WO2017055669A1 - Método de fabricación de panel de pared o techo con instalaciones incluidas, paredes o techos prefabricados por dicho método y uniones entre paneles pared y techo - Google Patents

Método de fabricación de panel de pared o techo con instalaciones incluidas, paredes o techos prefabricados por dicho método y uniones entre paneles pared y techo Download PDF

Info

Publication number
WO2017055669A1
WO2017055669A1 PCT/ES2016/070689 ES2016070689W WO2017055669A1 WO 2017055669 A1 WO2017055669 A1 WO 2017055669A1 ES 2016070689 W ES2016070689 W ES 2016070689W WO 2017055669 A1 WO2017055669 A1 WO 2017055669A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
ceiling
mold
frame
polyurethane
Prior art date
Application number
PCT/ES2016/070689
Other languages
English (en)
French (fr)
Inventor
Sebastián MARTÍNEZ
Original Assignee
GARCÍA CORTÉS, Óscar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GARCÍA CORTÉS, Óscar filed Critical GARCÍA CORTÉS, Óscar
Priority to AU2016329634A priority Critical patent/AU2016329634A1/en
Priority to US15/765,215 priority patent/US20180266107A1/en
Priority to EP16850428.0A priority patent/EP3358096A4/en
Priority to BR112018006538-2A priority patent/BR112018006538A2/pt
Priority to CA3010888A priority patent/CA3010888A1/en
Priority to MX2018003829A priority patent/MX2018003829A/es
Publication of WO2017055669A1 publication Critical patent/WO2017055669A1/es
Priority to ZA2018/02804A priority patent/ZA201802804B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/205Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics of foamed plastics, or of plastics and foamed plastics, optionally reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/776Walls, e.g. building panels

