WO2017054299A1 - 一种rkef生产镍铁、铬铁与aod炉三联法冶炼不锈钢的工艺 - Google Patents

一种rkef生产镍铁、铬铁与aod炉三联法冶炼不锈钢的工艺 Download PDF

Info

Publication number
WO2017054299A1
WO2017054299A1 PCT/CN2015/095073 CN2015095073W WO2017054299A1 WO 2017054299 A1 WO2017054299 A1 WO 2017054299A1 CN 2015095073 W CN2015095073 W CN 2015095073W WO 2017054299 A1 WO2017054299 A1 WO 2017054299A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrochrome
furnace
temperature
aod
alloy
Prior art date
Application number
PCT/CN2015/095073
Other languages
English (en)
French (fr)
Inventor
姜海洪
Original Assignee
福建鼎信实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建鼎信实业有限公司 filed Critical 福建鼎信实业有限公司
Publication of WO2017054299A1 publication Critical patent/WO2017054299A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Definitions

  • the invention belongs to the technical field of metallurgical engineering, and particularly relates to a new process method for smelting stainless steel by a triple method.
  • the method of producing stainless steel at home and abroad basically uses the crude nickel alloy block and the ferrochrome alloy block produced by the ore furnace as the main raw material. Since the raw material is solid cold material, the electric arc furnace needs to be melted again, melted in the electric arc furnace, and passed through the AOD. The refining furnace is proportioned to other raw materials in a certain proportion. After decarburization, dephosphorization and other processes, oxidation and final refining are carried out to complete the adjustment of the liquid alloy composition and temperature, and finally become stainless steel. The qualified stainless steel after refining is continuously cast. The system is made into a stainless steel slab.
  • the temperature of the molten steel and the composition of the alloy are controlled, and the finally qualified molten steel is cast into a stainless steel slab or billet through a continuous casting system.
  • the production process consumes a lot of electricity and increases production costs.
  • the present invention achieves the above object to improve the productivity of stainless steel and reduce the production cost.
  • the invention is optimized in the production process to reduce the production of intermediate crude nickel alloy and ferrochrome alloy casting, electric arc furnace remelting, etc.
  • the slag type control, the slag temperature and the temperature of the molten iron produced by the crude nickel alloy and the ferrochrome alloy are controlled to enter a certain temperature during the refining of the AOD furnace.
  • the present invention adopts a novel process of smelting stainless steel by a triple method, uses a RKEF process to produce a ferritic stainless steel by a method of producing ferronickel, ferrochrome and AOD furnace, and is made into a stainless steel plate through a continuous casting system.
  • the invention adopts a process for smelting stainless steel by RKEF production of ferronickel, ferrochrome and AOD furnace triple method, the process comprising the following steps:
  • control of the process parameters in the step 1) comprises: controlling the slag type of the ferro-nickel alloy molten iron and the ferrochrome alloy molten iron, controlling the slag temperature and the iron temperature, so as to ensure the crude nickel required for the AOD refining furnace to enter the furnace.
  • the composition and temperature of alloyed molten iron and ferrochrome iron comprises: controlling the slag type of the ferro-nickel alloy molten iron and the ferrochrome alloy molten iron, controlling the slag temperature and the iron temperature, so as to ensure the crude nickel required for the AOD refining furnace to enter the furnace.
  • the control of the process parameters in the step 1) comprises: for the smelting of the crude nickel alloy, the Si/Mg is controlled between 1.75-1.85; the slag temperature is controlled within the range of 1550-1570 °C, and the iron temperature is controlled at 1500. In the range of -1520 ° C; for ferrochrome smelting, the MgO / Al 2 O 3 is controlled between 1.0 - 1.7 ; the slag temperature is controlled in the range of 1650-1730 ° C, and the iron temperature is controlled in the range of 1550-1650 ° C.
  • the mass ratio of the crude nickel-iron alloy hot metal and the ferrochrome alloy hot metal is 2:1 to 2.6:1.
  • the temperature of the mixed molten iron is maintained in the temperature range of the crude nickel alloy hot metal and the ferrochrome hot metal required for the AOD refining furnace to be uniformly covered and covered with the crude nickel alloy molten iron and the chrome alloy molten iron.
  • the material, and/or the method of wrapping the insulation material around the ladle equipment controls the temperature range of the molten iron.
  • the heat insulating material uniformly covering the liquid surface of the crude nickel alloy molten iron and the chrome alloy molten iron may be a ladle insulating covering agent, wherein the ladle thermal insulating covering agent has a chemical composition and a mass percentage of C15-20%, and SiO 2 30%.
  • the equipment insulation material wrapped around the ladle equipment is made of ceramic fiber blanket or nano-based heat insulation soft felt.
  • the AOD refining furnace refining process in the step 3) comprises the steps of:
  • the oxygen blowing amount of the AOD top gun is 3500 ⁇ 4000Nm3/h
  • the inert gas volume of the bottom of the furnace is 3500 ⁇ 4000Nm3/h
  • the end temperature is controlled within the range of 1660-1680°C
  • the end point carbon is controlled within the range of 0.035%-0.045%.
  • the slag forming agent is added in the range of 5% to 8% of the total mass of the mixed molten iron, and the sulfur in the steel is controlled to be 0.005% or less, and the fluidity of the slag is controlled.
  • the slagging agent is lime, fluorite or magnesia.
  • the inert gas is argon.
  • the process of laminating molten steel according to the LF furnace includes:
  • the molten steel smelted by the AOD furnace is sent to the LF furnace, the electric slag is heated, the temperature of the molten steel is adjusted, and the temperature is raised to meet the temperature required for continuous casting.
  • the 0.05% to 0.06% insulation slag agent should be completely covered with the slag surface to prolong the time of the liquid slag, further strengthen the slag adsorption of the inclusions in the molten steel, and further improve the purity of the molten steel. Reduce the slag of the large package and reduce the pollution of the subsequent molten steel. After the LF furnace is refined, the sulfur content of the molten steel is ⁇ 0.005%.
