂の配合量との兼ね合いから調節することも好ましい。ガラス繊維に対する重合脂肪酸系ポリアミド樹脂の質量比を2%以上、好ましくは5%以上、より好ましくは8%以上とすることで、ポリアセタール樹脂とガラス繊維の密着性が均一に現れ機械強度向上効果が発現するという利点が得られる。また、ガラス繊維に対する重合脂肪酸系ポリアミド樹脂の質量比を20%以下、好ましくは15%以下、より好ましくは12%以下とすることで、過剰な重合脂肪酸系ポリアミド樹脂添加による機械強度低下を抑えられるという利点が得られる。 It is also preferable to adjust the blending amount of the glass fiber in consideration of the blending amount of the polymerized fatty acid polyamide resin. By setting the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber to 2% or more, preferably 5% or more, more preferably 8% or more, the adhesion between the polyacetal resin and the glass fiber appears uniformly, and the effect of improving the mechanical strength is exhibited. The advantage of expression is obtained. Further, by setting the mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber to 20% or less, preferably 15% or less, more preferably 12% or less, it is possible to suppress a decrease in mechanical strength due to the addition of excessive polymerized fatty acid-based polyamide resin. The advantage is obtained.
(平均繊維径)
 ガラス繊維の平均繊維径もファスニング部材の強度やファスナーの耐摩耗性に有意に影響を与える。ファスニング部材中のガラス繊維の平均繊維径が5μm未満だと十分な補強効果が得られにくい。また、ガラス繊維の平均繊維径は大きい方がファスニング部材の耐摩耗性が向上する。そこで、ガラス繊維の平均繊維径は5μm以上とすることが好ましく、6μm以上とすることが更により好ましい。一方で、ガラス繊維の平均繊維径が15μmを超えると、例えば本発明に係る樹脂組成物からなるスライドファスナー用のエレメントを作製したときに、スライダーの摩耗が生じやすくなり、耐摩耗性が悪化するとともに補強効果が低下する。そこで、ファスニング部材中のガラス繊維の平均繊維径は15μm以下とすることが好ましく、11μm以下とすることがより好ましく、10μm以下とすることが更により好ましく、9μm以下とすることが更により好ましい。
(Average fiber diameter)
The average fiber diameter of the glass fiber also significantly affects the strength of the fastening member and the wear resistance of the fastener. When the average fiber diameter of the glass fibers in the fastening member is less than 5 μm, it is difficult to obtain a sufficient reinforcing effect. Further, the wear resistance of the fastening member is improved as the average fiber diameter of the glass fiber is larger. Therefore, the average fiber diameter of the glass fibers is preferably 5 μm or more, and more preferably 6 μm or more. On the other hand, when the average fiber diameter of the glass fibers exceeds 15 μm, for example, when an element for a slide fastener made of the resin composition according to the present invention is produced, the slider is likely to be worn and the wear resistance is deteriorated. At the same time, the reinforcing effect decreases. Therefore, the average fiber diameter of the glass fibers in the fastening member is preferably 15 μm or less, more preferably 11 μm or less, still more preferably 10 μm or less, and even more preferably 9 μm or less.
 本発明において、ファスニング部材中のガラス繊維の平均繊維径は以下の方法で測定可能である。ファスニング部材を600℃に保持した電気炉で2時間焼成することで樹脂成分を除去した後、走査型電子顕微鏡(SEM)による観察で、任意に選択した100本のガラス繊維のそれぞれの長さ中央部の繊維径(直径)を倍率100倍で測定したときの算術平均として与えられる。焼成せずに、樹脂中のガラス繊維の繊維径をマイクロフォーカスX線透視/CT装置を使って同様に測定してもよい。なお、一般にガラス繊維の繊維径は樹脂への混練や射出成形を経ても変化しないので、混練前のガラス繊維の平均繊維径が測定可能であれば、それはファスニング部材中におけるガラス繊維の平均繊維径に等しい。 In the present invention, the average fiber diameter of the glass fibers in the fastening member can be measured by the following method. After removing the resin component by firing the fastening member in an electric furnace maintained at 600 ° C. for 2 hours, the center of each length of 100 glass fibers arbitrarily selected by observation with a scanning electron microscope (SEM) It is given as an arithmetic average when the fiber diameter (diameter) of the part is measured at a magnification of 100 times. Without firing, the fiber diameter of the glass fiber in the resin may be similarly measured using a microfocus X-ray fluoroscopy / CT apparatus. In general, the fiber diameter of the glass fiber does not change even after kneading into the resin or injection molding, so if the average fiber diameter of the glass fiber before kneading is measurable, it is the average fiber diameter of the glass fiber in the fastening member. be equivalent to.
(集束剤)
 ガラス繊維は、表面を集束剤で被覆されたもので構成されていることが一般的である。集束剤でガラス繊維を被覆することにより、樹脂との接着性が増し、強度の向上効果が高まるという利点が得られる。集束剤としては、限定的ではないが、ウレタン系、ポリエステル系、アクリル系、エポキシ系、その他各種カップリング剤等が挙げられる。より好ましくはウレタン系、アクリル系、シラン系カップリング剤であり、更により好ましくはウレタン系カップリング剤である。
(Bundling agent)
The glass fiber is generally composed of a surface coated with a sizing agent. By coating the glass fiber with the sizing agent, there is an advantage that the adhesion with the resin is increased and the effect of improving the strength is enhanced. Examples of the sizing agent include, but are not limited to, urethane-based, polyester-based, acrylic-based, epoxy-based, and other various coupling agents. More preferred are urethane, acrylic and silane coupling agents, and even more preferred is a urethane coupling agent.
