WO2017056541A1 - Electric vehicle - Google Patents

Electric vehicle Download PDF

Info

Publication number
WO2017056541A1
WO2017056541A1 PCT/JP2016/062941 JP2016062941W WO2017056541A1 WO 2017056541 A1 WO2017056541 A1 WO 2017056541A1 JP 2016062941 W JP2016062941 W JP 2016062941W WO 2017056541 A1 WO2017056541 A1 WO 2017056541A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
clutch mechanism
electric motor
electric vehicle
vehicle according
Prior art date
Application number
PCT/JP2016/062941
Other languages
French (fr)
Japanese (ja)
Inventor
幣彦 宮代
清水 司
直也 上西
悠 村瀬
俊宏 河合
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2017542769A priority Critical patent/JPWO2017056541A1/en
Publication of WO2017056541A1 publication Critical patent/WO2017056541A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle.
  • a multi-plate clutch mechanism may be provided in order to realize sporty running.
  • International Publication No. 2012/090255 discloses an electric vehicle that detects an operation amount of a clutch lever with a position sensor and drives a multi-plate clutch mechanism via an electric actuator.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an electric vehicle capable of facilitating adjustment of the rotation speed of the electric motor when the clutch mechanism is disengaged.
  • an electric vehicle includes an electric motor, a battery that supplies electric power to the electric motor, a driving wheel to which a driving force of the electric motor is transmitted, and the driving wheel from the electric motor.
  • a clutch mechanism that switches connection and disconnection of a driving force transmission path to the steering wheel, a steering handle, a clutch operator that is attached to the steering handle and drives the clutch mechanism in response to an operation by an occupant, and connection of the clutch mechanism
  • a control device that switches between two control modes in accordance with switching of cutting.
  • the two control modes can be switched according to switching between connection and disconnection of the clutch mechanism, it is possible to easily adjust the rotation speed of the electric motor when the clutch mechanism is disconnected.
  • FIG. 1 is a side view of an electric vehicle according to an embodiment of the present invention. It is the top view to which the principal part of the electric vehicle was expanded. It is the bottom view to which the principal part of the electric vehicle was expanded. It is sectional drawing which cut
  • FIG. 1 is a side view of an electric vehicle 1 according to an embodiment of the present invention.
  • the electric vehicle 1 is, for example, a saddle type electric vehicle.
  • an electric motorcycle as an example of a straddle-type electric vehicle will be described.
  • the electric vehicle 1 may be an electric four-wheeled vehicle such as an uneven terrain vehicle.
  • An arrow F shown in FIG. 1 represents the front of the electric vehicle 1.
  • the left side and the right side refer to the left side and the right side for an occupant who faces the front and straddles the electric vehicle 1.
  • the electric vehicle 1 includes, for example, a monocoque body frame 2.
  • a front fork 3 is supported on the head pipe 21 provided at the front portion of the vehicle body frame 2 so as to be rotatable in the left-right direction.
  • a front wheel 4 is supported at the lower part of the front fork 3, and a steering handle 5 for steering is provided at the upper part of the front fork 3.
  • a swing arm 7 is supported on a pivot shaft 6 provided at a lower portion of the vehicle body frame 2 so as to be swingable in the vertical direction.
  • a rear wheel 8 is supported at the rear of the swing arm 7.
  • the electric vehicle 1 includes an electric motor 31 as a power source that generates a driving force for driving the rear wheels 8, and a battery 23 as an energy source that supplies electric power to the electric motor 31.
  • a battery 23 for example, a lithium ion battery is suitable.
  • the driving force of the electric motor 31 is decelerated by the speed reducer 33 and transmitted to the output shaft 35, and is transmitted from the output shaft 35 to the rear wheel 8 via a transmission member 72 such as a chain or a belt.
  • the electric vehicle 1 includes a clutch mechanism 9 that switches connection and disconnection of a driving force transmission path from the electric motor 31 to the rear wheel 8.
  • the clutch mechanism 9 is provided coaxially with the electric motor 31, the electric motor 31 is disposed on the right side with respect to the center in the vehicle width direction, and the clutch mechanism 9 is positioned with respect to the center in the vehicle width direction. It is arranged on the left side.
  • the clutch mechanism 9 is, for example, a hydraulic and multi-plate clutch mechanism.
  • the electric vehicle 1 includes a clutch operation assembly 50 that drives the clutch mechanism 9 in response to an operation by an occupant.
  • the clutch operation assembly 50 is attached to the steering handle 5 and mechanically connected to the clutch mechanism 9.
  • the clutch operation assembly 50 includes a clutch operation lever 52 as an example of a clutch operator, and is disposed in the vicinity of the grip 51 provided at the left end portion of the steering handle 5.
  • both the clutch mechanism 9 and the clutch operation assembly 50 are arranged on the left side with respect to the center in the vehicle width direction.
  • the clutch operation assembly 50 is connected to the clutch mechanism 9 via the oil hose 92.
  • the clutch operation assembly 50 may be connected to the clutch mechanism 9 via a wire.
  • the battery 23 is accommodated in a battery case 20 provided below the seat 29.
  • the battery case 20 is configured as a part of the vehicle body frame 2.
  • the battery case 20 is formed in a box shape opened upward, and an openable / closable cover 25 is attached to the upper part thereof. When the seat 29 is removed and the cover 25 is opened, the inside of the battery case 20 can be accessed.
  • the battery 23 is charged by an external charger after being removed from the battery case 20.
  • a plurality of batteries 23 are accommodated in the battery case 20.
  • the size and weight of one battery 23 is designed to be suitable for carrying by hand. As a result, both the ease of carrying the battery 23 by hand and the securing of the output and capacity necessary for traveling of the electric vehicle 1 are compatible.
  • a motor case 30 that houses an electric motor 31, a speed reducer 33, and an output shaft 35 is disposed below the battery case 20, a motor case 30 that houses an electric motor 31, a speed reducer 33, and an output shaft 35 is disposed.
  • the motor case 30 also houses a motor drive device 39 that controls the power supplied from the battery 23 to the electric motor 31.
  • the electric motor 31 is located in the center of the motor case 30 in the front-rear direction, and the motor drive device 39 is located in front of the electric motor 31.
  • the motor drive device 39 includes an inverter that converts DC power from the battery 23 into AC power and supplies the AC power to the electric motor 31, and a motor control device (so-called ECU) that controls the inverter.
  • ECU motor control device
  • the motor case 30 is formed in a box shape opened upward, and is connected to the lower end of the battery case 20. Specifically, the upper edge of the motor case 30 has a shape corresponding to the lower edge of the battery case 20, and the lower edge of the battery case 20 and the upper edge of the motor case 30 are aligned with each other.
  • the battery case 20 and the motor case 30 are made of, for example, aluminum, iron, magnesium, or an alloy thereof.
  • FIG. 2, 3 and 4 are an enlarged plan view, bottom view and cross-sectional view of the left end portion of the steering handle 5 of the electric vehicle 1.
  • FIG. 3 the clutch operation lever 52 when the occupant releases his hand is indicated by a solid line, and the clutch operation lever 52 when the occupant holds the hand by a hand is indicated by a two-dot chain line.
  • 4 is a cross-sectional view taken along line IV-IV in FIG.
  • the clutch operation assembly 50 includes a main body 53 that is attached to the steering handle 5 by a holder 59, and a clutch operation lever 52 that extends outward in the vehicle width direction is centered on the rotation center 532. It is rotatably supported.
  • the clutch operating lever 52 has a switch side action part 521 protruding inward in the vehicle width direction and an oil side action part 57 protruding in the direction of the steering handle 5.
  • the main body 53 is provided with a master cylinder 54 extending inward in the vehicle width direction, and a reservoir tank 55 for adjusting the amount of oil is integrally provided above the master cylinder 54.
  • the master cylinder 54 filled with oil accommodates a piston 541 that can move in the vehicle width direction and a spring 543 that pushes the piston 541 outward in the vehicle width direction.
  • a push rod 545 for pushing the piston 541 inward in the vehicle width direction is disposed outside the master cylinder 54 in the vehicle width direction.
  • the push rod 545 is an oil side action portion 57 of the clutch operation lever 52. It is connected to.
  • An oil hose 92 is connected to the inner end of the master cylinder 54 in the vehicle width direction.
  • the reservoir tank 55 is covered with a diaphragm 552, a plate 554, and a cap 556.
  • the diaphragm 552 is pressed downward by a screwed plate 554 and a cap 556 to apply pressure to the oil inside the reservoir tank 55.
  • the inside of the reservoir tank 55 is connected to the inside of the master cylinder 54 through oil passages 55b and 55c.
  • the reservoir tank 55 adjusts the amount of oil. Specifically, when the piston 54 accommodated in the master cylinder 54 moves further outward in the vehicle width direction than the oil passage 55b, the reservoir tank 55 supplies oil to the master cylinder 54 through the oil passage 55b, or Oil is recovered from the master cylinder 54.
  • the clutch operation assembly 50 further includes a switch 58 that is turned on and off by the operation of the clutch operation lever 52.
  • the switch 58 is an example of an operation detector, and is a momentary operation type switch including a push button 582 in the present embodiment.
  • the switch 58 is attached to the main body 53, and the push button 582 is pushed or released by the switch side action part 521 of the clutch operation lever 52.
  • the switch side action part 521 is separated from the push button 582 of the switch 58, and the switch 58 outputs an OFF signal.
  • the switch side action portion 521 presses the push button 582 of the switch 58, and the switch 58 outputs an ON signal.
  • the oil side action portion 57 provided in the clutch operation lever 52 mechanically drives the clutch mechanism 9, while the switch side provided in the clutch operation lever 52.
  • the operation of the clutch operation lever 52 is electrically detected by the action part 521.
  • the sensor is not limited to the switch 58, and a sensor such as a potentiometer or a position sensor that can detect the operation amount of the clutch operation lever 52 may be provided as the operation detector. In this case, the presence or absence of the operation of the clutch operation lever 52 may be detected based on whether or not the operation amount of the clutch operation lever 52 exceeds a predetermined threshold value.
  • FIG. 5 is schematic diagrams showing the relationship between the position of the clutch operating lever 52 and the state of the clutch mechanism 9.
  • FIG. 5 is schematic diagrams showing the relationship between the position of the clutch operating lever 52 and the state of the clutch mechanism 9.
  • the clutch mechanism 9 includes a release cylinder 93 connected to a master cylinder 54 of the clutch operation assembly 50 via an oil hose 92.
  • the piston 94 accommodated in the release cylinder 93 is connected to one end of the push rod 95, and the other end of the push rod 95 is connected to the pressure plate 96.
  • the pressure plate 96 receives a force in a direction in which the clutch plate 98 is pulled away from the push rod 95, and receives a force in a direction in which the clutch plate 98 is pressed from the spring 97.
  • the piston 541 in the master cylinder 54 of the clutch operation assembly 50 includes a first position where the tip of the piston 541 shown in (a) is located in the proximal direction with respect to the oil passage 55b, and a piston 541 shown in (b). Is configured to be movable between a second position positioned in the distal direction of the oil passage 55b.
  • the front end direction and the base end direction correspond to the inner side and the outer side in the vehicle width direction in the description of FIGS. 2, 3, and 4, respectively.
  • FIG. 5 shows a new state in which the clutch plate 98 is neither thermally expanded nor worn.
  • FIG. 6 shows the thermal expansion of the clutch plate 98.
  • the clutch plate 98 is thicker than the new one due to thermal expansion.
  • the spring 97 is contracted more than when it is new, and accordingly, the piston 94 is shifted in the pushing direction as compared with when it is new, so that the amount of oil in the release cylinder 93 is larger than when it is new.
  • the oil is supplied from the reservoir tank 55 to the master cylinder 54 through the oil passage 55b when the piston 541 of the master cylinder 54 returns to the first position, the positions of the piston 541 and the clutch operation lever 52 do not change.
  • FIG. 7 shows when the clutch plate 98 is worn.
  • the clutch plate 98 is thinner than the new one due to wear.
  • the spring 97 is extended more than when it is new, and accordingly, the piston 94 is shifted in the pushing-back direction more than when it is new, so that the amount of oil in the release cylinder 93 is smaller than when it is new.
  • the piston 541 of the master cylinder 54 returns to the first position, oil is recovered from the master cylinder 54 to the reservoir tank 55 through the oil passage 55b, so that the positions of the piston 541 and the clutch operation lever 52 do not change.
  • FIG. 8 is a graph showing the relationship between the position of the clutch operating lever 52, the state of the clutch mechanism 9, and the switching point of the switch 58.
  • the horizontal axis of the graph represents the position of the clutch operation lever 52, and the vertical axis of the graph represents the state of the clutch mechanism 9.
  • the switch point of the switch 58 is a point where the switch 58 is switched on and off.
  • the switch 58 When the clutch operation lever 52 is on the “grip” side (the side closer to the grip 51) than the switching point of the switch 58, the switch 58 outputs an off signal indicating that there is an operation, and the vehicle control device 10 described later. Understands that the clutch mechanism 9 is disengaged.
  • the switch 58 When the clutch operating lever 52 is on the “separated” side (the side far from the grip 51) from the switching point of the switch 58, the switch 58 outputs an ON signal indicating that there is no operation, and the vehicle control device 10 described later. Grasps that the clutch mechanism 9 is in the connected state.
  • the clutch mechanism 9 In the state of the clutch mechanism 9, there is an intermediate state (so-called half-clutch state) between a connected state where the driving force is transmitted to the maximum and a disconnected state where the driving force is not transmitted. In the half-clutch state, the clutch mechanism 9 transmits a part of the driving force from the electric motor 31 to the rear wheel 8. Corresponding to these states, the position of the clutch operating lever 52 is divided into a connection corresponding range corresponding to the connected state, a disconnect corresponding range corresponding to the disconnected state, and a half clutch corresponding range corresponding to the half clutch state. .
  • the switching point of the switch 58 is preferably in the half-clutch compatible range. As described above, in the hydraulic clutch mechanism 9, the relationship between the position of the clutch operation lever 52 and the state of the clutch mechanism 9 is kept constant even when the clutch plate 98 is thermally expanded or worn. The switching point is also kept within the range corresponding to the half clutch without changing. However, the present invention is not limited to this, and the switching point of the switch 58 may be set, for example, in a portion close to the half-clutch compatible range in the connection compatible range.
  • FIG. 9 is a block diagram showing a system configuration of the electric vehicle 1.
  • the electric vehicle 1 includes a vehicle control device 10 including a microprocessor and a storage device 10b.
  • the vehicle control device 10 implements various vehicle controls by causing the microprocessor to execute a program stored in the storage device 10b.
  • the vehicle control device 10 includes an accelerator operation sensor 11 that outputs a signal corresponding to an operation amount of an accelerator operating element (not shown) provided at the right end of the steering handle 5, and a signal corresponding to the rotational speed of the electric motor 31. Is connected to the above-described switch 58 that detects the operation of the clutch operation lever 52. The vehicle control device 10 calculates a torque value to be output by the electric motor 31 based on information acquired from the accelerator operation sensor 11 and the like, and outputs a command value (for example, a current command value) corresponding to the calculated torque value.
  • a command value for example, a current command value
  • a motor drive device 39 is connected to the vehicle control device 10.
  • the motor drive device 39 includes an inverter 391 that converts DC power from the battery 23 into AC power and supplies the AC power to the electric motor 31, and a motor control device 393 that controls the inverter 391.
  • the motor control device 393 controls the inverter 391 so that a current corresponding to the command value is supplied from the inverter 391 to the electric motor 31.
  • the vehicle control device 10 is connected to a speaker 13 that converts an electrical signal into sound and outputs the sound.
  • FIG. 10 is a block diagram illustrating processing executed by the vehicle control device 10 of the electric vehicle 1.
  • the vehicle control device 10 selects one of the torque values output from the torque calculation unit 15 a for clutch engagement, the torque calculation unit 15 b for clutch disconnection, and the torque calculation units 15 a and 15 b of the clutch operation lever 52.
  • a switching unit 16 that is selected according to the presence or absence of an operation, and a command value calculation unit 17 that calculates a command value according to a torque value output from the switching unit 16 and outputs the command value to the motor drive device 39 are provided.
  • the torque calculation unit 15a for clutch engagement calculates a torque value to be output by the electric motor 31 based on the accelerator operation amount input from the accelerator operation sensor 11 during powering operation. For example, a control map that associates an accelerator operation amount and a torque value is stored in the storage device 10b in advance, and the torque calculation unit 15a acquires a torque value corresponding to the accelerator operation amount by referring to the control map.
  • the torque calculation unit 15a may calculate a torque value to be output by the electric motor 31 based on the motor rotation speed input from the motor rotation speed sensor 12 in addition to the accelerator operation amount. Vehicle speed may be used instead of the motor rotation speed.
  • the torque calculation part 15a outputs the negative torque value for predetermined regeneration at the time of regeneration operation.
  • the calculation of the torque value by the torque calculation unit 15a is an example of the first control mode, and is a normal torque value calculation.
