WO2017051795A1 - Electronic device sealing agent and electronic device manufacturing method - Google Patents

Electronic device sealing agent and electronic device manufacturing method Download PDF

Info

Publication number
WO2017051795A1
WO2017051795A1 PCT/JP2016/077659 JP2016077659W WO2017051795A1 WO 2017051795 A1 WO2017051795 A1 WO 2017051795A1 JP 2016077659 W JP2016077659 W JP 2016077659W WO 2017051795 A1 WO2017051795 A1 WO 2017051795A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
electronic device
sealing agent
electronic devices
present
Prior art date
Application number
PCT/JP2016/077659
Other languages
French (fr)
Japanese (ja)
Inventor
七里 徳重
哲也 会田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020177021823A priority Critical patent/KR20180059391A/en
Priority to CN201680010832.9A priority patent/CN107251650B/en
Priority to JP2016560846A priority patent/JP6804980B2/en
Publication of WO2017051795A1 publication Critical patent/WO2017051795A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a sealant for electronic devices that can be easily applied by an ink jet method, has excellent adhesiveness, suppresses the generation of outgas, and can reduce residual stress. Moreover, this invention relates to the manufacturing method of an electronic device using this sealing agent for electronic devices.
  • organic thin film elements such as organic electroluminescence (hereinafter also referred to as organic EL) display elements and organic thin film solar cell elements
  • organic EL organic electroluminescence
  • the organic thin film element can be easily produced by vacuum deposition, solution coating, or the like, and thus has excellent productivity.
  • An organic EL display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and electrons are injected from one electrode into the organic light emitting material layer and positive from the other electrode. When holes are injected, electrons and holes are combined in the organic light emitting material layer to emit light.
  • the organic EL display element since the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
  • Non-Patent Document 1 discloses an organic solar cell element using a laminated film of phthalocyanine copper and a perylene dye.
  • Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method.
  • the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
  • Patent Document 1 discloses a method of alternately depositing an inorganic material film and a resin film
  • Patent Document 3 and Patent Document 4 disclose. A method of forming a resin film on an inorganic material film is disclosed.
  • a method for forming the resin film there is a method in which a low-viscosity sealant is applied onto a substrate using an inkjet method, and then the sealant is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed.
  • the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated, the degree of crosslinking is too high, and the adhesiveness is reduced due to residual stress due to curing shrinkage. There were problems such as failure of electronic devices.
  • An object of the present invention is to provide an electronic device sealant that can be easily applied by an ink jet method, has excellent adhesiveness, suppresses the generation of outgas, and can reduce residual stress. Moreover, this invention aims at providing the manufacturing method of an electronic device using this sealing agent for electronic devices.
  • the present invention is a sealing agent for electronic devices used for coating by an inkjet method, which contains a polymerizable compound and a radical photopolymerization initiator, and the polymerizable compound contains two or more ( A polyfunctional (meth) acrylic compound having a (meth) acryloyloxy group and having a polyoxyalkylene skeleton in the main chain, one (meth) acryloyloxy group and one or more cationic polymerizable compounds in one molecule It is the sealing agent for electronic devices containing the monofunctional (meth) acrylic compound which has group.
  • the present invention is described in detail below.
  • the present inventors have a polyfunctional compound having two or more (meth) acryloyloxy groups in one molecule and a polyoxyalkylene skeleton in the main chain as a polymerizable compound used for an electronic device sealant.
  • Sealing obtained by using a combination of a (meth) acrylic compound and a monofunctional (meth) acrylic compound having one (meth) acryloyloxy group and one or more cationically polymerizable groups in one molecule It has been found that the agent can be easily applied by an ink jet method, has excellent adhesiveness, can suppress the generation of outgas, and can reduce the residual stress, thereby completing the present invention.
  • the encapsulant for electronic devices of the present invention contains a polymerizable compound.
  • the polymerizable compound is a polyfunctional (meth) acrylic compound having two or more (meth) acryloyloxy groups in one molecule and a polyoxyalkylene skeleton in the main chain (hereinafter referred to as “the present invention”).
  • a polyfunctional (meth) acrylic compound By containing the polyfunctional (meth) acrylic compound according to the present invention, the encapsulant for electronic devices of the present invention is excellent in coating properties and film forming properties by the ink jet method. Moreover, the polyfunctional (meth) acrylic compound concerning this invention also has the effect of improving the heat resistance of the sealing agent for electronic devices obtained.
  • the “(meth) acryloyl” means acryloyl or methacryloyl
  • the “(meth) acryl” means acryl or methacryl.
  • the polyfunctional (meth) acrylic compound according to the present invention has a polyoxyalkylene skeleton in the main chain.
  • the polyoxyalkylene skeleton possessed by the polyfunctional (meth) acrylic compound according to the present invention has a role of improving the applicability of the encapsulant for electronic devices of the present invention by the inkjet method.
  • the polyoxyalkylene skeleton reduces damage to the device such as swelling of the adhesive and rubber material used in the head portion of the ink jet device, etc., wettability to the inorganic material film, after application and curing It also has an effect of improving the later flatness.
  • the polyoxyalkylene skeleton possessed by the polyfunctional (meth) acrylic compound according to the present invention is excellent in the applicability by the ink jet method, the adhesiveness, and the flexibility of the cured product. It is preferable that
  • Examples of the oxyalkylene units constituting the polyoxyalkylene skeleton of the polyfunctional (meth) acrylic compound according to the present invention include oxyethylene units and oxypropylene units.
  • the polyfunctional (meth) acrylic compound according to the present invention has a structure with less carbon chain branching from the viewpoint that it is easy to make the obtained sealing agent for electronic devices into a viscosity suitable for the inkjet method. Is preferable, and it is more preferable that it is linear.
  • polyfunctional (meth) acrylic compound according to the present invention examples include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di ( Examples include meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the content of the polyfunctional (meth) acrylic compound according to the present invention is preferably 10 parts by weight with respect to 100 parts by weight of the entire polymerizable compound, and 90 parts by weight with respect to the preferable upper limit.
  • the content of the polyfunctional (meth) acrylic compound according to the present invention is within this range, the obtained sealing agent for electronic devices has an effect of reducing the coating property by the ink jet method, damage to the ink jet apparatus, and inorganic. It is excellent in the effect of improving the wettability with respect to the material film and the flatness after coating and curing.
  • the minimum with more preferable content of the polyfunctional (meth) acrylic compound concerning this invention is 40 weight part, and a more preferable upper limit is 70 weight part.
  • the polymerizable compound is a monofunctional (meth) acrylic compound having one (meth) acryloyloxy group and one or more cationic polymerizable groups in one molecule (hereinafter, simply referred to as “monofunctional (meth) ) Acrylic compound ").
  • the sealing agent for electronic devices of the present invention is excellent in adhesiveness due to improved flexibility and reduced residual stress.
  • the monofunctional (meth) acrylic compound according to the present invention has a cationic polymerizable group in the molecule, an electronic device obtained by trapping an acid component contained in the raw material or an acid generated by the decomposition of the resin It also has the effect of reducing the outgassing of the sealing agent.
  • a vinyl ether group As a cationically polymerizable group which the monofunctional (meth) acrylic compound concerning this invention has, a vinyl ether group, an epoxy group, an oxetanyl group, an allyl ether group, a vinyl group, a hydroxyl group etc. are mentioned, for example.
  • the monofunctional (meth) acrylic compound according to the present invention include 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, ( 2- (2-vinyloxyethoxy) ethyl methacrylate), 3-ethyl-3- (meth) acryloxymethyloxetane, allyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate Ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, 2- (2-vinyloxyethoxy) ethyl (meth) acrylate, and the like.
  • the content of the monofunctional (meth) acrylic compound according to the present invention is preferably 10 parts by weight with a preferred lower limit and 90 parts by weight with respect to 100 parts by weight of the entire polymerizable compound.
  • the content of the monofunctional (meth) acrylic compound according to the present invention is within this range, the obtained sealing agent for electronic devices is excellent in flexibility, adhesiveness, and low outgassing property.
  • the minimum with more preferable content of the monofunctional (meth) acrylic compound concerning this invention is 20 weight part, and a more preferable upper limit is 50 weight part.
  • the content ratio of the polyfunctional (meth) acrylic compound according to the present invention and the monofunctional (meth) acrylic compound according to the present invention is within this range, the obtained sealing agent for electronic devices can be coated by the inkjet method. Further, the film formability, heat resistance, adhesiveness, and flexibility can be further improved.
  • the polymerizable compound is used for other polymerizations for the purpose of adjusting viscosity and improving adhesiveness. May contain an ionic compound.
  • an ionic compound As said other polymeric compound, other (meth) acrylic compounds other than the polyfunctional (meth) acrylic compound concerning this invention and the monofunctional (meth) acrylic compound concerning this invention, an epoxy compound, an oxetane compound, And other cationic polymerizable compounds such as vinyl ether compounds, etc., but from the viewpoint of low outgassing properties, it is preferable not to contain the other cationic polymerizable compounds.
  • the upper limit of the content of the other cationic polymerizable compound is preferably 1 part by weight with respect to 100 parts by weight of the whole polymerizable compound.
  • Examples of the other (meth) acrylic compounds include dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, lauryl (meth) acrylate, 1,6-hexanediol di ( And (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, trimethylolpropane tri (meth) arylate, and the like. These other (meth) acrylic compounds may be used alone or in combination of two or more.
  • the epoxy compound examples include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol O type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, Alicyclic epoxy resin, hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene Epoxy resin, phenol novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl Examples thereof include a volac type epoxy resin, a naphthalene phenol novolac type epoxy resin, a glycidyl amine type epoxy resin, an alkyl polyol type epoxy resin, a rubber-modified epoxy resin, and a glycidyl ester compound.
  • alicyclic epoxy resins are preferred.
  • examples of commercially available alicyclic epoxy resins include Celoxide 2000, Celoxide 2021P, Celoxide 2081, Celoxide 3000, Celoxide 8000, Cyclomer M100 (all manufactured by Daicel Corporation), and SUNSOSIZER EPS (New Nippon Rika Kogyo Co., Ltd.). These epoxy compounds may be used independently and 2 or more types may be used in combination.
  • oxetane compound examples include phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2-ethylhexyloxy) methyl) oxetane.
  • vinyl ether compound examples include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether. These vinyl ether compounds may be used alone or in combination of two or more.
  • the content of the other polymerizable compound is preferably 1 part by weight with respect to 100 parts by weight of the entire polymerizable compound, and 20 parts by weight with a preferable upper limit.
  • the minimum with more preferable content of the said other polymeric compound is 3 weight part, and a more preferable upper limit is 10 weight part.
  • a preferable upper limit is 1 weight part with respect to 100 weight part of whole polymeric compounds. .
  • the sealing agent for electronic devices of this invention contains radical photopolymerization initiator.
  • the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
  • photo radical polymerization initiators examples include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, all manufactured by Rusilin TPO ), Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
  • the content of the photo radical polymerization initiator is preferably 0.5 parts by weight and preferably 20 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the sealing agent for electronic devices of the present invention having a low viscosity wets and spreads after application by the ink jet method and comes into contact with oxygen causing inhibition of curing. Even if it becomes large, it can be made to harden enough and a uniform hardened
  • the minimum with more preferable content of the said radical photopolymerization initiator is 10 weight part, and a more preferable upper limit is 15 weight part.
  • the encapsulant for electronic devices of the present invention may contain a silane coupling agent.
  • the said silane coupling agent has a role which improves the adhesiveness of the sealing agent for electronic devices of this invention, a board
  • silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane compounds may be used independently and 2 or more types may be used together.
  • the content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, it is possible to exert the effect of improving the adhesiveness while suppressing the excess silane coupling agent from bleeding out.
  • the minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
  • the encapsulant for electronic devices of the present invention may further contain a surface modifier as long as the object of the present invention is not impaired.
  • a surface modifier By containing the surface modifier, the flatness of the coating film can be imparted to the electronic device sealant of the present invention.
  • the surface modifier include surfactants and leveling agents.
  • Examples of the surface modifier include silicone-based and fluorine-based ones.
  • Examples of commercially available surface modifiers include BYK-340, BYK-345 (both manufactured by Big Chemie Japan) and Surflon S-611 (manufactured by AGC Seimi Chemical).
  • the sealant for electronic devices of the present invention may contain an organic solvent for the purpose of adjusting the viscosity, etc., but the organic light emitting material layer is deteriorated by the remaining organic solvent when used in an organic EL display element, It is preferable not to contain an organic solvent because of problems such as generation of outgas.
  • the sealing agent for electronic devices of this invention may contain well-known various additives, such as a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, a ultraviolet absorber, antioxidant, as needed. Good.
  • a method for producing the sealing agent for electronic devices of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, three rolls, Examples thereof include a method of mixing a radical polymerization initiator and an additive such as a silane coupling agent added as necessary.
  • the electronic device sealant of the present invention has a preferred lower limit of 5 mPa ⁇ s and a preferred upper limit of 200 mPa ⁇ s, measured using an E-type viscometer at 25 ° C. and 100 rpm.
  • the more preferable lower limit of the viscosity of the electronic device sealant is 10 mPa ⁇ s
  • the more preferable upper limit is 80 mPa ⁇ s
  • the still more preferable upper limit is 30 mPa ⁇ s.
  • the preferable lower limit of the total light transmittance of light at a wavelength of 380 to 800 nm of the cured product of the encapsulant for electronic devices of the present invention is 80%.
  • the total light transmittance is 80% or more, the obtained electronic device such as an organic EL display element is excellent in optical characteristics.
  • a more preferable lower limit of the total light transmittance is 85%.
  • the encapsulant for electronic devices of the present invention preferably has a transmittance at 400 nm of 85% or more at an optical path length of 20 ⁇ m after the cured product is irradiated with ultraviolet rays for 100 hours.
  • the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent.
  • a more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
  • the light source for irradiating the ultraviolet rays a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
  • the electronic device sealant of the present invention has a moisture permeability of 100 g / m 2 at a thickness of 100 ⁇ m as measured by exposing a cured product to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208.
  • the following is preferable.
  • the moisture permeability is 100 g / m 2 or less, for example, when used in the manufacture of an organic EL display element as an electronic device, the effect of preventing moisture from reaching the organic light emitting material layer and generating dark spots. It will be better.
  • the sealing agent for electronic devices of the present invention preferably has a moisture content of less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours.
  • the moisture content of the cured product is less than 0.5%, for example, when used in the manufacture of an organic EL display element as an electronic device, the effect of preventing deterioration of the organic light emitting material layer due to moisture in the cured product It will be excellent.
  • a more preferable upper limit of the moisture content of the cured product is 0.3%.
  • the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
  • the sealing agent for electronic devices of this invention is used for application
  • An electronic device manufacturing method comprising a step of applying the electronic device sealant of the present invention to a substrate by an inkjet method and a step of curing the applied electronic device sealant by light irradiation is also provided by the present invention. It is one of.
  • when hardening the sealing agent for electronic devices of this invention you may harden by heating in addition to light irradiation.
  • the electronic device sealant of the present invention may be applied to the entire surface of the base material, or may be applied to a part of the base material.
  • the shape of the sealing part of the sealing agent for electronic devices of the present invention formed by coating is to protect the laminate having an organic light emitting material layer from the outside air.
  • the shape is not particularly limited as long as it can be formed, and may be a shape that completely covers the laminate, or may form a closed pattern on the periphery of the laminate, or the periphery of the laminate A pattern having a shape in which a part of the openings is provided may be formed.
  • the electronic device sealant of the present invention is preferably applied by irradiating light with a wavelength of 300 nm to 400 nm and an integrated light amount of 300 to 3000 mJ / cm 2. It can be cured.
  • Examples of the light source for irradiating the electronic device sealant of the present invention with light include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, and a microwave excitation mercury lamp. , Metal halide lamps, sodium lamps, halogen lamps, xenon lamps, LED lamps, fluorescent lamps, sunlight, electron beam irradiation devices, and the like. These light sources may be used independently and 2 or more types may be used together. These light sources are appropriately selected according to the absorption wavelength of the photo radical polymerization initiator.
  • Examples of the light irradiation means for the electronic device sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, etc. Irradiation means may be used.
  • the cured product obtained by the step of curing the encapsulant for electronic devices by light irradiation may be further coated with an inorganic material film.
  • the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x), silicon oxide (SiO x), and the like.
  • the inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat
  • the method for producing an electronic device of the present invention includes a step of bonding a substrate (hereinafter also referred to as “one substrate”) coated with the electronic device sealing agent of the present invention and the other substrate. May be.
  • the one substrate may be a substrate on which a laminate having an organic light emitting material layer is formed, or a substrate on which the laminate is not formed. It may be a material.
  • said one base material is a base material in which the said laminated body is not formed, when the said other base material is bonded together, it can seal the said laminated body from external air of this invention sealing for electronic devices What is necessary is just to apply
  • the sealant portion having a closed pattern may be formed in a shape that completely fits.
  • the step of curing the electronic device sealant by light irradiation may be performed before the step of bonding the one base material and the other base material, or the one base material and the other base material. You may carry out after the process of bonding a base material.
  • the step of curing the electronic device sealant by light irradiation is performed before the step of laminating the one base material and the other base material, the electronic device sealant of the present invention is light It is preferable that the pot life is 1 minute or longer from the irradiation until the curing reaction proceeds and adhesion cannot be performed. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
  • a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
  • the preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa.
  • the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the electronic device sealant of the present invention at the time of bonding to the material can be more efficiently removed.
  • sealing agent for electronic devices of this invention can be used suitably as sealing agent for organic EL display elements.
  • the sealing agent for electronic devices which can be apply
  • the manufacturing method of an electronic device using this sealing agent for electronic devices can be provided.
  • Examples 1 to 13, Comparative Examples 1 to 4 According to the blending ratios described in Tables 1 and 2, each material was stirred and mixed uniformly at a stirring speed of 3000 rpm using a homodisper type stirring mixer (Primix Co., Ltd., “Homodisper L type”). Sealants for electronic devices of Examples 1 to 13 and Comparative Examples 1 to 4 were prepared.
  • a glass substrate (length 25 mm, width 25 mm, thickness 0.7 mm) on which an ITO electrode was formed to a thickness of 1000 mm was used as the substrate.
  • the substrate was ultrasonically washed with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, respectively, then washed with boiled isopropyl alcohol for 10 minutes, and a UV-ozone cleaner (manufactured by Nippon Laser Electronics Co., Ltd.). The last treatment was performed with “NL-UV253”).
  • this substrate is fixed to the substrate folder of the vacuum deposition apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine ( ⁇ -NPD) is put into an unglazed crucible and other different types.
  • 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put in an unglazed crucible, and the inside of the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa. Thereafter, the crucible containing ⁇ -NPD was heated, and ⁇ -NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 ⁇ ⁇ hole transport layer.
  • the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 ⁇ at a deposition rate of 15 ⁇ / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus, and 200 mg of lithium fluoride is added to a tungsten resistance heating boat in the vacuum vapor deposition apparatus, and aluminum is added to another tungsten boat. 1.0 g of wire was added.
  • the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 ⁇ 10 ⁇ 4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did.
  • the inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm ⁇ 10 mm was arranged was taken out.
  • a mask having an opening of 13 mm ⁇ 13 mm was placed so as to cover the entire laminated body of the substrate on which the obtained laminated body was arranged, and an inorganic material film A was formed by a plasma CVD method.
  • SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
  • the formed inorganic material film A had a thickness of about 1 ⁇ m.
  • the sealing agent for electronic devices obtained by the Example and the comparative example was pattern-coated on the board
  • the obtained organic EL display element is exposed for 100 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, and then a voltage of 3 V is applied, and the light emission state of the organic EL display element (whether dark spots and pixel periphery quenching) Was visually observed.
  • the organic EL display element is indicated as “ ⁇ ” when there is no dark spot or peripheral extinction, “ ⁇ ” when the dark spot or peripheral extinction is recognized, and “ ⁇ ” when the non-light emitting part is significantly enlarged. Display performance was evaluated.
  • the sealing agent for electronic devices which can be apply
  • the manufacturing method of an electronic device using this sealing agent for electronic devices can be provided.