 カップリング剤として、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、クロム系カップリング剤、ジルコニウム系カップリング剤、ボラン系カップリング剤等が挙げられ、好ましくはシラン系カップリング剤またはチタネート系カップリング剤であり、より好ましくはシラン系カップリング剤である。 Examples of coupling agents include silane coupling agents, titanate coupling agents, aluminum coupling agents, chromium coupling agents, zirconium coupling agents, borane coupling agents, and the like, preferably silane cups. A ring agent or a titanate coupling agent, more preferably a silane coupling agent.
 前記のシラン系カップリング剤としては、例えば、トリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン等が挙げられ、好ましくはγ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン類が挙げられる。 Examples of the silane coupling agent include triethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, etc., preferably γ-aminopropyltriethoxysilane, N-β- (aminoethyl) ) -Γ-Aminopropyltri Aminosilanes such as Tokishishiran and the like.
<4.架橋剤>
 架橋剤は必須成分ではないものの、微量添加することにより機械的特性を損なうことなく本発明に係る樹脂組成物の流動性を高めることができ、成形性を向上させる。架橋剤は、添加量が多すぎると重合脂肪酸系ポリアミド樹脂を添加したことによる機械的特性の向上効果が減退するため注意が必要である。このような観点から、架橋剤はポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して、0~0.04質量部添加することができ、0.01~0.04質量部添加することが好ましく、0.01~0.03質量部添加することがより好ましい。架橋剤としては、公知の架橋剤が使用でき、特に制限はないが、例えば、有機過酸化物、硫黄系化合物、フェノール樹脂系化合物、キノイド系化合物、ビスマレイミド系化合物、イソシアネート系化合物、チウラム系化合物、モルフォリンジスルフィド、ヒドロシリコーン系化合物等が挙げられる。
<4. Cross-linking agent>
Although the crosslinking agent is not an essential component, the flowability of the resin composition according to the present invention can be improved without impairing the mechanical properties by adding a small amount, thereby improving moldability. If the amount of the crosslinking agent added is too large, attention must be paid because the effect of improving the mechanical properties due to the addition of the polymerized fatty acid polyamide resin is reduced. From this point of view, the crosslinking agent can be added in an amount of 0 to 0.04 parts by mass and 0.01 to 0.04 parts by mass with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid polyamide resin. It is preferable to add 0.01 to 0.03 parts by mass. As the crosslinking agent, a known crosslinking agent can be used, and is not particularly limited. For example, organic peroxides, sulfur compounds, phenol resin compounds, quinoid compounds, bismaleimide compounds, isocyanate compounds, thiuram compounds Examples thereof include compounds, morpholine disulfide, and hydrosilicone compounds.
<5.その他の添加剤>
 本発明に係るポリアセタール樹脂組成物においては、ポリアセタール樹脂組成物中のポリアセタール樹脂、重合脂肪酸系ポリアミド樹脂及びガラス繊維の合計含有量は典型的には90質量%以上であり、より典型的には95質量%以上である。この合計含有量は98質量%以上とすることもでき、更には100質量%とすることもできる。一方で、ポリアセタール樹脂組成物中には染料、顔料、耐熱安定剤、耐候剤、耐加水分解剤など常用の添加剤を例えば合計で10質量%以下、典型的には5質量%以下、より典型的には2質量%以下となるように添加してもよい。
<5. Other additives>
In the polyacetal resin composition according to the present invention, the total content of the polyacetal resin, the polymerized fatty acid polyamide resin and the glass fiber in the polyacetal resin composition is typically 90% by mass or more, more typically 95%. It is at least mass%. The total content can be 98% by mass or more, and further can be 100% by mass. On the other hand, in the polyacetal resin composition, conventional additives such as dyes, pigments, heat stabilizers, weathering agents, and hydrolysis agents are added in a total amount of 10% by mass or less, typically 5% by mass or less, and more typically. Specifically, it may be added so as to be 2% by mass or less.
<6.樹脂組成物及び成形品>
 本発明に係る樹脂組成物は、前述した各構成成分を単軸押出混練機、二軸混練押出機及びニーダーなどの装置を用いて溶融混練することで製造可能である。溶融混練は、ポリアセタール樹脂及びポリアミド樹脂の融点以上の温度で実施することが、均質な樹脂組成物を得る上で好ましい。例示的には溶融混錬の加工温度は180~220℃とすることができる。溶融混練後は、慣用の成形手段、例えば射出成形によって所望の形状の成形体を作製することができる。例えば、スライドファスナー用のエレメントを作製する場合、ファスナーテープの一側縁にエレメント列を射出成形して、射出成形と同時にファスナーテープにエレメント列を固定する方法が一般的である。
<6. Resin composition and molded product>
The resin composition according to the present invention can be produced by melt-kneading the above-described constituent components using an apparatus such as a single screw extrusion kneader, a twin screw kneading extruder, and a kneader. The melt kneading is preferably performed at a temperature equal to or higher than the melting point of the polyacetal resin and the polyamide resin in order to obtain a homogeneous resin composition. Illustratively, the melt kneading process temperature may be 180-220 ° C. After the melt-kneading, a molded body having a desired shape can be produced by a conventional molding means such as injection molding. For example, when producing an element for a slide fastener, a method is generally employed in which an element row is injection-molded on one side edge of the fastener tape and the element row is fixed to the fastener tape simultaneously with the injection molding.
 本発明に係るポリアセタール樹脂組成物は一実施形態において、JIS K7210:1999(A法)に準拠して200℃、測定荷重21.18Nで測定したときのメルトフローレート(MFR)が15g/10min以上である。MFRが15g/10min以上であるという高い流動性を有することで、優れた成形性を得ることができる。MFRは好ましくは、17g/10min以上であり、より好ましくは20g/10min以上である。但し、MFRは、高くなりすぎると成形品にバリが発生し、安定した良品が得られなくなることから、好ましくは40g/10min以下であり、より好ましくは30g/10min以下であり、例えば10~25g/10minとすることができる。 In one embodiment, the polyacetal resin composition according to the present invention has a melt flow rate (MFR) of 15 g / 10 min or more when measured at 200 ° C. and a measurement load of 21.18 N in accordance with JIS K7210: 1999 (Method A). It is. By having high fluidity that MFR is 15 g / 10 min or more, excellent moldability can be obtained. The MFR is preferably 17 g / 10 min or more, more preferably 20 g / 10 min or more. However, if the MFR becomes too high, burrs are generated in the molded product and a stable good product cannot be obtained. Therefore, the MFR is preferably 40 g / 10 min or less, more preferably 30 g / 10 min or less, for example, 10 to 25 g. / 10 min.
