WO2017057224A1 - 圧縮装置 - Google Patents

圧縮装置 Download PDF

Info

Publication number
WO2017057224A1
WO2017057224A1 PCT/JP2016/078167 JP2016078167W WO2017057224A1 WO 2017057224 A1 WO2017057224 A1 WO 2017057224A1 JP 2016078167 W JP2016078167 W JP 2016078167W WO 2017057224 A1 WO2017057224 A1 WO 2017057224A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressurized gas
chamber
piston
reservoir
cylinder
Prior art date
Application number
PCT/JP2016/078167
Other languages
English (en)
French (fr)
Inventor
勉 伊藤
小林 寛
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017543231A priority Critical patent/JP6618542B2/ja
Publication of WO2017057224A1 publication Critical patent/WO2017057224A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections

Definitions

  • the present invention relates to a compression device suitably used for supplying and discharging compressed air for vehicle height adjustment to an air suspension or the like mounted on a vehicle such as a four-wheeled vehicle.
  • an air suspension mechanism mounted on a vehicle as a vehicle height adjusting device suppresses a change in the vehicle height (vehicle height) in accordance with, for example, a change in load weight, and the vehicle height in accordance with a driver's preference.
  • pressurized gas compressed air, compressed air
  • an on-vehicle compressor air compressor
  • a compression device it is provided between the 1st storage body and the 2nd storage body which store the pressurized gas pressurized exceeding atmospheric pressure,
  • the 1st storage body and the 2nd storage body Of the first reservoir and the second reservoir, and the compressed gas is further compressed by a piston that is supplied from one reservoir to the cylinder and reciprocates in the cylinder.
  • the structure which discharges toward is known (for example, refer patent documents 1 and 2).
  • the compression apparatus boost type gas compressor
  • Patent Document 1 introduces a part of the pressurized gas pressurized by the piston into the sealed crankcase, and the pressure in the crankcase is changed to atmospheric pressure. It is set as the structure kept above.
  • the compression apparatus (opposed piston type compressor) described in Patent Document 2 arranges two pistons on the same axis, and reciprocates each piston, thereby causing an intermediate pressure compression space and a high pressure compression space.
  • This is a two-stage compression configuration in which an alternating compression operation synchronized with the unit is performed.
  • An object of the present invention is to provide a compression device capable of recompressing compressed air without requiring a complicated seal structure.
  • the configuration adopted by the present invention is provided between a first reservoir and a second reservoir that store pressurized gas that has been pressurized to exceed atmospheric pressure, and the first reservoir
  • the first and second pistons which are supplied from one of the storage bodies and the second storage body into the first and second cylinders and reciprocate in the first and second cylinders, are further A compression device that compresses pressurized gas and discharges the compressed gas toward the other storage body of the first storage body and the second storage body, a connecting rod, and a drive mechanism that reciprocates the connecting rod;
  • the first and second cylinders provided on one end side and the other end side of the connecting rod, respectively, and slidably disposed in the first and second cylinders, respectively, and one end and the other end of the connecting rod Formed by first and second pistons connected to each other, the first cylinder and the first piston
  • a second chamber in which the pressurized gas of the one reservoir is supplied and the pressurized gas is compressed by reciprocation of the second piston; and the pressurized gas of the one reservoir is directly or indirectly A first communication path that leads to the second chamber; a first check valve that is provided in the first communication path and that prevents backflow of the pressurized gas from the second chamber; and a pressure that is compressed in the second chamber
  • the pressurized gas can be recompressed without requiring a complicated seal structure.
  • FIG. 1 is a pneumatic circuit diagram showing an air suspension mechanism according to a first embodiment of the present invention. It is a longitudinal cross-sectional view which shows the compressor main body in FIG. It is a longitudinal cross-sectional view which shows the compressor main body by the 2nd Embodiment of this invention. It is a longitudinal cross-sectional view which shows the compressor main body by the 3rd Embodiment of this invention.
  • FIG. 1 and FIG. 2 show a first embodiment of the present invention.
  • the air suspension mechanism includes a storage tank 1, an air suspension 6, a main pipeline 7, and a compression device 21.
  • the storage tank 1 constitutes a first storage body and stores pressurized gas that has been pressurized to exceed the atmospheric pressure by a compression device 21 described later.
  • the storage tank 1 and the compression device 21 are connected via a main pipeline 7 and a replenishment pipeline 2 which will be described later, and the pressurized gas discharged from the compression device 21 enters the storage tank 1 through the main pipeline 7 and the replenishment pipeline 2.
  • the pressurized gas stored in the storage tank 1 (or the pressurized gas discharged from the compression device 21) is supplied to each air suspension 6 through the main pipeline 7 and a branch pipeline 8 described later.
  • the supply line 2 is a line for branching from the main line 7 between a supply / exhaust switching valve 10 and an air dryer 12 which will be described later, and for supplying pressurized gas to the storage tank 1. Further, the replenishment pipeline 2 may supply the pressurized gas in the storage tank 1 directly toward each air suspension 6 when a later-described storage switching valve 4 is in the supply / discharge position (c). it can.
  • the tank valve 3 and the storage switching valve 4 are provided between the supply line 2 and the storage tank 1, for example.
  • the tank valve 3 is constituted by a 2-port 2-position electromagnetic valve.
  • the tank valve 3 opens the replenishment line 2 to allow the supply and discharge of gas to and from the storage tank 1, and closes the replenishment line 2 to shut off the supply and discharge of gas to and from the storage tank 1. It is selectively switched to the closed position (b).
  • the storage switching valve 4 is composed of, for example, a three-port, two-position electromagnetic direction switching valve in order to selectively connect a suction side or a discharge side of the compression device 21 to be described later to the storage tank 1.
  • the storage switching valve 4 compresses the pressurized gas in the storage tank 1 through the first bypass line 5 and the supply / discharge position (c) for supplying and discharging the pressurized gas to and from the storage tank 1 through the supply line 2. It is selectively switched to a switching position (d) supplied to the suction side of the device 21. That is, the storage switching valve 4 constitutes a switching mechanism that changes the flow direction of the pressurized gas.
  • the first bypass line 5 is disposed between a suction line 16 and a storage switching valve 4 which will be described later.
  • the storage switching valve 4 is switched to the switching position (d)
  • the pressure in the storage tank 1 is increased.
  • the gas is circulated toward the suction pipe line 16.
  • Each air suspension 6 adjusts the vehicle height by expanding or contracting up and down according to the supply / discharge amount (pressure gas amount) at this time when pressurized gas is supplied or discharged. is there.
  • These air suspensions 6 constitute a second reservoir for storing pressurized gas, and are connected to the compression device 21 via the main pipeline 7 and each branch pipeline 8.
  • the main pipe line 7 connects a discharge side of the compression device 21 described later to each air suspension 6 and constitutes a supply / discharge pipe line for supplying and discharging pressurized gas to / from each air suspension 6.
  • One end located on the upstream side of the main pipeline 7 is connected to an air dryer 12 (the discharge side of the compression device 21) described later, and the other end located on the downstream side of the main pipeline 7 is connected to each branch pipeline 8.
  • the main line 7 supplies the gas pressurized (compressed) by the compression device 21 to the storage tank 1 or each air suspension 6.
  • the supply / exhaust valve 9 is located between each air suspension 6 and a later-described supply / exhaust switching valve 10 and is provided in the middle of each branch pipe 8.
  • This air supply / exhaust valve 9 is constituted by a 2-port 2-position electromagnetic valve in substantially the same manner as the tank valve 3, and opens each branch pipe line 8 to permit the supply and discharge of pressurized gas to each air suspension 6 ( a) and a closed position (b) where each branch pipe 8 is closed to shut off the supply and discharge of pressurized gas to each air suspension 6.
  • the supply / discharge switching valve 10 is located between the supply / exhaust valve 9 and the compression device 21 and is provided in the middle of the main pipeline 7.
  • This supply / discharge switching valve 10 is constituted by an electromagnetic directional switching valve at a 3-port 2-position, almost the same as the storage switching valve 4.
  • the supply / discharge switching valve 10 supplies / discharges pressurized gas to / from each air suspension 6 through the main pipeline 7 and each branch pipeline 8 and the pressurized gas in each air suspension 6. It is selectively switched to a switching position (d) that is supplied to the suction side of the compressor 21 through the second bypass pipe 11. That is, the supply / discharge switching valve 10 constitutes a switching mechanism that changes the flow direction of the pressurized gas.
  • the second bypass pipe 11 is arranged between a suction pipe 16 and a supply / discharge switching valve 10 which will be described later.
  • the supply / discharge switching valve 10 is switched to the switching position (d)
  • the second bypass pipe 11 The pressurized gas is circulated toward the suction pipe 16.
  • the air dryer 12 is located between the supply / discharge switching valve 10 and the compression device 21 and is provided in the middle of the main pipeline 7. Specifically, the air dryer 12 is located on the side of each air suspension 6 with respect to an exhaust pipe line 13 to be described later, and is disposed in the middle of the main pipe line 7.
  • the air dryer 12 contains a moisture adsorbent (not shown) and the like, and when the gas (supply air) supplied from the compression device 21 flows, the moisture is adsorbed by the moisture adsorbent inside and dried. Gas (dry air) is supplied toward each air suspension 6. On the other hand, the gas (exhaust gas) discharged from each air suspension 6 takes the moisture adsorbed by the moisture adsorbent by flowing back in the air dryer 12 and regenerates the moisture adsorbent.
  • the exhaust pipe 13 is a pipe for branching from the main pipe 7 between the discharge side of the compressor 21 and the air dryer 12 and discharging the pressurized gas to the outside atmosphere.
  • the exhaust valve 14 is a valve that allows the exhaust pipe line 13 connected to the main pipe line 7 to communicate with the air and shut off.
  • the exhaust valve 14 is composed of a 2-port 2-position electromagnetic valve, almost the same as the tank valve 3, and has an open position (a) that opens the exhaust pipe line 13 to allow gas to be discharged from the exhaust port 14A, and an exhaust gas. It is selectively switched to the closed position (b) that closes the pipe line 13 and blocks the discharge of gas from the exhaust port 14A. That is, the exhaust valve 14 is normally closed to block the exhaust pipe 13 from the exhaust port 14A.
  • the exhaust valve 14 When the exhaust valve 14 is opened, the exhaust pipe line 13 is communicated with the exhaust port 14A, and the gas in the exhaust pipe line 13 is discharged (released) into the atmosphere.
  • the intake valve 15 is a valve that allows the suction pipe line 16 connected to the suction side of the compression device 21 to communicate with the air and shut off.
  • the intake valve 15 is composed of a two-port, two-position electromagnetic valve, similar to the tank valve 3, and has an open position (a) for allowing the compressor 21 to suck gas by opening the suction pipe 16, and a suction pipe It is selectively switched to the closed position (b) where the passage 16 is closed and the gas suction by the compression device 21 is blocked. That is, the intake valve 15 is normally closed to block the suction pipe 16 of the compressor 21 from the atmosphere.
  • the suction conduit 16 is communicated with the atmosphere, and the air sucked from the intake filter 15A is caused to flow into the compressor 21.
  • the pressure sensor 17 is provided between the storage switching valve 4 and the compression device 21 and is provided in the middle of the supply line 2.
  • the pressure sensor 17 detects the pressure of the pressurized gas in the storage tank 1 by detecting the pressure in the supply line 2.
  • the compression device 21 is provided between the storage tank 1 and each air suspension 6 via the first bypass line 5, the suction line 16, the main line 7, and the branch line 8. Specifically, the compression device 21 is provided with the suction side connected to the suction pipe line 16 and the discharge side connected to the main pipe line 7.
  • the compression device 21 includes an electric motor 22 as a driving mechanism and a compressor main body 23 driven by the electric motor 22.
  • the compression device 21 serves as a pressurized air source that further compresses (pressurizes) the pressurized gas sucked from the storage tank 1 and supplies the pressurized gas to each air suspension 6.
  • the electric motor 22 constitutes a drive source that drives the compressor body 23 via the motor shaft 22A.
  • the electric motor 22 has a rotational speed and the like controlled by a controller (not shown).
  • a motor shaft 22A of the electric motor 22 is formed as a crankshaft and constitutes a part of a crank mechanism 26 described later.
  • the electric motor 22 includes a motor case (not shown) that rotatably supports the motor shaft 22A.
  • a crankcase 24 (for example, the rear side of the cylindrical portion 24A) is detachably fixed to the motor case.
  • the compressor body 23 includes a crankcase 24, a connecting rod 25, a first cylinder 27, a second cylinder 28, a first piston 29, a second piston 30, a first chamber 32, a second chamber 33, a first communication passage 34, The second discharge port 35B, the first check valve 36, the second check valve 37, and the like are included.
  • the compressor body 23 compresses the gas sucked from the outside by the pistons 29 and 30 driven by the electric motor 22 to generate pressurized gas.
  • the crankcase 24 of the compressor body 23 is formed as a hollow container made of a metal material such as an aluminum material.
  • the crankcase 24 includes a cylinder portion 24A attached to the motor case, a crank mechanism opening 24B that opens the rear side (electric motor 22 side) of the cylinder portion 24A, and one side (for example, the lower side) of the cylinder portion 24A. ) And a second cylinder mounting portion 24D provided to open to the other side (for example, the upper side) of the cylindrical portion 24A.
  • the crankcase 24 has a crank chamber 24E for rotatably accommodating a crank mechanism 26 described later.
  • the connecting rod 25 extends in the crank chamber 24E of the crankcase 24 so as to extend upward and downward.
  • the lower end side, which is one side of the connecting rod 25, is located in the first cylinder 27 and is integrally attached to the center of the back surface of the first piston 29.
  • the upper end side, which is the other side of the connecting rod 25, is located in the second cylinder 28 and is integrally attached to the center of the back surface of the second piston 30.
  • a crank mechanism 26 is connected to a substantially intermediate portion of the connecting rod 25. As a result, the connecting rod 25 reciprocates upward and downward in the crank chamber 24E by the rotation of the crank mechanism 26.
  • the crank mechanism 26 is rotatably connected to the tip of the motor shaft 22A of the electric motor 22.
  • the crank mechanism 26 includes a link 26A having one end rotatably attached to the motor shaft 22A of the electric motor 22, and a connecting pin 26B rotatably connecting the other end of the link 26A to an intermediate portion of the connecting rod 25. It is comprised including.
