WO2017051818A1 - 複合材料成形体、及びリアクトル - Google Patents

複合材料成形体、及びリアクトル Download PDF

Info

Publication number
WO2017051818A1
WO2017051818A1 PCT/JP2016/077809 JP2016077809W WO2017051818A1 WO 2017051818 A1 WO2017051818 A1 WO 2017051818A1 JP 2016077809 W JP2016077809 W JP 2016077809W WO 2017051818 A1 WO2017051818 A1 WO 2017051818A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
molded body
material molded
soft magnetic
inner core
Prior art date
Application number
PCT/JP2016/077809
Other languages
English (en)
French (fr)
Inventor
和嗣 草別
崇志 高田
慎太郎 南原
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2017051818A1 publication Critical patent/WO2017051818A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a composite material molded body and a reactor.
  • This application claims priority based on Japanese Patent Application No. 2015-187527 filed on Sep. 24, 2015, and incorporates all the content described in the above Japanese application.
  • the reactor of Patent Document 1 includes a pair of columnar inner core portions arranged inside a pair of coil elements (winding portions).
  • This inner core part is comprised by the core piece and gap material which are comprised with the compacting body by which the laser was irradiated to at least one part of the surface.
  • the compacted compact is manufactured by irradiating a laser beam onto a molded compact that has been molded by filling a mold with coated soft magnetic powder comprising a plurality of coated soft magnetic particles whose outer periphery is coated with an insulating coating. Done.
  • the circumferential surface along the circumferential direction in the mold drawing direction of the mold and the inner surface of the mold along the circumferential direction in the mold drawing direction of the surface of the material molded body are in sliding contact.
  • the insulating coating of the coated soft magnetic particles is damaged, and the soft magnetic particles are exposed and spread, so that a film-like conductive portion where the soft magnetic particles are connected to each other is spread over the entire circumference of the material molded body. It may be formed over.
  • the reactor of Patent Document 2 is formed integrally with a pair of coil arrangement portions (inner core portions) inserted into each of a pair of coil elements (winding portions) and one end side of both coil arrangement portions, and is an end face of the coil.
  • This core piece is comprised with a composite material (composite material molded object).
  • the composite material is manufactured by filling a mold with a mixture of magnetic powder and resin and solidifying (curing) the resin.
  • the metal mold a metal mold is used in which the die cutting direction of the core piece is the direction along the longitudinal direction of the coil placement portion, that is, the direction parallel to the magnetic flux excited by the coil.
  • the composite material molded body of the present disclosure is: A composite material molded body comprising a soft magnetic powder having a plurality of soft magnetic particles and a resin encapsulating the soft magnetic powder in a dispersed state, A parting line corresponding to a split surface of a mold for molding the composite material molded body; An inner core disposed inside the coil; With laser irradiation traces formed on the surface of the inner core part, Of the surface of the inner core part, when the surface along the circumferential direction around the magnetic flux excited in the inner core part by the coil as a circumferential surface, The parting line is formed to sever the axial direction of the magnetic flux, The laser irradiation trace is formed on the circumferential surface so as to divide the circumferential direction of the circumferential surface.
  • the reactor of the present disclosure is A reactor comprising a coil formed by winding a winding and a magnetic core on which the coil is disposed, At least a part of the magnetic core includes the composite material molded body of the present disclosure.
  • the composite material molded object which concerns on Embodiment 1 is shown, the left figure is the schematic perspective view seen from the outer end surface side, and the right figure is the schematic perspective view seen from the linkage surface side.
  • the reactor which concerns on Embodiment 1 is shown, the upper figure is a schematic perspective view, and the lower figure is a disassembled perspective view.
  • an object of the present invention is to provide a composite material molded body capable of constructing a low-loss reactor.
  • Another object is to provide a reactor including the composite material molded body.
  • the composite material molded body of the present disclosure can construct a low-loss reactor.
  • the reactor of the present disclosure has a low loss.
  • the formation of the conductive portion does not affect the loss increase and is not substantially negligible, but greatly affects the loss increase, that is, causes a large eddy current loss.
  • the conducting part is formed even in the case of soft magnetic powder comprising Fe-based alloy particles that are harder and harder to spread than pure iron. Based on these findings, the inventors of the present invention have intensively studied to divide the conducting portion, thereby completing the present invention. First, embodiments of the present invention will be listed and described.
  • the composite material molded body according to one aspect of the present invention is: A composite material molded body comprising a soft magnetic powder having a plurality of soft magnetic particles and a resin encapsulating the soft magnetic powder in a dispersed state, A parting line corresponding to a split surface of a mold for molding the composite material molded body; An inner core disposed inside the coil; With laser irradiation traces formed on the surface of the inner core part, Of the surface of the inner core part, when the surface along the circumferential direction around the magnetic flux excited in the inner core part by the coil as a circumferential surface, The parting line is formed to sever the axial direction of the magnetic flux, The laser irradiation trace is formed on the circumferential surface so as to divide the circumferential direction of the circumferential surface.
  • a low-loss reactor can be constructed. Reduces eddy current loss because eddy currents flowing along the circumferential direction of the circumferential surface are difficult to flow due to laser irradiation marks formed on the circumferential interface so as to divide the circumferential direction of the circumferential surface of the inner core part Because it can.
  • the production of the composite material molded body is performed by irradiating a conductive portion formed on the surface of the molded body material taken out from the mold with a laser.
  • the mold drawing direction at the time of molding the composite material molded body is parallel to the axial direction of the magnetic flux of the inner core portion. This is because the parting line is formed so as to divide the magnetic flux axial direction.
  • the entire circumferential surface of the inner core portion is a sliding contact area with the inner surface of the mold. Therefore, before the laser irradiation, a film-like conduction part in which the soft magnetic particles spread and the soft magnetic particles are conducted may be formed on the entire circumference of the inner core part.
  • the laser irradiation trace is considered to be formed as follows by irradiating the surface (the conductive portion) with a laser so as to divide the circumferential direction of the circumferential surface of the inner core portion.
  • the conduction portion is rapidly heated and melted by laser irradiation, and is divided by agglomeration due to the surface tension of the molten metal. By subsequent cooling, the molten metal is solidified in a divided state.
  • dividing the conductive portion a region having a high electrical resistance is formed between the divided portions. Therefore, the laser irradiation trace is difficult to flow eddy current flowing along the circumferential direction of the circumferential surface, and can be blocked.
  • the laser irradiation trace may include an oxide film containing a main component element of the soft magnetic particles.
  • the laser irradiation trace is formed by irradiating the conduction part with laser, it can have an oxide film containing the main component element of the soft magnetic particles by melting and solidifying the conduction part by laser irradiation.
  • the composite material molded body can further block eddy currents and suppress rust of soft magnetic particles.
  • the arithmetic average roughness Ra of the laser irradiation trace is larger than the periphery of the laser irradiation trace on the circumferential surface.
  • the width of the laser irradiation mark may be not less than the average particle diameter of the soft magnetic powder and not more than 1/4 of the circumference of the circumferential surface.
  • the width of the laser irradiation mark is set to be equal to or larger than the average particle diameter of the soft magnetic powder, it is easy to effectively reduce eddy current loss. If the width of the laser irradiation trace is set to 1/4 or less of the circumference of the circumferential surface, the effect of reducing the eddy current loss can be sufficiently obtained, and the width of the laser irradiation trace is not excessively large. Formation is not complicated.
  • the soft magnetic powder includes Fe-based alloy soft magnetic particles containing Si in an amount of 1.0 mass% to 8.0 mass%.
  • An Fe-based alloy containing 1.0% by mass or more of Si has a high electric resistivity and is easy to reduce eddy current loss. In addition, since it is harder than pure iron, it is difficult to introduce strain in the manufacturing process, and it is easy to reduce hysteresis loss. Therefore, iron loss can be further reduced.
  • An Fe-based alloy containing 8.0% by mass or less of Si does not have an excessive amount of Si, and it is easy to achieve both low loss and high saturation magnetization.
  • the content of the soft magnetic powder with respect to the entire composite material molded body is 30% by volume or more and 80% by volume or less.
  • the content is 30% by volume or more, the ratio of the magnetic component is sufficiently high. Therefore, when a reactor is constructed using this composite material compact, it is easy to increase the saturation magnetization. Since the resin content decreases as the content increases, it is easy to form a conductive portion in which the particles are electrically connected in the sliding contact region. However, by providing the laser irradiation trace, eddy current loss can be reduced even when the conductive portion is easily formed. If the said content is 80 volume% or less, since the ratio of a magnetic component is not too high, the insulation between soft-magnetic particles can be improved and eddy current loss can be reduced.
  • an average particle diameter of the soft magnetic powder is 5 ⁇ m or more and 300 ⁇ m or less.
  • the average particle size of the soft magnetic powder is 5 ⁇ m or more, it is difficult to agglomerate, and it is easy to reduce the eddy current loss because the resin is easily interposed between the powder particles. If the average particle diameter of the soft magnetic powder is 300 ⁇ m or less, the eddy current loss of the powder particle itself can be reduced because it is not excessively large, and consequently the eddy current loss of the composite material compact can be reduced. Moreover, it is easy to increase the saturation magnetization of the composite material molded body by increasing the filling rate.
  • a reactor according to an aspect of the present invention is A reactor comprising a coil formed by winding a winding and a magnetic core on which the coil is disposed, At least a part of the magnetic core includes the composite material molded body according to any one of (1) to (8) above.
  • the loss is low.
  • Embodiment 1 [Composite material compact]
  • the composite material molded body 10 is obtained by solidifying (curing) a resin of an unsolidified mixture containing soft magnetic powder and resin, and typically constitutes at least a part of a magnetic core provided in a reactor.
  • the reactor includes, for example, a coil 2 and a magnetic core 3 shown in FIG.
  • the coil 2 is formed by connecting a pair of winding portions 2a and 2b obtained by spirally winding the winding 2w in parallel with each other.
  • the magnetic core 3 is formed in an annular shape by combining two core members 30 having the same shape.
  • Both the core members 30 are composed of the composite material molded body 10.
  • the composite material molded body 10 is produced by filling a resin material in a fluid state from a gate into a mold cavity having a specific direction as a die cutting direction and solidifying a resin.
  • One of the characteristics of the composite material molded body 10 is a laser formed on the circumferential interface so as to divide the circumferential surface along the circumferential direction around the magnetic flux of the inner core portion 11 disposed inside the coil 2.
  • the irradiation mark 18 is provided. Details will be described below.
  • the reactor 1 is constructed by assembling the core member 30 to the coil 2, and the installation target side when the reactor 1 is installed on the installation target such as the cooling base will be described below, and the opposite side of the installation target will be described as the top.
  • the same reference numerals in the figure indicate the same names.
  • the composite material molded body 10 includes a pair of inner core portions 11 and an outer core portion 12 that connects the inner core portions 11 on one end side of the pair of inner core portions 11.
  • the shape seen from above the composite material molded body 10 is substantially U-shaped.
  • the pair of inner core portions 11 are respectively disposed in the pair of winding portions 2a and 2b when the core member 30 having the composite material molded body 10 is assembled to the coil 2 (FIG. 2).
  • the outer core portion 12 protrudes from the end surface of the coil 2 when the core member 30 having the composite material molded body 10 is assembled to the coil 2 (FIG. 2).
  • the upper surfaces 11U and 12u of the inner core portion 11 and the outer core portion 12 are substantially flush.
  • the lower surface 12d of the outer core portion 12 protrudes from the lower surface 11D of the inner core portion 11 so that the outer core is substantially flush with the lower surface of the coil 2 when the composite material molded body 10 is combined with the coil 2.
  • the size of the portion 12 is adjusted.
  • a parting line 15 is formed in the composite material molded body 10 so as to divide the axial direction of the magnetic flux, and each of the pair of inner core portions 11 has a laser irradiation mark 18 orthogonal to a plane including the parting line 15. Is formed.
  • each inner core portion 11 is preferably a shape that matches the shape of the coil 2 (the internal space of the coil 2). Here, it is a rectangular parallelepiped shape, and its corners are rounded along the inner peripheral surfaces of the winding portions 2a and 2b (FIG. 2).
  • the circumferential surface along the circumferential direction around the magnetic flux is orthogonal to the surface including the parting line 15. It is a parallel plane parallel to the magnetic flux of the inner core portion 11.
  • the circumferential surface of the inner core portion 11 is a surface other than the end surface 11E that intersects (or intersects perpendicularly with) the magnetic flux of the inner core portion 11 in the surface.
  • the surrounding surface of each inner core part 11 is comprised by four curved surfaces which connect the planes which adjoin four planes, 11U, 11D, 11L, and 11R of upper, lower, left and right surfaces 11R.
  • the left and right are defined as the parallel direction of the pair of inner core portions 11 when the pair of inner core portions 11 are viewed from the outer core portion 12 side.
  • the end surface 11E of the inner core portion 11 is parallel to the surface including the parting line 15 and is formed continuously with the circumferential surface.
  • a direction parallel to the magnetic flux (circumferential surface) in the inner core portion 11, that is, a direction orthogonal to the end surface 11E is a die cutting direction.
  • the direction orthogonal to the surface including the parting line 15 is the die cutting direction when the composite material molded body 10 is molded. .