  • the silicon-silica core wire is a single-feed wire using a calcium-silica core wire containing 28% Ca, and the argon gas is stirred at the time of feeding the wire, and the feeding line depth is between 1500 mm and 2000 mm, and the feeding speed is 100 ⁇ 110m/min, the feeding line is 0.7 ⁇ 1.0kg/t; the feeding time is between 45 ⁇ 69s.
  • the invention adopts the organic combination of the RKEF process and the AOD furnace smelting, and through the control and adjustment of the RKEF process parameters, the crude nickel and ferrochrome alloy molten iron are produced and used as the main raw materials, and the crude nickel is directly directly controlled by a certain heat preservation control method.
  • the ferrochrome alloy hot metal is mixed and blended into the AOD refining furnace, and is refined by oxidizing agent (oxygen), slag forming agent, temperature control, etc., and then sent to the LF furnace for desulfurization and adjusting the alloy composition to produce stainless steel.
  • a ferrochrome alloy is generally added during the refining process of the AOD refining furnace for smelting, the process conditions are difficult to control, the metal loss is large, and the AOD furnace refining efficiency is lowered; the process of the invention reduces the production of the intermediate crude nickel alloy.
  • the LF furnace smelting process is a smelting process that we have carried out a large number of innovative research and improvement according to the overall process.
  • the steel is stopped for a certain period of time to ensure that the inclusions are fully floated and the purity of the molten steel is improved.
  • the thermal insulation slag agent to further strengthen the slag adsorption of inclusions in the molten steel, so as to further improve the purity of the molten steel, reduce the large amount of slag and reduce the pollution of the subsequent molten steel.
  • the combination of the AOD refining furnace and the LF furnace smelting process improves the purity of the molten steel and makes it meet the temperature required for continuous casting, and can be directly fed into the continuous casting machine.
  • the "RKEF and AOD furnace triple method smelting stainless steel” reduces the remelting process of the crude nickel alloy and ferrochrome alloy in the electric arc furnace, such as: reducing the investment of electric arc furnace equipment and supporting equipment and human resources. The investment cost is reduced; the process of melting the crude nickel alloy and the ferrochrome alloy by the electric arc furnace is reduced; the refractory material and the auxiliary material input consumption of the melting process are reduced.
  • the reducibility of the oxide at the same temperature, the linear position is at a lower element, and the oxide in the upper part is easily reduced, that is, the more stable the oxide, that is, in the melting temperature range, the crude nickel alloy oxide
  • the reduction order is nickel, iron, silicon, and the reduction order of the ferrochrome oxide is iron or chromium.
  • SiO 2 +2C Si+2CO
  • SiO 2 + 2C Si (liquid) + 2CO
  • the crude nickel alloy and the ferrochrome alloy molten iron are respectively smelted by the RKEF process, and the smelting process parameters are controlled; the crude nickel alloy molten iron and the ferrochrome alloy molten iron are produced:
  • the control of the slag type of the production of nickel-iron alloy hot metal and ferrochrome iron, the slag temperature and the iron temperature are controlled to ensure the composition and temperature of the crude nickel alloy hot metal and the ferrochrome hot metal required for the AOD refining furnace; Nickel alloy smelting, Si/Mg is controlled between 1.75-1.85; slag temperature is controlled in the range of 1550-1570 °C, iron temperature is controlled in the range of 1500-1520 °C; for ferrochrome alloy smelting, MgO/Al 2 O 3
  • the control temperature is between 1.0 and 1.7 ; the slag temperature is controlled within the range of 1650-1730 °C, and the iron temperature is controlled within the range of 1550-1650 °C.
  • the temperature of the ferrochrome smelting slag is controlled within the range of 1650-1680, and the iron temperature is controlled at Within the range of 1550-1580.
  • the produced crude nickel-iron alloy hot metal and ferrochrome alloy hot metal is used to hold the crude nickel alloy hot metal and the ferrochrome alloy hot metal, and the temperature of the molten iron is maintained in the temperature range of the crude nickel alloy hot metal and the ferrochrome hot metal required for the AOD refining furnace.
  • the temperature range of the mixed molten iron can be controlled by uniformly covering the heat insulating material with the molten iron surface of the crude nickel alloy molten iron and the ferrochrome alloy molten iron, and/or wrapping the insulating material of the equipment outside the ladle equipment, and controlling the temperature of the molten iron.
  • the thermal insulation material uniformly covered by the crude nickel alloy molten iron and the ferrochrome alloy molten iron surface can be used to achieve the thermal insulation of the alloy molten iron, and also can be used to wrap the ceramic fiber blanket (1600 ceramic fiber blanket). Or the way of nano-heat insulation soft felt to achieve hot metal insulation.
  • the preferred insulation method is to use the above two kinds of insulation materials for the combination, that is, the insulation material uniformly covered in the mixed alloy molten iron surface, and the ceramic fiber blanket (1600 ceramic fiber blanket) or the outer package wrapped in the ladle.
  • the double insulation method of the base insulation soft felt realizes the insulation of the alloy molten iron.
  • the material use is described in detail as follows:
  • the thermal insulation material uniformly covered by the crude nickel alloy molten iron and the chromium alloy molten iron surface may be a ladle thermal insulation covering agent, wherein the ladle thermal insulation covering agent has a chemical composition and a mass percentage of C15-20%, SiO2 30% to 40%, and CaO 15%. ⁇ 25%, Al2O3 9% to 15%, Fe2O3 2 to 5%, and MgO 2% to 5%.
  • the preparation method is as follows: using expanded graphite 15% to 25%, magnesium Sand 2% to 5%, lime 15% to 25%, SiO2 30% to 40%, Al2O3 9% to 15%, Fe2O3 2 to 5% as raw materials; expanded graphite, lime, magnesia weighed by weight
  • the ingredients are mixed, pre-melted at 1350-1400 ° C, cooled and cooled, and then crushed by natural cooling or air cooling, then made into fine powder, and mixed with SiO2, Al2O3, Fe2O3 powder according to the parts by weight, and then mixed and ground.
  • To 100 mesh after the pulping, it is dried by a low-pressure spray granulation tower to form a hollow particle covering agent.
