WO2017064679A1 - Process for the preparation of amorphous canagliflozin - Google Patents

Process for the preparation of amorphous canagliflozin Download PDF

Info

Publication number
WO2017064679A1
WO2017064679A1 PCT/IB2016/056192 IB2016056192W WO2017064679A1 WO 2017064679 A1 WO2017064679 A1 WO 2017064679A1 IB 2016056192 W IB2016056192 W IB 2016056192W WO 2017064679 A1 WO2017064679 A1 WO 2017064679A1
Authority
WO
WIPO (PCT)
Prior art keywords
canagliflozin
proline
formula
compound
solvent
Prior art date
Application number
PCT/IB2016/056192
Other languages
French (fr)
Inventor
Manmeet Brijkishore Saini
Gopi RANGANATHAN
Swapnil Ajit ZADBUKE
Mithun Dasharath SURWASE
Shantanu Gokuldas VARADE
Govind Dnyanoba AUSEKAR
Narotham MADIREDDY
Radhakrishna Bhikaji SHIVDAVKAR
Himanshu Madhav Godbole
Girij Pal Singh
Original Assignee
Lupin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lupin Limited filed Critical Lupin Limited
Publication of WO2017064679A1 publication Critical patent/WO2017064679A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to a process for the preparation of amorphous canagliflozin.
  • the present invention also relates to a process for the preparation of canagliflozin.
  • SGLT 2 Sodium glucose cotransporter 2
  • SGLT 2 is mainly distributed in renal proximal tubules. It was responsible for atleast 90% of the glucose reabsorption in the kidney.
  • Canagliflozin hemihydrate (designated as INVOKANA ) is inhibitor of sodium dependent glucose cotransporter which is chemically represented as (15)-l,5-anhydro-l- [3-[[5-(4-fluorophenyl)-2-thienyl]methyl]-4-methylphenyl]-D-glucitol hemihydrate having structural
  • US patent No. 7,943,788 discloses canagliflozin or a pharmaceutically acceptable salt, or a stereoisomer thereof or a prodrug thereof.
  • Various processes for the preparation of canagliflozin and its amorphous form have been known via US Patent Application Nos. 2005233988, 20120289694, 20130237487 and 2016083374.
  • the amorphous canagliflozin is hygroscopic in nature and contain higher amount of residual solvents. Residual solvents are often not completely removed from API by regular manufacturing techniques. They should be decreased to a minimum amount to meet the ICH guidelines. Therefore an environmental friendly crystallization process for the preparation of amorphous canagliflozin and consequently a product obtained from this process lacking residual solvents is highly desirable.
  • the present invention relates to a process for the preparation of amorphous canagliflozin.
  • step (e) providing solution of the canagliflozin obtained in step (d) into the mixture of ethyl acetate and methanol;
  • step (h) adding solution of step (g) into the suitable anti-solvent such as n-heptane;
  • alkyl lithium is selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methane sulfonic acid in
  • step (d) adding solution of step (c) into the suitable anti-solvent such as n-heptane;
  • Fig. 1 depicts the X-ray powder diffraction pattern of amorphous canagliflozin.
  • the present invention relates to a process for the preparation of amorphous canagliflozin.
  • alkyl group means a straight or branched saturated monovalent hydrocarbon chain having 1 to 12 carbon atoms.
  • the straight chain or branched chain alkyl group having 1 to 6 carbon atoms is preferable, and the straight chain or branched chain alkyl group having 1 to 4 carbon atoms is more preferable.
  • Examples thereof are methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, isobutyl group, pentyl group, hexyl group, isohexyl group, heptyl group, 4,4- dimethylpentyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, and various branched chain isomers thereof. Further, the alkyl group may optionally substituted.
  • Powder X-ray diffraction of amorphous canagliflozin can be obtained under following conditions:
  • XRPD pattern is made using Cu K-al radiation at a voltage 40 niA & 45 kV. XRPD pattern was observed at 25°C and scanned from 3.5 to 40 two theta values.
  • reaction conditions such as reagents, catalysts, solvents and temperature given are meant to provide preferred ranges and examples for the respective transformation that can be principally applied but are not supposed to restrict them to the selection given.
  • step (e) providing solution of the canagliflozin obtained in step (d) into the mixture of ethyl acetate and methanol;
  • step (h) adding solution of step (g) into the suitable anti-solvent such as n-heptane;
  • Compound of formula (IV) can be prepared by reacting a compound of formula (II) with a compound of formula (III), in the presence of alkyl lithium in an organic solvent; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methanesulfonic acid in methanol; at lower, ambient, or elevated temperature.
  • Alkyl lithium may be selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium.
  • Organic solvent may be selected from tetrahydrofuran, 2-methyl tetrahydrofuran, heptane, hexane, pentane, methyl tert-butyl ether, dioxane, toluene and the like or a mixture of these solvents.
  • lithiation reaction may be carried under cryogenic condition (i.e., at a temperature about -78 °C) which provides the lower yield of product. While developing the process of making canagliflozin, the inventors come across the process for lithiation, by minimizing the temperature in the range of from -120°C to about -85°C of lithiation reaction which results higher yield of the product.
  • the corresponding compound of formula (V) can be prepared by reacting the compound of formula (IV) with trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like; in the presence of Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium tetrachloride, and the like; in a suitably selected solvent such as acetonitrile, toluene, dichloroethane, dichloromethane, and the like or a mixture of these solvents at lower, ambient, or elevated temperature.
  • dichloromethane may be used as suitable solvent and reduction reaction may be carried out at temperature from about -40°C to about -20°C.
  • L-proline co-crystal of canagliflozin may be obtained by adding L-proline into the solution of canagliflozin in the suitable solvents.
  • suitable solvents that may be used in step (c) include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, water, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1- pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane may be used as suitable solvent.
  • the process for the preparation of L-proline co-crystal of canagliflozin is carried out at temperature of room temperature to reflux temperature for few minutes to few hours; preferably reaction mixture is heated at about 35°C to about 40°C for a period of 1-5 hours.
  • the co-crystal of canagliflozin is optionally isolated from the reaction mixture by suitable techniques such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like.
  • the isolated co-crystal of canagliflozin is dried at temperature ranging from room temperature to 80°C, more preferably from about 45°C to about 80°C for a time preferably from 1 hour to 48 hours.
  • the obtained L-proline co-crystal of canagliflozin may be converted to canagliflozin in step (d) by using conventional techniques known in the art.
  • canagliflozin may be obtained by adding water into the solution of L-proline co-crystal of canagliflozin in suitable solvent or mixture thereof; at lower, ambient, or elevated temperature.
  • suitable solvents that may be used include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1- butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2- pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert- butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion.
  • dichloromethane methyl teri-butyl ether or ethyl acetate may be used as suitable solvent.
  • L-proline co-crystal of canagliflozin may be converted to canagliflozin by comprising the steps of :
  • the canagliflozin obtained in step (d) is optionally isolated from the reaction mixture by suitable techniques known in the art such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. Canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature from about 45°C to about 85°C, optionally under reduced pressure.
  • the canagliflozin obtained in step (d) may be dissolved into the mixture of ethyl acetate and methanol in any suitable proportion.
  • the solution obtained in step (e) may be filtered to remove any insoluble particles.
  • the solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
  • the reaction mixture may be distilled out till 1.0 to 4.0 volumes of solvent remains behind.
  • the solution obtained after addition of methyl tert butyl ether in step (g) may be filtered to remove any insoluble particles.
  • the solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
  • the anti-solvent for step (h) comprises n-hexane, n-heptane, n-pentane, cyclohexane, methylcyclohexane, diethyl ether, diisopropyl ether, dibutyl ether or mixtures thereof in any suitable proportion. More preferably n-heptane may be used as anti-solvent.
  • the treatment with the antisolvent may be carried out, for example, by adding the solution of canagliflozin into the antisolvent or vice versa at temperature about -30°C to about 50°C, preferably at -10°C to 5°C.
  • the treatment with antisolvent may be followed by stirring the mixture for about 10 minutes to 20 hours, preferably about 1 hour to 2 hours.
  • the stirring may be carried out at about -30°C to about 50°C, preferably at -15°C to 5°C.
  • the obtained precipitate may be isolated using conventional techniques known in the art.
  • One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like.
  • the solid may optionally be washed with a suitable solvent.
  • the amorphous canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45°C to about 80°C, optionally under reduced pressure.
  • Amorphous canagliflozin obtained by the process of the invention characterised by an X-ray pattern.
  • the powder XRD pattern of canagliflozin (Fig. 1) obtained by process of the present invention shows product to be in amorphous form.
  • the obtained amorphous canagliflozin is stable during storage and drying.
  • Compound of formula (IV) can be prepared by reacting a compound of formula (II) with a compound of formula (III), in the presence of alkyl lithium in an organic solvent; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methanesulfonic acid in methanol; at lower, ambient, or elevated temperature.
  • Compound of formula (II) is first reacted with alkyl lithium to yield the corresponding lithiated species, followed by the reaction of the lithiated species with the compound of formula (III) to form protected form of compound.
  • Alkyl lithium may be selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium.
  • Organic solvent may be selected from tetrahydrofuran, 2-methyl tetrahydrofuran, heptane, hexane, pentane, methyl tert-butyl ether, dioxane, toluene and the like or a mixture of these solvents.
  • the protected compound is then deprotected by reaction with methane sulfonic acid in methanol to form the compound of formula (IV).
  • lithiation reaction may be carried under cryogenic condition (i.e., at a temperature about -78 °C) which provides the lower yield of product. While developing the process of making canagliflozin, the inventors come across the process for lithiation, by minimizing the temperature in the range of from -120°C to about -85°C of lithiation reaction which results higher yield of the product.
  • the corresponding compound of formula (V) can be prepared by reacting the compound of formula (IV) with trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like; in the presence of Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium tetrachloride, and the like; in a suitably selected solvent such as acetonitrile, toluene, dichloroethane, dichloromethane, and the like or a mixture of these solvents at lower, ambient, or elevated temperature.
  • dichloromethane may be used as suitable solvent and reduction reaction may be carried out at about -40°C to about -20°C.
  • L-proline co-crystal of canagliflozin may be obtained by adding L-proline into the solution of canagliflozin into the suitable solvents.
  • suitable solvents that may be used in step (c) include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, water, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1- pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane may be used as suitable solvent.
  • the process for the preparation of L-proline co-crystal of canagliflozin is carried out at temperature of room temperature to reflux temperature for few minutes to few hours; preferably reaction mixture is heated at temperature from about 35°C to about 40°C for a period of 1 hour to 5 hours.
  • the co-crystal of canagliflozin is optionally isolated from the reaction mixture by suitable techniques such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like.
