WO2017052223A1 - Arc-type compression spring module for series elastic actuator - Google Patents

Arc-type compression spring module for series elastic actuator Download PDF

Info

Publication number
WO2017052223A1
WO2017052223A1 PCT/KR2016/010578 KR2016010578W WO2017052223A1 WO 2017052223 A1 WO2017052223 A1 WO 2017052223A1 KR 2016010578 W KR2016010578 W KR 2016010578W WO 2017052223 A1 WO2017052223 A1 WO 2017052223A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
protrusion
output
rotary
arc
Prior art date
Application number
PCT/KR2016/010578
Other languages
French (fr)
Korean (ko)
Inventor
전동수
이재호
Original Assignee
주식회사 토룩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 토룩 filed Critical 주식회사 토룩
Publication of WO2017052223A1 publication Critical patent/WO2017052223A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/66Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being metallic, e.g. in the form of coils

Definitions

  • the present invention relates to an elastic module that is a component of a series elastic actuator, and more particularly, to an arc type compression spring module that is connected in series to a rotational power source and measures the torque generated in the system through displacement of the elastic body.
  • a series elastic actuator is a actuator in which a predetermined elastic body is installed in series on a drive shaft of a power source such as a motor, as shown in FIG. 1.
  • the coupled elastic body allows the actuator to flexibly adapt to external force, and by measuring the displacement of the elastic body, the torque of the actuator can be determined, and the driving rigidity can also be variably controlled by using this in the feedback control of the actuator.
  • Torsion springs and tension-compression springs are generally used for torque measurement in these series elastic actuators. Torsion springs have different torsional stiffness and usable range in the winding direction and the unwinding direction, which makes them unsuitable for precise torque measurement. In addition, the tension-compression spring also has a limitation in that it is impossible to measure the precise torque because the elastic modulus at compression and the elastic modulus at tension are different from each other.
  • the present invention has been made to solve the above problems, an object of the present invention, the torque measurement in the series elastic actuator is precisely made and has a simple structure, the arc type compression spring module that can be made to adjust the elastic modulus also variable To provide.
  • arc type compression spring module is an arc type compression spring module connected to the same line as the drive shaft of the rotational power source, axially forward An input rotary part positioned at and connected to the rotary power source drive shaft to rotate; An output rotary part positioned rearward in the axial direction and transmitting a driving force to the outside; An elastic member disposed between an input rotary part and an output rotary part, the elastic member being deformed in proportion to a torque according to a difference in rotational force of the input rotary part and the output rotary part; And a casing positioned forward in the axial direction and having an accommodation space in which the input rotary part and the elastic member are accommodated.
  • the input rotary part is disposed concentrically with the drive shaft of the rotary power source, a cylindrical rotary body having a predetermined diameter, one or more input protrusions projecting outward in the radial direction of the rotary body, and the center of the rotary body And a connection part connected to the drive shaft of the rotary power source, wherein the output rotary part has a front surface disposed concentrically with the rotary body and positioned rearward in an axial direction and rearward rearward in an axial direction.
  • a disc shaped support having a diameter, at least one output protrusion disposed on the front side of the support but radially outward and projecting axially forward, and a rotating shaft disposed on the rear side of the support but transmitting a driving force to the outside;
  • the elastic member extends over the outer circumference of the rotary body. Ark-shaped, the inner arc of the elastic member is guided by the circumferential surface of the cylindrical rotary body, the elastic member is located between the output protrusion and the input protrusion through the drive shaft of the rotary power source It has a configuration that is deformed in proportion to the torque according to the difference between the rotational force provided to the input rotary portion and the rotational force provided to the output rotary portion through the rotary shaft.
  • the elastic member is composed of a coil spring
  • the coil spring is arranged in an arc shape along the outer circumferential surface of the rotary body and is wound along the circumferential direction of the rotary body to apply an elastic force in the circumferential direction
  • At least one end of one end is supported to the input protrusion and at least a part of the other end is supported to the output protrusion, and according to a relative rotation between the input protrusion and the output protrusion,
  • the change in the circumferential direction between the input protrusion and the output protrusion has a configuration that is elastically deformed.
  • the input protrusion is located forward in the axial direction
  • the output protrusion is located rearward in the axial direction, so that the input protrusion and the output protrusion are arranged without axial overlap so that they do not interfere during relative rotation.
  • the input protrusion and the output protrusion are rotated and displaced according to the rotation of the input rotary part and the output rotary part, respectively, so that the arc coil spring is pressed and deformed between the input protrusion and the output protrusion.
  • the input protrusions are provided in plural, spaced apart from each other at a predetermined interval in the circumferential direction of the rotary body, and the output protrusions are provided in plural, and each of the output protrusions is predetermined It is arranged spaced apart from each other, the position of the output protrusion and the position of the input protrusion has a configuration that is disposed in a position overlapping in the axial direction corresponding to the circumferential direction.
  • the rotary body is formed in a cylindrical shape having a predetermined diameter in the axial direction, the axial width of the input protrusion is smaller than the axial width of the rotary body, disposed in the axial front of the rotary body And a predetermined distance with the axial rear.
  • the casing includes a front portion having a disk-shaped shape corresponding to the shape of the support portion and having a connection hole formed at the center thereof, and a circumferential portion protruding a predetermined width in the axial direction over the periphery of the front portion.
  • the accommodating space is formed to have a cylindrical shape to accommodate the input rotary part and the elastic member, and the axial end of the circumference portion is connected to the outer circumference portion of the support portion, and the outer arc of the coil spring is guided by the inner circumferential surface of the circumference portion.
  • the apparatus further includes an input rotary sensor connected to the drive shaft of the rotary power source, and an output rotary sensor connected to the rotary shaft.
  • Arc type compression spring module can implement a large torsional rigidity compared to the same axial thickness by arranging the compression spring in the arc type.
  • the rotary part rotates in any direction in a clockwise or counterclockwise direction, it is configured to be compressed only without tensioning, so that the measurement can be made in a state where the elastic modulus is constant. That is, the torsional rigidity of the whole module is applied constantly regardless of the torsional direction.
  • the space efficiency is high, and thus the design freedom of the usable displacement and torsional rigidity of the elastic module is high. That is, a plurality of accommodation spaces are provided according to the number of output protrusions and input protrusions, and more torsional rigidity can be designed according to the number of springs accommodated in the accommodation space.
  • the spring has a structure connected in parallel, the modulus of elasticity is adjusted according to the number of the receiving space, and the number of springs, and accordingly the large torsional rigidity control can be implemented.
  • FIG. 1 is a view schematically showing a series elastic actuator (Series Elastic Actuator) structure according to the background of the present invention.
  • Figure 2 is an exploded view showing the arc-type compression spring module according to an embodiment of the present invention.
  • FIG. 3 is a view of the arc compression spring module of FIG. 2 viewed from another direction.
  • FIG. 4 is a view illustrating a coupling structure of an input rotary part, an output rotary part, and an elastic member.
  • FIG. 5 is a view of FIG. 4 viewed from another direction.
  • FIG. 6 is a view illustrating a coupling structure of an input rotary part, an output rotary part, and a casing.
  • FIG. 7 is an exploded view showing the arc-type compression spring module according to an embodiment of the present invention.
  • FIG. 8 is a view showing the operation of the arc compression spring module according to FIG.
  • FIG. 9 is a view showing the structure of the arc-type compression spring module according to an embodiment of the present invention.
  • FIG. 10 is a view showing the structure of the arc-type compression spring module according to an embodiment of the present invention.
  • the arc-type compression spring module is connected to the same line as the drive shaft of the rotational power source, the input rotary is located in the axial direction forward and connected to the rotational power source drive shaft to rotate part; An output rotary part positioned rearward in the axial direction and transmitting a driving force to the outside; An elastic member disposed between an input rotary part and an output rotary part, the elastic member being deformed in proportion to a torque according to a difference in rotational force of the input rotary part and the output rotary part; And a casing positioned forward in the axial direction and having an accommodation space in which the input rotary part and the elastic member are accommodated.
  • FIG. 2 is an exploded view illustrating the arc compression spring module according to an embodiment of the present invention
  • FIG. 3 is a view of the arc compression spring module of FIG. 2 viewed from another direction
  • FIG. 4 is an input rotary part and an output.
  • 5 is a view showing a coupling structure of a rotary part and an elastic member
  • FIG. 5 is a view of FIG. 4 viewed from another direction
  • FIG. 6 is a view showing a coupling structure of an input rotary part, an output rotary part, and a casing
  • Figure 8 is an exploded view showing the arc-type compression spring module according to an embodiment of the present invention
  • Figure 8 is a view showing the operation of the arc-type compression spring module according to Figure 7, Figures 9 and 10 in one embodiment of the present invention
  • Figure 2 shows the structure of an arc compression spring module according to the present invention.
  • Arc type compression spring module according to the present invention, the output rotary unit 200; An input rotary unit 100; An elastic member 300; And a casing 400.
  • the input rotary part 100 includes a rotary body 110 having a cylindrical shape, and an input protrusion 120.
  • Rotary body 110 is configured in a cylindrical shape having a predetermined outer diameter and axial width in the radial direction.
  • the rotary body 110 is a member that can be connected to the above-described rotational power source drive shaft, and as shown in FIGS. 2 and 3, it may have a connection portion 130 to be connected to the rotational power source drive shaft.
  • the connection part 130 may be formed as a predetermined through hole through which a central portion of the rotary body 130 may be inserted so that an input shaft may be inserted, but is not necessarily limited thereto.
  • the input protrusion 120 is provided on the outer circumferential surface of the rotary body 110, and is configured to protrude radially outward from the circumferential surface of the rotary body 110.
  • the input protrusion 120 protrudes with a predetermined width in the radial direction and has a predetermined width in the axial direction, and thus may be configured in a predetermined plate shape.