  • the torque calculation unit 15b for clutch disengagement also calculates a torque value in the same manner as the torque calculation unit 15a, but compared with the torque calculation unit 15a, to suppress an increase in motor rotation speed during power running, During the regenerative operation, the torque value is calculated so as to suppress the decrease in the motor rotation speed.
  • Calculation of the torque value by the torque calculation unit 15b is an example of a second control mode. The torque value calculated by the torque calculation unit 15b and the behavior of the motor rotation speed resulting therefrom will be described later.
  • a control map for clutch engagement and a control map for clutch disengagement are individually stored in the storage device 10b
  • the torque calculation unit 15a refers to the control map for clutch connection
  • the torque calculation unit 15b You may refer to the control map for clutch disengagement.
  • the torque value for clutch engagement can be obtained by switching the coefficient of the calculation formula according to whether or not the clutch operation lever 52 is operated. A torque value for clutch disengagement may be calculated.
  • a region where the connection / disconnection state of the clutch mechanism 9 is switched (for example, half-clutch compatible).
  • the torque value may be changed according to the clutch operation amount. According to this, since the torque value is calculated based on both the accelerator operation amount and the clutch operation amount, smooth switching of the connection / disconnection state of the clutch mechanism 9 can be expected.
  • the switching unit 16 selects one of the torque values output from the torque calculation units 15 a and 15 b according to the state of the clutch mechanism 9. Specifically, the switching unit 16 calculates the command value of the torque value from the torque calculating unit 15a for clutch connection while the ON signal indicating that the clutch operating lever 52 is not operated is input from the switch 58. To the unit 17. On the other hand, the switching unit 16 applies the torque value from the torque calculation unit 15b for clutch disengagement to the command value calculation unit 17 while the OFF signal indicating that the clutch operation lever 52 is operated is input from the switch 58. Output.
  • FIG. 11 is a flowchart showing processing executed by the vehicle control device 10 of the electric vehicle 1.
  • the vehicle control device 10 repeatedly executes a series of processes shown in the figure at a predetermined control period while the vehicle is traveling.
  • the vehicle control device 10 determines whether or not the clutch operation lever 52 is operated, that is, whether the signal from the switch 58 is an on signal or an off signal (S11). When the clutch operation lever 52 is not operated, that is, when an ON signal is input from the switch 58 (S11: NO), the vehicle control device 10 performs a clutch corresponding to the accelerator operation amount input from the accelerator operation sensor 11. A normal torque value for connection is set (S12), and a command value corresponding to the set torque value is output to the motor drive device 39 (S13).
  • the vehicle control device 10 When the clutch operation lever 52 is operated, that is, when an OFF signal is input from the switch 58 (S11: YES), the vehicle control device 10 is in the power running operation or the regenerative operation. Is determined (S14). When the power running is being performed (S14: YES), the vehicle control device 10 determines whether or not the motor rotation speed has reached the upper limit value (S15), and the motor rotation speed has not reached the upper limit value. (S15: NO), a normal torque value is set in the same manner as when the clutch is engaged (S12).
  • the vehicle control device 10 sets the torque value to 0 (S16) and drives the command value corresponding to the torque value of 0 to the motor.
  • the data is output to the device 39 (S13).
  • FIG. 12 is a graph for explaining the control of S15 and S16.
  • A is a graph showing the relationship between time and torque value, the torque value set at the time of clutch disengagement according to an arbitrary accelerator operation amount is shown by a solid line, and the torque value set at the time of clutch connection is shown by a two-dot chain line Is shown.
  • B is a graph showing the relationship between time and motor rotation speed, the motor rotation speed when the clutch is disengaged is shown by a solid line, and the motor rotation speed when the same control as when the clutch is engaged is disengaged when the clutch is disengaged Is shown.
  • the vehicle control device 10 sets a normal torque value corresponding to the accelerator operation amount, similar to when the clutch is engaged. As a result, the motor rotation speed increases. When the motor rotation speed reaches the upper limit value, the vehicle control device 10 sets the torque value to zero. Thereby, the motor rotation speed remains in the vicinity of the upper limit value, and a rapid increase in the motor rotation speed is suppressed.
  • the torque value is not limited to 0, and may be a positive value close to 0 so that the motor rotation speed is maintained near the upper limit value, or to reduce the motor rotation speed. It is good also as a negative value.
  • the electric motor 31 in the electric vehicle 1 has a smaller inertia than the engine in the engine vehicle, if the clutch mechanism 9 is in a disconnected state during the power running operation, the motor rotation speed is likely to increase rapidly. In addition, it is possible to suppress a sudden increase in the motor rotation speed when the clutch mechanism 9 is in a disconnected state during the power running operation, and to easily adjust the motor rotation speed.
  • Control for suppressing a rapid increase in the motor rotation speed when the clutch mechanism 9 is disconnected during the power running operation is not limited to the control example shown in FIG. 12, but will be described below with reference to FIG. 13 or FIG.
  • FIG. 13 is a graph illustrating a modified example of the control in S15 and S16.
  • A is a graph showing the relationship between the accelerator operation amount and the torque value, where the torque value set when the clutch is disengaged is indicated by a solid line, and the torque value set when the clutch is engaged is indicated by a two-dot chain line.
  • B is a graph similar to (b) of FIG.
  • the vehicle control device 10 sets a torque value corresponding to an arbitrary accelerator operation amount when the clutch is disengaged to, for example, about half that when the clutch is engaged.
  • the control map referred to when the clutch is engaged describes the relationship between the accelerator operation amount and the torque value indicated by the two-dot chain line in (a).
  • the gradient of the torque value with respect to the accelerator operation amount is smaller than that of the two-dot chain line of (a), and the relationship between the accelerator operation amount and the torque value shown by the solid line of (a). Described.
  • FIG. 14 is a graph for explaining another modified example of the control of S15 and S16.
  • (A) And (b) is the same graph as (a) and (b) of FIG.
  • the two-dot chain line representing the torque value at the time of clutch engagement and the solid line representing the torque value at the time of clutch disengagement are drawn apart from each other in the positive region for explanation, but in reality they overlap. It shall be.
  • the vehicle control device 10 sets a normal positive torque value corresponding to the amount of accelerator operation, as in the clutch engagement, and a negative torque value for temporarily lowering the motor rotation speed. Appear periodically. The period in which the negative torque value appears is shorter than the period in which the positive torque value is set.
  • the motor rotation speed increases at the time of clutch disconnection but periodically decreases, so the increase in motor rotation speed as a whole is slower than when the same control is performed at clutch disconnection as when the clutch is connected. Rapid rise is suppressed. For this reason, it is possible to easily adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
  • the vehicle control device 10 limits the torque value for regeneration (S ⁇ b> 17) and sets a command value corresponding to the limited torque value. It outputs to the motor drive device 39 (S13). Thereby, the rapid fall of the motor rotational speed when the clutch mechanism 9 is in a disconnected state during the regenerative operation is suppressed.
  • FIG. 15 is a graph illustrating the control in S17.
  • A is a graph showing the relationship between time and torque value, the torque value for regeneration set at the time of clutch disconnection is shown by a solid line, and the torque value for regeneration set at the time of clutch engagement is shown by a two-dot chain line Is shown.
  • B is a graph showing the relationship between time and motor rotation speed, the motor rotation speed when the clutch is disengaged is shown by a solid line, and the motor rotation speed when the same control as when the clutch is engaged is disengaged when the clutch is disengaged Is shown.
  • the vehicle control device 10 restricts the torque value for regeneration set when the clutch is disengaged than when the clutch is engaged. Specifically, the vehicle control device 10 makes the negative torque value for regeneration set when the clutch is disengaged larger than the negative torque value for regeneration set when the clutch is engaged, that is, the absolute value is increased. Make it smaller. Thereby, the time decrease rate of the motor rotation speed at the time of clutch disconnection becomes smaller than when the same control as at the time of clutch engagement at the time of clutch disconnection is performed, and a rapid decrease in motor rotation speed is suppressed.
  • the electric motor 31 in the electric vehicle 1 has a smaller inertia than the engine in the engine vehicle, if the clutch mechanism 9 is in a disconnected state during the regenerative operation, the motor rotation speed is likely to drop sharply. In addition, it is possible to suppress the sudden decrease in the motor rotation speed when the clutch mechanism 9 is in a disconnected state during the regenerative operation, and to easily adjust the motor rotation speed.
  • FIG. 16 is a graph illustrating a modified example of the control in S17.
  • (A) And (b) is the same graph as (a) and (b) of FIG.
  • the two-dot chain line representing the torque value at the time of clutch engagement and the solid line representing the torque value at the time of clutch disengagement are drawn apart from each other in the negative region for the sake of explanation, but they actually overlap. It shall be.
  • the vehicle control device 10 sets a negative torque value for regeneration similar to that when the clutch is engaged, and periodically sets a torque value of 0 to temporarily stop the decrease in the motor rotation speed. To appear.
  • the period in which the torque value of 0 appears is shorter than the period in which the negative torque value is set.
  • the motor rotation speed decreases when the clutch is disconnected, but the decrease is periodically stopped. Therefore, the decrease in the motor rotation speed as a whole is slower than when the same control is performed when the clutch is engaged when the clutch is disconnected. A sudden drop in speed is suppressed. For this reason, it is possible to easily adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
  • FIG. 17 is a block diagram showing a modification of the process executed by the vehicle control device 10 of the electric vehicle 1.
  • the vehicle control device 10 includes, for example, an audio generation unit 18 for clutch disconnection, and a switching unit 19 that outputs an audio signal output from the audio generation unit 18 to the speaker 13 during operation of the clutch operation lever 52. Yes.
  • the switching unit 19 blocks the audio signal from the audio generating unit 18, and thereby the speaker 13 performs audio. Is not output (an example of the first control mode).
  • the switching unit 19 passes the audio signal from the audio generation unit 18, and the speaker 13 outputs audio. (Example of second control mode).
  • the sound generation unit 18 may change the sound output from the speaker 13 in accordance with the motor rotation speed input from the motor rotation speed sensor 12. For example, the sound generation unit 18 may generate the sound signal so that the frequency of the sound output from the speaker 13 increases as the motor rotation speed increases. According to this, since the sound output from the speaker 13 changes according to the motor rotation speed, the occupant can recognize that the motor rotation speed can be rapidly increased or decreased, and the motor rotation speed. Can be grasped sensuously. For this reason, it is easier for the user to adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
  • the present invention is not limited to this, and a predetermined sound is output from the speaker 13 when the clutch operation lever 52 is not operated, while a sound different from the sound is output from the speaker 13 when the clutch operation lever 52 is operated. It may be output. This also allows the occupant to recognize that the motor rotation speed can be rapidly increased or decreased.
  • the electric motor 31 or the speaker 13 is the target for switching between the two control modes depending on whether or not the clutch operation lever 52 is operated.
  • the present invention is not limited to this, and other electric devices may be used.
  • As another electric device to be a target it is preferable to facilitate adjustment of the motor rotation speed when the clutch mechanism 9 is disconnected.
  • the clutch operation assembly 50 and the clutch mechanism 9 are mechanically connected by hydraulic pressure or wire.
  • Such a mechanically coupled clutch mechanism is advantageous from the viewpoint of sporty running and downsizing of the power unit. As a result, the clutch mechanism is disengaged and the rotational speed of the electric motor is increased, and then the clutch mechanism is switched to the connected state, or the connection state of the clutch mechanism is finely adjusted during traveling, and transmitted to the drive wheels. It becomes easy to adjust the driving force according to the occupant's intention.
  • the present invention is not limited to this, and the clutch operation assembly 50 and the clutch mechanism 9 may be electrically connected as in a modification described below.
  • the electric vehicle 1 includes a clutch actuator 99 that drives the clutch mechanism 9 in response to a command from the vehicle control device 10.
  • the clutch actuator 99 is composed of, for example, an electric motor, and moves the pressure plate 96 in the axial direction via the push rod 95 to press or separate the pressure plate 96 and the clutch plate 98 from each other.
  • the clutch actuator 99 may be an actuator such as a hydraulic motor.
  • the clutch actuator 99 is provided with an operation amount detector 14 that outputs a detection signal corresponding to the operation amount of the clutch actuator 99 to the vehicle control device 10.
  • the vehicle control device 10 grasps the state of the clutch mechanism 9 based on the detection signal from the operation amount detector 14.
  • the operation amount detector 14 is a rotary encoder or a potentiometer, for example, and outputs a detection signal corresponding to the rotation amount of the electric motor as the clutch actuator 99 to the vehicle control device 10.
  • the operation amount of the clutch actuator 99 corresponds to the state of the clutch mechanism 9.
  • the state of the clutch mechanism 9 changes from a connected state to a disconnected state through a half-clutch state, and as the operation amount of the clutch actuator 99 decreases, the state of the clutch mechanism 9 changes. Transition from the disconnected state to the connected state through the half-clutch state.
  • the correspondence relationship may be reversed.
  • the operation amount detector 14 is not limited to a sensor that detects the operation amount of the clutch actuator 99, and may be a sensor that is provided near the pressure plate 96 and detects the position of the pressure plate 96 in the axial direction, for example.
  • the vehicle control device 10 includes a drive processing unit 71 and a connection / disconnection determination unit 73 in addition to the torque calculation units 15a and 15b, the switching unit 16, and the command value calculation unit 17 described above.
  • the drive processing unit 71 outputs a drive signal to the clutch actuator 99 in response to an on / off signal from the switch 58 that detects the operation of the clutch operation lever 52.
  • the connection / disconnection determination unit 73 determines whether the clutch mechanism 9 is in the connected state or the disconnected state based on the detection signal from the operation amount detector 14 and outputs the determination result to the switching unit 16.
  • the connection / disconnection determination unit 73 determines, for example, that the clutch mechanism 9 is in a disconnected state when the operation amount of the clutch actuator 99 exceeds a predetermined determination point, and the operation amount of the clutch actuator 99 is determined in advance. When it falls below the determination point, it is determined that the clutch mechanism 9 is in the connected state. As shown in FIG. 19, the determination point is set, for example, in a half-clutch corresponding range. The determination point is not limited to this, and the determination point may be set, for example, in a portion close to the half-clutch corresponding range in the connection corresponding range.
  • the switching unit 16 selects one of the torque values output from the torque calculation units 15a and 15b according to the determination result of the connection / disconnection determination unit 73 (that is, switches the control mode). Specifically, the switching unit 16 outputs the torque value from the torque calculation unit 15 a for clutch engagement to the command value calculation unit 17 while it is determined that the clutch mechanism 9 is in the connected state. On the other hand, while it is determined that the clutch mechanism 9 is in the disconnected state, the switching unit 16 outputs the torque value from the torque calculation unit 15 b for clutch disconnection to the command value calculation unit 17.
  • the switching unit 16 is operated according to an on / off signal from the switch 58 that detects the operation of the clutch operation lever 52 or an operation amount from a sensor that detects the operation amount of the clutch operation lever 52.
  • the torque values from the torque calculation units 15a and 15b may be switched according to a signal representing
  • the operation of the clutch operating lever 52 is electrically detected by the switch 58 to drive the clutch actuator 99.
  • the clutch mechanism 99 is operated after the clutch operating lever 52 is operated due to the response of the clutch actuator 99.
  • the vehicle control device 10 may switch the control mode in anticipation of the occurrence of a time lag.
  • the determination point shown in FIG. 19 may be set to the side where the operation amount is relatively small when the operation amount of the clutch actuator 99 increases, that is, when the clutch mechanism 9 switches from the connected state to the disconnected state.
  • the determination point when the operation amount of the clutch actuator 99 increases may be set in a connection correspondence range or a portion close to the connection correspondence range of the half-clutch correspondence range.
  • the determination point may be set to a relatively large amount of operation when the operation amount of the clutch actuator 99 decreases, that is, when the clutch mechanism 9 switches from the disconnected state to the connected state.
  • the determination point when the operation amount of the clutch actuator 99 decreases may be set at a portion close to the disconnection-corresponding range or the disconnection-corresponding range of the half-clutch corresponding range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Steering Devices For Bicycles And Motorcycles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