  • the isolated co-crystal of canagliflozin is dried at temperature ranging from room temperature to about 80°C, more preferably from about 45°C to about 80°C for a time preferably from 1 hour to 48 hours.
  • the obtained L-proline co-crystal of canagliflozin may be converted to canagliflozin in step (d) by using conventional techniques known in the art.
  • canagliflozin may be obtained by adding water into the solution of L-proline co-crystal of canagliflozin in suitable solvent or mixture thereof; at lower, ambient, or elevated temperature.
  • suitable solvents that may be used include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1- butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2- pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert- butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion.
  • dichloromethane methyl teri-butyl ether or ethyl acetate
  • L-proline co-crystal of canagliflozin may be converted into canagliflozin by comprising the steps of : (i) dissolving L-proline co-crystal of canagliflozin in dichloromethane, methyl tert-butyl ether or ethyl acetate;
  • the canagliflozin obtained in step (d) may be isolated using conventional techniques known in the art.
  • One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like. After separation, the solid may optionally be washed with a suitable solvent.
  • the canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature from about 45 °C to about 80 °C, optionally under reduced pressure. The drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer.
  • step (d) adding solution of step (c) into the suitable anti-solvent such as n-heptane;
  • Canagliflozin that may be utilized for providing the solution of canagliflozin in step (a).
  • Canagliflozin that may be used as the input for the process of the present invention may be obtained by any process including the process described in the art.
  • the canagliflozin may be dissolved in the mixture of ethyl acetate and methanol in any suitable proportion.
  • the solution obtained in step (a) may be filtered to remove any insoluble particles.
  • the solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
  • the reaction mixture may be distilled out till 1.0 to 4.0 volumes of solvent remains behind.
  • the solution obtained after addition of methyl tert butyl ether in step (c) may be filtered to remove any insoluble particles.
  • the solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
  • the anti-solvent for step (d) comprises n-hexane, n-heptane, n-pentane, cyclohexane, methylcyclohexane, diethyl ether, diisopropyl ether, dibutyl ether or mixtures thereof in any suitable proportion. More preferably n-heptane may be used as anti-solvent.
  • the treatment with the antisolvent may be carried out, for example, by adding the solution of canagliflozin into the antisolvent or vice versa at temperature about -30°C to about 50°C, preferably at -10°C to 5°C.
  • the treatment with antisolvent may be followed by stirring the mixture for about 10 minutes to 20 hours, preferably about 1 hour to 2 hours.
  • the stirring may be carried out at about -30°C to about 50°C, preferably at -15°C to 5°C.
  • the obtained precipitate may be isolated using conventional techniques known in the art.
  • One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like.
  • the solid may optionally be washed with a suitable solvent.
  • the amorphous canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45°C to about 80°C, optionally under reduced pressure.
  • the drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer.
  • the amorphous canagliflozin obtained by the process of the invention characterised by an X-ray pattern.
  • the powder XRD pattern of canagliflozin (Fig. 1) obtained by process of the present invention shows product to be in amorphous form.
  • the obtained amorphous canagliflozin is stable during storage and drying.
  • amorphous canagliflozin obtained along with residual solvent levels within the permissible ICH limits which is suitable for pharmaceutical preparation.
  • a process for the preparation of amorphous canagliflozin of formula (I) comprising the steps of:
  • step (d) providing solution of the canagliflozin obtained in step (c) into the mixture of ethyl acetate and methanol;
  • step (g) adding solution of step (f) into the suitable anti-solvent such as n-heptane; (h) isolating amorphous canagliflozin.
  • step (e) providing solution of canagliflozin obtained in step (d) in suitable solvent or mixture thereof;
  • step (f) treating the solution of step (e) with an antisolvent
  • Compound of formula (IV) can be prepared by reacting a compound of formula (II) with a compound of formula (III), in the presence of alkyl lithium in an organic solvent; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methanesulfonic acid in methanol; at lower, ambient, or elevated temperature.
  • Compound of formula (II) is first reacted with alkyl lithium to yield the corresponding lithiated species, followed by the reaction of the lithiated species with the compound of formula (III) to form protected form of compound.
  • Alkyl lithium may be selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium.
  • Organic solvent may be selected from tetrahydrofuran, 2-methyl tetrahydrofuran, heptane, hexane, pentane, Methyl tert-butyl ether, dioxane, toluene and the like or a mixture of these solvents.
  • the protected compound is then deprotected by reaction with methane sulfonic acid in methanol to form the compound of formula (IV).
  • lithiation reaction may be carried under cryogenic condition (i.e., at a temperature about -78 °C) which provides the lower yield of product.
  • the corresponding compound of formula (V) can be prepared by reacting the compound of formula (IV) with trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like; in the presence of Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium tetrachloride, and the like; in a suitably selected solvent such as acetonitrile, toluene, dichloroethane, dichloromethane, and the like or a mixture of these solvents at lower, ambient, or elevated temperature.
  • trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like
  • Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium te
  • dichloromethane may be used as suitable solvent and reduction reaction may be carried out at temperature from about -40°C to about -20°C.
  • L-proline co-crystal of canagliflozin may be obtained by adding L-proline into the solution of canagliflozin in suitable solvents.
  • suitable solvents that may be used in step (c) include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, water, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1-pentanol, 2- pentanol, amyl alcohol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion.
  • the process for the preparation of L-proline co-crystal of canagliflozin is carried out at temperature of room temperature to reflux temperature for few minutes to few hours; preferably reaction mixture is heated at temperature from 35°C to 40°C for a period of 1 to 5 hours.
  • the co-crystal of canagliflozin is optionally isolated from the reaction mixture by suitable techniques such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like.
  • the isolated co-crystal of canagliflozin is dried at temperature ranging from room temperature to 80°C, more preferably at temperature from about 45°C to about 80°C for a time preferably from 1 hour to 48 hours.
  • the obtained L-proline co-crystal of canagliflozin may be converted to canagliflozin in step (d) by using conventional techniques known in the art.
  • canagliflozin may be obtained by adding water into the solution of L-proline co-crystal of canagliflozin in suitable solvent or mixture thereof; at lower, ambient, or elevated temperature.
  • suitable solvents that may be used include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1- butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2- pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert- butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane, methyl teri-buty
  • the canagliflozin obtained in step (d) is optionally isolated from the reaction mixture by suitable techniques known in the art such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. Canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45 °C to about 85°C, optionally under reduced pressure.
  • Providing a solution of canagliflozin in step (e) includes:
  • step (i) direct use of reaction mixture containing canagliflozin that is obtained during its synthesis in step (d); or
  • step (ii) dissolving canagliflozin obtained in step (d) in suitable solvent or mixtures thereof.
  • Suitable solvents that may be used in step (e) include but are not limited to alcohol, hydrocarbon, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion.
  • Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, ethylene glycol, glycerol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, toluene, xylene, dichloromethane, ethylene dichloride, chlorobenzene, acetonitrile,
  • ethyl acetate, methyl teri-butyl ether (MTBE), methanol or mixtures thereof may be used in any suitable proportion.
  • the solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
  • the anti-solvent for step (f) comprises n-hexane, n-heptane, n-pentane, cyclohexane, methylcyclohexane, diethyl ether, diisopropyl ether, dibutyl ether or mixtures thereof in any suitable proportion. More preferably n-heptane may be used as anti-solvent.
  • the treatment with the antisolvent may be carried out, for example, by adding the solution of canagliflozin into the antisolvent or vice versa at temperature about -30°C to about 50°C, preferably at -10°C to 5°C.
  • the treatment with antisolvent may be followed by stirring the mixture for about 10 minutes to 20 hours, preferably about 1 to 2 hours.
  • the stirring may be carried out at about -30°C to 50°C, preferably at -15°C to 5°C.
  • the obtained precipitate may be isolated using conventional techniques known in the art.
  • One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like.
  • the solid may optionally be washed with a suitable solvent.
  • the amorphous canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45°C to about 80°C, optionally under reduced pressure.
  • the drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer.
  • Amorphous canagliflozin obtained by the process of the invention characterised by an X-ray pattern.
  • the powder XRD pattern of canagliflozin (Fig. 1) obtained by process of the present invention shows product to be in amorphous form.
  • the obtained amorphous canagliflozin is stable during storage and drying.
  • amorphous canagliflozin prepared according to the processes of the present invention can be substantially pure having a chemical purity greater than about 99% or greater than about 99.5% by weight as determined using high performance liquid chromatography.
  • canagliflozin prepared according to the processes of the present invention can be substantially pure having a chemical purity greater than about 99% or greater than about 99.5% by weight as determined using high performance liquid chromatography.
  • additional starting compounds and/or reagents are commercially available or may be easily prepared according to conventional methods well known to these skilled in the art.
  • reaction conditions for example, temperature, duration of the reaction or combinations thereof, are envisioned as part of the present invention.
  • Hexyl lithium (0.50 kg, 0.0054 mol) was slowly added to a stirred solution of 2- (5-bromo-2-methyl-benzyl)-5-(4-fluorophenyl)-thiophene (1 kg, 0.0027 mol) in tetrahydrofuran (12 L) and toluene (12 L) at -70°C to -65 °C.
  • solution of 2,3,4,6-tetra-0-trimethylsilyl- -D-glucolactone (2 kg, 0.0042 mol) in toluene (3 L) was slowly added by maintaining the reaction at -70°C to - 65 °C and mixture was stirred for 2 hours at same temperature.
  • Hexyl lithium (0.50 kg, 0.0054 mol) was slowly added to a stirred solution of 2- (5-bromo-2-methyl-benzyl)-5-(4-fluorophenyl)-thiophene (1 kg, 0.0027 mol) in tetrahydrofuran (12 L) and toluene (12 L) at -100°C to -90°C.
  • solution of 2,3,4,6-tetra-0-trimethylsilyl- -D-glucolactone (2 kg, 0.0042 mol) in toluene (3 L) was slowly added by maintaining the reaction at -100 to -90°C and mixture was stirred for 2 hours at same temperature.
  • Canagliflozin 700 gm was dissolved in ethyl acetate (5.6 L) and methanol (0.35 L). The resultant solution was stirred at room temperature for 1 hr. Reaction mixture was distilled out till 1.0 to 4.0 volumes of solvent remains behind. Methyl teri-butyl ether (2.8 L) was added to the above solution and resultant solution was filtered through micron filter. The resultant solution was added slowly to the pre-chilled solution of n-heptane (10.5 L) at -10°C and stirring was continued at same temperature. The solid precipitated was filtered and dried to obtain amorphous canagliflozin (yield: 88.6%).