Definitions

  • the object of this invention is the design of a product that suits a construction system that meets these needs, that is, a type of wall that can be manufactured in a plant and specific to the design and with the openings and installation of services requested by the client. That, in turn, is composed of a light wall, but with a solid and rigid core, and whose exterior finish is similar to the traditional construction for the purposes of sight and touch. And that it contains the structural beams inside the prefabricated wall, that is to say that it is self-supporting, which avoids having to perform them on site.
  • the construction system is based on the manufacture of entire walls in a manufacturing plant, which will then be mounted at the construction site without the need for any previous structure since the beams that give rigidity to the structure are included in the wall.
  • the wall is composed of a rigid core that is contained by a Frame that limits the outer edges of the walls, as well as the internal edges intended for the placement of doors or windows. Adhered to the rigid core are layers of external and internal termination.
  • finishing layers can be obtained by fixing plates to the core or by applying a layer of cement that achieves a similar finish to the traditional construction, either in sight or touch.
  • the wall is finished in the factory, it is transported to the construction site where it is anchored to the floor and joined together. Once joined the walls proceed to roof and waterproof them.
  • water collectors covering the outer surface thereof can be incorporated. In this way the roof surface is transformed into a large solar collector.
  • a first aspect of the invention relates to:
  • a method for manufacturing walls characterized in that they are manufactured to the needs and in the factory, with reticular structure, internal beams and internal frames (such as for windows and doors) within them, all within a peripheral frame which is placed inside a mold that resists considerable pressures and into which polyurethane or other similar substance is injected and expanded, which is distinguished by forming a thermal insulation core that provides mechanical resistance and thermal and acoustic insulation at the same time, possessing within the space contained within the framework that all electrical, air conditioning, water, sanitary in general, pipelines and other services that may be required were placed in the mold, where there is also a metal, synthetic, fiber mesh, or other material, attached to the polyurethane or to the outer frame that delimits the wall, by a layer of polyurea or by clips, screws or other mechanical attachment that join the mesh either to the polyurethane or to the wall frame - which can be wood, aluminum, ferrous metals or other mechanically resistant substances - where an external and / or internal roof covering can be projected on that mesh so supported
  • the walls can be manufactured according to the needs and in the factory, with internal beams and internal frames (such as for windows and doors) inside them, all within a peripheral framework that is placed inside a mold that resists considerable pressures and within which polyurethane or other similar substance is injected and expanded, which is further distinguished by forming a core that provides mechanical resistance and thermal and acoustic insulation at the same time, where that mechanical resistance of the insulating element is additional to the provided by the other components of the wall, containing within the space defined by the framework or frame that is placed in the mold all electrical, air conditioning, water, sanitary in general, pipelines and other services that may be required.
  • the metallic, synthetic, fiber, or other material mesh in addition to being able to be placed by clips, screws, etc., to the frame or wall frame, or glued with polyurea or similar to the polyurethane core can have a mesh metal inside, outside, or both.
  • Both the inner and / or outer meshes and the internal and external panels or terminations can be applied to the wall after it has been demoulded.
  • the outer layer and / or the inner layer can comprise bricks of various designs, stones or other similar ones, including standard bricks, which have been applied inside or outside the mold, being that when it is inside the same pressure of the polyurethane expanding it filters through the bricks and provides the union of the same with each other and the rest of the wall (that is to say the polyurethane core or similar), thus providing a multilayer wall of thermal and acoustic insulation that contributes to the structural rigidity of the whole , where one of those layers, or both if it is decided to do so on both the external and internal side, is a standard brick wall but with a multilayer wall attached (or between both layers of bricks, if it is decided to do so) and with the which was built together, thus providing a prefabricated structure that is the conjunction of the traditional structure and the light structure with modern thermo / acoustic layer, and with the aggregate to have contents in its thickness to all services: electrical, sanitary, ventilation, heating, etc.
  • a second aspect of the invention relates to a wall manufactured essentially by the method described above, but which will be used as a ceiling, where at the bottom of the mold, that is to say what will be the outer face, manufacturing has been placed a layer of tiles of any design and material.
  • a panel of waterproof material, resistant to ultraviolet rays can be placed to prevent its degradation in the sun's rays, and where the waterproof joint or joint between panels Adjacent is made of polyurea or similar material, which will also be specific so as not to degrade with ultraviolet radiation, and adding said polyurea or similar additional structural strength to the ceiling by rigidly joining the different panels.
  • a solar heating panel can be placed which is connected to the pipes included in the polyurethane core.
  • an interior frame can be placed to provide a window, but in this case it will serve to pass a specific and tailored duct, either ventilation, heating / cooling, or a chimney, or any other duct that It is useful, and where the joint between said duct and the adjacent panel (s) will be waterproofed by polyurea resin or the like, which will be specific to resist solar ultraviolet radiation.
  • the prefabricated wall when it has all its layers, can be composed, from the outside to the inside of:
  • both the inner layer and especially the outer layer can be a brick wall where the binding element is the same polyurethane that forms the thermal / acoustic layer, and which in the same action of forming the thermal / acoustic layer has leaked between the bricks, setting them together and thus sticking them to the core.
  • the wall made of layers can be composed only of two hydrophobic outer sheets of rigid resin such as polyurea or similar, or of the plastic, synthetic, or similar membrane style that is adhered to the core in the polyurethane expansion process, and a thermo layer polyurethane insulation or similar contained between the two rigid resin layers, which polyurethane layer may or may not contain services, facilities, pipes, etc.
  • the wall may be surrounded and contained by a peripheral metal frame or other rigid material, and said wall has been formed and set in a mold formed by a frame comprising a metal frame or other rigid material that forms its periphery and to which the mold doors are attached, and thus the wall frame and the mold frame form an internal frame and an external frame.
  • the fabricated wall can have the pipes inside the socket, or failing that by the top of the wall, either on the inner edge or on the outer edge, as illustrated in the specification, or even inside the ceiling.
  • the joints of the various pipes that go through the ceiling and / or the walls can be resolved either internally or externally to the wall and / or ceiling, or by ducts or spaces formed within the wall, or inside the ceiling, or both, and by means of threads, welds, microsoldaduras, microfusión, assembly to pressure, or any other.)
  • the union of the roof pipes with the pipes in the wall is made by an enlarged cavity or canalization at the end of the roof just where it joins the wall, and a similar inlet on the upper end of the vertical wall canalization, such that the enlarged ceiling canalization is just above the enlarged canalization of the wall, thus forming a kind of duct, and where a molding disassembles able at an angle closes the duct thus formed by both widenings from the inner side of the wall-ceiling angle, this molding being
  • the connection of the roof pipes with the pipes in the wall is carried out by means of an enlarged cavity or canalization at the end of the ceiling just where it joins the wall, and a similar widening on the inner side of the vertical wall pipe, such that the enlarged roof pipe is just next to the enlarged wall pipe, thus forming a kind of duct, and where a removable and angled molding, closes the duct thus formed by both widening from the inner side of the wall-ceiling angle, that molding being perfectly waterproofed and applied either to the inner side panel, to the polyurethane core, to the ceiling or wall delimiting frame, or to any other part of the themselves, ensuring total tightness but at the same time with access to the pipeline if necessary.
  • connection of the pipes can be made by the angle formed by the top part of the ceiling and the wall.
  • the connection of the roof pipes with the pipes in the wall is carried out by means of an enlarged cavity or canalization in the ceiling just where it joins the wall, and a similar recess on the upper end of the vertical wall canalization, such that the enlarged canalization of the ceiling is just above the enlarged canalization of the wall, thus forming a kind of duct, and where a removable angled molding closes the duct thus formed by both widenings from the inner side of the wall-ceiling angle, that molding being perfectly waterproofed and applied either to the inner side panel, over the polyurethane core , on the delimiting frame of the ceiling and that of the wall, or on any other part thereof, ensuring total tightness but at your Once with access to the pipeline if necessary.
  • the ceiling and wall panels can be fixed in such a way that the roof support on the wall does not cover the entire thickness of it, but only as far as the channeling of the vertical wall appears, and in such a way that both the channeling of the wall and that of the ceiling do not need widening, since the space is externally delimited by an angled molding , removable but perfectly waterproofed, that closes and delimits the duct thus formed, and in this way a space is generated by which to make the connections, as well as the transport of electrical cables or similar conduits.
  • This space or duct is then covered by a sheet metal molding, another suitable material polymer.
  • the innovation consists in the manufacture of an entire wall or fraction, limited by an outer frame (87, 99, 109, 112, 121, 242, 347, 364, 372) that contains the wall and by inner frames that contain the openings. Inside it has a rigid core that contains the electrical and sanitary installation and other required services, in addition to structural beams.
  • the rigid core is coated with an outer and inner layer, said rigid core being at the same time the thermal and acoustic insulation.
  • Frame Frame is defined, illustrated in the fjError! The origin of the reference is not found, to the metal or wooden structure or any type of material with similar mechanical characteristics, which fulfills the function of limiting the wall and containing the rigid core (thermal and acoustic insulation) of the same, as well as structural and service components.
  • the frame is composed of the outer frame (87, 99, 109, 112, 121, 242, 347, 364, 372) and the inner frame (5).
  • the outer frame (87, 99, 109, 112, 121, 242, 347, 364, 372) is the frame that borders the roof (1), floor (3) or other wall (2).
  • the inner frame (5) is the frame that borders an opening of the door or window type.
  • Structural profile (4) It is a profile or spout of sheet metal or wood or any other material that can be used to add structural resistance to the wall, that is attached to the frame and that are immersed in the polyurethane core in order to increase the structural rigidity of the wall as well as acting as a support for the window frames.
  • the framework illustrated in the fjError! The origin of the reference is not found, it is composed of the exterior and interior frames and all the services to be included in the wall including the electrical installation (6,7, 8) and sanitary and other services, as well as the reinforcements structural (4) and internal frames for openings (5).
  • the already molded wall is made up of frame, of the panels to be placed, or of the coating layers that have been applied manually or through machines and that act as coating layers and protection of the solid core, and of the solid core and any other type of service that you want to include within the core of the wall.
  • the electrical and sanitary services as well as any other type of service that you want to incorporate as heating, water collectors, gas tanks, television wiring, and any other type of service that you want to use within the construction, can be incorporated into Some of the walls.
  • the shape of the outer frame where services are to be transported has a fold that generates a duct (wiring duct illustrated in the error! The origin of the reference is not found.) Used to transport electrical cables or other services along the walls.
  • the cables and services will be carried by the outer frame of the floor - wall joint or by the frame exterior of the ceiling wall joint. At the end of the pipes, the cables are covered by a socket (9).
  • the pipe (6) can be connected to the roof pipes through a connection outside the house or inside, and which are detailed below: Pipe Connection: Roof with External Wall
  • the ceiling and wall panels can be fixed according to what is shown in the fjError! The origin of the reference is not found, and the fj Error! The origin of the reference is not found.
  • a space 71 is generated by which to make the connections, as well as the transport of electrical cables or similar conduits.
  • This space 71 is then covered by a molding 811, 912, 1012, 1111, 125 of sheet metal according to the fjError! The origin of the reference is not found.
  • the ceiling panels can be joined using an internal wall as a support base. This connection can be made at the level of the internal wall (Interior Method), or by supporting them on the wall (External Method). Interior Method
  • Figure 1 shows an electrical connection for joining ceiling panels to a level interior wall.
  • an omega plate 113
  • the Omega Sheet is fixed to the outer frame of the wall by means of fixing elements.
  • the roof panels are joined to the Omega Sheet by means of fasteners (113,1110) in the case of a level joint.
  • the joint is waterproofed by polyurea (111), or some product with similar characteristics. After the waterproofing is done, the Exterior Finishing Mold (1111) is placed.
  • Exterior Method Figure 2 shows an electrical connection for joining roof panels to an interior wall supporting them.
  • the roof panels (122) rest on the outer frame of the wall (121) and are joined by fixing angles (126), generating a space between both panels that allows the connection of services from the roof of the construction.
  • This space is covered with an External Coating for Pipework (125) which is then waterproofed with a layer of polyurea or similar material (123) to be covered later with an External Termination Mold (1211).
  • the Exterior Termination Moldings represented by items (1111) in Figure 1 and (1211) in Figure 12 may be replaced by terminations made of the same material of the outer covering layers of the panel if required.
  • the panel has an inner core of rigid polyurethane or other similar material that has similar thermal and mechanical properties, and two layers of coating (exterior and interior).
  • the composition of the outer and inner layers may change depending on the termination specified for the wall.
  • the expanded polyurethane inner core (164) provides rigidity, as well as thermal and acoustic insulation.
  • the width of the layer is usually about three to thirty centimeters, although this is basically at the request of the client.
  • the wall can be self-supporting, that is, it does not require the construction of beams in place to hurl them since the beams are immersed in the polyurethane core.
  • the system has a rigid core without air chambers or non-rigid components such as glass wool or expanded polystyrene, which are frequently used as fillers between the inner and outer wall.
  • the rigid polyurethane core gives greater structural rigidity - and even more so if it is coated with polyurea - as well as better thermal and acoustic properties.
  • each panel has one (in case of leaving one side of the core
  • This layer can be made of a single material that is placed in the mold during the manufacturing process (that is, inside the press mold), or it can be composed of different sub-layers that adhere to the inner core once the panel has been removed from the mold.
  • the cement coating layer (167) can be applied to both the outer and inner sides of the wall, and fulfills the function of termination, as well as that of generating stiffness.
  • the width of the layer could range from a few millimeters to several centimeters thick. If the traditional cement is applied several millimeters thick, it must be attached to the panel by means of a fastening mesh (168) attached to it. If the cement layer is a few millimeters, it is possible to apply the product directly on the polyurethane core without the need to have the clamping mesh 572, 168.
  • the fastening mesh 572, 168 can be metallic or plastic or of any other material that It fulfills the function of fixing to cement, and aims to achieve the fixation of the outer layer of cement (or simile) to the rigid core.
  • Figure 8 shows the anchoring of the support clamp mesh 572, 168.
  • the 572, 168 support mesh provides structural rigidity. For this reason the size of the lattice, as well as the thickness of the wires or threads are variable depending on the desired structural rigidity, as well as impact resistance and even safety reasons.
  • the clamping mesh 572, 168 will be adhered by an adhesive material65 Error!
  • an adhesive material65 Error The origin of the reference is not found. such as polyurea or similar, or mechanically attached to the core or frame through clips, screws or the like.
  • the polyurea is projected as if it were a painting.
  • Figure 9 shows the projection of polyurea on the support mesh 572, 168.
  • the polyurea has the function of adhering the support mesh where the cement is applied to the polyurethane core, as well as generating an impermeable layer to protect the core from moisture.
  • the thickness of the layer is usually one to five millimeters.
  • the Frame is finished without cover plates, they can be attached to the polyurethane core (or to the peripheral frame) after the wall has been unmold.
  • the plates can be adhered by means of some adhesive element or through some fastening element such as screws or similar. Coating layer with bricks, stones or similar elements.
  • exterior cladding bricks, stones, ceramics, tiles or similar materials that can be placed on the floor of the mold and that will remain attached to the polyurethane core during the process of expansion of the same.
  • the pressure causes the polyurethane to seep between the bricks by joining them and replacing the cement.
  • Figure 3 shows a side wall section with an outer covering layer made of bricks. Coating layer with ceramic coating or similar
  • the Polyurea Sandwich Panel or hydrophobic membrane shown in the fjError! The origin of the reference is not found, it is a simple version of the wall or ceiling panel that can be used in the wall of the invention, as well as in different types of applications in addition to those of the invention.
  • This panel has an outer layer of Polyurea or some hydrophobic membrane either plastic, synthetic or similar, which can range from lmm to 10mm that is applied, or is stuck in the process of expanding the polyurethane on a rigid core of expanded polyurethane, polystyrene or some other similar material that can range from lcm to 40cm thick .
  • the application of the polyurea can be carried out manually through a gun and the necessary equipment for this purpose, or through a manufacturing line where the polyurea is applied to the solid core continuously.
  • the polyurea sandwich panel or hydrophobic membrane and polyurethane is an innovative product that is not on the market today.
  • the anchoring of the walls will be carried out on a conventional concrete slab to be sized according to the structural requirements of the building.
  • the plate may contain the electrical and sanitary services required by the design of the building.
  • Mold It is a robust mold in itself, that supports the metal side plates of the frame where the panel will be manufactured and that has sheet metal caps with structural reinforcements to contain the high pressures generated by the expansion of the polyurethane inside the frame.
  • the fjError! The origin of the reference is not found.
  • Figure 19A shows a mold 173 that has greater depth for making brick-terminated walls, stones, or similar elements. The fjError! The origin of the reference is not found. Error! The origin of the reference is not found.
  • Figure 17 represents a mold 173 where a block 171 of bricks and a prefabricated plate 172 are introduced to form a panel.
  • Figure 4 shows a mold 201 of 6x3m with sliding cover 203 for full wall manufacturing.
  • the first step in the manufacture of the wall is the placement of these inside the mold, thus remaining at the bottom of it. against the back cover.
  • Another option is to mix the cement and place it on the floor of the mold, wait for it to set and then make the reinforcement of the frame on this layer.
  • the polyurethane is adhered to the cement layer that was placed on the floor of the mold.
  • both layers of coating are finished with prefabricated plates, then the first layer is placed on the floor, that is, at the bottom of the Mold, and another as a cover once the Frame is finished.
  • the outer frame is assembled, which is carried out on the already placed plates.
  • the outer frame of the wall will be assembled directly on the floor of the mold as shown in the fiError! The origin of the reference is not found.
  • the outer frame profiles are joined together by rivets, by insert, by welding or some similar system.
  • the inner frame is placed according to the design of the wall and the location of the openings that the wall to be manufactured will contain.
  • the inner frame is fastened by screws to pipes of wood or beams of wood or some other type of material that fulfills the function of fastening the opening to the inner frame and that are firm to the outer frame. In this way, the places where the openings are to be placed are not covered with the polyurethane core.
  • Figure 5 shows the assembly of the inner frame 231 inside the mold.
  • the upper face of the wall is covered with plates, they must be placed as a cover of the Frame before closing the Mold and piercing them through the holes in the cover of the Mold.
  • the perforations will be used for the injection of the polyurethane or the material to be used in the inner core, and then they will be covered in the final termination of the wall.
  • the cover of the Mold is fixed by means of mechanical elements to contain the increase in pressure due to the expansion generated in the reaction by mixing the polyurethane components (if this is the core material).
  • the cover of the Mold contains small holes of about 5mm in diameter (or larger), spaced approximately one meter, through them the cover of the Frame is drilled to reach the inside of the same.
  • the polyurethane is injected in order to achieve the necessary density (between 40 and 50kg / m 3 depending on the product to be used and the purpose to be obtained).
  • the polyurethane injection is done through a mixing machine of its two essential components (a polyol and the TDI) and an injection gun.
  • the injection can be done manually by injecting one hole at a time, or in a way automated with an injection element that can inject into multiple holes at the same time.
  • Figure 7 shows the injection of polyurethane through the cover 224 of the mold through the frame manually.
  • the first thing to do is open the top cover of the Mold. Then the outer frame of the Mold is disassembled in contact with the outer frame of the wall. When disassembling the outer frame of the Mold, the wall is able to be removed from it.
  • the wall is going to have a layer of cement coating, it is applied once the wall has been demoulded.
  • the first step is the fixation of the fastening mesh by means of clips, screws, or some similar method either polyurethane core or to the frame by means of fasteners that can cross the sheet metal or wood of the frame.
  • the next step is to coat the wall with cement.
  • the process can be done through manual application or through machines that automate the system.
  • the cement can have varied proportions of cement itself, lime, sand, additives, etc., each with its own particle size so as to achieve a relatively rough or at least rough finish, or a very smooth finish of the "portland type"mirror".
  • Cement can have in its mixture a dye that makes this layer already have its intrinsic color, saving us many times another finish or a final paint. Thus, the wall could already leave the factory “painted” in its final color, with great savings in labor and raw materials.
  • the figural shows the application of the Cement Coating Layer 167 manually.
  • the figure shows the finished Wall panel with Cement Coating layer 167.
  • the figural2 shows a ceramic coating on cement and mesh.
  • FIG. 3 shows the Welding of the Outer Frame 87, 99, 109, 112, 121, 242, 347, 364, 372 of two panels.
  • FIG 33 shows the anchoring of the walls to the floor.
  • the walls will be fixed to the floor according to the detail R of the fiError! The origin of the reference is not found, as shown below.
  • the anchoring is carried out by means of perforated ground anchoring angles 331 which are fixed by screws to the floor and to the sheet metal frames of the walls.
  • the joints of the anchoring angles to the wall frame can be reinforced by welding.
  • the rail facilitates the precise placement and assembly, and also the precision in the joints between wall and wall, being that they are embedded in the same rail. In turn, it makes assembly faster and protects the elements from the bottom edge of the wall, making the assembly more robust.
  • the U can be on the floor or buried in the stalls.
  • Fig. 4 shows an anchoring scheme to the floor with a U-junction attached to the floor.
  • the frames of the walls can also have different types of geometry in order to generate a male and female socket on the sides of the frame, which encastulate each other and that can be reinforced either by welding (354) or through fasteners (353) Or simply by the pressure generated male-female mechanical insert.
  • Figure 5 shows wall panel joints with frames with insert geometry.
  • FIG. 3 Another option to join the walls is to use frames with rectangular geometry and make the union by means of a joining plate (365) that is attached to the outer frame of both panels by screws or welding, and that additionally provides extra protection against the elements, thing which is particularly useful for being junction points.
  • the figure shows a top view of joining walls with joining plate.
  • FIG. 17 shows an example of welded joint between wall and ceiling panel.
  • Figure 18 shows an example of Structural Welded Joint between angled walls Structural Joints between Roof and Roof Panels
  • Figure 37 shows the joining of roof panels that use a structural beam to make the joining of the same without the presence of a support wall. These types of joints are used when the total length of the roof panel is not sufficient to cover the entire length of the roof, requiring an intermediate beam to support the joint of two roof panels.
  • Figure 19 is a side view showing the joining of roof panels at the structural beam level.
  • the joints are waterproofed by means of the application of polyurea or any type of material that fulfills the function of sealing and waterproofing them. Then the aesthetic termination of the joint is carried out by means of sheet moldings that are adhered by screws or some adhesive material, or placed under pressure by means of the fitting with the frame, or simply by applying a coating layer on the structural joint, usually of the same material than the coating layer of the panel.
  • Termination Joints It is also possible to place moldings and then cover them with the same material as the exterior walls. These types of unions are called Termination Joints.
  • the molding may be made of sheet metal or of any material that fulfills the function of covering the structural joints.
  • Figure 20 is a top view of junction between Roof panels and side walls.
  • Figure 21 is detail AB of Figure 20 which shows a top view of the end of the molding in the corner.
  • Another way of performing the wall-to-wall termination at an angle is by placing the sheet metal molding or similar material as illustrated in Figure 42, to then fill the cavity generated by the molding with the same material as the panel covering layer, and then remove the molding once the filling has set. This way you get a termination in the union of the same material as the coating layer.
  • FIG. 22 shows a Termination Union scheme for joints between Wall Panels.
  • Termination Union For Exterior Coating with Cement On the walls with exterior cement coating, the Termination Joints can be made with cement.
  • Termination Joints between Ceiling - Wall and Ceiling - Ceiling can be made using moldings that are screwed to the outer frame of the panel or by direct coating of the same material as the coating layer applied on the joint.
  • Figure 1 shows an electrical connection for joining roof panels on an interior wall at level-item (1111) an electrical connection to join ceiling panels to an interior wall supporting them - item (1211)
  • the outer moldings can be replaced by finishes made in the same material of the outer covering layer of the panel if required.
  • Figure 47A shows a schematic plan of the house.
  • Figures 47B-47F represent different perspectives of the housing scheme shown in Figure 47A.
  • Figures 48 and 49 show the detail of the pipes for the electrical service to be installed on the ceiling panels.
  • the dark layer of the roof panel represents the outer layer of the panel that can be of various materials, including Polyurea, Cement, M DF, Plaster, OSB, Chipboard of various types, Corrugated or Smooth Metals, Cementitious Plates, Various Resins, Plates combined (marbled or not) of resins and ground minerals, stone plates (marble and others).
  • polyurea will be used as an external plate and plaster as an internal plate.
  • FIG. 48 The panel marked with the black circle in Figure 48 has hidden the polyurea outer covering plate for illustrative purposes in order to show the pipes of the electrical service inside the ceiling panel (the same has been done with the others roof panels that do not have the dark coating layer).
  • Figure 48 shows the perspective with detail of pipes in techose according to the rear view.
  • Figure 49 shows the perspective with detail of pipes in techose according to the front view.
  • Figures 50A-50B show the perspective of the floorless project showing the different wall panels to be manufactured and assembled. Each Arrow points to a different Wall Panel.
  • Figures 51A-51C show a plant and sections of the house.
  • Figures 52A-52D show views of the facades of the house: Figure 52A a front view, Figure 52B a rear view, Figure 52C a right side and Figure 52D a left side.
  • Figures 53A-53F show details of joints between panels of the house or house 471.
  • Figure 53 shows an exterior wall and ceiling connection with parapet.
  • Figure 53B shows an exterior wall and roof joint with eave.
  • Figure 53E is a section seen from above showing a joint of angled wall panels with overlapping panels.
  • Figure 53F shows a pipeline for services.
  • Figure 54A shows an exploded view of a panel where the components can be seen: polyurea layer 541, sturdy structure 542, polyurethane core 543 and gypsum board 544.
  • polyurea layer 541, sturdy structure 542, polyurethane core 543 and gypsum board 544 Some of the materials that can be used in the outer and inner plates are: Polyurea, Cement, MDF, Plaster, OSB, Chipboard of various types, Corrugated or Smooth Metals, Cementitious Plates, Various Resins, Combined Plates (marbled or not) of resins and ground minerals, stone plates (marble and others), solar panel (external roof plate) ground minerals, stone plates (marble and others).
  • Figure 54B shows the cross section of a panel of the invention.
  • Figures 55A-55E show views of the sturdy structure.
  • Figures 55A-55C represent the elevation, plan and profile of the resistant structure.
  • Figure 55D is a perspective of the resistant structure.
  • Figure 55E is the detail C indicated in Figure 55D.
  • Figure 55E shows the omega plate for communication of pipes between ceiling and wall. Item 101 in Figure 10 showing the exterior wall and roof nion with eave.
  • Figure 57A shows an exploded view of a panel where the components can be seen: concrete cladding 571, mesh 572, sturdy structure 573, polyurethane core 574 and plasterboard 575.
  • Some of the materials that can be used in the outer and inner plates are: Polyurea, Cement, MDF, Plaster, OSB, Chipboard of various types, Corrugated or Smooth Metals, Cementitious Plates, Various Resins, Combined Plates (marbled or not) of resins and ground minerals, stone plates (marble and others), solar panel (external plate).
  • Figure 57B shows the cross section of a panel of the invention.
  • Figure 57C is detail B of Figure 57B.
  • Figures 58A-58B show a front view and a perspective of a panel that includes a window.
  • Figures 59A-59B show a front view and perspective of a panel that includes a window and a rush.
  • connection box 8 corrugated pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Building Environments (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Finishing Walls (AREA)

Abstract

El método de fabricación de paneles pared o techo comprende una estructura reticular con un marco periférico dentro de un molde que incluye los servicios de la instalaciones y donde se inyecta poliuretano. Se añade una malla sobre la que se proyecta o añade una cobertura exterior. Opcionalmente el material de cobertura se puede incluir en el fondo del molde antes de la inyección del poliuretano. Los paneles de pared y techo obtenidos se pueden unir entre si conectándose las canalizaciones de las instalaciones.