  • the crank mechanism 26 converts this rotation into a reciprocating motion of the connecting rod 25 via the link 26A and the connecting pin 26B. That is, the crank mechanism 26 constitutes a conversion mechanism that converts rotational motion into linear motion between the motor shaft 22 ⁇ / b> A of the electric motor 22 and the connecting rod 25.
  • the first cylinder 27 is located on one end side of the connecting rod 25 and is provided on the lower end side of the crankcase 24.
  • the first cylinder 27 is formed in a cylindrical shape using, for example, an aluminum material, and a first piston 29 is inserted therein so as to be capable of reciprocating.
  • a first cylinder head 31 described later is attached to the lower end side of the first cylinder 27, and the upper end side of the first cylinder 27 is attached to the first cylinder attachment portion 24 ⁇ / b> C of the crankcase 24.
  • the inside of the first cylinder 27 is defined by a first piston 29 into a first cylinder chamber 27A in which the lower end side of the connecting rod 25 is accommodated and a first chamber 32 described later on the first cylinder head 31 side. .
  • the second cylinder 28 is located on the other end side of the connecting rod 25 and is provided on the upper end side of the crankcase 24. Similar to the first cylinder 27, the second cylinder 28 is formed in a cylindrical shape using, for example, an aluminum material, and a second piston 30 described later is inserted into the second cylinder 28 so as to reciprocate. The lower end side of the second cylinder 28 is attached to the second cylinder attachment portion 24D of the crankcase 24, and the second cylinder head 35 described later is attached to the upper end side of the second cylinder 28. Furthermore, the inside of the second cylinder 28 is defined by a second piston 30 into a second cylinder chamber 28A in which the upper end side of the connecting rod 25 is accommodated and a second chamber 33 which will be described later on the second cylinder head 35 side. .
  • crank chamber 24E, the first cylinder chamber 27A, and the second cylinder chamber 28A of the crankcase 24 are always in communication with each other to allow the outside air to flow in and out, and is always at atmospheric pressure.
  • the crank mechanism opening 24B of the crankcase 24 functions as a vent hole for allowing cooling air generated by, for example, rotation of the electric motor 22 to flow into and out of the crank chamber 24E.
  • the first piston 29 is located on the lower end side of the connecting rod 25, and is inserted into the first cylinder 27 so as to be reciprocable (slidable).
  • the first piston 29 flows (intakes) pressurized gas from the suction pipe 16 toward the first chamber 32 in the first cylinder 27 during the intake stroke, and from the first chamber 32 to the first communication passage during the discharge stroke.
  • the pressurized gas is discharged toward the nozzle 34 without being compressed.
  • the first piston 29 is formed of a disc body having a diameter slightly smaller than the inner diameter of the first cylinder 27, and a seal member 29A is attached to the periphery thereof.
  • the sealing member 29A surrounds the outer peripheral side of the first piston 29, so that the space between the outer peripheral surface of the first piston 29 and the inner peripheral surface of the first cylinder 27, that is, the first chamber 32 is hermetically sealed. To do. Further, when the lower end side (first chamber 32 side) of the first piston 29 is used as the front surface, one end (lower end) side of the connecting rod 25 is integrally connected to the reverse side central portion on the opposite side.
  • the second piston 30 is located on the upper end side of the connecting rod 25, and is inserted into the second cylinder 28 so as to be reciprocally movable (slidable).
  • the second piston 30 has the same (equivalent) pressure receiving area as that of the first piston 29, and the pressurized gas is supplied from the first communication passage 34 toward the second chamber 33 in the second cylinder 28 during the intake stroke. Inhalation is performed, and the pressurized gas is compressed and discharged from the second chamber 33 toward the second discharge port 35B during the discharge stroke.
  • the second piston 30 is formed of a disc body having a diameter slightly smaller than the inner diameter of the second cylinder 28, and a seal member 30A is attached to the periphery thereof.
  • the seal member 30A surrounds the outer peripheral side of the second piston 30 to seal the second chamber 33 in an airtight manner between the outer peripheral surface of the second piston 30 and the inner peripheral surface of the second cylinder 28. To do. Further, when the upper end side (second chamber 33 side) of the second piston 30 is the front surface, the other end (upper end) side of the connecting rod 25 is integrally connected to the reverse side central portion on the opposite side.
  • the first cylinder head 31 is attached to the lower end side of the first cylinder 27 so as to close the lower end side of the first cylinder 27.
  • the first cylinder head 31 includes a first intake port 31A for injecting (inhaling) pressurized gas from the upstream side of the suction pipe line 16 and a first discharge for discharging (discharging) the pressurized gas into the first communication path 34. And an outlet 31B.
  • the first chamber 32 is defined by the inner peripheral wall of the first cylinder 27, the lower end surface of the first piston 29, and the upper end surface of the first cylinder head 31.
  • the first chamber 32 serves as the first intake air of the storage tank 1 to the first bypass conduit 5 (or each air suspension 6 to the second bypass conduit 11), the suction conduit 16, and the first cylinder head 31 during the intake stroke.
  • Pressurized gas flows in through the port 31A, and the pressurized gas flows out into the second chamber 33 through the first communication path 34 during the discharge stroke.
  • the inside of the first chamber 32 is kept equal to the pressure of the pressurized gas in the storage tank 1.
  • the first piston 29 does not receive and compress the pressure of the pressurized gas, and slides and displaces in the first cylinder 27 in the axial direction.
  • the second chamber 33 is defined by the inner peripheral wall of the second cylinder 28, the upper end surface of the second piston 30, and a valve plate portion 35C of the second cylinder head 35 described later.
  • the second chamber 33 sucks the pressurized gas through the first chamber 32 and the first communication passage 34 during the intake stroke, and each air suspension 6 (or, via the second discharge port 35B described later) during the discharge stroke.
  • a pressurized gas is supplied to the storage tank 1). That is, the second chamber 33 constitutes a compression chamber that generates compressed gas by further compressing the pressurized gas supplied from the storage tank 1 (or each air suspension 6) by the reciprocating motion of the second piston 30. .
  • the first communication path 34 is a path that is located outside the crankcase 24 and communicates the first chamber 32 and the second chamber 33.
  • the first communication path 34 is formed by, for example, a pipe whose lower end side and upper end side are bent. One end of the first communication path 34 is connected to the first discharge port 31B of the first cylinder head 31, and the other end of the first communication path 34 is connected to a second intake port 35A of the second cylinder head 35 described later. .
  • the first communication passage 34 guides the pressurized gas in the storage tank 1 indirectly to the second chamber 33 via the first chamber 32.
  • the second cylinder head 35 is attached to the upper end side of the second cylinder 28 so as to close the upper end side of the second cylinder 28.
  • the second cylinder head 35 has a second intake port 35A through which pressurized gas flows in (inhales) from the first communication passage 34, and the pressurized gas flows out (discharges) to each air suspension 6 (or storage tank 1).
  • a valve plate portion 35C that forms a second chamber 33 between the second discharge port 35B as the second communication passage to be closed, the upper end side of the second cylinder 28 and the second piston 30, and the valve plate portion.
  • the discharge hole 35E and a lid 35F that closes the upper end side of the second cylinder head 35 are configured.
  • the second discharge port 35 ⁇ / b> B of the second cylinder head 35 is connected to, for example, one end side of the main pipeline 7 and constitutes a second communication passage together with the main pipeline 7.
  • the first check valve 36 is a suction valve provided in the suction hole 35 ⁇ / b> D of the second cylinder head 35, located on the downstream side of the first communication path 34.
  • the first check valve 36 includes a valve body 36A that is inserted into the suction hole 35D of the second cylinder head 35, and a valve that biases the valve body 36A toward the upper side (the cover body 35F side) in the valve closing direction. And a spring 36B. Accordingly, the first check valve 36 is opened during the intake stroke, and the second intake port 35A (suction hole 35D) and the second chamber 33 are communicated with each other.
  • the first check valve 36 is closed during the compression stroke (discharge stroke), shuts off the second intake port 35A (suction hole 35D) and the second chamber 33, and causes a backflow of pressurized gas from the second chamber 33. To prevent.
  • the second check valve 37 is a discharge valve provided on the discharge hole 35E side of the second cylinder head 35.
  • the second check valve 37 communicates and shuts off the discharge hole 35E of the second cylinder head 35, and urges the valve body 37A downward (valve plate portion 35C side) in the valve closing direction.
  • a valve spring 37B The second check valve 37 prevents the backflow of the compressed gas (the gas obtained by recompressing the pressurized gas) from the air suspension 6 (or the storage tank 1) to the second chamber 33. Accordingly, when the pressure in the second chamber 33 becomes higher than the pressure on the second discharge port 35B side and the urging force of the valve spring 37B, the valve body 37A is opened, and the compressed air in the second chamber 33 is discharged. It is discharged to the main pipeline 7 side through the hole 35E and the second discharge port 35B.
  • the air suspension mechanism according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
  • the first piston 29 In the intake stroke of the first piston 29, the first piston 29 is pushed upward by the pressurized gas flowing into the first chamber 32 via the first intake port 31A. The inside of the first cylinder 27 is slid and displaced upward. In the discharge stroke of the first piston 29, the first piston 29 slides and displaces downward in the first cylinder 27, and pressurized gas from the first chamber 32 passes through the first discharge port 31B to the first communication passage 34. Spill towards
  • the first check valve 36 opens the valve body 36A.
  • the first communication passage 34 and the second chamber 33 communicate with each other via the suction hole 35D provided in the second cylinder head 35. Therefore, the first communication passage 34, the second intake port 35A, and the suction hole 35D are connected to each other. Then, the pressurized gas is sucked into the second chamber 33.
  • the tank valve 3 and the intake valve 15 are closed.
  • the position (b) is switched to the open position (a), and the storage switching valve 4 is switched to the supply / discharge position (c) while the supply / exhaust valve 9 and the exhaust valve 14 are held at the closed position (b).
  • the compressor body 21 of the compressor 21 is operated by the motor 22 (that is, compression operation).
  • the compressor main body 23 of the compressor 21 sucks outside air through the intake filter 15A and the suction pipe 16, pressurizes (compresses) the air, and discharges the air toward the main pipe 7.
  • the pressurized gas is dried by the air dryer 12 and then stored in the storage tank 1 through the supply line 2.
  • the electric motor 22 that is, the compression device 21
  • both the tank valve 3 and the intake valve 15 are switched to the closed position (b).
  • the storage tank 1 can be filled with a sufficient amount of pressurized gas and stored.
  • the pressurized gas in the storage tank 1 can be supplied to each air suspension 6 even when the compression device 21 is stopped. That is, in this case, the tank valve 3 is switched from the closed position (b) to the open position (a), and the supply / exhaust is performed with the storage switching valve 4 and the supply / discharge switching valve 10 held at the supply / discharge position (c). The valve 9 is switched to the open position (a). Thereby, the pressurized gas in the storage tank 1 is led out to the main pipeline 7, and this pressurized gas is supplied into each air suspension 6 through the branch pipeline 8.
  • the pressurized gas stored in the storage tank 1 can be supplied into each air suspension 6 and each air suspension 6 can be rapidly expanded, for example, the pressurized gas generated by the compression device 21 is used. Compared with the case where the air suspension 6 is directly supplied, the vehicle height can be quickly increased.
  • the storage tank It is necessary to increase the vehicle height by supplying a pressurized gas having a pressure higher than that of the pressurized gas in 1 to each air suspension 6. Therefore, the storage switching valve 4 is switched to the switching position (d), and the pressurized gas in the storage tank 1 is transferred to the suction side (that is, the suction pipe 16) of the compressor 21 via the first bypass pipe 5. Circulate. As a result, the pressurized gas in the storage tank 1 can be further compressed by the compression device 21, and high-pressure pressurized gas can be supplied to each air suspension 6 via the air dryer 12, the supply / discharge switching valve 10, and the like.
  • the supply / exhaust valve 9 is switched to the closed position (b) and the branch pipe 8 is closed.
  • the flow of pressurized gas to each air suspension 6 can be sealed, and each air suspension 6 can be kept in the extended state and the vehicle height can be kept high.
  • the tank valve 3 and the supply / exhaust valve 9 are switched to the open position (a), the storage switching valve 4 is held at the supply / discharge position (c), and the supply / discharge switching valve 10 is supplied / exhausted.
  • the position (c) is switched to the switching position (d).
  • the pressurized gas in each air suspension 6 is discharged to the second bypass line 11 through the branch line 8 and the main line 7 ( Derived). Then, the pressurized gas led out to the second bypass conduit 11 flows from the suction side to the discharge side of the compression device 21 via the suction conduit 16.
  • the compressed gas (exhaust gas from the air suspension 6) may be recompressed by the compression device 21 and discharged to the main pipeline 7 side. Further, the compressed gas may be simply circulated from the suction pipeline 16 side to the main pipeline 7 side without being substantially compressed. That is, the operating state of the compression device 21 is determined by the pressure difference between the storage tank 1 and the air suspension 6.
  • the pressurized gas discharged (or outflowed) from the compression device 21 is supplied into the storage tank 1 through the main line 7, the air dryer 12, and the supply line 2. As a result, the pressurized gas is discharged from each air suspension 6 and each air suspension 6 shifts to a contracted state, whereby the vehicle height can be lowered.
  • the pressurized gas is sucked into the first chamber 32 in the first cylinder 27 from each air suspension 6, the inside of the first chamber 32 is kept equal to the pressure of the pressurized gas in each air suspension 6. Further, in the second chamber 33 in the second cylinder 28, the pressurized gas from each air suspension 6 is further pressurized by a reciprocating motion of the second piston 30 until a pressure equivalent to the pressure in the storage tank 1 is reached.
  • the tank valve 3 is returned to the closed position (b) based on, for example, a detection signal from the pressure sensor 17. Then, the supply / discharge switching valve 10 is switched from the switching position (d) to the supply / discharge position (c), and the exhaust valve 14 is switched from the closed position (b) to the open position (a). Thereby, the pressurized gas from each air suspension 6 can be directly discharged