Abstract

The present invention relates to a process for the preparation of amorphous canagliflozin. The present invention also relates to a process for the preparation of canagliflozin.

Description

PROCESS FOR THE PREPARATION OF AMORPHOUS CANAGLIFLOZIN
FIELD OF THE INVENTION
The present invention relates to a process for the preparation of amorphous canagliflozin. The present invention also relates to a process for the preparation of canagliflozin.
BACKGROUND OF THE INVENTION
Diabetes is a global epidemic affecting more than 200 million people worldwide. The incidence of this disease is growing fast. Each year more than 4 million people die from complications of diabetes including heart diseases, strokes & kidney failure. Sodium glucose cotransporter 2 (SGLT 2) has been discovered to be a new target for treating diabetes in recent years. SGLT 2 is mainly distributed in renal proximal tubules. It was responsible for atleast 90% of the glucose reabsorption in the kidney.
Canagliflozin hemihydrate (designated as INVOKANA ) is inhibitor of sodium dependent glucose cotransporter which is chemically represented as (15)-l,5-anhydro-l- [3-[[5-(4-fluorophenyl)-2-thienyl]methyl]-4-methylphenyl]-D-glucitol hemihydrate having structural
Figure imgf000003_0001
US patent No. 7,943,788 (B2) discloses canagliflozin or a pharmaceutically acceptable salt, or a stereoisomer thereof or a prodrug thereof. Various processes for the preparation of canagliflozin and its amorphous form have been known via US Patent Application Nos. 2005233988, 20120289694, 20130237487 and 2016083374. According to the prior disclosures, the amorphous canagliflozin is hygroscopic in nature and contain higher amount of residual solvents. Residual solvents are often not completely removed from API by regular manufacturing techniques. They should be decreased to a minimum amount to meet the ICH guidelines. Therefore an environmental friendly crystallization process for the preparation of amorphous canagliflozin and consequently a product obtained from this process lacking residual solvents is highly desirable.
Though, there are processes available in the literature for the preparation of amorphous canagliflozin, still there remains a need for the environmental friendly, stable, highly pure, cost effective and industrially applicable process for the preparation of amorphous canagliflozin.
SUMMARY OF THE INVENTION
The present invention relates to a process for the preparation of amorphous canagliflozin.
In one aspect of the present invention, there is provided a process for the preparation of amorphous
Figure imgf000004_0001
or a pharmaceutically acceptable salt thereof;
comprising the steps of:
(a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium; followed by treatment with methanesulfonic acid in methanol; to yield the corresponding compound of formula (IV);
Figure imgf000005_0001
(b) reacting the compound of formula (IV) with trialkylsilane, in the presence of
Figure imgf000005_0002
(c) reacting compound of formula (V) with L-proline to yield L-proline co-crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
(e) providing solution of the canagliflozin obtained in step (d) into the mixture of ethyl acetate and methanol;
(f) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(g) adding methyl tert-butyl ether into the reaction mixture;
(h) adding solution of step (g) into the suitable anti-solvent such as n-heptane;
(i) isolating amorphous canagliflozin.
In another aspect of the present invention, there is provided a process for the preparation of canagliflozin of formula (I)
Figure imgf000005_0003
or a pharmaceutically acceptable salt thereof;
comprising the steps of: (a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium, wherein alkyl lithium is selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methane sulfonic acid in
Figure imgf000006_0001
(c) reacting compound of formula (V) with L-proline to yield L-proline co-crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
In yet another aspect of the present invention, there is provided a process for the preparation of amorphous canagliflozin of formula (I);
comprising the steps of:
(a) providing solution of the canagliflozin into the mixture of ethyl acetate and methanol;
(b) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(c) adding methyl tert-butyl ether into the reaction mixture;
(d) adding solution of step (c) into the suitable anti-solvent such as n-heptane;
(e) isolating amorphous canagliflozin. BRIEF DESCRIPTION OF THE FIGURE
Fig. 1 : depicts the X-ray powder diffraction pattern of amorphous canagliflozin.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a process for the preparation of amorphous canagliflozin.
The term "alkyl group" means a straight or branched saturated monovalent hydrocarbon chain having 1 to 12 carbon atoms. The straight chain or branched chain alkyl group having 1 to 6 carbon atoms is preferable, and the straight chain or branched chain alkyl group having 1 to 4 carbon atoms is more preferable. Examples thereof are methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, isobutyl group, pentyl group, hexyl group, isohexyl group, heptyl group, 4,4- dimethylpentyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group, and various branched chain isomers thereof. Further, the alkyl group may optionally substituted.
Analytical Methods:
Powder X-ray diffraction of amorphous canagliflozin can be obtained under following conditions:
XRPD pattern is made using Cu K-al radiation at a voltage 40 niA & 45 kV. XRPD pattern was observed at 25°C and scanned from 3.5 to 40 two theta values.
In the following the process according to this invention are described in detail. The reaction conditions such as reagents, catalysts, solvents and temperature given are meant to provide preferred ranges and examples for the respective transformation that can be principally applied but are not supposed to restrict them to the selection given.
In one aspect of the present invention, there is provided a process for the preparation of amorphous canagliflozin of formula (I)
Figure imgf000008_0001
or a pharmaceutically acceptable salt thereof;
comprising the steps of:
(a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium; followed by treatment with methane sulfonic acid in methanol; to yield the corresp la (IV);
acid
(II) Methanol
Figure imgf000008_0002
(b) reacting the compound of formula (IV) with trialkylsilane, in the presence of Lewis acid, to yield the corresponding compound of formula (V);
Figure imgf000008_0003
(c) reacting compound of formula (V) with L-proline to yield L-proline co-crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
(e) providing solution of the canagliflozin obtained in step (d) into the mixture of ethyl acetate and methanol;
(f) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(g) adding methyl tert-butyl ether into the reaction mixture;
(h) adding solution of step (g) into the suitable anti-solvent such as n-heptane;
(i) isolating amorphous canagliflozin. Compound of formula (IV) can be prepared by reacting a compound of formula (II) with a compound of formula (III), in the presence of alkyl lithium in an organic solvent; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methanesulfonic acid in methanol; at lower, ambient, or elevated temperature.
Compound of formula (II) is first reacted with alkyl lithium to yield the corresponding lithiated species, followed by the reaction of the lithiated species with the compound of formula (III) to form protected form of compound. Alkyl lithium may be selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium. Organic solvent may be selected from tetrahydrofuran, 2-methyl tetrahydrofuran, heptane, hexane, pentane, methyl tert-butyl ether, dioxane, toluene and the like or a mixture of these solvents. The protected compound is then deprotected by reaction with methane sulfonic acid in methanol to form the compound of formula (IV). In the conventional methods, lithiation reaction may be carried under cryogenic condition (i.e., at a temperature about -78 °C) which provides the lower yield of product. While developing the process of making canagliflozin, the inventors come across the process for lithiation, by minimizing the temperature in the range of from -120°C to about -85°C of lithiation reaction which results higher yield of the product.
The corresponding compound of formula (V) can be prepared by reacting the compound of formula (IV) with trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like; in the presence of Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium tetrachloride, and the like; in a suitably selected solvent such as acetonitrile, toluene, dichloroethane, dichloromethane, and the like or a mixture of these solvents at lower, ambient, or elevated temperature. Preferably dichloromethane may be used as suitable solvent and reduction reaction may be carried out at temperature from about -40°C to about -20°C.
L-proline co-crystal of canagliflozin may be obtained by adding L-proline into the solution of canagliflozin in the suitable solvents. Suitable solvents that may be used in step (c) include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, water, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1- pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane may be used as suitable solvent.
