WO2017061435A1 - Method for functionalizing vinyl alcohol resin, and vinyl alcohol resin functionalizing agent - Google Patents

Method for functionalizing vinyl alcohol resin, and vinyl alcohol resin functionalizing agent Download PDF

Info

Publication number
WO2017061435A1
WO2017061435A1 PCT/JP2016/079524 JP2016079524W WO2017061435A1 WO 2017061435 A1 WO2017061435 A1 WO 2017061435A1 JP 2016079524 W JP2016079524 W JP 2016079524W WO 2017061435 A1 WO2017061435 A1 WO 2017061435A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzoxabolol
polymer
vinyl alcohol
alcohol resin
evoh
Prior art date
Application number
PCT/JP2016/079524
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 小土橋
充宏 荏原
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2017544510A priority Critical patent/JP6504628B2/en
Publication of WO2017061435A1 publication Critical patent/WO2017061435A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide

Definitions

  • the present invention relates to a method for easily imparting functionality to a vinyl alcohol resin, which is usually difficult to impart functionality due to its high stability, and a substance used for this functionalization.
  • This application claims priority based on Japanese Patent Application No. 2015-198316 filed in Japan on October 6, 2015, the contents of which are incorporated herein by reference.
  • this application refers to the non-patent document “Yohei Kotushibashi and Mitshiro Hiro Ebara: Polymers 2006, 8 (2), 41, p1-11; doi: 10.3390 / polym8020041” and “SupplementaryMatter1”. (Incorporated herein by reference).
  • ethylene-vinyl alcohol copolymer poly (ethylene-co-vinylcohol), such as EVAL (registered trademark) sold by Kuraray Co., Ltd., hereinafter abbreviated as EVOH
  • EVAL registered trademark
  • EVOH ethylene-vinyl alcohol copolymer
  • EVOH is difficult to impart new functionality due to its high stability.
  • a composite material can be formed by mixing a hydrophobic polymer with EVOH.
  • a polymer mixed from a film, fiber, or the like formed using this composite material may leak out, which is a practical problem.
  • Non-Patent Document 1 it is known that the benzoxabolol group has a stronger bond with diol than phenylboronic acid. Moreover, this inventor has announced that the gel with a sugar polymer is prepared using the benzoxabolol polymer which has this benzoxabolol group (nonpatent literature 2, 3).
  • the object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for easily imparting various functions to EVOH and a substance used in the method.
  • EVOH can change the ratio of its monomer, ethylene and vinyl alcohol, within a wide range, and in particular, the present invention can be applied even when ethylene is not included (that is, in the case of polyvinyl alcohol).
  • the “vinyl alcohol resin” of the present invention is also used in the meaning of “ethylene-vinyl alcohol copolymer or polyvinyl alcohol”.
  • a vinyl alcohol resin functionalizing method in which a benzoxabolol polymer containing a benzoxabolol structure and a vinyl alcohol resin are mixed and reversibly bonded.
  • the desired functionality may be selected from the group consisting of temperature responsiveness, viscosity, electrospinning and dyeability.
  • the desired functionality may be the functionality possessed by the benzoxabolol polymer.
  • the benzoxabolol polymer may be a copolymer containing a monomer having a benzoxabolol structure and a monomer that gives the functionality.
  • the benzoxabolol polymer may be a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
  • a vinyl alcohol resin functionalizing agent comprising a benzoxabolol polymer containing a benzoxabolol structure is provided.
  • the desired functionality may be selected from the group consisting of temperature responsiveness, viscosity, electrospinning and dyeability.
  • the desired functionality may be the functionality possessed by the benzoxabolol polymer.
  • the benzoxabolol polymer may be a copolymer containing a monomer having a benzoxabolol structure and a monomer that gives the functionality.
  • the benzoxabolol polymer may be a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
  • a benzoxabolol polymer containing a monomer-derived structure providing functionality and a benzoxabolol structure, and a vinyl alcohol resin having a diol structure, the benzoxabolol structure and the diol A mixed product of a benzoxabolol polymer and a vinyl alcohol resin, characterized by being reversibly bonded by bonding to the structure.
  • the benzoxabolol polymer may be a copolymer of a monomer having the benzoxabolol structure and a monomer providing the functionality.
  • the benzoxabolol polymer may be a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
  • functionality can be imparted to EVOH by an extremely simple process of adding and mixing a functionalizing agent to ordinary EVOH.
  • FIG. 4 A photograph showing the result of staining the accumulation shown in FIG. 4 (a) with methylene blue.
  • Benzoxabolol represented by formula (2) that can be reversibly bound to benzoxazole (also called boroxole)
  • a polymer having the following structure (hereinafter referred to as benzoxabolol polymer) was synthesized.
  • the benzoxabolol polymer can be synthesized by radical polymerization that is commonly used for benzoxabolol monomers, and its structure and composition can be precisely controlled by using living radical polymerization. .
  • a copolymer can be synthesized together with other monomers. Thereby, the molecular weight, molecular weight distribution, structure, etc. of the polymer can be controlled. Since various functionalities (for example, stimulus reactivity, biocompatibility, conductivity, fire resistance, etc.) can be imparted to the benzoxabolol polymer, no special functionality imparting treatment is applied to the EVOH side.
  • the capacity of EVOH products can be improved.
  • the present invention can be realized very simply by simply mixing a benzoxabolol polymer imparted with a desired functionality with EVOH in a solvent, so that it is very simple and low cost.
  • a benzoxabolol polymer having a desired functionality a benzoxabolol polymer modified with a functional group as necessary to express the desired functionality, a monomer having a benzoxabolol structure and a desired
  • Various embodiments such as copolymers with other monomers to provide the functionality of are possible.
  • FIG. 1 shows an interaction between benzoxabolol itself and a diol, but this is an exemplary description, and the interaction is expressed by any compound having a benzoxabolol structure.
  • Examples of such a compound having a benzoxabolol structure include, but are not limited to, a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton. It should be noted here that even if the polymer has high stereoregularity, if it has a benzoxabolol structure, the equilibrium reaction of the bond with the diol shown in FIG. 1 proceeds to some extent. Even if it becomes difficult, it will not change.
  • FIG. 1 occurs by mixing the benzoxabolol polymer and EVOH, since both are simply mixed as processing, in the following, by mixing both, FIG. A product in which a reaction as shown in the figure has occurred may be referred to as a “mixed product”.
  • EVOH and benzoxabolol polymer having temperature responsiveness and dyeability are combined to show that EVOH can have the functionality.
  • temperature responsiveness even a polymer that easily dissolves at room temperature can be processed so that it can be adsorbed by the material.
  • the viscosity generally increases. This viscosity is one of the functions.
  • these mixed products having an appropriate viscosity can be electrospun to obtain mixed product fibers.
  • the functionality that can be imparted to EVOH is not limited to temperature responsiveness, viscosity, dyeability, etc., and may be any functionality that can be imparted by the method described herein.
  • EVAL manufactured by Kuraray Co., Ltd. (ethylene copolymerization ratio (molar ratio) 44%) was used as EVOH, but it is obvious that the generality is not lost.
  • Example 1 ⁇ Benzoxaborol polymer with added functionality>
  • EVOH is provided with functionality such as temperature responsiveness, gelation, and electrospinning properties
  • the temperature responsiveness in this case is that the surface properties of a mixed product such as gel or fiber made of EVOH and benzoxabolol polymer can be controlled to be hydrophilic / hydrophobic depending on the temperature.
  • 5-methacrylamido-1,2-benzoxaborole is a compound of 2- (2-methoxyethyl) ethyl methacrylate (MEO 2 MA) and oligo (ethyleneglycol) A temperature was selected to control the temperature responsiveness.
  • the benzoxabolol polymer is based on these monomers, and can be obtained by copolymerization after further mixing with a monomer having the desired functionality. Since the copolymerization method itself used here is already known, a detailed description thereof will be omitted, but if necessary, refer to Non-Patent Documents 2 and 3 which are the articles of the present inventor.
  • Units other than the benzoxabolol structure in the benzoxabolol polymer shown above have ethylene glycol type temperature responsiveness. Since the phase transition temperature of this polymer varies depending on the molecular weight and structure of these temperature-responsive units, an appropriate polymer can be obtained by appropriately selecting these monomers and copolymerizing them.
  • FIG. 2 shows a photograph of a gel obtained by mixing EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO).
  • EVOH and P MEO 2 MA-co-OEGMA-co-MAAmBO
  • HFIP 1,1,1,3,3,3-3-
  • Hexafluoropropanol was dissolved at room temperature.
  • a three-dimensional cross-linked structure is constructed by the interaction between the two as shown in FIG. 1, it is possible to prepare a gel structure.
  • the strength of the gel can be controlled by the polymer ratio to be mixed. Further, the viscosity in the sol state can be similarly controlled.
  • the mixed product of EVOH and benzoxabolol polymer can be handled as either a sol or a gel depending on the concentration or mixing ratio in the solution, the molding process is easy. From a bulk state, a film-like thin film, a capsule, or a nanofiber can be formed and processed.
  • Example 2 ⁇ Mixed product of EVOH and benzoxabolol polymer 2: nanofiber>
  • FIG. 3 (B) shows an electrospinning solution in which EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA-co-MAAmBO) (concentration: 2.5 wt%) are mixed in HFIP. The SEM image of a result is shown. As can be seen from FIG.
  • a nanofiber assembly can be obtained by electrospinning a mixed product 2 of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO).
  • the gaps between the fibers are relatively well aligned.
  • the size of the gap can be controlled by adjusting the electrospinning conditions, the mixed product concentration, and the like.
  • Example 3 ⁇ Mixed product of EVOH and benzoxabolol polymer 3: nanofiber>
  • FIG. 3C shows an electrospinning solution in which EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA-co-MAAmBO) (concentration: 0.5 wt%) are mixed in HFIP. The SEM image of a result is shown.
  • EVOH concentration: 3.5 wt%
  • P MEO 2 MA-co-OEGMA-co-MAAmBO
  • nanofibers are not formed despite the electrospinning of the mixed product 3 of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO).
  • 2 MA-co-OEGMA-co-MAAmBO is less than 0.5 wt% compared to 2.5 wt% in FIG. 3 (B) in Example 2, so that the viscosity of the mixed product 3 is as shown in FIG. This is because it is lower than in the case of B).
  • FIG. 3A shows an SEM image as a result of electrospinning an HFIP solution containing EVOH (concentration: 3.5 wt%) alone.
  • FIG. 3D shows EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA) (concentration: 2.5 wt%) (that is, a copolymer having no benzoxabolol structure).
  • the SEM image of the result of electrospinning the solution which mixed) in HFIP is shown.
  • FIG. 4 (a) An accumulation obtained by electrospinning a mixture product of EVOH and the benzoxabolol polymer was prepared as an object for a dyeing experiment. This accumulation is represented by the formula (6) methylene blue
  • FIG. 4B A comparative assembly obtained by electrospinning the mixed product was prepared. Similarly to Example 4, the result of staining this aggregate with methylene blue represented by formula (6) is shown in FIG. 5 (b).
  • the benzoxabolol polymer represented by the formula (5) in Example 4 is the formula (7) in Comparative Example 3. It can be seen that a structure derived from a relatively small monomer having a carboxyl group is added to the benzoxabolol polymer represented by As can be seen from FIG.
  • the assembly made from the mixed product 4 of EVOH and a benzoxabolol polymer modified with a carboxyl group which is Example 4 of the present invention, is a benzoate not modified with a carboxyl group. It turns out that it is dye
  • the reason why the accumulation produced by mixing EVOH and a benzoxabolol polymer modified with a carboxyl group in this way has higher dyeability is that it is ionized in the accumulation and exists in the form of -COO- This is because an electrostatic interaction occurs between the carboxyl group to be reacted and methylene blue which is a cationic dye.
  • methylene blue was used as the dye, and the benzoxabolol polymer was modified with a carboxyl group.
  • the present invention is not limited to this combination, and any functional group that ionizes negatively with any cationic dye. Improvement in dyeability can be achieved by combination with a benzoxabolol polymer modified with a group. On the contrary, the dyeability can be improved by a combination of any anionic dye and a benzoxabolol polymer modified with any functional group capable of positive ionization.
  • EVOH uses existing materials that are easily available, and only by mixing a benzoxabolol polymer having a desired functionality with EVOH, the characteristics of EVOH can be obtained. Since the desired functionality can be imparted while maintaining it, the present invention is expected to be widely used for expanding the use of EVOH.