  • Laser irradiation marks 18 are formed on the circumferential surface of each inner core portion 11 so as to divide the circumferential direction.
  • the region excluding the laser irradiation marks 18 on the circumferential surfaces of both inner core portions 11 is a sliding contact region that is parallel to the die-cutting direction and that is in sliding contact with the inner surface of the mold. This is a low electrical resistance region in which a film-like conducting part that conducts each other is formed.
  • the end surface 11E of the inner core portion 11 is a non-sliding contact region that is pressed against the inner surface of the mold during molding, but does not slide in contact with the inner surface of the mold during die cutting. It is a resistance region. Therefore, an eddy current that flows along the circumferential direction centered on the magnetic flux hardly flows on the end surface 11E of the inner core portion 11, and eddy current loss can be reduced.
  • the laser irradiation mark 18 is difficult to flow eddy current flowing in the circumferential direction of the circumferential surface, and thus cuts off.
  • FIG. 1 FIG. 2
  • the laser irradiation trace 18 is a region having a high electrical resistance formed between the conducting portions, without being substantially formed by dividing the conducting portion. This is because an oxide film, which will be described later, and a surface with an insulating coating (when the soft magnetic particles have an insulating coating) are exposed.
  • the laser irradiation trace 18 is formed as follows by irradiating a conduction portion with a laser described later. The conduction portion is rapidly heated and melted by laser irradiation, and is divided by agglomeration due to the surface tension of the molten metal. By subsequent cooling, the molten metal is solidified in a divided state. By dividing the conductive portion, a region having a high electrical resistance is formed between the divided portions.
  • the formation location of the laser irradiation mark 18 on the circumferential surface may be any of the upper, lower, left and right surfaces 11U, 11D, 11L, 11R and four curved surfaces.
  • the formation length of the laser irradiation mark 18 (the length in the direction parallel to the magnetic flux) may be a length extending from one end to the other end of the circumferential surface. If it does so, an eddy current can be made difficult to flow over the full length of the inner core part 11 in the direction parallel to the magnetic flux, and an eddy current loss can be reduced.
  • the laser irradiation mark 18 is formed on the outer side surface of the pair of inner core portions 11 of each composite material molded body 10, and the laser irradiation mark 18 is formed from one end to the other end of the side surface. It is a length. That is, the laser irradiation mark 18 is formed in a portion extending from one end to the other end of the left surface 11L in the left inner core portion 11 and a portion extending from one end to the other end of the right surface 11R in the right inner core portion 11. .
  • the laser irradiation mark 18 As the outer side surface in each inner core part 11, it is easier to irradiate the laser than the inner side surface in each inner core part 11, so that the laser irradiation mark 18 can be easily formed. It is.
  • the width of the laser irradiation mark 18 (the length in the direction perpendicular to the magnetic flux) is preferably equal to or greater than the average particle diameter of the soft magnetic powder. By doing so, it is easy to effectively obtain an effect of reducing eddy current loss.
  • the width of the laser irradiation mark 18 is preferably 1 ⁇ 4 or less of the circumferential length of the circumferential surface. If it does so, the reduction effect of an eddy current loss will fully be acquired, and also the width
  • the arithmetic average roughness Ra of the laser irradiation mark 18 is often larger than the surrounding area.
  • the periphery of the laser irradiation mark 18 include a sliding contact area adjacent to the laser irradiation mark 18.
  • the arithmetic average roughness Ra of the laser irradiation mark 18 is rougher than the periphery thereof, it is easy to improve the adhesion (bondability) with a resin (for example, a resin mold portion described later) covering the surface of the composite material molded body 10. This is because it is easy to increase the contact area of the resin with respect to the laser irradiation mark 18.
  • the laser irradiation mark 18 includes an oxide film containing a main component element of soft magnetic particles.
  • the laser irradiation mark 18 is formed by irradiating the conduction portion with a laser as described above. When this conductive portion is irradiated with a laser, the conductive portion is melted by the energy, so that the conductive portion is divided and an oxide film containing the main component element of the soft magnetic particles is formed.
  • This oxide film contains iron, for example, when soft magnetic particles are made of iron or an iron alloy. Its composition, for example, FeO, ⁇ -Fe 2 O 3, ⁇ -Fe 2 O 3, and one or more can be mentioned which is selected from Fe 3 O 4.
  • the composition of the oxide film can be detected by, for example, X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • the oxide film has a portion having a thickness of 0.1 ⁇ m or more, and is 0.5 ⁇ m or more, 1.0 ⁇ m or more, 3.0 ⁇ m or more, further 5.0 ⁇ m or more, 7.0 ⁇ m or more, particularly 10.0 ⁇ m.
  • the thickness of the oxide film depends on the energy density U (described later) of the laser that forms the laser irradiation trace 18 and tends to increase as the energy density U increases.
  • the thickness of the oxide film can be measured by, for example, cross-sectional observation with a scanning electron microscope (SEM).
  • the outer core portion 12 has a substantially trapezoidal column shape.
  • the outer core portion 12 includes upper and lower surfaces 12u and 12d parallel to the magnetic flux, an outer end surface 12o that connects the upper and lower surfaces 12u and 12d (parallel to the end surface 11E of the inner core portion 11), and an outer end surface 12o. And an opposite inner end face 12i.
  • the inner end face 12 i is formed continuously between the inner core parts 11 and the inner side faces of the inner core parts 11.
  • the inner end surface 12 i is also formed continuously on the lower surface 11 d of each inner core portion 11.
  • the entire circumference of the boundary between the outer core portion 12 and the inner core portion 11 (the envelope edge of both inner core portions 11 including the peripheral edge of the inner end surface 12i of the outer core portion 12) is divided so as to divide the axial direction of the magnetic flux.
  • a parting line 15 is formed over the entire area.
  • the upper and lower surfaces 12u and 12d of the outer core portion 12 are slidable contact areas that are in sliding contact with the inner surface of the mold, like the upper and lower surfaces 11U and 11D of the inner core portion 11, and the outer end surface 12o and the inner end surface 12i of the outer core portion 12. Is a non-sliding contact region that is not slidably contacted with the inner surface of the mold, like the end surface 11E of the inner core portion 11.
  • the parting line 15 corresponds to the dividing surface of the mold.
  • the parting line 15 is substantially made of a resin, and is formed to protrude outward from the surface of the composite material molded body 10.
  • the parting line 15 has a transverse cross-sectional shape that has the widest width on the base side of the parting line 15 and gradually becomes narrower toward the tip side.
  • the protruding height and base width of the parting line 15 depend on the shape of the dividing surface of the mold and the molding conditions.
  • the protruding height of the parting line 15 is 0.05 mm or more and 10 mm or less.
  • the width of the base of the line 15 is 0.05 mm or more and 1 mm or less.
  • FIG. 1 FIG. 2
  • the parting line 15 is emphasized and protruded for convenience of explanation.
  • the parting line 15 is formed at a part where the axial direction of the magnetic flux is divided (a part where the surface including the parting line 15 is perpendicular to the magnetic flux), depending on the shape of the composite material molded body 10 to be molded. There is no particular limitation as long as it can be punched in a parallel direction.
  • the part where the parting line 15 is formed is a boundary between the outer core part 12 and the inner core part 11. That is, the parting line 15 is formed in a frame shape and exists on a single plane.
  • a stepped part that is partly formed in a stepped shape or a curved part that is formed in a curved shape is an outer core part. 12 may be formed on the upper surface 12u or the lower surface 12d.
  • the composite material molded body 10 may include at least one of a resin remelting mark and a breakage mark formed on at least a part of the parting line 15 (both not shown).
  • the remelt mark can be formed by a heat treatment described later.
  • the fracture mark can be formed by, for example, breaking the parting line 15 with a deburring brush.
  • the form of the remelt mark is (1) When the protrusion height is lower than that of the parting line 15 but protrudes outward from the surface of the composite material molded body 10 (2) The periphery of the parting line 15 And (3) the case where it is recessed more than its periphery.
  • variety of a remelting mark depends on the formation method and conditions, the width of the parting line 15, etc., 0.1 mm or more and 20 mm or less are mentioned, for example.
  • the surface roughness of the remelting marks depends on the formation method and form of the remelting marks.
  • the arithmetic average in the non-sliding contact area for example, the end surface 11E
  • the sliding contact area for example, the upper surface 11U, 12u
  • the shape of the fracture mark is often substantially flush with the periphery of the parting line 15.
  • the surface roughness of the fracture mark is rougher than that around the parting line 15.
  • the ratio of the arithmetic average roughness Ra in the non-sliding contact region (for example, the end surface 11E), the sliding contact region (for example, the upper surface 11U, 12u, etc.), and the fracture mark is, for example, non-sliding contact region: sliding contact region: rupture It is mentioned that the marks are about 1: 8 to 15:16 to 35.
  • the resin for example, a resin mold part described later
  • the resin covering the surface of the composite material molded body 10 as with the laser irradiation mark 18.
  • the resin for example, a resin mold part described later
  • rust of the soft magnetic powder can be suppressed.
  • the resin can be flowed by the heat treatment at the time of forming the remelt mark, and the exposed soft magnetic powder can be embedded in the resin. Because.
  • Soft magnetic powder examples of the material of the soft magnetic powder include soft magnetic materials such as iron group metals, Fe-based alloys containing Fe as a main component, ferrite, and amorphous metals.
  • the material of the soft magnetic powder is preferably an iron group metal or an Fe group alloy in terms of eddy current loss and saturation magnetization.
  • the iron group metal include Fe, Co, and Ni.
  • Fe may be pure iron (including inevitable impurities). Since Fe has a high saturation magnetization, the saturation magnetization of the composite material can be increased as the Fe content is increased.
  • the Fe-based alloy contains at least one element selected from Si, Ni, Al, Co, and Cr as additive elements in a total amount of 1.0% by mass to 20.0% by mass, with the balance being Fe and inevitable And having a composition consisting of mechanical impurities.
  • Fe-based alloys include Fe-Si alloys, Fe-Ni alloys, Fe-Al alloys, Fe-Co alloys, Fe-Cr alloys, and Fe-Si-Al alloys (Sendust). It is done.
  • Fe-based alloys containing Si such as Fe—Si alloys and Fe—Si—Al alloys, have a high electrical resistivity, can easily reduce eddy current loss, and have low hysteresis loss. 10 low iron loss can be achieved.
  • the Si content is 1.0% by mass or more and 8.0% by mass or less, and preferably 3.0% by mass or more and 7.0% by mass or less.
  • the soft magnetic powder may be a mixture of multiple types of powders of different materials. For example, a mixture of both types of powders of Fe and an Fe-based alloy can be used.
  • the average particle diameter of the soft magnetic powder is preferably 5 ⁇ m or more and 300 ⁇ m or less, particularly preferably 10 ⁇ m or more and 100 ⁇ m or less. If the average particle size of the soft magnetic powder is 5 ⁇ m or more, it is difficult to agglomerate, and it is easy to reduce the eddy current loss because the resin is easily interposed between the soft magnetic particles. If the average particle diameter of the soft magnetic powder is 300 ⁇ m or less, the eddy current loss of the powder itself can be reduced because the powder is not excessively large, and consequently the eddy current loss of the composite material molded body 10 can be reduced. In addition, it is easy to increase the saturation magnetization of the composite material molded body 10 by increasing the filling factor.
  • Soft magnetic powder may be a mixture of multiple types of powders having different particle sizes.
  • a soft magnetic powder obtained by mixing a fine powder and a coarse powder is used as the material of the composite material molded body 10
  • a soft magnetic powder in which fine powder and coarse powder are mixed it is preferable to use different materials so that one is Fe and the other is Fe-based alloy.
  • both the characteristics of Fe (high saturation magnetization) and the characteristics of Fe-based alloys high electrical resistance and easy to reduce eddy current loss
  • either the coarse powder or the fine powder may be Fe (Fe-based alloy), but the fine powder is preferably Fe. That is, it is preferable that the coarse-grained powder is an Fe-based alloy. By doing so, the iron loss is lower than when the fine powder is an Fe-based alloy and the coarse powder is Fe.
  • the soft magnetic powder may have an insulating coating on the surface (outer periphery) of the soft magnetic particles in order to improve insulation.
  • the soft magnetic powder may be subjected to a surface treatment (for example, a silane coupling treatment) for enhancing the compatibility with the resin and the dispersibility of the resin.
  • the content of the soft magnetic powder in the composite material molded body 10 is preferably 30% by volume or more and 80% by volume or less when the composite material molded body 10 is 100% by volume. Since the ratio of the magnetic component is sufficiently high because the soft magnetic powder is 30% by volume or more, when the reactor 1 is constructed using this composite material molded body 10, the saturation magnetization is easily increased. Since the resin content is relatively small as the content increases, it is easy to form a conduction portion in which the soft magnetic particles are conducted in the sliding contact region. However, since the composite material molded body 10 has the laser irradiation marks 18, eddy current loss can be reduced even if the content of the soft magnetic powder is large.
  • the soft magnetic powder When the soft magnetic powder is 80% by volume or less, since the ratio of the magnetic component is not excessively high, the insulation between the soft magnetic particles can be enhanced, and eddy current loss can be reduced. Further, the fluidity of the mixture of the soft magnetic powder and the resin is excellent, and the productivity of the composite material molded body 10 is excellent.
  • the content of the soft magnetic powder is 50% by volume or more, further 55% by volume or more, particularly 60% by volume or more.
  • the content of the soft magnetic powder is 75% by volume or less, particularly 70% by volume or less.
  • thermosetting resins such as epoxy resin, phenol resin, silicone resin, and urethane resin
  • PPS polyphenylene sulfide
  • polyamide resin for example, nylon 6, nylon 66, nylon 9T
  • LCP liquid crystal polymer
  • Thermoplastic resins such as polyimide resins and fluororesins.
  • a room temperature curable resin, BMC (Bulk molding compound) in which calcium carbonate or glass fiber is mixed with unsaturated polyester, millable silicone rubber, millable urethane rubber, or the like can also be used.
  • the composite material molded body 10 may contain a powder (filler) made of a nonmagnetic material such as ceramics such as alumina or silica.