Description

MÉTODO DE FABRICACIÓN DE PANEL DE PARED O TECHO CON INSTALACIONES INCLUIDAS, PAREDES O TECHOS PREFABRICADOS POR DICHO MÉTODO Y UNIONES
ENTRE PANELES PARED Y TECHO
ANTECEDENTES DE LA INVENCIÓN Existen dos grandes ramas en la construcción tradicional, que son la construcción liviana desarrollada en base a estructuras de madera o metal y placas que cubren la estructura, y aquella construcción pesada que toma como base el apilado y unión de bloques de cemento y/o piedra de distintos tamaños.
Con el desarrollo de nuevos materiales y procesos, ambos tipos de construcción han tendido grandes innovaciones en los últimos años. Con el objetivo de reducir los costos de construcción y lograr construcciones de mejor terminación, se han desarrollado métodos de construcción prefabricada donde las paredes son construidas en fábricas para luego ser instaladas en sitio. En este sentido la construcción liviana ha desarrollado mayor cantidad de alternativas,ya que,al tener menor peso, es más fácil realizar estructuras de mayor tamaño que son relativamente accesibles para movilizar y montar sin la necesidad de contar con equipamiento de gran porte.
Existen métodos de construcción prefabricada en base a cemento y bloques de distinto tipo, pero requieren de inversiones altas para el desarrollo de la planta de fabricación, así como de una serie de equipamiento pesado para su transporte y montaje.
Desde el punto de vista del cliente final (es decir quien compra una casa), podríamos clasificarlos en dos tipos: aquellos que no tienen rechazo a los métodos de construcción liviana; y aquellos que quieren estructuras sólidas en sus casas, y que son reacios a utilizar métodos de construcción con paredes que no transmitan la sensación de tener la rigidez y robustez que tiene el cemento.
La mentalidad de estos clientes está muy ligada a temas culturales y sociales.
En este sentido existe una necesidad no cubierta en el mercado, que consta en el suministro de un método de construcción liviano y prefabricado a medida, es decir que las paredes enteras puedan ser fabricadas a medida en una planta de fabricación. Y por ende que puedan ser montadas en sitio sin la necesidad de realizar estructuras previas (más que el piso), pero que sin embargo a la vista y al tacto las paredes se sientan y vean como una construcción pesada, es decir, que tenga terminación de cemento, ladrillos, piedras, etc., en su exterior y que estén compuestas por un material rígido y sólido en su interior.
El objeto de este invento es el diseño de un producto que se adecué a un sistema constructivo que satisfaga estas necesidades, es decir, un tipo de paredes que puedan ser fabricados en una planta y a medida específica del diseño y con las aberturas e instalación de servicios solicitada por el cliente. Que, a su vez, se componga de una pared liviana, pero con un núcleo sólido y rígido, y cuya terminación exterior sea similar a la construcción tradicional a los efectos de la vista y el tacto. Y que contenga las vigas estructurales dentro de la pared prefabricada, es decir que sea auto portante, lo que evita tener que realizarlas en sitio. Pero que por su condición de ser paredes completas fabricadas en una planta, y que al contar con un núcleo sólido y rígido pero liviano, permitan ser manipuladas con facilidad en sitio, logrando montar la estructura de una construcción en poco tiempo comparado con la construcción tradicional. DESCRIPCIÓN DE LA INVENCIÓN
El sistema constructivo se basa en la fabricación de paredes enteras en una planta de fabricación, que luego serán montadas en el sitio de la construcción sin la necesidad de contar con ninguna estructura previa ya que las vigas que dan rigidez a la estructura van incluidas en la pared.
La pared se compone de un núcleo rígido que es contenido por un Armazónque limita los bordes exteriores de las paredes, así como de los bordes internos destinados a la colocación de puertas o ventanas. Adheridas al núcleo rígido se disponen capas de terminación externa e interna.
Las capas de terminación pueden obtenerse mediante la fijación de placas al núcleo o mediante la aplicación de una capa de cemento que logra una terminación similar a la construcción tradicional, ya sea tanto a la vista como al tacto.
Dentro del núcleo rígido de la pared se sitúan los servicios eléctricos, sanitarios, calefacción, TV, y cualquier tipo se servicio requerido, así como las vigas estructurales necesarias.
Una vez terminada la pared en la fábrica, ésta se transporta al sitio de la construcción donde se ancla al piso y se van uniendo entre sí. Una vez unidas las paredes se procede a techar ya impermeabilizarlas.
Habiendo completado la estructura de la casa, se procede a realizar las terminaciones finales de la construcción en sitio.
Durante el proceso de construcción del techo, como parte de la capa de recubrimiento exterior puede incorporarse colectores de agua que cubran la superficie exterior del mismo. De esta manera se transforma la superficie del techo en un gran colector solar.
Conforme se ha descrito, un primer aspecto de la invención se refiere a:
1) Un método para fabricar paredes caracterizado porque las mismas se fabrican a medida de las necesidades y en la fábrica, con estructura reticular, vigas internas y marcos internos (como para ventanas y puertas) dentro de las mismas, todo dentro de un marco periférico que se coloca dentro de un molde que resiste considerables presiones y dentro del cual se inyecta y se expande el poliuretano u otra sustancia similar, que se distingue por formar un núcleo de aislación térmica que provee resistencia mecánica y aislación térmica y acústica al mismo tiempo, poseyendo dentro del espacio contenido dentro del armazón que se colocó en el molde todos los servicios eléctricos, de aire acondicionado, agua, sanitarios en general, ductos y otros que pudieran ser requeridos, donde además hay una malla metálica, sintética, de fibra, u otro material, unida al poliuretano o al marco exterior que delimita la pared, por una capa de poliurea o por grampas, tornillos u otro implemento mecánico que unen a la malla ya sea al poliuretano o al marco de la pared -el cual puede ser de madera, aluminio, metales férricos u otras sustancias mecánicamente resistentes- donde sobre esa malla así sostenida se puede proyectar una cobertura exterior y/o interior de cemento, yeso, o cualquier otra sustancia proyectable por soplete o similar, o usarse paneles puestos a la medida de la pared para el lado exterior y/o para el interior, donde dichos paneles exterior e interior pueden ser (no excluyentemente) de cemento o materiales cementicios, yeso, azulejos, baldosas, cerámicas, resinas varias, piedras unidas por resinas o materiales similares, celulosa, MDF, OSB, madera, madera compensada, tejas, ladrillos de diversos tamaños, y donde los materiales de cobertura o paneles en el caso de no ser sopleteados en el exterior del molde, pueden ser todos colocados en el interior del molde, de donde la pared multicapa sale perfectamente terminada, y donde dentro de dicho molde ha sido inyectado, por medio de varios orificios estratégicamente hechos y que perforan tanto a la tapa del molde como a uno de los paneles situados dentro del mismo, el poliuretano, fraguando el mismo dentro del molde y formando una capa mecánicamente resistente, que provee además aislación térmica y poder de unión entre las diversas capas y elementos internos, donde además, en el caso de ladrillos o similares en vez de uno o ambos paneles, los mismos son colocados primero en el fondo del molde, y donde el mismo material poliuretano o similar, al expandirse a presión se filtra entre ellos y los une entre si y al conjunto de la pared multicapa sin que sea necesaria ninguna aplicación de cemento o pegamento adicional de ningún tipo, saliendo así la pared del molde ya terminada y con sus capas o paneles internos y externos, o en su defecto, en vez de paneles, cerámicas o ladrillos, donde la pared tiene una perfecta impermeabilización de las uniones de los diferentes paneles con poliurea o similar, lo cual adicionalmente también aporta a su fortaleza estructural, proveyendo así una pared liviana pero que a la vista y al tacto es indistinguible de una construcción tradicional, pero con un costo y tiempo de fabricación mucho menor y con significativa fortaleza estructural y con los servicios incluidos adentro, aislamiento acústico y térmico, y capaz de aceptar una infinita variedad de capas internas y externas, ya sea aplicadas dentro o fuera del molde en que se inyecta el poliuretano.
Conforme a otras características de la invención:
2) Las paredes pueden ser fabricadas a medida de las necesidades y en la fábrica, con vigas internas y marcos internos (como para ventanas y puertas) dentro de las mismas, todo dentro de un armazón periférico que se coloca dentro de un molde que resiste considerables presiones y dentro del cual se inyecta y se expande el poliuretano u otra sustancia similar, que se distingue además por formar un núcleo que provee resistencia mecánica y aislación térmica y acústica al mismo tiempo, donde esa resistencia mecánica del elemento aislante es adicional a la provista por los otros componentes de la pared, conteniendo dentro del espacio definido por el armazón o marco que se coloca en el molde todos los servicios eléctricos, de aire acondicionado, agua, sanitarios en general, ductos y otros que pudieran ser requeridos.
3) La malla metálica, sintética, de fibra, u otro material, además de poder ser colocada por grampas, tornillos, etc., al armazón o marco de la pared, o pegada con poliurea o similar al núcleo de poliuretano puede tener una malla metálica del lado de adentro, del lado de afuera, o de ambos.
4) Tanto las mallas interior y/o exterior como los paneles o terminaciones internos y externos pueden ser aplicados a la pared después que la misma ha sido desmoldada.
5) La capa exterior y/o la capa interior puede comprender ladrillos de diversos diseños, piedras u otros similares también, incluidos los ladrillos estándar, que han sido aplicados dentro o fuera del molde, siendo que cuando es dentro la misma presión del poliuretano expandiéndose se filtra por entre los ladrillos y provee la unión de los mismos entre sí y al resto de la pared (es decir al núcleo de poliuretano o similar), proveyendo así una pared multicapa de aislación térmica y acústica que aporta a la rigidez estructural del conjunto, donde una de esas capas, o ambas si se decide hacerlo tanto del lado externo como del interno, es una pared del ladrillos estándar pero con una pared multicapa adosada (o entre ambas capas de ladrillos, si así se decide hacerlo) y con la cual fue construida conjuntamente, brindando así una estructura prefabricada que es la conjunción de la estructura tradicional y la estructura liviana con capa termo/acústica moderna, y con el agregado de tener contenidos en su espesor a todos los servicios: eléctricos, sanitarios, ventilación, calefacción, etc.
6) Un segundo aspecto de la invención se refiere a una pared fabricada esencialmente por el método descrito anteriormente, pero que será usada como techo, donde en el fondo del molde, -es decir lo que será la cara exterior- de fabricación se ha colocado una capa de tejas de cualquier diseño y material.
Conforme a otras características de la invención:
7) En el fondo del molde (es decir lo que será el panel exterior) de fabricación puede colocarse un panel de material impermeable, resistente a los rayos ultravioletas para evitar su degradación ante los rayos solares, y donde la unión o juntura impermeable entre paneles adyacentes es de poliurea o material similar, la cual también será específica para no degradarse con las radiaciones ultravioletas, y agregando dicha poliurea o similar fortaleza estructural adicional al techo por unir rígidamente los diferentes paneles.
8) En el fondo del molde (es decir el panel exterior) de fabricación puede colocarse un panel de calentamiento solar el cual va conectado a las tuberías incluidas en el núcleo de poliuretano.
9) En el molde puede colocarse un marco interior como para proveer una ventana, pero que en este caso servirá para dejar pasar un ducto específico y a la medida, ya sea de ventilación, calefacción/refrigeración, o una chimenea, o cualquier otro conducto que sea útil, y donde la juntura entre dicho ducto y el o los paneles adyacentes estará impermeabilizada por resina de poliurea o similar, la cual será específica para resistir las radiaciones ultravioletas solares.
10) La pared prefabricada, cuando tiene todas sus capas, puede componerse, de afuera hacia adentro de:
a) panel exterior
b) malla de sujeción exterior
c) núcleo de poliuretano o similar dentro de un marco periférico y con marcos internos para puertas, ventas, etc., y los servicios dentro del núcleo de poliuretano o similar d) malla de sujeción interior
e) panel interior
donde el mínimo imprescindible fabricado en la planta de producción es c), pudiendo dejarse así para terminaciones burdas como por ejemplo las industriales, y donde tanto la capa interior como muy especialmente la exterior puede ser una pared de ladrillos donde el elemento aglutinante es el mismo poliuretano que forma la capa térmico/acústica, y el cual en la misma acción de formar la capa térmico/acústica se ha filtrado entre los ladrillos, fraguándolos juntos y pegándolos así al núcleo.
11) La pared fabricada en capas, puede componerse solamente de dos láminas externas hidrofóbicasde resina rígida como poliurea o similar, o del estilo membrana plástica, sintética, o similar que queda adherido al núcleo en el proceso de expansión del poliuretano, y una capa termo aislante de poliuretano o similar contenida entre las dos capas de resina rígida, pudiendo esa capa de poliuretano contener o no los servicios, instalaciones, tuberías, etc.
) La pared puede estar rodeada y contenida por un marco periférico metálico o de otro material rígido, y dicha pared ha sido formada y fraguada en un molde formado por un armazón que comprende a un marco metálico o de otro material rígido que forma su periferia y al cual están adosadas las puertas del molde, siendo que así el marco de la pared y el marco del molde forman un marco interno y un marco externo.
) La pared fabricada puede tener las canalizaciones dentro del zócalo, o en su defecto por la parte superior de la pared, ya sea sobre el borde interno o sobre el borde externo, tal como se ilustra en la memoria descriptiva, o inclusive por dentro del techo.
) Las uniones de las diversas canalizaciones que van por el techo y/o por las paredes pueden ser resueltas ya sea en forma interna o en forma externa a la pared y/o techo, o por ductos o espacios formados dentro de la pared, o dentro del techo, o de ambos, y por medio de roscados, soldaduras, microsoldaduras, microfusión, ensamble a presión, o cualquier otro.) En la pared fabricada, cuando se desea obtener una construcción con el techo terminando en ángulo recto con la pared, sin la presencia de un alero o de un pretil, se realiza la unión de las canalizaciones del techo con las canalizaciones en la pared mediante una cavidad o canalización agrandada en el extremo del techo justo donde el mismo se une con la pared, y un entrante similar sobre el extremo superior de la canalización de la pared vertical, tal que la canalización agrandada del techo quede justamente por encima de la canalización agrandada de la pared, formando así una especie de ducto, y donde una moldura desmontable en ángulo cierra al ducto así formado por ambos ensanchamientos desde el lado interior del ángulo pared-techo, estando esa moldura perfectamente impermeabilizada y aplicada ya sea sobre el panel del lado interior, sobre el núcleo de poliuretano, sobre el marco delimitante del techo y el de la pared, o sobre cualquier otra parte de los mismos, asegurando una total estanqueidad pero a su vez con acceso al ducto si fuese necesario.
) En la pared fabricada, cuando se desea obtener una construcción con la pared sobresaliendo sobre el techo (es decir un pretil), se realiza la unión de las canalizaciones del techo con las canalizaciones en la pared mediante una cavidad o canalización agrandada en el extremo del techo justo donde el mismo se une con la pared, y un ensanchamiento similar en el costado interno de la canalización de la pared vertical, tal que la canalización agrandada del techo quede justamente al lado de la canalización agrandada de la pared, formando así una especie de ducto, y donde una moldura desmontable y en ángulo, cierra al ducto así formado por ambos ensanchamientos desde el lado interior del ángulo pared-techo, estando esa moldura perfectamente impermeabilizada y aplicada ya sea sobre el panel del lado interior, sobre el núcleo de poliuretano, sobre el marco delimitante del techo o el de la pared, o sobre cualquier otra parte de los mismos, asegurando una total estanqueidad pero a su vez con acceso al ducto si fuese necesario.