  • each air suspension 6 When lowering the vehicle height, if the pressure in the storage tank 1 is lower than the pressure in each air suspension 6, the supply / discharge switching valve 10 remains switched to the supply / discharge position (c). Without passing through the compression device 21 (air dryer 12), the pressurized gas can be circulated from each air suspension 6 to the storage tank 1 through the supply pipeline 2. When both the storage switching valve 4 and the supply / discharge switching valve 10 are switched from the supply / discharge position (c) to the switching position (d), each air suspension 6 is connected to the second bypass pipe 11 and the first bypass pipe. The pressurized gas can be stored (supplied) through the passage 5 so as to be discharged to the storage tank 1.
  • the compression device 21 connects the first piston 29 and the second piston 30 to one end and the other end of the connecting rod 25, and both are integrally formed via the connecting rod 25.
  • the reciprocating motion is repeated.
  • the second piston 30 can be reciprocated in the second cylinder 28 using the movement of the first piston 29 reciprocatingly in the first cylinder 27 by the pressurized gas. Therefore, the load on the motor shaft 22A of the electric motor 22 can be reduced by half. That is, when the first piston 29 moves downward, the second piston 30 also moves downward. At this time, the intake stroke for sucking the pressurized gas into the second chamber 33 of the second cylinder 28 is smoothly performed. Can do.
  • the second piston 30 also moves upward, so that the compression operation by the second piston 30 can be smoothly performed using the pressure of the pressurized gas. It can be carried out.
  • the first piston 29 can generate an assist force in a direction to assist and assist the pressurization of the second piston 30.
  • the load during the compression operation applied from the crank mechanism 26 (particularly, the second piston 30) to the electric motor 22 can be reduced, and the compressed gas can be easily recompressed. Therefore, the power consumption of the electric motor 22 can be reduced, energy saving can be achieved, and the electric motor 22 can be downsized.
  • crankcase 24E and the cylinder chambers 27A and 28A are allowed to flow in and out of the crankcase 24E without always having a sealed structure in the crankcase 24, and are always at atmospheric pressure.
  • it is not necessary to consider air leakage from the lead wires of the electric motor 22 and the compression device 21 does not need to have a complicated seal structure, so the number of parts can be reduced and the manufacturing cost of the compression device 21 can be reduced. can do.
  • the assisting force by the first piston 29 can be effectively generated for the compression operation by the second piston 30. For this reason, the compression operation by the compression device 21 can be performed smoothly, and the load on the electric motor 22 during the compression operation can be reduced by half.
  • FIG. 3 shows a second embodiment of the present invention.
  • the feature of the second embodiment is that the first communication path is provided through the inside of the connecting rod.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the compression device 41 includes an electric motor 22 as a drive mechanism and a compressor body 42 driven by a motor shaft 22A of the electric motor 22.
  • the compressor main body 42 includes the crankcase 24, the connecting rod 43, the first cylinder 27, the second cylinder 28, the first piston 44, the second piston 45, the first chamber 32, substantially the same as in the first embodiment.
  • the second chamber 33, the first communication passage 47, the second discharge port 48A, the first check valve 49, the second check valve 37, and the like are included.
  • the configuration of the connecting rod 43, the first piston 44, the second piston 45, the first cylinder head 46, the first communication passage 47, the second cylinder head 48, and the like is different from that of the first embodiment. ing.
  • the connecting rod 43 extends in the crank chamber 24E of the crankcase 24 so as to extend upward and downward.
  • the lower end side which is one side of the connecting rod 43, is located in the first cylinder 27 and is integrally attached to the substantially central portion of the back surface of the first piston 44.
  • the upper end side which is the other side of the connecting rod 43, is located in the second cylinder 28 and is integrally attached to the substantially central portion of the back surface of the second piston 45.
  • a first communication passage 47 described later is formed as a through hole extending in the axial direction.
  • the first piston 44 is located on the lower end side of the connecting rod 43, and is inserted into the first cylinder 27 so as to be reciprocable (slidable).
  • the first piston 44 is formed of a disc body having a diameter slightly smaller than the inner diameter of the first cylinder 27, and a seal member 44A is attached to the periphery thereof.
  • a first communication passage 47 described later is formed in the first piston 44 so as to penetrate therethrough.
  • the second piston 45 is positioned on the upper end side of the connecting rod 43 and is inserted into the second cylinder 28 so as to be reciprocally movable (slidable).
  • the second piston 45 is formed of a disc body having a diameter slightly smaller than the inner diameter of the second cylinder 28, and a seal member 45A is attached to the periphery thereof. Further, a first communication passage 47 described later is formed through the second piston 45 so as to penetrate therethrough.
  • the first cylinder head 46 is attached to the lower end side of the first cylinder 27 so as to close the lower end side of the first cylinder 27.
  • the first cylinder head 46 includes a first intake port 46 ⁇ / b> A through which pressurized gas flows (intakes) from the upstream side of the suction pipe line 16.
  • the first communication passage 47 is provided through the inside of the connecting rod 43, the first piston 44, and the second piston 45.
  • the first communication passage 47 is a passage that communicates with the second chamber 33 via the first chamber 32.
  • One end (lower end) of the first communication passage 47 is always in communication with the first chamber 32, and the other end (upper end) of the first communication passage 34 is connected to the second chamber 33 via a first check valve 49 described later. Yes.
  • the second cylinder head 48 is attached to the upper end side of the second cylinder 28 so as to close the upper end side of the second cylinder 28.
  • the second cylinder head 48 has a second discharge port 48A serving as a second communication path through which pressurized gas flows out (discharges) to each air suspension 6 (or the storage tank 1), and an upper end side of the second cylinder 28.
  • a second check is made between the valve plate portion 48B which is closed and forms the second chamber 33 between the second piston 30 and the second chamber 33 and the second discharge port 48A provided through the valve plate portion 48B.
  • a discharge hole 48 ⁇ / b> C that communicates with the valve 37 and a lid body 48 ⁇ / b> D that closes the upper end side of the second cylinder head 48 are configured.
  • the first check valve 49 is a suction valve that is located on the upper end surface of the second piston 45 and is formed as a flat valve plate having elasticity (spring property). One end side which is a base end portion of the first check valve 49 is fixed on the second piston 45 by a bolt or the like, and the other end side of the first check valve 49 is disposed at a position where the first communication passage 47 is closed. Yes.
  • the first check valve 49 opens the first communication passage 47 during the intake stroke of the second piston 45, closes the first communication passage 47 during the discharge (compression) stroke of the second piston 45, and adds the pressure from the second chamber 33. Prevent backflow of pressurized gas.
  • the first communication passage 47 is provided so as to penetrate through the connection rod 43, the first piston 44, and the second piston 45.
  • the 1st communicating path 47 can be formed using the connecting rod 43, the manufacturing cost of the compression apparatus 41 can be suppressed, and a 1st communicating path is provided in the exterior of the 1st, 2nd cylinders 27 and 28. There is no need to provide it.
  • FIG. 4 shows a third embodiment of the present invention.
  • a feature of the third embodiment is that a linear motor is used as a drive mechanism of the compression device. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the compression device 51 includes a linear motor 52 as a driving mechanism and a compressor main body 53 driven by the linear motor 52.
  • the compressor main body 53 includes a connecting rod 25, a first cylinder 27, a second cylinder 28, a first piston 29, a second piston 30, a first chamber 32, and a second chamber 33 in substantially the same manner as in the first embodiment.
  • the first communication passage 34, the second discharge port 35B, the first check valve 36, the second check valve 37, and the like are included.
  • the compressor main body 53 in this case is provided with a later-described linear motor 52 at a position where the crankcase is disposed.
  • the linear motor 52 is provided between the first cylinder 27 and the second cylinder 28.
  • the linear motor 52 is roughly composed of an armature 52A and a mover 52B as stators.
  • the armature 52A includes, for example, a dust core, laminated electromagnetic steel plates, a substantially cylindrical core formed by magnetic pieces, and a plurality of coils wound in a predetermined direction and housed in the core (all (Not shown).
  • the mover 52B extends upward and downward in the armature 52A and is provided integrally with the connecting rod 25.
  • the mover 52B is roughly constituted by a plurality of permanent magnets (not shown).
  • the linear motor 52 can move the mover 52B upward and downward by energizing the plurality of coils of the armature 52A. As a result, the linear motor 52 reciprocates the connecting rod 25 fixed to the mover 52B upward and downward, and drives the pistons 29 and 30 to alternately repeat the intake stroke and the discharge stroke.
  • the linear motor 52 is used as the drive mechanism of the compression device 51.
  • the compression device 51 can be manufactured with a small number of parts. As a result, the manufacturing cost of the compression device 51 can be suppressed.
  • the storage tank 1 is configured as the first storage body, and the air suspension 6 is configured as the second storage body.
  • the present invention is not limited to this, and the storage tank 1 may be configured as the second storage body, and the air suspension 6 may be configured as the first storage body. This also applies to the second and third embodiments.
  • first piston 29 and the second piston 30 have the same (equivalent) pressure receiving area.
  • present invention is not limited to this, and the first piston and the second piston may have different pressure receiving areas. This also applies to the second and third embodiments.
  • the pressurized gas is indirectly guided from the first chamber 32 to the second intake port 35A via the first communication path 34.
  • the present invention is not limited to this.
  • the suction conduit 16 provided on the suction side of the compression device 21 is connected in parallel to the first chamber 32 and the second intake port 35A, and the suction conduit 16 and the second suction passage 16 are connected to each other.
  • the intake port 35A may be directly connected to the first communication path (not shown). This is the same for the third embodiment.
  • the compression device 21 is constituted by the electric motor 22 and the compressor body.
  • the present invention is not limited to this, and the compression device 21 may include the valves 3, 4, 9, 10, 14, and 15. This also applies to the second and third embodiments.
  • the reciprocating compression devices 21, 41, 51 are applied to an air suspension mechanism of a vehicle such as a four-wheel automobile.
  • the invention may be applied to a compression device used inside or outside a factory, and can be widely applied to a refrigerant compressor or the like.
  • the first piston and the second piston have the same pressure receiving area. Therefore, since the assistance by the first piston can be effectively generated with respect to the compression operation by the second piston, the compression operation by the compression device can be performed smoothly, and the load of the drive mechanism can be reduced by half. Can do.
  • the drive mechanism is a linear motor.
  • the first communication path is configured to communicate with the second chamber via the first chamber.
  • the pressurized gas which flowed into the 1st chamber can be flowed out to the 2nd chamber via the 1st communicating path.
  • the first communication path is formed to penetrate the connecting rod.
  • the 1st communicating path can be formed with few parts, the manufacturing cost of a compression device can be controlled.
  • the present invention is configured such that the cylinder chamber in which the connecting rod is accommodated is at atmospheric pressure. Thereby, since it is not necessary to make a cylinder chamber into a complicated seal structure, the manufacturing cost of a compression apparatus can be suppressed.
  • the compression device of the present invention is further pressurized by a second piston that is supplied from one of the first reservoir and the second reservoir into the first cylinder and reciprocates in the second cylinder.
  • a switching mechanism that switches the gas to be compressed and discharged toward the other reservoir is provided.
  • the second chamber is configured to be supplied with the pressurized gas of the other reservoir and compress the pressurized gas by the reciprocating motion of the second piston.
  • Examples of the compression apparatus based on the above embodiment include those described below.
  • a 1st aspect of a compression apparatus it is provided between the 1st storage body and the 2nd storage body which store the pressurized gas pressurized exceeding atmospheric pressure, The said 1st storage body and said 2nd Among the reservoirs, one of the reservoirs is supplied into the first and second cylinders, and the compressed gas is further compressed by the first and second pistons reciprocatingly moved in the first and second cylinders.
  • a compression device that discharges toward the other of the first reservoir and the second reservoir, a connecting rod, a drive mechanism that reciprocates the connecting rod, and one end of the connecting rod And the first and second cylinders respectively provided on the other end side, and the first and second cylinders slidably disposed in the first and second cylinders and connected to one end and the other end of the connecting rod, respectively.
  • the one piston is formed by a second piston, the first cylinder, and the first piston.
  • the pressurized gas When the pressurized gas is supplied, it is formed by the first chamber that is maintained at the pressure of the pressurized gas of the one reservoir, the second cylinder, and the second piston.
  • a second chamber that is supplied with pressurized gas and compresses the pressurized gas by reciprocating movement of the second piston; and a first chamber that directly or indirectly guides the pressurized gas of the one reservoir to the second chamber.
  • a passage, a first check valve provided in the first communication passage to prevent backflow of the pressurized gas from the second chamber, and the pressurized gas compressed in the second chamber to the other reservoir A second communication path that guides the second communication path; and a second check valve that is provided in the second communication path and prevents a backflow of compressed gas from the other reservoir to the second chamber.
  • the first piston and the second piston have the same pressure receiving area.
  • the drive mechanism is a linear motor.
  • the first communication path communicates with the second chamber via the first chamber.
  • the first communication path is formed through the connecting rod.
  • the cylinder chamber in which the connecting rod is accommodated is at atmospheric pressure.
  • the first reservoir and the second reservoir are supplied from the other reservoir into the first cylinder, A switching mechanism for switching the compressed gas to be compressed and discharged toward the one reservoir by the second piston that reciprocates in the second cylinder;
  • the pressurized gas of the reservoir is supplied, the pressure of the pressurized gas of the other reservoir is maintained, and the pressurized gas of the other reservoir is supplied to the second chamber. Is compressed by the reciprocating motion of the second piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