  • carbonized rice husk If carbonized rice husk is used, its particle size is controlled within the range of 0 to 5 mm; its humidity is controlled at: H2O ⁇ 0.5%. However, the carbonized rice husk has poor spreadability. After adding the ladle, it cannot be spread quickly to achieve uniform coverage, and its thermal insulation effect is not ideal.
  • Insulation materials for the outer wrapping equipment of ladle equipment can be purchased from ceramic fiber blankets (1600 ceramic fiber blankets) or nano-based insulating soft felts.
  • the ceramic fiber blanket is formed by special double-sided needle punching process using special aluminum silicate ceramic fiber filaments. It maintains good tensile strength, toughness and fiber structure when used for a long time under neutral and oxidizing atmosphere. Ceramic fiber blanket has low thermal conductivity, low heat capacity, excellent chemical stability, excellent thermal stability and shock resistance. Excellent tensile strength, the 1600 ceramic fiber blanket of the present invention has a temperature resistance of 1600 ° C. After our research and use, it is very suitable for ladle wrapping, achieving good hot metal insulation effect. Naki insulating soft felt is a kind of soft industrial thermal insulation material with high thermal insulation performance, low expansion coefficient and low heat shrinkage.
  • the temperature of the molten iron can fully meet the requirements of the temperature of the AOD refining furnace, and the metal loss of the crude nickel alloy and the ferrochrome alloy in the electric arc furnace is effectively reduced, thereby improving the metal recovery rate; Reduced production capacity.
  • the crude nickel-iron alloy hot metal and the ferrochrome alloy hot metal are mixed at a mass ratio of 2:1 to 2.6:1, and are mixed into an AOD refining furnace for decarburization and desulfurization.
  • the steel ladle can be lifted by driving and the mixed crude nickel-iron alloy hot metal and ferrochrome alloy hot metal can be sent to the AOD refining furnace for refining; wherein the amount of alloy material and slag forming agent is calculated:
  • [%Si] represents the silicon content in the molten steel
  • R (%CaO) / (% SiO 2 ) represents alkalinity; (% CaO) is effective - effective CaO content in lime.
  • the AOD refining process includes the following steps:
  • the inert gas is reduced by the bottom blowing method.
  • CO partial pressure realizes temperature control and decarburization and chromium protection.
  • the oxygen blowing amount of the AOD top gun is 3500 ⁇ 4000Nm3/h
  • the inert gas volume of the bottom of the furnace is 3500 ⁇ 4000Nm3/h
  • the end temperature is controlled within the range of 1660-1680°C
  • the end point carbon is controlled within the range of 0.035%-0.045%.
  • ferrosilicon 75 alloy silicon iron alloy containing 75% silicon
  • T steel liquid is added to the ferrosilicon 75 alloy about 5kg.
  • the slag forming agent is added in an amount of 5% to 8% of the total mass of the mixed molten iron
  • the sulfur in the steel is controlled to be less than 0.005%, and the fluidity of the slag is controlled.
  • Lime, fluorite and magnesia may be used as the slag forming agent
  • the molten steel smelted by the AOD furnace is sent to the LF furnace, the electric slag is heated, the temperature of the molten steel is adjusted, and the temperature is raised to meet the temperature required for continuous casting.
  • the amount is 0.7 ⁇ 1.0kg/t; the feeding line is 80m, the feeding time is between 45 ⁇ 47s); the gas is stopped for 8.5 ⁇ 9 minutes to ensure that the inclusions are fully floated, and the intrinsic quality of steel and the fluidity of molten steel are improved. Reduce the oxygen and sulfur content in molten steel and improve the purity of molten steel.
  • the composition of the heat preservation slag agent comprises: main component SiO 2 35% to 45%, Al 2 O 3 10% to 20%, other components are CaO 10% to 16%; MgO 2% to 6%, graphite: 10% ⁇ 20%; the rest is ferric oxide, generally the mass percentage of ferric oxide is 5% to 8%. It can be obtained by firstly grinding each raw material into a particle size of 80-100 mesh, adding an aqueous binder (for example, a starch binder) which accounts for about 2% of the total amount of the raw materials, stirring and mixing for 10 to 15 minutes, and then spraying.
  • aqueous binder for example, a starch binder
  • the water of 8% of the total raw material quality is continuously stirred for 7 min to 15 min, then granulated, and finally dried at a low temperature (about 35 ° C) to obtain the product .
  • the heat preservation slag agent uniformly covers the slag surface.
  • the temperature of the tundish is controlled at 1480-1490 °C; the pulling speed is controlled at 1.25-1.40 m/min.
  • the obtained stainless steel slab or square embryo is put into storage.
  • the obtained stainless steel is in the form of a plate; 6000 to 12000 mm (length) ⁇ 160 mm to 220 mm (height) ⁇ 470 to 1600 (width) mm; billet size: a square billet having a square side length of 160 to 220 mm, and a billet length ⁇ 12000mm; and stainless steel products in line with national standards and user requirements.
  • the products produced by the novel process technology of the invention are suitable for petroleum, chemical, shipbuilding, automobile, construction, food, electronics, medical equipment, public facilities and the like.
  • the smelting of the invention basically adopts a low-voltage, high-current power supply system for smelting production, the secondary voltage is approximately 300-350V, the secondary current is between 30000-35000A or even higher, and the slag basicity is controlled in the range of 0.6-0.7. Inside.
  • the use of the above process not only reduces the power consumption, production cost, shortens the product time, improves the production capacity, the environment is more clean and environmentally friendly, but also reduces the labor intensity of employees, and produces refined stainless steel products that meet the national standards and user requirements.
  • the "RKEF and AOD furnace triple method smelting stainless steel” reduces the remelting process of the crude nickel alloy and ferrochrome alloy in the electric arc furnace, such as reducing the investment in the electric arc furnace equipment, supporting equipment and human resources, and reducing The investment cost; reduced the arc furnace melting crude nickel alloy and ferrochrome alloy process, directly reducing the production power consumption of 580 degrees / ton of steel.
  • the production process method of the present invention uses the RKEF process to produce a crude nickel-iron alloy by directly controlling the slag type, the slag temperature, the molten iron temperature, and the crude nickel and ferrochrome alloy molten iron by a certain degree of heat preservation control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