This electric vehicle is provided with: an electric motor; a battery which supplies electric power to the electric motor; a driving wheel to which a driving force from the electric motor is transmitted; a clutch mechanism which switches between connection and disconnection of a driving force transmission path from the electric motor to the driving wheel; a steering wheel; a clutch operating member which is attached to the steering wheel and drives the clutch mechanism in accordance with an operation by an occupant; and a control device which switches between two control modes in accordance with the switching between connection and disconnection performed by the clutch mechanism. In this way it is possible to simplify adjustment of the rotational speed of the electric motor when the clutch mechanism is in the disconnected state.

Description

電動車両Electric vehicle
 本発明は、電動車両に関する。 The present invention relates to an electric vehicle.
 電動車両においても、スポーティな走行を実現するために多板式のクラッチ機構が設けられることがある。国際公開第2012/090255号には、クラッチレバーの操作量をポジションセンサで検出し、電動アクチュエータを介して多板式のクラッチ機構を駆動する電動車両が開示されている。 Even in an electric vehicle, a multi-plate clutch mechanism may be provided in order to realize sporty running. International Publication No. 2012/090255 discloses an electric vehicle that detects an operation amount of a clutch lever with a position sensor and drives a multi-plate clutch mechanism via an electric actuator.
 しかしながら、電動車両ではクラッチ機構を切断状態にすると、電動モータの回転速度が瞬時に上昇してしまうため、乗員の所望の回転速度に保持することが困難である。また、電動車両のモータ音はエンジン車両のエンジン音と比べて静かであるため、乗員が電動モータの回転速度をモータ音によって感覚的に把握することは困難である。 However, in an electric vehicle, when the clutch mechanism is disengaged, the rotational speed of the electric motor increases instantaneously, and it is difficult to maintain the desired rotational speed of the occupant. Moreover, since the motor sound of the electric vehicle is quieter than the engine sound of the engine vehicle, it is difficult for the occupant to sensuously grasp the rotation speed of the electric motor by the motor sound.
 本発明は、上記課題に鑑みてなされたものであって、その目的は、クラッチ機構の切断状態における電動モータの回転速度の調整容易化を図ることが可能な電動車両を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide an electric vehicle capable of facilitating adjustment of the rotation speed of the electric motor when the clutch mechanism is disengaged.
 上記課題を解決するため、本発明の電動車両は、電動モータと、前記電動モータに電力を供給するバッテリと、前記電動モータの駆動力が伝達される駆動輪と、前記電動モータから前記駆動輪への駆動力伝達経路の接続と切断を切り替えるクラッチ機構と、ステアリングハンドルと、前記ステアリングハンドルに取り付けられ、乗員による操作に応じて前記クラッチ機構を駆動するクラッチ操作子と、前記クラッチ機構の接続と切断の切り替えに応じて2つの制御モードを切り替える制御装置と、を備える。 In order to solve the above-described problems, an electric vehicle according to the present invention includes an electric motor, a battery that supplies electric power to the electric motor, a driving wheel to which a driving force of the electric motor is transmitted, and the driving wheel from the electric motor. A clutch mechanism that switches connection and disconnection of a driving force transmission path to the steering wheel, a steering handle, a clutch operator that is attached to the steering handle and drives the clutch mechanism in response to an operation by an occupant, and connection of the clutch mechanism And a control device that switches between two control modes in accordance with switching of cutting.
 本発明によると、クラッチ機構の接続と切断の切り替えに応じて2つの制御モードを切り替えられるので、クラッチ機構の切断状態における電動モータの回転速度の調整容易化を図ることが可能である。 According to the present invention, since the two control modes can be switched according to switching between connection and disconnection of the clutch mechanism, it is possible to easily adjust the rotation speed of the electric motor when the clutch mechanism is disconnected.
本発明の一実施形態に係る電動車両の側面図である。1 is a side view of an electric vehicle according to an embodiment of the present invention. 電動車両の要部を拡大した平面図である。It is the top view to which the principal part of the electric vehicle was expanded. 電動車両の要部を拡大した底面図である。It is the bottom view to which the principal part of the electric vehicle was expanded. 電動車両の要部を切断した断面図である。It is sectional drawing which cut | disconnected the principal part of the electric vehicle. クラッチ操作レバーの位置とクラッチ機構の状態の関係を表す模式図である。It is a schematic diagram showing the relationship between the position of a clutch operation lever, and the state of a clutch mechanism. クラッチ操作レバーの位置とクラッチ機構の状態の関係を表す模式図である。It is a schematic diagram showing the relationship between the position of a clutch operation lever, and the state of a clutch mechanism. クラッチ操作レバーの位置とクラッチ機構の状態の関係を表す模式図である。It is a schematic diagram showing the relationship between the position of a clutch operation lever, and the state of a clutch mechanism. クラッチ操作レバーの位置とクラッチ機構の状態とスイッチの切替点の関係を表すグラフである。It is a graph showing the relationship between the position of a clutch operation lever, the state of a clutch mechanism, and the switch switching point. 電動車両のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of an electric vehicle. 電動車両の車両制御装置が実行する処理を示すブロック図である。It is a block diagram which shows the process which the vehicle control apparatus of an electric vehicle performs. 電動車両の車両制御装置が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the vehicle control apparatus of an electric vehicle performs. 力行時における第1の制御例を示すグラフである。It is a graph which shows the 1st example of control at the time of power running. 力行時における第2の制御例を示すグラフである。It is a graph which shows the 2nd control example at the time of power running. 力行時における第3の制御例を示すグラフである。It is a graph which shows the 3rd control example at the time of power running. 回生時における第1の制御例を示すグラフである。It is a graph which shows the 1st control example at the time of regeneration. 回生時における第2の制御例を示すグラフである。It is a graph which shows the 2nd control example at the time of regeneration. 電動車両の車両制御装置が実行する処理を示すブロック図である。It is a block diagram which shows the process which the vehicle control apparatus of an electric vehicle performs. 変形例に係るシステム構成及び処理を示すブロック図である。It is a block diagram which shows the system configuration | structure and process which concern on a modification. クラッチアクチュエータの動作量とクラッチ機構の状態と判定ポイントの関係を表すグラフである。It is a graph showing the relationship between the operation amount of a clutch actuator, the state of a clutch mechanism, and a determination point.
 本発明の実施形態を、図面を参照しながら説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る電動車両1の側面図である。電動車両1は、例えば鞍乗型電動車両である。以下では、鞍乗型電動車両の一例としての電動二輪車について説明する。これに限定されず、電動車両1は、例えば不整地走行車両などの電動四輪車であってもよい。図1中に示される矢印Fは、電動車両1の前方を表している。また、以下の説明において、左方及び右方とは、前方を向いて電動車両1に跨がった乗員にとっての左方及び右方を指すものとする。 FIG. 1 is a side view of an electric vehicle 1 according to an embodiment of the present invention. The electric vehicle 1 is, for example, a saddle type electric vehicle. Hereinafter, an electric motorcycle as an example of a straddle-type electric vehicle will be described. However, the electric vehicle 1 may be an electric four-wheeled vehicle such as an uneven terrain vehicle. An arrow F shown in FIG. 1 represents the front of the electric vehicle 1. Moreover, in the following description, the left side and the right side refer to the left side and the right side for an occupant who faces the front and straddles the electric vehicle 1.
 電動車両1は、例えばモノコック形式の車体フレーム2を備えている。車体フレーム2の前部に設けられたヘッドパイプ21には、フロントフォーク3が左右方向に回転可能に支持されている。フロントフォーク3の下部には前輪4が支持されており、フロントフォーク3の上部には操舵のためのステアリングハンドル5が設けられている。車体フレーム2の下部に設けられたピボット軸6には、スイングアーム7が上下方向に揺動可能に支持されている。スイングアーム7の後部には後輪8が支持されている。 The electric vehicle 1 includes, for example, a monocoque body frame 2. A front fork 3 is supported on the head pipe 21 provided at the front portion of the vehicle body frame 2 so as to be rotatable in the left-right direction. A front wheel 4 is supported at the lower part of the front fork 3, and a steering handle 5 for steering is provided at the upper part of the front fork 3. A swing arm 7 is supported on a pivot shaft 6 provided at a lower portion of the vehicle body frame 2 so as to be swingable in the vertical direction. A rear wheel 8 is supported at the rear of the swing arm 7.
 電動車両1は、後輪8を駆動する駆動力を発生する動力源としての電動モータ31と、電動モータ31に電力を供給するエネルギー源としてのバッテリ23とを備えている。バッテリ23としては、例えばリチウムイオン電池が好適である。電動モータ31の駆動力は、減速機33により減速されて出力軸35に伝達され、出力軸35からチェーン又はベルト等の伝達部材72を介して後輪8に伝達される。 The electric vehicle 1 includes an electric motor 31 as a power source that generates a driving force for driving the rear wheels 8, and a battery 23 as an energy source that supplies electric power to the electric motor 31. As the battery 23, for example, a lithium ion battery is suitable. The driving force of the electric motor 31 is decelerated by the speed reducer 33 and transmitted to the output shaft 35, and is transmitted from the output shaft 35 to the rear wheel 8 via a transmission member 72 such as a chain or a belt.
 電動車両1は、電動モータ31から後輪8への駆動力伝達経路の接続と切断を切り替えるクラッチ機構9を備えている。本実施形態では、クラッチ機構9は、電動モータ31と同軸に設けられており、電動モータ31が車両幅方向の中央に対して右方に配置され、クラッチ機構9が車両幅方向の中央に対して左方に配置されている。本実施形態では、クラッチ機構9は、例えば油圧式で多板式のクラッチ機構である。 The electric vehicle 1 includes a clutch mechanism 9 that switches connection and disconnection of a driving force transmission path from the electric motor 31 to the rear wheel 8. In the present embodiment, the clutch mechanism 9 is provided coaxially with the electric motor 31, the electric motor 31 is disposed on the right side with respect to the center in the vehicle width direction, and the clutch mechanism 9 is positioned with respect to the center in the vehicle width direction. It is arranged on the left side. In the present embodiment, the clutch mechanism 9 is, for example, a hydraulic and multi-plate clutch mechanism.
 電動車両1は、乗員による操作に応じてクラッチ機構9を駆動するクラッチ操作アッセンブリ50を備えている。クラッチ操作アッセンブリ50は、ステアリングハンドル5に取り付けられ、クラッチ機構9と機械的に連結されている。クラッチ操作アッセンブリ50は、クラッチ操作子の一例としてのクラッチ操作レバー52を含んでおり、ステアリングハンドル5の左端部に設けられたグリップ51の近傍に配置されている。 The electric vehicle 1 includes a clutch operation assembly 50 that drives the clutch mechanism 9 in response to an operation by an occupant. The clutch operation assembly 50 is attached to the steering handle 5 and mechanically connected to the clutch mechanism 9. The clutch operation assembly 50 includes a clutch operation lever 52 as an example of a clutch operator, and is disposed in the vicinity of the grip 51 provided at the left end portion of the steering handle 5.
 本実施形態では、クラッチ機構9とクラッチ操作アッセンブリ50のどちらも、車両幅方向の中央に対して左方に配置されている。また、本実施形態では、クラッチ操作アッセンブリ50は、オイルホース92を介してクラッチ機構9に接続されている。これに限られず、クラッチ操作アッセンブリ50はワイヤーを介してクラッチ機構9に接続されてもよい。 In the present embodiment, both the clutch mechanism 9 and the clutch operation assembly 50 are arranged on the left side with respect to the center in the vehicle width direction. In the present embodiment, the clutch operation assembly 50 is connected to the clutch mechanism 9 via the oil hose 92. However, the clutch operation assembly 50 may be connected to the clutch mechanism 9 via a wire.
 バッテリ23は、シート29の下方に設けられたバッテリケース20に収容されている。バッテリケース20は、車体フレーム2の一部として構成されている。バッテリケース20は、上方に向かって開放された箱状に形成されており、その上部には開閉可能なカバー25が取り付けられている。シート29が取り外され、カバー25が開放されたときに、バッテリケース20の内側にアクセス可能となる。 The battery 23 is accommodated in a battery case 20 provided below the seat 29. The battery case 20 is configured as a part of the vehicle body frame 2. The battery case 20 is formed in a box shape opened upward, and an openable / closable cover 25 is attached to the upper part thereof. When the seat 29 is removed and the cover 25 is opened, the inside of the battery case 20 can be accessed.
 本実施形態では、バッテリ23は、バッテリケース20から取り外された後に外部の充電器によって充電される。また、本実施形態では、複数のバッテリ23がバッテリケース20に収容されている。一つ当たりのバッテリ23のサイズ及び重量は、人手での持ち運びに適したものとなるように設計されている。これにより、バッテリ23の人手での持ち運びやすさと、電動車両1の走行に必要な出力及び容量の確保とを両立させている。 In the present embodiment, the battery 23 is charged by an external charger after being removed from the battery case 20. In the present embodiment, a plurality of batteries 23 are accommodated in the battery case 20. The size and weight of one battery 23 is designed to be suitable for carrying by hand. As a result, both the ease of carrying the battery 23 by hand and the securing of the output and capacity necessary for traveling of the electric vehicle 1 are compatible.
 バッテリケース20の下方には、電動モータ31、減速機33及び出力軸35を収容するモータケース30が配置されている。モータケース30には、バッテリ23から電動モータ31に供給される電力を制御するモータ駆動装置39も収容されている。電動モータ31はモータケース30の前後方向の中央に位置しており、モータ駆動装置39は電動モータ31の前方に位置している。 Below the battery case 20, a motor case 30 that houses an electric motor 31, a speed reducer 33, and an output shaft 35 is disposed. The motor case 30 also houses a motor drive device 39 that controls the power supplied from the battery 23 to the electric motor 31. The electric motor 31 is located in the center of the motor case 30 in the front-rear direction, and the motor drive device 39 is located in front of the electric motor 31.
 モータ駆動装置39は、バッテリ23からの直流電力を交流電力に変換して電動モータ31に供給するインバータと、インバータを制御するモータ制御装置(いわゆるECU)とを含んでいる。 The motor drive device 39 includes an inverter that converts DC power from the battery 23 into AC power and supplies the AC power to the electric motor 31, and a motor control device (so-called ECU) that controls the inverter.