複雑なシール構造を必要とせずに圧縮空気を再圧縮可能な圧縮装置を提供する。 圧縮装置21は、連接棒25と、電動モータ22と、第1,第2シリンダ27,28と、第1,第2ピストン29,30と、第1,第2室32,33と、第1連通路34と、第1チェック弁36と、第2チェック弁37と、を備えている。第1ピストン29と第2ピストン30とは、第1,第2シリンダ27,28内にそれぞれ摺動可能に配置され、連接棒25の一端および他端にそれぞれ連結されている。第1室32は、貯留タンク1内の加圧気体が供給されたとき貯留タンク1内の加圧気体の圧力に保たれる。第2室33は、第1室32内の加圧気体が第1連通路34を介して供給されて、該加圧気体を第2ピストン30の往復動により圧縮し、各エアサスペンション6に向けて吐出する。

Description

圧縮装置
 本発明は、例えば4輪自動車等の車両に搭載されたエアサスペンション等に車高調整用の圧縮空気を給排するのに好適に用いられる圧縮装置に関する。
 一般に、車高調整装置として車両に搭載されるエアサスペンション機構は、例えば積載重量の変化等に応じて車両高さ(車高)が変わるのを抑えると共に、運転者の好み等に応じて車高を適宜に調整するために、車載の圧縮装置(エア圧縮装置)から加圧気体(圧縮空気、圧縮エア)が給排されるものである。
 ここで、圧縮装置として、大気圧を超えて加圧された加圧気体を貯留する第1貯留体と第2貯留体との間に設けられ、前記第1貯留体と前記第2貯留体とのうち、一方の貯留体からシリンダ内へ供給し、該シリンダ内で往復動するピストンによりさらに前記加圧気体を圧縮し、前記第1貯留体と前記第2貯留体とのうち他方の貯留体に向けて吐出する構成が知られている(例えば、特許文献1,2参照)。
特開2007-182820号公報 特開平9-170552号公報
 ところで、特許文献1に記載の圧縮装置(ブースター式気体圧縮機)は、ピストンにより加圧した加圧気体の一部を密閉状態のクランクケース内に導入して、クランクケース内の圧力を大気圧以上に保つ構成としている。
 しかしながら、特許文献1の圧縮装置を電動モータによって駆動する場合、クランクケースを密閉構造とするので、電動モータの電源線の引き出し部からエア漏れを防止する必要があり、構造が複雑となるという問題がある。
 また、特許文献2に記載の圧縮装置(対向ピストン形圧縮機)は、2個の各ピストンを同一軸上に配置し、該各ピストンを往復運動させることにより中圧圧縮空間部と高圧圧縮空間部とに同期された交番的圧縮動作をさせる2段圧縮の構成としている。
 しかしながら、特許文献2に記載の圧縮装置は、高圧圧縮空間部で中間圧をさらに高圧にする際、対向する中間圧縮空間部は吸込み行程で低圧となるため、高圧圧縮空間部の圧縮の際に中間圧縮空間部による加圧アシストは行われない。
 本発明の目的は、複雑なシール構造を必要とせずに圧縮空気を再圧縮可能な圧縮装置を提供することにある。
 上述した課題を解決するために、本発明が採用する構成は、大気圧を超えて加圧された加圧気体を貯留する第1貯留体と第2貯留体との間に設けられ、前記第1貯留体と前記第2貯留体とのうち、一方の貯留体から第1、第2シリンダ内へ供給し、該第1、第2シリンダ内で往復動する第1、第2ピストンによりさらに前記加圧気体を圧縮し、前記第1貯留体と前記第2貯留体とのうち他方の貯留体に向けて吐出する圧縮装置であって、連接棒と、該連接棒を往復動する駆動機構と、前記連接棒の一端側および他端側にそれぞれ設けられた前記第1、第2シリンダと、前記第1、第2シリンダ内にそれぞれ摺動可能に配置され、前記連接棒の一端および他端に連結した第1、第2ピストンと、前記第1シリンダと前記第1ピストンとで形成され、前記一方の貯留体の加圧気体が供給されたとき、前記一方の貯留体の加圧気体の圧力に保たれる第1室と、前記第2シリンダと前記第2ピストンとで形成され、前記一方の貯留体の加圧気体が供給されて該加圧気体を前記第2ピストンの往復動により圧縮する第2室と、前記一方の貯留体の加圧気体を直接または間接的に前記第2室に導く第1連通路と、該第1連通路に設けられ、前記第2室から前記加圧気体の逆流を防止する第1チェック弁と、前記第2室で圧縮された加圧気体を前記他方の貯留体に導く第2連通路と、前記第2連通路に設けられ、前記他方の貯留体から前記第2室への圧縮気体の逆流を防止する第2チェック弁と、を有する構成としたことにある。
 本発明によれば、複雑なシール構造を必要とせずに加圧気体を再圧縮可能とすることができる。
本発明の第1の実施の形態によるエアサスペンション機構を示す空気圧回路図である。 図1中の圧縮機本体を示す縦断面図である。 本発明の第2の実施の形態による圧縮機本体を示す縦断面図である。 本発明の第3の実施の形態による圧縮機本体を示す縦断面図である。
 以下、本発明の実施の形態による圧縮装置を、4輪自動車等の車両のエアサスペンション機構に適用する場合を例に挙げ、添付図面に従って詳細に説明する。
 まず、図1,図2は本発明の第1の実施の形態を示している。図1において、エアサスペンション機構は、貯留タンク1、エアサスペンション6、主管路7、圧縮装置21を含んで構成されている。
 貯留タンク1は、第1貯留体を構成し、後述の圧縮装置21により大気圧を超えて加圧された加圧気体を貯留するものである。貯留タンク1と圧縮装置21とは後述の主管路7、補給管路2を介して接続され、圧縮装置21から吐出した加圧気体は、主管路7、補給管路2を通じて貯留タンク1内に蓄えられる。そして、貯留タンク1内に蓄えられた加圧気体(または、圧縮装置21から吐出される加圧気体)は、主管路7、後述の分岐管路8を通じて各エアサスペンション6に供給される。
 補給管路2は、後述の給排切換バルブ10とエアドライヤ12との間で主管路7から分岐し、加圧気体を貯留タンク1に補給するための管路である。また、補給管路2は、後述の貯留切換バルブ4が給排位置(c)にあるときに、貯留タンク1内の加圧気体を直接的に各エアサスペンション6側に向けて供給することもできる。
 タンクバルブ3と貯留切換バルブ4とは、例えば補給管路2と貯留タンク1との間に設けられている。このうちタンクバルブ3は、2ポート2位置の電磁弁により構成されている。ここで、タンクバルブ3は、補給管路2を開いて貯留タンク1に対する気体の給排を許す開位置(a)と、補給管路2を閉じて貯留タンク1に対する気体の給排を遮断する閉位置(b)とに選択的に切換えられる。
 貯留切換バルブ4は、後述する圧縮装置21の吸込側または吐出側を貯留タンク1に対して選択的に接続するため、例えば、3ポート2位置の電磁方向切換弁により構成されている。ここで、貯留切換バルブ4は、補給管路2を通じて加圧気体を貯留タンク1に給排する給排位置(c)と、貯留タンク1内の加圧気体を第1バイパス管路5を通じて圧縮装置21の吸込側に供給する切換位置(d)とに選択的に切換えられる。即ち、貯留切換バルブ4は、加圧気体の流れ方向を変更する切換機構を構成している。
 第1バイパス管路5は、後述の吸込管路16と貯留切換バルブ4との間に配置され、貯留切換バルブ4が切換位置(d)に切換えられたときに、貯留タンク1内の加圧気体を吸込管路16に向けて流通させるものである。
 エアサスペンション6は、車両の前,後と左,右の車輪(いずれも図示せず)にそれぞれ対応するように、車両の車軸側と車体側(いずれも図示せず)との間に4つ設けられている。各エアサスペンション6は、加圧気体が供給または排出されると、このときの給排量(加圧気体量)に応じて上,下に拡張または縮小して車両の車高調整を行うものである。これらのエアサスペンション6は、加圧気体を貯留する第2貯留体を構成し、主管路7、各分岐管路8を介して圧縮装置21に接続されている。
 主管路7は、後述する圧縮装置21の吐出側を各エアサスペンション6に接続し、各エアサスペンション6に対する加圧気体の給排を行う給排管路を構成している。主管路7の上流側に位置する一端は後述のエアドライヤ12(圧縮装置21の吐出側)に接続され、主管路7の下流側に位置する他端は各分岐管路8に接続されている。この主管路7は、圧縮装置21で加圧(圧縮)された気体を貯留タンク1または各エアサスペンション6に供給するものである。
 給排気バルブ9は、各エアサスペンション6と後述の給排切換バルブ10との間に位置して各分岐管路8の途中に設けられている。この給排気バルブ9は、タンクバルブ3とほぼ同様に、2ポート2位置の電磁弁により構成され、各分岐管路8を開いて各エアサスペンション6に対する加圧気体の給排を許す開位置(a)と、各分岐管路8を閉じて各エアサスペンション6に対する加圧気体の給排を遮断する閉位置(b)とに選択的に切換えられる。
 給排切換バルブ10は、給排気バルブ9と圧縮装置21との間に位置して主管路7の途中に設けられている。この給排切換バルブ10は、貯留切換バルブ4とほぼ同様に、3ポート2位置の電磁方向切換弁により構成されている。ここで、給排切換バルブ10は、主管路7、各分岐管路8を通じて各エアサスペンション6に加圧気体を給排する給排位置(c)と、各エアサスペンション6内の加圧気体を第2バイパス管路11を通じて圧縮装置21の吸込側に供給する切換位置(d)とに選択的に切換えられる。即ち、給排切換バルブ10は、加圧気体の流れ方向を変更する切換機構を構成している。
 第2バイパス管路11は、後述の吸込管路16と給排切換バルブ10との間に配置され、給排切換バルブ10が切換位置(d)に切換えられたときに、各エアサスペンション6内の加圧気体を吸込管路16に向けて流通させるものである。
 エアドライヤ12は、給排切換バルブ10と圧縮装置21との間に位置して主管路7の途中に設けられている。具体的には、エアドライヤ12は、後述の排気管路13よりも各エアサスペンション6側に位置して主管路7の途中に配置されている。このエアドライヤ12は水分吸着剤(図示せず)等を内蔵し、圧縮装置21から供給される気体(給気)が流通するときに、内部の水分吸着剤で水分を吸着し、乾燥した加圧気体(ドライエア)を各エアサスペンション6に向けて供給する。一方、各エアサスペンション6から排出される気体(排気)は、エアドライヤ12内を逆流することにより、水分吸着剤に吸着された水分を奪い取り、この水分吸着剤を再生する。
 排気管路13は、圧縮装置21の吐出側とエアドライヤ12との間で主管路7から分岐し、加圧気体を外部の大気中に排出するための管路である。
 排気バルブ14は、主管路7に接続された排気管路13を大気に対して連通、遮断させる弁である。この排気バルブ14は、タンクバルブ3とほぼ同様に、2ポート2位置の電磁弁により構成され、排気管路13を開いて排気口14Aからの気体の排出を許す開位置(a)と、排気管路13を閉じて排気口14Aからの気体の排出を遮断する閉位置(b)とに選択的に切換えられる。即ち、排気バルブ14は、常時は閉弁して排気管路13を排気口14Aに対し遮断している。そして、排気バルブ14が開弁した場合、排気管路13を排気口14Aに連通させ、排気管路13内の気体を大気中に排出(放出)する。
 吸気バルブ15は、圧縮装置21の吸込側に接続された吸込管路16を大気に対して連通、遮断させる弁である。この吸気バルブ15は、タンクバルブ3とほぼ同様に、2ポート2位置の電磁弁により構成され、吸込管路16を開いて圧縮装置21による気体の吸込みを許す開位置(a)と、吸込管路16を閉じて圧縮装置21による気体の吸込みを遮断する閉位置(b)とに選択的に切換えられる。即ち、吸気バルブ15は、常時は閉弁して圧縮装置21の吸込管路16を大気に対して遮断している。そして、吸気バルブ15が開弁した場合、吸込管路16を大気と連通させ、吸気フィルタ15Aから吸込んだ空気を圧縮装置21に対して流入させる。
 圧力センサ17は、貯留切換バルブ4と圧縮装置21との間に位置して補給管路2の途中に設けられている。この圧力センサ17は、補給管路2の圧力を検出することにより、貯留タンク1内の加圧気体の圧力を検出する。
 次に、本発明の特徴部分である圧縮装置21の構成および動作について詳しく説明する。