一种RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,包括步骤:采用RKEF工艺分别熔炼粗镍合金及铬铁合金,并控制熔炼工艺参数;生产出粗镍合金铁水和铬铁合金铁水;采用钢包盛装上述合金铁水,并将铁水温度保持在AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围内;将上述合金铁水按照比例混合兑入AOD精炼炉进行精炼后,将合格的AOD钢水倒入钢包,输送至LF炉进行深脱氧;将LF炉处理好的钢水通过行车吊运至连铸回转台,由连铸机铸成板坯或方坯。该工艺降低了电耗、生产成本,且能提高产能。

Description

一种RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺 技术领域
本发明属于冶金工程技术领域,具体涉及一种三联法冶炼不锈钢的新的工艺方法。
背景技术
目前,国内外生产不锈钢的方法基本上是采用矿热电炉生产出的粗镍合金块及铬铁合金块作为主要原料,由于原料是固态冷料,需电弧炉再次熔化,在电弧炉熔化,通过AOD精炼炉与其他原料按一定比例配比,通过脱碳、脱磷等过程后,再进行氧化和最终精炼,完成液态合金成分和温度的调整,最终变成不锈钢,精炼后的合格不锈钢采用连铸***制作成不锈钢板坯。通过一系列降碳保铬等过程,进行钢水温度和合金成分的控制,最终合格的钢水通过连铸***铸造成不锈钢板坯或方坯。该生产过程电耗高,增加了生产成本。生产环节多,产品成材时间长,产能低,增加投资设备(粗镍合金和铬铁合金浇铸***及粗镍合金和铬铁合金电弧炉熔化设备)及堆存场地和车辆运输***,环境污染较大。由于生产环节多,员工的劳动强度相应加大等一系列问题。
为进一步提高不锈钢的产能,降低生产成本,在生产工艺方面进行创新和优化,以减少生产中间粗镍合金及铬铁合金浇铸、电弧炉重熔等环节,充分利用粗镍合金铁水和铬铁合金铁水热能,通过对粗镍合金及铬铁合金生产的渣型控制、渣温及铁水的温度进行控制,使其进入AOD炉精炼时达到一定的温度等技术进行不锈钢的试验及工业性生产是本发明的需要研究的方向。
发明内容
本发明为了解决现有技术的缺陷,实现上述目的,以提高不锈钢的产能,降低生产成本,本发明在生产工艺方面进行优化,以减少生产中间粗镍合金及铬铁合金浇铸、电弧炉重熔等环节,充分利用粗镍合金铁水和铬铁合金铁水热能,通过对粗镍合金及铬铁合金生产的渣型控制、渣温及铁水的温度进行控制,使其进入AOD炉精炼时达到一定的温度等技术进行不锈钢的试验及工业性生产,本发明采用了三联法冶炼不锈钢的新型工艺,采用RKEF工艺生产镍铁、铬铁与AOD炉三联法冶炼不锈钢,并通过连铸***制成不锈钢板。
本发明采用一种RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,所述工艺包括以下步骤:
1)采用RKEF工艺分别熔炼粗镍合金及铬铁合金,并控制熔炼工艺参数;生产出粗镍合金铁水和铬铁合金铁水;
2)生产出的粗镍铁合金铁水及铬铁合金铁水,采用钢包盛装粗镍合金铁水和铬铁合金铁水,并将铁水温度保持在AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围内;
3)将粗镍合金铁水和铬铁合金铁水按照比例混合兑入AOD精炼炉进行脱碳、脱硫;
4)将合格的AOD钢水倒入钢包,输送至LF炉进行深脱氧;
5)将LF炉处理好的钢水通过行车吊运至连铸回转台,由连铸机铸成板坯或方坯;将得到的不锈钢板坯或方胚入库。
进一步地,所述步骤1)中对工艺参数的控制包括:对生产镍铁合金铁水和铬铁合金铁水的渣型的控制、渣温及铁温的控制,以保证AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的成分及温度。
优选的,所述步骤1)中对工艺参数的控制包括:对于粗镍合金熔炼,其Si/Mg控制在1.75-1.85之间;渣温控制在1550-1570℃范围 内,铁温控制在1500-1520℃范围内;对于铬铁合金熔炼,其MgO/Al2O3控制在1.0-1.7之间;渣温控制在1650-1730℃范围内,铁温控制在1550-1650℃范围内。
进一步地,所述步骤3)中粗镍铁合金铁水及铬铁合金铁水混合质量比为2:1~2.6:1
进一步地,所述步骤2)中将混合铁水温度保持在AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围内可采用在粗镍合金铁水和铬合金铁水液面均匀覆盖保温材料,和/或在钢包设备外包裹设备保温材料的方法控制混合铁水的温度范围。在粗镍合金铁水和铬合金铁水液面均匀覆盖的保温材料可采用所述保温材料可采用钢包保温覆盖剂,其中,钢包保温覆盖剂化学成分及质量百分比为C15‐20%,SiO230%~40%,CaO 15%~25%,Al2O39%~15%,Fe2O32~5%,MgO 2%~5%。所述在钢包设备外包裹的设备保温材料采用陶瓷纤维毯或纳基隔热软毡。
进一步的,所述步骤3)中AOD精炼炉精炼工艺包括步骤:
(1)利用氧枪进行顶底复吹升温,将温度升至1650-1700℃时,进入1:1脱碳期.
(2)根据计算钢液中实时的碳含量,对应供入最大氧量,同时采用底吹惰性气体的方式降低CO分压实现控温及脱碳报铬。AOD炉顶枪吹氧量为3500~4000Nm3/h,炉底吹惰性气体量为3500~4000Nm3/h;将终点温度控制在1660-1680℃范围内,终点碳控制在0.035%-0.045%范围内。
(3)通过料仓加入还原剂硅铁,还原渣中的氧化物。
(4)加入造渣剂,造渣剂的加入量为混合铁水的总质量的5%~8%范围内,将钢中硫控制在0.005%以下,并控制好渣的流动性。
优选的,所述造渣剂为石灰、萤石或镁砂。
优选的,惰性气体为氩气。
进一步的,所述步骤4)中大包钢水按LF炉工艺步骤包括:
(1)将经所述AOD炉冶炼的钢水送入LF炉,送电化渣升温,调整钢水温度,将温度升至满足连铸要求温度。
(2)调整氩气压力0.4-0.5Mpa,软吹10—15分钟,并喂硅钙芯线;停气镇静钢水8.5~9分钟,保证夹杂物充分上浮,提高钢水纯净度。
(3)出站时,按钢水质量投入0.05~0.06%的保温化渣剂完全覆盖渣面,以延长液态渣的时间,进一步加强渣吸附钢水中的夹杂物,使钢水纯净度进一步提高,同时减少大包粘渣,减少对后续钢水的污染,经过LF炉精炼后钢水硫含量≤0.005%。
优选的,所述喂硅钙芯线是采用含28%Ca的硅钙芯线进行单根喂线,喂线时,顶吹氩气搅拌,喂线深度1500mm~2000mm之间,喂线速度为100~110m/min,喂线量为0.7~1.0kg/t;喂线时间45~69s之间。