Abstract

Ethylene-vinyl alcohol copolymers (abbreviated to EVOHs) have high gas barrier properties and biocompatibility, but are difficult to be imparted with functionality because of their high stability. According to the present invention, by utilizing an interaction between benzoxaborole and a hydroxy group included in an EVOH as shown in the drawing, a benzoxaborole polymer having desired functionality and the EVOH are simply mixed and reversibly bound together, and, as a result, functionality can be easily imparted to the EVOH.

Description

ビニルアルコール樹脂機能化方法並びにビニルアルコール樹脂機能化剤Vinyl alcohol resin functionalizing method and vinyl alcohol resin functionalizing agent
 本発明は安定性が高いために通常は機能性を付与することが困難なビニルアルコール樹脂に簡単に機能性を付与する方法並びにこの機能化のために使用する物質に関する。
 本願は、2015年10月6日に、日本に出願された特願2015-198316号に基づき優先権を主張し、その内容をここに援用する。また、本願は、非特許文献「Yohei Kotsuchibashi and Mitsuhiro Ebara: Polymers 2016, 8(2), 41,p1~11;doi:10.3390/polym8020041」およびその「Supplementary Materials S1~S3」の内容をここに援用する(incorporated herein by reference)。
The present invention relates to a method for easily imparting functionality to a vinyl alcohol resin, which is usually difficult to impart functionality due to its high stability, and a substance used for this functionalization.
This application claims priority based on Japanese Patent Application No. 2015-198316 filed in Japan on October 6, 2015, the contents of which are incorporated herein by reference. In addition, this application refers to the non-patent document “Yohei Kotushibashi and Mitshiro Hiro Ebara: Polymers 2006, 8 (2), 41, p1-11; doi: 10.3390 / polym8020041” and “SupplementaryMatter1”. (Incorporated herein by reference).
 エチレン-ビニルアルコール共重合体(poly(ethylene-co-vinylalcohol)、例えば株式会社クラレから販売されているエバール(登録商標)等、以下、EVOHと略称する)は高いガスバリア性を有する高分子であり、包装フィルムや燃料タンクに広く使用されている。EVOHはまた高い生体適合性を示し、人工透析用の中空糸(ダイラタイザー)としても実用化されている。 An ethylene-vinyl alcohol copolymer (poly (ethylene-co-vinylcohol), such as EVAL (registered trademark) sold by Kuraray Co., Ltd., hereinafter abbreviated as EVOH) is a polymer having high gas barrier properties. Widely used in packaging films and fuel tanks. EVOH also exhibits high biocompatibility and has been put into practical use as a hollow fiber (dilator) for artificial dialysis.
 しかしながら、EVOHは、その高い安定性のために新たに機能性を付与することが困難である。機能性を付加するため、例えば、EVOHのOH基の酸化やUV処理により、表面の性質を変化させることも可能であるが、この場合多くの作業工程を必要とし、また生成に時間を要するという問題もある。これに加えて、このような処理を行うことはEVOH自体の構造を変化させることになるため、その特性への悪影響が懸念される。
 他の方法として、EVOHに疎水性のポリマーを混合することにより複合材料を形成することも可能である。しかし、条件によっては、この複合材料を用いて形成されたフィルムやファイバー等から混合したポリマーが漏れ出してしまうことがあり、実用上問題となる。
 一方、フェニルボロン酸より、ベンゾオキサボロール基の方がジオールとの結合性が強いことが知られている(非特許文献1)。また、このベンゾオキサボロール基を有するベンゾオキサボロールポリマーを用いて糖ポリマーとのゲルを調製することは本願発明者が公表している(非特許文献2,3)。 
However, EVOH is difficult to impart new functionality due to its high stability. In order to add functionality, it is possible to change the surface properties by, for example, oxidation of the OH group of EVOH or UV treatment. In this case, however, many work steps are required, and it takes time to produce. There is also a problem. In addition, since such a process changes the structure of the EVOH itself, there is a concern about adverse effects on its characteristics.
As another method, a composite material can be formed by mixing a hydrophobic polymer with EVOH. However, depending on conditions, a polymer mixed from a film, fiber, or the like formed using this composite material may leak out, which is a practical problem.
On the other hand, it is known that the benzoxabolol group has a stronger bond with diol than phenylboronic acid (Non-Patent Document 1). Moreover, this inventor has announced that the gel with a sugar polymer is prepared using the benzoxabolol polymer which has this benzoxabolol group (nonpatent literature 2, 3).
 本発明は上述した従来技術の問題点を解消し、EVOHに簡単に各種の機能性を付与するための方法及び当該方法に使用される物質を提供することをその課題とする。なお、EVOHはそのモノマーであるエチレンとビニルアルコールとの比率を広い範囲で変化させることができ、特にエチレンを含まない場合(すなわちポリビニルアルコールの場合)でも本発明を適用できるため、本願ではEVOHをポリビニルアルコールまで含むポリマーの意味で使用する。また、本発明の「ビニルアルコール樹脂」も「エチレン-ビニルアルコール共重合体またはポリビニルアルコール」の意味で使用する。 The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for easily imparting various functions to EVOH and a substance used in the method. EVOH can change the ratio of its monomer, ethylene and vinyl alcohol, within a wide range, and in particular, the present invention can be applied even when ethylene is not included (that is, in the case of polyvinyl alcohol). Used to mean a polymer containing up to polyvinyl alcohol. The “vinyl alcohol resin” of the present invention is also used in the meaning of “ethylene-vinyl alcohol copolymer or polyvinyl alcohol”.
 本発明の一側面によれば、ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーとビニルアルコール樹脂とを混合して両者を可逆的に結合する、ビニルアルコール樹脂機能化方法が与えられる。
 ここで、前記所望の機能性は温度応答性、粘性、電界紡糸性及び染色性からなる群から選択されてよい。
 また、前記所望の機能性は前記ベンゾオキサボロールポリマーが有する機能性であってよい。
 また、前記ベンゾオキサボロールポリマーはベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとを含む共重合体であってよい。
 また、前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーであってよい。
 本発明の他の側面によれば、ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーからなる、ビニルアルコール樹脂機能化剤が与えられる。
 ここで、前記所望の機能性は温度応答性、粘性、電界紡糸性及び染色性からなる群から選択されてよい。
 また、前記所望の機能性は前記ベンゾオキサボロールポリマーが有する機能性であってよい。
 また、前記ベンゾオキサボロールポリマーはベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとを含む共重合体であってよい。
 また、前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーであってよい。
 本発明の別の側面によれば、機能性を与えるモノマー由来構造とベンゾオキサボロール構造とを含むベンゾオキサボロールポリマーと
 ジオール構造を有するビニルアルコール樹脂と
を前記ベンゾオキサボロール構造と前記ジオール構造との結合によって
 可逆的に結合してなることを特徴とする、ベンゾオキサボロールポリマーとビニルアルコール樹脂の混合生成物を与える。
 前記ベンゾオキサボロールポリマーは前記ベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとの共重合体であってよい。
 また、前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーであってよい。