 圧縮装置21は、第1バイパス管路5、吸込管路16、主管路7、分岐管路8を介して、貯留タンク1と各エアサスペンション6との間に設けられている。具体的には、圧縮装置21は、吸込側が吸込管路16に接続され、吐出側が主管路7に接続して設けられている。この圧縮装置21は、駆動機構としての電動モータ22と、該電動モータ22によって駆動される圧縮機本体23とにより構成されている。圧縮装置21は、貯留タンク1から吸引した加圧気体をさらに圧縮(加圧)して、各エアサスペンション6に加圧気体を供給する圧気源をなしている。
 電動モータ22は、モータ軸22Aを介して圧縮機本体23を駆動する駆動源を構成する。この電動モータ22は、コントローラ(図示せず)によって回転速度等が制御される。電動モータ22のモータ軸22Aは、クランク軸として形成され、後述するクランク機構26の一部を構成している。電動モータ22は、モータ軸22Aを回転可能に支持するモータケース(図示せず)を備えている。このモータケースには、クランクケース24(例えば、筒部24Aの後側)が着脱可能に固定されている。
 圧縮機本体23は、クランクケース24、連接棒25、第1シリンダ27、第2シリンダ28、第1ピストン29、第2ピストン30、第1室32、第2室33、第1連通路34、第2吐出口35B、第1チェック弁36、第2チェック弁37等を含んで構成されている。この圧縮機本体23は、電動モータ22によって駆動された各ピストン29,30により、外部から吸込んだ気体を圧縮して加圧気体を生成する。
 圧縮機本体23のクランクケース24は、例えばアルミニウム材料等の金属材料からなる中空容器として形成されている。このクランクケース24は、前記モータケースに取付けられる筒部24Aと、該筒部24Aの後側(電動モータ22側)を開口したクランク機構開口24Bと、筒部24Aの一側(例えば、下側)に開口して設けられた第1シリンダ取付部24Cと、筒部24Aの他側(例えば、上側)に開口して設けられた第2シリンダ取付部24Dと、から構成されている。また、このクランクケース24内は、後述のクランク機構26を回転可能に収容するためのクランク室24Eとなっている。
 連接棒25は、クランクケース24のクランク室24E内を上,下方向に延びて収納されている。連接棒25の一側となる下端側は、第1シリンダ27内に位置して第1ピストン29の裏面中央部位に一体的に取付けられている。一方、連接棒25の他側となる上端側は、第2シリンダ28内に位置して第2ピストン30の裏面中央部位に一体的に取付けられている。そして、連接棒25の略中間部位にはクランク機構26が連結されている。これにより、連接棒25は、クランク機構26の回転により、クランク室24E内を上,下方向に往復動する。
 クランク機構26は、電動モータ22のモータ軸22Aの先端に回転可能に連結して設けられている。このクランク機構26は、一端側が電動モータ22のモータ軸22Aに回転可能に取り付けられたリンク26Aと、該リンク26Aの他端側を連接棒25の中間部位に回転可能に連結した連結ピン26Bとを含んで構成されている。これにより、クランク機構26は、電動モータ22のモータ軸22Aが回転運動するときに、この回転をリンク26A、連結ピン26Bを介して連接棒25の往復動に変換する。即ち、クランク機構26は、電動モータ22のモータ軸22Aと連接棒25との間で、回転運動を直線運動に変換する変換機構を構成している。
 第1シリンダ27は、連接棒25の一端側に位置し、クランクケース24の下端側に設けられている。この第1シリンダ27は、例えばアルミニウム材料を用いて円筒状に形成され、その内部には第1ピストン29が往復動可能に挿嵌されている。また、第1シリンダ27の下端側には、後述の第1シリンダヘッド31が取付けられ、第1シリンダ27の上端側はクランクケース24の第1シリンダ取付部24Cに取付けられている。さらに、第1シリンダ27内は、第1ピストン29によって、連接棒25の下端側が収納される第1シリンダ室27Aと第1シリンダヘッド31側の後述の第1室32とに画成されている。
 第2シリンダ28は、連接棒25の他端側に位置し、クランクケース24の上端側に設けられている。この第2シリンダ28は、第1シリンダ27と同様に、例えばアルミニウム材料を用いて円筒状に形成され、その内部には後述の第2ピストン30が往復動可能に挿嵌されている。また、第2シリンダ28の下端側はクランクケース24の第2シリンダ取付部24Dに取付けられ、第2シリンダ28の上端側には、後述の第2シリンダヘッド35が取付けられている。さらに、第2シリンダ28内は、第2ピストン30によって、連接棒25の上端側が収納される第2シリンダ室28Aと第2シリンダヘッド35側の後述の第2室33とに画成されている。
 ここで、クランクケース24のクランク室24Eと第1シリンダ室27Aと第2シリンダ室28Aとは常時連通し、外気の流入出を許す構成となっており、常に大気圧となる。クランクケース24のクランク機構開口24Bは、例えば電動モータ22の回転により発生した冷却風をクランク室24E内に流入出させる通気穴として機能する。
 第1ピストン29は、連接棒25の下端側に位置し、第1シリンダ27内に往復動可能(摺動可能)に挿嵌されている。この第1ピストン29は、吸気行程時には吸込管路16から第1シリンダ27内の第1室32に向けて加圧気体を流入(吸入)させ、吐出行程時には第1室32から第1連通路34に向けて、加圧気体を圧縮することなく吐出させる。第1ピストン29は、第1シリンダ27の内径寸法よりも僅かに小さな直径をもった円板体からなり、その周囲にはシール部材29Aが取付けられている。
 このシール部材29Aは、第1ピストン29の外周側を取囲むことにより、該第1ピストン29の外周面と第1シリンダ27の内周面との間、即ち、第1室32を気密にシールするものである。また、第1ピストン29の下端側(第1室32側)を表面とした場合、逆側の裏面中央部位には、連接棒25の一端(下端)側が一体的に連結されている。
 第2ピストン30は、連接棒25の上端側に位置し、第2シリンダ28内に往復動可能(摺動可能)に挿嵌されている。即ち、第2ピストン30は、第1ピストン29と同一(同等)の受圧面積を有し、吸気行程時には第1連通路34から第2シリンダ28内の第2室33に向けて加圧気体を吸気し、吐出行程時には第2室33から第2吐出口35Bに向けて加圧気体を圧縮して吐出させる。第2ピストン30は、第2シリンダ28の内径寸法よりも僅かに小さな直径をもった円板体からなり、その周囲にはシール部材30Aが取付けられている。
 このシール部材30Aは、第2ピストン30の外周側を取囲むことにより、該第2ピストン30の外周面と第2シリンダ28の内周面との間、即ち、第2室33を気密にシールするものである。また、第2ピストン30の上端側(第2室33側)を表面とした場合、逆側の裏面中央部位には、連接棒25の他端(上端)側が一体的に連結されている。
 第1シリンダヘッド31は、第1シリンダ27の下端側を閉塞するように該第1シリンダ27の下端側に取付けられている。この第1シリンダヘッド31は、吸込管路16の上流側から加圧気体を流入(吸入)させる第1吸気口31Aと、加圧気体を第1連通路34に流出(吐出)させる第1吐出口31Bとを備えている。
 第1室32は、第1シリンダ27の内周壁と第1ピストン29の下端面と第1シリンダヘッド31の上端面とにより画成されている。この第1室32は、吸気行程時には貯留タンク1から第1バイパス管路5(または、各エアサスペンション6から第2バイパス管路11)、吸込管路16、第1シリンダヘッド31の第1吸気口31Aを介して加圧気体が流入し、吐出行程時には第1連通路34を介して第2室33に加圧気体を流出させる。例えば、第1室32に貯留タンク1内の加圧気体が流入したとき、第1室32内は貯留タンク1内の加圧気体の圧力と同等に保たれる。この場合、第1ピストン29は、加圧気体の圧力を受圧して圧縮することはなく、第1シリンダ27内を軸方向に摺動変位する。
 第2室33は、第2シリンダ28の内周壁と第2ピストン30の上端面と後述の第2シリンダヘッド35の弁板部35Cとにより画成されている。この第2室33は、吸気行程時には第1室32、第1連通路34を介して加圧気体を吸気し、吐出行程時には後述の第2吐出口35Bを介して各エアサスペンション6(または、貯留タンク1)に、加圧気体を供給する。即ち、第2室33は、貯留タンク1(または、各エアサスペンション6)から供給された加圧気体を、第2ピストン30の往復動によりさらに圧縮して圧縮気体を生成する圧縮室を構成する。
 第1連通路34は、クランクケース24の外側に位置して、第1室32と第2室33とを連通する通路である。この第1連通路34は、例えば下端側と上端側とが折り曲げられたパイプ等により形成されている。第1連通路34の一端は第1シリンダヘッド31の第1吐出口31Bに接続され、第1連通路34の他端は後述の第2シリンダヘッド35の第2吸気口35Aに接続されている。第1連通路34は、貯留タンク1内の加圧気体を第1室32を介して間接的に第2室33に導くものである。
 第2シリンダヘッド35は、第2シリンダ28の上端側を閉塞するように該第2シリンダ28の上端側に取付けられている。この第2シリンダヘッド35は、第1連通路34から加圧気体を流入(吸入)させる第2吸気口35Aと、加圧気体を各エアサスペンション6(または、貯留タンク1)に流出(吐出)させる第2連通路としての第2吐出口35Bと、第2シリンダ28の上端側を閉塞して第2ピストン30との間に第2室33を形成する弁板部35Cと、該弁板部35Cを貫通して設けられ第2吸気口35Aと第2室33とを連通する吸込孔35Dと、弁板部35Cを貫通して設けられ第2室33と第2吐出口35Bとを連通する吐出孔35Eと、第2シリンダヘッド35の上端側を閉塞する蓋体35Fと、により構成されている。第2シリンダヘッド35の第2吐出口35Bは、例えば主管路7の一端側に接続され、主管路7と共に第2連通路を構成する。
 第1チェック弁36は、第1連通路34の下流側に位置して第2シリンダヘッド35の吸込孔35Dに設けられた吸込弁である。この第1チェック弁36は、第2シリンダヘッド35の吸込孔35Dに挿嵌される弁体36Aと、該弁体36Aを上側(蓋体35F側)に向けて閉弁方向に付勢する弁ばね36Bと、により構成されている。これにより、第1チェック弁36は吸気行程時に開弁して、第2吸気口35A(吸込孔35D)と第2室33とを連通させる。一方、第1チェック弁36は圧縮行程(吐出行程)時に閉弁し、第2吸気口35A(吸込孔35D)と第2室33とを遮断して第2室33から加圧気体の逆流を防止する。
 第2チェック弁37は、第2シリンダヘッド35の吐出孔35E側に設けられた吐出弁である。この第2チェック弁37は、第2シリンダヘッド35の吐出孔35Eを連通、遮断する弁体37Aと、該弁体37Aを下側(弁板部35C側)に向けて閉弁方向に付勢する弁ばね37Bと、により構成されている。第2チェック弁37は、エアサスペンション6(または、貯留タンク1)から第2室33への圧縮気体(加圧気体を再圧縮した気体)の逆流を防止する。これにより、第2室33内の圧力が第2吐出口35B側の圧力および弁ばね37Bの付勢力よりも高くなると、弁体37Aが開弁し、第2室33内の圧縮空気を、吐出孔35E、第2吐出口35Bを介して主管路7側に吐出させる。
 本実施の形態によるエアサスペンション機構は上述の如き構成を有するもので、次にその作動について説明する。
 まず、電動モータ22によりモータ軸22Aを回転駆動させると、モータ軸22Aの回転が、クランク機構26、連接棒25を介して、第1ピストン29および第2ピストン30に伝えられる。そして、第1ピストン29は第1シリンダ27内を往復動し、第1ピストン29が第1シリンダヘッド31から離れる吸気行程と、第1ピストン29が第1シリンダヘッド31に近づく吐出行程とを交互に繰り返す。また、第1ピストン29と同様に、第2ピストン30は第2シリンダ28内を往復動し、第2ピストン30が第2シリンダヘッド35から離れる吸気行程と、第2ピストン30が第2シリンダヘッド35に近づく吐出行程とを交互に繰り返す。この場合、第1ピストン29と第2ピストン30とは1つの連接棒25により連結されているため、第1ピストン29の吸気行程および吐出行程と、第2ピストン30の吸気行程および吐出行程とは、逆の関係となる。