本发明的有益效果在于:
1)本发明采用RKEF工艺与AOD炉冶炼的有机结合,并通过对RKEF工艺参数的控制和调整,生产出粗镍、铬铁合金铁水并作为主要原料,通过一定的保温控制方法直接将粗镍、铬铁合金铁水按比例混合搭配兑入AOD精炼炉,使用氧化剂(氧气)、造渣剂、温度的控制等进行精炼后送入LF炉进行脱硫和调整合金成分生产不锈钢的工艺。现有技术中,一般是在AOD精炼炉精炼的过程中适量添加铬铁合金进行冶炼,其工艺条件难控制,金属损耗大,使得AOD炉精炼效率降低;本发明的工艺减少了生产中间粗镍合金,铬铁合金的浇铸、中频炉重熔等环节,同时通过控制渣型,渣温,铁温等使粗镍合金铁水和铬铁合金铁水符合AOD精炼炉入炉的条件,直接送入AOD炉进行精炼,不但降低了电耗、降低其设备投资成本及生产成 本,产品成材时间缩短、提高产能,现场环境更加清洁环保,还减轻了员工的劳动强度。LF炉冶炼工艺为我们根据整体工艺进行大量的创新研究和改进后总结得到的冶炼工艺,如其中加入了喂硅钙芯线后停气镇静钢水一定时间,保证夹杂物充分上浮,提高钢水纯净度;并进一步的使用保温化渣剂,以进一步加强渣吸附钢水中的夹杂物,使钢水纯净度进一步提高,同时减少大包粘渣,减少对后续钢水的污染。而AOD精炼炉和LF炉冶炼工艺的充分结合,提高了钢水的纯净度,并使其符合连铸要求温度,能够直接送入连铸机。
2)采用“RKEF与AOD炉三联法冶炼不锈钢”相比传统冶炼不锈钢工艺,减少了粗镍合金和铬铁合金在电弧炉的重熔过程,如:减少电弧炉设备和配套设备及人力资源的投入,降低了投资成本;减少了电弧炉熔化粗镍合金和铬铁合金过程;减少了熔化过程耐材及辅料投入消耗。
(3)采用分别熔炼得到粗镍合金铁水和铬铁合金铁水,使用在粗镍合金铁水和铬铁合金铁水液面均匀覆盖保温材料,和/或在钢包设备外包裹设备保温材料的方法控制混合铁水的温度范围,并将其直接送入AOD炉,大大减少了粗镍合金和铬铁合金在电弧炉熔化的金属损耗,从而提高金属回收率。
具体实施方式
下面结合具体实施例对本发明详细说明如下:
氧化物的还原性在同温下,直线位置处于较低的元素,易将其上部的氧化物还原出来,即其氧化物越稳定,也就是说在熔炼温度范围内,粗镍合金氧化物的还原顺序为镍、铁、硅,铬铁合金氧化物的还原顺序为铁、铬。
1)粗镍合金生产的反应式如下:
NiO+C=Ni+CO
FeO+C=Fe+CO
SiO2+2C=Si+2CO;
2)铬铁合金生产的还原反应式如下:
3(FeO·Cr2O3)+3C=3Fe+3Cr2O3+3CO
Cr2O3+13/3C=2/3Cr3C2+3CO
2/3Cr2O3+18/7C=4/21Cr7C3+2CO
2/3Cr2O3+2C=4/3Cr+2CO
MgO·Cr2O3+3C=2Cr+MgO+3CO
SiO2+2C=Si(液)+2CO;
3)不锈钢精炼的主要反应式如下:
(1)脱碳反应机理
[C]+[O]=CO;2[C]+O2(气)=2CO;Cr3O4(固)+4[C]=3[Cr]+4CO;
Cr2O3+3[C]=2[Cr]+3CO
(2)硅氧化反应机理
[Si]+O2(气)=(SiO2)
(3)还原反应机理
Cr3O4(固)+2[Si]=3[Cr]+2(SiO2)
(4)脱硫反应机理
[FeS]+(CaO)=(CaS)+[FeO]
现以在33000kVA电炉、75tAOD精炼炉、LF精炼炉、一机一流板坯连铸机上生产不锈钢为例,来叙述实施本发明的方法:
1)根据AOD精炼炉入炉所需粗镍合金及铬铁合金铁水温度,采用RKEF工艺分别熔炼粗镍合金及铬铁合金,并控制熔炼工艺参数;生产出粗镍合金铁水和铬铁合金铁水:
具体是对生产镍铁合金铁水和铬铁合金铁水的渣型的控制、渣温 及铁温的控制,以保证AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的成分及温度;其中对于粗镍合金熔炼,其Si/Mg控制在1.75-1.85之间;渣温控制在1550-1570℃范围内,铁温控制在1500-1520℃范围内;对于铬铁合金熔炼,其MgO/Al2O3控制在1.0-1.7之间;渣温控制在1650-1730℃范围内,铁温控制在1550-1650℃范围内,优选的,铬铁合金熔炼渣温控制在1650-1680范围内,铁温控制在1550-1580范围内。
2)生产出的粗镍铁合金铁水及铬铁合金铁水,采用钢包盛装粗镍合金铁水和铬铁合金铁水,并将铁水温度保持在AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围内;可采用在粗镍合金铁水和铬铁合金铁水液面均匀覆盖保温材料,和/或在钢包设备外包裹设备保温材料的方法控制混合铁水的温度范围,控制好铁水温度。
在本实施例中,我们可单独采用在粗镍合金铁水和铬铁合金铁水液面均匀覆盖的保温材料的方式实现合金铁水的保温,也可采用在钢包外包裹陶瓷纤维毯(1600陶瓷纤维毯)或纳基隔热软毡的方式实现铁水保温。从技术效果来看,其优选的保温方式为采用上述两种保温材料进行结合,即在混合合金铁水液面均匀覆盖的保温材料,并在钢包外包裹陶瓷纤维毯(1600陶瓷纤维毯)或纳基隔热软毡的双重保温方式实现合金铁水的保温。以保证合金铁水的温度完全符合AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围;材料使用具体详细描述如下:
在粗镍合金铁水和铬合金铁水液面均匀覆盖的保温材料可采用钢包保温覆盖剂,其中,钢包保温覆盖剂化学成分及质量百分比为C15-20%,SiO2 30%~40%,CaO 15%~25%,Al2O3 9%~15%,Fe2O3 2~5%,MgO 2%~5%。其制备方法为:选用膨胀石墨15%~25%,镁 砂2%~5%,石灰15%~25%,SiO2 30%~40%,Al2O3 9%~15%,Fe2O3 2~5%作为原料;将膨胀石墨、石灰、镁砂按重量份数称量配料,混匀后在1350-1400℃下预熔,熔化后冷却,采用自然冷却或风冷后破碎,然后制成细粉,按重量份数配入SiO2、Al2O3、Fe2O3粉末后混匀磨细至100目,制浆后用低压喷雾造粒塔干燥成形制成空心状的颗粒覆盖剂。
如选用碳化稻壳,其粒度控制在0~5mm范围之内;其湿度控制在:H2O≤0.5%。但碳化稻壳的铺展性较差,加入钢包后不能迅速的铺展开达到均匀覆盖的目的,且其隔热保温作用不够理想。
在钢包设备外包裹设备的保温材料可采用陶瓷纤维毯(1600陶瓷纤维毯)或纳基隔热软毡,均购于市场。