 モータケース30は、上方に向かって開放された箱状に形成されており、バッテリケース20の下端に連結されている。具体的には、モータケース30の上縁は、バッテリケース20の下縁に対応する形状を有しており、バッテリケース20の下縁とモータケース30の上縁とが互いに合わせられている。バッテリケース20とモータケース30は、例えばアルミニウム、鉄、マグネシウム又はそれらの合金などでできている。 The motor case 30 is formed in a box shape opened upward, and is connected to the lower end of the battery case 20. Specifically, the upper edge of the motor case 30 has a shape corresponding to the lower edge of the battery case 20, and the lower edge of the battery case 20 and the upper edge of the motor case 30 are aligned with each other. The battery case 20 and the motor case 30 are made of, for example, aluminum, iron, magnesium, or an alloy thereof.
 図2、図3及び図4は、電動車両1のステアリングハンドル5の左端部を拡大した平面図、底面図及び断面図である。図3では、乗員が手を離しているときのクラッチ操作レバー52を実線で表し、乗員が手で握ったときのクラッチ操作レバー52を二点鎖線で表している。図4は、図2中のIV-IV線で切断したときの断面図である。 2, 3 and 4 are an enlarged plan view, bottom view and cross-sectional view of the left end portion of the steering handle 5 of the electric vehicle 1. FIG. In FIG. 3, the clutch operation lever 52 when the occupant releases his hand is indicated by a solid line, and the clutch operation lever 52 when the occupant holds the hand by a hand is indicated by a two-dot chain line. 4 is a cross-sectional view taken along line IV-IV in FIG.
 クラッチ操作アッセンブリ50は、ホルダー59によってステアリングハンドル5に取り付けられる本体部53を備えており、本体部53には、車両幅方向の外方に延びるクラッチ操作レバー52が、回転中心部532を中心に回転可能に支持されている。クラッチ操作レバー52は、車両幅方向の内方へ突出したスイッチ側作用部521と、ステアリングハンドル5の方向へ突出したオイル側作用部57とを有している。 The clutch operation assembly 50 includes a main body 53 that is attached to the steering handle 5 by a holder 59, and a clutch operation lever 52 that extends outward in the vehicle width direction is centered on the rotation center 532. It is rotatably supported. The clutch operating lever 52 has a switch side action part 521 protruding inward in the vehicle width direction and an oil side action part 57 protruding in the direction of the steering handle 5.
 本体部53には、車両幅方向の内方に延びるマスターシリンダ54が設けられており、マスターシリンダ54の上方には、オイル量を調整するためのリザーバータンク55が一体的に設けられている。オイルで満たされたマスターシリンダ54の内部には、車両幅方向に沿って移動可能なピストン541と、ピストン541を車両幅方向の外方へ押し出すスプリング543とが収容されている。 The main body 53 is provided with a master cylinder 54 extending inward in the vehicle width direction, and a reservoir tank 55 for adjusting the amount of oil is integrally provided above the master cylinder 54. The master cylinder 54 filled with oil accommodates a piston 541 that can move in the vehicle width direction and a spring 543 that pushes the piston 541 outward in the vehicle width direction.
 マスターシリンダ54の車両幅方向の外方には、ピストン541を車両幅方向の内方へ押し出すためのプッシュロッド545が配置されており、プッシュロッド545は、クラッチ操作レバー52のオイル側作用部57に連結されている。マスターシリンダ54の車両幅方向の内方の端部には、オイルホース92が連結されている。 A push rod 545 for pushing the piston 541 inward in the vehicle width direction is disposed outside the master cylinder 54 in the vehicle width direction. The push rod 545 is an oil side action portion 57 of the clutch operation lever 52. It is connected to. An oil hose 92 is connected to the inner end of the master cylinder 54 in the vehicle width direction.
 乗員がクラッチ操作レバー52を握ると、オイル側作用部57がプッシュロッド545を介してピストン541を車両幅方向の内方へ押し出し、これにより、クラッチ機構9が駆動される。一方、乗員がクラッチ操作レバー52を離すと、スプリング543がピストン541を車両幅方向の外方へ押し出し、これにより、クラッチ操作レバー52がグリップ51から離れた位置に戻される。 When the occupant grasps the clutch operation lever 52, the oil-side action portion 57 pushes the piston 541 inward in the vehicle width direction via the push rod 545, whereby the clutch mechanism 9 is driven. On the other hand, when the occupant releases the clutch operation lever 52, the spring 543 pushes the piston 541 outward in the vehicle width direction, thereby returning the clutch operation lever 52 to a position away from the grip 51.
 リザーバータンク55は、ダイアフラム552、プレート554及びキャップ556によって覆われている。ダイアフラム552は、ネジ留めされたプレート554及びキャップ556によって下方に押し付けられており、リザーバータンク55の内部のオイルに圧力を与えている。リザーバータンク55の内部は、オイル通路55b,55cを通じてマスターシリンダ54の内部と繋がっている。 The reservoir tank 55 is covered with a diaphragm 552, a plate 554, and a cap 556. The diaphragm 552 is pressed downward by a screwed plate 554 and a cap 556 to apply pressure to the oil inside the reservoir tank 55. The inside of the reservoir tank 55 is connected to the inside of the master cylinder 54 through oil passages 55b and 55c.
 乗員がクラッチ操作レバー52を離し、クラッチ操作レバー52がグリップ51から離れた位置に戻るときに、リザーバータンク55はオイル量を調整する。具体的には、マスターシリンダ54に収容されたピストン54がオイル通路55bよりも車両幅方向の外方まで移動したときに、リザーバータンク55はオイル通路55bを通じてマスターシリンダ54にオイルを供給する、又はマスターシリンダ54からオイルを回収する。 When the occupant releases the clutch operation lever 52 and the clutch operation lever 52 returns to a position away from the grip 51, the reservoir tank 55 adjusts the amount of oil. Specifically, when the piston 54 accommodated in the master cylinder 54 moves further outward in the vehicle width direction than the oil passage 55b, the reservoir tank 55 supplies oil to the master cylinder 54 through the oil passage 55b, or Oil is recovered from the master cylinder 54.
 クラッチ操作アッセンブリ50は、クラッチ操作レバー52の操作によりオンとオフが切り替わるスイッチ58をさらに備えている。スイッチ58は、操作検出器の一例であって、本実施形態では押しボタン582を備えるモーメンタリ動作方式のスイッチである。スイッチ58は、本体部53に取り付けられており、クラッチ操作レバー52のスイッチ側作用部521によって押しボタン582が押されたり離されたりする。 The clutch operation assembly 50 further includes a switch 58 that is turned on and off by the operation of the clutch operation lever 52. The switch 58 is an example of an operation detector, and is a momentary operation type switch including a push button 582 in the present embodiment. The switch 58 is attached to the main body 53, and the push button 582 is pushed or released by the switch side action part 521 of the clutch operation lever 52.
 具体的には、乗員がクラッチ操作レバー52を握ると、スイッチ側作用部521がスイッチ58の押しボタン582から離れて、スイッチ58はオフ信号を出力する。一方、乗員がクラッチ操作レバー52を離し、クラッチ操作レバー52がグリップ51から離れた位置に戻るときに、スイッチ側作用部521がスイッチ58の押しボタン582を押して、スイッチ58はオン信号を出力する。 Specifically, when the occupant grips the clutch operation lever 52, the switch side action part 521 is separated from the push button 582 of the switch 58, and the switch 58 outputs an OFF signal. On the other hand, when the occupant releases the clutch operation lever 52 and the clutch operation lever 52 returns to a position away from the grip 51, the switch side action portion 521 presses the push button 582 of the switch 58, and the switch 58 outputs an ON signal. .
 このように、本実施形態のクラッチ操作アッセンブリ50では、クラッチ操作レバー52に設けられたオイル側作用部57がクラッチ機構9を機械的に駆動する一方で、クラッチ操作レバー52に設けられたスイッチ側作用部521によってクラッチ操作レバー52の操作が電気的に検知される。なお、スイッチ58に限られず、クラッチ操作レバー52の操作量を検出可能な、例えばポテンショメータやポジションセンサ等のセンサが操作検出器として設けられてもよい。この場合、クラッチ操作レバー52の操作量が所定の閾値を超えたか否かによってクラッチ操作レバー52の操作の有無を検出すればよい。 As described above, in the clutch operation assembly 50 according to the present embodiment, the oil side action portion 57 provided in the clutch operation lever 52 mechanically drives the clutch mechanism 9, while the switch side provided in the clutch operation lever 52. The operation of the clutch operation lever 52 is electrically detected by the action part 521. Note that the sensor is not limited to the switch 58, and a sensor such as a potentiometer or a position sensor that can detect the operation amount of the clutch operation lever 52 may be provided as the operation detector. In this case, the presence or absence of the operation of the clutch operation lever 52 may be detected based on whether or not the operation amount of the clutch operation lever 52 exceeds a predetermined threshold value.
 図5、図6及び図7は、クラッチ操作レバー52の位置とクラッチ機構9の状態の関係を表す模式図である。 5, 6 and 7 are schematic diagrams showing the relationship between the position of the clutch operating lever 52 and the state of the clutch mechanism 9. FIG.
 クラッチ機構9は、クラッチ操作アッセンブリ50のマスターシリンダ54にオイルホース92を介して接続されたレリーズシリンダ93を備えている。レリーズシリンダ93に収容されたピストン94はプッシュロッド95の一端に連結されており、プッシュロッド95の他端はプレッシャープレート96に連結されている。プレッシャープレート96は、プッシュロッド95からクラッチプレート98を引き離す方向の力を受け、スプリング97からクラッチプレート98を押し付ける方向の力を受ける。 The clutch mechanism 9 includes a release cylinder 93 connected to a master cylinder 54 of the clutch operation assembly 50 via an oil hose 92. The piston 94 accommodated in the release cylinder 93 is connected to one end of the push rod 95, and the other end of the push rod 95 is connected to the pressure plate 96. The pressure plate 96 receives a force in a direction in which the clutch plate 98 is pulled away from the push rod 95, and receives a force in a direction in which the clutch plate 98 is pressed from the spring 97.
 クラッチ操作アッセンブリ50のマスターシリンダ54内のピストン541は、(a)に示されるピストン541の先端がオイル通路55bよりも基端方向に位置する第1の位置と、(b)に示されるピストン541の先端がオイル通路55bよりも先端方向に位置する第2の位置との間を移動可能に構成されている。ここで、先端方向と基端方向は、図2、図3及び図4の説明における車両幅方向の内方と外方にそれぞれ相当する。 The piston 541 in the master cylinder 54 of the clutch operation assembly 50 includes a first position where the tip of the piston 541 shown in (a) is located in the proximal direction with respect to the oil passage 55b, and a piston 541 shown in (b). Is configured to be movable between a second position positioned in the distal direction of the oil passage 55b. Here, the front end direction and the base end direction correspond to the inner side and the outer side in the vehicle width direction in the description of FIGS. 2, 3, and 4, respectively.
 乗員がクラッチ操作レバー52を握り、マスターシリンダ54内のピストン541が第2の位置に向けて押し込まれると、オイルホース92を通じて伝達される油圧によりレリーズシリンダ93内のピストン94が押し出され、その結果、クラッチプレート98が引き離されて、クラッチ機構9は切断状態となる。 When the occupant grips the clutch operating lever 52 and the piston 541 in the master cylinder 54 is pushed toward the second position, the piston 94 in the release cylinder 93 is pushed out by the hydraulic pressure transmitted through the oil hose 92, and as a result Then, the clutch plate 98 is pulled away, and the clutch mechanism 9 is in a disconnected state.
 乗員がクラッチ操作レバー52を離すと、マスターシリンダ54内のピストン541はスプリング543(図4を参照)によって第1の位置まで戻されると共に、レリーズシリンダ93内のピストン94もスプリング97によって押し戻されて、クラッチ機構9は接続状態に戻る。 When the occupant releases the clutch operation lever 52, the piston 541 in the master cylinder 54 is returned to the first position by the spring 543 (see FIG. 4), and the piston 94 in the release cylinder 93 is also pushed back by the spring 97. The clutch mechanism 9 returns to the connected state.
 油圧式のクラッチ機構9を用いる場合、クラッチプレート98が熱膨張したり摩耗しても、以下に説明するようなリザーバータンク55の機能によって、クラッチ操作レバー52の位置とクラッチ機構9の状態の関係が一定に保たれるという利点がある。図5は、クラッチプレート98が熱膨張も摩耗もしていない新品時を表している。 When the hydraulic clutch mechanism 9 is used, even if the clutch plate 98 is thermally expanded or worn, the relationship between the position of the clutch operating lever 52 and the state of the clutch mechanism 9 depends on the function of the reservoir tank 55 as described below. Has the advantage of being kept constant. FIG. 5 shows a new state in which the clutch plate 98 is neither thermally expanded nor worn.
 図6は、クラッチプレート98の熱膨張時を表している。クラッチプレート98が熱膨張によって新品時よりも厚くなっている。このとき、スプリング97が新品時よりも縮んだ状態となり、それに伴い、ピストン94が新品時よりも押し出し方向にシフトするため、レリーズシリンダ93内のオイル量は新品時よりも多くなる。しかしながら、マスターシリンダ54のピストン541が第1の位置に戻るときに、オイル通路55bを通じてリザーバータンク55からマスターシリンダ54にオイルが供給されるので、ピストン541及びクラッチ操作レバー52の位置は変化しない。 FIG. 6 shows the thermal expansion of the clutch plate 98. The clutch plate 98 is thicker than the new one due to thermal expansion. At this time, the spring 97 is contracted more than when it is new, and accordingly, the piston 94 is shifted in the pushing direction as compared with when it is new, so that the amount of oil in the release cylinder 93 is larger than when it is new. However, since the oil is supplied from the reservoir tank 55 to the master cylinder 54 through the oil passage 55b when the piston 541 of the master cylinder 54 returns to the first position, the positions of the piston 541 and the clutch operation lever 52 do not change.
 図7は、クラッチプレート98の摩耗時を表している。クラッチプレート98が摩耗によって新品時よりも薄くなっている。このとき、スプリング97が新品時よりも伸びた状態となり、それに伴い、ピストン94が新品時よりも押し戻し方向にシフトするため、レリーズシリンダ93内のオイル量は新品時よりも少なくなる。しかしながら、マスターシリンダ54のピストン541が第1の位置に戻るときに、オイル通路55bを通じてマスターシリンダ54からリザーバータンク55にオイルが回収されるので、ピストン541及びクラッチ操作レバー52の位置は変化しない。 FIG. 7 shows when the clutch plate 98 is worn. The clutch plate 98 is thinner than the new one due to wear. At this time, the spring 97 is extended more than when it is new, and accordingly, the piston 94 is shifted in the pushing-back direction more than when it is new, so that the amount of oil in the release cylinder 93 is smaller than when it is new. However, when the piston 541 of the master cylinder 54 returns to the first position, oil is recovered from the master cylinder 54 to the reservoir tank 55 through the oil passage 55b, so that the positions of the piston 541 and the clutch operation lever 52 do not change.
 このように油圧式のクラッチ機構9では、クラッチ操作レバー52の位置とクラッチ機構9の状態の関係が一定に保たれる。このため、操作検出器としてのスイッチ58により検出されるクラッチ操作レバー52の操作とクラッチ機構9の状態の関係も一定に保つことが可能である。 Thus, in the hydraulic clutch mechanism 9, the relationship between the position of the clutch operation lever 52 and the state of the clutch mechanism 9 is kept constant. For this reason, the relationship between the operation of the clutch operation lever 52 detected by the switch 58 as the operation detector and the state of the clutch mechanism 9 can be kept constant.
 すなわち、油圧式のクラッチ機構9では、クラッチプレート98が熱膨張したり摩耗しても、クラッチ操作レバー52の位置とクラッチ機構9の状態の関係が一定に保たれるため、スイッチ58によって検出されるクラッチ操作レバー52の位置に基づき後述の車両制御装置10において把握されるクラッチ機構9の接続/切断状態を、実際のクラッチ機構9の接続/切断状態に合わせておくことが可能である。 In other words, in the hydraulic clutch mechanism 9, even if the clutch plate 98 is thermally expanded or worn, the relationship between the position of the clutch operating lever 52 and the state of the clutch mechanism 9 is kept constant, so that it is detected by the switch 58. The connection / disconnection state of the clutch mechanism 9 grasped by the vehicle control device 10 described later based on the position of the clutch operation lever 52 can be matched with the actual connection / disconnection state of the clutch mechanism 9.