 第1ピストン29の吸気行程では、第1ピストン29が第1吸気口31Aを介して第1室32内に流入してくる加圧気体により上向きに押動されるように、第1ピストン29は第1シリンダ27内を上向きに摺動変位する。第1ピストン29の吐出行程では、第1ピストン29が第1シリンダ27内を下向きに摺動変位し、第1室32内から加圧気体を第1吐出口31Bを介して第1連通路34に向けて流出させる。
 第2ピストン30の吸気行程では、第2室33内の圧力が第1連通路34内の圧力よりも低くなると、第1チェック弁36は弁体36Aを開弁する。これにより、第1連通路34と第2室33とは第2シリンダヘッド35に設けられた吸込孔35Dを介して連通するから、第1連通路34、第2吸気口35Aおよび吸込孔35Dを介して加圧気体が第2室33内に吸込まれる。
 一方、第2ピストン30の吐出行程では、第2室33内の圧力が上昇し、第2室33内の圧力が第2チェック弁37側の設定圧力よりも高くなると、第2チェック弁37の弁体37Aが開弁する。これにより、第2室33内の加圧気体は、再圧縮された状態で吐出孔35E、第2吐出口35Bを介して主管路7側に吐出される。この再圧縮された加圧気体は、貯留タンク1または各エアサスペンション6へと供給される。
 ここで、貯留タンク1内に加圧気体が充分に蓄えられていない場合(即ち、貯留タンク1内の圧力が基準の設定圧力よりも低い場合)には、タンクバルブ3および吸気バルブ15を閉位置(b)から開位置(a)に切換え、給排気バルブ9および排気バルブ14を閉位置(b)に保持したまま、貯留切換バルブ4を給排位置(c)に切換えた状態で、電動モータ22により圧縮装置21の圧縮機本体23を作動(即ち、圧縮運転)させる。
 これにより、圧縮装置21の圧縮機本体23は、吸気フィルタ15A、吸込管路16を通じて外気を吸込み、この空気を加圧(圧縮)して主管路7に向け吐出する。この加圧気体は、エアドライヤ12によって乾燥された後、補給管路2を介して貯留タンク1内に蓄えられる。そして、例えば貯留タンク1内の圧力が所定の設定圧力に達すると、電動モータ22(即ち、圧縮装置21)を停止させ、タンクバルブ3および吸気バルブ15を共に閉位置(b)に切換える。これにより、貯留タンク1内には充分な量の加圧気体を充填して貯留しておくことができる。
 次に、車高を上げる場合には、例えば圧縮装置21を停止させたままの状態でも、貯留タンク1内の加圧気体を各エアサスペンション6に供給することができる。即ち、この場合には、タンクバルブ3を閉位置(b)から開位置(a)に切換え、貯留切換バルブ4および給排切換バルブ10を給排位置(c)に保持した状態で、給排気バルブ9を開位置(a)に切換える。これにより、貯留タンク1内の加圧気体が主管路7に導出され、この加圧気体は、分岐管路8を通じて各エアサスペンション6内に供給される。このように、貯留タンク1内に蓄えられた加圧気体を各エアサスペンション6内に供給して各エアサスペンション6を迅速に伸長させることができるので、例えば圧縮装置21によって生成した加圧気体を直接的に各エアサスペンション6内に供給する場合に比較して、車高を素早く上昇させることができる。
 このとき、車両に積載物を搭載して各エアサスペンション6に高い圧力がかかっている場合(特に、貯留タンク1内の圧力よりもエアサスペンション6側が高圧となるような場合)には、貯留タンク1内の加圧気体よりもさらに高い圧力の加圧気体を、各エアサスペンション6に供給して車高を上げる必要がある。そのため、貯留切換バルブ4を切換位置(d)に切換えて、貯留タンク1内の加圧気体を、第1バイパス管路5を介して圧縮装置21の吸込側(即ち、吸込管路16)に流通させる。これにより、貯留タンク1内の加圧気体を圧縮装置21でさらに圧縮でき、高い圧力の加圧気体をエアドライヤ12、給排切換バルブ10等を介して各エアサスペンション6に供給することができる。
 車高の上げ動作が完了した後には、給排気バルブ9を閉位置(b)に切換えて分岐管路8を閉じる。これにより、各エアサスペンション6に対する加圧気体の流通を封止して、各エアサスペンション6は伸長状態を保ち、車高を上げた状態に保つことができる。
 一方、車高を下げる場合には、タンクバルブ3および給排気バルブ9を開位置(a)に切換え、貯留切換バルブ4を給排位置(c)に保持し、給排切換バルブ10を給排位置(c)から切換位置(d)に切換える。この状態で、圧縮装置21の圧縮機本体23を電動モータ22により動かし始めると、各エアサスペンション6内の加圧気体は、分岐管路8、主管路7を通じて第2バイパス管路11に排出(導出)される。そして、第2バイパス管路11に導出された加圧気体は、吸込管路16を介して圧縮装置21の吸込側から吐出側へと流通する。
 このときに、圧縮装置21によって加圧気体(エアサスペンション6からの排出気体)を再圧縮して主管路7側に吐出してもよい。また、加圧気体を実質的に圧縮することなく、単に吸込管路16側から主管路7側に流通させるだけでもよい。即ち、圧縮装置21の運転状態は、貯留タンク1内とエアサスペンション6内との圧力差によって決められる。圧縮装置21から吐出(または、流出)された加圧気体は、主管路7、エアドライヤ12、補給管路2を通じて貯留タンク1内に補給される。この結果、各エアサスペンション6から加圧気体が排出され、各エアサスペンション6が縮小状態に移行することにより、車高を下げることができる。
 この場合、各エアサスペンション6から第1シリンダ27内の第1室32に加圧気体を吸気するので、第1室32内は各エアサスペンション6の加圧気体の圧力と同等に保たれる。また、第2シリンダ28内の第2室33では、各エアサスペンション6からの加圧気体を第2ピストン30の往復動により、貯留タンク1内の圧力と同等の圧力に達するまでさらに加圧する。
 ここで、貯留タンク1内の圧力が予め決められた設定圧力の上限値まで上昇した場合、例えば圧力センサ17からの検出信号に基づいて、タンクバルブ3を閉位置(b)に戻す。この上で、給排切換バルブ10を切換位置(d)から給排位置(c)に切換えると共に、排気バルブ14を閉位置(b)から開位置(a)に切換える。これにより、各エアサスペンション6からの加圧気体を、排気管路13を介して排気口14Aから外部に直接的に排出することができる。
 なお、車高を下げる場合に、各エアサスペンション6内の圧力よりも貯留タンク1内の圧力が低い場合には、給排切換バルブ10を給排位置(c)に切換えたままの状態で、圧縮装置21(エアドライヤ12)を経由せずに、各エアサスペンション6から補給管路2を通じて加圧気体を貯留タンク1に排出させるように流通させることができる。また、貯留切換バルブ4と給排切換バルブ10とを共に給排位置(c)から切換位置(d)に切換えた場合には、各エアサスペンション6から第2バイパス管路11、第1バイパス管路5を通じて加圧気体を貯留タンク1に排出させるように貯留(供給)することもできる。
 かくして、本実施の形態によれば、圧縮装置21は、第1ピストン29と第2ピストン30とを連接棒25の一端と他端とに連結し、両者が連接棒25を介して一体的に往復動を繰り返す構成としている。これにより、第1ピストン29が加圧気体により第1シリンダ27内を往復動するときの動きを利用して、第2ピストン30を第2シリンダ28内で往復動させることができ、クランク機構26から電動モータ22のモータ軸22Aにかかる負荷を半減させるように低減できる。即ち、第1ピストン29が下方向に動く場合は第2ピストン30も下方向に動き、このときに、第2シリンダ28の第2室33内に加圧気体を吸込む吸気行程を円滑に行うことができる。そして、第1ピストン29が加圧気体の圧力で上方向に動く場合は、第2ピストン30も上方向に動くため、第2ピストン30による圧縮動作を加圧気体の圧力を利用して円滑に行うことができる。
 この結果、第2シリンダ28の第2室33内で加圧気体をさらに加圧して圧縮する場合に、第1ピストン29により第2ピストン30の加圧を補助し助ける方向の助力を発生でき、クランク機構26(特に、第2ピストン30)から電動モータ22に付加される圧縮運転時の負荷を軽減することができると共に、加圧気体の再圧縮を容易に行うことができる。従って、電動モータ22の消費電力を低減することが可能となり、省エネルギ化を図ることができ、電動モータ22を小型化することもできる。
 また、クランクケース24内を密閉構造とせずに、クランク室24E、各シリンダ室27A,28Aを外気の流入出を許す構造とし、常に大気圧としている。これにより、電動モータ22のリード線等からのエア漏れを考慮する必要がなく、圧縮装置21を複雑なシール構造とする必要がないので、部品点数を削減でき、圧縮装置21の製造コストを抑制することができる。
 また、第1ピストン29と第2ピストン30とを同一受圧面積としているので、第2ピストン30による圧縮運転に対して第1ピストン29による助力を有効に発生できる。このため、圧縮装置21による圧縮運転を円滑に行うことが可能となり、圧縮運転時における電動モータ22の負荷を半減させるように低減することができる。
 次に、図3は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、第1連通路を連接棒の内部を貫通して設けたことにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 図3において、圧縮装置41は、駆動機構としての電動モータ22と、該電動モータ22のモータ軸22Aによって駆動される圧縮機本体42とにより構成されている。圧縮機本体42は、第1の実施の形態とほぼ同様に、クランクケース24、連接棒43、第1シリンダ27、第2シリンダ28、第1ピストン44、第2ピストン45、第1室32、第2室33、第1連通路47、第2吐出口48A、第1チェック弁49、第2チェック弁37等を含んで構成されている。しかし、この場合は、連接棒43、第1ピストン44、第2ピストン45、第1シリンダヘッド46、第1連通路47、第2シリンダヘッド48等の構成が第1の実施の形態と相違している。
 連接棒43は、クランクケース24のクランク室24E内を上,下方向に延びて収納されている。連接棒43の一側となる下端側は、第1シリンダ27内に位置して第1ピストン44の裏面略中央部位に一体的に取付けられている。一方、連接棒43の他側となる上端側は、第2シリンダ28内に位置して第2ピストン45の裏面略中央部位に一体的に取付けられている。そして、連接棒43の内部には、後述の第1連通路47が軸方向に延びる貫通孔として形成されている。
 第1ピストン44は、連接棒43の下端側に位置し、第1シリンダ27内に往復動可能(摺動可能)に挿嵌されている。この第1ピストン44は、第1シリンダ27の内径寸法よりも僅かに小さな直径をもった円板体からなり、その周囲にはシール部材44Aが取付けられている。また、第1ピストン44の内部には、後述の第1連通路47が貫通して形成されている。
 第2ピストン45は、連接棒43の上端側に位置し、第2シリンダ28内に往復動可能(摺動可能)に挿嵌されている。この第2ピストン45は、第2シリンダ28の内径寸法よりも僅かに小さな直径をもった円板体からなり、その周囲にはシール部材45Aが取付けられている。また、第2ピストン45の内部には、後述の第1連通路47が貫通して形成されている。
 第1シリンダヘッド46は、第1シリンダ27の下端側を閉塞するように該第1シリンダ27の下端側に取付けられている。この第1シリンダヘッド46は、吸込管路16の上流側から加圧気体を流入(吸入)させる第1吸気口46Aを備えている。