La unión de las canalizaciones puede ser realizada por el ángulo formado por la parte de arriba del techo y la pared.
En la pared fabricada, cuando se desea obtener una construcción con el techo sobresaliendo por fuera de la pared (es decir formando un alero), se realiza la unión de las canalizaciones del techo con las canalizaciones en la pared mediante una cavidad o canalización agrandada en el techo justo donde el mismo se une con la pared, y un entrante similar sobre el extremo superior de la canalización de la pared vertical, tal que la canalización agrandada del techo quede justamente por encima de la canalización agrandada de la pared, formando así una especie de ducto, y donde una moldura desmontable en ángulo cierra al ducto así formado por ambos ensanchamientos desde el lado interior del ángulo pared-techo, estando esa moldura perfectamente impermeabilizada y aplicada ya sea sobre el panel del lado interior, sobre el núcleo de poliuretano, sobre el marco delimitante del techo y el de la pared, o sobre cualquier otra parte de los mismos, asegurando una total estanqueidad pero a su vez con acceso al ducto si fuese necesario.
En la pared fabricada, para realizar la conexión de las canalizaciones entre techo y pared externamente (es decir del lado exterior de la construcción), los paneles de techo y pared pueden fijarse de tal manera que el apoyo del techo sobre la pared no abarque a la totalidad del espesor de la misma, sino solamente hasta donde aparece la canalización de la pared vertical, y de tal manera que tanto la canalización de la pared como la del techo no necesitan ensanchamientos, pues el espacio queda delimitado externamente por una moldura en ángulo, desmontable pero perfectamente impermeabilizada, que cierra y delimita el ducto así formado, y de esa manera se genera un espacio por el cual realizar las conexiones, así como el transporte de cables eléctricos o conductos similares. Este espacio o ducto es luego cubierto por una moldura de chapa, polímerou otro material idóneo. En la pared fabricada, cuando se desea obtener una construcción con una rigidez y resistencia adicional, y además de (o en vez de) los otros métodos descritos de unión de paneles, ya sea en el techo o en las paredes, se agrega un punto de soldadura a distancia optativa entre los marcos metálicos de paneles adyacentes, y/o de paredes y los perfiles en "U" o en "T", o en otras formas, cuando los mismos existen, que anclan la pared a la plataforma de cemento que es la base de la construcción.
Se incluye a continuación una tabla donde se indican las principales diferencias con los métodos conocidos más comunes.
Figure imgf000011_0001
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La innovación consiste en la fabricación de una pared entera o fracción, limitada por un marco exterior (87, 99, 109, 112, 121, 242, 347, 364, 372) que contiene la pared y por marcos interiores que contienen las aberturas. En su interior cuenta con un núcleo rígido que contiene la instalación eléctrica y sanitaria y de otros servicios requeridos, además de vigas estructurales. El núcleo rígido es revestido con una capa exterior y otra interior, siendo que dicho núcleo rígido es al mismo tiempo el aislante térmico y acústico. A continuación se describen los elementos principales de la invención.
Marco Se define marco,ilustrado en la fjError! No se encuentra el origen de la referencia., a la estructura metálica o de madera o cualquier tipo de material de características mecánicas similares, que cumpla con la función de limitar la pared y que contiene el núcleo rígido (aislante térmico y acústico) de la misma, así como componentes estructurales y de servicios. El marco está compuesto por el marco exterior (87, 99, 109, 112, 121, 242, 347, 364, 372) y el marco interior (5).
El marco exterior(87, 99, 109, 112, 121, 242, 347, 364, 372) es el marco que limita con el techo (1), piso (3) u otra pared (2).
El marco interior(5)es el marco que limita con una abertura del tipo puerta o ventana.
Perfil estructural(4): Es un perfil o caño de chapa o madera o cualquier otro material que pueda utilizarse para agregar resistencia estructural a la pared, que se amuran al marco y que quedan inmersas en el núcleo de poliuretano con el fin de incrementar la rigidez estructural de la pared así como actuar de soporte para los marcos de las ventanas.
Armazón
El armazón ilustrado en la fjError! No se encuentra el origen de la referencia, se compone de los marcos exterior e interior y de todos los servicios a ser incluidos en la pared incluyendo la instalación eléctrica (6,7, 8) y sanitaria y de otros servicios, así como los refuerzos estructurales (4)y los marcos internos para las aberturas (5).
La pared ya moldeada se componedelarmazón, de los paneles que se vaya a colocar, o de las capas de recubrimiento que hayan sido aplicadas de manera manual o a través de máquinas y que actúan como capas de recubrimientoy protección del núcleo sólido, y del núcleo sólido y cualquier otro tipo de servicio que se desee incluir dentro del núcleo de la pared.
Estructura reticular y vigas
Construcción con estructura interna La fiError! No se encuentra el origen de la referencia.. Inmerso en el núcleo rígido se encuentran los perfiles estructurales (4). La distancia entre estas vigas, así como la forma y el espesor de estas están determinados por las solicitaciones de carga que reciba la estructura. Estas vigas se fijan al marco exterior (87, 99, 109, 112, 121, 242, 347, 364, 372) del panel, y sirven también para fijar los marcos internos de las aberturas (5).
La producción de una pared completa, prefabricada y a medida, que cuente con vigas estructurales inmersas en un núcleo sólido y liviano como el poliuretano, es una solución que no existe en el mercado ni en el estado del arte, máxime si ese poliuretano o similar, además de propiedades térmicas y acústicas, posee una rigidez lo suficientemente alta como para ayudar sustancialmente en el aspecto estructural de la pared.
Construcción con Estructura Externa
Es posible generar construcciones con el mismo tipo de panel pero que en lugar de contar con la estructura reticular y vigas dentro de los paneles, estos paneles son fijados sobre una estructura reticular externa que se monta de manera independiente como se ilustra en la fiError! No se encuentra el origen de la referencia.., donde se muestra una construcción de ambientes con estructura reticular externa.
Conducción de Servicios
Los servicios eléctricos y sanitarios así como cualquier otro tipo de servicio que se desee incorporar como calefacción, colectoresde agua, tanques de gas, cableado para televisión, y cualquier otro tipo de servicio que se desee utilizar dentro de la construcción, pueden ser incorporados dentro de alguna de las paredes.
Para tal motivo se debe incorporar estos servicios en el armazón durante el proceso de fabricación.
Canalización de Servicios por zócalo La fiError! No se encuentra el origen de la referencia..En el interior de la casa, los cables o caños de sanitaria y otros servicios, se colocan dentro de la platea del piso, y pueden comunicarse con los caños (6) y cableado de las paredesa través de orificios en el marco exterior.
La forma del marco exterior por donde se quieran transportar servicios tiene un pliegue que genera un ducto (ducto para cableado ilustrado en lafiError! No se encuentra el origen de la referencia.) que sirve para transportar los cables eléctricos u otros servicios a lo largo de las paredes.
Los cables y servicios se llevarán por el marco exteriorde la unión piso - pared o por el marco exterior de la unión techo pared. Al terminar las canalizaciones los cables son tapados por un zócalo (9).
El caño (6) puede conectarse con las canalizaciones del techo a través de una conexión en el exterior de la casa o en el interior, y que se detallan a continuación: Conexión de Canalizaciones: Techo con Pared Externa
Método Exterior
La fjError! No se encuentra el origen de la referencia..
Para realizar la conexión de las canalizaciones entre techo y pared externamente (es decir del lado exterior de la construcción), los paneles de techo y pared pueden fijarse de acuerdo a lo mostrado en la fjError! No se encuentra el origen de la referencia, y la fj Error! No se encuentra el origen de la referencia.. De esta manera se genera un espacio 71 por el cual realizar las conexiones, así como el transporte de cables eléctricos o conductos similares. Este espacio 71 es luego cubierto por una moldura 811, 912, 1012, 1111, 125 de chapa de acuerdo a la fjError! No se encuentra el origen de la referencia.. Método Interior
Hay distintas formas de realizar la conexión de las canalizaciones de servicios dependiendo del tipo de terminación geométrica que se le quiera dar a la construcción.
Si se desea obtener una construcción con el techo terminando a en ángulo recto sin la presencia de un alero, entonces sepuede utilizar la configuración mostrada en la fj Error! No se encuentra el origen de la referencia., que muestra una unión de pared exterior y techo sin alero.
Si se desea tener un frente con alero elevado que sobresalga por sobre el nivel del techo, entonces se puede utilizar la configuración mostrada en la ¡ Error! No se encuentra el origen de la referencia., que ilustra una u unión de pared exterior y techo con pretil.
Si en cambio se desea que la terminación de la construcción cuente con un alero que sobresalga por encima de la pared, entonces se puede utilizar la configuración mostrada en la fjError! No se encuentra el origen de la referencia., que muestra una unión de pared exterior y techo con alero.
Las molduras de terminación exterior representadas por ítems (811) en la fjError! No se encuentra el origen de la referencia., (912)¡Error! No se encuentra el origen de la referencia., y (1012)en la ¡Error! No se encuentra el origen de la referencia., pueden ser sustituidas por terminaciones realizadas en el mismo material de la capa de recubrimiento exterior del panel en caso que sea requerido. Conexión de Canalizaciones: Techo con Pared Interna
Los paneles de techo se pueden unir tomando como base de soporte una pared interna. Esta unión se puede realizar a nivel de la pared interna (Método Interior), o apoyando los mismos sobre la pared (Método Exterior). Método Interior
La figura 1 muestra una conexión eléctrica para unir paneles de techo en una pared interior a nivel. Sobre el marco exterior de la pared (112) se coloca una chapa omega (113) que actúa como soporte de los paneles de techo (114). La Chapa Omega se fija al marco exterior de la pared mediante elementos de fijación. Los paneles de techo son unidos a la Chapa Omega mediante elementos de fijación (113,1110) en el caso de una unión a nivel. Una vez fijados los paneles se procede a impermeabilización de la unión mediante poliurea (111), o algún producto de similares características. Luego de realizada la impermeabilización se procede a colocar la Moldura de Terminación Exterior (1111).
Método Exterior La figura 2 muestra una conexión eléctrica para unir paneles de techo en una pared interior apoyando los mismos. Los paneles de techo (122) se apoyan sobre el marco exterior de la pared (121) y son unidos mediante ángulos de fijación (126), generando un espacio entre ambos paneles que permite la conexión de los servicios desde el techo de la construcción. Ese espacio es cubierto con una Moldura de Recubrimiento Exterior para Canalizaciones (125) que luego se impermeabiliza con una capa de poliurea o material similar (123) para ser cubierta luego con una Moldura de Terminación Exterior (1211). Las Molduras de Terminación Exterior representadas por ítems (1111) en la fLa figura 1 y (1211) en la figura 12, pueden ser sustituidas por terminaciones realizadas en el mismo material de las capas de recubrimiento exterior del panel en caso que sea requerido.
Capas
La f¡ Error! No se encuentra el origen de la referencia, y la f¡ Error! No se encuentra el origen de la referencia..
El panel cuenta con un núcleo interior de poliuretano rígido u otro material similar que tenga propiedades térmicas y mecánicas similares, y dos capas de recubrimiento (exterior e interior). La composición de las capas exterior e interior puede cambiar dependiendo de la terminación especificada para la pared.
Cabe la posibilidad de terminar el panel sin ningún tipo de capa de recubrimiento, o fabricar un panel que contenga una única capa de recubrimiento por un lado quedando el núcleo de poliuretano expuesto en el otro, así como utilizar a la poliurea, o alguna membrana hidrofóbica, como capa de recubrimiento exterior e interior sin ningún otro material agregado sobre esta. En este caso la capa de poliurea debiera ser de mayor espesor (mayor a lmm) para asegurar firmeza y rigidez en el panel (la fjError! No se encuentra el origen de la referencia.). Núcleo Interior
El núcleo interiorde poliuretano expandido (164) brinda rigidez, así como aislamiento térmico y acústico. El ancho de la capa suele ser de unos tres a treinta centímetros, aunque ello es básicamente a pedido del cliente.
A diferencia de los sistemas de fabricación liviana disponibles en el mercado, en este caso la pared puede ser auto portante, es decir que no requiere de la construcción en sitio de vigas para amurarlas ya que las vigas quedan inmersas en el núcleo de poliuretano. Por otro lado, el sistema cuenta con un núcleo rígido sin tener cámaras de aire o componentes no rígidos como la lana de vidrio o poli estireno expandidoque son los utilizados frecuentemente como relleno entre la pared interior y exterior.
El núcleo rígido de poliuretano otorga mayor rigidez estructural - y más aún si está recubierto de poliurea- así como mejores propiedades térmicas y acústicas.
Capa de Recubrimiento
Se define como capa de recubrimiento (166) al lado del panel expuesto al ambiente, ya sea exterior o interior. Cada panel cuenta con una (en caso de dejar un lado del núcleo
descubierto) o dos capas de recubrimiento.
Esta capa puede ser de un único material que se coloca en el molde durante el proceso de fabricación (es decir dentro del molde a presión), o puede estar compuesta por distintas subcapas que se van adhiriendo al núcleo interno una vez que el panel ha sido retirado del molde. Capa de Recubrimiento con Aplicación de Cemento
La capa de recubrimientode cemento (167) puede ser aplicada tanto en la cara exterior como interior de la pared, y cumple la función de terminación, así como la de generar rigidez. El ancho de la capa pude ir de unos milímetros hasta varios centímetros de espesor. En caso que se aplique el cemento tradicional devarios milímetros de espesor, la misma debe sujetarse al panel por medio de una malla de sujeción (168) adherida al mismo. Si la capa de cemento es de pocos milímetros, cabe la posibilidad de aplicar el producto directamente sobre el núcleo de poliuretano sin la necesidad de tener la malla de sujeción 572, 168.
La malla de sujeción 572, 168 puede ser metálica o plástica o de cualquier otro material que cumpla la función de fijar al cemento, y tiene como objetivo lograr la fijación de la capa exterior de cemento (o símil) al núcleo rígido. La figura8muestra el anclaje de malla de sujeciónde sujeción 572, 168.
Además de actuar como anclaje del cemento al núcleo de poliuretano, la malla de sujeción 572, 168 aporta rigidez estructural. Por tal motivo el tamaño del reticulado, así como el espesor de los alambres o hilos son variables en función de la rigidez estructural deseada, así como resistencia a los impactos e inclusive motivos de seguridad.
La malla de sujeción 572, 168será adherida mediante un material adhesivol65 ¡Error! No se encuentra el origen de la referencia. como la poliurea o similar, o sujetada mecánicamente al núcleo o marco a través de grampas, tornillos o similares.
La poliurea se proyecta como si fuera una pintura. Lafigura9muestra la proyección de poliurea sobre la malla de sujeción 572, 168. La poliurea cumple la función de adherir la malla de sujeción donde se aplica el cemento al núcleo de poliuretano, así como generar una capa impermeable para proteger al núcleo contra la humedad. El espesor de la capa suele ser de uno a cinco milímetros.
Cabe la posibilidad de realizar el pegamento de la malla al núcleo de poliuretano con otro tipo de material, y su aplicación puede ser pulverizada o a aplicada por pincel o rodillo a algún método similar, o incluso con grampas.