 本発明に係るポリアセタール樹脂組成物は一実施形態において、ペレットを200℃に加熱したプレス機(実施例では東洋精機製作所製ミニテストプレスを使用した。)にて200mm角×4mm厚の板を作製し、そこからダンベル試験片(寸法JIS K7139:2009 タイプA)に成形加工し、JIS K7162:1994に準拠して引張試験を実施したときの引張強度が55MPa以上である。引張強度は好ましくは56MPa以上である。但し、引張強度を過度に高めると曲げ弾性率とのバランスが低下するため、引張強度は好ましくは60MPa以下であり、より好ましくは58MPa以下である。 In one embodiment of the polyacetal resin composition according to the present invention, a 200 mm square × 4 mm thick plate is produced with a press machine (a mini test press manufactured by Toyo Seiki Seisakusho Co., Ltd. was used). Then, it is molded into a dumbbell test piece (dimension JIS K7139: 2009 type A), and the tensile strength is 55 MPa or more when a tensile test is performed according to JIS K7162: 1994. The tensile strength is preferably 56 MPa or more. However, if the tensile strength is excessively increased, the balance with the flexural modulus decreases, so the tensile strength is preferably 60 MPa or less, more preferably 58 MPa or less.
 本発明に係るポリアセタール樹脂組成物は一実施形態において、ペレットを200℃に加熱したプレス機(東洋精機製作所製ミニテストプレス)にて200mm角×4mm厚の板を作製し、そこからダンベル試験片(寸法JIS K7139:2009 タイプA)に成形加工し、JIS K7171:2008に準拠して3点曲げ試験を実施したときの曲げ弾性率が3200MPa以上である。曲げ弾性率は好ましくは3300MPa以上であり、より好ましくは3400MPa以上であり、更により好ましくは3500MPa以上であり、更により好ましくは3600MPa以上である。但し、曲げ弾性率を過度に高めると引張強度とのバランスが低下するため、曲げ弾性率は好ましくは4000MPa以下であり、より好ましくは3800MPa以下である。 In one embodiment, the polyacetal resin composition according to the present invention is a 200 mm square x 4 mm thick plate produced by a press machine (mini test press manufactured by Toyo Seiki Seisakusho) in which pellets are heated to 200 ° C. (Dimension JIS K7139: 2009 Type A) The bending elastic modulus is 3200 MPa or more when a three-point bending test is performed in accordance with JIS K7171: 2008. The flexural modulus is preferably 3300 MPa or more, more preferably 3400 MPa or more, even more preferably 3500 MPa or more, and even more preferably 3600 MPa or more. However, if the bending elastic modulus is excessively increased, the balance with the tensile strength is lowered. Therefore, the bending elastic modulus is preferably 4000 MPa or less, more preferably 3800 MPa or less.
 図1は、スライドファスナーの模式図であり、一側縁側に芯部21が形成された一対のファスナーテープ2とファスナーテープ2の芯部21に所定の間隔をおいて取着されたエレメント3の列と、エレメント3の列の上端及び下端でファスナーテープ2の芯部21に固定された上止具4及び下止具5と、対向する一対のエレメント3の列の間に配され、エレメント3の噛合及び開離を行うための上下方向に摺動自在なスライダー6を備える。これらの部材の中で、例えば、エレメント3、上止具4、下止具5、及びスライダー6を本発明に係るファスニング部材で構成することができる。 FIG. 1 is a schematic diagram of a slide fastener, in which a pair of fastener tapes 2 having a core portion 21 formed on one side edge side and an element 3 attached to the core portion 21 of the fastener tape 2 at a predetermined interval. The upper stopper 4 and the lower stopper 5 fixed to the core 21 of the fastener tape 2 at the upper end and lower end of the row of the elements 3 and the row of the pair of elements 3 facing each other; Is provided with a slider 6 that is slidable in the vertical direction to engage and disengage. Among these members, for example, the element 3, the upper stopper 4, the lower stopper 5, and the slider 6 can be configured by the fastening member according to the present invention.
 一本のファスナーテープ2の一側縁に沿ってエレメント3の列が取着したものはファスナーストリンガーと称され、一対のファスナーストリンガーのエレメント3の列同士を噛合させたものはファスナーチェーンと称される。なお、下止具5は、蝶棒、箱棒、箱体からなる開離嵌挿具とし、スライダー6の開離操作にて一対のスライドファスナーチェーンを分離できるようにすることもできる。 A device in which a row of elements 3 is attached along one side edge of a single fastener tape 2 is called a fastener stringer, and a device in which the rows of elements 3 of a pair of fastener stringers are engaged with each other is called a fastener chain. The The lower stopper 5 may be a break-and-fit insert made up of a butterfly stick, a box stick, and a box, and the pair of slide fastener chains can be separated by an opening operation of the slider 6.
 ファスナーテープ2に使用される絶縁性の材質は限定的ではないが天然樹脂又は合成樹脂とすることができる。一般にはこれらの繊維を織成又は編成することによりファスナーテープ2が構成される。ファスナーテープ2の材質としては典型的にはポリエステル、ポリアミド、ポリプロピレン、アクリル等を使用することができる。これらの中でも、横引き強度が優れている点でポリエステルが好ましい。 The insulating material used for the fastener tape 2 is not limited, but may be a natural resin or a synthetic resin. Generally, the fastener tape 2 is formed by weaving or knitting these fibers. As the material of the fastener tape 2, typically, polyester, polyamide, polypropylene, acrylic, or the like can be used. Among these, polyester is preferable in terms of excellent lateral pulling strength.