Abstract

The purpose of the present invention is to provide an electronic device sealing agent that can be easily applied by means of an ink-jet method, has excellent adhesiveness, limits the generation of outgassing products, and can reduce residual stress. The purpose of the present invention is also to provide an electronic device manufacturing method that uses the electronic device sealing agent. The present invention is an electronic device sealing agent that is used in application by an ink-jet method, wherein the electronic device sealing agent includes a polymerizable compound and a photo-radical polymerization initiator, and the polymerizable compound includes a multifunctional (meth)acrylic compound having at least two (meth)acryloyloxy groups per molecule and having a polyoxyalkylene skeleton in the main chain, and a monofunctional (meth)acrylic compound having one (meth)acryloyloxy group and at least one cationically polymerizable group per molecule.

Description

電子デバイス用封止剤及び電子デバイスの製造方法Sealant for electronic device and method for manufacturing electronic device
本発明は、インクジェット法により容易に塗布することができ、接着性に優れ、アウトガスの発生を抑制し、残留応力を低減できる電子デバイス用封止剤に関する。また、本発明は、該電子デバイス用封止剤を用いる電子デバイスの製造方法に関する。 The present invention relates to a sealant for electronic devices that can be easily applied by an ink jet method, has excellent adhesiveness, suppresses the generation of outgas, and can reduce residual stress. Moreover, this invention relates to the manufacturing method of an electronic device using this sealing agent for electronic devices.
近年、有機エレクトロルミネッセンス(以下、有機ELともいう)表示素子や有機薄膜太陽電池素子等の有機薄膜素子を用いた電子デバイスの研究が進められている。有機薄膜素子は真空蒸着や溶液塗布等により簡便に作製できるため、生産性にも優れる。 In recent years, research on electronic devices using organic thin film elements such as organic electroluminescence (hereinafter also referred to as organic EL) display elements and organic thin film solar cell elements has been advanced. The organic thin film element can be easily produced by vacuum deposition, solution coating, or the like, and thus has excellent productivity.
有機EL表示素子は、互いに対向する一対の電極間に有機発光材料層が挟持された積層体構造を有し、この有機発光材料層に一方の電極から電子が注入されるとともに他方の電極から正孔が注入されることにより有機発光材料層内で電子と正孔とが結合して発光する。このように有機EL表示素子は自己発光を行うことから、バックライトを必要とする液晶表示素子等と比較して視認性がよく、薄型化が可能であり、しかも直流低電圧駆動が可能であるという利点を有している。 An organic EL display element has a laminated structure in which an organic light emitting material layer is sandwiched between a pair of electrodes facing each other, and electrons are injected from one electrode into the organic light emitting material layer and positive from the other electrode. When holes are injected, electrons and holes are combined in the organic light emitting material layer to emit light. Thus, since the organic EL display element performs self-emission, it has better visibility than a liquid crystal display element that requires a backlight, can be reduced in thickness, and can be driven by a DC low voltage. Has the advantage.
有機薄膜太陽電池素子は、無機半導体を使用した太陽電池に比べ、コスト、大面積化、製造工程の容易さ等の点で優れており、種々の構成のものが提案されている。具体的には例えば、非特許文献1には、フタロシアニン銅とペリレン系色素の積層膜を使用した有機太陽電池素子が開示されている。 Organic thin-film solar cell elements are superior to solar cells using inorganic semiconductors in terms of cost, large area, ease of manufacturing processes, and the like, and various configurations have been proposed. Specifically, for example, Non-Patent Document 1 discloses an organic solar cell element using a laminated film of phthalocyanine copper and a perylene dye.
これらの有機薄膜素子は、有機層や電極が外気に曝されると、その性能が急激に劣化してしまうという問題がある。従って、安定性及び耐久性を高めるために、有機薄膜素子を封止して大気中の水分や酸素から遮断することが不可欠となる。
有機薄膜素子を封止する方法としては、従来、内部に吸水剤を設けた封止缶によって封止する方法が一般的であった。しかしながら、封止缶により封止する方法では、電子デバイスを薄型化することが困難となる。そこで、封止缶を使用しない有機薄膜素子の封止方法の開発が進められている。
These organic thin film elements have a problem that when the organic layer and the electrode are exposed to the outside air, the performance is rapidly deteriorated. Therefore, in order to improve stability and durability, it is indispensable to seal the organic thin film element and shield it from moisture and oxygen in the atmosphere.
As a method for sealing an organic thin film element, conventionally, a method of sealing with a sealing can provided with a water-absorbing agent is generally used. However, in the method of sealing with a sealing can, it is difficult to reduce the thickness of the electronic device. Therefore, development of a method for sealing an organic thin film element that does not use a sealing can is being promoted.
特許文献1には、有機EL表示素子の有機発光材料層と電極とを、CVD法により形成した窒化珪素膜と樹脂膜との積層膜により封止する方法が開示されている。ここで樹脂膜は、窒化珪素膜の内部応力による有機層や電極への圧迫を防止する役割を有する。 Patent Document 1 discloses a method of sealing an organic light emitting material layer and an electrode of an organic EL display element with a laminated film of a silicon nitride film and a resin film formed by a CVD method. Here, the resin film has a role of preventing pressure on the organic layer and the electrode due to internal stress of the silicon nitride film.
特許文献1に開示された窒化珪素膜で封止を行う方法では、有機薄膜素子の表面の凹凸や異物の付着、内部応力によるクラックの発生等により、窒化珪素膜を形成する際に有機薄膜素子を完全に被覆できないことがある。窒化珪素膜による被覆が不完全であると、水分が窒化珪素膜を通して有機層内に浸入してしまう。
有機層内への水分の浸入を防止するための方法として、特許文献2には、無機材料膜と樹脂膜とを交互に蒸着する方法が開示されており、特許文献3や特許文献4には、無機材料膜上に樹脂膜を形成する方法が開示されている。
In the method of sealing with a silicon nitride film disclosed in Patent Document 1, the organic thin film element is formed when the silicon nitride film is formed due to unevenness on the surface of the organic thin film element, adhesion of foreign matters, generation of cracks due to internal stress, or the like. May not be completely covered. If the coating with the silicon nitride film is incomplete, moisture will enter the organic layer through the silicon nitride film.
As a method for preventing moisture from entering the organic layer, Patent Document 2 discloses a method of alternately depositing an inorganic material film and a resin film, and Patent Document 3 and Patent Document 4 disclose. A method of forming a resin film on an inorganic material film is disclosed.
樹脂膜を形成する方法として、インクジェット法を用いて基材上に低粘度の封止剤を塗布した後、該封止剤を硬化させる方法がある。このようなインクジェット法による塗布方法を用いれば、高速かつ均一に樹脂膜を形成することができる。しかしながら、インクジェット法による塗布に適したものとするために封止剤を低粘度となるようにした場合、アウトガスが発生したり、架橋度が高すぎ、硬化収縮による残留応力によって接着性の低下や電子デバイスの故障が生じたりする等の問題があった。 As a method for forming the resin film, there is a method in which a low-viscosity sealant is applied onto a substrate using an inkjet method, and then the sealant is cured. If such a coating method by the ink jet method is used, a resin film can be uniformly formed at high speed. However, when the sealant is made to have a low viscosity in order to be suitable for application by the ink jet method, outgas is generated, the degree of crosslinking is too high, and the adhesiveness is reduced due to residual stress due to curing shrinkage. There were problems such as failure of electronic devices.
特開2000-223264号公報JP 2000-223264 A 特表2005-522891号公報JP 2005-522891 Gazette 特開2001-307873号公報JP 2001-307873 A 特開2008-149710号公報JP 2008-149710 A
本発明は、インクジェット法により容易に塗布することができ、接着性に優れ、アウトガスの発生を抑制し、残留応力を低減できる電子デバイス用封止剤を提供することを目的とする。また、本発明は、該電子デバイス用封止剤を用いる電子デバイスの製造方法を提供することを目的とする。 An object of the present invention is to provide an electronic device sealant that can be easily applied by an ink jet method, has excellent adhesiveness, suppresses the generation of outgas, and can reduce residual stress. Moreover, this invention aims at providing the manufacturing method of an electronic device using this sealing agent for electronic devices.
本発明は、インクジェット法による塗布に用いられる電子デバイス用封止剤であって、重合性化合物と光ラジカル重合開始剤とを含有し、上記重合性化合物は、1分子中に2個以上の(メタ)アクリロイルオキシ基を有し、かつ、主鎖にポリオキシアルキレン骨格を有する多官能(メタ)アクリル化合物と、1分子中に1個の(メタ)アクリロイルオキシ基及び1個以上のカチオン重合性基を有する単官能(メタ)アクリル化合物とを含有する電子デバイス用封止剤である。
以下に本発明を詳述する。
The present invention is a sealing agent for electronic devices used for coating by an inkjet method, which contains a polymerizable compound and a radical photopolymerization initiator, and the polymerizable compound contains two or more ( A polyfunctional (meth) acrylic compound having a (meth) acryloyloxy group and having a polyoxyalkylene skeleton in the main chain, one (meth) acryloyloxy group and one or more cationic polymerizable compounds in one molecule It is the sealing agent for electronic devices containing the monofunctional (meth) acrylic compound which has group.
The present invention is described in detail below.
本発明者らは、電子デバイス用封止剤に用いる重合性化合物として、1分子中に2個以上の(メタ)アクリロイルオキシ基を有し、かつ、主鎖にポリオキシアルキレン骨格を有する多官能(メタ)アクリル化合物と、1分子中に1個の(メタ)アクリロイルオキシ基及び1個以上のカチオン重合性基を有する単官能(メタ)アクリル化合物とを組み合わせて用いることにより、得られる封止剤を、インクジェット法により容易に塗布することができ、接着性に優れ、アウトガスの発生を抑制し、残留応力を低減できるものとすることができることを見出し、本発明を完成させるに至った。 The present inventors have a polyfunctional compound having two or more (meth) acryloyloxy groups in one molecule and a polyoxyalkylene skeleton in the main chain as a polymerizable compound used for an electronic device sealant. Sealing obtained by using a combination of a (meth) acrylic compound and a monofunctional (meth) acrylic compound having one (meth) acryloyloxy group and one or more cationically polymerizable groups in one molecule It has been found that the agent can be easily applied by an ink jet method, has excellent adhesiveness, can suppress the generation of outgas, and can reduce the residual stress, thereby completing the present invention.
本発明の電子デバイス用封止剤は、重合性化合物を含有する。
上記重合性化合物は、1分子中に2個以上の(メタ)アクリロイルオキシ基を有し、かつ、主鎖にポリオキシアルキレン骨格を有する多官能(メタ)アクリル化合物(以下、「本発明にかかる多官能(メタ)アクリル化合物」ともいう)を含有する。本発明にかかる多官能(メタ)アクリル化合物を含有することにより、本発明の電子デバイス用封止剤は、インクジェット法による塗布性や成膜性に優れるものとなる。また、本発明にかかる多官能(メタ)アクリル化合物は、得られる電子デバイス用封止剤の耐熱性を向上させる効果も有する。
なお、本明細書において上記「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味し、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味する。
The encapsulant for electronic devices of the present invention contains a polymerizable compound.
The polymerizable compound is a polyfunctional (meth) acrylic compound having two or more (meth) acryloyloxy groups in one molecule and a polyoxyalkylene skeleton in the main chain (hereinafter referred to as “the present invention”). A polyfunctional (meth) acrylic compound ”. By containing the polyfunctional (meth) acrylic compound according to the present invention, the encapsulant for electronic devices of the present invention is excellent in coating properties and film forming properties by the ink jet method. Moreover, the polyfunctional (meth) acrylic compound concerning this invention also has the effect of improving the heat resistance of the sealing agent for electronic devices obtained.
In the present specification, the “(meth) acryloyl” means acryloyl or methacryloyl, and the “(meth) acryl” means acryl or methacryl.