其中,陶瓷纤维毯采用特制硅酸铝陶瓷纤维长丝经特别的双面针刺工艺成型。在中性、氧化气氛下长期使用时仍能保持良好的抗拉强度、韧性和纤维结构,陶瓷纤维毯具有低导热率、低热容量、优良的化学稳定性、优良的热稳定性、及抗震性、优良的抗拉强度、本发明采用1600陶瓷纤维毯耐温为1600℃。经我们研究和使用非常适用于钢包外包裹,实现很好的铁水保温效果。纳基隔热软毡是一种隔热性能极强的软质工业隔热材料,低膨胀系数,低热收缩率。化学性能稳定,可长期耐受除氢氟酸外的大部分酸碱环境及各种辐射,使用寿命长,经我们研究非常适用于冶金工业炉、电炉的外背衬隔热与设备保温。经我们研究将其覆盖在钢包外,适用于本发明铁水的保温。经过上述的保温方法,使得铁水的温度完全能够达到AOD精炼炉入炉温度的要求,非常有效的减少了粗镍合金和铬铁合金在电弧炉熔化的金属损耗,从而提高金属回收率;并且极大的降低了产能消耗。
3)将粗镍铁合金铁水及铬铁合金铁水按照质量比为2:1~2.6:1的比例混合,兑入AOD精炼炉进行脱碳、脱硫。
可采用行车吊运钢包并将混合后的粗镍铁合金铁水及铬铁合金铁水送入AOD精炼炉进行精炼;其中合金料与造渣剂加入量计算:
(1)合金铁水搭配计算:
.红送铬铁水量:22750kg
红送镍铁水量:75000-22750=52250kg
(2)氧化期石灰加入量:
石灰加入量=Si%*75000*2.14*R/CaO%
其中,式中[%Si]表示钢水中硅含量;
R=(%CaO)/(%SiO2)表示碱度;(%CaO)有效——石灰中有效CaO含量。
本次实施例以下列配比搭配:
红送镍铁水:                        52T
红送铬铁水:                        23T
造渣剂(石灰):                      5.5T
AOD精炼炉精炼工艺包括步骤:
(1)利用氧枪进行顶底复吹升温,将温度升至1650-1700℃时,进入1:1脱碳期.
(2)根据计算钢液中实时的碳含量,对应供入最大氧量(供入最大氧量与碳含量的比例相同,即脱碳所需氧量),同时采用底吹惰性气体的方式降低CO分压实现控温及脱碳保铬。AOD炉顶枪吹氧量为3500~4000Nm3/h,炉底吹惰性气体量为3500~4000Nm3/h;将终点温度控制在1660-1680℃范围内,终点碳控制在0.035%-0.045%范围内。
(3)通过料仓加入还原剂硅铁,还原渣中的氧化物;其中例如可使用硅铁75合金(含硅量75%的硅铁合金)进行脱氧合金化,按回收率90%计算,每T钢液加入硅铁75合金5kg左右。
(4)加入造渣剂,造渣剂的加入量为混合铁水的总质量的5%~8% 范围内,将钢中硫控制在0.005%以下,并控制好渣的流动性。
造渣剂可选用石灰、萤石、镁砂;
4)将合格的AOD钢水倒入钢包,输送至LF炉进行深脱氧,工艺步骤包括:
(1)将经所述AOD炉冶炼的钢水送入LF炉,送电化渣升温,调整钢水温度,将温度升至满足连铸要求温度。
(2)调整氩气压力0.4-0.5Mpa,软吹10—15分钟,并喂硅钙芯线(采用含28%Ca的硅钙芯线进行单根喂线,喂线时,顶吹氩气搅拌,芯线依垂直方向喂入钢包,喂线部位选在氩枪旁,偏离钢包中心线约100~200mm,喂线深度1500mm~2000mm之间,喂线速度为100~110m/min,喂线量为0.7~1.0kg/t;喂线80米,喂线时间45~47s之间);停气镇静钢水8.5~9分钟,保证夹杂物充分上浮,改善钢的内在质量和钢水流动性,进一步降低钢水中氧和硫的含量,提高钢水纯净度。
(3)出站时,投入40kg保温化渣剂完全覆盖渣面,以延长液态渣的时间,进一步加强渣吸附钢水中的夹杂物,使钢水纯净度进一步提高,同时减少大包粘渣,减少对后续钢水的污染,经过LF炉精炼后钢水硫含量≤0.005%。
所述保温化渣剂的成分包括:主要成分SiO235%~45%,Al2O310%~20%,其他成分为CaO10%~16%;MgO2%~6%,石墨:10%~20%;其余为三氧化二铁,一般三氧化二铁质量百分含量为5%~8%。可采用如下方法获得:先将各原料制粉,粒度为80-100目,可添加占原料总量2%左右的水性粘合剂(例如淀粉粘合剂),搅拌混合10~15min,再喷洒总原料质量的8%的水,继续搅拌7min-15min,然后制粒,最后低温(35℃左右)烘干,制得本产品出站时,将该保温化渣剂均匀覆盖渣面。
5)将LF炉处理好的钢水通过行车吊运至连铸回转台,由连铸机铸成板坯或方坯;方坯或板坯的制作按连铸机技术操作规程执行,具体如下:
(1)中间包温度控制在1480-1490℃;拉速控制在1.25-1.40m/min。
(2)塞棒、二冷喷淋水采用自动控制。
(3)全程保护浇注。
将得到的不锈钢板坯或方胚入库。
产品的化学成份及炉渣成份:
(1)产品成份
Figure PCTCN2015095073-appb-000001
(2)炉渣成份
Figure PCTCN2015095073-appb-000002
得到的不锈钢呈板状;6000~12000mm(长)×160mm~220mm(高)×470~1600(宽)mm;方坯尺寸:横截面为正方形边长160~220mm的方坯,方坯长度≦12000mm;且符合国家标准和用户要求的不锈钢产品。本发明的新型工艺技术生产的产品适用于石油、化工、造船、汽车、建筑、食品、电子、医疗设备、公共设施等。
本发明冶炼中基本采用低电压、大电流的供电制度进行熔炼生产,二次电压大致在300-350V,二次电流30000-35000A之间甚至更高运行,另外炉渣碱度控制在0.6-0.7范围内。
采用上述的工艺不但降低了电耗、生产成本,产品成材时间缩短,提高产能,现场环境更加清洁环保,还减轻了员工的劳动强度,且生产出符合国家标准和用户要求的精制不锈钢产品。采用“RKEF与AOD炉三联法冶炼不锈钢”相比传统冶炼不锈钢工艺,减少了粗镍合金和铬铁合金在电弧炉的重熔过程,如:减少电弧炉设备和配套设备及人力资源的投入,降低了投资成本;减少了电弧炉熔化粗镍合金和铬铁合金过程,直接降低生产电耗580度/吨钢。相当于吨钢节省标煤232kg,吨钢减少二氧化碳排放566.66kg;减少了熔化过程耐材及辅料投入消耗,降低石灰消耗60kg/吨钢。综上所述,本发明的生产工艺方法,采用RKEF工艺生产粗镍铁合金通过对渣型的控制、渣温、铁水温度,通过一定的保温控制直接将粗镍、铬铁合金铁水按比例混合搭配兑入AOD精炼炉,使用氧化剂(氧气)、造渣剂、温度的控制等进行精炼后送入LF炉进行脱硫和调整合金成分生产不锈钢的工艺的三联精炼等生产不锈钢的工艺技术进行操作,得到的不锈钢产品其化学成份完全符合国家标准中的要求和用户需要。