 図2及び図3に、本発明に係るスライドファスナー用のエレメント3の列が射出成形により、ファスナーテープ2の一側縁に設けられた芯部21に挟持固定されてなるファスナーストリンガー1の部分的な模式図を示す。図2に示すように、エレメント3のピッチpは、隣り合うエレメント3の中心線の間の長さを表す。エレメント3の横方向長さlは、エレメントの配列方向に垂直な方向で且つファスナーテープの面に平行な方向(本発明においては、当該方向を「横方向」という。)の最大距離を表す。換言すれば、対向するエレメントと噛み合う頭部の先端3aからこれと反対側に位置してテープへ固定される脚部の先端3bまでの距離を表す。エレメント3の縦方向長さmは、エレメントの配列方向に平行な方向(本発明においては、当該方向を「縦方向」という。)の最大距離を表す。エレメント3の厚みtは、図3に示すように、ファスナーテープの表裏方向に平行な方向の最大距離を表す。また、図4には、一対のファスナーストリンガーのエレメント同士を噛合させてファスナーチェーンを構成したときの部分的な正面図を示す。チェーン幅wは、対向するエレメント同士を噛合させたとき、横方向のエレメントの脚部の先端3b同士の最大距離を表す。 2 and 3 show a partial view of a fastener stringer 1 in which a row of elements 3 for a slide fastener according to the present invention is clamped and fixed to a core portion 21 provided on one side edge of a fastener tape 2 by injection molding. A schematic diagram is shown. As shown in FIG. 2, the pitch p of the elements 3 represents the length between the center lines of the adjacent elements 3. The lateral length l of the element 3 represents the maximum distance in a direction perpendicular to the element arrangement direction and parallel to the surface of the fastener tape (in the present invention, this direction is referred to as “lateral direction”). In other words, it represents the distance from the tip 3a of the head meshing with the opposing element to the tip 3b of the leg located on the opposite side and fixed to the tape. The length m of the element 3 in the vertical direction represents the maximum distance in a direction parallel to the arrangement direction of the elements (in the present invention, this direction is referred to as “vertical direction”). As shown in FIG. 3, the thickness t of the element 3 represents the maximum distance in a direction parallel to the front and back direction of the fastener tape. FIG. 4 shows a partial front view when elements of a pair of fastener stringers are engaged with each other to form a fastener chain. The chain width w represents the maximum distance between the tips 3b of the leg portions of the lateral elements when the opposing elements are engaged with each other.
 本発明に係るスライドファスナー用のエレメント3について大きさは特に制限されないが、本発明においては強化繊維を配向させることによる補強効果が出にくいような小さなエレメントにおいても、ポリアセタール樹脂とガラス繊維の密着性が向上しているためガラス繊維の配向性に関わらず補強効果を発揮することが出来る。そのような小さなエレメントの大きさを横方向長さl、縦方向長さm及び厚みtで表現すると、横方向長さlは一般に4.5mm以下であり、より小さいエレメントでは4.1mm以下であり、更により小さいエレメントでは3.6mm以下であり、例えば3.2~4.5mmであり、縦方向長さmは一般に3.2mm以下であり、より小さいエレメントでは2.7mm以下であり、更により小さいエレメントでは2.2mm以下であり、例えば1.9~3.2mmであり、厚みtは一般に2.6mm以下であり、より小さいエレメントでは2.4mm以下であり、更により小さいエレメントでは2.2mm以下であり、例えば1.5~2.6mmである。 The size of the element 3 for the slide fastener according to the present invention is not particularly limited. However, in the present invention, the adhesion between the polyacetal resin and the glass fiber is small even in a small element in which the reinforcing effect due to the orientation of the reinforcing fibers is difficult to occur. Therefore, the reinforcing effect can be exhibited regardless of the orientation of the glass fiber. When the size of such a small element is expressed by a lateral length l, a longitudinal length m and a thickness t, the lateral length l is generally 4.5 mm or less, and smaller elements are 4.1 mm or less. And smaller elements are 3.6 mm or less, for example 3.2 to 4.5 mm, the longitudinal length m is generally 3.2 mm or less, and smaller elements are 2.7 mm or less, For smaller elements it is 2.2 mm or less, for example 1.9 to 3.2 mm, the thickness t is generally 2.6 mm or less, for smaller elements it is 2.4 mm or less, for smaller elements It is 2.2 mm or less, for example, 1.5 to 2.6 mm.
 また、エレメント3の大きさをピッチpで表現すると、ピッチpは一般に3.5mm以下であり、より小さいエレメントでは3.0mm以下であり、更により小さいエレメントでは2.5mm以下であり、例えば2.2~3.5mmである。また、エレメント3の大きさをチェーン幅wで表現すると、チェーン幅wは一般に6.3mm以下であり、より小さいエレメントでは5.9mm以下であり、更により小さいエレメントでは5.5mm以下であり、例えば4.5~6.3mmである。 In addition, when the size of the element 3 is expressed by the pitch p, the pitch p is generally 3.5 mm or less, the smaller element is 3.0 mm or less, the smaller element is 2.5 mm or less, for example, 2 .2 to 3.5 mm. In addition, when the size of the element 3 is expressed by the chain width w, the chain width w is generally 6.3 mm or less, the smaller element is 5.9 mm or less, and the smaller element is 5.5 mm or less. For example, it is 4.5 to 6.3 mm.