本発明にかかる多官能(メタ)アクリル化合物は、主鎖にポリオキシアルキレン骨格を有する。本発明にかかる多官能(メタ)アクリル化合物の有するポリオキシアルキレン骨格は、インクジェット法による本発明の電子デバイス用封止剤の塗布性を向上させる役割を有する。また、上記ポリオキシアルキレン骨格は、インクジェット装置のヘッド部分等に用いられている接着剤やゴム材料を膨潤させる等の装置へのダメージを低減したり、無機材料膜に対する濡れ性や塗布後及び硬化後の平坦性を向上させたりする効果も有する。 The polyfunctional (meth) acrylic compound according to the present invention has a polyoxyalkylene skeleton in the main chain. The polyoxyalkylene skeleton possessed by the polyfunctional (meth) acrylic compound according to the present invention has a role of improving the applicability of the encapsulant for electronic devices of the present invention by the inkjet method. In addition, the polyoxyalkylene skeleton reduces damage to the device such as swelling of the adhesive and rubber material used in the head portion of the ink jet device, etc., wettability to the inorganic material film, after application and curing It also has an effect of improving the later flatness.
本発明にかかる多官能(メタ)アクリル化合物の有するポリオキシアルキレン骨格は、インクジェット法による塗布性や接着性や硬化物の柔軟性により優れるものとなることから、オキシアルキレン単位が2~6個連続したものであることが好ましい。 The polyoxyalkylene skeleton possessed by the polyfunctional (meth) acrylic compound according to the present invention is excellent in the applicability by the ink jet method, the adhesiveness, and the flexibility of the cured product. It is preferable that
本発明にかかる多官能(メタ)アクリル化合物の有する上記ポリオキシアルキレン骨格を構成するオキシアルキレン単位としては、オキシエチレン単位、オキシプロピレン単位等が挙げられる。 Examples of the oxyalkylene units constituting the polyoxyalkylene skeleton of the polyfunctional (meth) acrylic compound according to the present invention include oxyethylene units and oxypropylene units.
本発明にかかる多官能(メタ)アクリル化合物は、得られる電子デバイス用封止剤をインクジェット法に好適な粘度にすることが容易となる等の観点から、炭素鎖の分岐が少ない構造であることが好ましく、直鎖状であることがより好ましい。 The polyfunctional (meth) acrylic compound according to the present invention has a structure with less carbon chain branching from the viewpoint that it is easy to make the obtained sealing agent for electronic devices into a viscosity suitable for the inkjet method. Is preferable, and it is more preferable that it is linear.
本発明にかかる多官能(メタ)アクリル化合物としては、具体的には例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等が挙げられる。
なお、本明細書において上記「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味する。
Specific examples of the polyfunctional (meth) acrylic compound according to the present invention include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di ( Examples include meth) acrylate, tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, and polytetramethylene glycol di (meth) acrylate.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate.
本発明にかかる多官能(メタ)アクリル化合物の含有量は、重合性化合物全体100重量部に対して、好ましい下限が10重量部、好ましい上限が90重量部である。本発明にかかる多官能(メタ)アクリル化合物の含有量がこの範囲であることにより、得られる電子デバイス用封止剤がインクジェット法による塗布性、インクジェット装置へのダメージを低減する効果、並びに、無機材料膜に対する濡れ性や塗布後及び硬化後の平坦性を向上させる効果により優れるものとなる。本発明にかかる多官能(メタ)アクリル化合物の含有量のより好ましい下限は40重量部、より好ましい上限は70重量部である。 The content of the polyfunctional (meth) acrylic compound according to the present invention is preferably 10 parts by weight with respect to 100 parts by weight of the entire polymerizable compound, and 90 parts by weight with respect to the preferable upper limit. When the content of the polyfunctional (meth) acrylic compound according to the present invention is within this range, the obtained sealing agent for electronic devices has an effect of reducing the coating property by the ink jet method, damage to the ink jet apparatus, and inorganic. It is excellent in the effect of improving the wettability with respect to the material film and the flatness after coating and curing. The minimum with more preferable content of the polyfunctional (meth) acrylic compound concerning this invention is 40 weight part, and a more preferable upper limit is 70 weight part.
上記重合性化合物は、1分子中に1個の(メタ)アクリロイルオキシ基及び1個以上のカチオン重合性基を有する単官能(メタ)アクリル化合物(以下、単に「本発明にかかる単官能(メタ)アクリル化合物」ともいう)を含有する。本発明にかかる単官能(メタ)アクリル化合物を含有することにより、本発明の電子デバイス用封止剤は、柔軟性が向上し残留応力が低減されることにより、接着性に優れるものとなる。また、本発明にかかる単官能(メタ)アクリル化合物は分子内にカチオン重合性基を有するため、原料に含まれる酸性分や、樹脂の分解により発生する酸をトラップすることにより、得られる電子デバイス用封止剤のアウトガスを低減する効果も有する。 The polymerizable compound is a monofunctional (meth) acrylic compound having one (meth) acryloyloxy group and one or more cationic polymerizable groups in one molecule (hereinafter, simply referred to as “monofunctional (meth) ) Acrylic compound "). By containing the monofunctional (meth) acrylic compound according to the present invention, the sealing agent for electronic devices of the present invention is excellent in adhesiveness due to improved flexibility and reduced residual stress. In addition, since the monofunctional (meth) acrylic compound according to the present invention has a cationic polymerizable group in the molecule, an electronic device obtained by trapping an acid component contained in the raw material or an acid generated by the decomposition of the resin It also has the effect of reducing the outgassing of the sealing agent.
本発明にかかる単官能(メタ)アクリル化合物が有するカチオン重合性基としては、例えば、ビニルエーテル基、エポキシ基、オキセタニル基、アリルエーテル基、ビニル基、水酸基等が挙げられる。 As a cationically polymerizable group which the monofunctional (meth) acrylic compound concerning this invention has, a vinyl ether group, an epoxy group, an oxetanyl group, an allyl ether group, a vinyl group, a hydroxyl group etc. are mentioned, for example.
本発明にかかる単官能(メタ)アクリル化合物としては、具体的には例えば、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、3-エチル-3-(メタ)アクリルオキシメチルオキセタン、アリル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、2-(2-ビニルオキシエトキシ)エチル(メタ)アクリレート等が挙げられる。 Specific examples of the monofunctional (meth) acrylic compound according to the present invention include 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, ( 2- (2-vinyloxyethoxy) ethyl methacrylate), 3-ethyl-3- (meth) acryloxymethyloxetane, allyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate Ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, 2- (2-vinyloxyethoxy) ethyl (meth) acrylate, and the like.
本発明にかかる単官能(メタ)アクリル化合物の含有量は、重合性化合物全体100重量部に対して、好ましい下限が10重量部、好ましい上限が90重量部である。本発明にかかる単官能(メタ)アクリル化合物の含有量がこの範囲であることにより、得られる電子デバイス用封止剤が柔軟性、接着性、及び、低アウトガス性により優れるものとなる。本発明にかかる単官能(メタ)アクリル化合物の含有量のより好ましい下限は20重量部、より好ましい上限は50重量部である。 The content of the monofunctional (meth) acrylic compound according to the present invention is preferably 10 parts by weight with a preferred lower limit and 90 parts by weight with respect to 100 parts by weight of the entire polymerizable compound. When the content of the monofunctional (meth) acrylic compound according to the present invention is within this range, the obtained sealing agent for electronic devices is excellent in flexibility, adhesiveness, and low outgassing property. The minimum with more preferable content of the monofunctional (meth) acrylic compound concerning this invention is 20 weight part, and a more preferable upper limit is 50 weight part.
本発明にかかる多官能(メタ)アクリル化合物と本発明にかかる単官能(メタ)アクリル化合物との含有割合は、重量比で、多官能(メタ)アクリル化合物:単官能(メタ)アクリル化合物=7:3~3:7であることが好ましい。本発明にかかる多官能(メタ)アクリル化合物と本発明にかかる単官能(メタ)アクリル化合物との含有割合がこの範囲とすることにより、得られる電子デバイス用封止剤が、インクジェット法による塗布性、成膜性、耐熱性、接着性、柔軟性をより優れるものとすることができる。本発明にかかる多官能(メタ)アクリル化合物と本発明にかかる単官能(メタ)アクリル化合物との含有割合は、重量比で、多官能(メタ)アクリル化合物:単官能(メタ)アクリル化合物=6:4~4:6であることがより好ましい。 The content ratio of the polyfunctional (meth) acrylic compound according to the present invention and the monofunctional (meth) acrylic compound according to the present invention is, by weight ratio, polyfunctional (meth) acrylic compound: monofunctional (meth) acrylic compound = 7. : 3 to 3: 7 are preferred. When the content ratio of the polyfunctional (meth) acrylic compound according to the present invention and the monofunctional (meth) acrylic compound according to the present invention is within this range, the obtained sealing agent for electronic devices can be coated by the inkjet method. Further, the film formability, heat resistance, adhesiveness, and flexibility can be further improved. The content ratio of the polyfunctional (meth) acrylic compound according to the present invention and the monofunctional (meth) acrylic compound according to the present invention is, by weight ratio, polyfunctional (meth) acrylic compound: monofunctional (meth) acrylic compound = 6. : 4 to 4: 6 is more preferable.
上記重合性化合物は、本発明にかかる多官能(メタ)アクリル化合物や本発明にかかる単官能(メタ)アクリル化合物に加えて、粘度調整や接着性をより向上させる等の目的で、その他の重合性化合物を含有してもよい。
上記その他の重合性化合物としては、本発明にかかる多官能(メタ)アクリル化合物及び本発明にかかる単官能(メタ)アクリル化合物以外のその他の(メタ)アクリル化合物や、エポキシ化合物や、オキセタン化合物や、ビニルエーテル化合物等のその他のカチオン重合性化合物等が挙げられるが、低アウトガス性等の観点から上記その他のカチオン重合性化合物は含有しないことが好ましい。上記その他のカチオン重合性化合物を含有する場合、上記その他のカチオン重合性化合物の含有量は、重合性化合物全体100重量部に対して、好ましい上限が1重量部である。
In addition to the polyfunctional (meth) acrylic compound according to the present invention and the monofunctional (meth) acrylic compound according to the present invention, the polymerizable compound is used for other polymerizations for the purpose of adjusting viscosity and improving adhesiveness. May contain an ionic compound.
As said other polymeric compound, other (meth) acrylic compounds other than the polyfunctional (meth) acrylic compound concerning this invention and the monofunctional (meth) acrylic compound concerning this invention, an epoxy compound, an oxetane compound, And other cationic polymerizable compounds such as vinyl ether compounds, etc., but from the viewpoint of low outgassing properties, it is preferable not to contain the other cationic polymerizable compounds. When the other cationic polymerizable compound is contained, the upper limit of the content of the other cationic polymerizable compound is preferably 1 part by weight with respect to 100 parts by weight of the whole polymerizable compound.
上記その他の(メタ)アクリル化合物としては、例えば、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ラウリル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アリレート等が挙げられる。これらのその他の(メタ)アクリル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the other (meth) acrylic compounds include dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, benzyl (meth) acrylate, lauryl (meth) acrylate, 1,6-hexanediol di ( And (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, trimethylolpropane tri (meth) arylate, and the like. These other (meth) acrylic compounds may be used alone or in combination of two or more.
上記エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールO型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、脂環式エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。なかでも、脂環式エポキシ樹脂が好ましい。
上記脂環式エポキシ樹脂のうち市販されているものとしては、例えば、セロキサイド2000、セロキサイド2021P、セロキサイド2081、セロキサイド3000、セロキサイド8000、サイクロマーM100(いずれも、ダイセル社製)、サンソサイザーEPS(新日本理化工業社製)等が挙げられる。
これらのエポキシ化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol O type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, Alicyclic epoxy resin, hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene Epoxy resin, phenol novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl Examples thereof include a volac type epoxy resin, a naphthalene phenol novolac type epoxy resin, a glycidyl amine type epoxy resin, an alkyl polyol type epoxy resin, a rubber-modified epoxy resin, and a glycidyl ester compound. Of these, alicyclic epoxy resins are preferred.