La combinación de la poliurea o similar actuando como elemento adhesivo de la malla de sujeción sobre la cual se aplica la capa de cemento es una solución innovadora, no utilizada en el mercado para estos fines,lo cual sumado resulta en una combinación poliuretano-poliurea.
Capa de Recubrimiento con Placa Prefabricada
En lugar de adherir la malla de sujeción al núcleo de poliuretano, es posible terminar la capa de recubrimiento con una placa prefabricada que se coloca dentro del Moldede fabricación y que queda adherida al núcleo de poliuretano durante el proceso de expansión del poliuretano. Existen diversos tipos de placas que pueden ser utilizadas con este propósito, por ejemplo: placas de yeso, MDF, chapas de metal, placas de poliestireno, placas de madera, placas de OSB, placas cementicias, paneles que simulan paredes de ladrillo o materiales diversos, e inclusive paneles con piedras reales o ladrillosdisponibles en el mercado,o cualquier tipo de placa o panel utilizado para revestimientos exteriores de paredes.
En caso que el Armazón sea terminado sin placas de recubrimiento, las mismas pueden ser adheridas al núcleo de poliuretano (o al marco periférico) luego de haber desmoldado la pared. Las placas pueden ser adheridas mediante algún elemento adhesivo o a través de algún elemento de sujeción como tornillos o similar. Capa de Recubrimiento con Ladrillos, Piedras o elementos similares.
Es posible utilizar como revestimiento exterior: ladrillos, piedras, cerámicas, azulejos o materiales similares que pueden ser colocados en el piso del molde y que quedarán adheridos al núcleo de poliuretano durante el proceso de expansión del mismo.
Para la fabricación de las paredes con terminación en ladrillo, piedras, u otros elementos similares de espesor de importancia relativa al espesor de la pared, se utilizarán un molde cuyo marco es de mayor altura que el molde utilizado para construir las paredes con placas de recubrimiento. Este molde de mayor profundidad es mostrado en lafiError! No se encuentra el origen de la referencia..
Durante el proceso de expansión, la presión hace que el poliuretano se filtre entre los ladrillos uniéndolos y sustituyendo al cemento.
Siendo esto una verdadera combinación entre el sistema tradicional y el que detallamos más arriba en este invento, resultando dicha combinación en aún otra versión del presente invento. La figura 3 muestra un corte lateral de pared con capa de recubrimiento exterior hecha con ladrillos. Capa de recubrimiento con revestimiento cerámico o similar
En caso que se quiera terminar la pared interior con cerámicas, las mismas pueden ser pegadas directamente sobre el núcleo de poliuretano (capa 164), o pueden ser adheridas mediante cemento aplicándolo sobre la malla de sujeciónmostrada como se muestra en la figural2muestra un recubrimiento cerámico sobre cemento y malla.
Es posible también colocar las cerámicas directamente en el piso del molde y que estas queden adheridas durante el proceso de expansión del poliuretano.
Capa de recubrimiento para techo con panel Solar
En caso de querer utilizar parte del techo como panel solar, se aplican como tapa exterior del armazón (o parte de la tapa exterior)un sistema de caños con colectores (capa (169)) que se utilizarán luego para realizar la circulación del fluido utilizando el techo como un panel solar. La incorporación de un colector utilizado como un panel solar que esté incorporado en el panel del techo de una construcción, es una solución innovadora no disponible en el mercado.
Panel Sándwich de Poliurea o membrana hidrofóbica
El Panel Sándwich de Poliurea o membrana hidrofóbica mostrado en la fjError! No se encuentra el origen de la referencia, es una versión sencilla del panel de pared o techo que puede ser utilizado en la pared de la invención, así como en distintos tipos de aplicaciones además de las de la invención.
Este panel cuenta de una capa exterior de Poliurea o alguna membrana hidrofóbica ya sea plástica, sintética o similar, que puede ir de lmm a 10mm que es aplicada, o queda pegada en el proceso de expansión del poliuretano sobre un núcleo rígido de poliuretano expandido, poliestireno o algún otro material similar que puede ir de lcm a 40cm de espesor.
La aplicación de la poliurea puede ser realizada de forma manual a través de una pistola y el equipamiento necesario para tal fin, o mediante una línea de fabricación donde se aplique la poliurea sobre el núcleo sólido de manera continua.
El panel sándwich de poliurea o membrana hidrofóbica y poliuretano es un producto innovador que no se encuentra en el mercado hoy en día.
Armado del piso El piso debe ser construido en sitio previo al montaje de las paredes.
El anclaje de las paredes se realizará sobre una platea de hormigón convencional a ser dimensionada de acuerdo a los requerimientos estructurales de la edificación.
También cabe la posibilidad de construir el piso con el mismo tipo de paneles propuestos en este documento, o cualquier otro tipo de construcción de pisos disponible en el mercado. La platea podrá contener los servicios eléctricos y sanitarios requeridos por el diseño de la edificación.
A continuación se describe el proceso de fabricación:
Molde: Es un molde robusto en sí, que sostiene a las placas metálicas laterales del armazón donde se fabricará el panel y que cuenta con tapas de chapa con refuerzos estructurales para contener las altas presiones generadas por la expansión del poliuretano dentro del armazón. Las fjError! No se encuentra el origen de la referencia.. La figura 19A muestra un molde 173 que tiene mayor profundidad para fabricar paredes con terminación en ladrillo, piedras, o elementos similares. La fjError! No se encuentra el origen de la referencia. ¡Error! No se encuentra el origen de la referencia.. La figura 17 representa un molde 173 donde se introduce un bloque 171 de ladrillos y una placa prefabricada 172 para formar un panel.
Para moldesde menor tamaño es posible utilizar tapa del estilo bisagra como el ilustrado en la fjError! No se encuentra el origen de la referencia., aunque para moldes grandes y por razones de seguridad es recomendable utilizar moldes de tapa corrediza como se ilustra en las fjError! No se encuentra el origen de la referencia. La figura 4muestra un molde 201 de 6x3m con tapa corrediza 203 para fabricación de pared completa.
Para la fabricación de la pared se necesita contar con un molde mayor o igual a las dimensiones de la pared a fabricar.
El proceso de fabricación va a tener variaciones dependiendo del tipo de terminación que se requiera en la pared. Colocación de placa inferior de pared (en caso que las haya)
Si una de las capas de recubrimiento está terminada con placas prefabricadas, ladrillos o piedras o cualquier otro elemento que se desee, entonces el primer paso en la fabricación de la pared es la colocación de éstos dentro del molde, quedando así en el fondo del mismo contra la contratapa.
Otra opción es realizar la mezcla de cemento y colocarla en el piso del molde, esperar a que fragüe y luego realizar el armado del armazón sobre esta capa. Al realizar el proceso de expansión el poliuretano queda adherido a la capa de cemento que se colocó en el piso del molde.
Si ambas capas de recubrimiento están terminadas con placas prefabricadas, entonces se coloca la primera capa en el piso, es decir en el fondo del Molde, y otra como tapa una vez terminado el Armazón.
En caso que la terminación de la pared no cuente con placas prefabricadas, el proceso de fabricación comienza directamente por la etapa de aArmado del Marco Exterior. Armado del Marco Exterior
Una vez colocadas las placas en el piso del molde (en caso que esa sea la terminación deseada), se procede al armado del marco exterior que se realiza sobre las placas ya colocadas. En caso que la terminación interior no contenga placas, el marco exterior de la pared se armará directamente sobre el piso del moldecomo se muestra en la fiError! No se encuentra el origen de la referencia..
Los perfiles del marco exterior se unen entre sí mediante remaches, por encastre, mediante soldadura o algún sistema similar.
Armado del Marco Interior
Una vez terminado el marco exterior se procede a colocar el marco interior de acuerdo al diseño de la pared y a la ubicación de las aberturas que vaya a contener la pared a fabricar.
El marco interior se sujeta mediante tornillos a caños de chapa o vigas de madera o algún otro tipo de material que cumpla la función de sujeción de la abertura al marco interior y que están firmes al marco exterior. De esta manera, los lugares donde vayan a colocarse las aberturas no quedan cubiertas con el núcleo de poliuretano. La figura5muestra el armado del marco interior 231 dentro delmolde.
Armado del Armazón
Una vez terminados los marcos interiores y exteriores se procede a colocar perfiles estructurales y todos los servicios requeridos, como ser, canalizaciones eléctricas, sanitarias, TV, calefacción, aire acondicionado y todo otro tipo de servicio solicitados en la construcción, con las correspondientes salidas en perforaciones a la medida en el marco exterior. La propia canalización eléctrica sirve como tapa para evitar la fuga de poliuretano por estas perforaciones. La fjError! No se encuentra el origen de la referencia, muestra el montaje déla canalización eléctrica dentro del molde. La figura6muestra el cableado eléctrico 251saliendo por el marco exterior 242.
Colocación de Placa Superior (en caso que las haya)
En caso que la cara superior de la pared sea cubierta con placas, las mismas se deben colocar como tapa del Armazón antes de cerrar el Molde y perforar las mismas a través de los orificios en la tapa del Molde. Las perforaciones serán utilizadas para la inyección del poliuretano o del material a ser utilizado en el núcleo interior, y luego serán tapadas en la terminación final de la pared.
Es posible fabricar la pared con materiales que no requieran ser inyectados, sino que puedan ser vertidosdentro del Armazón antes de cerrar la tapa del Molde previo al proceso de solidificación del mismo, incluso es posible trabajar con el poliuretano de esta manera.
Cerrado del Molde
Una vez terminado el Armazón con sus respectivas tapas(en caso que las tenga), se procede a cerrar el Molde.
La tapa del Molde es fijada mediante elementos mecánicos para contener el aumento de presión producto de la expansión generada en la reacción al mezclar los componentes del poliuretano (en caso que este sea el material de núcleo).
Si el producto a utilizar como núcleo de la pared no expande en su proceso de fragua, entonces no es necesario contar con un Molde tan robusto.
Aplicación del material del núcleo interior a través del Molde La tapa del Molde contiene pequeños orificios de unos 5mm de diámetro (o mayores), distanciados a un metro aproximadamente, a través de los mismos se perfora la tapa del Armazón para poder llegar al interior del mismo.
Por esos orificios se procede a inyectar el poliuretano de manera de conseguir la densidad necesaria (entre 40 y 50kg/m3 dependiendo del producto a utilizar y del fin que se quiera obtener).
La inyección del poliuretano se realiza a través de una máquina mezcladora de sus dos componentes esenciales (un poliol y el TDI) y una pistola de inyección.
La inyección puede realizarse de forma manual inyectando un orificio a la vez, o de manera automatizada contando con un elemento de inyección que pueda inyectar en múltiples orificios al mismo tiempo. La figura7muestra la inyección de poliuretano por la tapa 224 del molde a través del armazón de manera manual.
Expansión y secado El poliuretano se expande logrando un núcleo homogéneo. Una vez que se inyecta el poliuretano en el Molde, se debe esperar unas 5 horas para proceder con el desmoldado de la pared.
Desmoldado
Para retirar la pared terminada del Molde, lo primero que se debe hacer es abrir la tapa superior del Molde. Luego se desarma el marco exterior del Molde en contacto con el marco exterior de la pared. Al desarmar el marco exterior del Molde, la pared queda en condiciones de ser retirada del mismo.
Es posible también retirar la pared sin necesidad de desarmar el marco exterior del molde, pero en ese caso se requiere de algún elemento mecánico o hidráulico que ejerza presión sobre la contratapa del molde para que esta empuje a la pared y la retire. Obviamente en este caso la contratapa del molde no debe ser solidaria al marco exterior del mismo.
Aplicación de Capa de Cemento (en caso de que la tenga)
Si la pared va a contar con una capa de recubrimiento de cemento, se procede a la aplicación de la misma una vez desmoldada la pared.
El primer paso es la fijación de la malla de sujeción mediante grampas, tornillería, o algún método similar ya sea alnúcleo de poliuretano o al marco mediante elementos de sujeción que puedan atravesar la chapa o madera del marco.
Además la proyección de poliurea sobre la malla y a través de la misma llegando al poliuretano le agrega agarre y rigidez al conjunto malla-poliurea-poliuretano (aunque ese paso no es imprescindible). Esto resalta la fortaleza estructural que nuestro sistema de aislación térmica agrega a la pared en general, diferenciándose así de todo otros sistemas en el estado del arte donde la aislación térmica es la parte estructuralmente débil del sistema. La figura8muestra el anclaje de malla de sujeción.
Luego de fijar la malla de sujeción al núcleo de poliuretano, se procede a proyectar la poliurea o el material a utilizar para adherir la malla al núcleo (en caso que este sea utilizado). La figura9muestra la proyección de poliurea sobre la malla de sujeción.
El paso siguiente es revestir la pared con cemento. El proceso se puede realizar mediante la aplicación manual o a través de máquinas que automaticen el sistema. El cemento puede tener variadas proporciones de cemento en sí, de cal, de arena, aditivos, etc, cada uno con su propia granulometría de manera de lograr una terminación relativamente burda o por lo menos áspera, o una terminación muy lisa del tipo "portland espejo". El cemento puede tener en su mezcla un colorante que haga que esta capa ya tenga su color intrínseco, ahorrándonos muchas veces otra terminación o una pintura final. Así, la pared ya podría salir de fábrica "pintada" en su color final, con gran ahorro de mano de obra y de materias primas. La figuralOmuestra la aplicación de la Capa de Recubrimiento de Cemento 167 de manera manual. La figurallmuestra elpanel de Pared terminado con capa de Recubrimiento de Cemento 167. Aplicación de capa de Recubrimiento Cerámico o similar (en caso que la tenga)
Para revestir la pared con algún tipo de recubrimiento cerámico o similar, las mismas pueden ser adheridas al núcleo durante el proceso de expansión o adheridas luego de desmoldar la pared mediante algún cemento directamente sobre la pared de poliuretano o a través de cemento sobre la malla de sujeción adherida al núcleo. La figural2muestra un recubrimiento cerámico sobre cemento y malla.
Fijación y soldadura de Uniones Estructurales
Al finalizar la construcción de las paredes se procede al montaje y a la fijación de las uniones estructurales. La soldadura en caso de necesitarse se realiza entre los marcos exteriores de los paneles a ser unidos.
La soldadura entre marcos de paneles es una aplicación novedosa que no se encuentra en el mercado. La figural3muestra la Soldadura del Marco Exterior 87, 99, 109, 112, 121, 242, 347, 364, 372de dos paneles.
A continuación se describe el proceso de montaje:
Anclaje de paredes al piso Existen distintos tipos posibles de anclajes. La figura 33 muestra el anclaje de las paredes al piso.
Las paredes se fijarán al piso de acuerdo al detalle R de la fiError! No se encuentra el origen de la referencia, que se muestra a continuación. El anclaje se realiza por medio de ángulos de anclaje al suelo 331 perforados que se fijan mediante tornillos al piso y a los marcos de chapa de las paredes.
Las uniones de los ángulos de anclaje al marco de la pared, pueden ser reforzadas mediante soldadura.
También puede utilizarse otros métodos de fijación como por ejemplo un perfil en forma de U (342) que sea amurado al piso primero y luego la pared se inserte dentro de esta U.
O cualquier tipo de sistema de fijación similar que cumpla con el propósito de fijar la pared al piso.
El riel (la "U") facilita la colocación precisa y el armado, y también la precisión en las junturas entre pared y pared, siendo que encastran estando las mismas en el mismo riel. A su vez, hace más rápido el armado y protege de los elementos al borde inferior de la pared, haciendo al conjunto más robusto. La U puede estar sobre el piso o enterrada en la platea. La figural4muestra un esquema de anclaje al piso con unión U amurada a la platea.