 第1連通路47は、連接棒43、第1ピストン44、第2ピストン45の内部を貫通して設けられている。この第1連通路47は、第1室32を介して第2室33とを連通する通路である。第1連通路47の一端(下端)は第1室32に常時連通し、第1連通路34の他端(上端)は第2室33に後述の第1チェック弁49を介して接続されている。
 第2シリンダヘッド48は、第2シリンダ28の上端側を閉塞するように該第2シリンダ28の上端側に取付けられている。この第2シリンダヘッド48は、加圧気体を各エアサスペンション6(または、貯留タンク1)に流出(吐出)させる第2連通路としての第2吐出口48Aと、第2シリンダ28の上端側を閉塞して第2ピストン30との間に第2室33を形成する弁板部48Bと、該弁板部48Bを貫通して設けられ第2室33と第2吐出口48Aとを第2チェック弁37を介して連通する吐出孔48Cと、第2シリンダヘッド48の上端側を閉塞する蓋体48Dと、により構成されている。
 第1チェック弁49は、第2ピストン45の上端面に位置して、弾性(ばね性)を有する平板状の弁板として形成された吸込弁である。この第1チェック弁49の基端部である一端側はボルト等により第2ピストン45上に固定され、第1チェック弁49の他端側は第1連通路47を閉塞する位置に配置されている。第1チェック弁49は、第2ピストン45の吸気行程時に第1連通路47を開き、第2ピストン45の吐出(圧縮)行程時に第1連通路47を閉塞し、第2室33からの加圧気体の逆流を防止する。
 かくして、第2の実施の形態によれば、第1の実施の形態とほぼ同様の作用効果を得ることができる。第2の実施の形態では、第1連通路47を、連接棒43、第1ピストン44、第2ピストン45の内部を貫通して設ける構成とした。これにより、連接棒43を利用して第1連通路47を形成できるので、圧縮装置41の製造コストを抑制することができ、第1,第2シリンダ27,28の外部に第1連通路を設ける必要がなくなる。
 次に、図4は本発明の第3の実施の形態を示している。第3の実施の形態の特徴は、圧縮装置の駆動機構としてリニアモータを用いたことにある。なお、第3の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 図4において、圧縮装置51は、駆動機構としてのリニアモータ52と、該リニアモータ52によって駆動される圧縮機本体53とにより構成されている。圧縮機本体53は、第1の実施の形態とほぼ同様に、連接棒25、第1シリンダ27、第2シリンダ28、第1ピストン29、第2ピストン30、第1室32、第2室33、第1連通路34、第2吐出口35B、第1チェック弁36、第2チェック弁37等を含んで構成されている。しかし、この場合の圧縮機本体53は、第1の実施の形態の圧縮機本体23と異なり、クランクケースが配設される位置には後述のリニアモータ52が設けられている。
 リニアモータ52は、第1シリンダ27と第2シリンダ28との間に位置して設けられている。このリニアモータ52は、固定子としての電機子52Aと可動子52Bとにより大略構成されている。この電機子52Aは、例えば圧粉磁心や積層された電磁鋼板、磁性体片により形成された略筒状のコアと、所定の方向に巻かれてコア内に収納された複数のコイル(いずれも図示せず)とによって構成されている。また、可動子52Bは、電機子52A内で上,下方向に延び連接棒25と一体化して設けられている。この可動子52Bは、複数の永久磁石(図示せず)により大略構成されている。
 リニアモータ52は、電機子52Aの複数のコイルに通電することにより、可動子52Bを上,下方向に移動させることができる。これにより、リニアモータ52は、可動子52Bに固定されている連接棒25を上,下方向に往復動させ、各ピストン29,30を吸気行程と吐出行程とを交互に繰り返すように駆動する。
 かくして、第3の実施の形態によれば、第1の実施の形態とほぼ同様の作用効果を得ることができる。第3の実施の形態では、圧縮装置51の駆動機構としてリニアモータ52を用いる構成とした。これにより、駆動機構としてのリニアモータ52と圧縮機本体53とをクランク機構を用いずに連結することができるので、少ない部品点数で圧縮装置51を製造することができる。この結果、圧縮装置51の製造コストを抑制することができる。
 なお、第1の実施の形態では、貯留タンク1を第1貯留体として構成し、エアサスペンション6を第2貯留体として構成した。しかし、本発明はこれに限らず、貯留タンク1を第2貯留体として構成し、エアサスペンション6を第1貯留体として構成してもよい。この点は、第2、第3の実施の形態についても同様である。
 また、第1の実施の形態では、第1ピストン29と第2ピストン30とを同一(同等)の受圧面積を有する構成とした。しかし、本発明はこれに限らず、第1ピストンと第2ピストンとを異なる受圧面積としてもよい。この点は、第2、第3の実施の形態についても同様である。
 また、第1の実施の形態では、加圧気体を第1室32から第1連通路34を介して間接的に第2吸気口35Aに導く構成とした。しかし、本発明はこれに限らず、例えば、圧縮装置21の吸込側に設けた吸込管路16を第1室32と第2吸気口35Aとに並列に接続し、吸込管路16と第2吸気口35Aとを第1連通路(図示せず)により直接的に接続する構成としてもよい。この点は、第3の実施の形態についても同様である。
 また、第1の実施の形態では、圧縮装置21を、電動モータ22と圧縮機本体とにより構成されることとした。しかし、本発明はこれに限らず、圧縮装置21は、各バルブ3,4,9,10,14,15を含む構成としてもよい。この点は、第2、第3の実施の形態についても同様である。
 さらに、前記各実施の形態では、往復動型の圧縮装置21,41,51を、4輪自動車等の車両のエアサスペンション機構に適用する場合を例に挙げて説明したが、本発明はエアサスペンション機構に限らず、例えば、工場の内外等で用いる圧縮装置に適用してもよく、また、冷媒圧縮機等にも広く適用することができる。
 次に、上記実施の形態に含まれる発明について、以下に述べる。即ち、本発明は、第1ピストンと第2ピストンとは、同一受圧面積である構成としている。これにより、第2ピストンによる圧縮運転に対して第1ピストンによる助力を有効に発生できるので、圧縮装置による圧縮運転を円滑に行うことが可能となり、駆動機構の負荷を半減させるように低減することができる。
 また、本発明は、駆動機構は、リニアモータである構成としている。これにより、駆動機構と圧縮機本体とをクランク機構を用いずに連結することができるので、少ない部品点数で圧縮装置を製造することができる。また、本発明は、第1連通路は、第1室を介して前記第2室に連通する構成としている。これにより、第1室に流入した加圧気体を、第1連通路を介して第2室に流出させることができる。
 また、本発明は、第1連通路は、連接棒を貫通して形成される構成としている。これにより、少ない部品点数で第1連通路を形成できるので、圧縮装置の製造コストを抑制することができる。一方、本発明は、連接棒が収納されるシリンダ室は大気圧である構成としている。これにより、シリンダ室を複雑なシール構造とする必要がないので、圧縮装置の製造コストを抑制することができる。
 また、本発明の圧縮装置は、第1貯留体と第2貯留体とのうち、一方の貯留体から第1シリンダ内へ供給し、第2シリンダ内で往復動する第2ピストンによりさらに加圧気体を圧縮して他方の貯留体に向けて吐出させるように切換える切換機構を設け、第1室は、他方の貯留体の加圧気体が供給されたとき、他方の貯留体の加圧気体の圧力に保たれ、第2室は、他方の貯留体の加圧気体が供給されて該加圧気体を第2ピストンの往復動により圧縮する構成としている。これにより、他方の貯留体からの加圧気体を一方の貯留体に向けて供給することができるので、例えば、車高の上げ下げをする場合等において、各貯留体間で双方向に加圧気体の給排を行うことができる。
 以上の実施形態に基づく圧縮装置としては、例えば以下に記載する態様のものがあげられる。圧縮装置の第1の態様としては、大気圧を超えて加圧された加圧気体を貯留する第1貯留体と第2貯留体との間に設けられ、前記第1貯留体と前記第2貯留体とのうち、一方の貯留体から第1、第2シリンダ内へ供給し、該第1、第2シリンダ内で往復動する第1、第2ピストンによりさらに前記加圧気体を圧縮し、前記第1貯留体と前記第2貯留体とのうち他方の貯留体に向けて吐出する圧縮装置であって、連接棒と、該連接棒を往復動する駆動機構と、前記連接棒の一端側および他端側にそれぞれ設けられた前記第1、第2シリンダと、前記第1、第2シリンダ内にそれぞれ摺動可能に配置され、前記連接棒の一端および他端に連結した前記第1、第2ピストンと、前記第1シリンダと前記第1ピストンとで形成され、前記一方の貯留体の加圧気体が供給されたとき、前記一方の貯留体の加圧気体の圧力に保たれる第1室と、前記第2シリンダと前記第2ピストンとで形成され、前記一方の貯留体の加圧気体が供給されて該加圧気体を前記第2ピストンの往復動により圧縮する第2室と、前記一方の貯留体の加圧気体を直接または間接的に前記第2室に導く第1連通路と、該第1連通路に設けられ、前記第2室から前記加圧気体の逆流を防止する第1チェック弁と、前記第2室で圧縮された加圧気体を前記他方の貯留体に導く第2連通路と、前記第2連通路に設けられ、前記他方の貯留体から前記第2室への圧縮気体の逆流を防止する第2チェック弁と、を有する。
 第2の態様によれば、第1の態様において、前記第1ピストンと前記第2ピストンとは、同一受圧面積である。
 第3の態様によれば、第1また第2の態様において、前記駆動機構は、リニアモータである。
 第4の態様によれば、第1乃至第3のいずれかの態様において、前記第1連通路は、前記第1室を介して前記第2室と連通する。
 第5の態様によれば、第1乃至第4のいずれかの態様において、前記第1連通路は、前記連接棒を貫通して形成される。
 第6の態様によれば、第1乃至第5のいずれかの態様において、前記連接棒が収納されるシリンダ室は、大気圧である。
 第7の態様によれば、第1乃至第6のいずれかの態様において、前記第1貯留体と前記第2貯留体とのうち、前記他方の貯留体から前記第1シリンダ内へ供給し、前記第2シリンダ内で往復動する前記第2ピストンによりさらに前記加圧気体を圧縮して前記一方の貯留体に向けて吐出させるように切換える切換機構を設け、前記第1室は、前記他方の貯留体の加圧気体が供給されたとき、前記他方の貯留体の加圧気体の圧力に保たれ、前記第2室は、前記他方の貯留体の加圧気体が供給されて該加圧気体を前記第2ピストンの往復動により圧縮する。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。
 また、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2015年9月29日付出願の日本国特許出願第2015-191432号に基づく優先権を主張する。2015年9月29日付出願の日本国特許出願第2015-191432号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
特開2007-182820号公報および特開平9-170552号公報の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 
 1 貯留タンク(第1貯留体)
 4 貯留切換バルブ(切換機構)
 6 エアサスペンション(第2貯留体)
 10 給排切換バルブ(切換機構)
 21,41,51 圧縮装置
 22 電動モータ(駆動機構)
 25,43 連接棒
 27 第1シリンダ
 27A 第1シリンダ室(シリンダ室)
 28 第2シリンダ
 28A 第2シリンダ室(シリンダ室)
 29,44 第1ピストン
 30,45 第2ピストン
 32 第1室
 33 第2室
 34,47 第1連通路
 35B,48A 第2吐出口(第2連通路)
 36,49 第1チェック弁
 37 第2チェック弁
 52 リニアモータ(駆動機構)