Examples of commercially available alicyclic epoxy resins include Celoxide 2000, Celoxide 2021P, Celoxide 2081, Celoxide 3000, Celoxide 8000, Cyclomer M100 (all manufactured by Daicel Corporation), and SUNSOSIZER EPS (New Nippon Rika Kogyo Co., Ltd.).
These epoxy compounds may be used independently and 2 or more types may be used in combination.
上記オキセタン化合物としては、例えば、フェノキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3-エチル-3-((2-エチルヘキシルオキシ)メチル)オキセタン、3-エチル-3-((3-(トリエトキシシリル)プロポキシ)メチル)オキセタン、3-エチル-3-(((3-エチルオキセタン-3-イル)メトキシ)メチル)オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン、1,4-ビス(((3-エチル-3-オキセタニル)メトキシ)メチル)ベンゼン等が挙げられる。これらのオキセタン化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the oxetane compound include phenoxymethyl oxetane, 3-ethyl-3-hydroxymethyl oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3-((2-ethylhexyloxy) methyl) oxetane. 3-ethyl-3-((3- (triethoxysilyl) propoxy) methyl) oxetane, 3-ethyl-3-(((3-ethyloxetane-3-yl) methoxy) methyl) oxetane, oxetanylsilsesquioxy Sun, phenol novolac oxetane, 1,4-bis (((3-ethyl-3-oxetanyl) methoxy) methyl) benzene and the like. These oxetane compounds may be used alone or in combination of two or more.
上記ビニルエーテル化合物としては、例えば、ベンジルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、ジシクロペンタジエンビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールジビニルエーテル等が挙げられる。これらのビニルエーテル化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the vinyl ether compound include benzyl vinyl ether, cyclohexane dimethanol monovinyl ether, dicyclopentadiene vinyl ether, 1,4-butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, dipropylene glycol. Examples thereof include divinyl ether and tripropylene glycol divinyl ether. These vinyl ether compounds may be used alone or in combination of two or more.
上記その他の重合性化合物の含有量は、重合性化合物全体100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。上記その他の重合性化合物の含有量がこの範囲であることにより、アウトガスを多量に発生させたり、応力緩和性を悪化させたりすることなく、粘度調整や接着性をより向上させる等の効果を発揮することができる。上記その他の重合性化合物の含有量のより好ましい下限は3重量部、より好ましい上限は10重量部である。
なお、上述したように、上記その他のカチオン重合性化合物を含有する場合、上記その他のカチオン重合性化合物の含有量は、重合性化合物全体100重量部に対して、好ましい上限が1重量部である。
The content of the other polymerizable compound is preferably 1 part by weight with respect to 100 parts by weight of the entire polymerizable compound, and 20 parts by weight with a preferable upper limit. When the content of the above other polymerizable compounds is within this range, the effect of adjusting the viscosity and improving the adhesiveness can be exhibited without generating a large amount of outgas or deteriorating the stress relaxation property. can do. The minimum with more preferable content of the said other polymeric compound is 3 weight part, and a more preferable upper limit is 10 weight part.
In addition, as mentioned above, when it contains the said other cationic polymerizable compound, as for content of the said other cationic polymerizable compound, a preferable upper limit is 1 weight part with respect to 100 weight part of whole polymeric compounds. .
本発明の電子デバイス用封止剤は、光ラジカル重合開始剤を含有する。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、ベンジル、チオキサントン系化合物等が挙げられる。
The sealing agent for electronic devices of this invention contains radical photopolymerization initiator.
Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, benzyl, thioxanthone compounds, and the like.
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。 Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACURE OXE01, all manufactured by Rusilin TPO ), Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
上記光ラジカル重合開始剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.5重量部、好ましい上限が20重量部である。上記光ラジカル重合開始剤の含有量がこの範囲であることにより、低粘度である本発明の電子デバイス用封止剤がインクジェット法による塗布後に濡れ広がって硬化阻害の原因となる酸素と接触する面積が大きくなっても充分に硬化させることができ、アウトガスの発生を抑制しつつ均一な硬化物を得ることができる。上記光ラジカル重合開始剤の含有量のより好ましい下限は10重量部、より好ましい上限は15重量部である。 The content of the photo radical polymerization initiator is preferably 0.5 parts by weight and preferably 20 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the radical photopolymerization initiator is in this range, the sealing agent for electronic devices of the present invention having a low viscosity wets and spreads after application by the ink jet method and comes into contact with oxygen causing inhibition of curing. Even if it becomes large, it can be made to harden enough and a uniform hardened | cured material can be obtained, suppressing generation | occurrence | production of outgas. The minimum with more preferable content of the said radical photopolymerization initiator is 10 weight part, and a more preferable upper limit is 15 weight part.
本発明の電子デバイス用封止剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、本発明の電子デバイス用封止剤と基板等との接着性を向上させる役割を有する。 The encapsulant for electronic devices of the present invention may contain a silane coupling agent. The said silane coupling agent has a role which improves the adhesiveness of the sealing agent for electronic devices of this invention, a board | substrate, etc.
上記シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。これらのシラン化合物は単独で用いられてもよいし、2種以上が併用されてもよい。 Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and the like. These silane compounds may be used independently and 2 or more types may be used together.
上記シランカップリング剤の含有量は、上記重合性化合物100重量部に対して、好ましい下限が0.1重量部、好ましい上限が10重量部である。上記シランカップリング剤の含有量がこの範囲であることにより、余剰のシランカップリング剤がブリードアウトすることを抑制しつつ、接着性を向上させる効果を発揮することができる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は5重量部である。 The content of the silane coupling agent is preferably 0.1 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the polymerizable compound. When the content of the silane coupling agent is within this range, it is possible to exert the effect of improving the adhesiveness while suppressing the excess silane coupling agent from bleeding out. The minimum with more preferable content of the said silane coupling agent is 0.5 weight part, and a more preferable upper limit is 5 weight part.
本発明の電子デバイス用封止剤は、更に、本発明の目的を阻害しない範囲において、表面改質剤を含有してもよい。上記表面改質剤を含有することにより、本発明の電子デバイス用封止剤に塗膜の平坦性を付与することができる。
上記表面改質剤としては、例えば、界面活性剤やレベリング剤等が挙げられる。
The encapsulant for electronic devices of the present invention may further contain a surface modifier as long as the object of the present invention is not impaired. By containing the surface modifier, the flatness of the coating film can be imparted to the electronic device sealant of the present invention.
Examples of the surface modifier include surfactants and leveling agents.
上記表面改質剤としては、例えば、シリコーン系やフッ素系等のものが挙げられる。
上記表面改質剤のうち市販されているものとしては、例えば、BYK-340、BYK-345(いずれもビックケミー・ジャパン社製)、サーフロンS-611(AGCセイミケミカル社製)等が挙げられる。
Examples of the surface modifier include silicone-based and fluorine-based ones.
Examples of commercially available surface modifiers include BYK-340, BYK-345 (both manufactured by Big Chemie Japan) and Surflon S-611 (manufactured by AGC Seimi Chemical).
本発明の電子デバイス用封止剤は、粘度調整等を目的として有機溶剤を含有してもよいが、有機EL表示素子に用いた場合に残存した有機溶剤により有機発光材料層が劣化したり、アウトガスを発生させたりする等の問題があるため、有機溶剤は含有しないことが好ましい。 The sealant for electronic devices of the present invention may contain an organic solvent for the purpose of adjusting the viscosity, etc., but the organic light emitting material layer is deteriorated by the remaining organic solvent when used in an organic EL display element, It is preferable not to contain an organic solvent because of problems such as generation of outgas.
また、本発明の電子デバイス用封止剤は、必要に応じて、補強剤、軟化剤、可塑剤、粘度調整剤、紫外線吸収剤、酸化防止剤等の公知の各種添加剤を含有してもよい。 Moreover, the sealing agent for electronic devices of this invention may contain well-known various additives, such as a reinforcing agent, a softening agent, a plasticizer, a viscosity modifier, a ultraviolet absorber, antioxidant, as needed. Good.
本発明の電子デバイス用封止剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、重合性化合物と、光ラジカル重合開始剤と、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 As a method for producing the sealing agent for electronic devices of the present invention, for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, three rolls, Examples thereof include a method of mixing a radical polymerization initiator and an additive such as a silane coupling agent added as necessary.
本発明の電子デバイス用封止剤は、E型粘度計を用いて、25℃、100rpmの条件で測定した粘度の好ましい下限が5mPa・s、好ましい上限が200mPa・sである。上記電子デバイス用封止剤の粘度がこの範囲であることにより、インクジェット法による塗布性により優れるものとなる。上記電子デバイス用封止剤の粘度のより好ましい下限は10mPa・s、より好ましい上限は80mPa・s、更に好ましい上限は30mPa・sである。
なお、インクジェット法による塗布時に本発明の電子デバイス用封止剤を加熱し、粘度を低くして塗布しても良い。
The electronic device sealant of the present invention has a preferred lower limit of 5 mPa · s and a preferred upper limit of 200 mPa · s, measured using an E-type viscometer at 25 ° C. and 100 rpm. When the viscosity of the electronic device sealant is within this range, the coating property by the ink jet method is excellent. The more preferable lower limit of the viscosity of the electronic device sealant is 10 mPa · s, the more preferable upper limit is 80 mPa · s, and the still more preferable upper limit is 30 mPa · s.
In addition, you may apply | coat the sealing agent for electronic devices of this invention by heating at the time of the application | coating by an inkjet method, and making viscosity low.
本発明の電子デバイス用封止剤の硬化物の波長380~800nmにおける光の全光線透過率の好ましい下限は80%である。上記全光線透過率が80%以上であることにより、得られる有機EL表示素子等の電子デバイスが光学特性により優れるものとなる。上記全光線透過率のより好ましい下限は85%である。
上記全光線透過率は、例えば、AUTOMATIC HAZE MATER MODEL TC=III DPK(東京電色社製)等の分光計を用いて測定することができる。
The preferable lower limit of the total light transmittance of light at a wavelength of 380 to 800 nm of the cured product of the encapsulant for electronic devices of the present invention is 80%. When the total light transmittance is 80% or more, the obtained electronic device such as an organic EL display element is excellent in optical characteristics. A more preferable lower limit of the total light transmittance is 85%.
The total light transmittance can be measured using a spectrometer such as AUTOMATIC HAZE MATER MODEL TC = III DPK (manufactured by Tokyo Denshoku Co., Ltd.).
本発明の電子デバイス用封止剤は、硬化物に紫外線を100時間照射した後の400nmにおける透過率が20μmの光路長にて85%以上であることが好ましい。上記紫外線を100時間照射した後の透過率が85%以上であることにより、透明性が高く、発光の損失が小さくなり、かつ、色再現性により優れるものとなる。上記紫外線を100時間照射した後の透過率のより好ましい下限は90%、更に好ましい下限は95%である。
上記紫外線を照射する光源としては、例えば、キセノンランプ、カーボンアークランプ等、従来公知の光源を用いることができる。
The encapsulant for electronic devices of the present invention preferably has a transmittance at 400 nm of 85% or more at an optical path length of 20 μm after the cured product is irradiated with ultraviolet rays for 100 hours. When the transmittance after irradiating the ultraviolet rays for 100 hours is 85% or more, the transparency is high, the loss of light emission is small, and the color reproducibility is excellent. A more preferable lower limit of the transmittance after irradiation with the ultraviolet rays for 100 hours is 90%, and a more preferable lower limit is 95%.
As the light source for irradiating the ultraviolet rays, a conventionally known light source such as a xenon lamp or a carbon arc lamp can be used.