  • the filler contributes to improvement of heat dissipation and suppression (uniform dispersion) of uneven distribution of the soft magnetic powder. Further, if the filler is fine and is interposed between soft magnetic particles, it is possible to suppress a decrease in the ratio of the soft magnetic powder due to the inclusion of the filler.
  • the content of the filler is preferably 0.2% by mass or more and 20% by mass or less, more preferably 0.3% by mass or more and 15% by mass or less, particularly 0.5% by mass or more, when the composite material is 100% by mass. 10 mass% or less is preferable.
  • the composite material molded body 10 can be suitably used for a magnetic core of various magnetic parts (reactor, choke coil, transformer, motor, etc.) and its material.
  • the composite material molded body 10 can be manufactured by a method for manufacturing a composite material molded body including the following raw material manufacturing process and laser irradiation process.
  • the manufacturing method of the composite material molded body can further include a remelting mark forming step and a breakage mark forming step performed at an appropriate time as necessary after the material preparation step.
  • a molded body material of the composite material molded body 10 is obtained by filling an unsolidified (fluid state) mixture containing soft magnetic powder and resin from the gate into the mold cavity to solidify the resin. Is made.
  • the molded body material corresponds to the composite material molded body 10 not irradiated with laser.
  • a pair of inner core part 11 and outer core part 12 are provided.
  • the mold used for this production is divided at the boundary between the outer core portion 12 of the composite material molded body 10 and the pair of inner core portions 11, and the mold drawing direction is a pair with the outer core portion 12.
  • a mold in which the inner core portion 11 is aligned is used.
  • Injection molding, hot press molding, and MIM Metal Injection Molding
  • a laser irradiation mark 18 is formed by irradiating the circumferential surface with laser so as to divide the circumferential direction of the circumferential surface along the circumferential direction with the magnetic flux as an axis among the surface of the inner core portion 11.
  • the laser type may be any laser that can cut off the conducting part.
  • Specific examples include a solid laser in which the laser medium is solid.
  • a laser selected from a YAG laser, a YVO4 laser, and a fiber laser is preferable. By doing so, the said conduction
  • Each of these lasers includes known lasers in which various materials are doped in the medium of each laser. That is, the YAG laser may be doped with Nd, Er, or the like in the medium, the YVO4 laser may be doped with Nd or the like in the medium, and the fiber laser is a fiber that is the medium.
  • the core is doped with a rare earth element or the like, for example, doping with Yb or the like.
  • the wavelength of the laser is more preferably within the wavelength absorption region of the soft magnetic particles (conduction part). By doing so, it becomes easy to divide a conduction part, and it can control removing other than the conduction part concerned. Specifically, this wavelength is preferably about 532 nm to 1064 nm.
  • the energy density U (W / mm 2 ) of the laser is particularly preferably 2 W / mm 2 ⁇ U ⁇ 35 W / mm 2 .
  • the ratio of the irradiation interval to the laser beam diameter is preferably small.
  • the beam diameter refers to the diameter of the laser on the conducting part.
  • the irradiation interval refers to the distance that the laser beam moves in the scanning direction during the irradiation time of one pulse of laser. If the ratio of the irradiation interval to the laser beam diameter is small, when the conducting portion is scanned with the laser, the unprocessed area where the laser is not irradiated can be reduced, and the conducting portion can be easily divided. Specifically, the ratio is preferably 0.35 or less, and particularly preferably 0.30 or less.
  • the ratio of the scanning interval to the laser beam diameter is also small.
  • the scanning interval refers to a distance when moving a line scanned by a laser to an adjacent line. That is, if the ratio of the scanning interval to the laser beam diameter is small, the region not irradiated with the laser can be reduced as described above, and the conducting portion can be easily divided.
  • the number of laser overlaps is a plurality of times.
  • the number of overlaps refers to the number of times the same area is processed (scanned) with a laser. The greater the number of laser overlaps, the better. If it does so, the conduction
  • the number of times of overlapping is 5 times or more, and particularly preferably 10 times or more.
  • thermo treatment is performed on at least part of the parting line 15 to form a remelting mark.
  • the heat treatment for forming the remelting marks there are a contact type in which a heating medium is brought into direct contact and an indirect type in which the heating medium is not brought into contact.
  • Examples of the contact-type technique include ultrasonic heating, hot plate heating, and impulse welder.
  • the ultrasonic heating is a method in which ultrasonic vibration generated by an ultrasonic generator and an ultrasonic transducer is transmitted to the surface of the parting line 15 by a horn (heating medium) and heated by frictional heat generated.
  • Hot plate heating is a method of heating by bringing a heated metal plate (heating medium) into contact with the parting line 15.
  • the impulse welder is a method in which a pressurized heater wire (heating medium) is installed in the parting line 15 and the parting line 15 is heated with heat generated by flowing an instantaneous large current through the heater wire.
  • examples of the indirect method include light heating.
  • examples of the light heating include laser heating and infrared heating using temperature radiation.
  • the laser heating may be performed under the same conditions as those for forming the laser irradiation mark 18 (energy density U or the like).
  • the fracture trace is formed by breaking at least a part of the parting line 15 with the deburring brush.
  • a commercially available deburring brush can be used.
  • the composite material molded body 10 described above can be suitably used for at least a part of the magnetic core 3 of the reactor 1 shown in FIG.
  • the reactor 1 includes the coil 2 including the pair of winding portions 2a and 2b and the magnetic core 3 including the two core members 30 having the same shape. Both core members 30 are composed of the composite material molded body 10 described above.
  • the pair of winding portions 2a and 2b are formed by spirally winding one continuous winding 2w having no joint portion, and are connected via a connecting portion 2r.
  • a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used.
  • the conductor is made of a flat rectangular wire made of copper
  • the insulating covering is made of a coated rectangular wire made of enamel (typically polyamideimide).
  • Each winding part 2a, 2b is comprised by the edgewise coil which made this covering rectangular wire the edgewise winding.
  • the winding portions 2a and 2b are arranged in parallel (side by side) so that the respective axial directions are parallel to each other.
  • the shape of the winding parts 2a and 2b is a hollow cylindrical body (square cylinder) having the same number of turns.
  • the end surface shape of the winding parts 2a and 2b is a shape obtained by rounding the corners of the rectangular frame.
  • the connecting portion 2r is formed by bending a part of the winding in a U shape on one end side (the right side in FIG. 2) of the coil 2.
  • the upper surface of the connecting portion 2r is substantially flush with the upper surface of the turn forming portion of the coil 2.
  • Both end portions 2e of the winding 2w of the winding portions 2a and 2b are extended from the turn forming portion. Both end portions 2e are connected to a terminal member (not shown), and an external device (not shown) such as a power source for supplying power is connected to the coil 2 through this terminal member.
  • the pair of inner core portions 11 of each core member 30 are disposed inside the pair of winding portions 2 a and 2 b when assembled to the coil 2.
  • the outer core portion 12 of each core member 30 is disposed so as to protrude from the coil 2 when the core member 30 is assembled to the coil 2.
  • the annular magnetic core 3 is formed by connecting the end surfaces 11E (linkage surfaces) of the inner core portion 11 of the one and the other core members 30 within the winding portions 2a and 2b.
  • the core members 30 may be connected without interposing a gap material between the interlinkage surfaces of the inner core portion 11, or may be connected with a gap material interposed.
  • An adhesive can be used to connect the core members 30 to each other.
  • a gap (air gap) may be provided between the core members 30.
  • the material of the gap material include materials having lower magnetic permeability than the core member 30.
  • a nonmagnetic material such as alumina or unsaturated polyester, a nonmagnetic material such as PPS resin, and a magnetic material (iron powder or the like) are used. And a mixture containing the same.
  • the magnetic core 3 may further include a resin mold portion that covers the surface of the core member 30. Since the core member 30 includes the laser irradiation marks 18, the adhesion (bondability) of the resin mold portion to the core member 30 can be improved. Furthermore, if the parting line 15 of the core member 30 has a remelt mark or a break mark, the adhesion can be improved.
  • the covering region of the resin mold part can be, for example, the entire surface of the core member 30.
  • the constituent material of the resin mold part is, for example, the same thermoplastic resin (for example, PPS resin) as the resin of the composite material molded body 10 described above or a thermosetting resin, or the following thermoplastic resin or thermosetting resin. Is mentioned.
  • thermoplastic resin examples include polytetrafluoroethylene (PTFE) resin, polybutylene terephthalate (PBT) resin, acrylonitrile / butadiene / styrene (ABS) resin, and the thermosetting resin includes unsaturated polyester resin.
  • PTFE polytetrafluoroethylene
  • PBT polybutylene terephthalate
  • ABS acrylonitrile / butadiene / styrene
  • thermosetting resin includes unsaturated polyester resin. Is mentioned.
  • This constituent resin may contain a ceramic filler such as alumina or silica. If it does so, it will become a resin mold part excellent in heat conductivity, and the heat dissipation of the reactor 1 will be improved.
  • Reactor 1 is a variety of converters such as in-vehicle converters (typically DC-DC converters) and air conditioner converters installed in vehicles such as hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles. It can utilize suitably for the component of a converter.
  • in-vehicle converters typically DC-DC converters
  • air conditioner converters installed in vehicles such as hybrid vehicles, plug-in hybrid vehicles, electric vehicles, and fuel cell vehicles. It can utilize suitably for the component of a converter.
  • the core member 30 includes the composite material molded body 10 having the laser irradiation trace 18 parallel to the magnetic flux on the surface parallel to the magnetic flux, it is difficult for the eddy current to flow through the laser irradiation trace 18. Low loss.
  • ⁇ Test example ⁇ A sample of a composite material molded body including a soft magnetic powder and a resin encapsulating the soft magnetic powder in a dispersed state was prepared, and the magnetic characteristics of the sample were evaluated.
  • Sample No. 1-1 Sample No. As a composite material molded body of 1-1, a composite material molded body 10 shown in FIG. 1 was manufactured through a raw material preparation process, a material manufacturing process, and a laser irradiation process.
  • a mixture of soft magnetic powder and resin was prepared.
  • the soft magnetic powder an Fe—Si alloy powder having an average particle size of 80 ⁇ m, containing 6.5% by mass of Si, and having the balance of Fe and inevitable impurities was used.
  • a PPS resin was used as the resin.
  • the soft magnetic powder and the resin were mixed, and the resin was kneaded with the soft magnetic powder in a molten state to prepare a mixture.
  • the content of the soft magnetic powder in the mixture was 70% by volume.
  • a U-shaped molded material comprising a pair of inner core portion 11 and outer core portion 12 was produced by injection molding.
  • a mold having a split surface at the boundary between the outer core portion 12 and the pair of inner core portions 11, that is, the direction in which the outer core portion 12 and the pair of inner core portions 11 are arranged is the die cutting direction.
  • the above mold was used, and the above mixture was filled in the mold and cooled and solidified.
  • the dividing surface of the mold was to be the boundary between the outer core portion 12 and the inner core portion 11.
  • a parting line 15 is formed at the boundary between the outer core portion 12 and the inner core portion 11.
  • a laser irradiation mark 18 was formed by irradiating laser from one end to the other end of the outer side surface of the left and right inner core portions 11 of the molded body material taken out from the mold.
  • the laser irradiation conditions were a processing width of 3 mm (1/60 of the circumference of the circumferential surface) and a laser energy density U of 5.5 W / mm 2 .
  • Sample No. The composite material molded body 1-1 includes a laser irradiation mark 18 formed from one end of the left surface 11L of the left inner core portion 11 to the other end, and another end of the right surface 11R of the right inner core portion 11 from the other end.
  • a laser irradiation mark 18 formed over the end.
  • Laser irradiation traces 18 are not formed on the right surface 11R of the left inner core portion 11 and the left surface 11L of the right inner core portion 11.
  • Sample No. The arithmetic average roughness Ra of the non-sliding contact region (end surface 11E), the sliding contact region (upper surface 11U), and the laser irradiation mark in the composite material molded body of 1-1 was measured using a commercially available surface roughness measuring device in accordance with JIS B 0601. (2013).
  • Sample No. The composite material molded body of 1-101 is sample No. 1 except that the laser irradiation step is not performed. It was produced in the same manner as 1-1. That is, sample no. The composite material molded body of 1-101 is still in the state of being taken out from the mold, and the laser irradiation trace 18 is not formed.
  • sample no. 1-1 has an iron loss of 8.9 W.
  • the iron loss of 1-101 was 9.8 W.
  • sample no. 1-1 is Sample No. Compared with 1-101, the iron loss was low.
  • the composite material molded body of 1-1 was sample No. This is probably because the eddy current loss was effectively reduced as compared with 1-101.
  • Sample No. The composite material molded body of 1-1 was irradiated with a laser so as to divide the circumferential direction of the circumferential surface of the inner core portion after taking out the molded body material from the mold with the mold drawing direction parallel to the magnetic flux. As a result, it was possible to form a laser irradiation mark 18 having a high electrical resistance in which the conduction portion was divided. Therefore, the eddy current flowing along the circumferential direction of the circumferential surface can be made difficult to flow over the entire length of the inner core portion. On the other hand, sample No.
  • the composite material molded body of 1-101 does not have a portion with high electrical resistance such as a laser irradiation trace on the circumferential surface, and a conductive portion with low electrical resistance is formed over the entire circumferential surface, The eddy current flowing along the circumferential direction centered on the magnetic flux on the side surface of the core portion could not be suppressed.
  • the shape of the core member can be appropriately selected depending on the combination of a plurality of core members of the magnetic core.
  • a combination of a plurality of core members may have a form called an LL (JJ) type core in which one inner core part is integrated with an outer core part in addition to the above-mentioned U type core. it can.
  • a reactor including a coil having only one winding portion and a magnetic core called an EE type core or an EI type core can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