 スライドファスナーは各種の物品に取着することができ、特に開閉具として機能する。スライドファスナーが取着される物品としては、特に制限はないが、例えば衣料品、鞄類、靴類及び雑貨品といった日用品の他、貯水タンク、漁網及び宇宙服といった産業用品が挙げられる。 ¡Slide fasteners can be attached to various items, and function especially as an opening / closing tool. The article to which the slide fastener is attached is not particularly limited, and examples thereof include daily necessaries such as clothing, bags, shoes, and miscellaneous goods, and industrial articles such as water storage tanks, fishing nets, and space suits.
 以上、本発明に係るポリアセタール樹脂組成物をスライドファスナーに適用した場合の実施形態について主に述べたが、本発明に係るポリアセタール樹脂組成物はスライドファスナーに用途限定されるわけではない。スナップファスナー、面ファスナー、レールファスナーその他のファスニング部材としても適用可能である。更には、本発明に係るポリアセタール樹脂組成物はバックル、ナス環、紐止具、ボールチェーン等の樹脂成形品に適用することができ、窓、テラス戸及び障子の上下枠や框、ドアのドアノブ、引戸の引手、クレセントのハンドル、戸車などの建築部材にも使用可能である。 As mentioned above, although the embodiment at the time of applying the polyacetal resin composition concerning the present invention to a slide fastener was mainly described, use of the polyacetal resin composition concerning the present invention is not necessarily limited to a slide fastener. It can also be applied as a fastening member such as a snap fastener, a hook-and-loop fastener, a rail fastener or the like. Furthermore, the polyacetal resin composition according to the present invention can be applied to resin molded products such as buckles, eggplant rings, string stoppers, ball chains, and the like, windows, terrace doors, upper and lower frames and screens of shojis, door knobs of doors. It can also be used for building members such as sliding door handles, crescent handles, and door pulleys.
 以下、本発明の実施例を示すが、これらは本発明及びその利点をより良く理解するために提供するものであり、本発明が限定されることを意図しない。 Examples of the present invention will be described below, but these are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.
 使用した材料は以下である。
・ポリアセタール樹脂(POM):商品名「テナックC  8520」(旭化成ケミカルズ株式会社)、融点167℃
・重合脂肪酸系ポリアミド樹脂:商品名「PA-280R」(株式会社T&K TOKA)、MFR1300g/10min(測定荷重21.18N、200℃)、融点169℃、23℃での吸水率0.7%
・重合脂肪酸系ポリアミド樹脂:商品名「PA-40L」(株式会社T&K TOKA)、MFR80g/10min(測定荷重21.18N、200℃)、融点197℃、23℃での吸水率1.7%
・有機過酸化物(1,1-ジ(t-ブチルペルオキシ)シクロヘキサン):商品名「PERHEXA(登録商標)C-40」(日本油脂株式会社)
・ガラス繊維(Eガラス製のガラスモノフィラメントにウレタン系集束剤が付着したもの):商品名「ECS03 T-651DE」(日本電気硝子株式会社)、平均繊維径φ6.5μm
The materials used are as follows.
Polyacetal resin (POM): Trade name “Tenac C 8520” (Asahi Kasei Chemicals Corporation), melting point 167 ° C.
Polymerized fatty acid polyamide resin: trade name “PA-280R” (T & K TOKA, Inc.), MFR 1300 g / 10 min (measuring load 21.18 N, 200 ° C.), melting point 169 ° C., water absorption at 23 ° C. 0.7%
Polymerized fatty acid-based polyamide resin: trade name “PA-40L” (T & K TOKA Co., Ltd.), MFR 80 g / 10 min (measuring load 21.18 N, 200 ° C.), melting point 197 ° C., water absorption rate at 23 ° C. 1.7%
Organic peroxide (1,1-di (t-butylperoxy) cyclohexane): trade name “PERHEXA (registered trademark) C-40” (Nippon Yushi Co., Ltd.)
・ Glass fiber (E glass monofilament with urethane sizing agent attached): Trade name “ECS03 T-651DE” (Nippon Electric Glass Co., Ltd.), average fiber diameter φ6.5μm
 上記材料を表1に記載の質量組成となるように二軸混練押出機に投入し、溶融混練温度:200℃、スクリュー回転数200rpmの条件で溶融混練したのちストランドにて押し出し、冷却水槽にて固化させた後、ペレタイザーにてペレット化することで、実施例及び比較例の各ポリアセタール樹脂組成物のペレットを得た。当該ペレットを、200℃に加熱したプレス機(東洋精機製作所製ミニテストプレス)にて200mm角×4mm厚の板を作製し、そこからダンベル試験片(寸法JIS K7139:2009 タイプA)を切削加工し作製した。また、固定金型と可動金型による多数のエレメント型が配列されており、エレメントをテープ上に連続的に射出成形可能なファスナーチェーン製造装置を用いて、当該ペレットをエレメントの材料として用いたファスナーチェーン(チェーン厚(t)は1.9mm、チェーン幅(w)は5.7mm、エレメントピッチ(p)は2.4mm)を製造した。 The above materials are put into a twin-screw kneading extruder so as to have the mass composition shown in Table 1, melt-kneaded at a melt kneading temperature of 200 ° C. and a screw rotation speed of 200 rpm, extruded with a strand, and cooled in a cooling water tank. After solidifying, the pellets of each polyacetal resin composition of Examples and Comparative Examples were obtained by pelletizing with a pelletizer. A 200 mm sq. X 4 mm thick plate is produced from the pellets with a press machine (mini test press manufactured by Toyo Seiki Seisakusho) heated to 200 ° C., and a dumbbell specimen (dimension JIS K7139: 2009 type A) is cut therefrom. And made. In addition, a fastener using a pellet chain as a material of an element using a fastener chain manufacturing apparatus in which a large number of element molds are arranged by a fixed mold and a movable mold, and the elements can be continuously injection-molded on a tape. A chain (chain thickness (t) of 1.9 mm, chain width (w) of 5.7 mm, element pitch (p) of 2.4 mm) was produced.