 図8は、クラッチ操作レバー52の位置とクラッチ機構9の状態とスイッチ58の切替点の関係を表すグラフである。同グラフの横軸はクラッチ操作レバー52の位置を表し、同グラフの縦軸はクラッチ機構9の状態を表している。スイッチ58の切替点は、スイッチ58のオンとオフが切り替わる点である。 FIG. 8 is a graph showing the relationship between the position of the clutch operating lever 52, the state of the clutch mechanism 9, and the switching point of the switch 58. The horizontal axis of the graph represents the position of the clutch operation lever 52, and the vertical axis of the graph represents the state of the clutch mechanism 9. The switch point of the switch 58 is a point where the switch 58 is switched on and off.
 クラッチ操作レバー52がスイッチ58の切替点よりも「握」の側(グリップ51に近い側)にあるときは、スイッチ58は操作が有ることを表すオフ信号を出力し、後述の車両制御装置10はクラッチ機構9が切断状態であると把握する。クラッチ操作レバー52がスイッチ58の切替点よりも「離」の側(グリップ51から遠い側)にあるときは、スイッチ58は操作が無いことを表すオン信号を出力し、後述の車両制御装置10はクラッチ機構9が接続状態であると把握する。 When the clutch operation lever 52 is on the “grip” side (the side closer to the grip 51) than the switching point of the switch 58, the switch 58 outputs an off signal indicating that there is an operation, and the vehicle control device 10 described later. Understands that the clutch mechanism 9 is disengaged. When the clutch operating lever 52 is on the “separated” side (the side far from the grip 51) from the switching point of the switch 58, the switch 58 outputs an ON signal indicating that there is no operation, and the vehicle control device 10 described later. Grasps that the clutch mechanism 9 is in the connected state.
 クラッチ機構9の状態には、駆動力を最大限伝達する接続状態と、駆動力を伝達しない切断状態との間に中間状態(いわゆる半クラッチ状態)が存在する。半クラッチ状態において、クラッチ機構9は電動モータ31からの駆動力の一部を後輪8に伝達する。これらの状態に対応して、クラッチ操作レバー52の位置は、接続状態に対応する接続対応範囲と、切断状態に対応する切断対応範囲と、半クラッチ状態に対応する半クラッチ対応範囲とに分けられる。 In the state of the clutch mechanism 9, there is an intermediate state (so-called half-clutch state) between a connected state where the driving force is transmitted to the maximum and a disconnected state where the driving force is not transmitted. In the half-clutch state, the clutch mechanism 9 transmits a part of the driving force from the electric motor 31 to the rear wheel 8. Corresponding to these states, the position of the clutch operating lever 52 is divided into a connection corresponding range corresponding to the connected state, a disconnect corresponding range corresponding to the disconnected state, and a half clutch corresponding range corresponding to the half clutch state. .
 スイッチ58の切替点は、半クラッチ対応範囲にあることが好ましい。上述したように油圧式のクラッチ機構9では、クラッチプレート98が熱膨張したり摩耗しても、クラッチ操作レバー52の位置とクラッチ機構9の状態の関係が一定に保たれるため、スイッチ58の切替点も変化することなく、半クラッチ対応範囲内に保たれる。なお、これに限られず、スイッチ58の切替点は、例えば接続対応範囲のうちの半クラッチ対応範囲に近い部分に設定されてもよい。 The switching point of the switch 58 is preferably in the half-clutch compatible range. As described above, in the hydraulic clutch mechanism 9, the relationship between the position of the clutch operation lever 52 and the state of the clutch mechanism 9 is kept constant even when the clutch plate 98 is thermally expanded or worn. The switching point is also kept within the range corresponding to the half clutch without changing. However, the present invention is not limited to this, and the switching point of the switch 58 may be set, for example, in a portion close to the half-clutch compatible range in the connection compatible range.
 図9は、電動車両1のシステム構成を示すブロック図である。同図では、電動車両1で実現されるシステムのうち、以下に説明する本実施形態の制御に係る構成を主として図示している。電動車両1は、マイクロプロセッサと記憶装置10bを含む車両制御装置10を備えている。車両制御装置10は、記憶装置10bに格納されているプログラムをマイクロプロセッサが実行することによって、種々の車両制御を実現する。 FIG. 9 is a block diagram showing a system configuration of the electric vehicle 1. In the figure, among the systems realized by the electric vehicle 1, a configuration related to the control of the present embodiment described below is mainly illustrated. The electric vehicle 1 includes a vehicle control device 10 including a microprocessor and a storage device 10b. The vehicle control device 10 implements various vehicle controls by causing the microprocessor to execute a program stored in the storage device 10b.
 車両制御装置10には、ステアリングハンドル5の右端部に設けられたアクセル操作子(不図示)の操作量に応じた信号を出力するアクセル操作センサ11と、電動モータ31の回転速度に応じた信号を出力するモータ回転速度センサ12と、クラッチ操作レバー52の操作を検知する上述のスイッチ58とが接続されている。車両制御装置10は、アクセル操作センサ11等から取得する情報に基づいて電動モータ31が出力すべきトルク値を算出し、算出したトルク値に応じた指令値(例えば電流指令値)を出力する。 The vehicle control device 10 includes an accelerator operation sensor 11 that outputs a signal corresponding to an operation amount of an accelerator operating element (not shown) provided at the right end of the steering handle 5, and a signal corresponding to the rotational speed of the electric motor 31. Is connected to the above-described switch 58 that detects the operation of the clutch operation lever 52. The vehicle control device 10 calculates a torque value to be output by the electric motor 31 based on information acquired from the accelerator operation sensor 11 and the like, and outputs a command value (for example, a current command value) corresponding to the calculated torque value.
 また、車両制御装置10には、モータ駆動装置39が接続されている。モータ駆動装置39は、バッテリ23からの直流電力を交流電力に変換して電動モータ31に供給するインバータ391と、インバータ391を制御するモータ制御装置393とを含んでいる。モータ制御装置393は、指令値に応じた電流がインバータ391から電動モータ31に供給されるようにインバータ391を制御する。さらに、車両制御装置10には、電気信号を音声に変換して出力するスピーカー13が接続されている。 Further, a motor drive device 39 is connected to the vehicle control device 10. The motor drive device 39 includes an inverter 391 that converts DC power from the battery 23 into AC power and supplies the AC power to the electric motor 31, and a motor control device 393 that controls the inverter 391. The motor control device 393 controls the inverter 391 so that a current corresponding to the command value is supplied from the inverter 391 to the electric motor 31. Furthermore, the vehicle control device 10 is connected to a speaker 13 that converts an electrical signal into sound and outputs the sound.
 図10は、電動車両1の車両制御装置10が実行する処理を示すブロック図である。車両制御装置10は、例えば、クラッチ接続時用のトルク算出部15aと、クラッチ切断時用のトルク算出部15bと、トルク算出部15a,15bから出力されるトルク値の一方をクラッチ操作レバー52の操作の有無に応じて選択する切替部16と、切替部16から出力されるトルク値に応じた指令値を算出し、モータ駆動装置39に出力する指令値算出部17とを備えている。 FIG. 10 is a block diagram illustrating processing executed by the vehicle control device 10 of the electric vehicle 1. The vehicle control device 10, for example, selects one of the torque values output from the torque calculation unit 15 a for clutch engagement, the torque calculation unit 15 b for clutch disconnection, and the torque calculation units 15 a and 15 b of the clutch operation lever 52. A switching unit 16 that is selected according to the presence or absence of an operation, and a command value calculation unit 17 that calculates a command value according to a torque value output from the switching unit 16 and outputs the command value to the motor drive device 39 are provided.
 クラッチ接続時用のトルク算出部15aは、力行運転時には、アクセル操作センサ11から入力されるアクセル操作量に基づいて電動モータ31が出力すべきトルク値を算出する。例えば、記憶装置10bに、アクセル操作量とトルク値を対応付ける制御マップが予め格納され、トルク算出部15aは制御マップを参照することで、アクセル操作量に対応するトルク値を取得する。また、トルク算出部15aは、アクセル操作量に加えて、モータ回転速度センサ12から入力されるモータ回転速度に基づいて、電動モータ31が出力すべきトルク値を算出してもよい。モータ回転速度に代えて、車速が用いられてもよい。また、トルク算出部15aは、回生運転時には、予め定められた回生のための負のトルク値を出力する。トルク算出部15aによるトルク値の算出は、第1の制御モードの一例であり、通常のトルク値の算出である。 The torque calculation unit 15a for clutch engagement calculates a torque value to be output by the electric motor 31 based on the accelerator operation amount input from the accelerator operation sensor 11 during powering operation. For example, a control map that associates an accelerator operation amount and a torque value is stored in the storage device 10b in advance, and the torque calculation unit 15a acquires a torque value corresponding to the accelerator operation amount by referring to the control map. The torque calculation unit 15a may calculate a torque value to be output by the electric motor 31 based on the motor rotation speed input from the motor rotation speed sensor 12 in addition to the accelerator operation amount. Vehicle speed may be used instead of the motor rotation speed. Moreover, the torque calculation part 15a outputs the negative torque value for predetermined regeneration at the time of regeneration operation. The calculation of the torque value by the torque calculation unit 15a is an example of the first control mode, and is a normal torque value calculation.
 クラッチ切断時用のトルク算出部15bも、上記トルク算出部15aと同様にトルク値を算出するが、上記トルク算出部15aと比較して、力行運転時にはモータ回転速度の上昇を抑制するように、回生運転時にはモータ回転速度の下降を抑制するように、トルク値を算出する。トルク算出部15bによるトルク値の算出は、第2の制御モードの一例である。トルク算出部15bにより算出されるトルク値とそれに因るモータ回転速度の振る舞いについては、後述する。 The torque calculation unit 15b for clutch disengagement also calculates a torque value in the same manner as the torque calculation unit 15a, but compared with the torque calculation unit 15a, to suppress an increase in motor rotation speed during power running, During the regenerative operation, the torque value is calculated so as to suppress the decrease in the motor rotation speed. Calculation of the torque value by the torque calculation unit 15b is an example of a second control mode. The torque value calculated by the torque calculation unit 15b and the behavior of the motor rotation speed resulting therefrom will be described later.
 例えば、記憶装置10bに、クラッチ接続時用の制御マップとクラッチ切断時用の制御マップとが個別に格納され、トルク算出部15aがクラッチ接続時用の制御マップを参照し、トルク算出部15bがクラッチ切断時用の制御マップを参照してよい。また、例えば、予め定められた算定式を用いてトルク値を算出する場合において、クラッチ操作レバー52の操作の有無に応じて当該算定式の係数を切替えることで、クラッチ接続時用のトルク値とクラッチ切断時用のトルク値を算出するようにしてもよい。また、例えば、上述したようなポテンショメータ等のクラッチ操作レバー52の操作量(クラッチ操作量)を検出可能なセンサを用いる場合には、クラッチ機構9の接続/切断状態が切り替わる領域(例えば半クラッチ対応領域)において、クラッチ操作量に応じてトルク値を変化させてもよい。これによると、アクセル操作量とクラッチ操作量の双方に基づいてトルク値が算出されるので、クラッチ機構9の接続/切断状態の切り替えの円滑化を期待できる。 For example, a control map for clutch engagement and a control map for clutch disengagement are individually stored in the storage device 10b, the torque calculation unit 15a refers to the control map for clutch connection, and the torque calculation unit 15b You may refer to the control map for clutch disengagement. Further, for example, when calculating the torque value using a predetermined calculation formula, the torque value for clutch engagement can be obtained by switching the coefficient of the calculation formula according to whether or not the clutch operation lever 52 is operated. A torque value for clutch disengagement may be calculated. Further, for example, when a sensor capable of detecting the operation amount (clutch operation amount) of the clutch operation lever 52 such as the potentiometer described above is used, a region where the connection / disconnection state of the clutch mechanism 9 is switched (for example, half-clutch compatible). In the region), the torque value may be changed according to the clutch operation amount. According to this, since the torque value is calculated based on both the accelerator operation amount and the clutch operation amount, smooth switching of the connection / disconnection state of the clutch mechanism 9 can be expected.
 切替部16は、トルク算出部15a,15bから出力されるトルク値の一方をクラッチ機構9の状態に応じて選択する。具体的には、切替部16は、スイッチ58からクラッチ操作レバー52の操作が無いことを表すオン信号が入力されている間、クラッチ接続時用のトルク算出部15aからのトルク値を指令値算出部17に出力する。一方、切替部16は、スイッチ58からクラッチ操作レバー52の操作が有ることを表すオフ信号が入力されている間、クラッチ切断時用のトルク算出部15bからのトルク値を指令値算出部17に出力する。 The switching unit 16 selects one of the torque values output from the torque calculation units 15 a and 15 b according to the state of the clutch mechanism 9. Specifically, the switching unit 16 calculates the command value of the torque value from the torque calculating unit 15a for clutch connection while the ON signal indicating that the clutch operating lever 52 is not operated is input from the switch 58. To the unit 17. On the other hand, the switching unit 16 applies the torque value from the torque calculation unit 15b for clutch disengagement to the command value calculation unit 17 while the OFF signal indicating that the clutch operation lever 52 is operated is input from the switch 58. Output.
 図11は、電動車両1の車両制御装置10が実行する処理を示すフローチャートである。車両制御装置10は、車両の走行中、同図に示される一連の処理を所定の制御周期で繰り返し実行する。 FIG. 11 is a flowchart showing processing executed by the vehicle control device 10 of the electric vehicle 1. The vehicle control device 10 repeatedly executes a series of processes shown in the figure at a predetermined control period while the vehicle is traveling.
 車両制御装置10は、クラッチ操作レバー52が操作されているか否か、すなわちスイッチ58からの信号がオン信号であるかオフ信号であるかを判定する(S11)。クラッチ操作レバー52が操作されていない場合、すなわちスイッチ58からオン信号が入力されている場合(S11:NO)、車両制御装置10は、アクセル操作センサ11から入力されるアクセル操作量に応じたクラッチ接続時用の通常のトルク値を設定し(S12)、設定したトルク値に対応する指令値をモータ駆動装置39に出力する(S13)。 The vehicle control device 10 determines whether or not the clutch operation lever 52 is operated, that is, whether the signal from the switch 58 is an on signal or an off signal (S11). When the clutch operation lever 52 is not operated, that is, when an ON signal is input from the switch 58 (S11: NO), the vehicle control device 10 performs a clutch corresponding to the accelerator operation amount input from the accelerator operation sensor 11. A normal torque value for connection is set (S12), and a command value corresponding to the set torque value is output to the motor drive device 39 (S13).