According to one aspect of the present invention, there is provided a vinyl alcohol resin functionalizing method in which a benzoxabolol polymer containing a benzoxabolol structure and a vinyl alcohol resin are mixed and reversibly bonded.
Here, the desired functionality may be selected from the group consisting of temperature responsiveness, viscosity, electrospinning and dyeability.
The desired functionality may be the functionality possessed by the benzoxabolol polymer.
The benzoxabolol polymer may be a copolymer containing a monomer having a benzoxabolol structure and a monomer that gives the functionality.
The benzoxabolol polymer may be a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
According to another aspect of the present invention, a vinyl alcohol resin functionalizing agent comprising a benzoxabolol polymer containing a benzoxabolol structure is provided.
Here, the desired functionality may be selected from the group consisting of temperature responsiveness, viscosity, electrospinning and dyeability.
The desired functionality may be the functionality possessed by the benzoxabolol polymer.
The benzoxabolol polymer may be a copolymer containing a monomer having a benzoxabolol structure and a monomer that gives the functionality.
The benzoxabolol polymer may be a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
According to another aspect of the present invention, a benzoxabolol polymer containing a monomer-derived structure providing functionality and a benzoxabolol structure, and a vinyl alcohol resin having a diol structure, the benzoxabolol structure and the diol A mixed product of a benzoxabolol polymer and a vinyl alcohol resin, characterized by being reversibly bonded by bonding to the structure.
The benzoxabolol polymer may be a copolymer of a monomer having the benzoxabolol structure and a monomer providing the functionality.
The benzoxabolol polymer may be a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
 本発明によれば、通常のEVOHに機能化剤を添加して混合するという極めて簡単な処理でEVOHに機能性を付与することができる。 According to the present invention, functionality can be imparted to EVOH by an extremely simple process of adding and mixing a functionalizing agent to ordinary EVOH.
ベンゾオキサボロールとジオールとの結合を説明する図。The figure explaining the coupling | bonding of benzoxabolol and diol. EVOHとP(MEOMA-co-OEGMA-co-MAAmBO)とを混合して得られたゲルの写真。A photograph of a gel obtained by mixing EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO). EVOHとP(MEOMA-co-OEGMA-co-MAAmBO)との混合生成物を電界紡糸した結果及び比較例を電界紡糸した結果を示す図。EVOH and P shows a (MEO 2 MA-co-OEGMA -co-MAAmBO) results and comparative example in which the mixed product was electrospun with the results obtained by electrospinning a. (a)EVOHとカルボキシル基で修飾されたベンゾオキサボロールポリマーとの混合生成物を電界紡糸して得られる集積物の写真。(b)比較例としての、EVOHとカルボキシル基で修飾されていないベンゾオキサボロールポリマーとの混合生成物を電界紡糸して得られる集積物の写真。(A) A photograph of an accumulation obtained by electrospinning a mixed product of EVOH and a benzoxabolol polymer modified with a carboxyl group. (B) A photograph of an accumulation obtained by electrospinning a mixed product of EVOH and a benzoxabolol polymer not modified with a carboxyl group as a comparative example. (a)図4(a)に示された集積物をメチレンブルーにより染色した結果を示す写真。(b)図4(b)に示された集積物をメチレンブルーにより染色した結果を示す写真。(A) A photograph showing the result of staining the accumulation shown in FIG. 4 (a) with methylene blue. (B) A photograph showing the result of staining the aggregate shown in FIG. 4 (b) with methylene blue.
 上述の従来技術の問題点を解消するため、本発明の一態様において、式(1)で表すEVOH In order to solve the above-described problems of the prior art, in one embodiment of the present invention, EVOH represented by Formula (1)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
と可逆的に結合できる式(2)で表すベンゾオキサボロール(benzoxaborole;ボロキソール(boroxole)とも呼ばれる) Benzoxabolol represented by formula (2) that can be reversibly bound to benzoxazole (also called boroxole)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
の構造を有するポリマー(以下、ベンゾオキサボロールポリマーと称する)を合成した。ベンゾオキサボロールポリマーはベンゾオキサボロールモノマーを一般に使用されているラジカル重合により合成することが可能であり、またリビングラジカル重合を使用することによって、その構造や組成を精密に制御することもできる。更に他のモノマーとともに共重合体を合成することもできる。これにより、ポリマーの分子量、分子量分布、構造等を制御することができる。各種の機能性(例えば刺激反応性、生体適合性、導電性、耐火性等)を当該ベンゾオキサボロールポリマーに付与することができるため、EVOH側には特段の機能性付与処理を施さなくても、EVOH製品の能力の向上が可能となる。また、本発明は、所望の機能性を付与したベンゾオキサボロールポリマーをEVOHと溶媒中で混合するだけで極めて簡単に実現できるので、非常に簡便かつ低コストである。なお、所望の機能性を有するベンゾオキサボロールポリマーとしては、所望の機能性を発現させるために必要に応じて官能基で修飾したベンゾオキサボロールポリマー、ベンゾオキサボロール構造を有するモノマーと所望の機能性を提供するための他のモノマーとの共重合体等の各種の態様が可能である。 A polymer having the following structure (hereinafter referred to as benzoxabolol polymer) was synthesized. The benzoxabolol polymer can be synthesized by radical polymerization that is commonly used for benzoxabolol monomers, and its structure and composition can be precisely controlled by using living radical polymerization. . Furthermore, a copolymer can be synthesized together with other monomers. Thereby, the molecular weight, molecular weight distribution, structure, etc. of the polymer can be controlled. Since various functionalities (for example, stimulus reactivity, biocompatibility, conductivity, fire resistance, etc.) can be imparted to the benzoxabolol polymer, no special functionality imparting treatment is applied to the EVOH side. However, the capacity of EVOH products can be improved. In addition, the present invention can be realized very simply by simply mixing a benzoxabolol polymer imparted with a desired functionality with EVOH in a solvent, so that it is very simple and low cost. In addition, as a benzoxabolol polymer having a desired functionality, a benzoxabolol polymer modified with a functional group as necessary to express the desired functionality, a monomer having a benzoxabolol structure and a desired Various embodiments such as copolymers with other monomers to provide the functionality of are possible.