 製作したダンベル試験片及びファスナーチェーンに対して下記の評価を行った。
<引張強度(JIS K7162:1994準拠)>
 ダンベル試験片を、つかみ具間の初めの間隔を115mmとなるように両端部をチャックに挟んで引張試験機にかけ、引張速度50mm/minで破断するまで引っ張り、そのときの最大荷重を測定することで行った。
<曲げ弾性率(JIS K7171:2008準拠)>
 ダンベル試験片を、曲げ試験機にかけて3点曲げ試験(試験片を支える支点間の距離:6.4mm)を曲げ速度2mm/minで行ない、荷重-たわみ曲線を作図して曲げ弾性率を求めた。
<MFR>
 作製したペレットの200℃におけるメルトフローレート(MFR)をJIS K7210:1999(A法)に準拠して、測定荷重21.18Nで測定した。
<チェーン横引き強度>
 JIS S3015:2007に準じてファスナーチェーンに対してチェーン横引き強度を測定した。
The following evaluation was performed on the manufactured dumbbell specimen and fastener chain.
<Tensile strength (according to JIS K7162: 1994)>
Pull the dumbbell test piece to a tensile tester with both ends sandwiched between chucks so that the initial gap between the grippers is 115 mm, and pull until it breaks at a pulling speed of 50 mm / min, and measure the maximum load at that time I went there.
<Bending elastic modulus (conforms to JIS K7171: 2008)>
The dumbbell test piece was subjected to a bending tester, a three-point bending test (distance between fulcrum supporting the test piece: 6.4 mm) was performed at a bending speed of 2 mm / min, and a load-deflection curve was drawn to obtain a bending elastic modulus. .
<MFR>
The melt flow rate (MFR) at 200 ° C. of the prepared pellets was measured with a measurement load of 21.18 N in accordance with JIS K7210: 1999 (Method A).
<Chain pulling strength>
In accordance with JIS S3015: 2007, the lateral pulling strength of the fastener chain was measured.
(考察)
 結果を表1に示す。比較例5はポリアセタール樹脂とガラス繊維を配合しただけの例であり、比較の基準となる例である。
 比較例1では重合脂肪酸系ポリアミド樹脂及びガラス繊維の配合量が少なすぎ、比較例5よりも曲げ弾性率が低下し、ファスナーチェーンの横引き強度が低下した。
 比較例2では重合脂肪酸系ポリアミド樹脂及びガラス繊維の配合量が多すぎた。比較例5に比べて曲げ弾性率が大幅に上昇したが、引張強度が低下し、ファスナーチェーンの横引き強度が低下した。
 比較例3ではガラス繊維の配合量が少なかったために曲げ弾性率が低下し、ファスナーチェーンの横引き強度が低下した。
 比較例4ではガラス繊維の配合量が多すぎたために引張強度が低下し、ファスナーチェーンの横引き強度が低下した。
 比較例6ではガラス繊維の配合量が適切であったが、重合脂肪酸系ポリアミド樹脂の配合量が少なすぎたため、比較例5に対するファスナーチェーンの横引き強度の上昇は限定的であった。
 比較例7ではガラス繊維の配合量が適切であったが、重合脂肪酸系ポリアミド樹脂の配合量が多すぎたため、比較例5に対するファスナーチェーンの横引き強度の上昇は限定的であった。
 比較例8では異なる重合脂肪酸系ポリアミド樹脂を使用したが、融点が高く流動性も低かったためうまく分散されずファスナーチェーンの横引き強度の上昇は限定的であった。
 比較例9では重合脂肪酸系ポリアミド樹脂を添加せず架橋剤である有機過酸化物を添加したが、ファスナーチェーンの横引き強度は比較例5よりも低下した。
 比較例10では重合脂肪酸系ポリアミド樹脂及びガラス繊維の配合量は適切であったが、有機過酸化物の添加量が多すぎたため、比較例5に対するファスナーチェーンの横引き強度の上昇は限定的であった。
(Discussion)
The results are shown in Table 1. Comparative Example 5 is an example in which polyacetal resin and glass fiber are simply blended, and is an example serving as a reference for comparison.
In Comparative Example 1, the blended amounts of the polymerized fatty acid-based polyamide resin and the glass fiber were too small, the bending elastic modulus was lower than that of Comparative Example 5, and the lateral pulling strength of the fastener chain was reduced.
In Comparative Example 2, the blended amounts of polymerized fatty acid-based polyamide resin and glass fiber were too large. Although the flexural modulus increased significantly compared to Comparative Example 5, the tensile strength decreased and the lateral pulling strength of the fastener chain decreased.
In Comparative Example 3, since the blending amount of the glass fiber was small, the bending elastic modulus was lowered, and the transverse pulling strength of the fastener chain was lowered.
In Comparative Example 4, the amount of glass fiber was too large, so that the tensile strength was lowered and the lateral pulling strength of the fastener chain was lowered.
In Comparative Example 6, the blending amount of the glass fiber was appropriate, but since the blending amount of the polymerized fatty acid-based polyamide resin was too small, the increase in the lateral pulling strength of the fastener chain with respect to Comparative Example 5 was limited.
In Comparative Example 7, the blending amount of the glass fiber was appropriate, but since the blending amount of the polymerized fatty acid-based polyamide resin was too large, the increase in the lateral pulling strength of the fastener chain with respect to Comparative Example 5 was limited.
In Comparative Example 8, a different polymerized fatty acid-based polyamide resin was used. However, since the melting point was high and the fluidity was low, it was not well dispersed and the increase in the lateral pulling strength of the fastener chain was limited.
In Comparative Example 9, an organic peroxide as a crosslinking agent was added without adding a polymerized fatty acid-based polyamide resin, but the lateral pulling strength of the fastener chain was lower than that in Comparative Example 5.