  • the input protrusions 120 may be provided in plural, and as illustrated in FIGS. 2 and 3, two input protrusions 120 may be provided to have a first input protrusion 122 and a second input protrusion 124. , May be spaced apart from each other with a predetermined center angle and a distance therebetween in the circumferential direction. Meanwhile, as shown in FIG. 7, one input protrusion 120 may be provided.
  • the output rotary part 200 includes a disc-shaped support part 210, an output protrusion 220, and a rotation shaft 230.
  • the support 210 has a front surface 212 located forward in the axial direction and a rear surface 214 located rearward in the axial direction and has a disk shape having a predetermined diameter.
  • At least one output protrusion 220 is disposed on the front surface 212 of the support 210.
  • the output protrusion 220 is located at an outer side in the radial direction of the disc-shaped support 210 and protrudes with a predetermined width in the axial direction and has a predetermined width in the radial direction.
  • One or more output protrusions 220 may be provided as shown in FIG. 7, but two or more output protrusions 220 may be provided as illustrated in FIGS. 1 and 2. Accordingly, two output protrusions 220 are provided, each having a first output protrusion 122 and a second output protrusion 124, and the first output protrusion 122 and the second output protrusion 124 are in the circumferential direction. It may have a predetermined center angle, and accordingly spaced apart from each other.
  • the distance between the center of the support 210 and each output protrusion 220 may correspond to or be smaller than the radius of the rotary body 110.
  • the outer diameter of the rotary body 110 may be equal to or smaller than the diameter of a circle formed by the inner surfaces of the plurality of output protrusions 220 provided in the support 210. Accordingly, the rotary body 110 may rotate between the plurality of output protrusions 220 provided on the front surface of the support 210.
  • the rotating shaft 230 is disposed on the rear surface 214 of the support 210.
  • the positional relationship between the input protrusion 120 and the output protrusion 220 in the circumferential direction is as follows.
  • the circumferential arrangement of the input protrusion 120 corresponds to the circumferential arrangement of the output protrusion 220 described above. That is, as shown in FIG. 4, when the input rotary part 100 and the output rotary part 200 are located concentrically, the output protrusion 220 and the input protrusion 120 may be placed at positions corresponding to each other in the circumferential direction. Can be. Here, corresponding means that they can overlap each other in the axial direction. In other words, it may be understood that the circumferential spacing of each of the input protrusions 122 and 224 and the circumferential spacing of the plurality of output protrusions 222 and 124 are the same or very similar to each other. Of course, when one input protrusion 120 and output protrusion 220 are provided as shown in FIG. 7, such a correspondence relationship will not be necessary.
  • the output protrusion 220 is located rearward in the axial direction, and the input protrusion 120 is located forward in the axial direction, so that the output protrusion 220 and the input protrusion 120 do not overlap in the axial direction. It may be disposed so as not to interfere with each other during the relative rotation of the input rotary unit 100 and the output rotary unit 200.
  • the output protrusion 220 and the input protrusion 120 are located at the front and rear positions in the axial direction, respectively, and the input rotary part 100 and the output rotary part 200 are respectively concentric. Even when rotated as described above, the output protrusion 220 and the input protrusion 120 may be disposed without a latch.
  • the input rotary part 100 has a cylindrical rotary body 110 having a predetermined width in the axial direction, the axial width A of the input protrusion 120 is It is smaller than the axial width B of the rotary body 110, is disposed in the axial front of the rotary body 110 is formed a space having a predetermined distance C with the axial rear, the output protrusion 220 in the space ) May have a positional relationship to rotate.
  • the axial protrusion height D of the output protrusion 220 may be less than or equal to the size C of the interval.
  • the elastic member 300 is a member that is deformed in proportion to the pressing force according to the difference in the rotational force according to the relative rotation of the output rotary part 200 and the input rotary part 100, for example, as shown in the drawing, as a coil spring Can be configured.
  • the elastic member 300 is disposed in an arc shape along the outer circumferential surface of the rotary body 110. Accordingly, the circumferential surface of the rotary body 110 guides the inner arc of the elastic member 300. In addition, the elastic member 300 is located between the output protrusion 220 and the input protrusion 120 in the elastic direction, the torque generated by the difference in the rotational force of the input rotary part 100 and the output rotary part 200 It can be modified in proportion to.
  • the elastic force application direction of the spring is accommodated so as to be in the circumferential direction, so that the spring has an arc shape corresponding to the shape of the circumference of the rotary body 110.
  • a predetermined storage space consisting of the inner surface of the casing 400 and the circumference of the rotary body 110, the output protrusion 220, and the input protrusion 120, which will be described later, is configured in an arc shape to provide elasticity of the spring.
  • the direction of application can be guided appropriately.
  • the elastic member 300 described above may be disposed between the output protrusion 220 and the input protrusion 120 to be deformed according to a change in the distance between the output protrusion 220 and the input protrusion 120. That is, when the output rotary part 200 and the input rotary part 100 rotate relative to each other and the distance between the output protrusion 220 and the input protrusion 120 becomes smaller, compression deformation may be performed.
  • the elastic member 300 may be disposed between the plurality of output protrusions 220 and the input protrusions 120. That is, as shown in FIG. 3, the first output protrusion 222, the second output protrusion 224, the first input protrusion 122, and the second input protrusion 124 are arranged to correspond to each other side by side in the axial direction.
  • the elastic member 300 may be disposed between the first output protrusion 222 and the first input protrusion 122, the second output protrusion 224, and the second input protrusion 124.
  • the casing 400 is a member having an accommodating space positioned in the axial direction to accommodate the input rotary part 100 and the elastic member 300.
  • the casing 400 is a member that is generally cylindrical, and includes a front portion 410 constituting one end of the cylinder, and a circumference 420 constituting the circumference of the cylinder.
  • the front part 410 has a disk-shaped shape corresponding to the shape of the support part 210 and has a predetermined diameter, and a connection for connecting the connection part 130 of the rotary body 110 through the rotational power source drive shaft through the center portion thereof.
  • the hole 430 is formed.
  • the perimeter 420 has a predetermined width in the axial direction over the periphery of the front portion 410 to have a cylindrical shape.
  • An inner circumferential surface of the circumference 420 guides the outer arc of the elastic member 300.
  • the axial end of the circumferential portion 420 is connected to the outer peripheral portion of the support portion 210, so that the casing 400 and the support portion 210 as a whole is coupled to the input rotary portion 100 and the elastic member 300 therein Forms an accommodation space 440 that can be accommodated.
  • the accommodation space 440 has an appropriate depth E and diameter F to accommodate the input rotary part 100 and the elastic member 300 and to be coupled to the support part 210. Can be.
  • the input rotary sensor 500 is further connected to the rotary power source drive shaft
  • the output rotary sensor 600 is further connected to the rotary shaft 230 of the output rotary part 200 to measure the displacement of the elastic member. Can be.
  • the arc-type compression spring module according to the present invention can be used in connection with a predetermined rotational power source structure.
  • the rotary power source structure may include a predetermined motor 710, a gear set 720, and the gear set 720 may include a predetermined input gear 730 that may be connected to the connection unit 130.
  • FIG. 8 is a view showing the operation of the arc-type compression spring module according to an embodiment of the present invention.
  • an operation of the arc compression spring module according to the present invention will be described with reference to FIG. 8, but for clarity, the input protrusion 120 and the output protrusion 220 are each one as shown in FIG. 7. It demonstrates through embodiment provided.
  • FIG 8 (b) shows that the input rotary part 100 rotates in a counterclockwise direction as shown by arrow P due to the difference in rotational force, and the interval between the input protrusion 120 and the output protrusion 220 is small.
  • the elastic member 300 is compressed to be compressed.
  • the input rotary part 100 rotates in the clockwise direction as shown by the arrow Q due to the difference in the rotational force.
  • the input protrusion 120 passes through the output protrusion 220 and pushes the elastic member 300.
  • the elastic member 300 is positioned between the input protrusion 120 and the output protrusion 220, and the elastic member 300 is compressed as the interval is reduced. According to this, when the input rotary part 100 and the output rotary part 200 rotate relative to the clockwise direction or the counterclockwise direction, the elastic member 300 is compressed.
  • the elastic member 300 is deformed in proportion to the torque according to the difference between the rotational force provided to the input rotary unit 100 through the drive shaft of the rotational power source and the rotational force provided to the output rotary unit 200 through the rotation shaft 230. do.
  • the amount of torque acting on the elastic member and the amount of compressive deformation of the elastic member 300 are proportional to each other.
  • the arc compression spring module according to the present invention has the following effects.
  • torsion springs When torsion springs are used for torque measurement, the torsional stiffness and usable range in the winding direction and the unwinding direction are different, which is not suitable for precise torque measurement.
  • the general spring even when a general spring is used, the general spring has a limitation in that it is impossible to measure precise torque because the elastic modulus at compression and the elastic modulus at tension are different from each other.
  • the arc-type compression spring module according to the present invention can implement a large torsional rigidity compared to the same axial thickness by arranging the compression spring in the arc.
  • the input rotary part 100 and the output rotary part 200 is rotated in any direction in a clockwise or counterclockwise direction, it is configured to be compressed only without tensioning, so that the measurement in a constant state of elasticity Can be done. That is, the torsional rigidity of the whole module is applied constantly regardless of the torsional direction.
  • the thickness in the axial direction becomes thin, and the space efficiency is high.
  • a complicated structure is unnecessary.
  • the design freedom of usable displacement and torsional rigidity of the elastomer module is high. That is, a plurality of storage spaces are provided according to the number of the output protrusions 220 and the input protrusions 120, and more torsional rigidity can be designed according to the number of springs accommodated in the storage space.
  • a plurality of storage spaces are provided according to the number of the output protrusions 220 and the input protrusions 120, and more torsional rigidity can be designed according to the number of springs accommodated in the storage space.
  • three output protrusions and input protrusions 122, 224, and 226 are provided to provide three storage spaces, and each of the three storage spaces has a spring having a modulus of elasticity K therein.
  • the overall modulus of elasticity can be 3K, which is three times.
  • the spring has a shape similar to a series connection, but is substantially a structure connected in parallel. Therefore, the modulus of elasticity is adjusted according to the number of storage spaces and the number of springs, and accordingly, a large width torsional rigidity adjustment can be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)