軟磁性粒子を複数有する軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体であって、前記複合材料成形体を成形する金型の分割面に対応したパーティングラインと、コイルの内側に配置される内側コア部と、前記内側コア部の表面に形成されるレーザー照射痕とを備え、前記内側コア部の表面のうち、前記コイルで前記内側コア部に励磁した磁束を軸とする周方向に沿った面を周回面とするとき、前記パーティングラインは、前記磁束の軸方向を分断するように形成され、前記レーザー照射痕は、前記周回面の周方向を分断するように前記周回面に形成される複合材料成形体。

Description

複合材料成形体、及びリアクトル
 本発明は、複合材料成形体、及びリアクトルに関する。
 本出願は、2015年9月24日付の日本国出願の特願2015-187527に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 例えば、特許文献1のリアクトルは、一対のコイル素子(巻回部)の内側に配置される一対の柱状の内側コア部を備える。この内側コア部は、表面の少なくとも一部にレーザーが照射された圧粉成形体で構成されるコア片とギャップ材とで構成される。圧粉成形体の製造は、軟磁性粒子の外周に絶縁被覆が被覆された被覆軟磁性粒子を複数備える被覆軟磁性粉末を金型に充填して加圧成形した素材成形体にレーザーを照射して行われる。素材成形体の型抜時、素材成形体の表面のうち金型の型抜方向の周方向に沿った周回面と、型抜方向の周方向に沿った金型の内面とは摺接する。この摺接により、被覆軟磁性粒子の絶縁被覆が損傷して軟磁性粒子が露出し展延することで、軟磁性粒子同士が導通する膜状の導通部が素材成形体の周回面の全域に亘って形成されることがある。導通部の形成された素材成形体の周回面が磁束を軸とする周方向に沿った面となる場合、周回面上を磁束の上記周方向に沿って渦電流が流れて渦電流損が増加する。特許文献1のリアクトルでは、その渦電流損の増大を抑制するために、素材成形体の周回面の導通部にレーザーを照射して導通部が分断された圧粉成形体をコア片に用い、その分断箇所で渦電流を遮断して低損失化を図っている。
 特許文献2のリアクトルは、一対のコイル素子(巻回部)のそれぞれに挿通される一対のコイル配置部(内側コア部)と、両コイル配置部の一端側で一体に成形され、コイルの端面の少なくとも一部を覆うようにコイルの外側に配置される露出部(外側コア部)とを有するコア片を備える。このコア片は、複合材料(複合材料成形体)で構成される。複合材料の製造は、磁性体粉末と樹脂との混合物を金型に充填し、樹脂を固化(硬化)して行われる。金型には、コア片の型抜方向がコイル配置部の長手方向に沿った方向、即ちコイルで励磁される磁束に平行な方向となる金型を用いる。
特開2012-199513号公報 特開2014-239120号公報
 本開示の複合材料成形体は、
 軟磁性粒子を複数有する軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体であって、
 前記複合材料成形体を成形する金型の分割面に対応したパーティングラインと、
 コイルの内側に配置される内側コア部と、
 前記内側コア部の表面に形成されるレーザー照射痕とを備え、
 前記内側コア部の表面のうち、前記コイルで前記内側コア部に励磁した磁束を軸とする周方向に沿った面を周回面とするとき、
  前記パーティングラインは、前記磁束の軸方向を分断するように形成され、
  前記レーザー照射痕は、前記周回面の周方向を分断するように前記周回面に形成される。
 本開示のリアクトルは、
 巻線を巻回してなるコイルと、前記コイルが配置される磁性コアとを備えるリアクトルであって、
 前記磁性コアの少なくとも一部は、上記本開示の複合材料成形体を備える。
実施形態1に係る複合材料成形体を示し、左図は外端面側から見た概略斜視図であり、右図は鎖交面側から見た概略斜視図である。 実施形態1に係るリアクトルを示し、上図は概略斜視図であり、下図は分解斜視図である。
 [本開示が解決しようとする課題]
 複合材料成形体で構成されるコアを備えるリアクトルの更なる低損失化が望まれている。
 そこで、低損失なリアクトルを構築できる複合材料成形体を提供することを目的の一つとする。
 また、上記複合材料成形体を備えるリアクトルを提供することを目的の一つとする。
 [本開示の効果]
 本開示の複合材料成形体は、低損失なリアクトルを構築できる。
 本開示のリアクトルは、低損失である。
《本発明の実施形態の説明》
 本発明者らは、コア片の型抜方向が内側コア部の長手方向(磁束)に沿う金型を用いて製造した従来の複合材料成形体において、低損失化の阻害要因を調べた。その結果、以下の知見を得た。
 (i)複合材料成形体における型抜時の金型内面との摺接領域には、軟磁性粒子が展延して磁性粒子同士が導通する膜状の導通部が形成される。
 一般に、複合材料成形体の樹脂の含有量は、軟磁性粉末を加圧成形してなる圧粉成形体に比べて多いため、型抜時に金型の内面との摺接により軟磁性粒子が展延し難く、圧粉成形体のような軟磁性粒子同士が導通する膜状の導通部が形成され難いと考えられていた。しかし、その複合材料成形体であっても導通部が形成される。
 (ii)従来の複合材料成形体の型抜方向は、コイルで励磁される磁束に平行な方向であるため、複合材料成形体の磁束と平行な全ての面には、導通部が形成され、磁束を中心とする周方向に沿って渦電流が流れる。
 (iii)導通部の形成は、損失増加に影響を及ぼさず実質的に無視できる程度ではなく、損失増加に大きく影響を及ぼす、即ち、多大な渦電流損を生じさせるほどである。
 (iv)導通部は、純鉄に比較して硬くて展延し難いFe基合金粒子を備える軟磁性粉末の場合であっても形成される。
 本発明者らは、これらの知見に基いて、導通部を分断することを鋭意検討することで、本発明を完成するに至った。最初に本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係る複合材料成形体は、
 軟磁性粒子を複数有する軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体であって、
 前記複合材料成形体を成形する金型の分割面に対応したパーティングラインと、
 コイルの内側に配置される内側コア部と、
 前記内側コア部の表面に形成されるレーザー照射痕とを備え、
 前記内側コア部の表面のうち、前記コイルで前記内側コア部に励磁した磁束を軸とする周方向に沿った面を周回面とするとき、
  前記パーティングラインは、前記磁束の軸方向を分断するように形成され、
  前記レーザー照射痕は、前記周回面の周方向を分断するように前記周回面に形成される。
 上記の構成によれば、低損失なリアクトルを構築できる。内側コア部の周回面の周方向を分断するように周界面に形成されるレーザー照射痕により、周回面の周方向に沿って流れる渦電流を流れ難く、ひいては遮断できるため、渦電流損を低減できるからである。
 この複合材料成形体の製造は、金型から取り出した成形体素材の表面に形成される導通部に対してレーザーを照射することで行われる。複合材料成形体の成形時の型抜方向は、内側コア部の磁束の軸方向と平行である。パーティングラインが磁束の軸方向を分断するように形成されているからである。このとき、内側コア部の周回面の全面が金型の内面との摺接領域である。そのため、レーザー照射前において、内側コア部の周回面の全面には、軟磁性粒子が展延して軟磁性粒子同士が導通する膜状の導通部が形成されることがある。レーザー照射痕は、内側コア部の周回面の周方向を分断するようにその表面(上記導通部)にレーザーを照射することで次のように形成されると考えられる。レーザーの照射により、導通部は急速加熱されて溶融され、溶融金属の表面張力により凝集することで分断される。その後の冷却により、溶融金属は分断状態で凝固される。この導通部の分断により、分断箇所の間には高電気抵抗な領域が形成される。従って、レーザー照射痕は周回面の周方向に沿って流れる渦電流を流れ難く、ひいては遮断できる。
 (2)上記複合材料成形体の一形態として、前記レーザー照射痕は、前記軟磁性粒子の主成分元素を含有する酸化膜を有することが挙げられる。
 レーザー照射痕は、導通部にレーザーを照射することで形成されるため、レーザーの照射による導通部の溶融・凝固により、軟磁性粒子の主成分元素を含有する酸化膜を有することができる。複合材料成形体は、この酸化膜を備えることで、渦電流をより一層遮断できる上に、軟磁性粒子の錆を抑制できる。
 (3)上記複合材料成形体の一形態として、前記レーザー照射痕の算術平均粗さRaが、前記周回面における前記レーザー照射痕の周辺よりも大きいことが挙げられる。
 上記の構成によれば、複合材料成形体の表面を覆う樹脂との密着性(接合性)を高め易い。レーザー照射痕の表面粗さがその周辺部に比較して大きいため、レーザー照射痕に対する樹脂の接触面積を大きくできるからである。リアクトルの磁性コアとして複合材料成形体を用いる場合、複合材料成形体の表面にコイルとの間の絶縁性を高めるためにその表面に樹脂モールド部を形成することがある。
 (4)上記複合材料成形体の一形態として、前記レーザー照射痕の幅は、前記軟磁性粉末の平均粒径以上前記周回面の周長の1/4以下であることが挙げられる。
 レーザー照射痕の幅を軟磁性粉末の平均粒径以上とすれば、渦電流損を効果的に低減しやすい。レーザー照射痕の幅を周回面の周長の1/4以下とすれば、渦電流損の低減効果が十分に得られる上に、レーザー照射痕の幅が過度に大きすぎず、レーザー照射痕の形成が煩雑にならない。
 (5)上記複合材料成形体の一形態として、並列して位置される一対の前記内側コア部と、前記コイルの外側に配置され、これら両内側コア部をつなぐ外側コア部とを備え、前記レーザー照射痕が形成される前記周回面は、前記一対の内側コア部の並列方向に直交していることが挙げられる。
 上記の構成によれば、渦電流が流れ難く、低損失なリアクトルを構築できる。
 (6)上記複合材料成形体の一形態として、前記軟磁性粉末が、Siを1.0質量%以上8.0質量%以下含むFe基合金の軟磁性粒子を含むことが挙げられる。
 Siを1.0質量%以上含むFe基合金は、電気抵抗率が高く渦電流損を低減し易い。その上に、純鉄に比較して硬いため、製造過程で歪が導入され難いためヒステリシス損を低減し易いことから、鉄損をより低減できる。Siを8.0質量%以下含むFe基合金は、Siの量が過度に多すぎず、低損失と高飽和磁化とを両立させ易い。
 (7)上記複合材料成形体の一形態として、前記軟磁性粉末の前記複合材料成形体全体に対する含有量が、30体積%以上80体積%以下であることが挙げられる。
 上記含有量が30体積%以上であれば、磁性成分の割合が十分に高いため、この複合材料成形体を用いてリアクトルを構築した場合、飽和磁化を高め易い。上記含有量が多いほど樹脂の含有量が少ないため、上記摺接領域では粒子同士が導通した導通部を形成し易い。しかし、上記レーザー照射痕を備えることで、導通部を形成し易い場合であっても、渦電流損を低減できる。上記含有量が80体積%以下であれば、磁性成分の割合が過度に高過ぎないため、軟磁性粒子同士の絶縁性を高められ、渦電流損を低減できる。
 (8)上記複合材料成形体の一形態として、前記軟磁性粉末の平均粒径が、5μm以上300μm以下であることが挙げられる。
 軟磁性粉末の平均粒径が5μm以上であれば、凝集し難く粉末粒子間に十分に樹脂を介在させ易いため渦電流損を低減し易い。軟磁性粉末の平均粒径が300μm以下であれば、過度に大きくないため、粉末粒子自体の渦電流損を低減でき、ひいては複合材料成形体の渦電流損を低減できる。その上、充填率を高められて複合材料成形体の飽和磁化を高め易い。