Claims (7)

  1.  大気圧を超えて加圧された加圧気体を貯留する第1貯留体と第2貯留体との間に設けられ、前記第1貯留体と前記第2貯留体とのうち、一方の貯留体から第1、第2シリンダ内へ供給し、該第1、第2シリンダ内で往復動する第1、第2ピストンによりさらに前記加圧気体を圧縮し、前記第1貯留体と前記第2貯留体とのうち他方の貯留体に向けて吐出する圧縮装置であって、
     連接棒と、
     該連接棒を往復動する駆動機構と、
     前記連接棒の一端側および他端側にそれぞれ設けられた前記第1、第2シリンダと、
     前記第1、第2シリンダ内にそれぞれ摺動可能に配置され、前記連接棒の一端および他端に連結した前記第1、第2ピストンと、
     前記第1シリンダと前記第1ピストンとで形成され、前記一方の貯留体の加圧気体が供給されたとき、供給された加圧気体の圧力が前記一方の貯留体の加圧気体の圧力に保たれる第1室と、
     前記第2シリンダと前記第2ピストンとで形成され、前記一方の貯留体の加圧気体が供給されて該加圧気体を前記第2ピストンの往復動により圧縮する第2室と、
     前記一方の貯留体の加圧気体を直接または間接的に前記第2室に導く第1連通路と、
     該第1連通路に設けられ、前記第2室から前記加圧気体の逆流を防止する第1チェック弁と、
     前記第2室で圧縮された加圧気体を前記他方の貯留体に導く第2連通路と、
     前記第2連通路に設けられ、前記他方の貯留体から前記第2室への圧縮気体の逆流を防止する第2チェック弁と、
     を有することを特徴とする圧縮装置。
  2.  前記第1ピストンと前記第2ピストンとは、同一受圧面積である請求項1に記載の圧縮装置。
  3.  前記駆動機構は、リニアモータである請求項1または2に記載の圧縮装置。
  4.  前記第1連通路は、前記第1室を介して前記第2室とを連通する請求項1乃至3の何れかに記載の圧縮装置。
  5.  前記第1連通路は、前記連接棒を貫通して形成される請求項1乃至4の何れかに記載の圧縮装置。
  6.  前記連接棒が収納されるシリンダ室は、大気圧である請求項1乃至5の何れかに記載の圧縮装置。
  7.  前記第1貯留体と前記第2貯留体とのうち、前記他方の貯留体から前記第1シリンダ内へ供給し、前記第2シリンダ内で往復動する前記第2ピストンによりさらに前記加圧気体を圧縮して前記一方の貯留体に向けて吐出させるように切換える切換機構を設け、
     前記第1室は、前記他方の貯留体の加圧気体が供給されたとき、前記他方の貯留体の加圧気体の圧力に保たれ、
     前記第2室は、前記他方の貯留体の加圧気体が供給されて該加圧気体を前記第2ピストンの往復動により圧縮する請求項1乃至6の何れかに記載の圧縮装置。
PCT/JP2016/078167 2015-09-29 2016-09-26 圧縮装置 WO2017057224A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543231A JP6618542B2 (ja) 2015-09-29 2016-09-26 圧縮装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191432 2015-09-29
JP2015-191432 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057224A1 true WO2017057224A1 (ja) 2017-04-06

Family

ID=58427677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078167 WO2017057224A1 (ja) 2015-09-29 2016-09-26 圧縮装置

Country Status (2)

Country Link
JP (1) JP6618542B2 (ja)
WO (1) WO2017057224A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079273A1 (en) * 2015-05-29 2018-03-22 Hitachi Automotive Systems, Ltd. Air suspension system
US10800223B2 (en) * 2016-09-27 2020-10-13 Hitachi Automotive Systems, Ltd. Air suspension system
CN112951592A (zh) * 2021-01-28 2021-06-11 邱凤夏 一种变压器线圈绕线用收放线装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170552A (ja) * 1995-12-20 1997-06-30 Ekuteii Kk 対向ピストン形圧縮機
JP2003239854A (ja) * 2002-02-15 2003-08-27 Toshiba Kyaria Kk 密閉形往復動式圧縮機および冷凍装置
JP2005240724A (ja) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd 冷媒搬送ポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170552A (ja) * 1995-12-20 1997-06-30 Ekuteii Kk 対向ピストン形圧縮機
JP2003239854A (ja) * 2002-02-15 2003-08-27 Toshiba Kyaria Kk 密閉形往復動式圧縮機および冷凍装置
JP2005240724A (ja) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd 冷媒搬送ポンプ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079273A1 (en) * 2015-05-29 2018-03-22 Hitachi Automotive Systems, Ltd. Air suspension system
US10682894B2 (en) * 2015-05-29 2020-06-16 Hitachi Automotive Systems, Ltd. Air suspension system
US10800223B2 (en) * 2016-09-27 2020-10-13 Hitachi Automotive Systems, Ltd. Air suspension system
CN112951592A (zh) * 2021-01-28 2021-06-11 邱凤夏 一种变压器线圈绕线用收放线装置
CN112951592B (zh) * 2021-01-28 2022-09-27 深圳市先高电子有限公司 一种变压器线圈绕线用收放线装置

Also Published As

Publication number Publication date
JP6618542B2 (ja) 2019-12-11
JPWO2017057224A1 (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2019187258A1 (ja) エアサスペンションシステム、および、カメラ洗浄システム
JP6618542B2 (ja) 圧縮装置
CN100404857C (zh) 线性压缩机
CN108431415B (zh) 压缩机
US10875376B2 (en) Air suspension system
KR100619765B1 (ko) 왕복동식 압축기의 용량 가변 장치
WO2017204037A1 (ja) 車載圧縮装置
AU2019200087A1 (en) Oil-free compressor crankcase cooling arrangement
CN100478225C (zh) 用于制动***的泵
JP6772373B2 (ja) 往復動圧縮機
CN104454440A (zh) 双气缸变容量线性压缩机
CN104033358B (zh) 双腔双作用气泵及带有该气泵的擦玻璃机器人
JP6264536B2 (ja) エアコンプレッサ装置
JP6705731B2 (ja) コンプレッサおよびエアサスペンションシステム
KR101402710B1 (ko) 전자제어식 브레이크 시스템용 유압펌프
CN109565234A (zh) 车载用直线电机
JP2017065364A (ja) エアサスペンション装置
KR101021515B1 (ko) 브레이크 시스템의 펌프
US1139991A (en) Air-compressor.
CN208585043U (zh) 一种集成空压机与干燥器的电控空气处理单元
KR20180042770A (ko) 공압 조절장치 및 이를 이용한 자동차용 쇽업소버 시스템
JP2021050665A (ja) 圧縮機
KR20180042771A (ko) 공압 발생장치
KR20020068882A (ko) 왕복동식 압축기
KR20070059788A (ko) 브레이크 컨트롤 시스템용 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851395

Country of ref document: EP

Kind code of ref document: A1