 ベンゾオキサボロールポリマーとEVOHとの可逆的な結合には、図1に示すような、ベンゾオキサボロール構造とEVOHが有する水酸基との相互作用を利用した。図1に示す可逆反応は、中性~アルカリ性では右側(ベンゾオキサボロール基とジオールとが結合する方向)へ、また酸性では左側(ベンゾオキサボロール基とジオールとが解離する方向)へ進む。なお、図1ではベンゾオキサボロールそれ自体とジオールとの相互作用が示されているがこれは例示的な記載であり、当該相互作用はベンゾオキサボロール構造を有する任意の化合物で発現する。このようなベンゾオキサボロール構造を有する化合物の例としては、これに限定するわけではないが、(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーがある。ここで注意すべき点として、たとえ立体規則性の高いポリマーであっても、ベンゾオキサボロールの構造を有していれば、図1に示したジオールとの結合の平衡反応は、ある程度進行しにくくなるとしても起こることに変わりはない。 For the reversible bond between the benzoxabolol polymer and EVOH, the interaction between the benzoxabolol structure and the hydroxyl group of EVOH as shown in FIG. 1 was used. The reversible reaction shown in FIG. 1 proceeds to the right (in the direction in which the benzoxabolol group and the diol are bonded) in neutral to alkaline, and to the left (in the direction in which the benzoxabolol group and diol are dissociated) in acidity. . Note that FIG. 1 shows an interaction between benzoxabolol itself and a diol, but this is an exemplary description, and the interaction is expressed by any compound having a benzoxabolol structure. Examples of such a compound having a benzoxabolol structure include, but are not limited to, a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton. It should be noted here that even if the polymer has high stereoregularity, if it has a benzoxabolol structure, the equilibrium reaction of the bond with the diol shown in FIG. 1 proceeds to some extent. Even if it becomes difficult, it will not change.
 なお、ベンゾオキサボロールポリマーとEVOHとを混合することによって図1に示すような反応が起こるが、処理としては単に両者を混合するだけであるので、以下では両者を混合することによって図1に示すような反応が起こった状態の物を「混合生成物」と称することがある。 In addition, although the reaction as shown in FIG. 1 occurs by mixing the benzoxabolol polymer and EVOH, since both are simply mixed as processing, in the following, by mixing both, FIG. A product in which a reaction as shown in the figure has occurred may be referred to as a “mixed product”.
 なお、ベンゾオキサボロール基とフェニルボロン酸とを比較すると、ベンゾオキサボロール基の方がジオールとの結合性が強いことが証明されている(非特許文献1)。従って、ベンゾオキサボロールポリマーを使用する場合、より効率的にゲル化等を引き起こすができる。 In addition, comparing the benzoxabolol group and phenylboronic acid, it has been proved that the benzoxabolol group has a stronger binding property to the diol (Non-patent Document 1). Therefore, when a benzoxabolol polymer is used, gelation or the like can be caused more efficiently.
 以下の実施例ではEVOHと温度応答性や染色性を有するベンゾオキサボロールポリマーを結合させることにより、EVOHに当該機能性を有するようにできることを示す。温度応答性を持たせることによって、室温中では容易に溶解してしまうポリマーであっても、材料により吸着できるような加工を行うことができる。また、EVOHとベンゾオキサボロールポリマーとが図1に示すように結合すると、一般に粘性が大きくなる。この粘性も機能性の一つである。例えば、適切な粘性を有するこれらの混合生成物を電界紡糸することで、混合生成物のファイバーを得ることができる。もちろん、EVOHに付与できる機能性は温度応答性、粘性、染色性等に限定されるものではなく、ここで説明される方法により付与可能な任意の機能性であって良い。 In the following examples, EVOH and benzoxabolol polymer having temperature responsiveness and dyeability are combined to show that EVOH can have the functionality. By giving temperature responsiveness, even a polymer that easily dissolves at room temperature can be processed so that it can be adsorbed by the material. In addition, when EVOH and a benzoxabolol polymer are bonded as shown in FIG. 1, the viscosity generally increases. This viscosity is one of the functions. For example, these mixed products having an appropriate viscosity can be electrospun to obtain mixed product fibers. Of course, the functionality that can be imparted to EVOH is not limited to temperature responsiveness, viscosity, dyeability, etc., and may be any functionality that can be imparted by the method described herein.
 以下、実施例に基づいて本発明をさらに詳細に説明する。なお、以下ではEVOHとしてクラレ株式会社製のエバール(エチレン共重合比(モル比)44%)を使用したが、もちろん一般性を失うものでないことは明らかである。 Hereinafter, the present invention will be described in more detail based on examples. In the following, EVAL manufactured by Kuraray Co., Ltd. (ethylene copolymerization ratio (molar ratio) 44%) was used as EVOH, but it is obvious that the generality is not lost.
[実施例1]
<機能性を付与したベンゾオキサボロールポリマー>
 以下では、EVOHに対して温度応答性、ゲル化、電界紡糸性等の機能性を持たせる例を示す。なお、この場合の温度応答性とは、EVOHとベンゾオキサボロールポリマーから成るゲルやファイバーなどの混合生成物の表面性質を、温度により親水性/疎水性と制御することができることである。そのために使用することができるベンゾオキサボロールポリマーの例であるP(MEOMA-co-OEGMA-co-MAAmBO)の構造式を式(3)に示す。5-methacrylamido-1,2-benzoxaborole(MAAmBO)は、ベンゾオキサボロール構造の付与のため、2-(2-methoxyethoxy)ethyl methacrylate(MEOMA)およびoligo(ethylene glycol) methacrylate(OEGMA)は、温度応答性を示す温度を制御するために選択した。ベンゾオキサボロールポリマーは、これらのモノマーを基本とし、付与したい機能性を持つモノマーさらに混合後、共重合することで得られる。ここで使用される共重合法自体は既に知られている事項であるので具体的な説明は省略するが、必要に応じて本願発明者の論文である非特許文献2,3を参照されたい。
[Example 1]
<Benzoxaborol polymer with added functionality>
Hereinafter, examples in which EVOH is provided with functionality such as temperature responsiveness, gelation, and electrospinning properties will be described. The temperature responsiveness in this case is that the surface properties of a mixed product such as gel or fiber made of EVOH and benzoxabolol polymer can be controlled to be hydrophilic / hydrophobic depending on the temperature. The structural formula of P (MEO 2 MA-co-OEGMA-co-MAAmBO), which is an example of a benzoxabolol polymer that can be used for this purpose, is shown in Formula (3). 5-methacrylamido-1,2-benzoxaborole (MAAmBO) is a compound of 2- (2-methoxyethyl) ethyl methacrylate (MEO 2 MA) and oligo (ethyleneglycol) A temperature was selected to control the temperature responsiveness. The benzoxabolol polymer is based on these monomers, and can be obtained by copolymerization after further mixing with a monomer having the desired functionality. Since the copolymerization method itself used here is already known, a detailed description thereof will be omitted, but if necessary, refer to Non-Patent Documents 2 and 3 which are the articles of the present inventor.