Unión Estructural de Paneles Los paneles se unen entre sí a través de elementos metálicos que se adhieren a los marcos de los paneles mediante tornillos y/o soldadura. De esta manera las distintas paredes quedan rígidamente unidas. A este tipo de unión se le llama uniones estructurales.
Uniones Estructurales entre Paneles de Pared con otra Pared
Los marcos de las paredes pueden también tener distintos tipos de geometría de manera de generar un encastre macho y hembra en los laterales del marco, que se encastren entre sí y que puedan ser reforzados ya sea mediante soldadura (354)o a través de elementos de fijación (353) O simplemente mediante la presión generada encastre mecánico macho-hembra. La figural5muestrauniones de paneles de pared con marcos con geometría de encastre.
Otra opción para unir las paredes es utilizar marcos con geometría rectangular y realizar la unión mediante una planchuela de Unión (365) que se sujeta al marco exterior de ambos paneles mediante tornillos o soldadura, y que adicionalmente provee una protección extra contra los elementos, cosa que es particularmente útil por ser puntos de unión. La figural6muestra una vista superior de unión de paredes con plancha de unión.
En la fiError! No se encuentra el origen de la referencia. donde se pueden apreciar distintos tipos de uniones estructurales utilizando una planchuela o ángulo de sujeción para unir los marcos exteriores de los paneles. Estos elementos de sujeción pueden sujetarse a los marcos mediante tornillos o soldadura.
Uniones Estructurales Entre Paneles Pared con Techo
Las uniones estructurales entre paneles de Pared y Techo fueron descritas anteriormente bajo los epígrafes Conexión de Canalizaciones: Techo con Pared Externay Conexión de Canalizaciones: Techo con Pared Interna. La figura 17 muestra un ejemplo de Unión Soldada entre panel de pared y techo. La figura 18muestra un ejemplo de Unión Estructural Soldada entre paredes en ángulo Uniones Estructurales entre Paneles de Techo y Techo
Las Uniones Estructurales entre paneles de Techo y Techo que apoyan sobre paredes Internas fueron descritas anteriormente con ayuda de la fLa figura 1 muestra una conexión eléctrica para unir paneles de techo en una pared interior a nivel y con ayuda de la fuña conexión eléctrica para unir paneles de techo en una pared interior apoyando los mismos.
La figura37 muestra la unión de paneles de techo que utiliza una viga estructural para realizar la unión de los mismos sinla presencia de una pared de soporte. Este tipo de uniones se utilizan cuando el largo total del panel de techo no es suficiente para cubrir todo el largo del techo necesitándose de una viga intermedia para sostener la unión de dos paneles de techo. La figura 19 es una vista lateral que muestra la unión de paneles de techo a nivel en viga estructural.
Uniones de Terminación
Una vez que todos los paneles se han unido mediante uniones estructurales, se procede a impermeabilizar las uniones por medio de la aplicación de poliurea o cualquier tipo de material que cumpla con la función de sellar e impermeabilizar las mismas. Luego se realiza la terminación estética de la unión mediante molduras de chapa que son adheridas mediante tornillos o algún material adhesivo, o colocadas a presión mediante el encastre con el marco, o simplemente aplicando una capa de recubrimiento sobre la unión estructural, usualmente del mismo material que la capa de recubrimiento del panel.
También es posible colocar molduras y cubrirlas luego con el mismo material de las paredes exteriores. Este tipo de uniones se denominan Uniones de Terminación.
Unión de Terminación en Pared-Pared Exterior en Angulo
Las uniones exteriores en Angulo se realizan adhiriendo una moldura a ambos marcos de cada pared que luego es revestida mediante una capa similar a la terminación de la pared (figura21).
La moldura podrá ser de chapa o de cualquier material que cumpla con la función de cubrir las uniones estructurales. La figura20es una vista superior de unión entre paneles de Techo y paredes laterales. La figura21es el detalle AB de la figura20que muestra unavista superior de la terminación de la moldura en la esquina.
Otra forma de realizar la terminación de pared-pared en ángulo es colocando la moldura de chapa o material similar como se ilustra en la figura 42, para rellenar luego la cavidad generada por la moldura con el mismo material que la capa de recubrimiento del panel, y luego retirar la moldura una vez que el relleno haya fraguado. De esta manera se obtiene una terminación en la unión del mismo material que la capa de recubrimiento.
Otra opción para la terminación en ángulo es superponer los paneles de acuerdo a la ¡ Error! No se encuentra el origen de la referencia, que es un corte con vista superior de Unión de Paneles de pared en ángulo con paneles superpuestos. Unión de Terminación en Pared-Pared plana
Las uniones planas se terminan revistiendo la unión ya impermeabilizada con poliurea o algún otro impermeabilizante, mediante el mismo tipo de terminación que la capa exterior.La figura22muestra un esquema de Unión de Terminación para uniones entre Paneles de Pared.
Unión de Terminación Para Recubrimiento Exterior con Cemento En las paredes con recubrimiento exterior en cemento, las Uniones de Terminación pueden ser realizadas con cemento.
Por tal motivo al momento de colocar la malla de sujeción como se ilustra en la figura8muestra el anclaje de malla de sujeción) se deja sobresalir la malla por sobre el marco exterior como se muestra en la figura23. Luego al hermanar ambos paneles, estos excedentes de malla se entrelazan y afirman al marco exterior mediante tornillos. Una vez fijada la malla se procede a impermeabilizar la unión con poliurea o símil y luego a revestir con cemento como se muestra en la figura24puede verse la unión de Terminación entre dos Paneles de Pared. En efecto, en la figura23puede apreciarse la malla de sujeción excedente luego de colocar la capa de recubrimiento de Cemento. En la figura24puede verse la unión de Terminación entre dos Paneles de Pared Lista para cubrir con cemento.
Unión de Terminación entre Techo-Pared y Techo-Techo
Las Uniones de terminación entre Techo - Pared y Techo-Techo pueden ser realizadas mediante molduras que se atornillan al marco exterior del panel o mediante el revestimiento directo del mismo material que la capa de recubrimiento aplicado sobre la unión.
La Unión de Terminación se realiza luego de haber impermeabilizado la unión estructural con Poliurea o símil.
Las Uniones de Terminación Exterior con Moldura se detallan en:
¡Error! No se encuentra el origen de la referencia.
¡Error! No se encuentra el origen de la referencia. - ítem (811)
unión de pared exterior y techo con pretil- ítem (912)
nión de pared exterior y techo con alero - ítem (1012)
La figura 1 muestra una conexión eléctrica para unir paneles de techo en una pared interior a nivel- ítem (1111) una conexión eléctrica para unir paneles de techo en una pared interior apoyando los mismos - ítem (1211)
Las molduras exteriores pueden ser sustituidas por terminaciones realizadas en el mismo material de la capa de recubrimiento exterior del panel en caso que sea requerido.
A continuación se presenta un ejemplo de un prototipo de casa o vivienda 471 de un dormitorio y un baño (la flecha clara marca la vista trasera y la oscura marca la vista delantera). La figura 47A muestra un esquema en planta de la casa. Las figuras 47B-47F representan diferentes perspectivas del esquema de la vivienda mostrada en la figura 47A. Lasfiguras 48 y 49muestran el detalle de las canalizaciones para el servicio eléctrico a instalar en los paneles de techo.
La capa oscura del panel de techo representa la capa externa del panel que puede ser de diversos materiales, entre ellos Poliurea, Cemento, M DF, Yeso, OSB, Aglomerado de diversos tipos, Metales Acanalados o Lisos, Placas Cementicias, Resinas Diversas, Placas combinadas (marmoladas o no) de resinas y minerales molidos, placas de piedra (mármol y otras). En este ejemplo se utilizará la poliurea como placa externa y el yeso como placa interna.
Al panel marcado con el círculo negro en la figura 48 se le ha ocultado la placa de recubrimiento exterior de poliurea a los efectos ilustrativos para poder mostrar las canalizaciones del servicio eléctrico en el interior del panel de techo (lo mismo se ha hecho con los otros paneles de techo que no cuentan con la capa de recubrimiento oscura). La figura 48muestra la perspectiva con detalle de canalizaciones en techosegún la vista trasera. La figura 49muestra la perspectiva con detalle de canalizaciones en techosegún la vista delantera. En lasfiguras50A-50Bse muestra la perspectiva del proyecto sin suelo mostrando los distintos paneles de pared a fabricar y montar. Cada Flecha apunta a un Panel de Pared distinto.
Las figuras 51A-51C muestran una planta y cortes de la vivienda.
Las figuras 52A-52D muestran vistas de las fachadas de la vivienda: la figura 52A una vista frontal, la figura 52B una vista posterior, la figura 52C un lateral derecho y la figura 52D un lateral izquierdo.
Las figuras 53A-53F muestran detalles de uniones entre paneles de la casa o vivienda 471. La figura 53Amuestra una unión de pared exterior y techo con pretil. La figura 53B muestra una unión de pared exterior y techo con alero. La figura 53E es un corte visto desde arriba que muestra una unión de paneles de pared en ángulo con paneles superpuestos. La figura 53F muestra un ducto para servicios.
La figura 54A muestra una vista explosionada de un panel donde pueden verse los componentes: capa de poliurea 541, estructura resistente 542, núcleo de poliuretano 543 y placa de yeso 544. Algunos de los materiales que pueden emplearse en las placas exterior e interior son: Poliurea, Cemento, MDF, Yeso, OSB, Aglomerado de diversos tipos, Metales Acanalados o Lisos, Placas Cementicias, Resinas Diversas, Placas combinadas (marmoladas o no) de resinas y minerales molidos, placas de piedra (mármol y otras), panel solar (placa externa de techo) minerales molidos, placas de piedra (mármol y otras).
La figura 54B muestra la sección transversal de un panel de la invención.
Las figuras 55A-55E muestran vistas de la estructura resistente. Las figuras 55A-55C representan el alzado, planta y perfil de la estructura resistente. La figura 55D es una perspectiva de la estructura resistente. La figura 55E es el detalle C indicado en la figura 55D. La figura 55E muestra la chapa omega para comunicación de canalizaciones entre techo y pared. ítem 101 en la figura 10 que muestra la nión de pared exterior y techo con alero.
La figura 57A muestra una vista explosionada de un panel donde pueden verse los componentes: revestimiento de hormigón 571, malla 572, estructura resistente 573, núcleo de poliuretano 574 y placa de yeso 575.
Algunos de los materiales que pueden emplearse en las placas exterior e interior son: Poliurea, Cemento, MDF, Yeso, OSB, Aglomerado de diversos tipos, Metales Acanalados o Lisos, Placas Cementicias, Resinas Diversas, Placas combinadas (marmoladas o no) de resinas y minerales molidos, placas de piedra (mármol y otras), panel solar (placa externa).
La figura 57B muestra la sección transversal de un panel de la invención. La figura 57C es el detalle B de la figura 57B.
Las figuras 58A-58B muestran una vista frontal y una perspectiva de un panel que incluye una ventana.
Las figuras 59A-59B muestran una vista frontal y una perspectiva de un panel que incluye una ventana y una acometida.
Listado de referencias
ltecho
2 pared
3 piso
4 Perfil estructural, refuerzos estructurales
5 aberturas,marco interior
5' ventana
6, 7, 8 instalación eléctrica
6 caño
7 caja de conexión 8 tubo corrugado
9 zócalo
51 orificio en marco exterior para comunicación de servicios por zócalo
52 ducto para cableado o sanitaria
71 espacio
81 núcleo de poliuretano
82 capa de recubrimiento
83canalización de servicios
84cableado
85impermeabilización con poliurea
86moldura de terminación interior
87marco exterior
88ángulo para sujeción
89panel de techo
810panel de pared exterior
811moldura de terminación exterior
91chapa plegada para soporte de techo de encastre en pared
92panel de pared
93recubrimiento exterior de pared
94canalización interior para servicios
95moldura de cubrimiento interior para canalizaciones
96recubrimiento interior de pared
97panel de techo
98núcleo de poliuretano
99marco exterior
910ángulo de sujeción techo pared
911impermeabilización de poliurea
912molduraexterior para unión de terminación
lOlcaja de conexión de servicios en techo
102panel de techo
lCBrecubrimiento exterior de techo
104canalización interior para servicios en techo
105moldura de cubrimiento interior para canalizaciones
106recubrimientointeriordepared
107panel de pared 108núcleo de poliuretano
109marco exterior
lOlOángulo de sujeción techo pared
lOllimpermeabilización de poliurea
1012molduraexterior para unión de terminación
lllimpermeabilización con poliurea
112marco exterior
113chapa omega para soporte de paneles
114panel detecho
115núcleo interno de poliuretano
116cableado de servicios
117canalización interna para servicios
118moldura para terminación interna
119capa de recubrimiento
lllOtornillos de fijación para paneles
llllmoldura de terminación exterior
121marco exterior
122panel detecho
123impermeabilización con poliurea
124canalización interior para servicios
125moldura de cubrimiento exterior para canalizaciones
126ángulo para fijación de marco exterior techo/pared
127capa de recubrimiento
128moldura para terminación interna
129panel de pared
1210cableado de servicios techo/pared
1211moldura de terminación exterior
131 ladrillos, piedras o elementos similares
141 núcleo interior rígido
142 capa de cemento sobre malla de fijación
143 Marco Exterior
144 Unión Estructural
145 Espacio a ser cubierto por molduras y que conecta servicios del techo con servicios de las paredes
146 Capa de Cemento 147 Capa de Recubrimiento con Cerámica
148 Servicio Eléctrico
149 Capa de Recubrimiento con Placa
149' Capa de Recubrimiento con Placa
150 Malla de Fijación
161perfil U100-1000
162perfil U100-3000
163tubo
164poliuretano expandido
165poliurea
166yeso
167terminación cementicia
168malla de sujeción, por ejemplo metálica o plástica
169colector solar
1610tubo corrugado
171 bloque de ladrillos o piedras individuales
172 placa prefabricada
173 molde
191 estructura del panel a fabricar
192 estructura principal del molde desmontable
193 bisagras para desmolde
194 refuerzos estructurales de la tapa del molde
195 placas metálicas con orificios para inyección de poliuretano 201 marco del molde
202 refuerzo estructural de la tapa
203 tapa corrediza
204 refuerzo estructural del piso del molde
221 marco reforzado del molde
222 marco exterior del armazón
223 orificios en marco exterior para pasaje de canalizaciones 224 tapa del molde
241 canalización eléctrica
242 marco exterior
243 molde
251 cableado eléctrico 311 revestimiento cerámico
331 ángulos de anclaje al suelo
341piso
342chapa en U para sujeción de pared
343recubrimiento exterior
344núcleo de poliuretano
345tornillo de sujeción
346recubrimiento interior
347marco exterior
351panel de pared
352impermeabilización con poliurea
353tornillo pasante de fijación sobre marco exterior
354soldadura de fijación sobre marco exterior
361panel de pared
362impermeabilización con poliurea
363tornillo pasante de fijación sobre marco exterior
364marco exterior
365planchuela de unión
366núcleo interior
367 capa de recubrimiento
368unión de terminación exterior
369unión de terminación interior
371núcleo de poliuretano
372marco exterior
373impermeabilización con poliurea
374chapa omega para soporte de paneles
375viga estructural de unión
376 unión de terminación
377tornillos de sujeción
378 capa de recubrimiento
379moldura para unión de terminación exterior
381 unión estructural soldada
421ángulo de fijación entre pared externa y piso
422marco exterior de panel de pared
423 ángulo de fijación entre panel de techo y panel de pared 424tubos para circuito de fluido a calentar
425panel de techo
426ángulo para fijación de marco exterior techo/pared
427ángulo para fijación de pared y piso
428tornillo de fijación
471 casa o vivienda
541capa de poliurea
542estructura PT-6000
543núcleo de poliuretano
544placa de yeso
551perfil 80x40x2
552perfil U lateral 100-1000
553perfil U hembra 100-5000
554perfil U macho 100-5000
555omega 900
561caja de conexión
562caja de luz
563tubo corrugado
564tubo corrugado
571revestimiento de hormigón
572malla de sujeción, por ejemplo, metálica o plástica
573estructura PP-01
574poliuretano
575placa de yeso
581perfil U ventana 400
582perfil U ventana 1300
583perfil U exterior 6000
584perfil U exterior 3000
585 P-6000
586perfil 40x40x2 - 960
587perfil 40x40x2 - 3000
591 caja de conexión
592tubo corrugado