The process for the preparation of L-proline co-crystal of canagliflozin is carried out at temperature of room temperature to reflux temperature for few minutes to few hours; preferably reaction mixture is heated at about 35°C to about 40°C for a period of 1-5 hours. The co-crystal of canagliflozin is optionally isolated from the reaction mixture by suitable techniques such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. The isolated co-crystal of canagliflozin is dried at temperature ranging from room temperature to 80°C, more preferably from about 45°C to about 80°C for a time preferably from 1 hour to 48 hours. The obtained L-proline co-crystal of canagliflozin may be converted to canagliflozin in step (d) by using conventional techniques known in the art. Preferably, canagliflozin may be obtained by adding water into the solution of L-proline co-crystal of canagliflozin in suitable solvent or mixture thereof; at lower, ambient, or elevated temperature. Suitable solvents that may be used include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1- butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2- pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert- butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. Preferably dichloromethane, methyl teri-butyl ether or ethyl acetate may be used as suitable solvent. More preferably L-proline co-crystal of canagliflozin may be converted to canagliflozin by comprising the steps of :
(i) dissolving L-proline co-crystal of canagliflozin in dichloromethane, methyl tert-butyl ether or ethyl acetate;
(ii) adding water into the solution of step (i);
(iii) optionally heating the reaction mixture;
(iv) separating the organic layer;
(v) optionally seeded with previously prepared material & stirring at suitable temperature;
(vi) optionally isolated the product.
The canagliflozin obtained in step (d) is optionally isolated from the reaction mixture by suitable techniques known in the art such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. Canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature from about 45°C to about 85°C, optionally under reduced pressure. The canagliflozin obtained in step (d) may be dissolved into the mixture of ethyl acetate and methanol in any suitable proportion. Optionally, the solution obtained in step (e) may be filtered to remove any insoluble particles. The solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
The reaction mixture may be distilled out till 1.0 to 4.0 volumes of solvent remains behind. Optionally, the solution obtained after addition of methyl tert butyl ether in step (g) may be filtered to remove any insoluble particles. The solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution. The anti-solvent for step (h) comprises n-hexane, n-heptane, n-pentane, cyclohexane, methylcyclohexane, diethyl ether, diisopropyl ether, dibutyl ether or mixtures thereof in any suitable proportion. More preferably n-heptane may be used as anti-solvent.
The treatment with the antisolvent may be carried out, for example, by adding the solution of canagliflozin into the antisolvent or vice versa at temperature about -30°C to about 50°C, preferably at -10°C to 5°C. The treatment with antisolvent may be followed by stirring the mixture for about 10 minutes to 20 hours, preferably about 1 hour to 2 hours. The stirring may be carried out at about -30°C to about 50°C, preferably at -15°C to 5°C.
The obtained precipitate may be isolated using conventional techniques known in the art. One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like. After separation, the solid may optionally be washed with a suitable solvent. The amorphous canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45°C to about 80°C, optionally under reduced pressure. The drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer. Amorphous canagliflozin obtained by the process of the invention characterised by an X-ray pattern. The powder XRD pattern of canagliflozin (Fig. 1) obtained by process of the present invention shows product to be in amorphous form. The obtained amorphous canagliflozin is stable during storage and drying. By performing the crystallization process disclosed in present invention, amorphous canagliflozin obtained along with residual solvent levels within the permissible ICH limits, which is suitable for pharmaceutical preparation. In another aspect of the present invention, there is provided a process for the preparation of canagliflozin of formula (I)
Figure imgf000013_0001
or a pharmaceutically acceptable salt thereof;
comprising the steps of:
(a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium, wherein alkyl lithium is selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methane sulfonic acid in methanol; to yield the corresp la (IV);
acid
(II) Methanol
Figure imgf000013_0002
(b) reacting the compound of formula (IV) with trialkylsilane, in the presence of Lewis acid, to yield the corresponding compound of formula (V);
Figure imgf000013_0003
(c) reacting compound of formula (V) with L-proline to yield L-proline co-crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
Compound of formula (IV) can be prepared by reacting a compound of formula (II) with a compound of formula (III), in the presence of alkyl lithium in an organic solvent; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methanesulfonic acid in methanol; at lower, ambient, or elevated temperature. Compound of formula (II) is first reacted with alkyl lithium to yield the corresponding lithiated species, followed by the reaction of the lithiated species with the compound of formula (III) to form protected form of compound. Alkyl lithium may be selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium. Organic solvent may be selected from tetrahydrofuran, 2-methyl tetrahydrofuran, heptane, hexane, pentane, methyl tert-butyl ether, dioxane, toluene and the like or a mixture of these solvents. The protected compound is then deprotected by reaction with methane sulfonic acid in methanol to form the compound of formula (IV). In the conventional methods, lithiation reaction may be carried under cryogenic condition (i.e., at a temperature about -78 °C) which provides the lower yield of product. While developing the process of making canagliflozin, the inventors come across the process for lithiation, by minimizing the temperature in the range of from -120°C to about -85°C of lithiation reaction which results higher yield of the product.
The corresponding compound of formula (V) can be prepared by reacting the compound of formula (IV) with trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like; in the presence of Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium tetrachloride, and the like; in a suitably selected solvent such as acetonitrile, toluene, dichloroethane, dichloromethane, and the like or a mixture of these solvents at lower, ambient, or elevated temperature. Preferably dichloromethane may be used as suitable solvent and reduction reaction may be carried out at about -40°C to about -20°C.
L-proline co-crystal of canagliflozin may be obtained by adding L-proline into the solution of canagliflozin into the suitable solvents. Suitable solvents that may be used in step (c) include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, water, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1- pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane may be used as suitable solvent.
The process for the preparation of L-proline co-crystal of canagliflozin is carried out at temperature of room temperature to reflux temperature for few minutes to few hours; preferably reaction mixture is heated at temperature from about 35°C to about 40°C for a period of 1 hour to 5 hours. The co-crystal of canagliflozin is optionally isolated from the reaction mixture by suitable techniques such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. The isolated co-crystal of canagliflozin is dried at temperature ranging from room temperature to about 80°C, more preferably from about 45°C to about 80°C for a time preferably from 1 hour to 48 hours.
The obtained L-proline co-crystal of canagliflozin may be converted to canagliflozin in step (d) by using conventional techniques known in the art. Preferably, canagliflozin may be obtained by adding water into the solution of L-proline co-crystal of canagliflozin in suitable solvent or mixture thereof; at lower, ambient, or elevated temperature. Suitable solvents that may be used include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1- butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2- pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert- butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. Preferably dichloromethane, methyl teri-butyl ether or ethyl acetate may be used as suitable solvent. More preferably L-proline co-crystal of canagliflozin may be converted into canagliflozin by comprising the steps of : (i) dissolving L-proline co-crystal of canagliflozin in dichloromethane, methyl tert-butyl ether or ethyl acetate;
(ii) adding water into the solution of step (i);
(iii) optionally heating the reaction mixture;
(iv) separating the organic layer;
(v) optionally seeded with previously prepared material & stirring at suitable temperature;
(vi) optionally isolated the product. The canagliflozin obtained in step (d) may be isolated using conventional techniques known in the art. One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like. After separation, the solid may optionally be washed with a suitable solvent. The canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature from about 45 °C to about 80 °C, optionally under reduced pressure. The drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer.
In yet another aspect of the present invention, there is provided a process for the preparation of amorphous canagliflozin comprising the steps of:
(a) providing solution of the canagliflozin into the mixture of ethyl acetate and methanol;