本発明の電子デバイス用封止剤は、JIS Z 0208に準拠して、硬化物を85℃、85%RHの環境下に24時間暴露して測定した100μm厚での透湿度が100g/m以下であることが好ましい。上記透湿度が100g/m以下であることにより、例えば、電子デバイスとして有機EL表示素子の製造に用いた場合、有機発光材料層に水分が到達してダークスポットが発生することを防止する効果により優れるものとなる。 The electronic device sealant of the present invention has a moisture permeability of 100 g / m 2 at a thickness of 100 μm as measured by exposing a cured product to an environment of 85 ° C. and 85% RH for 24 hours in accordance with JIS Z 0208. The following is preferable. When the moisture permeability is 100 g / m 2 or less, for example, when used in the manufacture of an organic EL display element as an electronic device, the effect of preventing moisture from reaching the organic light emitting material layer and generating dark spots. It will be better.
更に、本発明の電子デバイス用封止剤は、硬化物を85℃、85%RHの環境下に24時間暴露したときに、硬化物の含水率が0.5%未満であることが好ましい。上記硬化物の含水率が0.5%未満であることにより、例えば、電子デバイスとして有機EL表示素子の製造に用いた場合、硬化物中の水分による有機発光材料層の劣化を防止する効果により優れるものとなる。上記硬化物の含水率のより好ましい上限は0.3%である。
上記含水率の測定方法としては、例えば、JIS K 7251に準拠してカールフィッシャー法により求める方法や、JIS K 7209-2に準拠して吸水後の重量増分を求める等の方法が挙げられる。
Furthermore, the sealing agent for electronic devices of the present invention preferably has a moisture content of less than 0.5% when the cured product is exposed to an environment of 85 ° C. and 85% RH for 24 hours. When the moisture content of the cured product is less than 0.5%, for example, when used in the manufacture of an organic EL display element as an electronic device, the effect of preventing deterioration of the organic light emitting material layer due to moisture in the cured product It will be excellent. A more preferable upper limit of the moisture content of the cured product is 0.3%.
Examples of the method for measuring the moisture content include a method of obtaining by a Karl Fischer method in accordance with JIS K 7251, and a method of obtaining a weight increment after water absorption in accordance with JIS K 7209-2.
本発明の電子デバイス用封止剤は、インクジェット法による塗布に用いられる。
インクジェット法により、本発明の電子デバイス用封止剤を基材に塗布する工程と、塗布した電子デバイス用封止剤を光照射により硬化させる工程とを有する電子デバイスの製造方法もまた、本発明の1つである。
なお、本発明の電子デバイス用封止剤を硬化させる際には、光照射に加えて加熱により硬化させてもよい。
The sealing agent for electronic devices of this invention is used for application | coating by the inkjet method.
An electronic device manufacturing method comprising a step of applying the electronic device sealant of the present invention to a substrate by an inkjet method and a step of curing the applied electronic device sealant by light irradiation is also provided by the present invention. It is one of.
In addition, when hardening the sealing agent for electronic devices of this invention, you may harden by heating in addition to light irradiation.
本発明の電子デバイス用封止剤を基材に塗布する工程において、本発明の電子デバイス用封止剤は、基材の全面に塗布してもよく、基材の一部に塗布してもよい。例えば、電子デバイスとして有機EL表示素子を製造する場合、塗布により形成される本発明の電子デバイス用封止剤の封止部の形状としては、有機発光材料層を有する積層体を外気から保護しうる形状であれば特に限定されず、該積層体を完全に被覆する形状であってもよいし、該積層体の周辺部に閉じたパターンを形成してもよいし、該積層体の周辺部に一部開口部を設けた形状のパターンを形成してもよい。 In the step of applying the electronic device sealant of the present invention to the base material, the electronic device sealant of the present invention may be applied to the entire surface of the base material, or may be applied to a part of the base material. Good. For example, when manufacturing an organic EL display element as an electronic device, the shape of the sealing part of the sealing agent for electronic devices of the present invention formed by coating is to protect the laminate having an organic light emitting material layer from the outside air. The shape is not particularly limited as long as it can be formed, and may be a shape that completely covers the laminate, or may form a closed pattern on the periphery of the laminate, or the periphery of the laminate A pattern having a shape in which a part of the openings is provided may be formed.
上記電子デバイス用封止剤を光照射により硬化させる場合、本発明の電子デバイス用封止剤は、300nm~400nmの波長及び300~3000mJ/cmの積算光量の光を照射することによって好適に硬化させることができる。 When the electronic device sealant is cured by light irradiation, the electronic device sealant of the present invention is preferably applied by irradiating light with a wavelength of 300 nm to 400 nm and an integrated light amount of 300 to 3000 mJ / cm 2. It can be cured.
本発明の電子デバイス用封止剤に光を照射するための光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、エキシマレーザ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、キセノンランプ、LEDランプ、蛍光灯、太陽光、電子線照射装置等が挙げられる。これらの光源は、単独で用いられてもよく、2種以上が併用されてもよい。
これらの光源は、上記光ラジカル重合開始剤の吸収波長に合わせて適宜選択される。
Examples of the light source for irradiating the electronic device sealant of the present invention with light include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, an excimer laser, a chemical lamp, a black light lamp, and a microwave excitation mercury lamp. , Metal halide lamps, sodium lamps, halogen lamps, xenon lamps, LED lamps, fluorescent lamps, sunlight, electron beam irradiation devices, and the like. These light sources may be used independently and 2 or more types may be used together.
These light sources are appropriately selected according to the absorption wavelength of the photo radical polymerization initiator.
本発明の電子デバイス用封止剤への光の照射手段としては、例えば、各種光源の同時照射、時間差をおいての逐次照射、同時照射と逐次照射との組み合わせ照射等が挙げられ、いずれの照射手段を用いてもよい。 Examples of the light irradiation means for the electronic device sealant of the present invention include simultaneous irradiation of various light sources, sequential irradiation with a time difference, combined irradiation of simultaneous irradiation and sequential irradiation, etc. Irradiation means may be used.
上記電子デバイス用封止剤を光照射により硬化させる工程により得られる硬化物は、更に無機材料膜で被覆されてもよい。
上記無機材料膜を構成する無機材料としては、従来公知のものを用いることができ、例えば、窒化珪素(SiN)や酸化珪素(SiO)等が挙げられる。上記無機材料膜は、1層からなるものであってもよく、複数種の層を積層したものであってもよい。また、上記無機材料膜と本発明の電子デバイス用封止剤からなる樹脂膜とを、交互に繰り返して上記積層体等を被覆してもよい。
The cured product obtained by the step of curing the encapsulant for electronic devices by light irradiation may be further coated with an inorganic material film.
As the inorganic material forming the inorganic material layer can be a conventionally known, for example, silicon nitride (SiN x), silicon oxide (SiO x), and the like. The inorganic material film may be a single layer or may be a laminate of a plurality of types of layers. Moreover, you may coat | cover the said laminated body etc. by repeating alternately the said inorganic material film | membrane and the resin film which consists of the sealing agent for electronic devices of this invention.
本発明の電子デバイスの製造方法は、本発明の電子デバイス用封止剤を塗布した基材(以下、「一方の基材」ともいう)と他方の基材とを貼り合わせる工程を有していてもよい。
上記電子デバイスとして有機EL表示素子を製造する場合、上記一方の基材は、有機発光材料層を有する積層体の形成されている基材であってもよく、該積層体の形成されていない基材であってもよい。
上記一方の基材が上記積層体の形成されていない基材である場合、上記他方の基材を貼り合わせた際に、上記積層体を外気から保護できるように本発明の電子デバイス用封止剤を塗布すればよい。即ち、上記他方の基材を貼り合わせた際に上記積層体の位置となる場所に全面的に塗布するか、又は、上記他方の基材を貼り合わせた際に上記積層体の位置となる場所が完全に収まる形状に、閉じたパターンの封止剤部を形成してもよい。
The method for producing an electronic device of the present invention includes a step of bonding a substrate (hereinafter also referred to as “one substrate”) coated with the electronic device sealing agent of the present invention and the other substrate. May be.
When an organic EL display element is produced as the electronic device, the one substrate may be a substrate on which a laminate having an organic light emitting material layer is formed, or a substrate on which the laminate is not formed. It may be a material.
When said one base material is a base material in which the said laminated body is not formed, when the said other base material is bonded together, it can seal the said laminated body from external air of this invention sealing for electronic devices What is necessary is just to apply | coat an agent. That is, when the other base material is bonded together, it is applied over the entire surface of the laminate, or when the other base material is bonded, the position of the laminate is The sealant portion having a closed pattern may be formed in a shape that completely fits.
上記電子デバイス用封止剤を光照射により硬化させる工程は、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なってもよいし、上記一方の基材と上記他方の基材とを貼り合わせる工程の後に行なってもよい。
上記電子デバイス用封止剤を光照射により硬化させる工程を、上記一方の基材と上記他方の基材とを貼り合わせる工程の前に行なう場合、本発明の電子デバイス用封止剤は、光照射してから硬化反応が進行して接着ができなくなるまでの可使時間が1分以上であることが好ましい。上記可使時間が1分以上であることにより、上記一方の基材と上記他方の基材とを貼り合わせる前に硬化が進行し過ぎることなく、より高い接着強度を得ることができる。
The step of curing the electronic device sealant by light irradiation may be performed before the step of bonding the one base material and the other base material, or the one base material and the other base material. You may carry out after the process of bonding a base material.
When the step of curing the electronic device sealant by light irradiation is performed before the step of laminating the one base material and the other base material, the electronic device sealant of the present invention is light It is preferable that the pot life is 1 minute or longer from the irradiation until the curing reaction proceeds and adhesion cannot be performed. When the pot life is 1 minute or longer, higher adhesion strength can be obtained without excessive curing before the one base material and the other base material are bonded together.
上記一方の基材と上記他方の基材とを貼り合わせる工程において、上記一方の基材と上記他方の基材とを貼り合わせる方法は特に限定されないが、減圧雰囲気下で貼り合わせることが好ましい。
上記減圧雰囲気下の真空度の好ましい下限は0.01kPa、好ましい上限は10kPaである。上記減圧雰囲気下の真空度がこの範囲であることにより、真空装置の気密性や真空ポンプの能力から真空状態を達成するのに長時間を費やすことなく、上記一方の基材と上記他方の基材とを貼り合わせる際の本発明の電子デバイス用封止剤中の気泡をより効率的に除去することができる。
In the step of bonding the one base material and the other base material, a method of bonding the one base material and the other base material is not particularly limited, but it is preferable to bond them in a reduced-pressure atmosphere.
The preferable lower limit of the degree of vacuum in the reduced-pressure atmosphere is 0.01 kPa, and the preferable upper limit is 10 kPa. When the degree of vacuum in the reduced-pressure atmosphere is within this range, the one base material and the other base material are not spent for a long time to achieve a vacuum state due to the airtightness of the vacuum device and the ability of the vacuum pump. Bubbles in the electronic device sealant of the present invention at the time of bonding to the material can be more efficiently removed.
本発明の電子デバイス用封止剤は、特に有機EL表示素子用封止剤として好適に用いることができる。 Especially the sealing agent for electronic devices of this invention can be used suitably as sealing agent for organic EL display elements.
本発明によれば、インクジェット法により容易に塗布することができ、接着性に優れ、アウトガスの発生を抑制し、残留応力を低減できる電子デバイス用封止剤を提供することができる。また、本発明によれば、該電子デバイス用封止剤を用いる電子デバイスの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing agent for electronic devices which can be apply | coated easily by the inkjet method, is excellent in adhesiveness, can suppress generation | occurrence | production of outgas, and can reduce a residual stress can be provided. Moreover, according to this invention, the manufacturing method of an electronic device using this sealing agent for electronic devices can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1~13、比較例1~4)