 クラッチ操作レバー52が操作されている場合、すなわちスイッチ58からオフ信号が入力されている場合(S11:YES)、車両制御装置10は、電動車両1が力行運転中であるか回生運転中であるかを判定する(S14)。力行運転中である場合(S14:YES)、車両制御装置10は、モータ回転速度が上限値に到達しているか否かを判定し(S15)、モータ回転速度が上限値に到達していない場合には(S15:NO)、クラッチ接続時と同様に通常のトルク値を設定する(S12)。 When the clutch operation lever 52 is operated, that is, when an OFF signal is input from the switch 58 (S11: YES), the vehicle control device 10 is in the power running operation or the regenerative operation. Is determined (S14). When the power running is being performed (S14: YES), the vehicle control device 10 determines whether or not the motor rotation speed has reached the upper limit value (S15), and the motor rotation speed has not reached the upper limit value. (S15: NO), a normal torque value is set in the same manner as when the clutch is engaged (S12).
 一方、モータ回転速度が上限値に到達している場合には(S15:YES)、車両制御装置10は、トルク値を0にし(S16)、0であるトルク値に対応する指令値をモータ駆動装置39に出力する(S13)。これにより、力行運転中にクラッチ機構9が切断状態になったときのモータ回転速度の急激な上昇が抑制される。 On the other hand, when the motor rotation speed has reached the upper limit value (S15: YES), the vehicle control device 10 sets the torque value to 0 (S16) and drives the command value corresponding to the torque value of 0 to the motor. The data is output to the device 39 (S13). Thereby, a rapid increase in the motor rotation speed when the clutch mechanism 9 is in a disconnected state during the power running operation is suppressed.
 図12は、S15,S16の制御を説明するグラフである。(a)は、時間とトルク値の関係を表すグラフであり、任意のアクセル操作量に応じてクラッチ切断時に設定されるトルク値を実線で示し、クラッチ接続時に設定されるトルク値を二点鎖線で示している。(b)は、時間とモータ回転速度の関係を表すグラフであり、クラッチ切断時のモータ回転速度を実線で示し、クラッチ切断時にクラッチ接続時と同じ制御をした場合のモータ回転速度を二点鎖線で示している。 FIG. 12 is a graph for explaining the control of S15 and S16. (A) is a graph showing the relationship between time and torque value, the torque value set at the time of clutch disengagement according to an arbitrary accelerator operation amount is shown by a solid line, and the torque value set at the time of clutch connection is shown by a two-dot chain line Is shown. (B) is a graph showing the relationship between time and motor rotation speed, the motor rotation speed when the clutch is disengaged is shown by a solid line, and the motor rotation speed when the same control as when the clutch is engaged is disengaged when the clutch is disengaged Is shown.
 クラッチ切断時であっても、モータ回転速度が上限値未満である場合には、車両制御装置10は、クラッチ接続時と同様の、アクセル操作量に応じた通常のトルク値を設定する。これにより、モータ回転速度は上昇する。モータ回転速度が上限値に到達した場合に、車両制御装置10はトルク値を0に設定する。これにより、モータ回転速度は上限値近傍に留まり、モータ回転速度の急激な上昇が抑制される。モータ回転速度が上限値に到達した場合のトルク値は0に限られず、モータ回転速度が上限値近傍に維持されるように0に近い正の値としてもよいし、モータ回転速度を減少させるために負の値としてもよい。 Even when the clutch is disengaged, if the motor rotation speed is less than the upper limit value, the vehicle control device 10 sets a normal torque value corresponding to the accelerator operation amount, similar to when the clutch is engaged. As a result, the motor rotation speed increases. When the motor rotation speed reaches the upper limit value, the vehicle control device 10 sets the torque value to zero. Thereby, the motor rotation speed remains in the vicinity of the upper limit value, and a rapid increase in the motor rotation speed is suppressed. When the motor rotation speed reaches the upper limit value, the torque value is not limited to 0, and may be a positive value close to 0 so that the motor rotation speed is maintained near the upper limit value, or to reduce the motor rotation speed. It is good also as a negative value.
 電動車両1における電動モータ31は、エンジン車両におけるエンジンと比較するとイナーシャが小さいため、力行運転中にクラッチ機構9が切断状態になるとモータ回転速度が急激に上昇しやすいが、本実施形態によれば、力行運転中にクラッチ機構9が切断状態になったときのモータ回転速度の急激な上昇を抑制し、モータ回転速度の調整を容易にすることが可能である。 Since the electric motor 31 in the electric vehicle 1 has a smaller inertia than the engine in the engine vehicle, if the clutch mechanism 9 is in a disconnected state during the power running operation, the motor rotation speed is likely to increase rapidly. In addition, it is possible to suppress a sudden increase in the motor rotation speed when the clutch mechanism 9 is in a disconnected state during the power running operation, and to easily adjust the motor rotation speed.
 力行運転中にクラッチ機構9が切断状態になったときのモータ回転速度の急激な上昇を抑制するための制御としては、図12に示す制御例に限られず、以下に説明する図13又は図14に示す制御例が適用されてもよい。 Control for suppressing a rapid increase in the motor rotation speed when the clutch mechanism 9 is disconnected during the power running operation is not limited to the control example shown in FIG. 12, but will be described below with reference to FIG. 13 or FIG. The control example shown in FIG.
 図13は、S15,S16の制御の変形例を説明するグラフである。(a)は、アクセル操作量とトルク値の関係を表すグラフであり、クラッチ切断時に設定されるトルク値を実線で示し、クラッチ接続時に設定されるトルク値を二点鎖線で示している。(b)は、図12の(b)と同様のグラフである。 FIG. 13 is a graph illustrating a modified example of the control in S15 and S16. (A) is a graph showing the relationship between the accelerator operation amount and the torque value, where the torque value set when the clutch is disengaged is indicated by a solid line, and the torque value set when the clutch is engaged is indicated by a two-dot chain line. (B) is a graph similar to (b) of FIG.
 車両制御装置10は、クラッチ切断時において任意のアクセル操作量に対応するトルク値を、クラッチ接続時よりも例えば半分程度に少なく設定する。例えば、クラッチ接続時に参照される制御マップには、(a)の二点鎖線で示されるアクセル操作量とトルク値の関係が記述される。一方、クラッチ切断時に参照される制御マップには、(a)の二点鎖線よりもアクセル操作量に対するトルク値の傾きが小さい、(a)の実線で示されるアクセル操作量とトルク値の関係が記述される。 The vehicle control device 10 sets a torque value corresponding to an arbitrary accelerator operation amount when the clutch is disengaged to, for example, about half that when the clutch is engaged. For example, the control map referred to when the clutch is engaged describes the relationship between the accelerator operation amount and the torque value indicated by the two-dot chain line in (a). On the other hand, in the control map referred to when the clutch is disengaged, the gradient of the torque value with respect to the accelerator operation amount is smaller than that of the two-dot chain line of (a), and the relationship between the accelerator operation amount and the torque value shown by the solid line of (a). Described.
 これにより、クラッチ切断時におけるモータ回転速度の時間上昇率が、クラッチ切断時にクラッチ接続時と同じ制御をした場合よりも小さくなり、モータ回転速度の急激な上昇が抑制される。このため、クラッチ機構9の切断状態におけるモータ回転速度の調整を容易にすることができる。 This makes the time increase rate of the motor rotation speed when the clutch is disengaged smaller than when the same control is performed when the clutch is disengaged when the clutch is disengaged, and a rapid increase in the motor rotation speed is suppressed. For this reason, it is possible to easily adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
 図14は、S15,S16の制御の別の変形例を説明するグラフである。(a)及び(b)は、図12の(a)及び(b)と同様のグラフである。なお、(a)では、クラッチ接続時のトルク値を表す二点鎖線と、クラッチ切断時のトルク値を表す実線は、説明のために正の領域において互いに離して描かれているが、実際は重なっているものとする。 FIG. 14 is a graph for explaining another modified example of the control of S15 and S16. (A) And (b) is the same graph as (a) and (b) of FIG. In (a), the two-dot chain line representing the torque value at the time of clutch engagement and the solid line representing the torque value at the time of clutch disengagement are drawn apart from each other in the positive region for explanation, but in reality they overlap. It shall be.
 クラッチ切断時において、車両制御装置10は、クラッチ接続時と同様の、アクセル操作量に応じた通常の正のトルク値を設定するとともに、モータ回転速度を一時的に下降させるための負のトルク値を周期的に出現させる。負のトルク値が出現する期間は、正のトルク値が設定される期間と比べて短い。 When the clutch is disengaged, the vehicle control device 10 sets a normal positive torque value corresponding to the amount of accelerator operation, as in the clutch engagement, and a negative torque value for temporarily lowering the motor rotation speed. Appear periodically. The period in which the negative torque value appears is shorter than the period in which the positive torque value is set.
 これにより、クラッチ切断時にはモータ回転速度が上昇するものの周期的に下降するため、モータ回転速度の上昇は全体として、クラッチ切断時にクラッチ接続時と同じ制御をした場合よりも遅くなり、モータ回転速度の急激な上昇が抑制される。このため、クラッチ機構9の切断状態におけるモータ回転速度の調整を容易にすることができる。 As a result, the motor rotation speed increases at the time of clutch disconnection but periodically decreases, so the increase in motor rotation speed as a whole is slower than when the same control is performed at clutch disconnection as when the clutch is connected. Rapid rise is suppressed. For this reason, it is possible to easily adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
 図11のフローチャートの説明に戻り、回生運転中である場合(S14:NO)、車両制御装置10は、回生のためのトルク値を制限し(S17)、制限したトルク値に対応する指令値をモータ駆動装置39に出力する(S13)。これにより、回生運転中にクラッチ機構9が切断状態になったときのモータ回転速度の急激な下降が抑制される。 Returning to the description of the flowchart of FIG. 11, when the regenerative operation is being performed (S <b> 14: NO), the vehicle control device 10 limits the torque value for regeneration (S <b> 17) and sets a command value corresponding to the limited torque value. It outputs to the motor drive device 39 (S13). Thereby, the rapid fall of the motor rotational speed when the clutch mechanism 9 is in a disconnected state during the regenerative operation is suppressed.
 図15は、S17の制御を説明するグラフである。(a)は、時間とトルク値の関係を表すグラフであり、クラッチ切断時に設定される回生のためのトルク値を実線で示し、クラッチ接続時に設定される回生のためのトルク値を二点鎖線で示している。(b)は、時間とモータ回転速度の関係を表すグラフであり、クラッチ切断時のモータ回転速度を実線で示し、クラッチ切断時にクラッチ接続時と同じ制御をした場合のモータ回転速度を二点鎖線で示している。 FIG. 15 is a graph illustrating the control in S17. (A) is a graph showing the relationship between time and torque value, the torque value for regeneration set at the time of clutch disconnection is shown by a solid line, and the torque value for regeneration set at the time of clutch engagement is shown by a two-dot chain line Is shown. (B) is a graph showing the relationship between time and motor rotation speed, the motor rotation speed when the clutch is disengaged is shown by a solid line, and the motor rotation speed when the same control as when the clutch is engaged is disengaged when the clutch is disengaged Is shown.
 車両制御装置10は、クラッチ切断時に設定される回生のためのトルク値をクラッチ接続時よりも制限する。具体的には、車両制御装置10は、クラッチ切断時に設定される回生のための負のトルク値を、クラッチ接続時に設定される回生のための負のトルク値よりも大きくする、すなわち絶対値を小さくする。これにより、クラッチ切断時におけるモータ回転速度の時間下降率が、クラッチ切断時にクラッチ接続時と同じ制御をした場合よりも小さくなり、モータ回転速度の急激な下降が抑制される。 The vehicle control device 10 restricts the torque value for regeneration set when the clutch is disengaged than when the clutch is engaged. Specifically, the vehicle control device 10 makes the negative torque value for regeneration set when the clutch is disengaged larger than the negative torque value for regeneration set when the clutch is engaged, that is, the absolute value is increased. Make it smaller. Thereby, the time decrease rate of the motor rotation speed at the time of clutch disconnection becomes smaller than when the same control as at the time of clutch engagement at the time of clutch disconnection is performed, and a rapid decrease in motor rotation speed is suppressed.
 電動車両1における電動モータ31は、エンジン車両におけるエンジンと比較するとイナーシャが小さいため、回生運転中にクラッチ機構9が切断状態になるとモータ回転速度が急激に下降しやすいが、本実施形態によれば、回生運転中にクラッチ機構9が切断状態になったときのモータ回転速度の急激な下降を抑制し、モータ回転速度の調整を容易にすることが可能である。 Since the electric motor 31 in the electric vehicle 1 has a smaller inertia than the engine in the engine vehicle, if the clutch mechanism 9 is in a disconnected state during the regenerative operation, the motor rotation speed is likely to drop sharply. In addition, it is possible to suppress the sudden decrease in the motor rotation speed when the clutch mechanism 9 is in a disconnected state during the regenerative operation, and to easily adjust the motor rotation speed.
 図16は、S17の制御の変形例を説明するグラフである。(a)及び(b)は、図15の(a)及び(b)と同様のグラフである。なお、(a)では、クラッチ接続時のトルク値を表す二点鎖線と、クラッチ切断時のトルク値を表す実線は、説明のために負の領域において互いに離して描かれているが、実際は重なっているものとする。 FIG. 16 is a graph illustrating a modified example of the control in S17. (A) And (b) is the same graph as (a) and (b) of FIG. In (a), the two-dot chain line representing the torque value at the time of clutch engagement and the solid line representing the torque value at the time of clutch disengagement are drawn apart from each other in the negative region for the sake of explanation, but they actually overlap. It shall be.
 クラッチ切断時において、車両制御装置10は、クラッチ接続時と同様の、回生のための負のトルク値を設定するとともに、モータ回転速度の下降を一時的に止めるための0のトルク値を周期的に出現させる。0のトルク値が出現する期間は、負のトルク値が設定される期間と比べて短い。 When the clutch is disengaged, the vehicle control device 10 sets a negative torque value for regeneration similar to that when the clutch is engaged, and periodically sets a torque value of 0 to temporarily stop the decrease in the motor rotation speed. To appear. The period in which the torque value of 0 appears is shorter than the period in which the negative torque value is set.
 これにより、クラッチ切断時にはモータ回転速度が下降するものの周期的に下降が止められるため、モータ回転速度の下降は全体として、クラッチ切断時にクラッチ接続時と同じ制御をした場合よりも遅くなり、モータ回転速度の急激な下降が抑制される。このため、クラッチ機構9の切断状態におけるモータ回転速度の調整を容易にすることができる。 As a result, the motor rotation speed decreases when the clutch is disconnected, but the decrease is periodically stopped. Therefore, the decrease in the motor rotation speed as a whole is slower than when the same control is performed when the clutch is engaged when the clutch is disconnected. A sudden drop in speed is suppressed. For this reason, it is possible to easily adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