(b) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(c) adding methyl tert-butyl ether into the reaction mixture;
(d) adding solution of step (c) into the suitable anti-solvent such as n-heptane;
(e) isolating amorphous canagliflozin.
Any physical form of canagliflozin that may be utilized for providing the solution of canagliflozin in step (a). Canagliflozin that may be used as the input for the process of the present invention may be obtained by any process including the process described in the art.
The canagliflozin may be dissolved in the mixture of ethyl acetate and methanol in any suitable proportion. Optionally, the solution obtained in step (a) may be filtered to remove any insoluble particles. The solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution.
The reaction mixture may be distilled out till 1.0 to 4.0 volumes of solvent remains behind. Optionally, the solution obtained after addition of methyl tert butyl ether in step (c) may be filtered to remove any insoluble particles. The solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution. The anti-solvent for step (d) comprises n-hexane, n-heptane, n-pentane, cyclohexane, methylcyclohexane, diethyl ether, diisopropyl ether, dibutyl ether or mixtures thereof in any suitable proportion. More preferably n-heptane may be used as anti-solvent. The treatment with the antisolvent may be carried out, for example, by adding the solution of canagliflozin into the antisolvent or vice versa at temperature about -30°C to about 50°C, preferably at -10°C to 5°C. The treatment with antisolvent may be followed by stirring the mixture for about 10 minutes to 20 hours, preferably about 1 hour to 2 hours. The stirring may be carried out at about -30°C to about 50°C, preferably at -15°C to 5°C.
The obtained precipitate may be isolated using conventional techniques known in the art. One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like. After separation, the solid may optionally be washed with a suitable solvent. The amorphous canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45°C to about 80°C, optionally under reduced pressure. The drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer.
The amorphous canagliflozin obtained by the process of the invention characterised by an X-ray pattern. The powder XRD pattern of canagliflozin (Fig. 1) obtained by process of the present invention shows product to be in amorphous form. The obtained amorphous canagliflozin is stable during storage and drying. By performing the crystallization process disclosed in present invention, amorphous canagliflozin obtained along with residual solvent levels within the permissible ICH limits, which is suitable for pharmaceutical preparation. In yet another aspect of the present invention, there is provided a process for the preparation of amorphous canagliflozin of formula (I) comprising the steps of:
(a) providing solution of crude canagliflozin in suitable solvent or mixture thereof;
(b) preparation of L-proline co-crystal of canagliflozin by adding L-proline;
(c) converting L-proline co-crystal of canagliflozin to canagliflozin;
(d) providing solution of the canagliflozin obtained in step (c) into the mixture of ethyl acetate and methanol;
(e) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(f) adding methyl tert-butyl ether into the reaction mixture;
(g) adding solution of step (f) into the suitable anti-solvent such as n-heptane; (h) isolating amorphous canagliflozin.
In yet another aspect of the present invention, there is provided a process for the preparation of amorphous canagliflozin of formula (I)
Figure imgf000018_0001
or a pharmaceutically acceptable salt thereof;
comprising the steps of:
(a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium; followed by treatment with methane sulfonic acid in
Figure imgf000019_0001
(c) reacting crude compound of formula (V) with L-proline to yield L-proline co- crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
(e) providing solution of canagliflozin obtained in step (d) in suitable solvent or mixture thereof;
(f) treating the solution of step (e) with an antisolvent;
(g) isolating amorphous canagliflozin.
Compound of formula (IV) can be prepared by reacting a compound of formula (II) with a compound of formula (III), in the presence of alkyl lithium in an organic solvent; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methanesulfonic acid in methanol; at lower, ambient, or elevated temperature. Compound of formula (II) is first reacted with alkyl lithium to yield the corresponding lithiated species, followed by the reaction of the lithiated species with the compound of formula (III) to form protected form of compound. Alkyl lithium may be selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium. Organic solvent may be selected from tetrahydrofuran, 2-methyl tetrahydrofuran, heptane, hexane, pentane, Methyl tert-butyl ether, dioxane, toluene and the like or a mixture of these solvents. The protected compound is then deprotected by reaction with methane sulfonic acid in methanol to form the compound of formula (IV). In the conventional methods, lithiation reaction may be carried under cryogenic condition (i.e., at a temperature about -78 °C) which provides the lower yield of product. While developing the process of making canagliflozin, the inventors come across the process for lithiation, by minimizing the temperature in the range of from -120°C to about -85°C of lithiation reaction which results higher yield of the product. The corresponding compound of formula (V) can be prepared by reacting the compound of formula (IV) with trialkylsilanes selected from the group consisting of triethylsilane, triisopropylsilane, poly(methylhydrosiloxane and the like; in the presence of Lewis acid selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, titanium tetrachloride, and the like; in a suitably selected solvent such as acetonitrile, toluene, dichloroethane, dichloromethane, and the like or a mixture of these solvents at lower, ambient, or elevated temperature. Preferably dichloromethane may be used as suitable solvent and reduction reaction may be carried out at temperature from about -40°C to about -20°C. L-proline co-crystal of canagliflozin may be obtained by adding L-proline into the solution of canagliflozin in suitable solvents. Suitable solvents that may be used in step (c) include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, water, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1-pentanol, 2- pentanol, amyl alcohol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane may be used as suitable solvent. The process for the preparation of L-proline co-crystal of canagliflozin is carried out at temperature of room temperature to reflux temperature for few minutes to few hours; preferably reaction mixture is heated at temperature from 35°C to 40°C for a period of 1 to 5 hours. The co-crystal of canagliflozin is optionally isolated from the reaction mixture by suitable techniques such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. The isolated co-crystal of canagliflozin is dried at temperature ranging from room temperature to 80°C, more preferably at temperature from about 45°C to about 80°C for a time preferably from 1 hour to 48 hours.
The obtained L-proline co-crystal of canagliflozin may be converted to canagliflozin in step (d) by using conventional techniques known in the art. Preferably, canagliflozin may be obtained by adding water into the solution of L-proline co-crystal of canagliflozin in suitable solvent or mixture thereof; at lower, ambient, or elevated temperature. Suitable solvents that may be used include but are not limited to alcohol, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1- butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, acetone, butanone, 2- pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, dichloromethane, ethylene dichloride, acetonitrile, toluene, xylene, water, methyl tert- butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether or mixtures thereof in any suitable proportion. More preferably dichloromethane, methyl teri-butyl ether or ethyl acetate may be used as suitable solvent.
The canagliflozin obtained in step (d) is optionally isolated from the reaction mixture by suitable techniques known in the art such as filtration, evaporation, distillation, vacuum drying, centrifugation and the like. Canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45 °C to about 85°C, optionally under reduced pressure. Providing a solution of canagliflozin in step (e) includes:
(i) direct use of reaction mixture containing canagliflozin that is obtained during its synthesis in step (d); or
(ii) dissolving canagliflozin obtained in step (d) in suitable solvent or mixtures thereof.