 (9)本発明の一態様に係るリアクトルは、
 巻線を巻回してなるコイルと、前記コイルが配置される磁性コアとを備えるリアクトルであって、
 前記磁性コアの少なくとも一部は、上記(1)から(8)のいずれか1つに記載の複合材料成形体を備える。
 上記の構成によれば、渦電流損を効果的に低減できる上記複合材料成形体を備えるため、低損失である。
 《本発明の実施形態の詳細》
 本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。
 《実施形態1》
 〔複合材料成形体〕
 主に図1を参照して実施形態1に係る複合材料成形体10を説明する。複合材料成形体10は、軟磁性粉末と樹脂とを含む未固化の混合物の樹脂を固化(硬化)したものであり、代表的にはリアクトルに備わる磁性コアの少なくとも一部を構成する。リアクトルは、詳しくは後述するが、例えば、図2に示すコイル2と磁性コア3とを備える。ここでは、コイル2は、巻線2wを螺旋状に巻回した一対の巻回部2a、2bを互いに並列状態で接続してなる。磁性コア3は、同一の形状を有する二つのコア部材30を組み合わせて環状に構成される。この両コア部材30はいずれも、複合材料成形体10で構成される。複合材料成形体10は、型抜方向を特定の方向とする金型のキャビティ内にゲートから流動性のある状態の複合材料を充填して樹脂を固化して作製する。複合材料成形体10の特徴の一つは、コイル2の内側に配置される内側コア部11の磁束を軸とする周方向に沿った周回面を分断するようにその周界面に形成されるレーザー照射痕18を備える点にある。以下、詳細を説明する。ここでは、コア部材30をコイル2に組み付けてリアクトル1を構築し、リアクトル1を冷却ベースなどの設置対象に設置した際の設置対象側を下、設置対象の反対側を上として説明する。図中の同一符号は同一名称物を示す。
  [全体構成]
 複合材料成形体10は、一対の内側コア部11と、一対の内側コア部11の一端側で両内側コア部11をつなぐ外側コア部12とで構成されている。複合材料成形体10の上方から見た形状は、略U字状である。一対の内側コア部11は、複合材料成形体10を有するコア部材30をコイル2(図2)に組み付けた際、一対の巻回部2a、2b内にそれぞれ配置される。外側コア部12は、同様に複合材料成形体10を有するコア部材30をコイル2(図2)に組み付けた際、コイル2の端面から突出される。内側コア部11と外側コア部12の上面11U,12uは略面一である。一方、外側コア部12の下面12dは、内側コア部11の下面11Dよりも突出して、複合材料成形体10をコイル2と組み合わせた際、コイル2の下面と略面一になるように外側コア部12の大きさを調整している。複合材料成形体10には、磁束の軸方向を分断するようにパーティングライン15が形成され、一対の内側コア部11の各々には、パーティングライン15を含む面に直交するレーザー照射痕18が形成されている。
  (内側コア部)
 各内側コア部11の形状は、コイル2の形状(コイル2の内部空間)に合わせた形状とすることが好ましい。ここでは、直方体状であり、その角部を巻回部2a,2b(図2)の内周面に沿うように丸めている。内側コア部11の表面のうち磁束を軸とする周方向に沿った周回面(巻回部2a、2bの周方向に沿った面)は、パーティングライン15を含む面に直交しており、内側コア部11の磁束に平行な平行面である。即ち、内側コア部11の周回面は、その表面のうち、内側コア部11の磁束に交差(ここでは直交)する端面11E以外の面である。ここでは、各内側コア部11の周回面は、上下左右面11U,11D,11L,11Rの4つの平面と隣り合う平面同士を連結する四つの曲面とで構成されている。左右とは、一対の内側コア部11を外側コア部12側から見たときの一対の内側コア部11の並列方向とする。内側コア部11の端面11Eは、パーティングライン15を含む面に平行であり、周回面に連続して形成される。内側コア部11における磁束(周回面)に平行な方向、即ち、端面11Eに直交する方向が、型抜方向である。詳しくは後述するが、パーティングライン15は金型の分割面に対応するため、パーティングライン15を含む面と直交する方向が複合材料成形体10の成形時の型抜方向となるからである。
 各内側コア部11の周回面には、その周方向を分断するようにレーザー照射痕18(後述)が形成されている。両内側コア部11の周回面におけるレーザー照射痕18を除く領域は、型抜方向に平行で金型の内面と摺接した摺接領域であるため、軟磁性粒子が展延して軟磁性粒子同士が導通する膜状の導通部が形成された低電気抵抗な領域である。内側コア部11の端面11Eは、成形時に金型の内面に押圧されるが、型抜時に金型の内面と摺接しない非摺接領域であり、上記導通部が実質的に形成されない高電気抵抗な領域である。そのため、内側コア部11の端面11E上に磁束を中心とする周方向に沿って流れる渦電流が流れ難く、渦電流損を低減できる。
   〈レーザー照射痕〉
 レーザー照射痕18は、周回面の周方向に流れる渦電流を流れ難く、ひいては遮断する。図1(図2)では、レーザー照射痕18をクロスハッチングで示す。レーザー照射痕18は、導通部が分断されて実質的に形成されておらず、導通部間に形成された高電気抵抗な領域である。これは、後述する酸化膜や、絶縁被覆のある面(軟磁性粒子が絶縁被覆を備える場合)が露出することになるからである。従って、レーザー照射痕18を備えることで、周回面の全てが摺接領域で構成される複合材料成形体に比較して、渦電流損を低減できる。レーザー照射痕18は、後述するレーザーを導通部に照射することで次のように形成されると考えられる。レーザーの照射により、導通部は急速加熱されて溶融され、溶融金属の表面張力により凝集することで分断される。その後の冷却により、溶融金属は分断状態で凝固される。この導通部の分断により、分断箇所の間には高電気抵抗な領域が形成される。
 レーザー照射痕18の周回面における形成箇所は、上下左右面11U,11D,11L,11R、及び4つの曲面のいずれでもよい。レーザー照射痕18の形成長さ(磁束に平行な方向の長さ)は、周回面の一端から他端に亘る長さとすることが挙げられる。そうすれば、内側コア部11の磁束に平行な方向の全長に亘って渦電流を流れ難くできて、渦電流損を低減できる。ここでは、レーザー照射痕18の形成箇所は、各複合材料成形体10の一対の内側コア部11における外側の側面とし、レーザー照射痕18の形成長さは、その側面の一端から他端に亘る長さとしている。即ち、レーザー照射痕18は、左の内側コア部11における左面11Lの一端から他端に亘る箇所と、右の内側コア部11における右面11Rの一端から他端に亘る箇所とに形成されている。レーザー照射痕18の形成箇所を各内側コア部11における外側の側面とすることで、各内側コア部11における内側の側面に比較して、レーザーを照射し易いためレーザー照射痕18の形成が容易である。
 レーザー照射痕18の幅(磁束に直交する方向の長さ)は、軟磁性粉末の平均粒径以上が好ましい。そうすれば、渦電流損の低減効果を効果的に得やすい。レーザー照射痕18の幅は、周回面の周長の1/4以下が好ましい。そうすれば、渦電流損の低減効果が十分に得られる上に、レーザー照射痕の幅が過度に大きすぎず、レーザー照射痕の形成が煩雑にならない。レーザー照射痕18の幅は、より具体的には0.1mm以上20mm以下が特に好ましい。
 レーザー照射痕18の算術平均粗さRaは、その周辺よりも大きいことが多い。レーザー照射痕18の周辺とは、レーザー照射痕18に隣接する摺接領域が挙げられる。例えば、非摺接領域(例えば端面11E)と摺接領域(例えば上面11U,12u)とレーザー照射痕18とにおける算術平均粗さRaの比率は、非摺接領域:摺接領域:レーザー照射痕=1:8~15:16~30程度である。レーザー照射痕18の算術平均粗さRaがその周辺よりも粗いことで、複合材料成形体10の表面を覆う樹脂(例えば、後述する樹脂モールド部)との密着性(接合性)を高め易い。レーザー照射痕18に対する樹脂の接触面積を大きくし易いからである。
 レーザー照射痕18は、軟磁性粒子の主成分元素を含有する酸化膜を備える。レーザー照射痕18は、上述のように導通部にレーザーを照射して形成される。この導通部にレーザーを照射すると、そのエネルギーにより導通部が溶融されるため、導通部が分断されて軟磁性粒子の主成分元素を含む酸化膜が形成される。この酸化膜は、例えば、軟磁性粒子が鉄や鉄合金で構成されている場合、鉄を含む。その組成は、例えば、FeO,α-Fe,γ-Fe,及びFeから選択される1種以上が挙げられる。酸化膜の組成の検出は、例えば、X線回折(XRD)により行える。酸化膜は、例えば、0.1μm以上の厚さの箇所が存在し、0.5μm以上、1.0μm以上、3.0μm以上、更には5.0μm以上、7.0μm以上、特に10.0μm以上の厚さの箇所が存在する。この酸化膜の厚さは、レーザー照射痕18を形成するレーザーのエネルギー密度U(後述)に依存し、エネルギー密度Uが大きいほど厚くなる傾向にある。酸化膜の厚みの測定は、例えば、走査型電子顕微鏡(SEM)による断面観察で行える。
  (外側コア部)
 外側コア部12の形状は、略台形柱状である。外側コア部12は、磁束と平行な上下面12u,12dと、上下面12u,12dを繋ぎ磁束と平行な外端面12o(内側コア部11の端面11Eとの反対側)と、外端面12oの反対側の内端面12iとを備える。内端面12iは、両内側コア部11の間で、両内側コア部11の内側の側面に連続して形成される。ここでは、内端面12iは、各内側コア部11の下面11dにも連続して形成されている。外側コア部12の内側コア部11との境界(外側コア部12の内端面12iの周縁を含む両内側コア部11の包絡縁)には、磁束の軸方向を分断するように、その全周に亘ってパーティングライン15が形成されている。外側コア部12の上下面12u,12dは、内側コア部11の上下面11U,11Dと同様、金型の内面と摺接する摺接領域であり、外側コア部12の外端面12o及び内端面12iは、内側コア部11の端面11Eと同様、金型の内面と摺接しない非摺接領域である。
  (パーティングライン)
 パーティングライン15は、金型の分割面に対応する。パーティングライン15は、実質的に樹脂で構成され、複合材料成形体10の表面から外側に突出して形成される。パーティングライン15の横断面形状は、パーティングライン15の根元側の幅が最も広く、先端側に向かって徐々に幅が狭くなっている。パーティングライン15の突出高さや根元の幅は、金型の分割面の形状や成形条件によるが、例えば、パーティングライン15の突出高さは、0.05mm以上10mm以下が挙げられ、パーティングライン15の根元の幅は、0.05mm以上1mm以下が挙げられる。なお、図1(図2)では、説明の便宜上、パーティングライン15を強調して突出した状態に示している。
 パーティングライン15の形成箇所は、磁束の軸方向を分断する箇所(パーティングライン15を含む面が磁束と直交する箇所)で、成形する複合材料成形体10の形状にもよるが、磁束に平行な方向に型抜ができる箇所であれば、特に限定されない。ここでは、パーティングライン15の形成箇所は、外側コア部12における内側コア部11との境界としている。即ち、パーティングライン15は、枠状に形成されていて一つの平面上に存在するが、例えば、一部が段差状に形成された段差部や曲線状に形成された曲線部が外側コア部12の上面12uや下面12dに形成されていてもよい。