 図17は、電動車両1の車両制御装置10が実行する処理の変形例を示すブロック図である。車両制御装置10は、例えば、クラッチ切断時用の音声生成部18と、クラッチ操作レバー52の操作中に音声生成部18から出力される音声信号をスピーカー13に出力する切替部19とを備えている。 FIG. 17 is a block diagram showing a modification of the process executed by the vehicle control device 10 of the electric vehicle 1. The vehicle control device 10 includes, for example, an audio generation unit 18 for clutch disconnection, and a switching unit 19 that outputs an audio signal output from the audio generation unit 18 to the speaker 13 during operation of the clutch operation lever 52. Yes.
 具体的には、スイッチ58からクラッチ操作レバー52の操作が無いことを表すオン信号が入力されている間、切替部19は音声生成部18からの音声信号を遮断し、これによりスピーカー13は音声を出力しない(第1の制御モードの一例)。一方、スイッチ58からクラッチ操作レバー52の操作が有ることを表すオフ信号が入力されている間、切替部19は音声生成部18からの音声信号を通過させ、これによりスピーカー13は音声を出力する(第2の制御モードの一例)。このようにクラッチ操作レバー52が操作されてクラッチ機構9が切断状態になったときにスピーカー13から音声が出力されることで、乗員はモータ回転速度の急激な上昇又は下降が起こり得る状態にあることを認識できる。このため、クラッチ機構9の切断状態におけるモータ回転速度の調整がユーザにとって容易となる。 Specifically, while the ON signal indicating that the clutch operating lever 52 is not operated is input from the switch 58, the switching unit 19 blocks the audio signal from the audio generating unit 18, and thereby the speaker 13 performs audio. Is not output (an example of the first control mode). On the other hand, while an off signal indicating that the clutch operation lever 52 is operated is input from the switch 58, the switching unit 19 passes the audio signal from the audio generation unit 18, and the speaker 13 outputs audio. (Example of second control mode). When the clutch operating lever 52 is operated in this way and the clutch mechanism 9 is in a disconnected state, sound is output from the speaker 13, so that the occupant is in a state where the motor rotational speed can be rapidly increased or decreased. I can recognize that. For this reason, it is easy for the user to adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
 音声生成部18は、モータ回転速度センサ12から入力されるモータ回転速度に応じてスピーカー13から出力される音声を変化させてもよい。例えば、音声生成部18は、モータ回転速度が上昇するほどスピーカー13から出力される音声の周波数が高くなるように音声信号を生成してよい。これによると、スピーカー13から出力される音声がモータ回転速度に応じて変化することで、乗員はモータ回転速度の急激な上昇又は下降が起こり得る状態であることを認識できる上に、モータ回転速度を感覚的に把握することが可能である。このため、クラッチ機構9の切断状態におけるモータ回転速度の調整がユーザにとってより容易となる。 The sound generation unit 18 may change the sound output from the speaker 13 in accordance with the motor rotation speed input from the motor rotation speed sensor 12. For example, the sound generation unit 18 may generate the sound signal so that the frequency of the sound output from the speaker 13 increases as the motor rotation speed increases. According to this, since the sound output from the speaker 13 changes according to the motor rotation speed, the occupant can recognize that the motor rotation speed can be rapidly increased or decreased, and the motor rotation speed. Can be grasped sensuously. For this reason, it is easier for the user to adjust the motor rotation speed when the clutch mechanism 9 is disconnected.
 なお、これに限られず、クラッチ操作レバー52が操作されていないときに所定の音声をスピーカー13から出力する一方で、クラッチ操作レバー52が操作されたときに当該音声とは異なる音声をスピーカー13から出力してもよい。これによっても、乗員はモータ回転速度の急激な上昇又は下降が起こり得る状態にあることを認識できる。 Note that the present invention is not limited to this, and a predetermined sound is output from the speaker 13 when the clutch operation lever 52 is not operated, while a sound different from the sound is output from the speaker 13 when the clutch operation lever 52 is operated. It may be output. This also allows the occupant to recognize that the motor rotation speed can be rapidly increased or decreased.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、種々の変形実施が当業者にとって可能であるのはもちろんである。 The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications may be made by those skilled in the art.
 以上に説明した例では、クラッチ操作レバー52の操作の有無に応じて2つの制御モードを切り替える対象を電動モータ31又はスピーカー13としていたが、これに限られず、他の電動デバイスとしてもよい。対象となる他の電動デバイスとしては、クラッチ機構9の切断状態におけるモータ回転速度の調整の容易化を図ることに繋がるものであることが好ましい。 In the example described above, the electric motor 31 or the speaker 13 is the target for switching between the two control modes depending on whether or not the clutch operation lever 52 is operated. However, the present invention is not limited to this, and other electric devices may be used. As another electric device to be a target, it is preferable to facilitate adjustment of the motor rotation speed when the clutch mechanism 9 is disconnected.
 以上に説明した例では、クラッチ操作アッセンブリ50とクラッチ機構9は、油圧又はワイヤーにより機械的に連結されている。このような機械的に連結されたクラッチ機構の方が、スポーティな走行やパワーユニットの小型化の観点からは有利である。これにより、クラッチ機構を切断状態にして電動モータの回転速度を上昇させた後にクラッチ機構を接続状態に切り替えたり、走行中にクラッチ機構の接続状態を微調整したりと、駆動輪に伝達される駆動力を乗員の意図に応じて調整し易くなる。 In the example described above, the clutch operation assembly 50 and the clutch mechanism 9 are mechanically connected by hydraulic pressure or wire. Such a mechanically coupled clutch mechanism is advantageous from the viewpoint of sporty running and downsizing of the power unit. As a result, the clutch mechanism is disengaged and the rotational speed of the electric motor is increased, and then the clutch mechanism is switched to the connected state, or the connection state of the clutch mechanism is finely adjusted during traveling, and transmitted to the drive wheels. It becomes easy to adjust the driving force according to the occupant's intention.
 これに限られず、クラッチ操作アッセンブリ50とクラッチ機構9は、以下に説明する変形例のように電気的に連結されてもよい。 However, the present invention is not limited to this, and the clutch operation assembly 50 and the clutch mechanism 9 may be electrically connected as in a modification described below.
 図18に示されるように、変形例に係る電動車両1は、車両制御装置10からの指令に応じてクラッチ機構9を駆動するクラッチアクチュエータ99を備えている。クラッチアクチュエータ99は、例えば電動モータからなり、プッシュロッド95を介してプレッシャープレート96を軸方向に移動させて、プレッシャープレート96とクラッチプレート98を互いに押し付け又は引き離す。クラッチアクチュエータ99は、例えば油圧モータ等のアクチュエータであってもよい。 As shown in FIG. 18, the electric vehicle 1 according to the modification includes a clutch actuator 99 that drives the clutch mechanism 9 in response to a command from the vehicle control device 10. The clutch actuator 99 is composed of, for example, an electric motor, and moves the pressure plate 96 in the axial direction via the push rod 95 to press or separate the pressure plate 96 and the clutch plate 98 from each other. The clutch actuator 99 may be an actuator such as a hydraulic motor.
 クラッチアクチュエータ99には、クラッチアクチュエータ99の動作量に応じた検出信号を車両制御装置10に出力する動作量検出器14が設けられている。車両制御装置10は、動作量検出器14からの検出信号に基づいてクラッチ機構9の状態を把握する。動作量検出器14は、例えばロータリーエンコーダ又はポテンショメータであり、クラッチアクチュエータ99としての電動モータの回転量に応じた検出信号を車両制御装置10に出力する。 The clutch actuator 99 is provided with an operation amount detector 14 that outputs a detection signal corresponding to the operation amount of the clutch actuator 99 to the vehicle control device 10. The vehicle control device 10 grasps the state of the clutch mechanism 9 based on the detection signal from the operation amount detector 14. The operation amount detector 14 is a rotary encoder or a potentiometer, for example, and outputs a detection signal corresponding to the rotation amount of the electric motor as the clutch actuator 99 to the vehicle control device 10.
 図19に示されるように、クラッチアクチュエータ99の動作量はクラッチ機構9の状態に対応している。例えば、クラッチアクチュエータ99の動作量の増加に伴ってクラッチ機構9の状態は接続状態から半クラッチ状態を経て切断状態に遷移し、クラッチアクチュエータ99の動作量の減少に伴ってクラッチ機構9の状態は切断状態から半クラッチ状態を経て接続状態に遷移する。対応関係はこれと逆であってもよい。 As shown in FIG. 19, the operation amount of the clutch actuator 99 corresponds to the state of the clutch mechanism 9. For example, as the operation amount of the clutch actuator 99 increases, the state of the clutch mechanism 9 changes from a connected state to a disconnected state through a half-clutch state, and as the operation amount of the clutch actuator 99 decreases, the state of the clutch mechanism 9 changes. Transition from the disconnected state to the connected state through the half-clutch state. The correspondence relationship may be reversed.
 動作量検出器14は、クラッチアクチュエータ99の動作量を検出するセンサに限られず、例えばプレッシャープレート96の付近に設けられ、プレッシャープレート96の軸方向の位置を検出するセンサであってもよい。 The operation amount detector 14 is not limited to a sensor that detects the operation amount of the clutch actuator 99, and may be a sensor that is provided near the pressure plate 96 and detects the position of the pressure plate 96 in the axial direction, for example.
 車両制御装置10は、上述のトルク算出部15a,15b、切替部16及び指令値算出部17に加えて、駆動処理部71と接続/切断判定部73とを備えている。駆動処理部71は、クラッチ操作レバー52の操作を検知するスイッチ58からのオン/オフ信号に応じてクラッチアクチュエータ99に駆動信号を出力する。接続/切断判定部73は、動作量検出器14からの検出信号に基づいてクラッチ機構9が接続状態であるか切断状態であるかを判定し、判定結果を切替部16に出力する。 The vehicle control device 10 includes a drive processing unit 71 and a connection / disconnection determination unit 73 in addition to the torque calculation units 15a and 15b, the switching unit 16, and the command value calculation unit 17 described above. The drive processing unit 71 outputs a drive signal to the clutch actuator 99 in response to an on / off signal from the switch 58 that detects the operation of the clutch operation lever 52. The connection / disconnection determination unit 73 determines whether the clutch mechanism 9 is in the connected state or the disconnected state based on the detection signal from the operation amount detector 14 and outputs the determination result to the switching unit 16.
 接続/切断判定部73は、例えばクラッチアクチュエータ99の動作量が予め定められた判定ポイントを上回ったときにクラッチ機構9が切断状態であると判定し、クラッチアクチュエータ99の動作量が予め定められた判定ポイントを下回ったときにクラッチ機構9が接続状態であると判定する。図19に示されるように、判定ポイントは、例えば半クラッチ対応範囲に設定される。これに限られず、判定ポイントは、例えば接続対応範囲のうちの半クラッチ対応範囲に近い部分に設定されてもよい。 The connection / disconnection determination unit 73 determines, for example, that the clutch mechanism 9 is in a disconnected state when the operation amount of the clutch actuator 99 exceeds a predetermined determination point, and the operation amount of the clutch actuator 99 is determined in advance. When it falls below the determination point, it is determined that the clutch mechanism 9 is in the connected state. As shown in FIG. 19, the determination point is set, for example, in a half-clutch corresponding range. The determination point is not limited to this, and the determination point may be set, for example, in a portion close to the half-clutch corresponding range in the connection corresponding range.
 切替部16は、接続/切断判定部73の判定結果に応じて、トルク算出部15a,15bから出力されるトルク値の一方を選択する(すなわち、制御モードを切り替える)。具体的には、切替部16は、クラッチ機構9が接続状態であると判定されている間、クラッチ接続時用のトルク算出部15aからのトルク値を指令値算出部17に出力する。一方、切替部16は、クラッチ機構9が切断状態であると判定されている間、クラッチ切断時用のトルク算出部15bからのトルク値を指令値算出部17に出力する。 The switching unit 16 selects one of the torque values output from the torque calculation units 15a and 15b according to the determination result of the connection / disconnection determination unit 73 (that is, switches the control mode). Specifically, the switching unit 16 outputs the torque value from the torque calculation unit 15 a for clutch engagement to the command value calculation unit 17 while it is determined that the clutch mechanism 9 is in the connected state. On the other hand, while it is determined that the clutch mechanism 9 is in the disconnected state, the switching unit 16 outputs the torque value from the torque calculation unit 15 b for clutch disconnection to the command value calculation unit 17.
 切替部16は、上述の実施形態と同様に、クラッチ操作レバー52の操作を検知するスイッチ58からのオン/オフ信号に応じて、又はクラッチ操作レバー52の操作量を検出するセンサからの操作量を表す信号に応じて、トルク算出部15a,15bからのトルク値を切り替えてもよい。 As in the above-described embodiment, the switching unit 16 is operated according to an on / off signal from the switch 58 that detects the operation of the clutch operation lever 52 or an operation amount from a sensor that detects the operation amount of the clutch operation lever 52. The torque values from the torque calculation units 15a and 15b may be switched according to a signal representing
 なお、本変形例では、クラッチ操作レバー52の操作をスイッチ58により電気的に検知してクラッチアクチュエータ99を駆動するが、クラッチアクチュエータ99の応答性により、クラッチ操作レバー52を操作してからクラッチ機構9の接続/切断状態が実際に切り替わるまでにタイムラグが発生する可能性がある。そこで、車両制御装置10は、タイムラグの発生を見越して制御モードを切り替えてもよい。 In this modification, the operation of the clutch operating lever 52 is electrically detected by the switch 58 to drive the clutch actuator 99. However, the clutch mechanism 99 is operated after the clutch operating lever 52 is operated due to the response of the clutch actuator 99. There is a possibility that a time lag occurs until the connection / disconnection state of 9 is actually switched. Therefore, the vehicle control device 10 may switch the control mode in anticipation of the occurrence of a time lag.
 例えば、図19に示される判定ポイントを、クラッチアクチュエータ99の動作量が増加するとき、すなわちクラッチ機構9が接続状態から切断状態に切り替わるときには、動作量が比較的小さい側に設定してよい。例えば、クラッチアクチュエータ99の動作量が増加するときの判定ポイントは、接続対応範囲、又は半クラッチ対応範囲の接続対応範囲に近い部分に設定されてよい。 For example, the determination point shown in FIG. 19 may be set to the side where the operation amount is relatively small when the operation amount of the clutch actuator 99 increases, that is, when the clutch mechanism 9 switches from the connected state to the disconnected state. For example, the determination point when the operation amount of the clutch actuator 99 increases may be set in a connection correspondence range or a portion close to the connection correspondence range of the half-clutch correspondence range.
 また、判定ポイントを、クラッチアクチュエータ99の動作量が減少するとき、すなわちクラッチ機構9が切断状態から接続状態に切り替わるときには、動作量が比較的大きい側に設定してよい。例えば、クラッチアクチュエータ99の動作量が減少するときの判定ポイントは、切断対応範囲、又は半クラッチ対応範囲の切断対応範囲に近い部分に設定されてよい。