Claims

REIVIN DICACION ES
Método para fabricar paredes caracterizado porque las paredes se fabrican a medida de las necesidades y en la fábrica, con estructura reticular, vigas internas (4) y marcos internos (5) dentro de las mismas, todo dentro de un marco periférico (87, 99, 109, 112, 121, 242, 347, 364, 372) que se coloca dentro de un molde (173, 243) que resiste considerables presiones y dentro del cual se inyecta y se expande el poliuretano u otra sustancia similar, que se distingue por formar un núcleo de aislacion térmica que provee resistencia mecánica y aislacion térmica y acústica al mismo tiempo, poseyendo dentro del espacio contenido dentro del armazón que se colocó en el molde (173, 243) todos los servicios eléctricos, de aire acondicionado, agua, sanitarios en general, ductos y otros que pudieran ser requeridos, donde además hay una malla metálica, plástica, de fibra, sintética o de otro material, unida al poliuretano o al marco exterior (87, 99, 109, 112, 121, 242, 347, 364, 372) que delimita la pared, por una capa de poliurea o una membrana hidrofóbica o por grampas que unen a la malla ya sea al poliuretano o al marco de la pared donde sobre esa malla así sostenida se puede proyectar una cobertura exterior y/o interior de cemento, yeso, o cualquier otra sustancia proyectable por soplete o similar, o usarse paneles puestos a la medida de la pared para el lado exterior y/o para el interior, y donde los materiales de cobertura o paneles en el caso de no ser sopleteados en el exterior del molde (173, 243) pueden ser todos colocados en el interior del molde (173, 243), de donde la pared multicapa sale perfectamente terminada, y donde dentro de dicho molde (173, 243) ha sido inyectado, por medio de varios orificios estratégicamente hechos y que perforan tanto a la tapa del molde (173, 243) como a uno de los paneles situados dentro del mismo, el poliuretano, fraguando el mismo dentro del molde (173, 243) y formando una capa mecánicamente resistente, que provee además aislacion térmica y poder de unión entre las diversas capas y elementos internos, donde además, en el caso de ladrillos o similares en vez de uno o ambos paneles, los mismos son colocados primero en el fondo del molde (173, 243), y donde el mismo material poliuretano o similar, al expandirse a presión se filtra entre ellos y los une entre si y al conjunto de la pared multicapa sin que sea necesaria ninguna aplicación de cemento o pegamento adicional de ningún tipo, saliendo así la pared del molde (173, 243) ya terminada y con sus capas o paneles internos y externos, o en su defecto, en vez de paneles, cerámicas o ladrillos, donde la pared tiene una perfecta impermeabilización de las uniones de los diferentes paneles con poliurea o similar, lo cual adicionalmente también aporta a su fortaleza estructural, proveyendo así una pared liviana pero que a la vista y al tacto es indistinguible de una construcción tradicional, pero con un costo y tiempo de fabricación mucho menor y con significativa fortaleza estructural y con los servicios incluidos adentro, aislamiento acústico y térmico, y capaz de aceptar una infinita variedad de capas internas y externas, ya sea aplicadas dentro o fuera del molde (173, 243) en que se inyecta el poliuretano.
Método para fabricar paredes caracterizado porque la resistencia mecánica del elemento aislante es adicional a la provista por los otros componentes de la pared, conteniendo dentro del espacio definido por el armazóno marco que se coloca en el molde (173, 243) todos los servicios eléctricos, de aire acondicionado, agua, sanitarios en general, ductos y otros que pudieran ser requeridos.
El método de fabricación que se describe en las reivindicaciones 1 o 2, donde la malla de sujeción (168, 572), además de poder ser colocada por grampas, tornillos, etc., al armazón o marco de la pared, o pegada con poliurea o similar al núcleo de poliuretano puede tener una malla del lado de adentro, del lado de afuera, o de ambos.
El método de fabricación que se describe en cualquiera de las reivindicaciones 1-3, donde tanto las mallas de sujeción interior y/o exterior (168, 572) como los paneles o terminaciones internos y externos pueden ser aplicados a la pared después que la misma ha sido desmoldada.
El método de fabricación que se describe en una de las reivindicaciones 1-4, donde la capa exterior y/o la capa interior se compone de ladrillos de diversos diseños, piedras u otros similares también, incluidos los ladrillos estándar, que han sido aplicados dentro o fuera del molde (173, 243), siendo que cuando es dentro la misma presión del poliuretano expandiéndose se filtra por entre los ladrillos y provee la unión de los mismos entre sí y al resto de la pared, proveyendo así una pared multicapa de aislación térmica y acústica que aporta a la rigidez estructural del conjunto, donde una de esas capas, o ambas si se hace tanto del lado externo como del interno, es una pared del ladrillos estándar pero con una pared multicapa adosada o entre ambas capas de ladrillos y con la cual fue construida conjuntamente, brindando así una estructura prefabricada que es la conjunción de la estructura tradicional y la estructura liviana con capa termo/acústica moderna, y con el agregado de tener contenidos en su espesor a todos los servicios: eléctricos, sanitarios, ventilación, calefacción, etc.
Una pared fabricada por el método de una de las reivindicaciones 1-5, configurada para ser usada como techo, donde en el fondo del molde (173, 243) de fabricación se ha colocado una capa de tejas de cualquier diseño y material.
Una pared fabricada por el método de una de las reivindicaciones 1-5, configurada para ser usada como techo, donde en el fondo del molde (173, 243) de fabricación se ha colocado un panel de material impermeable, resistente a los rayos ultravioletas para evitar su degradación ante los rayos solares, y donde la unión o juntura impermeable entre paneles adyacentes es de poliurea o material similar, la cual también será específica para no degradarse con las radiaciones ultravioletas, y agregando dicha poliurea o similar fortaleza estructural adicional al techo por unir rígidamente los diferentes paneles.
Una pared fabricada por el método de una de las reivindicaciones 1-5, configurada para serusada como techo, donde en el fondo del molde (173, 243) de fabricación se ha colocado un panel de calentamiento solar el cual va conectado a las tuberías incluidas en el núcleo de poliuretano.
Una pared fabricada por el método de una de las reivindicaciones 1-5, configurada para ser usada como techo, donde en el molde (173, 243) se ha colocado un marco interior como para proveer una ventana para dejar pasar un ducto específico y a la medida, ya sea de ventilación, calefacción/refrigeración, o una chimenea, o cualquier otro conducto que sea útil, y donde la juntura entre dicho ducto y el o los paneles adyacentes está impermeabilizada por resina de poliurea o similar, la cual será específica para resistir las radiaciones ultravioletas solares.
Una pared prefabricada quese compone de afuera hacia adentro de:
a) panel exterior
b) malla de sujeción exterior
c) núcleo de poliuretano (81, 98, 108, 115, 344, 366, 371, 543) o similar dentro de un marco periférico y con marcos internos para puertas, ventas, etc., y los servicios dentro del núcleo de poliuretano o similar
d) malla de sujeción interior
e) panel interior
donde el mínimo imprescindible fabricado en la planta de producción es c), pudiendo dejarse así para terminaciones burdas como por ejemplo las industriales, y donde tanto la capa interior como muy especialmente la exterior puede ser una pared de ladrillos donde el elemento aglutinante es el mismo poliuretano que forma la capatérmico/acústica, y el cual en la misma acción de formar la capa térmico/acústica se ha filtrado entre los ladrillos, fraguándolos juntos y pegándolos así al núcleo.
Una pared fabricada en capas, caracterizada porque se compone solamente de dos láminas externas de resina rígida como poliurea o similar, o cualquier capa hidrofóbica ya sea plástica, sintética o similar, y una capa termo aislante de poliuretano (81, 98, 108, 115, 344, 366, 371, 543) o similar contenida entre las de resina rígida o dos capas hidrofóbicas similares, pudiendo esa capa de poliuretano contener o no los servicios, instalaciones, tuberías, etc.
Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, caracterizada porque la pared está rodeada y contenida por un marco periférico metálico o de otro material rígido, y dicha pared ha sido formada y fraguada en un molde (173, 243) formado por un armazón que comprende a un marco metálico o de otro material rígido que forma su periferia y al cual están adosadas las puertas del molde (173, 243), siendo que así el marco de la pared y el marco del molde (173, 243) forman un marco interno y un marco externo.
Una pared fabricadasegún el método que se describe en una de las reivindicaciones 1- 5,caracterizada porque comprende canalizaciones dentro del zócalo (9), o en su defecto por la parte superior de la pared, ya sea sobre el borde interno o sobre el borde externo, tal como se ilustra en la memoria descriptiva, o inclusive por dentro del techo.
Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, donde las uniones de las diversas canalizaciones que van por el techo y/o por las paredes son resueltas ya sea en forma interna o en forma externa a la pared y/o techo, o por ductos (52) o espacios formados dentro de la pared, o dentro del techo, o de ambos, y por medio de roscados, soldaduras, microsoldaduras, microfusión, ensamble a presión, o cualquier otro.
Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, que adicionalmente, cuando se desea obtener una construcción con el techo (1) terminando en ángulo recto con la pared (2), sin la presencia de un alero o de un pretil, se realiza la unión de las canalizacionesdel techo con las canalizaciones en la pared mediante una cavidad o canalización agrandada en el extremo del techo justo donde el mismo se une con la pared, y un entrante similar sobre el extremo superior de la canalización de la pared vertical, tal que la canalización agrandada del techo quede justamente por encima de la canalización agrandada de la pared, formando así una especie de ducto, y donde una moldura desmontable en ángulo cierra al ducto así formado por ambos ensanchamientos desde el lado interior del ángulo pared-techo, estando esa moldura perfectamente impermeabilizada y aplicada ya sea sobre el panel del lado interior, sobre el núcleo de poliuretano, sobre el marco delimitante del techo y el de la pared, o sobre cualquier otra parte de los mismos, asegurando una total estanqueidad pero a su vez con acceso al ducto si fuese necesario.
Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, que adicionalmente, cuando se desea obtener una construcción con la pared (2) sobresaliendo sobre el techo (1), es decir un pretil, se realiza la unión de las canalizaciones del techo con las canalizaciones en la pared mediante una cavidad o canalización agrandada en el extremo del techo justo donde el mismo se une con la pared, y un ensanchamiento similar en el costado interno de la canalización de la pared vertical, tal que la canalización agrandada del techo quede justamente al lado de la canalización agrandada de la pared, formando así una especie de ducto, y donde una moldura desmontable y en ángulo, cierra al ducto así formado por ambos ensanchamientos desde el lado interior del ángulo pared-techo, estando esa moldura perfectamente impermeabilizada y aplicada ya sea sobre el panel del lado interior, sobre el núcleo de poliuretano, sobre el marco delimitante del techo o el de la pared, o sobre cualquier otra parte de los mismos, asegurando una total estanqueidad pero a su vez con acceso al ducto si fuese necesario.
17) La pared de la reivindicación 16, que tiene la unión de las canalizaciones realizada por el ángulo formado por la parte de arriba del techo (1) y la pared (2).
18) Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, que adicionalmente, cuando se desea obtener una construcción con el techo (1) sobresaliendo por fuera de la pared (2) se realiza la unión de las canalizaciones del techo con las canalizaciones en la pared mediante una cavidad o canalización agrandada en el techo justo donde el mismo se une con la pared, y un entrante similar sobre el extremo superior de la canalización de la pared vertical, tal que la canalización agrandada del techo quede justamente por encima de la canalización agrandada de la pared, formando así una especie de ducto, y donde una moldura desmontable en ángulo cierra al ducto así formado por ambos ensanchamientos desde el lado interior del ángulo pared-techo, estando esa moldura perfectamente impermeabilizada y aplicada ya sea sobre el panel del lado interior, sobre el núcleo de poliuretano, sobre el marco delimitante del techo y el de la pared, o sobre cualquier otra parte de los mismos, asegurando una total estanqueidad pero a su vez con acceso al ducto si fuese necesario.
19) Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, que adicionalmente,para realizar la conexión de las canalizaciones entre techo (1) y pared (2) externamente, los paneles de techo y pared pueden fijarse de tal manera que el apoyo del techo sobre la pared no abarque a la totalidad del espesor de la misma, sino solamente hasta donde aparece la canalización de la pared vertical, y de tal manera que tanto la canalización de la pared como la del techo no necesitan ensanchamientos, pues el espacio queda delimitado externamente por una moldura en ángulo, desmontable pero perfectamente impermeabilizada, que cierra y delimita el ducto así formado, y de esa manera se genera un espacio por el cual realizar las conexiones, así como el transporte de cables eléctricos o conductos similares; este espacio o ducto es luego cubierto por una moldura de chapa, polímerou otro material idóneo.
Una pared fabricada según el método que se describe en una de las reivindicaciones 1-5, que adicionalmente, cuando se desea obtener una construcción con una rigidez y resistencia adicional se agrega un punto de soldadura a distancia optativa entre los marcos exteriores(87, 99, 109, 112, 121, 242, 347, 364, 372) metálicos de paneles adyacentes, y/o de paredes y los perfiles en "U" o en "T", o en otras formas, cuando los mismos existen, que anclan la pared a la plataforma de cemento que es la base de la construcción.
PCT/ES2016/070689 2015-09-30 2016-09-29 Método de fabricación de panel de pared o techo con instalaciones incluidas, paredes o techos prefabricados por dicho método y uniones entre paneles pared y techo WO2017055669A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2016329634A AU2016329634A1 (en) 2015-09-30 2016-09-29 Method for producing a wall or roof panel having installations included, walls or roofs pre-fabricated using said method and joints between the wall and roof panels
US15/765,215 US20180266107A1 (en) 2015-09-30 2016-09-29 Method for producing a wall or roof module having installations included and walls or roofs prefabricated using said method
EP16850428.0A EP3358096A4 (en) 2015-09-30 2016-09-29 METHOD FOR MANUFACTURING WALL OR CEILING PANEL IN WHICH PREFABRICATED FACILITIES, WALLS OR CEILINGS ARE INTEGRATED BY SAID METHOD AND CONNECTION BETWEEN WALL AND CEILING PANELS
BR112018006538-2A BR112018006538A2 (pt) 2015-09-30 2016-09-29 método de fabricação de paredes, módulo de teto pré-fabricado e parede pré-fabricada e personalizada
CA3010888A CA3010888A1 (en) 2015-09-30 2016-09-29 Method for producing a wall or roof module having installations included and walls or roofs prefabricated using said method
MX2018003829A MX2018003829A (es) 2015-09-30 2016-09-29 Pared prefabricada autoportante y liviana, con servicios electricos y sanitarios incluidos, impermeabilizada y de aspecto similar a la construccion tradicional.
ZA2018/02804A ZA201802804B (en) 2015-09-30 2018-04-26 Method for producing a wall or roof panel having installations included, walls or roofs pre-fabricated using said method and joints between the wall and roof panels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UY36338 2015-09-30
UY0001036338A UY36338A (es) 2015-09-30 2015-09-30 Pared prefabricada autoportante con servicios electricos y sanitarios incluidos, impermeabilización en poliurea y liviana, pero simil a la construcción tradicional a la vista y al tacto