Abstract

The present invention relates to an elastic body module, which is a component of a series elastic actuator, and, more particularly, to an arc-type compression spring module connected, in series, to a driving shaft of a rotation power source so as to measure a torque generated in a system by a displacement of the elastic body.

Description

직렬 탄성 액추에이터를 위한 아크형 압축 스프링 모듈Arc-type compression spring module for series elastic actuator
본 발명은 직렬탄성 액추에이터의 구성품인 탄성체 모듈에 관한 것으로서, 보다 상세하게는, 회전동력원에 직렬로 연결하여, 시스템에 발생한 토크를 탄성체의 변위를 통해 측정하는 아크형 압축 스프링 모듈에 관한 것이다.The present invention relates to an elastic module that is a component of a series elastic actuator, and more particularly, to an arc type compression spring module that is connected in series to a rotational power source and measures the torque generated in the system through displacement of the elastic body.
직렬 탄성 액추에이터(Series Elastic Actuator)는 도 1과 같이 일반적으로 모터와 같은 동력원의 구동축에 소정의 탄성체를 직렬로 설치한 액추에이터이다. 결합된 탄성체로 인해 액추에이터가 외력에 유연하게 적응할 수 있고, 탄성체의 변위를 측정하면 액추에이터의 토크를 알아낼 수 있어, 이를 액추에이터의 피드백 제어에 이용하여 구동강성을 가변적으로 제어할 수도 있다. A series elastic actuator is a actuator in which a predetermined elastic body is installed in series on a drive shaft of a power source such as a motor, as shown in FIG. 1. The coupled elastic body allows the actuator to flexibly adapt to external force, and by measuring the displacement of the elastic body, the torque of the actuator can be determined, and the driving rigidity can also be variably controlled by using this in the feedback control of the actuator.
이러한 직렬 탄성 액추에이터에서 토크측정을 위해 일반적으로 비틀림 스프링과 인장-압축 스프링을 사용한다. 비틀림 스프링은 감김 방향과 풀림 방향의 비틀림 강성 및 사용가능 범위가 상이하여, 양쪽 방향을 모두 사용하게 되면 정밀한 토크 측정에 부적합하다. 아울러, 인장-압축 스프링도, 압축 시의 탄성 계수와 인장 시의 탄성 계수가 서로 상이한 이유로 정밀한 토크를 측정할 수 없는 한계를 갖는다.Torsion springs and tension-compression springs are generally used for torque measurement in these series elastic actuators. Torsion springs have different torsional stiffness and usable range in the winding direction and the unwinding direction, which makes them unsuitable for precise torque measurement. In addition, the tension-compression spring also has a limitation in that it is impossible to measure the precise torque because the elastic modulus at compression and the elastic modulus at tension are different from each other.
따라서, 정밀한 토크 측정에 적합한 스프링 모듈을 개발할 필요가 있다.Therefore, there is a need to develop a spring module suitable for precise torque measurement.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은, 직렬 탄성 액추에이터에서 토크 측정이 정확히 이루어지며 간단한 구조를 갖고, 탄성 계수의 조절 또한 가변적으로 이루어질 수 있는 아크형 압축 스프링 모듈을 제공하는 데 있다.The present invention has been made to solve the above problems, an object of the present invention, the torque measurement in the series elastic actuator is precisely made and has a simple structure, the arc type compression spring module that can be made to adjust the elastic modulus also variable To provide.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈은, 회전동력원의 구동축과 동일 선상에 연결되는 아크형 압축 스프링 모듈로서, 축방향으로 전방에 위치하며 상기 회전동력원 구동축과 연결되어 회전하는 입력 로터리부; 축방향으로 후방에 위치하며 외부에 구동력을 전달하는 출력 로터리부; 입력 로터리부와 출력 로터리부 사이에 배치되되 상기 입력 로터리부와 출력 로터리부의 회전력 차이에 따른 토크에 비례하여 변형되는 탄성 부재; 및 축방향으로 전방에 위치하며 상기 입력 로터리부와 탄성 부재가 수용되는 수용 공간을 갖는 케이싱;을 포함한다.The present invention has been made to solve the above-described problems, arc type compression spring module according to an embodiment of the present invention is an arc type compression spring module connected to the same line as the drive shaft of the rotational power source, axially forward An input rotary part positioned at and connected to the rotary power source drive shaft to rotate; An output rotary part positioned rearward in the axial direction and transmitting a driving force to the outside; An elastic member disposed between an input rotary part and an output rotary part, the elastic member being deformed in proportion to a torque according to a difference in rotational force of the input rotary part and the output rotary part; And a casing positioned forward in the axial direction and having an accommodation space in which the input rotary part and the elastic member are accommodated.
바람직하게는, 상기 입력 로터리부는, 상기 회전동력원의 구동축과 동심으로 배치되며 소정의 직경을 갖는 원통형의 로터리 몸체, 상기 로터리 몸체의 직경 방향 외측으로 돌출되는 하나 이상의 입력 돌부, 및 상기 로터리 몸체의 중심에 형성되며 상기 회전동력원의 구동축과 연결되는 연결부를 포함하며, 상기 출력 로터리부는, 상기 로터리 몸체와 동심으로 배치되며 축방향으로 전방에 위치하는 전면과 축방향으로 후방에 위치하는 후면을 갖고 소정의 직경을 갖는 원반형의 지지부, 상기 지지부의 전면 상에 배치되되 직경 방향으로 외측에 위치하며 축방향 전방으로 돌출되는 하나 이상의 출력 돌부, 및 상기 지지부의 후면 상에 배치되되 외부에 구동력을 전달하는 회전축을 포함하고, 상기 탄성 부재는, 상기 로터리 몸체의 외측 둘레에 걸쳐서 아크(arc)형으로 배치되며, 상기 원통형의 로터리 몸체의 둘레면에 의해서 상기 탄성 부재의 내측 아크가 가이드되되, 상기 탄성 부재는 상기 출력 돌부와 입력 돌부 사이에 위치하여 상기 회전동력원의 구동축을 통해 입력 로터리부에 제공되는 회전력과 상기 회전축을 통해 출력 로터리부에 제공된 회전력의 차이에 따른 토크에 비례하여 변형되는 구성을 갖는다.Preferably, the input rotary part is disposed concentrically with the drive shaft of the rotary power source, a cylindrical rotary body having a predetermined diameter, one or more input protrusions projecting outward in the radial direction of the rotary body, and the center of the rotary body And a connection part connected to the drive shaft of the rotary power source, wherein the output rotary part has a front surface disposed concentrically with the rotary body and positioned rearward in an axial direction and rearward rearward in an axial direction. A disc shaped support having a diameter, at least one output protrusion disposed on the front side of the support but radially outward and projecting axially forward, and a rotating shaft disposed on the rear side of the support but transmitting a driving force to the outside; And the elastic member extends over the outer circumference of the rotary body. Ark-shaped, the inner arc of the elastic member is guided by the circumferential surface of the cylindrical rotary body, the elastic member is located between the output protrusion and the input protrusion through the drive shaft of the rotary power source It has a configuration that is deformed in proportion to the torque according to the difference between the rotational force provided to the input rotary portion and the rotational force provided to the output rotary portion through the rotary shaft.
바람직하게는, 상기 탄성 부재는 코일 스프링으로 구성되되, 상기 코일 스프링은, 상기 로터리 몸체의 외주면을 따라서 아크(arc)형으로 배치되되 상기 로터리 몸체의 둘레 방향을 따라서 권선되어 둘레 방향으로 탄성력이 인가되게 배치되며, 탄성 방향으로 일 단의 적어도 일 부분은 상기 입력 돌부에 지지되게 위치하고 타 단의 적어도 일 부분은 상기 출력 돌부에 지지되게 위치하여, 상기 입력 돌부와 상기 출력 돌부 사이의 상대 회전에 따른 상기 입력 돌부와 상기 출력 돌부 사이의 둘레 방향 간격의 변화에 따라서 가압되어 탄성 변형되는 구성을 갖는다.Preferably, the elastic member is composed of a coil spring, the coil spring is arranged in an arc shape along the outer circumferential surface of the rotary body and is wound along the circumferential direction of the rotary body to apply an elastic force in the circumferential direction At least one end of one end is supported to the input protrusion and at least a part of the other end is supported to the output protrusion, and according to a relative rotation between the input protrusion and the output protrusion, According to the change in the circumferential direction between the input protrusion and the output protrusion has a configuration that is elastically deformed.
바람직하게는, 상기 입력 돌부는 축방향으로 전방에 위치하며, 상기 출력 돌부는 축방향으로 후방에 위치하여, 상기 입력 돌부와 상기 출력 돌부는 축방향 겹쳐짐이 없이 배치되어 상대 회전 중 간섭되지 않도록 위치하며, 상기 입력 돌부와 상기 출력 돌부는 각각 상기 입력 로터리부 및 출력 로터리부의 회전에 따라서 회전 변위하여 상기 아크형 코일 스프링이 상기 입력 돌부와 상기 출력 돌부 사이에서 가압되어 변형되는 구성을 갖는다.Preferably, the input protrusion is located forward in the axial direction, the output protrusion is located rearward in the axial direction, so that the input protrusion and the output protrusion are arranged without axial overlap so that they do not interfere during relative rotation. The input protrusion and the output protrusion are rotated and displaced according to the rotation of the input rotary part and the output rotary part, respectively, so that the arc coil spring is pressed and deformed between the input protrusion and the output protrusion.
바람직하게는, 상기 입력 돌부는 복수 개 마련되며, 서로 상기 로터리 몸체의 둘레 방향으로 소정의 간격을 두고 이격되게 배치되고, 상기 출력 돌부는, 복수 개 마련되고, 서로 상기 지지부의 둘레 방향으로 소정의 간격을 두고 이격되게 배치되되, 상기 출력 돌부의 위치와 상기 입력 돌부의 위치는 둘레 방향으로 대응되어 축방향으로 중첩되는 위치에 배치되는 구성을 갖는다.Preferably, the input protrusions are provided in plural, spaced apart from each other at a predetermined interval in the circumferential direction of the rotary body, and the output protrusions are provided in plural, and each of the output protrusions is predetermined It is arranged spaced apart from each other, the position of the output protrusion and the position of the input protrusion has a configuration that is disposed in a position overlapping in the axial direction corresponding to the circumferential direction.
바람직하게는, 상기 로터리 몸체는, 축방향으로 소정의 직경을 갖는 원통형으로 구성되고, 상기 입력 돌부의 축방향 폭은 상기 로터리 몸체의 축방향 폭보다 작으며, 상기 로터리 몸체의 축방향 전방에 배치되어 축방향 후방과 소정 간격을 갖는다.Preferably, the rotary body is formed in a cylindrical shape having a predetermined diameter in the axial direction, the axial width of the input protrusion is smaller than the axial width of the rotary body, disposed in the axial front of the rotary body And a predetermined distance with the axial rear.
바람직하게는, 상기 케이싱은, 상기 지지부의 형상에 대응하는 원반형 형상을 갖고 중심부에 연결 홀이 형성된 전면부, 및 상기 전면부의 둘레에 걸쳐 축방향으로 소정 폭 돌출되어 원통형으로 구성되는 둘레부를 포함하여, 상기 수용 공간은 원통형 형상을 갖도록 형성되어 상기 입력 로터리부 및 탄성 부재가 수용되며 상기 둘레부의 축방향 단부는 상기 지지부의 외주부와 연결되고, 상기 둘레부의 내주면에 의해서 상기 코일 스프링의 외측 아크가 가이드되는 구성을 갖는다.Preferably, the casing includes a front portion having a disk-shaped shape corresponding to the shape of the support portion and having a connection hole formed at the center thereof, and a circumferential portion protruding a predetermined width in the axial direction over the periphery of the front portion. The accommodating space is formed to have a cylindrical shape to accommodate the input rotary part and the elastic member, and the axial end of the circumference portion is connected to the outer circumference portion of the support portion, and the outer arc of the coil spring is guided by the inner circumferential surface of the circumference portion. Has a configuration.