 複合材料成形体10は、パーティングライン15上の少なくとも一部に形成された樹脂の再溶融痕、及び破断痕の少なくとも一方を備えていてもよい(いずれも図示略)。再溶融痕は、後述する熱処理により形成できる。破断痕は、例えば、バリ取りブラシでパーティングライン15を折り取ることで形成できる。
 再溶融痕の形態は、(1)パーティングライン15に比較して突出高さが低いものの複合材料成形体10の表面から外側に向かって突出している場合、(2)パーティングライン15の周辺と略面一である場合、或いは、(3)その周辺よりも凹んでいる場合が挙げられる。再溶融痕の幅は、その形成手法及び条件やパーティングライン15の幅などにもよるが、例えば、0.1mm以上20mm以下が挙げられる。再溶融痕における表面粗さは、再溶融痕の形成手法や形態などによる。例えば、レーザーにより形成された再溶融痕の形状が表面から突出している場合、非摺接領域(例えば端面11Eなど)と摺接領域(例えば上面11U,12uなど)と再溶融痕とにおける算術平均粗さRaの比率は、非摺接領域:摺接領域:再溶融痕=1:8~15:16~30程度であることが挙げられる。
 一方、破断痕の形態は、パーティングライン15の周辺と略面一であることが多い。破断痕の表面粗さは、パーティングライン15の周辺よりも粗い。例えば、非摺接領域(例えば端面11Eなど)と摺接領域(例えば上面11U,12uなど)と破断痕とにおける算術平均粗さRaの比率は、例えば、非摺接領域:摺接領域:破断痕=1:8~15:16~35程度であることが挙げられる。
 再溶融痕や破断痕を備えることで、レーザー照射痕18と同様に、複合材料成形体10の表面を覆う樹脂(例えば、後述する樹脂モールド部)との密着性(接合性)を高め易い。特に、再溶融痕を備える場合には、軟磁性粉末の錆を抑制できる。仮に、パーティングライン15において軟磁性粉末が露出していても、再溶融痕の形成時の熱処理により、樹脂を流動させることができて、その露出した軟磁性粉末を樹脂に埋め込ませることができるからである。
  [構成材料]
   (軟磁性粉末)
 軟磁性粉末の材質は、鉄族金属やFeを主成分とするFe基合金、フェライト、アモルファス金属などの軟磁性材料が挙げられる。軟磁性粉末の材質は、渦電流損や飽和磁化の点から鉄族金属やFe基合金が好ましい。鉄族金属は、Fe,Co,Niが挙げられる。特に、Feは純鉄(不可避的不純物を含む)であるとよい。Feは飽和磁化が高いため、Feの含有量を高くするほど複合材料の飽和磁化を高められる。Fe基合金は、添加元素としてSi,Ni,Al,Co,及びCrから選択される1種以上の元素を合計で1.0質量%以上20.0質量%以下含有し、残部がFe及び不可避的不純物からなる組成を有することが挙げられる。Fe基合金は、例えば、Fe-Si系合金,Fe-Ni系合金,Fe-Al系合金,Fe-Co系合金,Fe-Cr系合金,Fe-Si-Al系合金(センダスト)などが挙げられる。特に、Fe-Si系合金やFe-Si-Al系合金といったSiを含有するFe基合金は、電気抵抗率が高く、渦電流損を低減し易い上に、ヒステリシス損も小さく、複合材料成形体10の低鉄損化を図れる。例えば、Fe-Si系合金の場合、Siの含有量は1.0質量%以上8.0質量%以下が挙げられ、3.0質量%以上7.0質量%以下が好ましい。軟磁性粉末は、材質の異なる複数種の粉末が混合されていても良い。例えば、FeとFe基合金との両方の種類の粉末を混合したものが挙げられる。
 軟磁性粉末の平均粒径は、5μm以上300μm以下、特に10μm以上100μm以下とすることが好ましい。軟磁性粉末の平均粒径が5μm以上であれば、凝集し難く軟磁性粒子間に十分に樹脂を介在させ易いため渦電流損を低減し易い。軟磁性粉末の平均粒径が300μm以下であれば、過度に大きくないため、粉末自体の渦電流損を低減でき、ひいては複合材料成形体10の渦電流損を低減できる。その上、充填率を高められて複合材料成形体10の飽和磁化を高め易い。
 軟磁性粉末は、粒径が異なる複数種の粉末が混合されたものでも良い。微細な粉末と粗大な粉末とを混合した軟磁性粉末を複合材料成形体10の材料に用いた場合、飽和磁束密度が高く、低損失なリアクトル1が得られ易い。微細な粉末と粗大な粉末を混合した軟磁性粉末を用いる場合、一方をFe、他方をFe基合金とするように異種材質とすることが好ましい。このように両粉末の材質を異種とすれば、Feの特性(飽和磁化が高い)とFe基合金の特性(電気抵抗が高く渦電流損を低減し易い)の両方の特性を兼ね備えられ、飽和磁化の向上効果と鉄損のバランスが良い。両粉末の材質を異種とする場合、粗粒粉末と微粒粉末のどちらをFe(Fe基合金)としてもよいが、微粒粉末をFeとすることが好ましい。即ち、粗粒粉末をFe基合金とすることが好ましい。そうすれば、微粒粉末がFe基合金で、粗粒粉末がFeである場合に比べて、低鉄損である。
 軟磁性粉末は、絶縁性を向上するために軟磁性粒子の表面(外周)に絶縁被覆を備えていてもよい。軟磁性粉末は、樹脂との馴染み性や樹脂に対する分散性を高めるための表面処理(例えば、シランカップリング処理など)を施したものでもよい。
 複合材料成形体10中の軟磁性粉末の含有量は、複合材料成形体10を100体積%とするとき、30体積%以上80体積%以下が好ましい。軟磁性粉末が30体積%以上であることで、磁性成分の割合が十分に高いため、この複合材料成形体10を用いてリアクトル1を構築した場合、飽和磁化を高め易い。この含有量が多いほど相対的に樹脂の含有量が少ないので、上記摺接領域では軟磁性粒子同士が導通した導通部を形成し易い。しかし、複合材料成形体10はレーザー照射痕18を有するため、軟磁性粉末の含有量が多くても渦電流損を低減できる。軟磁性粉末が80体積%以下であると、磁性成分の割合が過度に高過ぎないため、軟磁性粒子同士の絶縁性を高められ、渦電流損を低減できる。また、軟磁性粉末と樹脂との混合物の流動性に優れ、複合材料成形体10の製造性に優れる。軟磁性粉末の含有量は、50体積%以上、更に55体積%以上、特に60体積%以上が挙げられる。軟磁性粉末の含有量は、75体積%以下、特に70体積%以下が挙げられる。
   (樹脂)
 樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂などの熱硬化性樹脂や、ポリフェニレンスルフィド(PPS)樹脂、ポリアミド樹脂(例えば、ナイロン6、ナイロン66、ナイロン9T)、液晶ポリマー(LCP)、ポリイミド樹脂、フッ素樹脂などの熱可塑性樹脂が挙げられる。その他、常温硬化性樹脂、不飽和ポリエステルに炭酸カルシウムやガラス繊維が混合されたBMC(Bulk molding compound)、ミラブル型シリコーンゴム、ミラブル型ウレタンゴムなどを用いることもできる。
   (その他)
 複合材料成形体10には、軟磁性粉末及び樹脂に加えて、アルミナやシリカなどのセラミックスといった非磁性材料からなる粉末(フィラー)が含有されていても良い。フィラーは、放熱性の向上、軟磁性粉末の偏在の抑制(均一的な分散)に寄与する。また、フィラーが微粒であり、軟磁性粒子間に介在すれば、フィラーの含有による軟磁性粉末の割合の低下を抑制できる。フィラーの含有量は、複合材料を100質量%とするとき、0.2質量%以上20質量%以下が好ましく、更に0.3質量%以上15質量%以下が好ましく、特に0.5質量%以上10質量%以下が好ましい。
  [用途]
 複合材料成形体10は、各種の磁気部品(リアクトル、チョークコイル、トランス、モータなど)の磁性コアやその素材に好適に利用できる。
 〔複合材料成形体の作用効果〕
 上述の複合材料成形体10によれば、各内側コア部11の外側の側面に一端から他端に亘って形成されるレーザー照射痕18により、内側コア部11の周回面の軸方向の全範囲で、周回面の周方向に沿って流れる渦電流を流れ難くできる。従って、渦電流損を低減でき、低損失なリアクトルを構築できる。
 〔複合材料成形体の製造方法〕
 複合材料成形体10の製造は、以下の素材作製工程と、レーザー照射工程とを備える複合材料成形体の製造方法により行える。複合材料成形体の製造方法は、更に、素材作製工程後、必要に応じて適当な時期に行う再溶融痕形成工程や破断痕形成工程を備えることができる。
  [素材作製工程]
 素材作製工程では、金型のキャビティ内にゲートから軟磁性粉末と樹脂とを含む未固化(流動性のある状態)の混合物を充填して樹脂を固化して複合材料成形体10の成形体素材を作製する。成形体素材は、複合材料成形体10に対してレーザーを照射していないものに相当する。ここでは、一対の内側コア部11と外側コア部12とを備える。この製造に使用する金型は、図示は省略するが、分割面が複合材料成形体10の外側コア部12における一対の内側コア部11との境界で、型抜方向が外側コア部12と一対の内側コア部11とが並ぶ方向となる金型を使用する。金型を用いた成形体素材の作製手法としては、射出成形、熱プレス成形、MIM(Metal Injection Molding)を利用することができる。
  [レーザー照射工程]
 レーザー照射工程は、内側コア部11の表面のうち、磁束を軸とする周方向に沿った周回面の周方向を分断するように周回面にレーザーを照射してレーザー照射痕18を形成する。
 レーザーの種類は、導通部を分断できるレーザーであればよい。具体的には、レーザーの媒体が固体である固体レーザーが挙げられ、例えばYAGレーザー、YVO4レーザー、及びファイバーレーザーの中から選択される1種のレーザーであることが好ましい。そうすることで、上記導通部を分断することができる。これらレーザーの各々には、各レーザーの媒体に種々の材料がドープされた公知のレーザーも含む。つまり、上記YAGレーザーは、その媒体にNd、Erなどをドープしてもよいし、上記YVO4レーザーは、その媒体にNdなどをドープしてもよいし、上記ファイバーレーザーは、その媒体であるファイバーのコアに希土類元素などがドープされており、例えば、Ybなどをドープすることが挙げられる。
 レーザーの波長は、軟磁性粒子(導通部)の波長吸収領域内であることがより好ましい。そうすることで、導通部を分断し易くなる上に、当該導通部以外を除去することを抑制することができる。この波長としては、具体的には、532nm~1064nm程度であることが好ましい。
 レーザーのエネルギー密度U(W/mm)は、レーザーの平均出力をP(W)、レーザーの照射面積をS(mm)とするとき、U=P/Sで表され、このエネルギー密度Uは、2W/mm≦U≦450W/mmを満たすことが好ましい。エネルギー密度Uを2W/mm以上とすることで、パーティングライン15の樹脂を十分に再溶融できる。一方、エネルギー密度Uを450W/mm以下とすることで、過剰溶融による軟磁性粒子同士の接触を十分に抑制できる。レーザーのエネルギー密度U(W/mm)は、2W/mm≦U≦35W/mmが特に好ましい。
 レーザーのビーム径に対する照射間隔の比率は、小さい方が好ましい。ビーム径は、導通部上でのレーザーの径を言う。照射間隔は、1パルスのレーザーの照射時間にレーザービームが走査方向に移動する距離を言う。レーザーのビーム径に対する照射間隔の比率が小さければ、導通部にレーザーを走査させた際、レーザーが照射されない未処理領域を減少することができ、導通部を分断し易くなる。具体的には、上記比率は、0.35以下であることが好ましく、特に、0.30以下であることが好ましい。
 レーザーのビーム径に対する走査間隔の比率も、小さい方が好ましい。走査間隔は、レーザーが走査するラインを隣接するラインに移動させる際の距離を言う。即ち、レーザーのビーム径に対する走査間隔の比率が小さければ、上述と同様、レーザーが照射されない領域を低減でき、導通部を分断し易くなる。