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上に示したベンゾオキサボロールポリマー中のベンゾオキサボロール構造以外のユニットは、エチレングリコール型の温度応答性を有する。このポリマーの相転移温度はこれらの温度応答性を有するユニットの分子量や構造により変化するので、これらのモノマーを適宜選択して共重合させることにより適切なポリマーを得ることが可能である。 Units other than the benzoxabolol structure in the benzoxabolol polymer shown above have ethylene glycol type temperature responsiveness. Since the phase transition temperature of this polymer varies depending on the molecular weight and structure of these temperature-responsive units, an appropriate polymer can be obtained by appropriately selecting these monomers and copolymerizing them.
<EVOHとベンゾオキサボロールポリマーの混合生成物1:ゲル化>
 図2に、EVOHとP(MEOMA-co-OEGMA-co-MAAmBO)とを混合して得られたゲルの写真を示す。ゲルの調製方法として、EVOHおよびP(MEOMA-co-OEGMA-co-MAAmBO)を、それぞれ70mg/mL、70mg/mLとなるようにHFIP(1,1,1,3,3,3-hexafluoroisopropanol)中に室温にて溶解させた。同体積の溶液を、室温にて混合することで、数分にてゲル状の混合生成物を得た。図1に示すような両者の相互作用により三次元的な架橋構造が構築されるため、ゲル構造を調製することが可能である。ゲルの強度は混合するポリマー比により制御することができる。また、ゾル状態における粘度についても同様に制御可能である。
<EVOH and benzoxabolol polymer mixed product 1: gelation>
FIG. 2 shows a photograph of a gel obtained by mixing EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO). As a gel preparation method, EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO) were mixed with HFIP (1,1,1,3,3,3-3-) so as to be 70 mg / mL and 70 mg / mL, respectively. Hexafluoropropanol) was dissolved at room temperature. By mixing the same volume of the solution at room temperature, a gel-like mixed product was obtained in a few minutes. Since a three-dimensional cross-linked structure is constructed by the interaction between the two as shown in FIG. 1, it is possible to prepare a gel structure. The strength of the gel can be controlled by the polymer ratio to be mixed. Further, the viscosity in the sol state can be similarly controlled.
 EVOHとベンゾオキサボロールポリマーとの混合生成物は溶液中の濃度や混合比によりゾルとゲルの何れの状態としても取り扱えるため、その成形加工も容易である。バルク状態のものから、フィルム状薄膜、カプセル、またはナノファイバーにも形成加工することができる。 Since the mixed product of EVOH and benzoxabolol polymer can be handled as either a sol or a gel depending on the concentration or mixing ratio in the solution, the molding process is easy. From a bulk state, a film-like thin film, a capsule, or a nanofiber can be formed and processed.
[実施例2]
<EVOHとベンゾオキサボロールポリマーの混合生成物2:ナノファイバー>
 実施例1で得られた式(3)で表すベンゾオキサボロールポリマーP(MEOMA-co-OEGMA-co-MAAmBO)を用いた。図3(B)はEVOH(濃度:3.5wt%)とP(MEOMA-co-OEGMA-co-MAAmBO)(濃度:2.5wt%)とをHFIP中で混合した溶液を電界紡糸した結果のSEM像を示す。
図3(B)からわかるように、EVOHとP(MEOMA-co-OEGMA-co-MAAmBO)との混合生成物2を電界紡糸することによってナノファイバーの集積体を得ることができる。この集積体では繊維間の隙間の大きさが比較的よくそろっている。なお、この隙間の大きさは、電界紡糸の条件や混合生成物濃度等を調節することによって制御可能である。
[Example 2]
<Mixed product of EVOH and benzoxabolol polymer 2: nanofiber>
The benzoxabolol polymer P (MEO 2 MA-co-OEGMA-co-MAAmBO) represented by the formula (3) obtained in Example 1 was used. FIG. 3 (B) shows an electrospinning solution in which EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA-co-MAAmBO) (concentration: 2.5 wt%) are mixed in HFIP. The SEM image of a result is shown.
As can be seen from FIG. 3B, a nanofiber assembly can be obtained by electrospinning a mixed product 2 of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO). In this aggregate, the gaps between the fibers are relatively well aligned. The size of the gap can be controlled by adjusting the electrospinning conditions, the mixed product concentration, and the like.
[実施例3]
<EVOHとベンゾオキサボロールポリマーの混合生成物3:ナノファイバー>
実施例1で得られた式(3)で表すベンゾオキサボロールポリマーP(MEOMA-co-OEGMA-co-MAAmBO)を用いた。図3(C)はEVOH(濃度:3.5wt%)とP(MEOMA-co-OEGMA-co-MAAmBO)(濃度:0.5wt%)とをHFIP中で混合した溶液を電界紡糸した結果のSEM像を示す。
 図3(C)ではEVOHとP(MEOMA-co-OEGMA-co-MAAmBO)との混合生成物3を電界紡糸したにもかかわらずナノファイバーが形成されていないが、これはP(MEOMA-co-OEGMA-co-MAAmBO)の量が実施例2の図3(B)の2.5wt%に比べて0.5wt%と少ないために、混合生成物3の粘性が図3(B)の場合に比べて低下したためである。
[Example 3]
<Mixed product of EVOH and benzoxabolol polymer 3: nanofiber>
The benzoxabolol polymer P (MEO 2 MA-co-OEGMA-co-MAAmBO) represented by the formula (3) obtained in Example 1 was used. FIG. 3C shows an electrospinning solution in which EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA-co-MAAmBO) (concentration: 0.5 wt%) are mixed in HFIP. The SEM image of a result is shown.
In FIG. 3C, nanofibers are not formed despite the electrospinning of the mixed product 3 of EVOH and P (MEO 2 MA-co-OEGMA-co-MAAmBO). 2 MA-co-OEGMA-co-MAAmBO) is less than 0.5 wt% compared to 2.5 wt% in FIG. 3 (B) in Example 2, so that the viscosity of the mixed product 3 is as shown in FIG. This is because it is lower than in the case of B).
[比較例1]
<EVOH単独のHFIP溶液>
図3(A)はEVOH(濃度:3.5wt%)単独のHFIP溶液を電界紡糸した結果のSEM像を示す。
[比較例2]
<EVOHとベンゾオキサボロール構造を有しない共重合体の混合物>
図3(D)には、EVOH(濃度:3.5wt%)とP(MEOMA-co-OEGMA)(濃度:2.5wt%)(すなわち、ベンゾオキサボロール構造を有しない共重合体)とをHFIP中で混合した溶液を電界紡糸した結果のSEM像を示す。
 実施例2と3の結果に対して、比較例1のEVOH単独の場合(図3(A))及び比較例2のEVOHと混合したポリマーがベンゾオキサボロール構造を含んでいない場合(図3(D))は、EVOHの量は図3(B)の場合と同じく3.5wt%であったにもかかわらず、何れもナノファイバーが形成されなかった。これは、図1に示すような相互作用が起こっていないために粘度が低いままであったことによる。
[Comparative Example 1]
<HFIP single HFIP solution>
FIG. 3A shows an SEM image as a result of electrospinning an HFIP solution containing EVOH (concentration: 3.5 wt%) alone.
[Comparative Example 2]
<Mixture of EVOH and copolymer having no benzoxabolol structure>
FIG. 3D shows EVOH (concentration: 3.5 wt%) and P (MEO 2 MA-co-OEGMA) (concentration: 2.5 wt%) (that is, a copolymer having no benzoxabolol structure). The SEM image of the result of electrospinning the solution which mixed) in HFIP is shown.