바람직하게는, 상기 회전동력원의 구동축과 연결되는 입력 로터리 센서, 및 상기 회전축과 연결되는 출력 로터리 센서를 더 포함한다.Preferably, the apparatus further includes an input rotary sensor connected to the drive shaft of the rotary power source, and an output rotary sensor connected to the rotary shaft.
본 발명에 따른 아크형 압축 스프링 모듈은 압축 스프링을 아크형으로 배치하여 동일한 축방향 두께 대비 큰 비틀림 강성을 구현할 수 있다. 또한, 로터리부가 시계방향, 또는 시계반대방향의 어떠한 방향으로 회전하는 경우에도, 인장됨이 없이 단지 압축되도록 구성됨으로써, 탄성계수가 일정한 상태에서 측정이 이루어질 수 있다. 즉, 전체적인 모듈의 비틀림 강성이 비틀림 방향에 관계없이 일정하게 적용된다.Arc type compression spring module according to the present invention can implement a large torsional rigidity compared to the same axial thickness by arranging the compression spring in the arc type. In addition, even when the rotary part rotates in any direction in a clockwise or counterclockwise direction, it is configured to be compressed only without tensioning, so that the measurement can be made in a state where the elastic modulus is constant. That is, the torsional rigidity of the whole module is applied constantly regardless of the torsional direction.
또한, 케이싱 및 출력 로터리부 사이에 형성되는 소정의 수용 공간 내에 압축 스프링을 수용시킴으로써 별도의 고정 구조가 필요 없으며 조립 구조가 매우 간단하다.In addition, by accommodating the compression spring in a predetermined accommodation space formed between the casing and the output rotary part, a separate fixing structure is not necessary and the assembly structure is very simple.
아울러, 탄성 부재로 사용되는 스프링을 아크형으로 배치함으로써 공간 효율이 높으며, 이로 인해 탄성체 모듈의 사용가능 변위 및 비틀림 강성의 설계 자유도가 높다. 즉, 출력 돌부 및 입력 돌부의 개수에 따라서 복수 개의 수용 공간이 마련되며, 상기 수용 공간 내에 수용되는 스프링의 개수에 따라서 더욱 큰 비틀림 강성을 설계할 수 있다. 또한, 상기 스프링은 병렬로 연결된 구조로서, 수용 공간의 개수, 및 스프링의 개수에 따라서 탄성 계수가 조절되며, 그에 따라서 큰 폭의 비틀림 강성 조절이 구현될 수 있다.In addition, by arranging the spring to be used as the elastic member in the arc shape, the space efficiency is high, and thus the design freedom of the usable displacement and torsional rigidity of the elastic module is high. That is, a plurality of accommodation spaces are provided according to the number of output protrusions and input protrusions, and more torsional rigidity can be designed according to the number of springs accommodated in the accommodation space. In addition, the spring has a structure connected in parallel, the modulus of elasticity is adjusted according to the number of the receiving space, and the number of springs, and accordingly the large torsional rigidity control can be implemented.
도 1 은 본 발명의 배경 기술에 따른 직렬 탄성 액추에이터(Series Elastic Actuator) 구조를 개략적으로 나타낸 도면이다.1 is a view schematically showing a series elastic actuator (Series Elastic Actuator) structure according to the background of the present invention.
도 2 는 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈을 분해하여 나타낸 도면이다.Figure 2 is an exploded view showing the arc-type compression spring module according to an embodiment of the present invention.
도 3 은 도 2 의 아크형 압축 스프링 모듈을 다른 방향에서 바라본 도면이다.3 is a view of the arc compression spring module of FIG. 2 viewed from another direction.
도 4 는 입력 로터리부와 출력 로터리부 및 탄성 부재의 결합 구조를 나타낸 도면이다.4 is a view illustrating a coupling structure of an input rotary part, an output rotary part, and an elastic member.
도 5 는 도 4 를 다른 방향에서 본 도면이다.5 is a view of FIG. 4 viewed from another direction.
도 6 은 입력 로터리부와 출력 로터리부 및 케이싱의 결합 구조를 나타낸 도면이다.6 is a view illustrating a coupling structure of an input rotary part, an output rotary part, and a casing.
도 7 은 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈을 분해하여 나타낸 도면이다.7 is an exploded view showing the arc-type compression spring module according to an embodiment of the present invention.
도 8 은 도 7 에 따른 아크형 압축 스프링 모듈의 작동을 나타낸 도면이다.8 is a view showing the operation of the arc compression spring module according to FIG.
도 9 는 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈의 구조를 나타낸 도면이다.9 is a view showing the structure of the arc-type compression spring module according to an embodiment of the present invention.
도 10 은 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈의 구조를 나타낸 도면이다.10 is a view showing the structure of the arc-type compression spring module according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈은, 회전동력원의 구동축과 동일 선상에 연결되는 아크형 압축 스프링 모듈로서, 축방향으로 전방에 위치하며 상기 회전동력원 구동축과 연결되어 회전하는 입력 로터리부; 축방향으로 후방에 위치하며 외부에 구동력을 전달하는 출력 로터리부; 입력 로터리부와 출력 로터리부 사이에 배치되되 상기 입력 로터리부와 출력 로터리부의 회전력 차이에 따른 토크에 비례하여 변형되는 탄성 부재; 및 축방향으로 전방에 위치하며 상기 입력 로터리부와 탄성 부재가 수용되는 수용 공간을 갖는 케이싱;을 포함한다.Arc-type compression spring module according to an embodiment of the present invention, the arc-type compression spring module is connected to the same line as the drive shaft of the rotational power source, the input rotary is located in the axial direction forward and connected to the rotational power source drive shaft to rotate part; An output rotary part positioned rearward in the axial direction and transmitting a driving force to the outside; An elastic member disposed between an input rotary part and an output rotary part, the elastic member being deformed in proportion to a torque according to a difference in rotational force of the input rotary part and the output rotary part; And a casing positioned forward in the axial direction and having an accommodation space in which the input rotary part and the elastic member are accommodated.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 바람직한 실시예에 대하여 설명한다. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
도 2 는 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈을 분해하여 나타낸 도면이고, 도 3 은 도 2 의 아크형 압축 스프링 모듈을 다른 방향에서 바라본 도면이며, 도 4 는 입력 로터리부와 출력 로터리부 및 탄성 부재의 결합 구조를 나타낸 도면이고, 도 5 는 도 4 를 다른 방향에서 본 도면이며, 도 6 은 입력 로터리부와 출력 로터리부 및 케이싱의 결합 구조를 나타낸 도면이고, 도 7 은 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈을 분해하여 나타낸 도면이며, 도 8 은 도 7 에 따른 아크형 압축 스프링 모듈의 작동을 나타낸 도면이고, 도 9 및 10 은 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈의 구조를 나타낸 도면이다.2 is an exploded view illustrating the arc compression spring module according to an embodiment of the present invention, FIG. 3 is a view of the arc compression spring module of FIG. 2 viewed from another direction, and FIG. 4 is an input rotary part and an output. 5 is a view showing a coupling structure of a rotary part and an elastic member, FIG. 5 is a view of FIG. 4 viewed from another direction, FIG. 6 is a view showing a coupling structure of an input rotary part, an output rotary part, and a casing, and FIG. Figure 8 is an exploded view showing the arc-type compression spring module according to an embodiment of the present invention, Figure 8 is a view showing the operation of the arc-type compression spring module according to Figure 7, Figures 9 and 10 in one embodiment of the present invention Figure 2 shows the structure of an arc compression spring module according to the present invention.
본 발명에 따른 아크형 압축 스프링 모듈은, 출력 로터리부(200); 입력 로터리부(100); 탄성 부재(300); 및 케이싱(400);을 포함한다.Arc type compression spring module according to the present invention, the output rotary unit 200; An input rotary unit 100; An elastic member 300; And a casing 400.
먼저, 입력 로터리부(100)에 대해 설명한다.First, the input rotary unit 100 will be described.
입력 로터리부(100)는 원통형으로 구성된 로터리 몸체(110), 및 입력 돌부(120)를 포함하여 구성된다.The input rotary part 100 includes a rotary body 110 having a cylindrical shape, and an input protrusion 120.
로터리 몸체(110)는 직경 방향으로 소정의 외경 및 축방향 폭을 갖는 원통형으로 구성된다. 로터리 몸체(110)는 상술한 회전동력원 구동축과 연결될 수 있는 부재로서, 도 2 및 3 에 도시된 바와 같이, 회전동력원 구동축과 연결될 수 있도록 하는 연결부(130)를 가질 수 있다. 상기 연결부(130)는 상기 로터리 몸체(130)의 중심부가 관통되어 입력축이 삽입될 수 있는 소정의 관통 홀로 형성될 수 있으나, 반드시 이에 한정하지는 아니한다. Rotary body 110 is configured in a cylindrical shape having a predetermined outer diameter and axial width in the radial direction. The rotary body 110 is a member that can be connected to the above-described rotational power source drive shaft, and as shown in FIGS. 2 and 3, it may have a connection portion 130 to be connected to the rotational power source drive shaft. The connection part 130 may be formed as a predetermined through hole through which a central portion of the rotary body 130 may be inserted so that an input shaft may be inserted, but is not necessarily limited thereto.
상기 입력 돌부(120)는 상기 로터리 몸체(110)의 외측 둘레면에 구비되며, 로터리 몸체(110)의 둘레면으로부터 직경 방향 외측으로 돌출되게 구성된다. 상기 입력 돌부(120)는 직경 방향으로 소정의 너비를 갖고 돌출되고, 축 방향으로도 소정의 폭을 가져서, 소정의 판상으로 구성될 수 있다.The input protrusion 120 is provided on the outer circumferential surface of the rotary body 110, and is configured to protrude radially outward from the circumferential surface of the rotary body 110. The input protrusion 120 protrudes with a predetermined width in the radial direction and has a predetermined width in the axial direction, and thus may be configured in a predetermined plate shape.
상기 입력 돌부(120)는 복수 개 구비될 수 있으며, 일 예에 의하면 도 2 및 3 에 도시된 바와 같이, 2 개 구비되어 제1 입력 돌부(122), 및 제2 입력 돌부(124)를 가지며, 둘레 방향으로 소정의 중심각 및 그에 따른 간격을 갖고 서로 이격되게 배치될 수 있다. 한편, 도 7 과 같이 입력 돌부(120)가 하나 구비되는 것도 가능하다.The input protrusions 120 may be provided in plural, and as illustrated in FIGS. 2 and 3, two input protrusions 120 may be provided to have a first input protrusion 122 and a second input protrusion 124. , May be spaced apart from each other with a predetermined center angle and a distance therebetween in the circumferential direction. Meanwhile, as shown in FIG. 7, one input protrusion 120 may be provided.
다음으로, 출력 로터리부(200)에 대해 설명한다.Next, the output rotary part 200 is demonstrated.
출력 로터리부(200)는 원반형의 지지부(210), 출력 돌부(220), 및 회전축(230)을 포함한다.The output rotary part 200 includes a disc-shaped support part 210, an output protrusion 220, and a rotation shaft 230.
지지부(210)는 축방향으로 전방에 위치하는 전면(212)과 축방향으로 후방에 위치하는 후면(214)을 갖고 소정의 직경을 갖는 원반형으로 구성된다. The support 210 has a front surface 212 located forward in the axial direction and a rear surface 214 located rearward in the axial direction and has a disk shape having a predetermined diameter.