 レーザーの重ね回数は、複数回であることが好ましい。重ね回数は、同一領域をレーザーで処理(走査)する回数を言う。レーザーの重ね回数は、多いほど好ましい。そうすれば、導通部の分断を確実に行うことができる。具体的には、重ね回数を5回以上とすることが挙げられ、特に10回以上とすることが好ましい。
  [再溶融痕形成工程]
 再溶融痕形成工程は、パーティングライン15上の少なくとも一部に熱処理を施して再溶融痕を形成する。再溶融痕を形成する熱処理としては、加熱媒体を直接接触させる接触式と、その加熱媒体を接触させない間接式とがある。
 接触式の手法としては、例えば、超音波加熱、熱板加熱、及びインパルスウェルダーなどが挙げられる。超音波加熱は、超音波発生器と超音波振動子によって発生させた超音波振動をホーン(加熱媒体)によりパーティングライン15の表面に伝達させて発生する摩擦熱で加熱する手法である。熱板加熱は、加熱した金属板(加熱媒体)をパーティングライン15に接触させることで加熱する手法である。インパルスウェルダーは、加圧したヒーター線(加熱媒体)をパーティングライン15に設置し、ヒーター線に瞬間的な大電流を流して発熱させた熱でパーティングライン15を加熱する手法である。
 一方、間接式の手法としては、例えば、光加熱などが挙げられる。光加熱は、レーザー加熱や、温度放射を利用した赤外線加熱が挙げられる。レーザー加熱は、上述のレーザー照射痕18を形成する条件(エネルギー密度Uなど)と同様の条件としてもよい。
  [破断痕形成工程]
 破断痕形成工程は、上述したようにバリ取りブラシによりパーティングライン15の少なくとも一部を折り取ることで破断痕を形成する。バリ取りブラシは、市販のものを使用できる。
 〔リアクトル〕
 上述の複合材料成形体10は図2に示すリアクトル1の磁性コア3の少なくとも一部に好適に利用できる。リアクトル1は、実施形態1の冒頭で説明したように、一対の巻回部2a、2bを備えるコイル2と、同一の形状を有する二つのコア部材30で構成される磁性コア3とを備える。この両コア部材30は、上述の複合材料成形体10で構成される。
  [コイル]
 一対の巻回部2a、2bは、接合部の無い1本の連続する巻線2wを螺旋状に巻回してなり、連結部2rを介して連結されている。巻線2wは、銅やアルミニウム、その合金といった導電性材料からなる平角線や丸線などの導体の外周に、絶縁性材料からなる絶縁被覆を備える被覆線を好適に利用できる。本例では、導体が銅製の平角線からなり、絶縁被覆がエナメル(代表的にはポリアミドイミド)からなる被覆平角線を利用している。各巻回部2a,2bは、この被覆平角線をエッジワイズ巻きにしたエッジワイズコイルで構成している。巻回部2a、2bの配置は、各軸方向が平行するように並列(横並び)した状態としている。巻回部2a、2bの形状は、互いに同一の巻数の中空の筒状体(四角筒)である。巻回部2a、2bの端面形状は、矩形枠の角部を丸めた形状である。連結部2rは、コイル2の一端側(図2紙面右側)において巻線の一部をU字状に屈曲して構成している。連結部2rの上面は、コイル2のターン形成部分の上面と略面一である。巻回部2a、2bの巻線2wの両端部2eは、ターン形成部から引き延ばされている。両端部2eは、図示しない端子部材に接続され、この端子部材を介して、コイル2に電力供給を行なう電源などの外部装置(図示せず)が接続される。
  [磁性コア]
 各コア部材30の一対の内側コア部11は、コイル2に組み付けた際、一対の巻回部2a,2bの内側に配置される。各コア部材30の外側コア部12は、同様にコア部材30をコイル2に組み付けた際、コイル2から突出するように配置される。一方と他方のコア部材30の内側コア部11の端面11E(鎖交面)同士を巻回部2a,2b内で連結することで環状の磁性コア3が形成される。このコア部材30同士の連結により、コイル2を励磁したとき、閉磁路を形成し、磁束は内側コア部11の長手方向に平行となって鎖交面に直交する。コア部材30同士は、内側コア部11の鎖交面同士の間にギャップ材を介在させることなく連結されていてもよいし、ギャップ材を介在させて連結させてもよい。コア部材30同士の連結には、接着剤を利用できる。コア部材30同士の間には、隙間(エアギャップ)を設けていてもよい。ギャップ材の材質は、コア部材30よりも低透磁率な材質が挙げられ、例えば、アルミナや不飽和ポリエステルなどの非磁性材料、PPS樹脂などの非磁性材料と磁性材料(鉄粉など)とを含む混合物などが挙げられる。
  [その他]
   (樹脂モールド部)
 磁性コア3は、更に、コア部材30の表面を覆う樹脂モールド部を備えていてもよい。コア部材30がレーザー照射痕18を備えることで、樹脂モールド部のコア部材30への密着性(接合性)を向上できる。更に、コア部材30のパーティングライン15が再溶融痕や破断痕を有していれば、密着性を高められる。樹脂モールド部の被覆領域は、例えば、コア部材30の表面全域とすることができる。樹脂モールド部の構成材料は、例えば、上述の複合材料成形体10の樹脂と同様の熱可塑性樹脂(例えば、PPS樹脂など)や熱硬化性樹脂の他、次の熱可塑性樹脂や熱硬化性樹脂が挙げられる。その熱可塑性樹脂としては、ポリテトラフルオロエチレン(PTFE)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂などが挙げられ、熱硬化性樹脂としては、不飽和ポリエステル樹脂などが挙げられる。この構成樹脂には、アルミナやシリカなどのセラミックスフィラーなどを含有していてもよい。そうすれば、熱伝導性に優れる樹脂モールド部となり、リアクトル1の放熱性を高められる。
  [用途]
 リアクトル1は、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車、燃料電池自動車などの車両に搭載される車載用コンバータ(代表的にはDC-DCコンバータ)や空調機のコンバータなどの種々のコンバータ、電力変換装置の構成部品に好適に利用できる。
 〔リアクトルの作用効果〕
 上述のリアクトル1によれば、コア部材30が磁束と平行な面に磁束に平行なレーザー照射痕18を有する複合材料成形体10を備えることで、渦電流をレーザー照射痕18で流れ難くできるため低損失である。
 《試験例》
 軟磁性粉末とこの軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体の試料を作製し、その試料の磁気特性を評価した。
 〔試料No.1-1〕
 試料No.1-1の複合材料成形体として、原料準備工程と素材作製工程とレーザー照射工程とを経て、図1に示す複合材料成形体10を作製した。
  [原料準備工程]
 原料準備工程では、軟磁性粉末と樹脂との混合物を準備した。軟磁性粉末には、平均粒径が80μmで、Siを6.5質量%含み、残部がFe及び不可避的不純物からなる組成を有するFe-Si合金の粉末を用いた。一方、樹脂には、PPS樹脂を用いた。この軟磁性粉末と樹脂とを混合し、樹脂を溶融状態で軟磁性粉末と練り合わせて混合物を作製した。混合物中の軟磁性粉末の含有量は、70体積%とした。
  [素材作製工程]
 素材作製工程では、一対の内側コア部11と外側コア部12とを備えるU字状の成形体素材を射出成形により作製した。成形体素材の作製は、外側コア部12における一対の内側コア部11との境界に分割面を有する金型、即ち、外側コア部12と一対の内側コア部11とが並ぶ方向を型抜方向とする金型を用い、その金型に上記混合物を充填し冷却固化することで行った。金型の分割面は、外側コア部12における内側コア部11との境界となるようにした。この成形体素材は、外側コア部12における内側コア部11との境界にパーティングライン15が形成されている。
  [レーザー照射工程]
 レーザー照射工程では、金型から取り出した成形体素材の左右の内側コア部11における外側の側面の一端から他端に亘ってレーザーを照射してレーザー照射痕18を形成した。レーザーの照射条件は、加工幅を3mm(周回面の周長の1/60)とし、レーザーのエネルギー密度Uを5.5W/mmとした。試料No.1-1の複合材料成形体10は、左側の内側コア部11の左面11Lの一端から他端に亘って形成されたレーザー照射痕18と、右側の内側コア部11の右面11Rの一端から他端に亘って形成されたレーザー照射痕18とを備える。左側の内側コア部11の右面11Rと右側の内側コア部11の左面11Lとには、レーザー照射痕18が形成されていない。試料No.1-1の複合材料成形体における非摺接領域(端面11E)と摺接領域(上面11U)とレーザー照射痕の算術平均粗さRaを市販の表面粗さ測定装置を用いて、JIS B 0601(2013)に準拠して行った。これらの算術平均粗さRaの比率は凡そ、非摺接領域:摺接領域:レーザー照射痕=1:10:21であった。
 〔試料No.1-101〕
 試料No.1-101の複合材料成形体は、レーザー照射工程を行わない点を除き、試料No.1-1と同様にして作製した。即ち、試料No.1-101の複合材料成形体は、金型から取り出した状態のままであり、レーザー照射痕18が形成されていない。
 〔磁気特性〕
 各試料の複合材料成形体を二つ組み合わせた環状の試験片に、銅線を巻回して、一次巻きコイル:300ターン、二次巻きコイル:20ターンを備える測定用部材を作製した。各測定部材について、AC-BHカーブトレーサを用いて、励起磁束密度Bm:4kG(=0.4T)、測定周波数:20kHzにおける鉄損W4/20k(W)を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.1-1の鉄損は8.9Wであり、試料No.1-101の鉄損は9.8Wであった。このように、試料No.1-1は、試料No.1-101に比較して低鉄損であった。このような結果となったのは、試料No.1-1の複合材料成形体は、試料No.1-101に比較して、渦電流損を効果的に低減できたからだと考えられる。
 試料No.1-1の複合材料成形体は、型抜方向を磁束と平行な方向とする金型から成形体素材を取り出した後、内側コア部の周回面の周方向を分断するようにレーザーを照射したことで、導通部を分断した高電気抵抗なレーザー照射痕18を形成できた。そのため、内側コア部の全長に亘って周回面の周方向に沿って流れる渦電流を流れ難くできた。一方、試料No.1-101の複合材料成形体は、周回面にレーザー照射痕のような高電気抵抗な箇所が存在せず、周回面の全域に亘って低電気抵抗な導通部が形成されているため、内側コア部の側面に磁束を中心とする周方向に沿って流れる渦電流を抑制できなかった。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、コア部材の形状は磁性コアの複数のコア部材の組み合わせにより適宜選択できる。複数のコア部材の組み合わせを、上述のU-U型コアの他、外側コア部に一つの内側コア部が一体化されたL-L(J-J)型コアなどと呼ばれる形態とすることができる。また、巻回部が一つのみであるコイルと、E-E型コアやE-I型コアなどと呼ばれる磁性コアとを備えるリアクトルとすることができる。
 10 複合材料成形体
  11 内側コア部
   11U 上面 11D 下面 11L 左面 11R 右面
   11E 端面
  12 外側コア部
   12u 上面 12d 下面
   12o 外端面 12i 内端面
  15 パーティングライン
  18 レーザー照射痕
 1 リアクトル
 2 コイル
  2a、2b 巻回部 2r 連結部 2w 巻線 2e 端部
 3 磁性コア
  30 コア部材