In contrast to the results of Examples 2 and 3, when EVOH of Comparative Example 1 alone (FIG. 3A) and when the polymer mixed with EVOH of Comparative Example 2 does not contain a benzoxabolol structure (FIG. 3) In (D)), although the amount of EVOH was 3.5 wt% as in the case of FIG. 3B, no nanofiber was formed. This is because the viscosity remained low because no interaction as shown in FIG. 1 occurred.
[実施例4]
<EVOHとカルボキシル基を有するベンゾオキサボロールポリマーの混合生成物4:染色機能の付与>
 以下の式(4)で一般的に表現される構造を有する、骨格をカルボキシル基で修飾したベンゾオキサボロールポリマー
[Example 4]
<Mixed product of EVOH and benzoxabolol polymer having carboxyl group 4: imparting dyeing function>
A benzoxabolol polymer having a structure generally expressed by the following formula (4) and having a skeleton modified with a carboxyl group
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
とEVOHとを混合することにより、カチオン性染料へのEVOHの染色性を向上させることができる。本実施例で使用したベンゾオキサボロールポリマーの具体的な構造は以下の式(5)通りである。 By mixing EVOH with EVOH, it is possible to improve the dyeability of EVOH on a cationic dye. The specific structure of the benzoxabolol polymer used in this example is as shown in the following formula (5).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 EVOHとこのベンゾオキサボロールポリマーとの混合生成物を電界紡糸して得られた集積物(図4(a))を染色実験の対象として準備した。
 この集積物を式(6)で表すメチレンブルー
An accumulation (FIG. 4 (a)) obtained by electrospinning a mixture product of EVOH and the benzoxabolol polymer was prepared as an object for a dyeing experiment.
This accumulation is represented by the formula (6) methylene blue
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で染色した結果をそれぞれ図5(a)に示す。
[比較例3]
<EVOHとカルボキシル基を含まないベンゾオキサボロールポリマーの混合生成物>
実施例4の式(5)で表すベンゾオキサボロールポリマーと比較して、カルボキシル基が修飾されていない点以外はほぼ同じ構造を有する式(7)で表すベンゾオキサボロールポリマー
The results of staining with are shown in FIG.
[Comparative Example 3]
<Mixed product of EVOH and benzoxabolol polymer not containing carboxyl group>
Compared with the benzoxabolol polymer represented by formula (5) in Example 4, the benzoxabolol polymer represented by formula (7) having substantially the same structure except that the carboxyl group is not modified.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
との混合生成物を電界紡糸した比較対象集積物(図4(b))を準備した。
実施例4と同様に、この集積物を式(6)で表すメチレンブルーで染色した結果をそれぞれ図5(b)に示す。
なお、上記式(5)と(7)で表すこれら2種類のベンゾオキサボロールポリマーを比較すると、実施例4の式(5)で表すベンゾオキサボロールポリマーは比較例3の式(7)で表すベンゾオキサボロールポリマーに更にカルボキシル基を有する比較的小さなモノマー由来の構造を追加した構造になっていることがわかる。
図5からわかるように、本発明の実施例4である、EVOHとカルボキシル基で修飾されたベンゾオキサボロールポリマーとの混合生成物4から作製された集積物はカルボキシル基で修飾されていないベンゾオキサボロールポリマーを使用した集積物に比べて強く染色されていることがわかる。なお、図5は白黒写真であるので、(a)側が(b)側に比べて僅かに黒いように見えるだけであるが、実際には(b)側が青色であるのに対して、(a)側は濃紺色に染色され、染色性の違いをはっきりと視認することができた。このようにEVOHとカルボキシル基で修飾されたベンゾオキサボロールポリマーとを混合して作成した集積物の方が高い染色性を有する理由は、集積物中で電離して-COO-の形態で存在するカルボキシル基とカチオン性の染料であるメチレンブルーとが静電相互作用を起こすためである。なお、本実施例では染料としてメチレンブルーを使用し、またベンゾオキサボロールポリマーをカルボキシル基で修飾したが、この組み合わせに限定されるものではなく、任意のカチオン性染料と負にイオン化する任意の官能基により修飾されたベンゾオキサボロールポリマーとの組み合わせにより染色性の向上を達成することができる。逆に、任意のアニオン性染料と正にイオン化する任意の官能基により修飾されたベンゾオキサボロールポリマーとの組み合わせででも染色性の向上が可能である。
A comparative assembly (FIG. 4B) obtained by electrospinning the mixed product was prepared.
Similarly to Example 4, the result of staining this aggregate with methylene blue represented by formula (6) is shown in FIG. 5 (b).
When these two types of benzoxabolol polymers represented by the above formulas (5) and (7) are compared, the benzoxabolol polymer represented by the formula (5) in Example 4 is the formula (7) in Comparative Example 3. It can be seen that a structure derived from a relatively small monomer having a carboxyl group is added to the benzoxabolol polymer represented by
As can be seen from FIG. 5, the assembly made from the mixed product 4 of EVOH and a benzoxabolol polymer modified with a carboxyl group, which is Example 4 of the present invention, is a benzoate not modified with a carboxyl group. It turns out that it is dye | staining strongly compared with the accumulation | aggregation which uses an oxabolol polymer. Since FIG. 5 is a black-and-white photograph, the (a) side only looks slightly black compared to the (b) side, but in fact the (b) side is blue, ) Side was dyed dark blue, and the difference in dyeability could be clearly recognized. The reason why the accumulation produced by mixing EVOH and a benzoxabolol polymer modified with a carboxyl group in this way has higher dyeability is that it is ionized in the accumulation and exists in the form of -COO- This is because an electrostatic interaction occurs between the carboxyl group to be reacted and methylene blue which is a cationic dye. In this example, methylene blue was used as the dye, and the benzoxabolol polymer was modified with a carboxyl group. However, the present invention is not limited to this combination, and any functional group that ionizes negatively with any cationic dye. Improvement in dyeability can be achieved by combination with a benzoxabolol polymer modified with a group. On the contrary, the dyeability can be improved by a combination of any anionic dye and a benzoxabolol polymer modified with any functional group capable of positive ionization.
 以上詳細に説明したように、本発明においては、EVOHは容易に入手可能な既存の材料を使用し、これに所望の機能性を有するベンゾオキサボロールポリマーを混合するだけで、EVOHの特徴を維持したままで所望の機能性を持たせることができるので、本発明はEVOHの用途の拡大等に広く利用されることが期待される。 As described above in detail, in the present invention, EVOH uses existing materials that are easily available, and only by mixing a benzoxabolol polymer having a desired functionality with EVOH, the characteristics of EVOH can be obtained. Since the desired functionality can be imparted while maintaining it, the present invention is expected to be widely used for expanding the use of EVOH.