출력 돌부(220)는 상기 지지부(210)의 전면(212) 상에 하나 이상 배치된다. 상기 출력 돌부(220)는 상기 원반형의 지지부(210)의 직경 방향으로 외측에 위치하며 축방향 전방으로 소정의 폭을 갖고 돌출되고 직경 방향으로 소정의 너비를 갖는다. 상기 출력 돌부(220)는 도 7 과 같이 하나 구비될 수도 있으나, 도 1 및 2 와 같이 2 개 이상 구비될 수도 있다. 이에 따라서, 출력 돌부(220)는 2 개 구비되어 제1 출력 돌부(122), 및 제2 출력 돌부(124)를 가지며, 제1 출력 돌부(122)와 제2 출력 돌부(124)는 둘레 방향으로 소정의 중심각을 갖고, 그에 따른 간격을 가지며 서로 이격되게 배치될 수 있다.At least one output protrusion 220 is disposed on the front surface 212 of the support 210. The output protrusion 220 is located at an outer side in the radial direction of the disc-shaped support 210 and protrudes with a predetermined width in the axial direction and has a predetermined width in the radial direction. One or more output protrusions 220 may be provided as shown in FIG. 7, but two or more output protrusions 220 may be provided as illustrated in FIGS. 1 and 2. Accordingly, two output protrusions 220 are provided, each having a first output protrusion 122 and a second output protrusion 124, and the first output protrusion 122 and the second output protrusion 124 are in the circumferential direction. It may have a predetermined center angle, and accordingly spaced apart from each other.
한편, 지지부(210)의 중심과 각각의 출력 돌부(220) 사이의 거리는 상기 로터리 몸체(110)의 반경과 대응하거나, 그보다 작을 수 있다. 즉, 이를 달리 설명하면, 로터리 몸체(110)의 외경은 상기 지지부(210)에 구비되는 복수 개의 출력 돌부(220)의 내면이 형성하는 원의 직경과 같거나 또는 그보다 작을 수 있다. 이에 따라서, 로터리 몸체(110)가 상기 지지부(210)의 전면에 구비된 상기 복수 개의 출력 돌부(220) 사이에서 회전할 수 있다.Meanwhile, the distance between the center of the support 210 and each output protrusion 220 may correspond to or be smaller than the radius of the rotary body 110. In other words, the outer diameter of the rotary body 110 may be equal to or smaller than the diameter of a circle formed by the inner surfaces of the plurality of output protrusions 220 provided in the support 210. Accordingly, the rotary body 110 may rotate between the plurality of output protrusions 220 provided on the front surface of the support 210.
회전축(230)은 상기 지지부(210)의 후면(214) 상에 배치된다.The rotating shaft 230 is disposed on the rear surface 214 of the support 210.
이하에서는 입력 돌부(120)와 출력 돌부(220)의 위치 관계를 고찰한다.Hereinafter, the positional relationship between the input protrusion 120 and the output protrusion 220 will be considered.
먼저, 둘레 방향으로 상기 입력 돌부(120)와 출력 돌부(220)의 위치 관계를 설명하면 하기와 같다. First, the positional relationship between the input protrusion 120 and the output protrusion 220 in the circumferential direction is as follows.
바람직하게는, 상기 입력 돌부(120)의 둘레 방향 배치는 상술한 출력 돌부(220)의 둘레 방향 배치와 대응된다. 즉, 도 4 와 같이, 입력 로터리부(100)와 출력 로터리부(200)를 동심으로 위치시켰을 때, 상기 출력 돌부(220)와 상기 입력 돌부(120)는 둘레 방향으로 서로 대응되는 위치에 놓일 수 있다. 여기서, 대응된다 함은 축방향으로 볼 때 서로 겹쳐질 수 있음을 의미한다. 이를 달리 설명하면, 각각의 입력 돌부(122, 224)가 서로 갖는 둘레 방향 간격과 복수의 출력 돌부(222, 124)가 서로 갖는 둘레 방향 간격은 서로 동일, 또는 매우 유사한 것으로 이해될 수 있다. 물론, 도 7 과 같이 하나의 입력 돌부(120) 및 출력 돌부(220)가 구비될 때에는 이러한 대응 관계가 필요치 아니할 것이다.Preferably, the circumferential arrangement of the input protrusion 120 corresponds to the circumferential arrangement of the output protrusion 220 described above. That is, as shown in FIG. 4, when the input rotary part 100 and the output rotary part 200 are located concentrically, the output protrusion 220 and the input protrusion 120 may be placed at positions corresponding to each other in the circumferential direction. Can be. Here, corresponding means that they can overlap each other in the axial direction. In other words, it may be understood that the circumferential spacing of each of the input protrusions 122 and 224 and the circumferential spacing of the plurality of output protrusions 222 and 124 are the same or very similar to each other. Of course, when one input protrusion 120 and output protrusion 220 are provided as shown in FIG. 7, such a correspondence relationship will not be necessary.
이어서, 상기 출력 돌부(220)와 입력 돌부(120) 사이의 위치 관계를 축방향으로 고찰하면 하기와 같다.Subsequently, the positional relationship between the output protrusion 220 and the input protrusion 120 is considered in the axial direction as follows.
상기 출력 돌부(220)는 축방향으로 후방에 위치하며, 상기 입력 돌부(120)는 축방향으로 전방에 위치하여, 상기 출력 돌부(220)와 상기 입력 돌부(120)는 축방향 겹쳐짐이 없이 배치되어 상기 입력 로터리부(100)와 출력 로터리부(200)의 상대 회전 중 서로 간섭되지 않도록 위치할 수 있다. The output protrusion 220 is located rearward in the axial direction, and the input protrusion 120 is located forward in the axial direction, so that the output protrusion 220 and the input protrusion 120 do not overlap in the axial direction. It may be disposed so as not to interfere with each other during the relative rotation of the input rotary unit 100 and the output rotary unit 200.
즉, 도 4 및 5 에 도시된 바와 같이, 출력 돌부(220)와 입력 돌부(120)는 각각 축방향으로 전후 위치에 위치하며, 입력 로터리부(100)와 출력 로터리부(200)가 각각 동심으로 회전해도 출력 돌부(220)와 입력 돌부(120) 사이의 걸림이 없는 배치를 가질 수 있다. That is, as shown in FIGS. 4 and 5, the output protrusion 220 and the input protrusion 120 are located at the front and rear positions in the axial direction, respectively, and the input rotary part 100 and the output rotary part 200 are respectively concentric. Even when rotated as described above, the output protrusion 220 and the input protrusion 120 may be disposed without a latch.
이를 위해, 도 6 에 도시된 바와 같이, 상기 입력 로터리부(100)는 축방향으로 소정의 폭을 갖는 원통형의 로터리 몸체(110)를 갖되, 상기 입력 돌부(120)의 축방향 폭 A 은 상기 로터리 몸체(110)의 축방향 폭 B 보다 작으며, 상기 로터리 몸체(110)의 축방향 전방에 배치되어 축방향 후방과 소정의 간격 C 을 갖는 공간이 형성되고, 상기 공간에 상기 출력 돌부(220)가 위치하여 회전하는 위치 관계를 가질 수 있다. 물론 이때, 상기 출력 돌부(220)의 축방향 돌출 높이 D 는 상기 간격의 크기 C 보다 작거나 같을 수 있다.To this end, as shown in Figure 6, the input rotary part 100 has a cylindrical rotary body 110 having a predetermined width in the axial direction, the axial width A of the input protrusion 120 is It is smaller than the axial width B of the rotary body 110, is disposed in the axial front of the rotary body 110 is formed a space having a predetermined distance C with the axial rear, the output protrusion 220 in the space ) May have a positional relationship to rotate. Of course, at this time, the axial protrusion height D of the output protrusion 220 may be less than or equal to the size C of the interval.
다음으로는 탄성 부재(300)에 대해 설명한다. Next, the elastic member 300 will be described.
탄성 부재(300)는 상기 출력 로터리부(200)와 입력 로터리부(100)의 상대 회전에 따라서 회전력의 차이에 따른 가압력에 비례하여 변형되는 부재로서, 예컨대 도면에 도시된 바와 같이, 코일 스프링으로 구성될 수 있다. The elastic member 300 is a member that is deformed in proportion to the pressing force according to the difference in the rotational force according to the relative rotation of the output rotary part 200 and the input rotary part 100, for example, as shown in the drawing, as a coil spring Can be configured.
상기 탄성 부재(300)는 상기 로터리 몸체(110)의 외주면을 따라서 아크(arc)형으로 배치된다. 이에 따라서, 상기 로터리 몸체(110)의 둘레면은 상기 탄성 부재(300)의 내측 아크를 가이드한다. 아울러 상기 탄성 부재(300)는 탄성 방향으로 상기 출력 돌부(220)와 입력 돌부(120) 사이에 위치하여 상기 입력 로터리부(100)와 상기 출력 로터리부(200)의 회전력 차이에 의해 발생되는 토크에 비례하여 변형될 수 있다.The elastic member 300 is disposed in an arc shape along the outer circumferential surface of the rotary body 110. Accordingly, the circumferential surface of the rotary body 110 guides the inner arc of the elastic member 300. In addition, the elastic member 300 is located between the output protrusion 220 and the input protrusion 120 in the elastic direction, the torque generated by the difference in the rotational force of the input rotary part 100 and the output rotary part 200 It can be modified in proportion to.
예컨대 상기와 같이 탄성 부재(300)가 스프링인 경우, 스프링의 탄성력 인가 방향은 둘레 방향이 되도록 수납됨으로써, 상기 스프링은 상기 로터리 몸체(110)의 둘레의 형태에 대응하여 아크(arc)형의 배치를 갖게 된다. 즉, 후술하는 케이싱(400)의 내측면과 로터리 몸체(110)의 둘레, 출력 돌부(220) 및 입력 돌부(120)로 이루어진 소정의 수납 공간이 아크(arc) 형으로 구성되어, 스프링의 탄성력 인가 방향을 적절하게 가이드할 수 있다.For example, when the elastic member 300 is a spring as described above, the elastic force application direction of the spring is accommodated so as to be in the circumferential direction, so that the spring has an arc shape corresponding to the shape of the circumference of the rotary body 110. Will have That is, a predetermined storage space consisting of the inner surface of the casing 400 and the circumference of the rotary body 110, the output protrusion 220, and the input protrusion 120, which will be described later, is configured in an arc shape to provide elasticity of the spring. The direction of application can be guided appropriately.
상술한 탄성 부재(300)는 출력 돌부(220)와 입력 돌부(120) 사이에 배치되어 출력 돌부(220)와 입력 돌부(120) 사이의 간격의 변화에 따라서 변형될 수 있다. 즉, 출력 로터리부(200)와 입력 로터리부(100)가 서로 상대 회전하여 출력 돌부(220)와 입력 돌부(120) 사이의 간격이 작아지면 압축 변형될 수 있다. The elastic member 300 described above may be disposed between the output protrusion 220 and the input protrusion 120 to be deformed according to a change in the distance between the output protrusion 220 and the input protrusion 120. That is, when the output rotary part 200 and the input rotary part 100 rotate relative to each other and the distance between the output protrusion 220 and the input protrusion 120 becomes smaller, compression deformation may be performed.
한편, 상기와 같이, 출력 돌부(220)와 입력 돌부(120)가 복수 개 구비되면, 복수의 출력 돌부(220)와 입력 돌부(120) 사이에 상기 탄성 부재(300)가 배치될 수 있다. 즉, 도 3 과 같이, 제1 출력 돌부(222), 및 제2 출력 돌부(224)와 제1 입력 돌부(122), 및 제2 입력 돌부(124)가 서로 축방향으로 나란히 대응되게 배치되며, 상기 제1 출력 돌부(222) 및 제1 입력 돌부(122)와 제2 출력 돌부(224) 및 제2 입력 돌부(124) 사이에 상기 탄성 부재(300)가 배치되는 구성을 가질 수 있다.Meanwhile, as described above, when a plurality of output protrusions 220 and input protrusions 120 are provided, the elastic member 300 may be disposed between the plurality of output protrusions 220 and the input protrusions 120. That is, as shown in FIG. 3, the first output protrusion 222, the second output protrusion 224, the first input protrusion 122, and the second input protrusion 124 are arranged to correspond to each other side by side in the axial direction. The elastic member 300 may be disposed between the first output protrusion 222 and the first input protrusion 122, the second output protrusion 224, and the second input protrusion 124.
이하에서는 케이싱(400)에 대해 설명한다.Hereinafter, the casing 400 will be described.
케이싱(400)은 축방향으로 전방에 위치하여 상기 입력 로터리부(100)와 탄성 부재(300)가 수용될 수 있도록 수용 공간을 갖는 부재이다.The casing 400 is a member having an accommodating space positioned in the axial direction to accommodate the input rotary part 100 and the elastic member 300.
구체적으로는, 상기 케이싱(400)은 전체적으로 원통형으로 구성되는 부재로서, 원통형의 일 단을 구성하는 전면부(410), 및 원통형의 둘레를 구성하는 둘레부(420)를 포함하여 구성된다.Specifically, the casing 400 is a member that is generally cylindrical, and includes a front portion 410 constituting one end of the cylinder, and a circumference 420 constituting the circumference of the cylinder.