表1、2に記載された配合比に従い、各材料を、ホモディスパー型撹拌混合機(プライミクス社製、「ホモディスパーL型」)を用い、撹拌速度3000rpmで均一に撹拌混合することにより、実施例1~13、比較例1~4の各電子デバイス用封止剤を作製した。
(Examples 1 to 13, Comparative Examples 1 to 4)
According to the blending ratios described in Tables 1 and 2, each material was stirred and mixed uniformly at a stirring speed of 3000 rpm using a homodisper type stirring mixer (Primix Co., Ltd., “Homodisper L type”). Sealants for electronic devices of Examples 1 to 13 and Comparative Examples 1 to 4 were prepared.
<評価>
実施例及び比較例で得られた各電子デバイス用封止剤について以下の評価を行った。結果を表1、2に示した。
<Evaluation>
The following evaluation was performed about each sealing agent for electronic devices obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(粘度)
実施例及び比較例で得られた各電子デバイス用封止剤について、E型粘度計(東機産業社製、「VISCOMETER TV-22」)を用いて、25℃、100rpmの条件における粘度を測定した。
(viscosity)
About each electronic device sealant obtained in Examples and Comparative Examples, the viscosity was measured at 25 ° C. and 100 rpm using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., “VISCOMETER TV-22”). did.
(濡れ広がり性)
実施例及び比較例で得られた各電子デバイス用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter300」)を用いて、80ピコリットルの液滴量にてアルカリ洗浄した無アルカリガラス(旭硝子社製、「AN100」)上に印刷し、10分後に無アルカリガラス上の液滴の直径を測定した。
液滴の直径が400μm以上であった場合を「○」、液滴の直径が200μm以上400μm未満であった場合を「△」、液滴の直径が200μm未満であった場合を「×」として濡れ広がり性を評価した。
(Wet spreadability)
The alkali-free glass obtained by alkali-washing each electronic device sealant obtained in Examples and Comparative Examples with an ink jet discharge device (“NanoPrinter300” manufactured by Microjet Co., Ltd.) with a droplet volume of 80 picoliters. (Asahi Glass Co., Ltd., “AN100”), and after 10 minutes, the diameter of the droplets on the alkali-free glass was measured.
The case where the diameter of the droplet is 400 μm or more is indicated by “◯”, the case where the diameter of the droplet is 200 μm or more and less than 400 μm is indicated by “Δ”, and the case where the diameter of the droplet is less than 200 μm is indicated by “X”. Wet spreadability was evaluated.
(接着性)
実施例及び比較例で得られた各電子デバイス用封止剤を、スピンコーターを用いて、無アルカリガラス(旭硝子社製、「AN100」)上に10μmの厚みに塗布し、LEDランプを用いて波長365nmの紫外線を3000mJ/cm照射して電子デバイス用封止剤を硬化させ、樹脂膜を得た。得られた樹脂膜に対し、JIS K 5600-5-6に従い、切込み間隔1mmのクロスカット試験を行った。
クロスカット試験を行った際の、剥がれが0%であった場合を「○」、剥がれが0%を超え10%以下であった場合を「△」、剥がれが10%を超えた場合を「×」として接着性を評価した。
(Adhesiveness)
Each electronic device sealant obtained in Examples and Comparative Examples was applied to a thickness of 10 μm on a non-alkali glass (manufactured by Asahi Glass Co., Ltd., “AN100”) using a spin coater, and an LED lamp was used. An ultraviolet ray having a wavelength of 365 nm was irradiated to 3000 mJ / cm 2 to cure the electronic device sealant, thereby obtaining a resin film. The obtained resin film was subjected to a cross cut test with a cut interval of 1 mm in accordance with JIS K 5600-5-6.
When the cross-cut test was performed, the case where the peeling was 0% was “◯”, the case where the peeling was more than 0% and 10% or less was “△”, and the case where the peeling was more than 10%. The adhesiveness was evaluated as “×”.
(低アウトガス性)
実施例及び比較例で得られた各電子デバイス用封止剤の加熱時のアウトガスをヘッドスペース法によるガスクロマトグラフにより測定した。ヘッドスペース用バイアルに各電子デバイス用封止剤を100mg入れ、LEDランプを用いて波長365nmの紫外線を1500mJ/cm照射して封止剤を硬化させた後、バイアルを封止し、100℃で100時間加熱して、ヘッドスペース法により発生ガスを測定した。
発生したガスが300ppm以下であった場合を「○」、300ppmを超え500ppm未満であった場合を「△」、500ppm以上であった場合を「×」として低アウトガス性を評価した。
(Low outgassing)
The outgas at the time of the heating of each sealing agent for electronic devices obtained by the Example and the comparative example was measured by the gas chromatograph by a head space method. 100 mg of each electronic device sealant is put in a headspace vial, and the sealant is cured by irradiating with UV light of wavelength 365 nm using an LED lamp at 1500 mJ / cm 2 , and then the vial is sealed at 100 ° C. And the generated gas was measured by the headspace method.
The case where the generated gas was 300 ppm or less was evaluated as “◯”, the case where it was more than 300 ppm and less than 500 ppm was “Δ”, and the case where it was 500 ppm or more was evaluated as “x”.
(有機EL表示素子の表示性能)
(有機発光材料層を有する積層体が配置された基板の作製)
ガラス基板(長さ25mm、幅25mm、厚さ0.7mm)にITO電極を1000Åの厚さで成膜したものを基板とした。上記基板をアセトン、アルカリ水溶液、イオン交換水、イソプロピルアルコールにてそれぞれ15分間超音波洗浄した後、煮沸させたイソプロピルアルコールにて10分間洗浄し、更に、UV-オゾンクリーナ(日本レーザー電子社製、「NL-UV253」)にて直前処理を行った。
次に、この基板を真空蒸着装置の基板フォルダに固定し、素焼きの坩堝にN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(α-NPD)を200mg、他の異なる素焼き坩堝にトリス(8-キノリノラト)アルミニウム(Alq)を200mg入れ、真空チャンバー内を、1×10-4Paまで減圧した。その後、α-NPDの入った坩堝を加熱し、α-NPDを蒸着速度15Å/sで基板に堆積させ、膜厚600Åの正孔輸送層を成膜した。次いで、Alqの入った坩堝を加熱し、15Å/sの蒸着速度で膜厚600Åの有機発光材料層を成膜した。その後、正孔輸送層及び有機発光材料層が形成された基板を別の真空蒸着装置に移し、この真空蒸着装置内のタングステン製抵抗加熱ボートにフッ化リチウム200mgを、別のタングステン製ボートにアルミニウム線1.0gを入れた。その後、真空蒸着装置の蒸着器内を2×10-4Paまで減圧してフッ化リチウムを0.2Å/sの蒸着速度で5Å成膜した後、アルミニウムを20Å/sの速度で1000Å成膜した。窒素により蒸着器内を常圧に戻し、10mm×10mmの有機発光材料層を有する積層体が配置された基板を取り出した。
(Display performance of organic EL display elements)
(Production of a substrate on which a laminate having an organic light emitting material layer is arranged)
A glass substrate (length 25 mm, width 25 mm, thickness 0.7 mm) on which an ITO electrode was formed to a thickness of 1000 mm was used as the substrate. The substrate was ultrasonically washed with acetone, an aqueous alkali solution, ion-exchanged water, and isopropyl alcohol for 15 minutes, respectively, then washed with boiled isopropyl alcohol for 10 minutes, and a UV-ozone cleaner (manufactured by Nippon Laser Electronics Co., Ltd.). The last treatment was performed with “NL-UV253”).
Next, this substrate is fixed to the substrate folder of the vacuum deposition apparatus, and 200 mg of N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (α-NPD) is put into an unglazed crucible and other different types. 200 mg of tris (8-quinolinolato) aluminum (Alq 3 ) was put in an unglazed crucible, and the inside of the vacuum chamber was depressurized to 1 × 10 −4 Pa. Thereafter, the crucible containing α-NPD was heated, and α-NPD was deposited on the substrate at a deposition rate of 15 s / s to form a 600 正 孔 hole transport layer. Next, the crucible containing Alq 3 was heated to form an organic light emitting material layer having a thickness of 600 で at a deposition rate of 15 Å / s. Thereafter, the substrate on which the hole transport layer and the organic light emitting material layer are formed is transferred to another vacuum vapor deposition apparatus, and 200 mg of lithium fluoride is added to a tungsten resistance heating boat in the vacuum vapor deposition apparatus, and aluminum is added to another tungsten boat. 1.0 g of wire was added. After that, the inside of the vapor deposition unit of the vacuum vapor deposition apparatus is depressurized to 2 × 10 −4 Pa to form a lithium fluoride film with a thickness of 5 mm at a deposition rate of 0.2 kg / s, and then aluminum with a film thickness of 1000 mm at a rate of 20 kg / s. did. The inside of the vapor deposition unit was returned to normal pressure with nitrogen, and the substrate on which the laminate having the organic light emitting material layer of 10 mm × 10 mm was arranged was taken out.
(無機材料膜Aによる被覆)
得られた積層体が配置された基板の、該積層体全体を覆うように、13mm×13mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Aを形成した。
プラズマCVD法は、原料ガスとしてSiHガス及び窒素ガスを用い、各々の流量をSiHガス10sccm、窒素ガス200sccmとし、RFパワーを10W(周波数2.45GHz)、チャンバー内温度を100℃、チャンバー内圧力を0.9Torrとする条件で行った。
形成された無機材料膜Aの厚さは、約1μmであった。
(Coating with inorganic material film A)
A mask having an opening of 13 mm × 13 mm was placed so as to cover the entire laminated body of the substrate on which the obtained laminated body was arranged, and an inorganic material film A was formed by a plasma CVD method.
In the plasma CVD method, SiH 4 gas and nitrogen gas are used as source gases, the flow rates of each are SiH 4 gas 10 sccm, nitrogen gas 200 sccm, RF power 10 W (frequency 2.45 GHz), chamber temperature 100 ° C., chamber The test was performed under the condition that the internal pressure was 0.9 Torr.
The formed inorganic material film A had a thickness of about 1 μm.
(樹脂保護膜の形成)
得られた基板に対し、実施例及び比較例で得られた各電子デバイス用封止剤を、インクジェット吐出装置(マイクロジェット社製、「NanoPrinter300」)を使用して基板にパターン塗布した。
その後、LEDランプを用いて波長365nmの紫外線を3000mJ/cm照射して電子デバイス用封止剤を硬化させて樹脂保護膜を形成した。
(Formation of resin protective film)
With respect to the obtained board | substrate, the sealing agent for electronic devices obtained by the Example and the comparative example was pattern-coated on the board | substrate using the inkjet discharge apparatus (The product made by Microjet, "NanoPrinter300").
Thereafter, an ultraviolet ray having a wavelength of 365 nm was irradiated with 3000 mJ / cm 2 using an LED lamp to cure the electronic device sealant to form a resin protective film.
(無機材料膜Bによる被覆)
樹脂保護膜を形成した後、該樹脂保護膜の全体を覆うように、12mm×12mmの開口部を有するマスクを設置し、プラズマCVD法にて無機材料膜Bを形成して有機EL表示素子を得た。
プラズマCVD法は、上記「(無機材料膜Aによる被覆)」と同様の条件で行った。
形成された無機材料膜Bの厚さは、約1μmであった。
(Coating with inorganic material film B)
After forming the resin protective film, a mask having an opening of 12 mm × 12 mm is installed so as to cover the entire resin protective film, and the inorganic material film B is formed by plasma CVD to form an organic EL display element. Obtained.
The plasma CVD method was performed under the same conditions as the above “(Coating with inorganic material film A)”.
The formed inorganic material film B had a thickness of about 1 μm.
(有機EL表示素子の発光状態)
得られた有機EL表示素子を、温度85℃、湿度85%の環境下で100時間暴露した後、3Vの電圧を印加し、有機EL表示素子の発光状態(ダークスポット及び画素周辺消光の有無)を目視で観察した。ダークスポットや周辺消光が無く均一に発光した場合を「○」、ダークスポットや周辺消光が認められた場合を「△」、非発光部が著しく拡大した場合を「×」として有機EL表示素子の表示性能を評価した。
(Light emission state of organic EL display element)
The obtained organic EL display element is exposed for 100 hours in an environment of a temperature of 85 ° C. and a humidity of 85%, and then a voltage of 3 V is applied, and the light emission state of the organic EL display element (whether dark spots and pixel periphery quenching) Was visually observed. The organic EL display element is indicated as “◯” when there is no dark spot or peripheral extinction, “◯” when the dark spot or peripheral extinction is recognized, and “×” when the non-light emitting part is significantly enlarged. Display performance was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、インクジェット法により容易に塗布することができ、接着性に優れ、アウトガスの発生を抑制し、残留応力を低減できる電子デバイス用封止剤を提供することができる。また、本発明によれば、該電子デバイス用封止剤を用いる電子デバイスの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing agent for electronic devices which can be apply | coated easily by the inkjet method, is excellent in adhesiveness, can suppress generation | occurrence | production of outgas, and can reduce a residual stress can be provided. Moreover, according to this invention, the manufacturing method of an electronic device using this sealing agent for electronic devices can be provided.