In Comparative Example 10, the blending amounts of the polymerized fatty acid-based polyamide resin and the glass fiber were appropriate, but the increase in the lateral pulling strength of the fastener chain relative to Comparative Example 5 was limited because the amount of organic peroxide added was too large. there were.
 一方、実施例1及び2は各成分の配合量が適切であったことから、引張強度と曲げ弾性率が共に優れており、比較例3に対してファスナーチェーンの横引き強度が有意に上昇した。また、実施例4では架橋剤を適量添加したことで、横引き強度をほとんど損なうことなく流動性の向上が見られた。 On the other hand, in Examples 1 and 2, since the blending amount of each component was appropriate, both the tensile strength and the flexural modulus were excellent, and the lateral pulling strength of the fastener chain was significantly increased compared to Comparative Example 3. . Further, in Example 4, the addition of an appropriate amount of a crosslinking agent showed an improvement in fluidity with almost no loss of the transverse pulling strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1  ファスナーストリンガー
2  ファスナーテープ
3  エレメント
4  上止具
5  下止具
6  スライダー
7  ファスナーチェーン
21 芯部
1 Fastener Stringer 2 Fastener Tape 3 Element 4 Upper Stopper 5 Lower Stopper 6 Slider 7 Fastener Chain 21 Core

Claims (16)

  1.  ポリアセタール樹脂、重合脂肪酸系ポリアミド樹脂、及びガラス繊維を含有するポリアセタール樹脂組成物であって、前記ポリアミド樹脂の融点が195℃以下であり、ポリアセタール樹脂及び前記ポリアミド樹脂の合計100質量部に対して、ポリアセタール樹脂を96.5~98.5質量部、前記ポリアミド樹脂を1.5~3.5質量部、ガラス繊維を15~35質量部、架橋剤を0~0.04質量部の配合比としたポリアセタール樹脂組成物。 A polyacetal resin composition comprising a polyacetal resin, a polymerized fatty acid-based polyamide resin, and glass fibers, wherein the polyamide resin has a melting point of 195 ° C. or less, and with respect to a total of 100 parts by mass of the polyacetal resin and the polyamide resin, 96.5 to 98.5 parts by mass of polyacetal resin, 1.5 to 3.5 parts by mass of the polyamide resin, 15 to 35 parts by mass of glass fiber, and 0 to 0.04 parts by mass of the crosslinking agent. Polyacetal resin composition.
  2.  重合脂肪酸系ポリアミド樹脂の200℃におけるメルトフローレート(MFR)が400g/10min以上である請求項1に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to claim 1, wherein the polymerized fatty acid polyamide resin has a melt flow rate (MFR) at 200 ° C of 400 g / 10 min or more.
  3.  重合脂肪酸系ポリアミド樹脂の23℃における吸水率が2%以下である請求項1又は2に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to claim 1 or 2, wherein the polymerized fatty acid-based polyamide resin has a water absorption of 2% or less at 23 ° C.
  4.  ガラス繊維に対する重合脂肪酸系ポリアミド樹脂の質量比が5~20%である請求項1~3の何れか一項に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to any one of claims 1 to 3, wherein a mass ratio of the polymerized fatty acid-based polyamide resin to the glass fiber is 5 to 20%.
  5.  ポリアセタール樹脂及び重合脂肪酸系ポリアミド樹脂の合計100質量部に対して、架橋剤を0.01~0.04質量部含有する請求項1~4の何れか一項に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to any one of claims 1 to 4, comprising 0.01 to 0.04 parts by mass of a crosslinking agent with respect to 100 parts by mass in total of the polyacetal resin and the polymerized fatty acid-based polyamide resin.
  6.  ポリアセタール樹脂組成物中のポリアセタール樹脂、重合脂肪酸系ポリアミド樹脂及びガラス繊維の合計含有量が90質量%以上である請求項1~5の何れか一項に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to any one of claims 1 to 5, wherein the total content of the polyacetal resin, the polymerized fatty acid-based polyamide resin and the glass fiber in the polyacetal resin composition is 90% by mass or more.
  7.  ガラス繊維の平均繊維径が5~15μmである請求項1~6の何れか一項に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to any one of claims 1 to 6, wherein the glass fiber has an average fiber diameter of 5 to 15 µm.
  8.  200℃におけるメルトフローレート(MFR)が15~30g/10minである請求項1~7の何れか一項に記載のポリアセタール樹脂組成物。 The polyacetal resin composition according to any one of claims 1 to 7, wherein a melt flow rate (MFR) at 200 ° C is 15 to 30 g / 10 min.
  9.  ダンベル試験片(寸法JIS K7139:2009 タイプA)に成形加工し、JIS K7162:1994に準拠して引張試験を実施したときの引張強度が55MPa以上である請求項1~8の何れか一項に記載のポリアセタール樹脂組成物。 The tensile strength when formed into a dumbbell test piece (dimension JIS K7139: 2009 type A) and subjected to a tensile test according to JIS K7162: 1994 is 55 MPa or more. The polyacetal resin composition as described.
  10.  ダンベル試験片(寸法JIS K7139:2009 タイプA)に成形加工し、JIS K7171:2008に準拠して3点曲げ試験を実施したときの曲げ弾性率が3200MPa以上である請求項1~9の何れか一項に記載のポリアセタール樹脂組成物。 The bending elastic modulus when molded into a dumbbell specimen (dimension JIS K7139: 2009 type A) and subjected to a three-point bending test in accordance with JIS K7171: 2008 is 3200 MPa or more. The polyacetal resin composition according to one item.
  11.  請求項1~10の何れか一項に記載のポリアセタール樹脂組成物の成形体からなるファスニング部材。 A fastening member comprising a molded article of the polyacetal resin composition according to any one of claims 1 to 10.