Claims (13)

  1.  ベンゾオキサボロール構造を含むベンゾオキサボロールポリマーとビニルアルコール樹脂とを混合して両者を可逆的に結合することを特徴とする、ビニルアルコール樹脂機能化方法。 A method for functionalizing a vinyl alcohol resin, comprising mixing a benzoxabolol polymer containing a benzoxabolol structure and a vinyl alcohol resin and reversibly bonding them.
  2.  前記所望の機能性は温度応答性、粘性、電界紡糸性及び染色性からなる群から選択される、請求項1に記載のビニルアルコール樹脂機能化方法。 The vinyl alcohol resin functionalization method according to claim 1, wherein the desired functionality is selected from the group consisting of temperature responsiveness, viscosity, electrospinning property, and dyeability.
  3.  前記所望の機能性は前記ベンゾオキサボロールポリマーが有する機能性である、請求項1に記載のビニルアルコール樹脂機能化方法。 The vinyl alcohol resin functionalization method according to claim 1, wherein the desired functionality is a functionality of the benzoxabolol polymer.
  4.  前記ベンゾオキサボロールポリマーはベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとを含む共重合体である、請求項3に記載のビニルアルコール樹脂機能化方法。 4. The method for functionalizing a vinyl alcohol resin according to claim 3, wherein the benzoxabolol polymer is a copolymer containing a monomer having a benzoxabolol structure and a monomer imparting the functionality.
  5.  前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーである、請求項1に記載のビニルアルコール樹脂機能化方法。 The method for functionalizing a vinyl alcohol resin according to claim 1, wherein the benzoxabolol polymer is a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
  6.  ベンゾオキサボロール誘導体を含むベンゾオキサボロールポリマーからなることを特徴とする、ビニルアルコール樹脂機能化剤。 A vinyl alcohol resin functionalizing agent comprising a benzoxabolol polymer containing a benzoxabolol derivative.
  7.  前記所望の機能性は温度応答性、粘性、電界紡糸性及び染色性からなる群から選択される、請求項6に記載のビニルアルコール樹脂機能化剤。 The vinyl alcohol resin functionalizing agent according to claim 6, wherein the desired functionality is selected from the group consisting of temperature responsiveness, viscosity, electrospinning property, and dyeability.
  8.  前記所望の機能性は前記ベンゾオキサボロールポリマーが有する機能性である、請求項6に記載のビニルアルコール樹脂機能化剤。 The vinyl alcohol resin functionalizing agent according to claim 6, wherein the desired functionality is a functionality of the benzoxabolol polymer.
  9.  前記ベンゾオキサボロールポリマーはベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとを含む共重合体である、請求項8に記載のビニルアルコール樹脂機能化剤。 The vinyl alcohol resin functionalizing agent according to claim 8, wherein the benzoxabolol polymer is a copolymer containing a monomer having a benzoxabolol structure and a monomer imparting the functionality.
  10.  前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーである、請求項6に記載のビニルアルコール樹脂機能化剤。 The vinyl alcohol resin functionalizing agent according to claim 6, wherein the benzoxabolol polymer is a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
  11.  機能性を与えるモノマー由来構造とベンゾオキサボロール構造とを含むベンゾオキサボロールポリマーと
     ジオール構造を有するビニルアルコール樹脂と
    を前記ベンゾオキサボロール構造と前記ジオール構造との結合によって
     可逆的に結合してなることを特徴とする、ベンゾオキサボロールポリマーとビニルアルコール樹脂の混合生成物。
    A benzoxabolol polymer containing a monomer-derived structure giving functionality and a benzoxabolol structure and a vinyl alcohol resin having a diol structure are reversibly bonded by the bond between the benzoxabolol structure and the diol structure. A mixed product of a benzoxabolol polymer and a vinyl alcohol resin.
  12.  前記ベンゾオキサボロールポリマーは、前記ベンゾオキサボロール構造を有するモノマーと前記機能性を与えるモノマーとの共重合体である、請求項11に記載の混合生成物。 The mixed product according to claim 11, wherein the benzoxabolol polymer is a copolymer of a monomer having the benzoxabolol structure and a monomer imparting the functionality.
  13.  前記ベンゾオキサボロールポリマーは(メタ)アクリルアミド型および(メタ)アクリレート型を基本骨格とするベンゾオキサボロールポリマーである、請求項11に記載の混合生成物。 The mixed product according to claim 11, wherein the benzoxabolol polymer is a benzoxabolol polymer having a (meth) acrylamide type and a (meth) acrylate type as a basic skeleton.
PCT/JP2016/079524 2015-10-06 2016-10-04 Method for functionalizing vinyl alcohol resin, and vinyl alcohol resin functionalizing agent WO2017061435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017544510A JP6504628B2 (en) 2015-10-06 2016-10-04 Nanofibers, assembly of nanofibers, mixed product for electrospinning, method of manufacturing nanofibers, and method of manufacturing aggregate of nanofibers.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-198316 2015-10-06
JP2015198316 2015-10-06