Claims (9)

  1.  軟磁性粒子を複数有する軟磁性粉末と前記軟磁性粉末を分散した状態で内包する樹脂とを含む複合材料成形体であって、
     前記複合材料成形体を成形する金型の分割面に対応したパーティングラインと、
     コイルの内側に配置される内側コア部と、
     前記内側コア部の表面に形成されるレーザー照射痕とを備え、
     前記内側コア部の表面のうち、前記コイルで前記内側コア部に励磁した磁束を軸とする周方向に沿った面を周回面とするとき、
      前記パーティングラインは、前記磁束の軸方向を分断するように形成され、
      前記レーザー照射痕は、前記周回面の周方向を分断するように前記周回面に形成される複合材料成形体。
  2.  前記レーザー照射痕は、前記軟磁性粒子の主成分元素を含有する酸化膜を有する請求項1に記載の複合材料成形体。
  3.  前記レーザー照射痕の算術平均粗さRaが、前記周回面における前記レーザー照射痕の周辺よりも大きい請求項1又は請求項2に記載の複合材料成形体。
  4.  前記レーザー照射痕の幅は、前記軟磁性粉末の平均粒径以上前記周回面の周長の1/4以下である請求項1から請求項3のいずれか1項に記載の複合材料成形体。
  5.  並列して位置される一対の前記内側コア部と、
     前記コイルの外側に配置され、これら両内側コア部をつなぐ外側コア部とを備え、
     前記レーザー照射痕が形成される前記周回面は、前記一対の内側コア部の並列方向に直交している請求項1から請求項4のいずれか1項に記載の複合材料成形体。
  6.  前記軟磁性粉末が、Siを1.0質量%以上8.0質量%以下含むFe基合金の軟磁性粒子を含む請求項1から請求項5のいずれか1項に記載の複合材料成形体。
  7.  前記軟磁性粉末の前記複合材料成形体全体に対する含有量が、30体積%以上80体積%以下である請求項1から請求項6のいずれか1項に記載の複合材料成形体。
  8.  前記軟磁性粉末の平均粒径が、5μm以上300μm以下である請求項1から請求項7のいずれか1項に記載の複合材料成形体。
  9.  巻線を巻回してなるコイルと、前記コイルが配置される磁性コアとを備えるリアクトルであって、
     前記磁性コアの少なくとも一部は、請求項1から請求項8のいずれか1項に記載の複合材料成形体を備えるリアクトル。
PCT/JP2016/077809 2015-09-24 2016-09-21 複合材料成形体、及びリアクトル WO2017051818A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015187527A JP2017063113A (ja) 2015-09-24 2015-09-24 複合材料成形体、及びリアクトル
JP2015-187527 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051818A1 true WO2017051818A1 (ja) 2017-03-30

Family

ID=58386670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077809 WO2017051818A1 (ja) 2015-09-24 2016-09-21 複合材料成形体、及びリアクトル

Country Status (2)

Country Link
JP (1) JP2017063113A (ja)
WO (1) WO2017051818A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028247A1 (ja) * 2007-08-31 2009-03-05 Sumida Corporation コイル部品及びそのコイル部品の製造方法
JP2012199513A (ja) * 2011-03-04 2012-10-18 Sumitomo Electric Ind Ltd 圧粉成形体、圧粉成形体の製造方法、リアクトル、コンバータ、及び電力変換装置
JP2015065483A (ja) * 2015-01-14 2015-04-09 住友電気工業株式会社 軟磁性複合材料、及びリアクトル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028247A1 (ja) * 2007-08-31 2009-03-05 Sumida Corporation コイル部品及びそのコイル部品の製造方法
JP2012199513A (ja) * 2011-03-04 2012-10-18 Sumitomo Electric Ind Ltd 圧粉成形体、圧粉成形体の製造方法、リアクトル、コンバータ、及び電力変換装置
JP2015065483A (ja) * 2015-01-14 2015-04-09 住友電気工業株式会社 軟磁性複合材料、及びリアクトル

Also Published As

Publication number Publication date
JP2017063113A (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5413680B2 (ja) リアクトルの製造方法
JP6544537B2 (ja) 複合材料、磁気部品、及びリアクトル
EP2899727B1 (en) Composite material, reactor, converter, and electric power conversion device
JP5561536B2 (ja) リアクトル、及びコンバータ
CN103430249B (zh) 复合材料、电抗器用磁芯、电抗器、转换器和功率转换器装置
US10410774B2 (en) Composite material, magnetic core for magnetic component, reactor, converter, and power conversion device
JP6229319B2 (ja) リアクトル、リアクトル用のコア片、コンバータ、および電力変換装置
WO2017119439A1 (ja) 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
WO2017110567A1 (ja) 複合材料成形体、リアクトル、及び複合材料成形体の製造方法
JP6436016B2 (ja) 複合材料成形体、及びリアクトル
JP6226047B2 (ja) 複合材料、リアクトル用コア、及びリアクトル
WO2017051818A1 (ja) 複合材料成形体、及びリアクトル
US20230120688A1 (en) Magnetic component and electric device
JP6525225B2 (ja) リアクトル
WO2019102843A1 (ja) リアクトル
WO2022038982A1 (ja) リアクトル、コンバータ、及び電力変換装置
JP2012015382A (ja) リアクトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848606

Country of ref document: EP

Kind code of ref document: A1