전면부(410)는 지지부(210)의 형상에 대응하는 원반형 형상을 가져서 소정의 직경을 가지며, 중심부에 회전동력원 구동축이 통과하여 상기 로터리 몸체(110)의 연결부(130)와 연결될 수 있도록 하는 연결 홀(430)이 형성되는 구성을 갖는다.The front part 410 has a disk-shaped shape corresponding to the shape of the support part 210 and has a predetermined diameter, and a connection for connecting the connection part 130 of the rotary body 110 through the rotational power source drive shaft through the center portion thereof. The hole 430 is formed.
둘레부(420)는 전면부(410)의 둘레에 걸쳐 축방향으로 소정의 폭을 가져서 원통형 형상을 갖는다. 상기 둘레부(420)의 내주 둘레면은 상기 탄성 부재(300)의 외측 아크를 가이드한다. 아울러, 둘레부(420)의 축 방향 단부는 지지부(210)의 외주부와 연결됨으로써, 전체적으로 케이싱(400)과 지지부(210)가 결합되어 내부에 상기 입력 로터리부(100) 및 탄성 부재(300)가 수용될 수 있는 수용 공간(440)을 형성한다.The perimeter 420 has a predetermined width in the axial direction over the periphery of the front portion 410 to have a cylindrical shape. An inner circumferential surface of the circumference 420 guides the outer arc of the elastic member 300. In addition, the axial end of the circumferential portion 420 is connected to the outer peripheral portion of the support portion 210, so that the casing 400 and the support portion 210 as a whole is coupled to the input rotary portion 100 and the elastic member 300 therein Forms an accommodation space 440 that can be accommodated.
한편, 도 6 에 도시된 바와 같이, 상기 수용 공간(440)은 입력 로터리부(100) 및 탄성 부재(300)를 수용하고 지지부(210)에 결합되기 알맞도록, 적절한 깊이 E 및 직경 F 을 가질 수 있다.Meanwhile, as shown in FIG. 6, the accommodation space 440 has an appropriate depth E and diameter F to accommodate the input rotary part 100 and the elastic member 300 and to be coupled to the support part 210. Can be.
한편, 상기와 같이 회전동력원 구동축에는 입력 로터리 센서(500)이 더 연결되고, 출력 로터리부(200)의 회전축(230)에는 출력 로터리 센서(600)가 더 연결되어, 탄성 부재의 변위를 측정할 수 있다.On the other hand, as described above, the input rotary sensor 500 is further connected to the rotary power source drive shaft, and the output rotary sensor 600 is further connected to the rotary shaft 230 of the output rotary part 200 to measure the displacement of the elastic member. Can be.
한편, 도 9 와 같이, 본 발명에 따른 아크형 압축 스프링 모듈은 소정의 회전동력원 구조체와 연결되어 사용될 수 있다. 회전동력원 구조체는 소정의 모터(710), 기어 세트(720)를 포함할 수 있으며, 기어 세트(720)는 연결부(130)와 연결될 수 있는 소정의 입력 기어(730)를 포함할 수 있다. On the other hand, as shown in Figure 9, the arc-type compression spring module according to the present invention can be used in connection with a predetermined rotational power source structure. The rotary power source structure may include a predetermined motor 710, a gear set 720, and the gear set 720 may include a predetermined input gear 730 that may be connected to the connection unit 130.
도 8 은 본 발명의 일 실시예에 따른 아크형 압축 스프링 모듈의 작동을 나타낸 도면이다. 이하에서는 도 8 을 참조하여 본 발명에 따른 아크형 압축 스프링 모듈의 작동에 대해 설명하되, 보다 명확한 설명을 위해, 도 7 에 도시된 바와 같이 입력 돌부(120)와 출력 돌부(220)가 각각 하나씩 마련된 실시 형태를 통해 설명한다.8 is a view showing the operation of the arc-type compression spring module according to an embodiment of the present invention. Hereinafter, an operation of the arc compression spring module according to the present invention will be described with reference to FIG. 8, but for clarity, the input protrusion 120 and the output protrusion 220 are each one as shown in FIG. 7. It demonstrates through embodiment provided.
도 8 의 (a) 에서는 입력 로터리부(100)와 출력 로터리부(200) 사이에 회전력의 차이가 없으므로 상대 회전이 없는 상태를 나타내며, 이때 탄성 부재(300)는 압축 변형되지 아니한다. In FIG. 8A, since there is no difference in rotational force between the input rotary part 100 and the output rotary part 200, the relative rotation does not exist, and the elastic member 300 does not compressively deform.
도 8 의 (b) 에서는 회전력의 차이로 인해 입력 로터리부(100)가 화살표 P 와 같이 반시계방향으로 상대 회전하는 것을 나타내며, 이때 입력 돌부(120)와 출력 돌부(220) 사이의 간격이 작아져서 탄성 부재(300)가 압축되게 된다.8 (b) shows that the input rotary part 100 rotates in a counterclockwise direction as shown by arrow P due to the difference in rotational force, and the interval between the input protrusion 120 and the output protrusion 220 is small. The elastic member 300 is compressed to be compressed.
도 8 의 (c) 에서는 회전력의 차이로 인해 입력 로터리부(100)가 화살표 Q 와 같이 시계방향으로 상대 회전하는 것을 나타낸다. 이때, 입력 로터리부(100)가 시계방향으로 1 회전 하면서 입력 돌부(120)가 출력 돌부(220)를 지나게 되며 탄성 부재(300)를 밀게 된다. 이어서 입력 로터리부(100)가 더욱 회전하면 입력 돌부(120)와 출력 돌부(220) 사이에 탄성 부재(300)가 위치하며 간격이 작아짐에 따라서 탄성 부재(300)가 압축되게 된다. 이에 따르면, 입력 로터리부(100)와 출력 로터리부(200)가 시계 방향이나, 반시계 방향으로 상대 회전하는 경우 모두 탄성 부재(300)가 압축되게 된다.In FIG. 8C, the input rotary part 100 rotates in the clockwise direction as shown by the arrow Q due to the difference in the rotational force. At this time, while the input rotary part 100 rotates one clockwise direction, the input protrusion 120 passes through the output protrusion 220 and pushes the elastic member 300. Subsequently, when the input rotary part 100 further rotates, the elastic member 300 is positioned between the input protrusion 120 and the output protrusion 220, and the elastic member 300 is compressed as the interval is reduced. According to this, when the input rotary part 100 and the output rotary part 200 rotate relative to the clockwise direction or the counterclockwise direction, the elastic member 300 is compressed.
이에 따라서, 탄성 부재(300)는 회전동력원의 구동축을 통해 입력 로터리부(100)에 제공되는 회전력과 회전축(230)을 통해 출력 로터리부(200)에 제공된 회전력의 차이에 따른 토크에 비례하여 변형된다. 이때, 탄성 부재에 작용하는 토크의 크기와 탄성 부재(300)의 압축 변형량은 비례하게 된다.Accordingly, the elastic member 300 is deformed in proportion to the torque according to the difference between the rotational force provided to the input rotary unit 100 through the drive shaft of the rotational power source and the rotational force provided to the output rotary unit 200 through the rotation shaft 230. do. At this time, the amount of torque acting on the elastic member and the amount of compressive deformation of the elastic member 300 are proportional to each other.
본 발명에 따른 아크형 압축 스프링 모듈은 다음과 같은 효과를 갖는다.The arc compression spring module according to the present invention has the following effects.
토크 측정을 위해 비틀림 스프링을 사용하는 경우, 감김 방향과 풀림 방향의 비틀림 강성 및 사용가능 범위가 상이하여, 정밀한 토크 측정에 부적합하다. 아울러, 일반 스프링을 사용할 경우에도, 일반 스프링은 압축 시의 탄성 계수와 인장 시의 탄성 계수가 서로 상이한 이유로 정밀한 토크를 측정할 수 없는 한계를 갖는다.When torsion springs are used for torque measurement, the torsional stiffness and usable range in the winding direction and the unwinding direction are different, which is not suitable for precise torque measurement. In addition, even when a general spring is used, the general spring has a limitation in that it is impossible to measure precise torque because the elastic modulus at compression and the elastic modulus at tension are different from each other.
그러나, 본 발명에 따른 아크형 압축 스프링 모듈은 압축 스프링을 아크형으로 배치하여 동일한 축방향 두께 대비 큰 비틀림 강성을 구현할 수 있다. 또한, 입력 로터리부(100)와 출력 로터리부(200)가 시계방향, 또는 시계반대방향의 어떠한 방향으로 회전하는 경우에도, 인장됨이 없이 단지 압축되도록 구성됨으로써, 탄성계수가 일정한 상태에서 측정이 이루어질 수 있다. 즉, 전체적인 모듈의 비틀림 강성이 비틀림 방향에 관계없이 일정하게 적용된다.However, the arc-type compression spring module according to the present invention can implement a large torsional rigidity compared to the same axial thickness by arranging the compression spring in the arc. In addition, even when the input rotary part 100 and the output rotary part 200 is rotated in any direction in a clockwise or counterclockwise direction, it is configured to be compressed only without tensioning, so that the measurement in a constant state of elasticity Can be done. That is, the torsional rigidity of the whole module is applied constantly regardless of the torsional direction.
또한, 케이싱(400) 과 출력 로터리부(200) 사이에 형성되는 소정의 수납 공간 내에 탄성 부재(300)를 수납시킴으로써 별도의 복잡한 수납 구조가 필요 없으며 조립 구조가 매우 간단하다.In addition, by storing the elastic member 300 in a predetermined storage space formed between the casing 400 and the output rotary part 200, there is no need for a separate complicated storage structure and the assembly structure is very simple.
아울러, 탄성 부재(300)로 사용되는 스프링을 아크형으로 배치함으로써 축 방향 두께가 얇아져서 공간 효율이 높다. 아울러, 스프링을 고정할 필요가 없이 수납 공간 내에 수납하는 것으로 충분하므로, 복잡한 구조가 필요없게 된다.In addition, by arranging the spring used as the elastic member 300 in an arc shape, the thickness in the axial direction becomes thin, and the space efficiency is high. In addition, since it is sufficient to store in the storage space without fixing the spring, a complicated structure is unnecessary.
또한, 탄성체 모듈의 사용가능 변위 및 비틀림 강성의 설계 자유도가 높다. 즉, 출력 돌부(220) 및 입력 돌부(120)의 개수에 따라서 복수 개의 수납 공간이 마련되며, 상기 수납 공간 내에 수납되는 스프링의 개수에 따라서 더욱 큰 비틀림 강성을 설계할 수 있다. 예컨대, 도 10 에 도시된 바와 같이, 3 개의 출력 돌부 및 입력 돌부(122, 224, 226)가 마련되어 3 개의 수납 공간이 마련되며, 상기 3 개의 수납 공간 내에 각각 K 의 탄성 계수를 갖는 스프링을 수납시킬 경우, 전체적인 탄성 계수는 3 배인 3K 가 될 수 있다. 즉, 상기 스프링은 마치 직렬 연결과 같은 형상을 가지나, 실질적으로는 병렬로 연결된 구조이다. 따라서 수납 공간의 개수, 및 스프링의 개수에 따라서 탄성 계수가 조절되며, 그에 따라서 큰 폭의 비틀림 강성 조절이 구현될 수 있다.In addition, the design freedom of usable displacement and torsional rigidity of the elastomer module is high. That is, a plurality of storage spaces are provided according to the number of the output protrusions 220 and the input protrusions 120, and more torsional rigidity can be designed according to the number of springs accommodated in the storage space. For example, as shown in FIG. 10, three output protrusions and input protrusions 122, 224, and 226 are provided to provide three storage spaces, and each of the three storage spaces has a spring having a modulus of elasticity K therein. In this case, the overall modulus of elasticity can be 3K, which is three times. That is, the spring has a shape similar to a series connection, but is substantially a structure connected in parallel. Therefore, the modulus of elasticity is adjusted according to the number of storage spaces and the number of springs, and accordingly, a large width torsional rigidity adjustment can be implemented.
이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.Although the preferred embodiments have been illustrated and described above, the invention is not limited to the specific embodiments described above, and does not depart from the gist of the invention as claimed in the claims. Various modifications can be made by the vibrator, and these modifications should not be understood individually from the technical idea or the prospect of the present invention.