Suitable solvents that may be used in step (e) include but are not limited to alcohol, hydrocarbon, ketone, ester, ether, hydrocarbon, nitrile or mixtures thereof in any suitable proportion. Particularly preferred solvents include methanol, ethanol, isopropanol, 2-propanol, 1-butanol, t-butyl alcohol, 1-pentanol, 2-pentanol, amyl alcohol, ethylene glycol, glycerol, acetone, butanone, 2-pentanone, 3-pentanone, methylbutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, ethyl acetate, propyl acetate, isopropyl acetate, t-butyl acetate, isobutyl acetate, toluene, xylene, dichloromethane, ethylene dichloride, chlorobenzene, acetonitrile, tetrahydrofuran, methyl tert-butyl ether, ethyl tert-butyl ether, ethyl ether, isopropyl ether, 1 ,2-dimethoxy ethane or mixtures thereof in any suitable proportion. More preferably ethyl acetate, methyl teri-butyl ether (MTBE), methanol or mixtures thereof may be used in any suitable proportion. The solution may optionally be treated with carbon, hyflow or any other suitable material to remove colour and/or to clarify the solution. The anti-solvent for step (f) comprises n-hexane, n-heptane, n-pentane, cyclohexane, methylcyclohexane, diethyl ether, diisopropyl ether, dibutyl ether or mixtures thereof in any suitable proportion. More preferably n-heptane may be used as anti-solvent. The treatment with the antisolvent may be carried out, for example, by adding the solution of canagliflozin into the antisolvent or vice versa at temperature about -30°C to about 50°C, preferably at -10°C to 5°C. The treatment with antisolvent may be followed by stirring the mixture for about 10 minutes to 20 hours, preferably about 1 to 2 hours. The stirring may be carried out at about -30°C to 50°C, preferably at -15°C to 5°C.
The obtained precipitate may be isolated using conventional techniques known in the art. One skilled in the art may appreciate that there are many ways to separate a solid from the mixture, for example it may be separated by using any techniques such as filtration, centrifugation, decantation and the like. After separation, the solid may optionally be washed with a suitable solvent. The amorphous canagliflozin may optionally be further dried. Drying may be suitably carried out in equipment such as tray dryer, vacuum oven, air oven, fluidized bed dryer, spin flash dryer, flash dryer and the like. The drying may be carried out at temperature about 45°C to about 80°C, optionally under reduced pressure. The drying may be carried out for any time periods necessary for obtaining a product with desired purity such as from about 1 hour to about 25 hours or longer.
Amorphous canagliflozin obtained by the process of the invention characterised by an X-ray pattern. The powder XRD pattern of canagliflozin (Fig. 1) obtained by process of the present invention shows product to be in amorphous form. The obtained amorphous canagliflozin is stable during storage and drying. By performing the crystallization process disclosed in present invention, amorphous canagliflozin obtained along with residual solvent levels within the permissible ICH limits, which is suitable for pharmaceutical preparation.
In an aspect of the present invention, amorphous canagliflozin prepared according to the processes of the present invention can be substantially pure having a chemical purity greater than about 99% or greater than about 99.5% by weight as determined using high performance liquid chromatography.
In an aspect of the present invention, canagliflozin prepared according to the processes of the present invention can be substantially pure having a chemical purity greater than about 99% or greater than about 99.5% by weight as determined using high performance liquid chromatography. One skilled in the art will recognize that additional starting compounds and/or reagents are commercially available or may be easily prepared according to conventional methods well known to these skilled in the art.
EXAMPLES
Following Examples are set forth to aid in the understanding of the invention, and are not intended and should not be interpreted as a limitation thereon. Modifications to reaction conditions, for example, temperature, duration of the reaction or combinations thereof, are envisioned as part of the present invention.
Example 1
2,3,4,6-Tetra-0-trimethylsilyl- -D-glucolactone
Solution of D-gluconolactone (1 kg) and N-Methylmorpholine (5.50 kg) in tetrahydrofuran (10 L) was cooled to -10°C. Trimethylsilyl chloride (3.63 kg) was added to the reaction mixture. After stirring for 1 hour, the mixture was heated to 40°C-45°C for 5 hours whereupon it was allowed to cool to 0°C. After dilution with toluene, water was slowly added. The layers were separated and the organic phases washed with aqueous potassium dihydrogen phosphate solution followed by water. The organic layer was dried over sodium sulphate and after concentration to yield oily residue (Yield: 95.41%).
Example 2
Preparation of L-proline co-crystal of canagliflozin
Hexyl lithium (0.50 kg, 0.0054 mol) was slowly added to a stirred solution of 2- (5-bromo-2-methyl-benzyl)-5-(4-fluorophenyl)-thiophene (1 kg, 0.0027 mol) in tetrahydrofuran (12 L) and toluene (12 L) at -70°C to -65 °C. After stirring for 45 minutes at same temperature, solution of 2,3,4,6-tetra-0-trimethylsilyl- -D-glucolactone (2 kg, 0.0042 mol) in toluene (3 L) was slowly added by maintaining the reaction at -70°C to - 65 °C and mixture was stirred for 2 hours at same temperature. Subsequently, a solution of methane sulfonic acid (0.80 kg, 0.0083 mol) in methanol (5 L) was added to the reaction mixture at -70°C to -65 °C and stirred for 1 hour. The reaction mixture was further stirred for 2 hours at room temperature. Water was added to the resultant mixture followed by addition of 30% aqueous Na2CC>3 solution. After phase separation, the organic layer was washed with brine solution, and after concentration to yield oily residue.
The obtained oily mass was added into dichloromethane (10 L) and resultant mass was stirred under nitrogen atmosphere at room temperature. The reaction mixture was cooled at -30°C. To this stirred solution was added triethylsilane (0.62 kg, 0.0053 mol) followed by addition of BF3Et20 (0.896 kg, 0.0063 mol). Approximately 30 minutes after addition was complete, the resulting mixture was stirred at room temperature. After completion of reaction, the mixture was cooled at 0°C and further quenched by the addition of aqueous NaHCC>3 solution. After phase separation, L-proline (0.30 kg; 0.0026 mol) was added into the organic layer containing product. The reaction mixture was heated at 40°C for 1 hour. The reaction mixture was cooled at room temperature and further stirred for 1 hour. The resultant precipitate was filtered and dried. (Yield: 38.70 %). Example 3
Preparation of L-proline co-crystal of Canagliflozin
Hexyl lithium (0.50 kg, 0.0054 mol) was slowly added to a stirred solution of 2- (5-bromo-2-methyl-benzyl)-5-(4-fluorophenyl)-thiophene (1 kg, 0.0027 mol) in tetrahydrofuran (12 L) and toluene (12 L) at -100°C to -90°C. After stirring for 45 minutes at same temperature, solution of 2,3,4,6-tetra-0-trimethylsilyl- -D-glucolactone (2 kg, 0.0042 mol) in toluene (3 L) was slowly added by maintaining the reaction at -100 to -90°C and mixture was stirred for 2 hours at same temperature. Subsequently, a solution of methane sulfonic acid (0.80 kg, 0.0083 mol) in methanol (5 L) was added to the reaction mixture at -100°C to -90°C and stirred for 1 hour. The reaction mixture was further stirred for 2 hours at room temperature. Water was added to the resultant mixture followed by addition of 30% aqueous Na2CC>3 solution. After phase separation, the organic layer was washed with brine solution, and after concentration to yield oily residue.
The obtained oily mass was added into dichloromethane (10 L) and resultant mass was stirred under nitrogen atmosphere at room temperature. The reaction mixture was cooled at -30°C. To this stirred solution was added triethylsilane (0.62 kg, 0.0053 mol) followed by addition of BF3Et20 (0.896 kg, 0.0063 mol). Approximately 30 minutes after addition was complete, the resulting mixture was stirred at room temperature. After completion of reaction, the mixture was cooled at 0°C and further quenched by the addition of aqueous NaHCC>3 solution. After phase separation, L-proline (0.30 kg; 0.0026 mol) was added into the organic layer containing product. The reaction mixture was heated at 40°C for 1 hour. The reaction mixture was cooled at room temperature and further stirred for 1 hour. The resultant precipitate was filtered and dried. (Yield: 54.80 %).
Example 4
Preparation of canagliflozin
To a stirred solution of L-proline co-crystal of canagliflozin (1 kg; 0.00178 mol) in dichloromethane (5 L) was added water (2 L). The reaction mixture was heated at 35°C for 30 minutes. The reaction mixture was further cooled to room temperature and stirred for 30 minutes. After phase separation, the organic layer was stirred at 20°C-30°C for overnight. The resultant precipitate was filtered, and dried to yield title compound.
Example 5
Preparation of amorphous canagliflozin
Canagliflozin (700 gm) was dissolved in ethyl acetate (5.6 L) and methanol (0.35 L). The resultant solution was stirred at room temperature for 1 hr. Reaction mixture was distilled out till 1.0 to 4.0 volumes of solvent remains behind. Methyl teri-butyl ether (2.8 L) was added to the above solution and resultant solution was filtered through micron filter. The resultant solution was added slowly to the pre-chilled solution of n-heptane (10.5 L) at -10°C and stirring was continued at same temperature. The solid precipitated was filtered and dried to obtain amorphous canagliflozin (yield: 88.6%).
Example 6
Preparation of canagliflozin
To a stirred solution of L-proline co-crystal of canagliflozin (5 gm) in methyl tert- butyl ether (30 ml) was added water (15 ml). The reaction mixture was stirred at room temperature for 1 hour. After phase separation, the organic layer was further stirred at room temperature for 2 hours. The resultant precipitate was filtered, and dried to yield title compound.
Example 7
Preparation of canagliflozin
To a stirred solution of L-proline co-crystal of canagliflozin (5 gm) in ethyl acetate (30 ml) was added water (15 ml). The reaction mixture was stirred at room temperature for 1 hr. After phase separation, the organic layer was further stirred at room temperature for 2 hr. The resultant precipitate was filtered, and dried to yield title compound.