Claims (4)

  1. インクジェット法による塗布に用いられる電子デバイス用封止剤であって、
    重合性化合物と光ラジカル重合開始剤とを含有し、
    前記重合性化合物は、1分子中に2個以上の(メタ)アクリロイルオキシ基を有し、かつ、主鎖にポリオキシアルキレン骨格を有する多官能(メタ)アクリル化合物と、1分子中に1個の(メタ)アクリロイルオキシ基及び1個以上のカチオン重合性基を有する単官能(メタ)アクリル化合物とを含有する
    ことを特徴とする電子デバイス用封止剤。
    An encapsulant for electronic devices used for coating by an inkjet method,
    Containing a polymerizable compound and a radical photopolymerization initiator,
    The polymerizable compound has two or more (meth) acryloyloxy groups in one molecule and a polyfunctional (meth) acryl compound having a polyoxyalkylene skeleton in the main chain, and one in one molecule. And a monofunctional (meth) acrylic compound having a (meth) acryloyloxy group and one or more cationically polymerizable groups.
  2. 多官能(メタ)アクリル化合物と単官能(メタ)アクリル化合物との含有割合が、重量比で、多官能(メタ)アクリル化合物:単官能(メタ)アクリル化合物=7:3~3:7であることを特徴とする請求項1記載の電子デバイス用封止剤。 The content ratio of the polyfunctional (meth) acrylic compound to the monofunctional (meth) acrylic compound is polyfunctional (meth) acrylic compound: monofunctional (meth) acrylic compound = 7: 3 to 3: 7 by weight ratio. The sealing agent for electronic devices of Claim 1 characterized by the above-mentioned.
  3. 光ラジカル重合開始剤の含有量が、重合性化合物100重量部に対して、0.5~20重量部であることを特徴とする請求項1又は2記載の電子デバイス用封止剤。 3. The encapsulant for electronic devices according to claim 1, wherein the content of the photo radical polymerization initiator is 0.5 to 20 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  4. インクジェット法により、請求項1、2又は3記載の電子デバイス用封止剤を基材に塗布する工程と、塗布した電子デバイス用封止剤を光照射により硬化させる工程とを有することを特徴とする電子デバイスの製造方法。 It has the process of apply | coating the sealing agent for electronic devices of Claim 1, 2, or 3 to a base material by the inkjet method, and the process of hardening the apply | coated sealing agent for electronic devices by light irradiation, It is characterized by the above-mentioned. A method for manufacturing an electronic device.
PCT/JP2016/077659 2015-09-24 2016-09-20 Electronic device sealing agent and electronic device manufacturing method WO2017051795A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177021823A KR20180059391A (en) 2015-09-24 2016-09-20 Electronic device sealing agent and electronic device manufacturing method
CN201680010832.9A CN107251650B (en) 2015-09-24 2016-09-20 Sealing agent for electronic device and method for manufacturing electronic device
JP2016560846A JP6804980B2 (en) 2015-09-24 2016-09-20 Encapsulant for electronic devices and manufacturing method of electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187058 2015-09-24
JP2015187058 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051795A1 true WO2017051795A1 (en) 2017-03-30