  12.  ファスナーエレメントである請求項11に記載のファスニング部材。 The fastening member according to claim 11, wherein the fastening member is a fastener element.
  13.  ファスナーエレメントは、厚みtが2.6mm以下であり、横方向長さlが4.5mm以下であり、縦方向長さmが3.2mm以下である請求項12に記載のファスニング部材。 The fastening member according to claim 12, wherein the fastener element has a thickness t of 2.6 mm or less, a lateral length l of 4.5 mm or less, and a longitudinal length m of 3.2 mm or less.
  14.  請求項11~13の何れか一項に記載のファスニング部材を備えたファスナーストリンガー。 A fastener stringer comprising the fastening member according to any one of claims 11 to 13.
  15.  請求項11~13の何れか一項に記載のファスニング部材を備えたスライドファスナー。 A slide fastener comprising the fastening member according to any one of claims 11 to 13.
  16.  請求項15に記載のスライドファスナーを備えた物品。 An article comprising the slide fastener according to claim 15.
PCT/JP2015/079092 2015-10-14 2015-10-14 Polyacetal resin composition, fastening member and slide fastener WO2017064778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/079092 WO2017064778A1 (en) 2015-10-14 2015-10-14 Polyacetal resin composition, fastening member and slide fastener
TW105132708A TWI653283B (en) 2015-10-14 2016-10-11 Polyacetal resin composition, structural member and zipper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079092 WO2017064778A1 (en) 2015-10-14 2015-10-14 Polyacetal resin composition, fastening member and slide fastener

Publications (1)

Publication Number Publication Date
WO2017064778A1 true WO2017064778A1 (en) 2017-04-20

Family

ID=58517549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079092 WO2017064778A1 (en) 2015-10-14 2015-10-14 Polyacetal resin composition, fastening member and slide fastener

Country Status (2)

Country Link
TW (1) TWI653283B (en)
WO (1) WO2017064778A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521725A (en) * 2022-01-25 2022-05-24 福建浔兴拉链科技股份有限公司 Zipper
WO2023275988A1 (en) * 2021-06-29 2023-01-05 Ykk株式会社 Rotary connecting structure, rotary connecting tool, and method for configuring rotary connecting structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306953A (en) * 1963-01-10 1967-02-28 Houilleres Bassin Du Nord Stabilization of polyoxymethylenes with a polyamide prepared by the reaction of a dimer or trimer of an unsaturated fatty acid with a polyamine
JPH05239313A (en) * 1990-08-20 1993-09-17 Asahi Chem Ind Co Ltd Highly rigid polyacetal resin composition
JPH069854A (en) * 1992-06-24 1994-01-18 Polyplastics Co Polyacetal resin composition
JP2014051586A (en) * 2012-09-06 2014-03-20 Mitsubishi Engineering Plastics Corp Polyacetal resin composition, molded article and water-related article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306953A (en) * 1963-01-10 1967-02-28 Houilleres Bassin Du Nord Stabilization of polyoxymethylenes with a polyamide prepared by the reaction of a dimer or trimer of an unsaturated fatty acid with a polyamine
JPH05239313A (en) * 1990-08-20 1993-09-17 Asahi Chem Ind Co Ltd Highly rigid polyacetal resin composition
JPH069854A (en) * 1992-06-24 1994-01-18 Polyplastics Co Polyacetal resin composition
JP2014051586A (en) * 2012-09-06 2014-03-20 Mitsubishi Engineering Plastics Corp Polyacetal resin composition, molded article and water-related article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275988A1 (en) * 2021-06-29 2023-01-05 Ykk株式会社 Rotary connecting structure, rotary connecting tool, and method for configuring rotary connecting structure
CN114521725A (en) * 2022-01-25 2022-05-24 福建浔兴拉链科技股份有限公司 Zipper
CN114521725B (en) * 2022-01-25 2023-03-14 福建浔兴拉链科技股份有限公司 Zipper

Also Published As

Publication number Publication date
TWI653283B (en) 2019-03-11
TW201714954A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
KR101558703B1 (en) Polypropylene resin composition
CA1270085A (en) Polyacetal resin composition
US10098420B2 (en) Fastener element and method for producing same
US20150218371A1 (en) Polycarbonate resin composition
JP2009256487A (en) Polylactic acid composition, its manufacturing method and its molded product
CN102140203A (en) Scraping-resistant polypropylene composite material and preparation method thereof
CN103044818B (en) PVC/ASA (polyvinyl chloride/ acrylic-styrene-acrylonitrile copolymer) alloy material and preparation method thereof
JPS59189170A (en) Thermoplastic resin molding composition
JP3109753B2 (en) High rigidity polyacetal resin composition
WO2017064778A1 (en) Polyacetal resin composition, fastening member and slide fastener
JP6362554B2 (en) Polycarbonate resin composition
US10745547B2 (en) Polypropylene composite resin composition having excellent scratch resistance and mechanical properties
JPH01170641A (en) Polyacetal resin composition
CN110655710B (en) Scratch-resistant impact-resistant polypropylene material and preparation method thereof
KR20100133765A (en) A polypropylene resin composition for automotive interior part
CN114044966A (en) Anti-fogging polypropylene composition and preparation method and application thereof
JP5111694B2 (en) Fiber reinforced polyolefin resin composition
JP2016222808A (en) Resin material composition and injection molded article
JP6926391B2 (en) Vinylidene chloride resin composition, resin blend, and molded article
JPS6139338B2 (en)
WO2018193893A1 (en) Polyolefin resin composition and molded polyolefin resin composition
JPH05255571A (en) Composite resin composition
JP7447930B2 (en) Fiber-reinforced thermoplastic resin molding material, pellets and manufacturing method thereof
JP7240468B1 (en) Polyacetal resin composition
KR102239881B1 (en) High rigidity polyamide resin composition with improved friction resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP