WO2017054461A1 - 一种变间距叉指型相邻电容传感器 - Google Patents

一种变间距叉指型相邻电容传感器 Download PDF

Info

Publication number
WO2017054461A1
WO2017054461A1 PCT/CN2016/082195 CN2016082195W WO2017054461A1 WO 2017054461 A1 WO2017054461 A1 WO 2017054461A1 CN 2016082195 W CN2016082195 W CN 2016082195W WO 2017054461 A1 WO2017054461 A1 WO 2017054461A1
Authority
WO
WIPO (PCT)
Prior art keywords
interdigital
sensor
substrate
interdigitated
capacitive sensor
Prior art date
Application number
PCT/CN2016/082195
Other languages
English (en)
French (fr)
Inventor
焦敬品
李亮
李楠
何存富
吴斌
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US15/520,054 priority Critical patent/US10027322B2/en
Publication of WO2017054461A1 publication Critical patent/WO2017054461A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/48Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds
    • B60R19/483Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects combined with, or convertible into, other devices or objects, e.g. bumpers combined with road brushes, bumpers convertible into beds with obstacle sensors of electric or electronic type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960765Details of shielding arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960775Emitter-receiver or "fringe" type detection, i.e. one or more field emitting electrodes and corresponding one or more receiving electrodes

Definitions

  • the invention relates to a novel adjacent capacitive sensor, in particular to a variable pitch interdigital proximity capacitive sensor, which is used for detecting the dielectric properties of a variable thickness polymer material, and belongs to the field of non-destructive testing.
  • Polymer materials are widely used in various fields of industry because of their light weight, strong plasticity, high strength and corrosion resistance, such as municipal water supply pipe network, basic support components of various instrument panels/discs, and external insulation materials for power systems. . In the long-term use process, these polymer materials are susceptible to aging failure due to the combined effects of external factors such as heat, light, oxygen and water.
  • the outer insulation portion is made of a high-temperature vulcanized silicone rubber such as a typical polymer material.
  • the outer-insulated shed structure is in the form of a bevel having a certain inclination angle, and the thickness thereof is gradually thinned from the vicinity of the mandrel to the edge of the shed.
  • the high temperature vulcanized silicone rubber material will irreversibly age, resulting in electrical insulation of the insulator insulation. The performance is degraded, and even seriously threatens the safe and stable operation of the high-voltage power grid.
  • the adjacent capacitive sensor is a new sensing technology based on the capacitive edge effect. It uses the capacitance value to characterize the dielectric properties of the low conductivity material, thus achieving the performance detection and evaluation of the dielectric structure.
  • adjacent capacitive sensors are sensitive, non-invasive, and can be used in space-constrained applications. They are now widely used in the measurement of various parameters in industrial production, such as material properties and damage. , thickness, water content, etc.
  • the adjacent capacitive sensor is mainly composed of an excitation electrode, a sensing electrode, a shielding layer and a substrate. Studies have shown that the structural form and geometry of the excitation and sensing electrodes have a great influence on the signal strength, penetration depth, measurement sensitivity and signal-to-noise ratio of the capacitive sensor. To this end, domestic and foreign scholars have done a lot of research work around the structural design and parameter optimization of adjacent capacitive sensors. Li et al. [Design principles for multichannel fringing electric field sensors [J]. Sensors Journal, IEEE, 2006, 6(2): 434-440] conducted numerical simulation studies on the performance of multi-channel adjacent sensors of various structural forms.
  • the research work on the structural design and parameter optimization of the existing interdigital proximity capacitive sensor is based on the structure of equal thickness to be tested.
  • the designed sensor is an equally spaced interdigital structure.
  • the optimized design of the interdigitated capacitive sensor for variable thickness structures is rarely reported.
  • the object of the present invention is to design a variable pitch interdigital proximity capacitive sensor for detecting the dielectric properties of a variable thickness polymer material.
  • the width and the pitch of each of the interdigital unit constituting the interdigital finger electrode are independently optimized, that is, under the condition of ensuring the penetration depth, the electrode width is made as large as possible to obtain the maximum Signal strength and detection sensitivity.
  • the present invention adopts the following technical solutions:
  • a variable spacing interdigitated adjacent capacitive sensor the structure of which is shown in FIG. 1.
  • the sensor comprises an excitation electrode 1, a sensing electrode 2, a substrate 3, a shielding layer 4, a lead joint 5, and an excitation electrode 1 and an induction electrode 2
  • the shield layer 4 is adhered to the back surface of the substrate 3; the lead joints 5 are soldered on both sides of the back surface of the substrate 3.
  • Each of the excitation electrode 1 and the sensing electrode 2 includes a plurality of interdigital units, and the interdigitated units are alternately arranged in sequence, and the width of each of the interdigital units and the spacing between adjacent two interdigitated units depend on the thickness of the structure to be tested;
  • the substrate 3 is an insulating material and has a certain strength and rigidity to serve as a supporting electrode and a shielding layer; the substrate 3 is provided with a through hole for facilitating directing of the excitation electrode 1 and the sensing electrode 2 to the back surface of the substrate;
  • the shield layer 4 is adhered to the back surface of the substrate 3.
  • the shield layer 4 is left with a U-shaped slit; the position of the shield layer 4 is opposite to the excitation electrode 1 and the sensing electrode 2.
  • the lead tab 5 is soldered to the back surface of the substrate 3, and the intermediate pin of the lead tab 5 passes through the base.
  • the lead holes reserved on the bottom are respectively connected to the excitation electrode 1 and the sensing electrode 2, and the outer leads of the lead bonding 5 are connected to the shield layer 4.
  • variable pitch interdigital proximity capacitive sensor has the following specific design steps for the width and spacing of the interdigital units:
  • the key parameters of the interdigital sensor are defined, including: a single interdigital unit width w, a length l, an adjacent interdigital unit spacing g, and a plate coverage ratio ⁇ .
  • the parameters are shown in FIG. 3 .
  • Step 1 Make an adjacent capacitive sensor composed of a single pair of interdigital units, the basic unit length is C, and the plate coverage is ⁇ , as shown in FIG. 4 .
  • the adjacent capacitive sensor composed of a single pair of interdigital units mainly comprises: an excitation electrode, a sensing electrode, a shielding layer and a substrate, etc., wherein the excitation electrode and the sensing electrode are intended to be corresponding to the interdigital unit in the interdigital sensor.
  • Step 2 Measure the capacitance values of the samples to be tested with different thicknesses.
  • the samples to be tested of different thicknesses are placed on the adjacent capacitive sensors fabricated in the step (1), wherein the samples to be tested are placed close to the sensor electrodes, and the capacitance values of the plurality of thicknesses that do not wait for the test samples are measured and recorded.
  • Step 3 Calculate the rate of change of the capacitance value of the sample to be tested with respect to the stable value.
  • Test piece thickness be the capacitance value C h when h, the relative stability values C h C h ⁇ ⁇ rate of change Difference%, namely:
  • Step 4 Calculate the penetration depth of the adjacent capacitive sensor composed of the single pair of interdigital units. On the basis of the step (3), taking the Difference% as 10% to draw the horizontal line, and the thickness value h of the sample to be tested corresponding to the intersection of the capacitance values of the samples to be tested with different thicknesses with respect to the stable value is The effective penetration depth of the sensor.
  • Step 5 Repeat steps (1) to (4) to measure the effective penetration depth h of the corresponding sensor under different cell lengths C and different plate coverage ⁇ .
  • Step 6 Determine the width and spacing of each of the interdigital units, and combine to obtain a variable pitch interdigitated adjacent capacitive sensor. According to the correspondence between the effective penetration depth h obtained in step (5) and the length of each unit and the plate coverage, combined with the geometric size characteristics of the gradient thickness test piece to be tested, the width and spacing of each interdigitated unit are selected. Different types of variable pitch interdigitated capacitive sensor combinations are obtained, the structure of which is shown in FIG.
  • Step 7 Optimized selection of variable pitch interdigital proximity capacitor sensors. The sensor performance of different combinations obtained in step (6) is tested, and the electric field line distribution and signal intensity of the sensor are compared, and the optimal variable pitch interdigitated adjacent capacitive sensor is selected.
  • the invention has the following advantages: 1) under the same detection area condition, the effective electrode area of the variable pitch interdigital proximity capacitive sensor is increased, the signal intensity is improved, and the electric field line distribution of the sensor is more in line with the gradient thickness test piece to be tested. Structural characteristics; 2) By measuring the capacitance value of the polymer material, the dielectric properties of the material are directly characterized, and the electrical properties of the material are more intuitively measured. At the same time, the method is highly sensitive and non-invasive. 3) No destructive testing of the material is required, real non-destructive testing is realized, and continuous online monitoring can be realized.
  • FIG. 1 is a schematic structural view of a variable pitch interdigital proximity capacitor sensor.
  • Figure 2 is a connection diagram of the experimental system.
  • Fig. 3 is a schematic diagram of key parameters of a variable pitch interdigital proximity capacitor sensor.
  • Figure 4 is a schematic cross-sectional view of an adjacent capacitive sensor formed by a single pair of interdigitated units.
  • Figure 5 shows the plate coverage as a function of the thickness of the part to be tested when the cell length is 0.5.
  • Figure 6 shows the plate coverage rate as a function of the change in capacitance value relative to the steady value at a different cell length of 0.5.
  • Fig. 7 is a penetration depth curve of an adjacent capacitive sensor composed of a single pair of interdigital units.
  • Figure 8 is a schematic view showing the dimensions of the gradient thickness test piece to be tested.
  • Fig. 9 is a schematic view showing the relative position of the variable pitch interdigital sensor and the gradient thickness to be tested.
  • Fig. 10a is a schematic view showing the distribution of the electric field lines of the equally spaced interdigital sensor in the workpiece to be tested.
  • Fig. 10b shows the electric field line distribution of the 0.5 pitch pitch interdigital sensor.
  • Fig. 10c shows the electric field line distribution of the 0.6 pitch pitch interdigital sensor.
  • Fig. 10d shows the electric field line distribution of the 0.7 pitch pitch interdigital sensor.
  • Figure 11 is a comparison of the signal strength of the variable pitch interdigital sensor and the equally spaced sensor.
  • excitation electrode 1, excitation electrode, 2, induction electrode, 3, substrate, 4, shielding layer, 5, lead connector, 6, gradient thickness test piece, 7, impedance analyzer, 8, variable pitch interdigitated adjacent capacitor sensor.
  • variable pitch interdigital proximity capacitive sensor The design of a variable pitch interdigital proximity capacitive sensor will be further described below with reference to FIGS. 1 to 11.
  • variable-pitch interdigital proximity capacitive sensor was designed, which was used to evaluate the dielectric properties of the thickness-graded structure.
  • a variable pitch interdigital proximity capacitive sensor comprising an excitation electrode 1 , an induction electrode 2 , a substrate 3 , a shielding layer 4 , and a lead joint 5 ; the substrate 3 is divided into a front surface and a back surface, and an excitation electrode 1 and the sensing electrode 2 are attached to the front surface of the substrate 3, the shielding layer 4 is attached to the back surface of the substrate 3, and the lead bonding 5 is soldered to the back surface of the substrate 3.
  • the excitation electrode 1 and the sensing electrode 2 are made of a high-conductivity copper foil of 0.1 mm thick, and the widths of the excitation electrode 1 and the sensing electrode 2 are both 40 mm and the total length is 38 mm; the excitation electrode 1 and the sensing electrode 2 each include three The interdigital unit, the excitation interdigital unit and the sensing interdigital unit are alternately arranged in sequence;
  • the substrate 3 is made of a plexiglass plate, and has a length, a width and a height of 60 mm, 50 mm, and 2.5 mm, respectively. A distance of 2 mm is left at a position of 10 mm from the left end surface and the right end surface, and a copper having a width of 2 mm is selected.
  • the foil is used as a lead wire, and the excitation electrode 1 and the sensing electrode 2 are led to the back surface of the substrate through the wire to facilitate connection with the lead wire connector 5;
  • the shielding layer 4 is adhered to the back surface of the substrate 3.
  • the shielding layer is made of a high-conductivity copper foil of 0.1 mm thick, the shielding layer has a length of 60 mm and a width of 50 mm, and the width of the U-shaped slit on the shielding layer is 4 mm.
  • the length is 30 mm, and the position of the shielding layer is opposite to the excitation electrode 1 and the sensing electrode 2.
  • the lead tab 5 is soldered to the back surface of the substrate 3. As shown in FIG. 2, the middle pins of the lead tab 5 are respectively connected to the leads of the excitation electrode 1 and the sensing electrode 2, and the outer leads of the lead tab 5 are connected to the shield layer 4. .
  • variable pitch interdigital finger refers to an adjacent capacitive sensor, and the specific design steps are as follows:
  • Step 2 Measure the capacitance values of the samples to be tested with different thicknesses.
  • a high temperature vulcanized silicone rubber having a thickness of 1 mm was placed over the adjacent capacitive sensor fabricated in the first step (1), and the capacitance value measured at this time was recorded.
  • a silicone rubber sheet having a thickness of 1 mm was laminated layer by layer, and the capacitance value measured after each increase of 1 mm thickness was recorded, and the capacitance value as a function of the thickness of the silicone rubber was obtained as shown in FIG. 5. It can be seen from Fig. 5 that when the thickness of the silicone rubber is 14 mm, the measured capacitance value has tended to be stable.
  • Step 3 Calculate the rate of change of the capacitance value of the sample to be tested with respect to the stable value.
  • the capacitance values of the different silicone rubber thicknesses obtained in the step (2) are calculated according to the formula (1) to obtain the change rates of the capacitance values of the different samples to be tested with respect to the stable value C h ⁇ ⁇ as shown in FIG. 6 .
  • Step 4 Calculate the penetration depth of the adjacent capacitive sensor composed of the single pair of interdigital units. On the basis of step (3), draw a horizontal line with a Difference% of 10%, as shown by the dotted line in FIG. The h value corresponding to the intersection of the dotted line and the capacitance value of the different samples to be tested with respect to the change rate curve of the stable value C h ⁇ ⁇ is 6.03 mm, which is the sensor when the unit length C is 10 mm and the plate coverage is 0.5. Effective penetration depth.
  • Step 5 Repeat steps (1) to (4), and make the unit length C 4mm ⁇ 5mm ⁇ 6mm ⁇ 7mm ⁇ 8mm ⁇ 9mm ⁇ 10mm, and the plate coverage ratio is ⁇ with the range of 0.1 to 0.9.
  • Capacitive sensor measure and calculate the effective penetration depth of the sensor under different parameter combinations, and draw it as shown in Figure 7.
  • Step 6 Determine the width and spacing of each of the interdigital units, and combine to obtain a variable pitch interdigitated adjacent capacitive sensor. Analysis of the geometrical dimensions of the test piece to be tested is shown in Fig. 8. As can be seen from the figure, the thickest part of the test piece is 6.27mm, the thickness of the thinnest part is 2mm, and the angle between the inclined surface and the horizontal direction is about It is 5° and the length in the horizontal direction is 46mm.
  • the first pair of interdigitated units are arranged from a position 5 mm from the left end of the gradient thickness test piece to be tested, where the maximum thickness of the test piece to be tested is 5.89 mm, the effective penetration depth h obtained according to step (5) and the length and the pole of each unit.
  • Step 7 Optimized selection of variable pitch interdigital proximity capacitor sensors.
  • Figure 10a-10d shows the electric field line distribution of different types of sensors. The comparison shows that the electric field line distribution of the variable-pitch interdigital proximity sensor is superior to the traditional equidistant interdigital structure for the gradual structure.
  • an experimental system is constructed, which comprises a gradient thickness test piece 6, an impedance analyzer 7, a variable pitch interdigital proximity capacitor sensor 8, and an impedance analyzer 7 connected to the variable pitch interdigital proximity capacitive sensor 8 through The impedance of the sensor with three variable pitch combinations measured by the impedance analyzer 7 is shown in Fig. 11.
  • the combination 1 has a plate coverage of 0.5
  • the combination 2 has a plate coverage of 0.6
  • the combination 3 has a plate coverage. 0.7. Comparing the three combinations, when the plate coverage is 0.7, the signal intensity is 11.49pF maximum, which is 3.7 times higher than the signal strength of the pitch interdigital structure of 3.08pF. Finally, the preferred sensor parameters are shown in Table 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种变间距叉指型相邻电容传感器(8),用于变厚度高分子材料介电性能的检测,属于无损检测领域。该传感器主要由激励电极(1)、感应电极(2)、基底(3)、屏蔽层(4)和引线接头(5)组成。激励电极(1)和感应电极(2)均包含多个叉指单元,根据待测结构厚度变化规律,对组成叉指型相邻电容传感器电极的每个叉指单元的宽度和间距进行独立的优化设计,即在保证穿透深度的条件下,使得电极宽度尽量大,以获得最大的信号强度和检测灵敏度。与传统等间距叉指型相邻电容传感器相比,变间距叉指型相邻电容传感器(8)的有效电极面积增大,提高了信号强度和检测灵敏度。

Description

一种变间距叉指型相邻电容传感器 技术领域
本发明涉及一种新型相邻电容传感器,特别是一种变间距叉指型相邻电容传感器,用于变厚度高分子材料介电性能的检测,属于无损检测领域。
背景技术
高分子材料以其重量轻、可塑性强、强度高、耐腐蚀等优点,在工业各领域得到广泛应用,如市政供水管网、各类仪表板/盘的基础支撑部件、电力***外绝缘材料等。这些高分子材料在长期使用过程中,受热、光、氧、水等外界因素的综合作用,容易产生老化失效。以电力***的复合绝缘子为例,其外绝缘部分由高温硫化硅橡胶这种典型高分子材料制成。为保证绝缘子的自清污能力,外绝缘的伞裙结构为具有一定倾角的斜面形式,其厚度从靠近芯棒处至伞裙边缘逐渐减薄。在使用过程中,伞裙结构在高电压冲击和光照、雨水、盐雾、工业污染、臭氧、紫外线等环境因素综合作用下,高温硫化硅橡胶材料会发生不可逆的老化,导致绝缘子外绝缘的电气性能下降,甚至严重威胁高压电网的安全稳定运行。
现有的高分子材料老化损伤检测方法,如目测法、拉伸试验法、红外光谱分析法等,通常依据材料外观、力学性能和分子结构对其使用性能进行评估,难以直接对材料本身介电性能的变化进行评价。相邻电容传感器是一种基于电容边缘效应的新型传感技术,它利用电容值来表征低电导率材料的介电性能变化,从而实现介电结构的性能检测及评价。与传统的平行板电容器相比,相邻电容传感器具有灵敏度高、非侵入、可应用于空间受限场合检测等特点,现已广泛用于工业生产中多种参数的测量,如材料特性、损伤、厚度、含水量等。
相邻电容传感器主要由激励电极、感应电极、屏蔽层和基底等组成。研究表明,激励和感应电极的结构形式和几何尺寸对电容传感器的信号强度、穿透深度、测量灵敏度和信噪比等有很大影响。为此,围绕相邻电容传感器的结构设计及参数优化问题国内外学者做了大量的研究工作。Li等[Design principles for multichannel fringing electric field sensors[J].Sensors Journal,IEEE,2006,6(2):434-440]对多种结构形式的多通道相邻传感器的性能进行了数值仿真研究。结果表明,叉指型相邻电容传感器的性能指标,如信号强度、灵敏度、线性范围等, 明显优于正方型、迷宫型和螺旋型等结构形式的电容传感器。Kim等[Capacitive humidity sensors based on a newly designed interdigitated electrode structure[J].Microsystem technologies,2012,18(1):31-35]设计了一种电极厚度渐变的新型叉指传感器,大大提高了传感器的灵敏度。Rivadeneyra等[Design and characterization of a low thermal drift capacitive humidity sensor by inject-printing[J].Sensors andActuators B 195(2014):123-131]设计了回折型叉指电容传感器。与传统的叉指型传感器相比,该传感器的信号强度提高了28%。
现有叉指型相邻电容传感器的结构设计及参数优化等研究工作均基于等厚度待测结构进行,设计的传感器为等间距叉指结构。针对变厚度结构的叉指相邻电容传感器的优化设计还鲜见报道。
发明内容
本发明的目的在于设计一种变间距叉指型相邻电容传感器,用于变厚度高分子材料介电性能的检测。根据待测结构厚度变化规律,对组成叉指传感器电极的每个叉指单元的宽度和间距进行独立的优化设计,即在保证穿透深度的条件下,使得电极宽度尽量大,以获得最大的信号强度和检测灵敏度。
为实现上述目的,本发明采用如下技术方案:
一种变间距叉指型相邻电容传感器,其结构如图1所示,该传感器包括激励电极1、感应电极2、基底3、屏蔽层4、引线接头5;激励电极1和感应电极2粘贴在基底3的正面且相互交叉布置,屏蔽层4粘贴在基底3的背面;引线接头5焊接在基底3背面两侧。
激励电极1和感应电极2均包含多个叉指单元,各叉指单元依次交替排列,且各个叉指单元的宽度和相邻两叉指单元的间距取决于待测结构厚度;
基底3为绝缘材料,且具有一定的强度和刚度,以起到支撑电极和屏蔽层的作用;基底3上设有通孔,便于将激励电极1和感应电极2分别用导线引至基底背面;
如图2所示,屏蔽层4粘贴基底3背面,在感应电极1和激励电极2引线附近,屏蔽层4留有U型切口;屏蔽层4的位置与激励电极1和感应电极2相对。
如图2所示,引线接头5焊接在基底3背面,引线接头5的中间引脚通过基 底上预留的引线孔分别与激励电极1和感应电极2相连,引线接头5的外侧引脚与屏蔽层4相连。
所述的变间距叉指型相邻电容传感器,其各叉指单元的宽度和间距具体设计步骤如下:
定义叉指传感器的关键参数,主要包括:单个叉指单元宽度w、长度l、相邻叉指单元间距g、极板覆盖率γ,各参数标示如图3所示。基本单元长度C=w+g,极板覆盖率γ表征叉指宽度w在传感器一个基本单元C中所占的比例,即γ=w/(w+g)。
步骤一:制作单对叉指单元组成的相邻电容传感器,其基本单元长度为C,极板覆盖率为γ,如图4所示。单对叉指单元组成的相邻电容传感器主要包括:激励电极、感应电极、屏蔽层和基底等,其中激励电极和感应电极想当于叉指传感器中对应的叉指单元。按图4所示,制作极板宽度为w=C*γ、间距为g=C*(1-γ)、屏蔽层宽度为C的相邻电容传感器。
步骤二:测量不同厚度待测试样的电容值。将不同厚度的待测试样放置于步骤(一)制作的相邻电容传感器上方,其中待测试样紧贴传感器电极放置,测量并记录多个厚度不等待测试样的电容值。
步骤三:计算各不同厚度待测试样的电容值相对于稳定值的变化率。待测试件厚度为h时的电容值为Ch,则Ch相对于稳定值Ch→∞的变化率为Difference%,即:
Figure PCTCN2016082195-appb-000001
得到各不同厚度待测试样的电容值相对于稳定值的变化曲线。
步骤四:计算单对叉指单元组成的相邻电容传感器的穿透深度。在步骤(三)的基础上,取Difference%为10%绘制水平线,与不同厚度待测试样的电容值相对于稳定值的变化曲线的交点所对应的待测试样厚度值h,即为传感器的有效穿透深度。
步骤五:重复步骤(一)~(四),测量不同单元长度C、不同极板覆盖率γ下相应传感器的有效穿透深度h。
步骤六:确定每个叉指单元的宽度和间距,组合得到变间距叉指型相邻电容传感器。依据步骤(五)得到的有效穿透深度h与各单元长度和极板覆盖率的对应关系,结合待测渐变厚度试件的几何尺寸特征,对每个叉指单元的宽度和间距进行选取,得到不同形式的变间距叉指相邻电容传感器组合,其结构如图1所示。
步骤七:变间距叉指型相邻电容传感器的优化选取。对步骤(六)得到的不同组合的传感器性能进行测试,对比传感器电场线分布和信号强度,选取最优的变间距叉指型相邻电容传感器。
本发明具有以下优点:1)在相同检测面积条件下,变间距叉指型相邻电容传感器的有效电极面积增大,提高了信号强度,同时传感器的电场线分布更符合待测渐变厚度试件的结构特点;2)通过测量高分子材料的电容值,对材料介电性能直接进行表征,更直观的衡量材料的电气性能。同时,该方法具有灵敏高、非侵入的特点。3)无需对材料进行破坏性试验,实现了真正意义上的无损检测,且可以实现连续在线监测。
附图说明
图1变间距叉指型相邻电容传感器结构示意图。
图2实验***连线图。
图3变间距叉指型相邻电容传感器关键参数示意图。
图4单对叉指单元构成的相邻电容传感器截面示意图。
图5极板覆盖率为0.5不同单元长度C时电容值随待测试件厚度变化图。
图6极板覆盖率为0.5不同单元长度C时电容值相对于稳定值变化率。
图7单对叉指单元构成的相邻电容传感器的穿透深度曲线。
图8待测渐变厚度试件尺寸示意图。
图9变间距叉指型传感器与渐变厚度待测试件相对位置示意图。
图10a等间距叉指型传感器电场线在待测试件内部分布示意图。
图10b极板覆盖率为0.5变间距叉指型传感器电场线分布图。
图10c极板覆盖率为0.6变间距叉指型传感器电场线分布图。
图10d极板覆盖率为0.7变间距叉指型传感器电场线分布图。
图11变间距叉指型传感器与等间距传感器信号强度对比图。
图中:1、激励电极,2、感应电极,3、基底,4、屏蔽层,5、引线接头,6、渐变厚度试件,7、阻抗分析仪,8、变间距叉指型相邻电容传感器。
具体实施方式
下面结合附图1~附图11对一种变间距叉指型相邻电容传感器的设计作进一步说明。
基于相邻电容边缘效应,设计了一款变间距叉指型相邻电容传感器,用该传感器对厚度渐变结构的介电性能进行评定。
一种变间距叉指型相邻电容传感器,其结构如图1所示,包括激励电极1、感应电极2、基底3、屏蔽层4、引线接头5;基底3分为正面和背面,激励电极1和感应电极2粘贴在基底3的正面,屏蔽层4粘贴在基底3的背面;引线接头5焊接在基底3背面。
所述的激励电极1和感应电极2选用0.1mm厚的高导电性铜箔,激励电极1和感应电极2的宽度均为40mm、总的长度为38mm;激励电极1和感应电极2各包含三个叉指单元,激励叉指单元和感应叉指单元依次交替排列;
所述基底3选用有机玻璃板,其长宽高分别为60mm、50mm、2.5mm,在距离左端面和右端面分别为10mm的位置,留有直径为2mm的过孔,选用宽度为2mm的铜箔作为引线,通过引线将激励电极1和感应电极2引至基底背面,便于与引线接头5连接;
所述的屏蔽层4粘贴基底3背面,如图2所示,屏蔽层选用0.1mm厚的高导电性铜箔,屏蔽层长度为60mm、宽度为50mm,屏蔽层上U型切口的宽度为4mm、长度为30mm,屏蔽层的位置与激励电极1和感应电极2相对。
所述的引线接头5焊接在基底3背面,如图2所示,引线接头5的中间引脚分别与激励电极1和感应电极2的引线相连,引线接头5的外侧引脚与屏蔽层4相连。
所述的变间距叉指相邻电容传感器,其具体设计步骤如下:
步骤一:制作单对叉指单元组成的相邻电容传感器,其基本单元长度C为 10mm,极板覆盖率为γ=0.5,此时叉指单元宽度分别为5mm,叉指单元单元间距为5mm,选取叉指单元长度为40mm,按图4所示制作单对叉指单元组成的相邻电容传感器。
步骤二:测量不同厚度待测试样的电容值。将厚度为1mm的高温硫化硅橡胶放置于步骤(一)制作的相邻电容传感器上方,记录此时测得的电容值。然后,逐层叠加厚度为1mm的硅橡胶片,并记录每增加1mm厚度后测得的电容值,得到电容值随硅橡胶厚度变化曲线如图5所示。从图5中可以看出当硅橡胶厚度为14mm时,测量的电容值已经趋于平稳。
步骤三:计算各不同厚度待测试样的电容值相对于稳定值的变化率。将步骤(二)中得到的不同硅橡胶厚度下的电容值按照式(1)计算得到不同待测试样厚度h下电容值相对于稳定值Ch→∞的变化率如图6所示。
步骤四:计算单对叉指单元组成的相邻电容传感器的穿透深度。在步骤(三)的基础上,取Difference%为10%绘制水平线,如图6中虚线所示。虚线与不同待测试样厚度下电容值相对于稳定值Ch→∞的变化率曲线的交点对应的h值为6.03mm,此即为单元长度C为10mm、极板覆盖率为0.5时传感器的有效穿透深度。
步骤五:重复步骤(一)~(四),制作单元长度C为4mm\5mm\6mm\7mm\8mm\9mm\10mm,极板覆盖率为γ为0.1~0.9的单对叉指单元相邻电容传感器,测量并计算得到不同参数组合下传感器的有效穿透深度,绘制成图7所示。
步骤六:确定每个叉指单元的宽度和间距,组合得到变间距叉指型相邻电容传感器。分析待测渐变厚度试件的几何尺寸特征如图8所示,从图中可以看出,待测试件最厚位置为6.27mm,最薄处厚度为2mm,倾斜面与水平方向的夹角约为5°,水平方向长度为46mm。从距离待测渐变厚度试件左端5mm位置处开始布置第一对叉指单元,此处待测试件最大厚度为5.89mm,依据步骤(五)得到的有效穿透深度h与各单元长度和极板覆盖率的对应关系,可知当极板覆盖率γ为0.5、0.6、0.7、单元宽度C为10mm时的传感器穿透深度满足要求,得到 三种不同组合的变间距叉指传感器。图9所示为变间距叉指型传感器与渐变厚度待测试件相对位置示意图。按照图9所示,在不同厚度处布置各个独立的叉指单元。当极板覆盖率γ为0.5时,取C1=10mm、C2=8mm、C3=6mm、C4=5mm、C5=4mm,各个叉指的宽度以及各间距如表1所示。当极板覆盖率γ为0.6时,取C1=10mm、C2=8mm、C3=6mm、C4=5mm、C5=4mm,各个叉指的宽度以及各间距如表2所示。当极板覆盖率γ为0.7时,取C1=10mm、C2=8mm、C3=7mm、C4=6mm、C5=5mm,各个叉指的宽度以及各间距如表3所示。最后,按照表1、表2和表3对应的叉指宽度和间距,结合图1制作相应的变间距叉指型相邻电容传感器。
步骤七:变间距叉指型相邻电容传感器的优化选取。图10a-10d给出了不同类型传感器的电场线分布图,对比可知,针对渐变结构,变间距叉指型相邻电容传感器的电场线分布优于传统等间距叉指结构。按照图2搭建实验***,该***包括渐变厚度试件6、阻抗分析仪7、变间距叉指型相邻电容传感器8,阻抗分析仪7与变间距叉指型相邻电容传感器8连接,通过阻抗分析仪7测得三种变间距组合的传感器的信号强度如图11所示,组合1为极板覆盖率为0.5,组合2为极板覆盖率为0.6,组合3为极板覆盖率为0.7。对比三种组合,极板覆盖率为0.7时,信号强度为11.49pF最大,与间距叉指型结构的信号强度3.08pF相比,提高了3.7倍。最后,优选的传感器参数如表3所示。
表1
叉指宽度 5mm 5mm 4mm 3mm 2.5mm 2mm
间距 5mm 4mm 3mm 2.5mm 2mm  
表2
叉指宽度 6mm 5mm 4.8mm 3.6mm 3mm 2.4mm
间距 4mm 3.2mm 2.4mm 2mm 1.6mm  
表3
叉指宽度 7mm 5.6mm 4.9mm 4.2mm 3.5mm 2mm
间距 3mm 2.4mm 2.1mm 1.8mm 1.5mm  
以上是本发明的一个典型应用,本发明的应用不局限于此。

Claims (3)

  1. 一种变间距叉指型相邻电容传感器,其特征在于:该传感器包括激励电极(1)、感应电极(2)、基底(3)、屏蔽层(4)、引线接头(5);激励电极(1)和感应电极(2)粘贴在基底(3)的正面且相互交叉布置,屏蔽层(4)粘贴在基底(3)的背面;引线接头(5)焊接在基底(3)背面两侧;
    激励电极(1)和感应电极(2)均包含多个叉指单元,各叉指单元依次交替排列,且各个叉指单元的宽度和相邻两叉指单元的间距取决于待测结构厚度;
    屏蔽层(4)粘贴在基底(3)背面,在感应电极(1)和激励电极(2)引线附近,屏蔽层(4)留有U型切口;屏蔽层(4)的位置与激励电极(1)和感应电极(2)相对;
    引线接头(5)焊接在基底(3)背面,引线接头(5)的中间引脚通过基底上预留的引线孔分别与激励电极(1)和感应电极(2)相连,引线接头(5)的外侧引脚与屏蔽层(4)相连。
  2. 根据权利要求1所述的一种变间距叉指型相邻电容传感器,其特征在于:基底(3)为绝缘材料;基底(3)上设有通孔,便于将激励电极(1)和感应电极(2)分别用导线引至基底背面。
  3. 根据权利要求1所述的一种变间距叉指型相邻电容传感器,其特征在于:各叉指单元的宽度和间距具体设计步骤如下:
    定义叉指传感器的关键参数,主要包括:单个叉指单元宽度w、长度l、相邻叉指单元间距g、极板覆盖率γ;基本单元长度C=w+g,极板覆盖率γ表征叉指宽度w在传感器一个基本单元C中所占的比例,即γ=w/(w+g);
    步骤一:制作单对叉指单元组成的相邻电容传感器,其基本单元长度为C,极板覆盖率为γ;单对叉指单元组成的相邻电容传感器主要包括:激励电极、感应电极、屏蔽层和基底等,其中激励电极和感应电极想当于叉指传感器中对应的叉指单元;制作极板宽度为w=C*γ、间距为g=C*(1-γ)、屏蔽层宽度为C的相邻电容传感器;
    步骤二:测量不同厚度待测试样的电容值;将不同厚度的待测试样放置于步骤(一)制作的相邻电容传感器上方,其中待测试样紧贴传感器电极放置,测量并记录多个厚度不等待测试样的电容值;
    步骤三:计算各不同厚度待测试样的电容值相对于稳定值的变化率;待测试件厚度为h时的电容值为Ch,则Ch相对于稳定值Ch→∞的变化率为Difference%,即:
    Figure PCTCN2016082195-appb-100001
    得到各不同厚度待测试样的电容值相对于稳定值的变化曲线;
    步骤四:计算单对叉指单元组成的相邻电容传感器的穿透深度;在步骤(三)的基础上,取Difference%为10%绘制水平线,与不同厚度待测试样的电容值相对于稳定值的变化曲线的交点所对应的待测试样厚度值h,即为传感器的有效穿透深度;
    步骤五:重复步骤(一)~(四),测量不同单元长度C、不同极板覆盖率γ下相应传感器的有效穿透深度h;
    步骤六:确定每个叉指单元的宽度和间距,组合得到变间距叉指型相邻电容传感器;依据步骤(五)得到的有效穿透深度h与各单元长度和极板覆盖率的对应关系,结合待测渐变厚度试件的几何尺寸特征,对每个叉指单元的宽度和间距进行选取,得到不同形式的变间距叉指相邻电容传感器组合;
    步骤七:变间距叉指型相邻电容传感器的优化选取;对步骤(六)得到的不同组合的传感器性能进行测试,对比传感器电场线分布和信号强度,选取最优的变间距叉指型相邻电容传感器。
PCT/CN2016/082195 2015-09-29 2016-05-16 一种变间距叉指型相邻电容传感器 WO2017054461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/520,054 US10027322B2 (en) 2015-09-29 2016-05-16 Interdigitated capacitive proximity sensor with varied space electrode structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015106391215 2015-09-29
CN201510639121.5A CN105158582B (zh) 2015-09-29 2015-09-29 一种变间距叉指型相邻电容传感器

Publications (1)

Publication Number Publication Date
WO2017054461A1 true WO2017054461A1 (zh) 2017-04-06

Family

ID=54799502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082195 WO2017054461A1 (zh) 2015-09-29 2016-05-16 一种变间距叉指型相邻电容传感器

Country Status (3)

Country Link
US (1) US10027322B2 (zh)
CN (1) CN105158582B (zh)
WO (1) WO2017054461A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210213853A1 (en) * 2020-01-15 2021-07-15 Faurecia Sièges d'Automobile Vehicle seat with monitoring system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158582B (zh) * 2015-09-29 2018-03-09 北京工业大学 一种变间距叉指型相邻电容传感器
CN106841328B (zh) * 2017-01-17 2017-09-26 华中科技大学 一种共面电容式聚合物分子取向测量装置及方法
CN110006960A (zh) * 2018-01-05 2019-07-12 张家港万众一芯生物科技有限公司 基于柔性自适应型叉指电容的危险液体检测装置及检测方法
FR3076901B1 (fr) * 2018-01-12 2020-02-07 Kapflex Dispositif de mesures capacitives dans un milieu multiphasique
US10877612B2 (en) * 2018-02-14 2020-12-29 Continental Automotive Systems, Inc. Capacitive touch/proximity sensor with integrated ultra-high frequency antenna
CN108428980A (zh) * 2018-03-26 2018-08-21 南京邮电大学 一种新型结构的宽频带垂直叉指电容
CN108760839A (zh) * 2018-06-06 2018-11-06 中国电子科技集团公司第二十研究所 一种用于雷达结构中电绝缘材料微损伤检测的方法
CN110010754B (zh) * 2019-03-27 2021-03-09 浙江大学 降低杂信比和提高信噪比的阵列式压电薄膜传感器及方法
CN110320247A (zh) * 2019-07-09 2019-10-11 中国农业大学 植物茎秆含水量无损测量装置及方法
CN110487168B (zh) * 2019-08-29 2024-03-01 清华大学深圳研究生院 单向弯曲敏感传感器及其制备方法
CN110618351B (zh) * 2019-09-27 2021-11-16 湖南大学 电容传感器及检测装置
US11130424B2 (en) * 2019-11-20 2021-09-28 Ford Global Technologies, Llc Vehicle seating assembly having capacitive proximity sensor
US11133799B2 (en) * 2019-11-20 2021-09-28 Ford Global Technologies, Llc Capacitive proximity sensor assembly having multiple sensing configurations
CN113008119B (zh) * 2019-12-19 2022-11-25 通用技术集团国测时栅科技有限公司 一种分时复用的绝对式时栅直线位移传感器
CN111595381A (zh) * 2020-05-29 2020-08-28 上海交通大学 一种背面引线的仿生纤毛电容式微传感器及其制备方法
CN111988034B (zh) * 2020-07-07 2023-10-31 东南大学 一种毫米波数控振荡器的可变电容器及其制备方法
CN111563486B (zh) * 2020-07-13 2021-02-05 支付宝(杭州)信息技术有限公司 一种生物特征攻击组件和生物特征攻击测试***
CN112730540A (zh) * 2020-12-23 2021-04-30 中山艾尚智同信息科技有限公司 一种基于叉指电容的砂石含水率的测量方法
CN112730539A (zh) * 2020-12-23 2021-04-30 中山艾尚智同信息科技有限公司 一种基于叉指电容的砂石含水率的检测设备
CN113465488B (zh) * 2021-06-17 2022-05-17 上海交通大学 一种用于测量壁面液膜厚度的叉指阵列装置及检测方法
CN113776699B (zh) * 2021-09-18 2024-01-30 太原理工大学 一种正压力不敏感型叉指电容式应变传感器及其制备方法
CN114894348B (zh) * 2022-04-06 2023-06-30 华南理工大学 离子电容式柔性压力传感器的性能优化方法、装置及介质
CN114778921B (zh) * 2022-04-25 2024-06-18 河北工业大学 一种基于边缘电场的功率模块开关电压测量方法
CN117289812A (zh) * 2022-06-17 2023-12-26 京东方科技集团股份有限公司 触控层、触控显示装置以及触控层的制备方法
CN117554276B (zh) * 2024-01-09 2024-03-26 中国石油大学(华东) 一种非金属材料老化检测装置与方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654581A (en) * 1983-10-12 1987-03-31 Hewlett-Packard Company Capacitive mask aligner
US6239601B1 (en) * 1996-03-20 2001-05-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thickness measurement device for ice, or ice mixed with water or other liquid
US6600333B1 (en) * 2000-02-10 2003-07-29 Advanced Micro Devices, Inc. Method and test structure for characterizing sidewall damage in a semiconductor device
CN101046491A (zh) * 2006-03-28 2007-10-03 松下电工株式会社 电容传感器
CN101156034A (zh) * 2005-02-15 2008-04-02 控制设备公司 用于检测和制造冰的方法及设备
CN101398402A (zh) * 2004-09-08 2009-04-01 株式会社日本自动车部品综合研究所 物理量传感器及其制造方法
WO2009152625A1 (en) * 2008-06-18 2009-12-23 Solianis Holding Ag Method and device for characterizing the effect of a skin treatment agent on skin
CN101790672A (zh) * 2007-08-30 2010-07-28 塑料控制有限公司 用于非接触型电容式厚度测量的方法
WO2013000737A1 (de) * 2011-06-29 2013-01-03 Siemens Aktiengesellschaft Kapazitives sensorelement zur detektion einer verschiebung
CN105158582A (zh) * 2015-09-29 2015-12-16 北京工业大学 一种变间距叉指型相邻电容传感器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9212099D0 (en) * 1992-06-06 1992-07-22 Lucas Ind Plc Angular rate sensor and method of production thereof
DE10015430C1 (de) * 2000-03-28 2001-05-10 Preh Elektro Feinmechanik Kapazitiv arbeitender Sensor zur Detektion von Kondensation an Oberflächen
US20030231024A1 (en) * 2002-06-12 2003-12-18 Luque Phillip R Capacitive media resistivity, dialectic constant, and thickness sensor
US20090009193A1 (en) * 2007-07-06 2009-01-08 Chung Yuan Christian University Moisture-Sensitive Element with an Interdigital Capacitor and Fabrication thereof
US8707781B2 (en) * 2008-09-11 2014-04-29 Nxp, B.V. Sensor has combined in-plane and parallel-plane configuration
CN101481084B (zh) * 2009-02-13 2011-06-15 杭州电子科技大学 一种可变间距电容的微惯性传感器
EP2336758B1 (en) * 2009-12-16 2012-08-29 Nxp B.V. Capacitive sensor
CN201837400U (zh) * 2010-06-04 2011-05-18 美新半导体(无锡)有限公司 一种高灵敏度的电容传感器
EP2616801A2 (en) * 2010-09-14 2013-07-24 3M Innovative Properties Company Methods and devices for acquiring an oil sample and monitoring the quality thereof
CN202471094U (zh) * 2011-12-30 2012-10-03 河南长润仪表有限公司 应用在单电极电容传感器中的叉指状电极
US8823396B2 (en) * 2013-01-11 2014-09-02 Nokia Corporation Apparatus and associated methods
FR3021309A1 (fr) * 2014-05-26 2015-11-27 Commissariat Energie Atomique Dispositif microelectronique et/ou nanoelectronique capacitif a compacite augmentee
WO2016113979A1 (ja) * 2015-01-16 2016-07-21 アルプス電気株式会社 静電容量式センサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654581A (en) * 1983-10-12 1987-03-31 Hewlett-Packard Company Capacitive mask aligner
US6239601B1 (en) * 1996-03-20 2001-05-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thickness measurement device for ice, or ice mixed with water or other liquid
US6600333B1 (en) * 2000-02-10 2003-07-29 Advanced Micro Devices, Inc. Method and test structure for characterizing sidewall damage in a semiconductor device
CN101398402A (zh) * 2004-09-08 2009-04-01 株式会社日本自动车部品综合研究所 物理量传感器及其制造方法
CN101156034A (zh) * 2005-02-15 2008-04-02 控制设备公司 用于检测和制造冰的方法及设备
CN101046491A (zh) * 2006-03-28 2007-10-03 松下电工株式会社 电容传感器
CN101790672A (zh) * 2007-08-30 2010-07-28 塑料控制有限公司 用于非接触型电容式厚度测量的方法
WO2009152625A1 (en) * 2008-06-18 2009-12-23 Solianis Holding Ag Method and device for characterizing the effect of a skin treatment agent on skin
WO2013000737A1 (de) * 2011-06-29 2013-01-03 Siemens Aktiengesellschaft Kapazitives sensorelement zur detektion einer verschiebung
CN105158582A (zh) * 2015-09-29 2015-12-16 北京工业大学 一种变间距叉指型相邻电容传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210213853A1 (en) * 2020-01-15 2021-07-15 Faurecia Sièges d'Automobile Vehicle seat with monitoring system

Also Published As

Publication number Publication date
CN105158582A (zh) 2015-12-16
US20170331474A1 (en) 2017-11-16
CN105158582B (zh) 2018-03-09
US10027322B2 (en) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2017054461A1 (zh) 一种变间距叉指型相邻电容传感器
CN107340322B (zh) 多通道三角阵列平面电容传感器无损检测装置和方法
EP2228646A3 (en) Particulate matter detection device
CN110618351B (zh) 电容传感器及检测装置
WO2010044572A3 (en) Method and apparatus for checking insulation of pouch electric cell and probe for the same
CN103645355A (zh) 一种测量植物叶片电参数的传感器
CN105388190B (zh) 基于耦合机电阻抗的复合材料机翼损伤定位方法
CN105203847A (zh) 一种薄层材料方块电阻和连接点接触电阻测试方法
CN105424590A (zh) 用于钢铁构件或试片大气腐蚀检测的传感器及检测方法
CN207007763U (zh) 一种三角平面阵列式电容传感器
CN106404843A (zh) 基于电学测量的四点式自适应调节无损检测探头
CN109612921B (zh) 一种腐蚀监测传感器及其制备方法
CN105361853A (zh) 用于对人体排汗情况进行监控的可穿戴式装置
CN203688598U (zh) 一种测量植物叶片电参数的传感器
CN110703055B (zh) 一种零值绝缘子红外检测方法
CN205785343U (zh) 集成温湿度传感器的硅基气体敏感芯片
Zheng et al. Three-dimensional modeling and optimization of a fully-covered interdigital capacitive sensor for power cable insulation detection
CN204462065U (zh) 一种手持式电容成像探头
CN213875905U (zh) 用于电缆绝缘检测的电容传感器
US10816535B2 (en) Method of assessing drying depth of cementitious material
CN203929894U (zh) 射频连接器绝缘电阻测试工装
CN108007980A (zh) 一种润滑油品质检测电容传感探头
CN204556730U (zh) 大型水轮发电机定子线棒槽部表面电阻测试装置
CN209264821U (zh) 一种便携式绝缘材料表面电导率测量装置
CN104977321B (zh) 冻融损伤梯度与各向异性测量方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15520054

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850086

Country of ref document: EP

Kind code of ref document: A1