Publications (1)

Publication Number Publication Date
WO2017055669A1 true WO2017055669A1 (es) 2017-04-06

Family

ID=58422698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070689 WO2017055669A1 (es) 2015-09-30 2016-09-29 Método de fabricación de panel de pared o techo con instalaciones incluidas, paredes o techos prefabricados por dicho método y uniones entre paneles pared y techo

Country Status (11)

Country Link
US (1) US20180266107A1 (es)
EP (1) EP3358096A4 (es)
AR (1) AR106078A1 (es)
AU (1) AU2016329634A1 (es)
BR (1) BR112018006538A2 (es)
CA (1) CA3010888A1 (es)
CL (1) CL2018000801A1 (es)
MX (1) MX2018003829A (es)
UY (1) UY36338A (es)
WO (1) WO2017055669A1 (es)
ZA (1) ZA201802804B (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573559A (zh) * 2022-10-09 2023-01-06 中国十九冶集团有限公司 一种用于预制凸窗的连梁模板连接件装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR202018076317U2 (pt) * 2018-12-17 2020-07-07 Marcelo Brasil Da Silva módulos pré-fabricados com painéis metálicos tipo sanduíche com isolante termo acústico em poliuretano e instalações elétricas, hidráulicas e esgoto incorporados
US11649615B2 (en) * 2019-07-09 2023-05-16 Lyons House SPC Lifeline system for compact house
RU199861U1 (ru) * 2020-07-03 2020-09-23 Екатерина Петровна Шароварова Многослойная стеновая панель
RU204769U1 (ru) * 2021-01-19 2021-06-09 Общество с ограниченной ответственностью "РУСАПС" Многослойная несущая панель для образования вертикальных несущих элементов при сборке быстровозводимых зданий
US20230144278A1 (en) * 2021-11-11 2023-05-11 RJ Building Materials, LLC Polyethylene terephthalate (pet) particulate composition for structural construction components
ES1285250Y (es) * 2021-11-22 2022-04-20 Baylina Bacardit Mateo Manuel Domingo Conjunto de elementos perfeccionados para edificacion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707165A (en) * 1970-08-10 1972-12-26 Joel S Stahl Plastic plumbing wall
US4236361A (en) * 1978-06-12 1980-12-02 Joseph Boden Prefabricated building components
US4784821A (en) * 1986-06-30 1988-11-15 Dory Leopold Method for manufacturing a building block imitating a pile of dry stones
US4813193A (en) * 1984-08-13 1989-03-21 Altizer Wayne D Modular building panel
US5729936A (en) * 1995-10-03 1998-03-24 Maxwell; James F. Prefab fiber building construction
US20050247013A1 (en) * 2004-05-04 2005-11-10 Polycrete Systems, Ltd Reinforced polymer panel and method for building construction
US20060265985A1 (en) * 2005-05-25 2006-11-30 Nichols Michael P Insulated wall panel for building construction and method and apparatus for manufacture thereof

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3239982A (en) * 1962-04-12 1966-03-15 Joseph A Nicosia Reinforced synthetic resin structural panel
FR1452857A (fr) * 1965-08-04 1966-04-15 Cloison préfabriquée à canalisations incorporées
US3885008A (en) * 1969-11-26 1975-05-20 Robert E Martin Method for producing prefabricated wall section with molded panels
US3868801A (en) * 1970-03-18 1975-03-04 Gershen Weiner Building panel
US3646715A (en) * 1970-04-06 1972-03-07 Du Pont Canada Prefabricated building panel
DE2325092A1 (de) * 1973-05-17 1975-11-20 Automated Construction Ind Inc Plattenfoermiges bauelement, insbesondere fuer gebaeude, sowie verfahren zu seiner herstellung
US5148645A (en) * 1984-02-27 1992-09-22 Georgia-Pacific Corporation Use of fibrous mat-faced gypsum board in shaft wall assemblies and improved fire resistant board
CH664924A5 (de) * 1984-12-04 1988-04-15 Stella Werke Ag Verfahren zur herstellung von duroplastmantelplatten und vorrichtung zur durchfuehrung des verfahrens.
US4856244A (en) * 1987-06-01 1989-08-15 Clapp Guy C Tilt-wall concrete panel and method of fabricating buildings therewith
US4968465A (en) * 1989-09-29 1990-11-06 Davidson Textron Inc. Method of containing foam during molding of foam-filled products
US5085568A (en) * 1991-02-25 1992-02-04 Davidson Textron Inc. Pour head seal assembly for a mold for forming composite articles
EP0921924B1 (en) * 1996-08-14 2002-02-06 Cellbond Composites Limited Sacrificial energy absorbing structure
US6202375B1 (en) * 1997-10-28 2001-03-20 Rolf Otto Kleinschmidt Method for concrete building system using composite panels with highly insulative plastic connector
CA2249823A1 (en) * 1998-10-08 2000-04-08 Meho Karalic Building components and methods of making same
US20020023401A1 (en) * 2000-08-23 2002-02-28 Budge Paul W. Structural thermal framing and panel system for assembling finished or unfinished walls with multiple panel combinations for poured and nonpoured walls
US7100336B2 (en) * 2002-03-06 2006-09-05 Oldcastle Precast, Inc. Concrete building panel with a low density core and carbon fiber and steel reinforcement
CA2469986A1 (en) * 2003-06-06 2004-12-06 Hagen, Hans T., Iii Insulated stud panel and method of making such
US7168216B2 (en) * 2003-06-06 2007-01-30 Hans T. Hagen, Jr. Insulated stud panel and method of making such
US20090216503A1 (en) * 2005-08-11 2009-08-27 Johanna Maxine Ossmann Method and system for converting a traditional architecual plan for a structure into a panelized system plan for the structure
US20090178354A1 (en) * 2005-08-11 2009-07-16 Solomon Fred L Method of manufacturing poly-bonded framed panels
US20070163197A1 (en) * 2005-12-27 2007-07-19 William Payne Method and system for constructing pre-fabricated building
US8307608B2 (en) * 2006-05-18 2012-11-13 Harig Christopher W Modular panel wall assemblies
US20080282632A1 (en) * 2007-05-15 2008-11-20 Sleeman William R Composite building panel
US20080313985A1 (en) * 2007-06-25 2008-12-25 Duncan Richard S Method for increasing wind uplift resistance of wood-framed roofs using closed-cell spray polyurethane foam
US7681368B1 (en) * 2007-08-21 2010-03-23 Edward Rubio Concrete composite wall panel
ATE541318T1 (de) * 2007-11-14 2012-01-15 Luxin Green Planet Ag Dach- oder fassadenplatte mit solarpanel
US8353144B2 (en) * 2009-06-26 2013-01-15 Joel W. Bolin Prefabricated composite wall panel and method and apparatus for manufacture and installation thereof
US8696966B2 (en) * 2011-10-27 2014-04-15 Huntsman International Llc Method of fabricating a wall structure
US8877329B2 (en) * 2012-09-25 2014-11-04 Romeo Ilarian Ciuperca High performance, highly energy efficient precast composite insulated concrete panels
US8844227B1 (en) * 2013-03-15 2014-09-30 Romeo Ilarian Ciuperca High performance, reinforced insulated precast concrete and tilt-up concrete structures and methods of making same
US20150135634A1 (en) * 2013-11-15 2015-05-21 Tor Hoie Composite Building Components Building System
US8966845B1 (en) * 2014-03-28 2015-03-03 Romeo Ilarian Ciuperca Insulated reinforced foam sheathing, reinforced vapor permeable air barrier foam panel and method of making and using same
US10294668B2 (en) * 2017-01-04 2019-05-21 Kenneth R. Kreizinger Stiffened foam backed composite framed structure
US10227779B2 (en) * 2016-10-06 2019-03-12 Covestro Llc Methods for making pre-fabricated insulated wall structures and apparatus for use in such methods
US10167630B2 (en) * 2016-10-24 2019-01-01 Covestro Llc Foam wall structures and methods for the manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3707165A (en) * 1970-08-10 1972-12-26 Joel S Stahl Plastic plumbing wall
US4236361A (en) * 1978-06-12 1980-12-02 Joseph Boden Prefabricated building components
US4813193A (en) * 1984-08-13 1989-03-21 Altizer Wayne D Modular building panel
US4784821A (en) * 1986-06-30 1988-11-15 Dory Leopold Method for manufacturing a building block imitating a pile of dry stones
US5729936A (en) * 1995-10-03 1998-03-24 Maxwell; James F. Prefab fiber building construction
US20050247013A1 (en) * 2004-05-04 2005-11-10 Polycrete Systems, Ltd Reinforced polymer panel and method for building construction
US20060265985A1 (en) * 2005-05-25 2006-11-30 Nichols Michael P Insulated wall panel for building construction and method and apparatus for manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358096A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115573559A (zh) * 2022-10-09 2023-01-06 中国十九冶集团有限公司 一种用于预制凸窗的连梁模板连接件装置
CN115573559B (zh) * 2022-10-09 2024-05-17 中国十九冶集团有限公司 一种用于预制凸窗的连梁模板连接件装置

Also Published As

Publication number Publication date
MX2018003829A (es) 2018-09-11
AR106078A1 (es) 2017-12-13
EP3358096A4 (en) 2020-01-29
EP3358096A1 (en) 2018-08-08
AU2016329634A1 (en) 2018-04-26
CL2018000801A1 (es) 2018-06-22
UY36338A (es) 2017-04-28
ZA201802804B (en) 2019-02-27
BR112018006538A2 (pt) 2018-10-16
CA3010888A1 (en) 2017-04-06
US20180266107A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2017055669A1 (es) Método de fabricación de panel de pared o techo con instalaciones incluidas, paredes o techos prefabricados por dicho método y uniones entre paneles pared y techo
US10745905B2 (en) Systems, methods, apparatus, and compositions for building materials and construction
ES2258003T3 (es) Construcciones y formas de muros aislados, y metodos para fabricarlos.
US9353523B2 (en) Insulated wall panel
US11885124B2 (en) Prefabricated construction wall assembly
EP3347544B1 (en) Exterior polymer-based brick building material
EP1279776B1 (en) Building using external facing material for construction
US20200340255A1 (en) Flooring system, a panel and methods of use thereof
KR20120000702A (ko) 경량 성형재를 구비한 조립식 영구거푸집 유닛 및 이를 이용한 벽체 시공방법
BE1027628B1 (nl) Constructiepaneel
KR20130051403A (ko) 조립식 단위벽체틀 및 이를 이용한 벽체 시공방법
KR200396362Y1 (ko) 욕실이나 발코니의 에어덕트 및 파이프덕트 벽체구조
KR102264711B1 (ko) 모듈형 화장실 및 이를 이용하여 건축물을 시공하는 방법
ES2336528B2 (es) Pared arquitectonica para casas prefabricadas.
CN107700750A (zh) 一种用于建筑的模块化板材
WO2012105821A1 (es) Sistema, de construcción de edificaciones sin cemento utilizando paneles tipo sip
KR100730239B1 (ko) 욕실이나 발코니의 에어덕트 및 파이프덕트 벽체구조 및 그시공방법
GB2203477A (en) Concrete building construction
GB2063954A (en) Lathing of a building framework
ES1275187U (es) Panel de imitación en poliestireno para revestimiento superficial de paramentos
JP2003313946A (ja) 鉄骨造り建築工法
TR2023016884U5 (tr) Formlu prefabri̇k yapi
KR20150042142A (ko) 조립식 방수유닛구조
KR101479031B1 (ko) 조립식 방수유닛구조
BR112019022314B1 (pt) Bloco de encaixe para construção

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003829

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3010888

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15765215

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018006538

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016329634

Country of ref document: AU

Date of ref document: 20160929

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016850428

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018006538

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180329