Claims (8)

  1. 소정의 회전동력원의 구동축과 동일 선상에 연결되는 아크형 압축 스프링 모듈에 있어서,In the arc type compression spring module connected to the same line as the drive shaft of a predetermined rotational power source,
    축방향으로 전방에 위치하며 상기 회전동력원의 구동축과 연결되어 회전하는 입력 로터리부;An input rotary part positioned forward in an axial direction and connected to a driving shaft of the rotary power source to rotate;
    축방향으로 후방에 위치하며 외부에 구동력을 전달하는 출력 로터리부;An output rotary part positioned rearward in the axial direction and transmitting a driving force to the outside;
    입력 로터리부와 출력 로터리부 사이에 배치되되 상기 입력 로터리부와 출력 로터리부의 회전력의 차이에 따른 토크에 비례하여 변형되는 탄성 부재; 및An elastic member disposed between an input rotary part and an output rotary part, the elastic member being deformed in proportion to a torque according to a difference in rotational force of the input rotary part and the output rotary part; And
    축방향으로 전방에 위치하며 상기 입력 로터리부와 탄성 부재가 수용되는 수용 공간을 갖는 케이싱;을 포함하는 아크형 압축 스프링 모듈.And a casing having an accommodation space in which the input rotary part and the elastic member are accommodated forward in the axial direction.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 입력 로터리부는,The input rotary unit,
    상기 회전동력원의 구동축과 동심으로 배치되며 소정의 직경을 갖는 원통형의 로터리 몸체,A cylindrical rotary body disposed concentrically with the drive shaft of the rotary power source, and having a predetermined diameter;
    상기 로터리 몸체의 직경 방향 외측으로 돌출되는 하나 이상의 입력 돌부, 및One or more input protrusions protruding radially outward of the rotary body, and
    상기 로터리 몸체의 중심에 형성되며 상기 회전동력원의 구동축과 연결되는 연결부를 포함하며,It is formed in the center of the rotary body and includes a connecting portion connected to the drive shaft of the rotary power source,
    상기 출력 로터리부는,The output rotary unit,
    상기 로터리 몸체와 동심으로 배치되며 축방향으로 전방에 위치하는 전면과 축방향으로 후방에 위치하는 후면을 갖고 소정의 직경을 갖는 원반형의 지지부,A disc-shaped support portion disposed concentrically with the rotary body and having a front surface positioned forward in the axial direction and a rear surface positioned rearward in the axial direction and having a predetermined diameter;
    상기 지지부의 전면 상에 배치되되 직경 방향으로 외측에 위치하며 축방향 전방으로 돌출되는 하나 이상의 출력 돌부, 및 One or more output protrusions disposed on the front surface of the support portion and positioned outward in the radial direction and protruding axially forward; and
    상기 지지부의 후면 상에 배치되되 외부에 구동력을 전달하는 회전축을 포함하고,It is disposed on the rear of the support portion and includes a rotating shaft for transmitting a driving force to the outside,
    상기 탄성 부재는,The elastic member,
    상기 로터리 몸체의 외측 둘레에 걸쳐서 아크(arc)형으로 배치되며, 상기 원통형의 로터리 몸체의 둘레면에 의해서 상기 탄성 부재의 내측 아크가 가이드되되,It is arranged in an arc (arc) over the outer circumference of the rotary body, the inner arc of the elastic member is guided by the circumferential surface of the cylindrical rotary body,
    상기 탄성 부재는 상기 출력 돌부와 입력 돌부 사이에 위치하여 상기 회전동력원의 구동축을 통해 입력 로터리부에 제공되는 회전력과 상기 회전축을 통해 출력 로터리부에 제공된 회전력의 차이에 따른 토크에 비례하여 변형되는 아크형 압축 스프링 모듈.The elastic member is located between the output protrusion and the input protrusion arc is deformed in proportion to the torque according to the difference between the rotational force provided to the input rotary portion through the drive shaft of the rotational power source and the rotational force provided to the output rotary portion through the rotation shaft Type compression spring module.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 탄성 부재는 코일 스프링으로 구성되되,The elastic member is composed of a coil spring,
    상기 코일 스프링은,The coil spring,
    상기 로터리 몸체의 외주면을 따라서 아크형으로 배치되되 상기 로터리 몸체의 둘레 방향을 따라서 권선되어 둘레 방향으로 탄성을 인가하게 배치되며,Arranged in an arc shape along the outer circumferential surface of the rotary body is wound along the circumferential direction of the rotary body is arranged to apply elasticity in the circumferential direction,
    탄성 방향으로 일 단의 적어도 일 부분은 상기 입력 돌부에 지지되게 위치하고 타 단의 적어도 일 부분은 상기 출력 돌부에 지지되게 위치하여, At least one portion of one end in the elastic direction is supported to the input protrusion and at least one portion of the other end is positioned to be supported by the output protrusion,
    상기 입력 돌부와 상기 출력 돌부 사이의 상대 회전에 따른 상기 입력 돌부와 상기 출력 돌부 사이의 둘레 방향 간격의 변화에 따라서 가압되어 탄성 변형되는 아크형 압축 스프링 모듈.Arc type compression spring module that is pressed and elastically deformed in accordance with the change in the circumferential direction between the input protrusion and the output protrusion in accordance with the relative rotation between the input protrusion and the output protrusion.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 입력 돌부는 축방향으로 전방에 위치하며,The input protrusion is located forward in the axial direction,
    상기 출력 돌부는 축방향으로 후방에 위치하여, 상기 입력 돌부와 상기 출력 돌부는 축방향 겹쳐짐이 없이 배치되어 상대 회전 중 간섭되지 않도록 위치하며,The output protrusion is located rearward in the axial direction, the input protrusion and the output protrusion is disposed without axial overlap so as not to interfere during relative rotation,
    상기 입력 돌부와 상기 출력 돌부는 각각 상기 입력 로터리부 및 출력 로터리부의 회전에 따라서 회전 변위하여 상기 코일 스프링이 상기 입력 돌부와 상기 출력 돌부 사이에서 가압되어 변형되는 아크형 압축 스프링 모듈.And the input protrusion and the output protrusion are rotated and displaced according to rotation of the input rotary part and the output rotary part, respectively, so that the coil spring is pressed and deformed between the input protrusion and the output protrusion.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 입력 돌부는 복수 개 마련되며, 서로 상기 로터리 몸체의 둘레 방향으로 소정의 간격을 두고 이격되게 배치되고, The input protrusions are provided in plurality, and are spaced apart from each other at a predetermined interval in the circumferential direction of the rotary body.
    상기 출력 돌부는 복수 개 마련되며, 서로 상기 지지부의 둘레 방향으로 소정의 간격을 두고 이격되게 배치되며,A plurality of output protrusions are provided, spaced apart from each other at a predetermined interval in the circumferential direction of the support portion,
    상기 입력 돌부의 위치와 상기 출력 돌부의 위치는 둘레 방향으로 대응되어 축방향으로 중첩되는 위치에 배치되는 아크형 압축 스프링 모듈.The position of the input protrusion and the position of the output protrusion is the arc-shaped compression spring module disposed in the position corresponding to the circumferential direction overlap.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 로터리 몸체는,The rotary body,
    축방향으로 소정의 폭을 갖는 원통형으로 구성되고,It is composed of a cylindrical shape having a predetermined width in the axial direction,
    상기 입력 돌부의 축방향 폭은 상기 로터리 몸체의 축방향 폭보다 작으며, 상기 로터리 몸체의 축방향 전방에 배치되어 축방향 후방과 소정 간격을 갖는 아크형 압축 스프링 모듈.The axial width of the input protrusion is smaller than the axial width of the rotary body, the arc-shaped compression spring module is disposed in the axial front of the rotary body having a predetermined distance from the axial rear.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 케이싱은, The casing is,
    상기 지지부의 형상에 대응하는 원반형 형상을 갖고 중심부에 연결 홀이 형성된 전면부, 및 A front portion having a disc shape corresponding to the shape of the support portion and having a connection hole formed in a central portion thereof;
    상기 전면부의 둘레에 걸쳐 축방향으로 소정 폭 돌출되어 원통형으로 구성되는 둘레부를 포함하여,It includes a circumference portion protruding a predetermined width in the axial direction over the circumference of the front portion is formed in a cylinder,
    상기 수용 공간은 원통형 형상을 갖도록 형성되어 상기 입력 로터리부 및 탄성 부재가 수용되며 상기 둘레부의 축방향 단부는 상기 지지부의 외주부와 연결되고,The accommodation space is formed to have a cylindrical shape so that the input rotary portion and the elastic member is accommodated, the axial end of the circumference is connected to the outer peripheral portion of the support,
    상기 둘레부의 내주면에 의해서 상기 코일 스프링의 외측 아크가 가이드되는 아크형 압축 스프링 모듈.Arc-type compression spring module, the outer arc of the coil spring is guided by the inner peripheral surface of the circumference.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 회전동력원의 구동축과 연결되는 입력 로터리 센서, 및 An input rotary sensor connected to a drive shaft of the rotary power source, and
    상기 회전축과 연결되는 출력 로터리 센서를 더 포함하여 상기 탄성 부재의 변위를 측정할 수 있는 아크형 압축 스프링 모듈.And an output rotary sensor connected to the rotating shaft to measure the displacement of the elastic member.
PCT/KR2016/010578 2015-09-25 2016-09-22 Arc-type compression spring module for series elastic actuator WO2017052223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0137079 2015-09-25
KR1020150137079A KR101785067B1 (en) 2015-09-25 2015-09-25 Arc-shaped compression spring module for series elasitic actuator