Claims

1. A process for the prepar formula (I)
Figure imgf000028_0001
or a pharmaceutically acceptable salt thereof;
comprising the steps of:
(a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium; followed by treatment with methane sulfonic acid in methanol; to yield the corresponding compound of formula (IV);
Figure imgf000028_0002
(c) reacting compound of formula (V) with L-proline to yield L-proline co-crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
(e) providing solution of the canagliflozin obtained in step (d) into the mixture of ethyl acetate and methanol;
(f) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(g) adding methyl teri-butyl ether into the reaction mixture; (h) adding solution of step (g) into the suitable anti-solvent such as n-heptane;
(i) isolating amorphous canagliflozin.
2. The process according to claim 1, wherein alkyl lithium is selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium.
3. The process according to claim 1, wherein the lithiation reaction in step (a) is conducted at a temperature in the range of from about -120°C to about -85°C; in suitable solvent such as tetrahydrofuran, toluene or mixture thereof.
4. The process according to claim 1, wherein trialkylsilane is selected from the group consisting of triethylsilane, triisopropylsilane and poly(methylhydrosiloxane); and wherein the Lewis acid is selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, and titanium tetrachloride.
5. The process according to claim 4, wherein trialkylsilane is triethylsilane and Lewis acid is boron trifluoride diethyl ether complex.
6. The process according to claim 1, wherein reaction in step (c) is carried out in dichloromethane.
7. The process according to claim 1, wherein reaction in step (d) is carried out by adding water into the solution of L-proline co-crystal of canagliflozin in dichloromethane, methyl teri-butyl ether or ethyl acetate.
8. A process for the prepar
Figure imgf000029_0001
or a pharmaceutically acceptable salt thereof;
comprising the steps of: (a) reacting a compound of formula (II) with a compound of formula (III), in the presence of an alkyl lithium, wherein alkyl lithium is selected from the group consisting of n-butyl lithium, teri-butyl lithium and hexyl lithium; at a temperature in the range of from about -120°C to about -85°C; followed by treatment with methane sulfonic acid in
Figure imgf000030_0001
(c) reacting compound of formula (V) with L-proline to yield L-proline co-crystal of canagliflozin;
(d) converting L-proline co-crystal of canagliflozin to canagliflozin;
9. The process according to claim 8, wherein the lithiation reaction in step (a) is conducted in suitable solvent such as tetrahydrofuran, toluene or mixture thereof.
10. The process according to claim 8 wherein trialkylsilane is selected from the group consisting of triethylsilane, triisopropylsilane and poly(methylhydrosiloxane); and wherein the Lewis acid is selected from the group consisting of boron trifluoride diethyl ether complex, aluminium chloride, and titanium tetrachloride.
11. The process according to claim 10, wherein trialkylsilane is triethylsilane and Lewis acid is boron trifluoride diethyl ether complex.
12. The process according to claim 8, wherein reaction in step (c) is carried out in dichloromethane.
13. The process according to claim 8, wherein reaction in step (d) is carried out by adding water into the solution of L-proline co-crystal of canagliflozin in dichloromethane, methyl teri-butyl ether or ethyl acetate.
14. A process for the preparation of amorphous canagliflozin
comprising the steps of:
(a) providing solution of the canagliflozin into the mixture of ethyl acetate and methanol;
(b) distilling off the solvent till 1.0 to 4.0 volumes of solvent remains behind;
(c) adding methyl teri-butyl ether into the reaction mixture;
(d) adding solution of step (c) into the suitable anti-solvent such as n-heptane;
(e) isolating amorphous canagliflozin.
PCT/IB2016/056192 2015-10-15 2016-10-15 Process for the preparation of amorphous canagliflozin WO2017064679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN3921/MUM/2015 2015-10-15
IN3921MU2015 2015-10-15

Publications (1)

Publication Number Publication Date
WO2017064679A1 true WO2017064679A1 (en) 2017-04-20

Family

ID=57227009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/056192 WO2017064679A1 (en) 2015-10-15 2016-10-15 Process for the preparation of amorphous canagliflozin

Country Status (1)