Family

ID=58386720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077659 WO2017051795A1 (en) 2015-09-24 2016-09-20 Electronic device sealing agent and electronic device manufacturing method

Country Status (5)

Country Link
JP (1) JP6804980B2 (en)
KR (1) KR20180059391A (en)
CN (1) CN107251650B (en)
TW (1) TW201725218A (en)
WO (1) WO2017051795A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021714A (en) * 2018-08-03 2020-02-06 パナソニックIpマネジメント株式会社 Uv curable resin composition for sealing organic el element, method of manufacturing organic el light-emitting device and organic el light-emitting device
JP2022071055A (en) * 2017-04-28 2022-05-13 エルジー・ケム・リミテッド Encapsulation material composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117295B2 (en) * 2017-12-15 2022-08-12 積水化学工業株式会社 Sealant for electronic devices and sealant for organic EL display elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061634A1 (en) * 2008-11-28 2010-06-03 三井化学株式会社 Organic el element surface sealant, method for producing display, and display
JP2013023630A (en) * 2011-07-22 2013-02-04 Nippon Shokubai Co Ltd Active energy ray-curable composition and cured product thereof
JP2014065787A (en) * 2012-09-25 2014-04-17 Dic Corp Activation energy ray-curable composition and cured product
JP2015000878A (en) * 2013-06-13 2015-01-05 Dic株式会社 Active energy ray-curable composition, and ink composition for inkjet recording using the same
JP5741984B2 (en) * 2013-05-27 2015-07-01 Dic株式会社 Active energy ray curable composition and ink composition for ink jet recording using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817081B2 (en) 1999-01-29 2006-08-30 パイオニア株式会社 Manufacturing method of organic EL element
JP2001307873A (en) 2000-04-21 2001-11-02 Toppan Printing Co Ltd Organic electroluminescence display element and its manufacturing method
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
JP2008149710A (en) 2006-11-22 2008-07-03 Fujifilm Corp Manufacturing method of barrier laminate, barrier laminate, barrier film substrate, and organic el element
CN102181019B (en) * 2011-03-18 2014-08-13 湖北工业大学 Ultraviolet (UV)-curing plasma display circuit protective agent with silver ion migration resistance and preparation method thereof
JP5741831B2 (en) * 2011-04-26 2015-07-01 スリーボンドファインケミカル株式会社 Photocurable composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061634A1 (en) * 2008-11-28 2010-06-03 三井化学株式会社 Organic el element surface sealant, method for producing display, and display
JP2013023630A (en) * 2011-07-22 2013-02-04 Nippon Shokubai Co Ltd Active energy ray-curable composition and cured product thereof
JP2014065787A (en) * 2012-09-25 2014-04-17 Dic Corp Activation energy ray-curable composition and cured product
JP5741984B2 (en) * 2013-05-27 2015-07-01 Dic株式会社 Active energy ray curable composition and ink composition for ink jet recording using the same
JP2015000878A (en) * 2013-06-13 2015-01-05 Dic株式会社 Active energy ray-curable composition, and ink composition for inkjet recording using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022071055A (en) * 2017-04-28 2022-05-13 エルジー・ケム・リミテッド Encapsulation material composition
JP7318851B2 (en) 2017-04-28 2023-08-01 エルジー・ケム・リミテッド sealant composition
JP2020021714A (en) * 2018-08-03 2020-02-06 パナソニックIpマネジメント株式会社 Uv curable resin composition for sealing organic el element, method of manufacturing organic el light-emitting device and organic el light-emitting device
JP7262038B2 (en) 2018-08-03 2023-04-21 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition for encapsulating organic EL element, method for manufacturing organic EL light emitting device, and organic EL light emitting device

Also Published As

Publication number Publication date
TW201725218A (en) 2017-07-16
CN107251650A (en) 2017-10-13
KR20180059391A (en) 2018-06-04
CN107251650B (en) 2021-06-01
JPWO2017051795A1 (en) 2018-07-12
JP6804980B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6200591B2 (en) Sealant for electronic device for inkjet coating and method for producing electronic device
JP6997062B2 (en) A method for manufacturing a sealant for an organic EL display element and a sealant for an organic EL display element.
JP6985228B2 (en) Encapsulant for organic EL display elements
JP2022027778A (en) Organic el display element sealing agent
JP6804980B2 (en) Encapsulant for electronic devices and manufacturing method of electronic devices
CN111567143B (en) Electronic device sealing agent and organic EL display element sealing agent
CN111480392B (en) Electronic device sealing agent and organic EL display element sealing agent
JP7479843B2 (en) Sealant for organic EL display devices
JP7065746B2 (en) Encapsulant for organic EL display elements
JP2023099366A (en) Sealing agent for organic el display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560846

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177021823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848583

Country of ref document: EP

Kind code of ref document: A1