Publications (1)

Publication Number Publication Date
WO2017052223A1 true WO2017052223A1 (en) 2017-03-30

Family

ID=58386308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010578 WO2017052223A1 (en) 2015-09-25 2016-09-22 Arc-type compression spring module for series elastic actuator

Country Status (2)

Country Link
KR (1) KR101785067B1 (en)
WO (1) WO2017052223A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108839008A (en) * 2018-09-18 2018-11-20 西北农林科技大学 A kind of novel drum type brake elastic driver
US10626944B2 (en) 2017-04-14 2020-04-21 The Chinese University Of Hong Kong Magneto-rheological series elastic actuator
US11346434B2 (en) * 2020-01-13 2022-05-31 Lg Electronics Inc. Series elastic actuator
US11835411B2 (en) 2019-12-26 2023-12-05 Lg Electronics Inc. Series elastic actuator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020003795A2 (en) 2017-08-24 2020-09-08 Ressorts Liberte Inc. spiral spring and method of manufacturing it
US11161259B2 (en) * 2018-02-23 2021-11-02 Robotis Co., Ltd. Actuator module having flexible section
KR101991954B1 (en) * 2018-07-20 2019-06-24 엘지전자 주식회사 Series elastic actuator
KR102055946B1 (en) 2018-07-20 2019-12-13 엘지전자 주식회사 Series elastic actuator
WO2020204234A1 (en) * 2019-04-05 2020-10-08 (주)로보티즈 Elastic body having variable rigidity, and actuator module including same
KR20210082935A (en) 2019-12-26 2021-07-06 엘지전자 주식회사 Series elastic actuator
KR102360823B1 (en) 2020-09-01 2022-02-08 재단법인대구경북과학기술원 Series Elastic Actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316521A (en) * 1988-06-17 1989-12-21 Atsugi Unisia Corp Torsional vibration damping device
JP2002048218A (en) * 2000-05-26 2002-02-15 Exedy Corp Elastic connecting mechanism
WO2011062158A1 (en) * 2009-11-19 2011-05-26 アイシン精機株式会社 Power transmitting mechanism
KR20130109485A (en) * 2012-03-27 2013-10-08 학교법인 두원학원 Shaft support structure of a swash plate type compressor
JP2015510997A (en) * 2012-03-20 2015-04-13 ヴァレオ アンブラヤージュ Torque transmission device for automobile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128640B1 (en) 2009-05-13 2012-03-26 가톨릭대학교 산학협력단 Use of RPS 14 as a hepatocellular carcinomar diagnostic marker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316521A (en) * 1988-06-17 1989-12-21 Atsugi Unisia Corp Torsional vibration damping device
JP2002048218A (en) * 2000-05-26 2002-02-15 Exedy Corp Elastic connecting mechanism
WO2011062158A1 (en) * 2009-11-19 2011-05-26 アイシン精機株式会社 Power transmitting mechanism
JP2015510997A (en) * 2012-03-20 2015-04-13 ヴァレオ アンブラヤージュ Torque transmission device for automobile
KR20130109485A (en) * 2012-03-27 2013-10-08 학교법인 두원학원 Shaft support structure of a swash plate type compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626944B2 (en) 2017-04-14 2020-04-21 The Chinese University Of Hong Kong Magneto-rheological series elastic actuator
CN108839008A (en) * 2018-09-18 2018-11-20 西北农林科技大学 A kind of novel drum type brake elastic driver
US11835411B2 (en) 2019-12-26 2023-12-05 Lg Electronics Inc. Series elastic actuator
US11346434B2 (en) * 2020-01-13 2022-05-31 Lg Electronics Inc. Series elastic actuator

Also Published As

Publication number Publication date
KR101785067B1 (en) 2017-10-12
KR20170037442A (en) 2017-04-04

Similar Documents

Publication Publication Date Title
WO2017052223A1 (en) Arc-type compression spring module for series elastic actuator
WO2015046771A1 (en) Torque sensor
WO2013062376A2 (en) Separable actuator
WO2019054651A1 (en) Backlash preventing cycloidal speed reducer
WO2019172696A1 (en) In-wheel motor driving apparatus
WO2016172891A1 (en) Electric motor, power device and unmanned aircraft using the power device
WO2020197081A1 (en) Generator and generator control method
WO2014129777A1 (en) Magnetic brake
WO2017209420A1 (en) Adaptive driving module
EP0052448B1 (en) Photosensitive drum for electrostatic copying apparatus
WO2018199606A1 (en) Sensing device
EP3374710A1 (en) Door driving system and refrigerator including the same
WO2015156598A1 (en) Input synthesis apparatus
WO2018004039A1 (en) Pedestal apparatus having antenna attached thereto capable of biaxial motion
WO2017010836A1 (en) Torque converter for vehicle including vibration reduction apparatus using pendulum
US4785688A (en) Torque limiter for paper feeding device of office machine and the like
GB2111172A (en) Frictional releasable shaft-hub connexion
WO2024080676A1 (en) Head for component mounting device capable of precise drive control
WO2015156592A1 (en) Continuously variable transmission
WO2020204234A1 (en) Elastic body having variable rigidity, and actuator module including same
WO2017188483A1 (en) Power-transferring device and camera-supporting device comprising same
WO2022139323A1 (en) Variable-speed power transmission clutch system having multiple output structure
WO2022146085A1 (en) Vehicle height adjustment device
WO2016171499A1 (en) Vibration reducing gear
WO2013176299A1 (en) Calibration jig and an actuator assembly including the same, and a calibration method of the actuator assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/07/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16848948

Country of ref document: EP

Kind code of ref document: A1