Country Link
WO (1) WO2017064679A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207111A1 (en) * 2017-05-09 2018-11-15 Piramal Enterprises Limited A process for the preparation of sglt2 inhibitors and intermediates thereof
CN109336874A (en) * 2017-08-15 2019-02-15 江苏工程职业技术学院 A kind of preparation method of canagliflozin
CN109336875A (en) * 2017-08-15 2019-02-15 江苏工程职业技术学院 A kind of synthetic method of canagliflozin
WO2020050361A1 (en) * 2018-09-06 2020-03-12 株式会社トクヤマ PRODUCTION METHOD FOR β-C-ARYL GLYCOSIDE DERIVATIVE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012326A1 (en) * 2003-08-01 2005-02-10 Tanabe Seiyaku Co., Ltd. Novel compounds having inhibitory activity against sodium-dependant transporter
US20110212905A1 (en) * 2006-12-04 2011-09-01 Sumihiro Nomura Crystalline form of 1-(beta-d-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene hemihydrate
US20120289694A1 (en) 2011-05-09 2012-11-15 Minh Nguyen L-proline and citric acid co-crystals of (2s,3r,4r,5s,6r)-2-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2h-pyran-3,4,5-triol
US20130064909A1 (en) * 2010-05-08 2013-03-14 Biofiber-Damimo A/S Agglomerated oil impregnated psyllium husk
US20130237487A1 (en) 2011-10-31 2013-09-12 Scinopharm Taiwan, Ltd. Crystalline and non-crystalline forms of sglt2 inhibitors
CN103936727A (en) * 2014-05-09 2014-07-23 朱孝云 High-purity canagliflozin compound and preparation method thereof
WO2014195966A2 (en) * 2013-05-30 2014-12-11 Cadila Healthcare Limited Amorphous form of canagliflozin and process for preparing thereof
CN104402946A (en) * 2014-11-17 2015-03-11 连云港恒运医药科技有限公司 Invokana intermediate and preparation method thereof in amorphous form
WO2015181692A1 (en) * 2014-05-27 2015-12-03 Glenmark Pharmaceuticals Limited Process for preparation of canagliflozin
WO2016142950A1 (en) * 2015-03-11 2016-09-15 Harman Finochem Limited A novel process for preparing (2s,3r,4r,5s,6r)-2-{3-[5-[4-fluoro-phenyl)- thiophen-2-ylmethyl]-4-methyl-phenyl}-6-hydroxymethyl-tetrahydro-pyran-3,4,5- triol and its stable amorphous hemihydrate form

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012326A1 (en) * 2003-08-01 2005-02-10 Tanabe Seiyaku Co., Ltd. Novel compounds having inhibitory activity against sodium-dependant transporter
US20050233988A1 (en) 2003-08-01 2005-10-20 Tanabe Seiyaku Co., Ltd. Novel compounds
US7943788B2 (en) 2003-08-01 2011-05-17 Mitsubishi Tanabe Pharma Corporation Glucopyranoside compound
US20110212905A1 (en) * 2006-12-04 2011-09-01 Sumihiro Nomura Crystalline form of 1-(beta-d-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene hemihydrate
US20130064909A1 (en) * 2010-05-08 2013-03-14 Biofiber-Damimo A/S Agglomerated oil impregnated psyllium husk
US20120289694A1 (en) 2011-05-09 2012-11-15 Minh Nguyen L-proline and citric acid co-crystals of (2s,3r,4r,5s,6r)-2-(3-((5-(4-fluorophenyl)thiophen-2-yl)methyl)-4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2h-pyran-3,4,5-triol
US20130237487A1 (en) 2011-10-31 2013-09-12 Scinopharm Taiwan, Ltd. Crystalline and non-crystalline forms of sglt2 inhibitors
WO2014195966A2 (en) * 2013-05-30 2014-12-11 Cadila Healthcare Limited Amorphous form of canagliflozin and process for preparing thereof
US20160083374A1 (en) 2013-05-30 2016-03-24 Cadila Healthcare Limited Amorphous form of canagliflozin and process for preparing thereof
CN103936727A (en) * 2014-05-09 2014-07-23 朱孝云 High-purity canagliflozin compound and preparation method thereof
WO2015181692A1 (en) * 2014-05-27 2015-12-03 Glenmark Pharmaceuticals Limited Process for preparation of canagliflozin
CN104402946A (en) * 2014-11-17 2015-03-11 连云港恒运医药科技有限公司 Invokana intermediate and preparation method thereof in amorphous form
WO2016142950A1 (en) * 2015-03-11 2016-09-15 Harman Finochem Limited A novel process for preparing (2s,3r,4r,5s,6r)-2-{3-[5-[4-fluoro-phenyl)- thiophen-2-ylmethyl]-4-methyl-phenyl}-6-hydroxymethyl-tetrahydro-pyran-3,4,5- triol and its stable amorphous hemihydrate form

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2014, ZHU, XIAOYUN: "Process for preparation of pure canagliflozin", XP002764911, retrieved from STN Database accession no. 2014:1203778 *
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; TIAN, HUI ET AL.: "Invokana intermediate and its amorphous preparation method", XP002764912, retrieved from STN Database accession no. 2015:402838 *
NOMURA ET AL.: "Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus", J. MED. CHEM., vol. 53, no. 17, 9 September 2010 (2010-09-09), pages 6355 - 6360, XP007915324, ISSN: 0022-2623, DOI: 10.1021/JM100332N *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207111A1 (en) * 2017-05-09 2018-11-15 Piramal Enterprises Limited A process for the preparation of sglt2 inhibitors and intermediates thereof
US11312740B2 (en) 2017-05-09 2022-04-26 Piramal Pharma Limited Process for the preparation of SGLT2 inhibitors and intermediates thereof
CN109336874A (en) * 2017-08-15 2019-02-15 江苏工程职业技术学院 A kind of preparation method of canagliflozin
CN109336875A (en) * 2017-08-15 2019-02-15 江苏工程职业技术学院 A kind of synthetic method of canagliflozin
CN109336875B (en) * 2017-08-15 2022-03-11 江苏工程职业技术学院 Synthesis method of canagliflozin
CN109336874B (en) * 2017-08-15 2022-03-11 江苏工程职业技术学院 Preparation method of canagliflozin
WO2020050361A1 (en) * 2018-09-06 2020-03-12 株式会社トクヤマ PRODUCTION METHOD FOR β-C-ARYL GLYCOSIDE DERIVATIVE

Similar Documents

Publication Publication Date Title
WO2017064679A1 (en) Process for the preparation of amorphous canagliflozin
EP3349762B1 (en) Co-crystals of sglt2 inhibitors, process for their preparation and pharmaceutical compositions thereof
AU2010249166B2 (en) Process for the production of atorvastatin calcium in amorphous form
US5948884A (en) Cyclosporin derivatives with anti-HIV effect
EP2785701B1 (en) Crystalline form of carbazitaxel and process for preparation thereof
EP2545048B1 (en) Raltegravir salts and crystalline forms thereof
JP2009533330A (en) Docetaxel polymorphs and processes
JP2011518815A (en) Crystalline form of tenofovir disoproxil and process for producing the same
WO2017118945A1 (en) Premix of dapagliflozin and process for the preparation thereof
WO2007073937A2 (en) Process for preparing crystalline forms of orlistat
CA2300204C (en) Process to produce 4-hydroxy-2-oxo-pyrane derivates useful as protease inhibitors
EP2650281B1 (en) Process for preparing cyclic amine compounds
US20090082421A1 (en) Crystalline Form B4 of Atorvastatin Magnesium and a Process Thereof
WO2016016852A1 (en) Process for the purification of canagliflozin
EP3105231A1 (en) A process for preparation of (2s,5r)-6-sulphooxy-7-oxo-2-[((3r)-piperidine-3-carbonyl)-hydrazinocarbonyl]-1,6-diaza-bicyclo[3.2.1] octane
EP3512835A1 (en) A process for purification of carfilzomib intermediate
WO2017141202A1 (en) Complex of sglt2 inhibitor and process for preparation thereof
WO2011153221A1 (en) Solid state forms of ixabepilone
WO2016142950A1 (en) A novel process for preparing (2s,3r,4r,5s,6r)-2-{3-[5-[4-fluoro-phenyl)- thiophen-2-ylmethyl]-4-methyl-phenyl}-6-hydroxymethyl-tetrahydro-pyran-3,4,5- triol and its stable amorphous hemihydrate form
JP6761564B2 (en) L-proline compound of sodium-glucose cotransporter 2 inhibitor, and monohydrate and crystal of L-proline compound
EP2899193B1 (en) Crystalline form of abacavir that is essentially free of solvent
CN107235886B (en) Synthesis method of 2, 3-dihydropyrrole ring
WO2015084693A2 (en) New process for preparing loratadine from a ketone intermediate
WO2016207261A1 (en) Method for synthesizing aromatic oximes
CN106916157A (en) The crystal formation of substituted amino pyran derivate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16790708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16790708

Country of ref document: EP

Kind code of ref document: A1