Claims (10)

  1. 一种RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述工艺包括以下步骤:
    1)采用RKEF工艺分别熔炼粗镍合金及铬铁合金,并控制熔炼工艺参数;生产出粗镍合金铁水和铬铁合金铁水;
    2)生产出的粗镍铁合金铁水及铬铁合金铁水,采用钢包盛装粗镍合金铁水和铬铁合金铁水,并将铁水温度保持在AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围内;
    3)将粗镍合金铁水和铬铁合金铁水按照比例混合兑入AOD精炼炉进行脱碳、脱硫;
    4)将合格的AOD钢水倒入钢包,输送至LF炉进行深脱氧;
    5)将LF炉处理好的钢水通过行车吊运至连铸回转台,由连铸机铸成板坯或方坯;将得到的不锈钢板坯或方胚入库。
  2. 根据权利要求1所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述步骤1)中对工艺参数的控制包括:对生产镍铁合金铁水和铬铁合金铁水的渣型的控制、渣温及铁温的控制,以保证AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的成分及温度。
  3. 根据权利要求2所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述步骤1)中对工艺参数的控制包括:对于粗镍合金熔炼,其Si/Mg控制在1.75-1.85之间;渣温控制在1550-1570℃范围内,铁温控制在1500-1520℃范围内;对于铬铁合金熔炼,其MgO/Al2O3控制在1.0-1.7之间;渣温控制在1650-1730℃范围内,铁温控制在1550-1650℃范围内。
  4. 根据权利要求1所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述步骤3)中粗镍铁合金铁水及铬铁合金铁水混合质量比为2:1~2.6:1。
  5. 根据权利要求1所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述步骤2)中将粗镍合金铁水和铬铁合金铁水温度保持在AOD精炼炉入炉所需粗镍合金铁水和铬铁合金铁水的温度范围内可采用在粗镍合金铁水和铬合金铁水液面均匀覆盖保温材料,和/或在钢包设备外包裹设备保温材料的方法控制混合铁水的温度范围。
  6. 根据权利要求5所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述保温材料可采用钢包保温覆盖剂,其中,钢包保温覆盖剂化学成分及质量百分比为C 15-20%,SiO2 30%~40%,CaO 15%~25%,Al2O3 9%~15%,Fe2O3 2~5%,MgO 2%~5%。
  7. 根据权利要求5所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述在钢包设备外包裹的设备保温材料采用陶瓷纤维毯或纳基隔热软毡。
  8. 根据权利要求1所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述步骤3)中AOD精炼炉精炼工艺包括步骤:
    (1)利用氧枪进行顶底复吹升温,将温度升至1650-1700℃时,进入1:1脱碳期;
    (2)根据计算钢液中实时的碳含量,对应供入最大氧量,同时采用底吹惰性气体的方式降低CO分压实现控温及脱碳保铬;AOD炉顶枪吹氧量为3500~4000Nm3/h,炉底吹惰性气体量为3500~4000Nm3/h;将终点温度控制在1660-1680℃范围内,终点碳控制在0.035%-0.045%范围内;
    (3)通过料仓加入还原剂硅铁,还原渣中的氧化物;
    (4)加入造渣剂,造渣剂的加入量为混合铁水的总质量的5%~8%范围内,将钢中硫控制在0.005%以下。
  9. 根据权利要求7所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述造渣剂为石灰、萤石或镁砂;所示惰性气体为氩气。
  10. 根据权利要求1所述的RKEF生产镍铁、铬铁与AOD炉三联法冶炼不锈钢的工艺,其特征在于:所述步骤4)中大包钢水按LF炉工艺步骤包括:
    (1)将经所述AOD炉冶炼的钢水送入LF炉,送电化渣升温,调整钢水温度,将温度升至满足连铸要求温度;
    (2)调整氩气压力0.4-0.5Mpa,软吹10—15分钟,并喂硅钙芯线;停气镇静钢水8.5~9分钟,保证夹杂物充分上浮;
    (3)出站时,按钢水质量投入0.05~0.06%的保温化渣剂完全覆盖渣面,以延长液态渣的时间,经过LF炉精炼后钢水硫含量≤0.005%。
PCT/CN2015/095073 2015-09-30 2015-11-19 一种rkef生产镍铁、铬铁与aod炉三联法冶炼不锈钢的工艺 WO2017054299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510641268.8A CN105219923A (zh) 2015-09-30 2015-09-30 一种rkef生产镍铁、铬铁与aod炉三联法冶炼不锈钢的工艺
CN201510641268.8 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017054299A1 true WO2017054299A1 (zh) 2017-04-06

Family

ID=54989189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095073 WO2017054299A1 (zh) 2015-09-30 2015-11-19 一种rkef生产镍铁、铬铁与aod炉三联法冶炼不锈钢的工艺

Country Status (2)