 
Further, the determination point may be set to a relatively large amount of operation when the operation amount of the clutch actuator 99 decreases, that is, when the clutch mechanism 9 switches from the disconnected state to the connected state. For example, the determination point when the operation amount of the clutch actuator 99 decreases may be set at a portion close to the disconnection-corresponding range or the disconnection-corresponding range of the half-clutch corresponding range.

Claims (14)

  1.  電動モータと、
     前記電動モータに電力を供給するバッテリと、
     前記電動モータの駆動力が伝達される駆動輪と、
     前記電動モータから前記駆動輪への駆動力伝達経路の接続と切断を切り替えるクラッチ機構と、
     ステアリングハンドルと、
     前記ステアリングハンドルに取り付けられ、乗員による操作に応じて前記クラッチ機構を駆動するクラッチ操作子と、
     前記クラッチ機構の接続と切断の切り替えに応じて2つの制御モードを切り替える制御装置と、
     を備える電動車両。
    An electric motor;
    A battery for supplying power to the electric motor;
    Driving wheels to which the driving force of the electric motor is transmitted;
    A clutch mechanism for switching connection and disconnection of a driving force transmission path from the electric motor to the driving wheel;
    A steering handle,
    A clutch operator attached to the steering handle and driving the clutch mechanism in response to an operation by an occupant;
    A control device that switches between two control modes according to switching between connection and disconnection of the clutch mechanism;
    An electric vehicle comprising:
  2.  前記クラッチ操作子の操作を検出する操作検出器をさらに備え、
     前記制御装置は、前記クラッチ操作子の操作の有無により前記クラッチ機構の接続と切断の切り替えを判断する、
     請求項1に記載の電動車両。
    An operation detector for detecting operation of the clutch operator;
    The control device determines connection / disconnection switching of the clutch mechanism according to presence / absence of operation of the clutch operator.
    The electric vehicle according to claim 1.
  3.  前記クラッチ機構と前記クラッチ操作子が機械的に連結される、
     請求項1に記載の電動車両。
    The clutch mechanism and the clutch operator are mechanically coupled;
    The electric vehicle according to claim 1.
  4.  前記制御装置は、前記クラッチ機構の接続と切断の切り替えに応じて前記電動モータの2つの制御モードを切り替える、
     請求項1に記載の電動車両。
    The control device switches between two control modes of the electric motor according to switching between connection and disconnection of the clutch mechanism.
    The electric vehicle according to claim 1.
  5.  前記制御装置は、前記クラッチ機構が接続状態である場合に第1の制御モードで前記電動モータを制御し、前記クラッチ機構が切断状態である場合に、前記第1の制御モードよりも力行時における前記電動モータの回転速度の上昇を抑制する第2の制御モードで前記電動モータを制御する、
     請求項4に記載の電動車両。
    The control device controls the electric motor in a first control mode when the clutch mechanism is in a connected state, and when the clutch mechanism is in a disconnected state during powering than in the first control mode. Controlling the electric motor in a second control mode for suppressing an increase in the rotational speed of the electric motor;
    The electric vehicle according to claim 4.
  6.  前記制御装置は、前記クラッチ機構が接続状態である場合に第1の制御モードで前記電動モータを制御し、前記クラッチ機構が切断状態である場合に、前記第1の制御モードよりも回生時における前記電動モータの回転速度の下降を抑制する第2の制御モードで前記電動モータを制御する、
     請求項4に記載の電動車両。
    The control device controls the electric motor in a first control mode when the clutch mechanism is in a connected state, and is more regenerative than in the first control mode when the clutch mechanism is in a disconnected state. Controlling the electric motor in a second control mode for suppressing a decrease in the rotational speed of the electric motor;
    The electric vehicle according to claim 4.
  7.  スピーカーをさらに備え、
     前記制御装置は、前記クラッチ機構が接続状態である場合に前記スピーカーから出力する音と、前記クラッチ機構が切断状態である場合に前記スピーカーから出力する音と、を異ならせる、
     請求項1に記載の電動車両。
    A speaker,
    The control device makes the sound output from the speaker different when the clutch mechanism is in a connected state and the sound output from the speaker when the clutch mechanism is in a disconnected state.
    The electric vehicle according to claim 1.
  8.  前記クラッチ機構は、油圧式のクラッチ機構であり、
     前記ステアリングハンドルに取り付けられ、第1位置と第2位置の間を移動するピストンを内部に有するマスターシリンダと、
     前記クラッチ機構と前記マスターシリンダを接続するオイルホースと、
     前記マスターシリンダ内の前記ピストンが前記第1位置に移動するときにオイル量を調整するリザーバータンクと、
     をさらに備え、
     前記クラッチ操作子は、乗員による操作に応じて前記マスターシリンダ内の前記ピストンを前記第2位置に向けて押し出す、
     請求項2に記載の電動車両。
    The clutch mechanism is a hydraulic clutch mechanism,
    A master cylinder having a piston attached to the steering handle and moving between a first position and a second position;
    An oil hose connecting the clutch mechanism and the master cylinder;
    A reservoir tank that adjusts the amount of oil when the piston in the master cylinder moves to the first position;
    Further comprising
    The clutch operator pushes the piston in the master cylinder toward the second position in response to an operation by an occupant;
    The electric vehicle according to claim 2.
  9.  前記制御装置は、前記操作検出器により検出される前記クラッチ操作子の位置が、前記クラッチ機構の接続に対応する範囲にある場合と、切断に対応する範囲にある場合とで、2つの制御モードを切り替える、
     請求項8に記載の電動車両。
    The control device has two control modes: a position of the clutch operator detected by the operation detector is in a range corresponding to the connection of the clutch mechanism and a position corresponding to disconnection. Switch
    The electric vehicle according to claim 8.
  10.  前記操作検出器は、前記クラッチ操作子の操作によりオンとオフが切り替わるスイッチであり、
     前記スイッチのオンとオフが切り替わる前記クラッチ操作子の位置は、前記クラッチ機構が前記電動モータからの駆動力の少なくとも一部を前記駆動輪に伝達する状態に対応する範囲にある、
     請求項8に記載の電動車両。
    The operation detector is a switch that is turned on and off by operation of the clutch operator,
    The position of the clutch operator where the switch is switched on and off is in a range corresponding to a state in which the clutch mechanism transmits at least part of the driving force from the electric motor to the driving wheel.
    The electric vehicle according to claim 8.
  11.  前記スイッチのオンとオフが切り替わる前記クラッチ操作子の位置は、前記クラッチ機構の接続と切断の中間状態に対応する範囲にある、
     請求項10に記載の電動車両。
    The position of the clutch operator where the switch is switched on and off is in a range corresponding to an intermediate state between connection and disconnection of the clutch mechanism.
    The electric vehicle according to claim 10.
  12.  前記クラッチ機構は、多板式のクラッチ機構である、
     請求項1に記載の電動車両。
    The clutch mechanism is a multi-plate clutch mechanism.
    The electric vehicle according to claim 1.
  13.  前記クラッチ機構、前記マスターシリンダ及び前記クラッチ操作子は、車両幅方向の中央に対して一方に配置される、
     請求項1に記載の電動車両。
    The clutch mechanism, the master cylinder, and the clutch operator are arranged on one side with respect to the center in the vehicle width direction.
    The electric vehicle according to claim 1.
  14.  電動モータと、
     前記電動モータに電力を供給するバッテリと、
     前記電動モータの駆動力が伝達される駆動輪と、
     前記電動モータから前記駆動輪への駆動力伝達経路の接続と切断を切り替える油圧式のクラッチ機構と、
     ステアリングハンドルと、
     前記ステアリングハンドルに取り付けられ、第1位置と第2位置の間を移動するピストンを内部に有するマスターシリンダと、
     前記クラッチ機構と前記マスターシリンダを接続するオイルホースと、
     前記マスターシリンダ内の前記ピストンが前記第1位置に移動するときにオイル量を調整するリザーバータンクと、
     前記ステアリングハンドルに取り付けられ、乗員による操作に応じて前記マスターシリンダ内の前記ピストンを前記第2位置に向けて押し出すクラッチ操作子と、
     前記クラッチ操作子の操作によりオンとオフが切り替わるスイッチと、
     を備え、
     前記スイッチのオンとオフが切り替わる前記クラッチ操作子の位置は、前記クラッチ機構が前記電動モータからの駆動力の少なくとも一部を前記駆動輪に伝達する状態に対応する範囲にある、
     電動車両。

     
    An electric motor;
    A battery for supplying power to the electric motor;
    Driving wheels to which the driving force of the electric motor is transmitted;
    A hydraulic clutch mechanism that switches connection and disconnection of a driving force transmission path from the electric motor to the driving wheel;
    A steering handle,
    A master cylinder having a piston attached to the steering handle and moving between a first position and a second position;
    An oil hose connecting the clutch mechanism and the master cylinder;
    A reservoir tank that adjusts the amount of oil when the piston in the master cylinder moves to the first position;
    A clutch operator attached to the steering handle and for pushing the piston in the master cylinder toward the second position in response to an operation by an occupant;
    A switch that is switched on and off by operation of the clutch operator;
    With
    The position of the clutch operator where the switch is switched on and off is in a range corresponding to a state in which the clutch mechanism transmits at least part of the driving force from the electric motor to the driving wheel.
    Electric vehicle.

PCT/JP2016/062941 2015-09-28 2016-04-25 Electric vehicle WO2017056541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017542769A JPWO2017056541A1 (en) 2015-09-28 2016-04-25 Electric vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-189452 2015-09-28
JP2015189452 2015-09-28
JP2015-210263 2015-10-26
JP2015210263 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017056541A1 true WO2017056541A1 (en) 2017-04-06

Family

ID=58423404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062941 WO2017056541A1 (en) 2015-09-28 2016-04-25 Electric vehicle

Country Status (2)

Country Link
JP (1) JPWO2017056541A1 (en)
WO (1) WO2017056541A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187518A1 (en) * 2018-03-29 2019-10-03 本田技研工業株式会社 Driving control device for electrically-propelled vehicle
CN110816514A (en) * 2019-10-30 2020-02-21 武汉理工大学 Multi-mode switching-based control method and system for hub motor driven vehicle
US20220082160A1 (en) * 2018-11-06 2022-03-17 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
WO2023188743A1 (en) * 2022-03-29 2023-10-05 本田技研工業株式会社 Method for controlling electric two-wheel vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249517A (en) * 1975-10-14 1977-04-20 Agency Of Ind Science & Technol Control system for electric vehicles having speed change gear
JPH04289701A (en) * 1991-03-18 1992-10-14 Honda Motor Co Ltd Regenerative braking system for electric motor coach
JPH05227610A (en) * 1992-02-14 1993-09-03 Toyota Motor Corp Motor controller for electric motor equipped with speed change gear
JP2007256839A (en) * 2006-03-24 2007-10-04 Honda Motor Co Ltd Sound effect generation apparatus for vehicle
JP2009052678A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Hydraulic mechanism of vehicle
WO2013061359A1 (en) * 2011-10-24 2013-05-02 川崎重工業株式会社 Electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249517A (en) * 1975-10-14 1977-04-20 Agency Of Ind Science & Technol Control system for electric vehicles having speed change gear
JPH04289701A (en) * 1991-03-18 1992-10-14 Honda Motor Co Ltd Regenerative braking system for electric motor coach
JPH05227610A (en) * 1992-02-14 1993-09-03 Toyota Motor Corp Motor controller for electric motor equipped with speed change gear
JP2007256839A (en) * 2006-03-24 2007-10-04 Honda Motor Co Ltd Sound effect generation apparatus for vehicle
JP2009052678A (en) * 2007-08-27 2009-03-12 Honda Motor Co Ltd Hydraulic mechanism of vehicle
WO2013061359A1 (en) * 2011-10-24 2013-05-02 川崎重工業株式会社 Electric vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11667351B2 (en) 2016-05-11 2023-06-06 Fallbrook Intellectual Property Company Llc Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
CN111936346A (en) * 2018-03-29 2020-11-13 本田技研工业株式会社 Drive control device for electric vehicle
JPWO2019187518A1 (en) * 2018-03-29 2021-02-12 本田技研工業株式会社 Drive control device for electric vehicles
WO2019187518A1 (en) * 2018-03-29 2019-10-03 本田技研工業株式会社 Driving control device for electrically-propelled vehicle
CN111936346B (en) * 2018-03-29 2023-04-11 本田技研工业株式会社 Drive control device for electric vehicle
US11624432B2 (en) * 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US20220082160A1 (en) * 2018-11-06 2022-03-17 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US12000458B2 (en) 2019-02-26 2024-06-04 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
CN110816514B (en) * 2019-10-30 2021-05-28 武汉理工大学 Multi-mode switching-based control method and system for hub motor driven vehicle
CN110816514A (en) * 2019-10-30 2020-02-21 武汉理工大学 Multi-mode switching-based control method and system for hub motor driven vehicle
WO2023188743A1 (en) * 2022-03-29 2023-10-05 本田技研工業株式会社 Method for controlling electric two-wheel vehicle

Also Published As

Publication number Publication date
JPWO2017056541A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2017056541A1 (en) Electric vehicle
US10035431B2 (en) Electric vehicle
US9387764B2 (en) Regenerative brake control system of electric vehicle
JP5478739B2 (en) Regenerative control system for electric vehicles
EP2708457B1 (en) Electric motorcycle, vehicle controller and vehicle control method
JP6811011B2 (en) Electric auxiliary bicycle
JP2010120597A (en) Vehicle
JP5695672B2 (en) Electric vehicle
JP6946549B2 (en) Drive control device for electric vehicles
JP4685538B2 (en) Electric vehicle
WO2012090255A1 (en) Electric-vehicle start assist method and start assist system
JP5478738B2 (en) Electric vehicle acceleration control system
WO2022209634A1 (en) Clutch control device
JP4431095B2 (en) Working machine
JP2007056445A (en) Snow blower
JP7410913B2 (en) vehicle
WO2022209711A1 (en) Clutch control device
KR20130107495A (en) Electrical silver car suitable for slope movement
JP7121464B2 (en) fire hose car
WO2022209708A1 (en) Clutch control device
JP2024085502A (en) Control system for straddle-type electric vehicle and straddle-type electric vehicle
JP4489660B2 (en) snowblower
JP2018062221A (en) Saddle-riding type electric vehicle
CN115891960A (en) Clutch control device
KR20220032106A (en) stroller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542769

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850718

Country of ref document: EP

Kind code of ref document: A1