Publications (1)

Publication Number Publication Date
WO2017061435A1 true WO2017061435A1 (en) 2017-04-13

Family

ID=58487731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079524 WO2017061435A1 (en) 2015-10-06 2016-10-04 Method for functionalizing vinyl alcohol resin, and vinyl alcohol resin functionalizing agent

Country Status (2)

Country Link
JP (1) JP6504628B2 (en)
WO (1) WO2017061435A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021055752A1 (en) * 2019-09-20 2021-03-25 Glyscend, Inc. Benzoxaborole polymers and methods of use
US11484548B2 (en) 2019-09-20 2022-11-01 Glyscend, Inc. Substituted phenyl boronic acid containing polymers and methods of use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIHIKO KIKUCHI ET AL.: "Glucose-Sensing Electrode Coated with Polymer Complex Gel Containing Phenylboronic Acid", ANALYTICAL CHEMISTRY, vol. 68, no. 5, pages 823 - 828, XP000580391 *
YOHEI KOTSUCHIBASHI ET AL.: "Temperature, PH , and Glucose Responsive Gels via Simple Mixing of Boroxole- and Glyco-Based Polymers", ACS MACRO LETT., vol. 2, pages 260 - 264, XP055376139 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021055752A1 (en) * 2019-09-20 2021-03-25 Glyscend, Inc. Benzoxaborole polymers and methods of use
US11484548B2 (en) 2019-09-20 2022-11-01 Glyscend, Inc. Substituted phenyl boronic acid containing polymers and methods of use
US11491183B2 (en) 2019-09-20 2022-11-08 Glyscend, Inc. Substituted phenyl boronic acid containing polymers and methods of use
US11491182B2 (en) 2019-09-20 2022-11-08 Glyscend, Inc. Substituted phenyl boronic acid containing polymers and methods of use
US11576928B2 (en) 2019-09-20 2023-02-14 Glyscend, Inc. Substituted phenyl boronic acid containing polymers and methods of use
EP4041740A4 (en) * 2019-09-20 2023-10-25 Glyscend, Inc. Benzoxaborole polymers and methods of use

Also Published As

Publication number Publication date
JP6504628B2 (en) 2019-04-24
JPWO2017061435A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
Nasseri et al. Cellulose nanocrystals in smart and stimuli-responsive materials: a review
Li et al. Preparation of nanocapsules via the self-assembly of kraft lignin: A totally green process with renewable resources
Dong et al. “Breathing” Vesicles with Jellyfish‐like On–Off Switchable Fluorescence Behavior
Voets et al. Complex coacervate core micelles
Bijlard et al. Functional colloidal stabilization
Sun et al. Thermosensitive Nanoparticles Self‐Assembled from PCL‐b‐PEO‐b‐PNIPAAm Triblock Copolymers and their Potential for Controlled Drug Release
Upadhyaya et al. Nanostructured mixed matrix membranes from supramolecular assembly of block copolymer nanoparticles and iron oxide nanoparticles
Peng et al. Coacervation-driven instant paintable underwater adhesives with tunable optical and electrochromic properties
Chen et al. Recent progress in polymer cubosomes and hexosomes
Kaufman et al. Highly stiff yet elastic microcapsules incorporating cellulose nanofibrils
WO2017061435A1 (en) Method for functionalizing vinyl alcohol resin, and vinyl alcohol resin functionalizing agent
Liu et al. Backbone-collapsed intra-and inter-molecular self-assembly of cellulose-based dense graft copolymer
Gohy Metallo-supramolecular block copolymer micelles
US20150218406A1 (en) Organic-inorganic composite particles, dispersion and resin composition comprising the same, and method for producing organic-inorganic composite particles
Hemvichian et al. Enhancing compatibility between poly (lactic acid) and thermoplastic starch using admicellar polymerization
Minami et al. Preparation of ionic liquid-encapsulated polymer particles
GB2527098A (en) Functionalised material
Oh et al. Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio
Shankar et al. Emulsion polymerized styrene acrylic/nanocellulose composite coating to improve the strength and hydrophobicity of kraft paper
Kim et al. Collapse behavior of polyion complex (PIC) micelles upon salt addition and reforming behavior by dialysis and its temperature responsivity
Wu et al. Designable synthesis of nanocomposite hydrogels with excellent mechanical properties based on chemical cross-linked interactions
Chatterjee et al. Synthesis and characterization of chitosan droplet particles by ionic gelation and phase coacervation
Zhang et al. Fabrication of micelles from poly (butylene succinate) and poly (2‐methacryloyloxyethyl phosphorylcholine) copolymers as a potential drug carrier
Hörenz et al. UV-triggered on-demand temperature-responsive reversible and irreversible gelation of cellulose nanocrystals
Marcilli et al. Amphiphilic diblock copolymers based on sucrose methacrylate: RAFT polymerization and self-assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853589

Country of ref document: EP

Kind code of ref document: A1