Country Link
CN (1) CN105219923A (zh)
WO (1) WO2017054299A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112157233A (zh) * 2020-09-30 2021-01-01 山西太钢不锈钢股份有限公司 宽钢带铁铬铝合金连铸板坯两连浇的制造方法
CN113566579A (zh) * 2021-07-26 2021-10-29 广东飞南资源利用股份有限公司 一种冶炼***
CN114231773A (zh) * 2021-12-31 2022-03-25 永兴特种材料科技股份有限公司 一种用eaf+aod+lf冶炼镍基合金690电极棒的方法
CN115044774A (zh) * 2022-06-08 2022-09-13 山东工业职业学院 一种铬合金的制备方法
CN115161431A (zh) * 2022-07-22 2022-10-11 北京科技大学 一种双层气幕保护的钢包喂线工艺
CN116661401A (zh) * 2023-07-25 2023-08-29 江苏甬金金属科技有限公司 一种不锈钢带生产工艺控制优化方法及***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227424B (zh) * 2017-05-31 2018-12-28 中冶东方工程技术有限公司 不锈钢的冶炼设备和应用其冶炼不锈钢的冶炼方法
CN112226569A (zh) * 2020-10-10 2021-01-15 鞍钢股份有限公司 一种转炉生产高合金钢的合金化方法
CN113249540B (zh) * 2021-05-14 2022-08-23 山西太钢不锈钢股份有限公司 使用aod炉以氢氧化镍为原料冶炼镍系不锈钢的生产方法
CN115287405A (zh) * 2022-07-20 2022-11-04 山西太钢不锈钢股份有限公司 一种铁镍合金脱铁增镍的生产方法
CN115505747A (zh) * 2022-10-21 2022-12-23 安徽富凯特材有限公司 一种含铝元素的镍基合金电极锭生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988617A (en) * 1960-07-05 1965-04-07 Yawata Iron & Steel Co Production of high quality steel from nickeliferous lateritic ores
CN102936640A (zh) * 2012-11-23 2013-02-20 福建鼎信实业有限公司 一种采用rkef与aod炉双联法冶炼不锈钢的新型工艺
CN104451349A (zh) * 2014-12-12 2015-03-25 福建鼎信实业有限公司 一种不锈钢及其冶炼工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577840C (zh) * 2007-02-02 2010-01-06 刘光火 炉内脱磷高炉铁水直接冶炼不锈钢的工艺
CN101445845B (zh) * 2008-12-19 2011-01-26 陈法官 利用红土镍矿直接生产奥氏体不锈钢的生产工艺
CN103882180A (zh) * 2014-03-25 2014-06-25 山西太钢不锈钢股份有限公司 一种不锈钢预溶液的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB988617A (en) * 1960-07-05 1965-04-07 Yawata Iron & Steel Co Production of high quality steel from nickeliferous lateritic ores
CN102936640A (zh) * 2012-11-23 2013-02-20 福建鼎信实业有限公司 一种采用rkef与aod炉双联法冶炼不锈钢的新型工艺
CN104451349A (zh) * 2014-12-12 2015-03-25 福建鼎信实业有限公司 一种不锈钢及其冶炼工艺

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112157233A (zh) * 2020-09-30 2021-01-01 山西太钢不锈钢股份有限公司 宽钢带铁铬铝合金连铸板坯两连浇的制造方法
CN113566579A (zh) * 2021-07-26 2021-10-29 广东飞南资源利用股份有限公司 一种冶炼***
CN113566579B (zh) * 2021-07-26 2023-09-22 广东飞南资源利用股份有限公司 一种冶炼***
CN114231773A (zh) * 2021-12-31 2022-03-25 永兴特种材料科技股份有限公司 一种用eaf+aod+lf冶炼镍基合金690电极棒的方法
CN115044774A (zh) * 2022-06-08 2022-09-13 山东工业职业学院 一种铬合金的制备方法
CN115161431A (zh) * 2022-07-22 2022-10-11 北京科技大学 一种双层气幕保护的钢包喂线工艺
CN115161431B (zh) * 2022-07-22 2023-12-15 北京科技大学 一种双层气幕保护的钢包喂线工艺
CN116661401A (zh) * 2023-07-25 2023-08-29 江苏甬金金属科技有限公司 一种不锈钢带生产工艺控制优化方法及***
CN116661401B (zh) * 2023-07-25 2023-11-17 江苏甬金金属科技有限公司 一种不锈钢带生产工艺控制优化方法及***

Also Published As

Publication number Publication date
CN105219923A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017054299A1 (zh) 一种rkef生产镍铁、铬铁与aod炉三联法冶炼不锈钢的工艺
CN102776323B (zh) 一种低氧车轴用钢的冶炼方法
CN102021488B (zh) 核岛无缝钢管用钢及其生产方法
CN109750210B (zh) 低氧、氢含量高锰钢的生产方法
CN100500913C (zh) 一种非晶用低锰、低硫原料纯铁及其生产方法
CN110527917A (zh) 一种PC钢棒用30MnSiBCa热轧盘条及其制备方法
CN109930056A (zh) 一种400MPa级细晶粒螺纹钢筋及其制造方法
CN103627971B (zh) 大规格钎具用合金结构钢及其冶炼方法
CN102936640B (zh) 一种采用rkef与aod炉双联法冶炼不锈钢的工艺
CN109487178A (zh) 高纯净超高锰钢及其制备工艺
CN109678479A (zh) 冶炼高纯净高锰钢的钢包底吹氩透气砖
CN115261706B (zh) 光伏玻璃压延辊用马氏体不锈钢连铸大圆坯的制备方法
CN107201422A (zh) 一种低碳钢的生产方法
EP4215627A1 (en) Low-cost smelting method for polar-use steel using ultra-high phosphorus molten iron
CN101220413A (zh) 用海绵铁冶炼纯铁的工艺
CN106480353A (zh) 一种利用含钒铁水对hrb400钢进行合金化的方法
WO2016090769A1 (zh) 一种不锈钢及其冶炼工艺
WO2008009178A1 (fr) Rocédé de déphosphorisation dans un processus de fonte en gueuse ni-cr à partir d'un minerai d'oxyde de nickel
CN107747031A (zh) 一种耐腐蚀低磨耗的耐磨球及其制备方法
CN101323898A (zh) 粗制镍铁氧气一步除杂精炼方法
CN115740378A (zh) 承压件用奥氏体不锈钢0Cr19Ni10连铸大圆坯的制备方法
CN114480777A (zh) 一种转炉通过双渣法实现82b高碳出钢的方法
CN104046748B (zh) 一种钢水脱磷剂和钢水脱磷的方法
CN115558839B (zh) 一种p91钢锭的生产方法
CN110331317A (zh) 一种铝锰合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905211

Country of ref document: EP

Kind code of ref document: A1