WO2017050155A1 - 探测参考信号的发送方法及装置、信令配置方法及装置 - Google Patents

探测参考信号的发送方法及装置、信令配置方法及装置 Download PDF

Info

Publication number
WO2017050155A1
WO2017050155A1 PCT/CN2016/098830 CN2016098830W WO2017050155A1 WO 2017050155 A1 WO2017050155 A1 WO 2017050155A1 CN 2016098830 W CN2016098830 W CN 2016098830W WO 2017050155 A1 WO2017050155 A1 WO 2017050155A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
antenna
terminal
predefined rule
subsets
Prior art date
Application number
PCT/CN2016/098830
Other languages
English (en)
French (fr)
Inventor
弓宇宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017050155A1 publication Critical patent/WO2017050155A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and a device for transmitting a sounding reference signal, and a signaling configuration method and device.
  • the Sounding Reference Signal is mainly used for the measurement of the uplink channel quality.
  • SRS transmission needs to cover the frequency band of interest in the frequency domain. This can be achieved by two methods: one is to cover the entire frequency band by transmitting a large enough SRS, and the other is to transmit multiple narrow bands. SRS, and frequency hopping in the frequency domain, and then a series of sent SRS combined, can cover the entire bandwidth.
  • multiple users can use different cyclic shifts (Cyclic Shift, CS for short) on the same frequency comb (comb), send SRS by code division multiplexing, or comb in different spectrums.
  • the SRS is transmitted by frequency division multiplexing.
  • a user who transmits an SRS within a certain SRS bandwidth (usually an integer multiple of four physical resource blocks) has eight cyclic shifts and two available spectrum combs. So the user has a total of 16 resources that can be used to send SRS.
  • LTE supports two antenna users to use the antenna selection function to transmit SRS, that is, two-antenna SRS handover transmission. That is, for a given SRS bandwidth, SRS is transmitted on only one antenna at the same time, and two antennas transmit SRS in turn to complete channel quality of two antenna SRS.
  • Information detection. LTE-A introduces aperiodic SRS in the R10 phase.
  • the aperiodic SRS improves the flexible configuration and effective utilization of SRS resources through dynamic triggering, but does not fundamentally improve SRS resources.
  • Source capacity With the introduction of Massive Multiple Input Multiple Output (Massive MIMO) technology, SRS resource capacity is once again challenged.
  • Massive Multiple Input Multiple Output (Massive MIMO) technology SRS resource capacity is once again challenged.
  • the base station can directly obtain downlink channel quality information through SRS measurement because of the reciprocity of the uplink and downlink physical channels. This can avoid excessive feedback overhead of the user and improve the downlink data transmission quality and capability of the base station.
  • the uplink only supports SRS handover between the two antennas of the user. In the case where the number of downlink receiving antennas and the number of uplink transmitting antennas are different, the base station cannot obtain all of the SRS detections. Downstream channel status information.
  • An embodiment of the present invention provides a method and a device for transmitting a sounding reference signal, and a signaling configuration method and device, so as to at least solve the problem that the related art cannot support SRS switching between multiple antennas, especially multiple antennas with more than two antennas. problem.
  • a method for transmitting a sounding reference signal comprising: transmitting a sounding reference signal SRS on a subset of N antennas according to a predefined rule, where N is a positive integer, and each antenna is The set includes at least one antenna; the SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets.
  • the predefined rule includes: when the frequency hopping function of the SRS is not enabled, the transmit antenna subset index a(n SRS ) where the SRS transmission is performed after the nth SRS times is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to be hopped is an odd number, the nth SRS times the transmit antenna subset index a where the SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to hop are even and K is an integer multiple of 4, the sending of the n Sth SRS transmission is performed.
  • the antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: when the sounding reference signal hopping function is enabled and the number of subbands K that are allowed to hop are even and K is a non-integer multiple of 4, the nth SRS secondary SRS transmission is located
  • the transmit antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: transmitting a periodic SRS on the N antenna subsets.
  • the predefined rule includes: sending an aperiodic SRS on the N antenna subsets, where one-time triggering N times aperiodic SRS transmission is supported.
  • the N times of aperiodic SRS transmissions are respectively sent on N consecutive uplink transmission symbols in the special subframe.
  • the method before transmitting the sounding reference signal on the N antenna subsets according to a predefined rule, the method further comprises: dividing the transmitting antenna into the N antenna subsets.
  • the method further includes: receiving signaling on the base station side, where the signaling is used to indicate that the SRS is as described Predefined rules are sent on the N subsets of antennas.
  • the predefined rule includes: determining, according to the enabling or not of the SRS frequency hopping function and the number of times the SRS is transmitted, determining a transmit antenna subset index in which the SRS is transmitted.
  • the predefined rule includes: determining, according to at least a number of subbands that allow frequency hopping and a number of times of transmitting the SRS, a subset of transmitting antennas in which the SRS is transmitted. index.
  • the N is 4 and there is one antenna in each antenna subset.
  • the predefined rule includes: selecting, according to the downlink channel state information, selecting the antenna subset corresponding to the best downlink channel to send the SRS.
  • a signaling configuration method for sounding a reference signal including: transmitting, to a terminal, the terminal to send, according to a predefined rule, a subset of N antennas of the terminal according to a predefined rule.
  • Signaling of the sounding reference signal SRS wherein N is a positive integer, each antenna subset includes at least one antenna; and the SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets.
  • the predefined rule includes: when the frequency hopping function of the SRS is not enabled, the transmit antenna subset index a(n SRS ) where the SRS transmission is performed after the nth SRS times is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to be hopped is an odd number, the nth SRS times the transmit antenna subset index a where the SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to hop are even and K is an integer multiple of 4, the sending of the n Sth SRS transmission is performed.
  • the antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: when the sounding reference signal hopping function is enabled and the number of subbands K that are allowed to hop are even and K is a non-integer multiple of 4, the nth SRS secondary SRS transmission is located
  • the transmit antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: determining, according to the enabling or not of the SRS frequency hopping function and the number of times the SRS is transmitted, determining a transmit antenna subset index in which the SRS is transmitted.
  • the predefined rule includes: determining, according to at least a number of subbands that allow frequency hopping and a number of times of transmitting the SRS, a subset of transmitting antennas in which the SRS is transmitted. index.
  • sending, to the terminal, the signaling for instructing the terminal to send the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule comprises: sending 1-bit high-level signaling to the terminal, where The 1-bit high-layer signaling is used to indicate to the terminal whether to send the SRS on the N antenna subsets of the terminal according to the predefined rule.
  • sending, to the terminal, signaling that the terminal sends the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule includes: reusing an existing protocol for indicating to the terminal Whether to enable the antenna selection function of the SRS on the two antennas, wherein the antenna selection function is used to indicate to the terminal whether to transmit the SRS on the N antenna subsets of the terminal according to the predefined rule.
  • sending, to the terminal, signaling that the terminal sends the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule comprises: sending 2-bit high-level signaling to the terminal, where The 2-bit high-level signaling indicates to the terminal whether to send the SRS and the pre-defined rules adopted on the N antenna subsets of the terminal according to the predefined rule.
  • sending, to the terminal, the signaling for instructing the terminal to send the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule comprises: sending 1-bit high-level signaling to the terminal, where The 1-bit high layer signaling is used to indicate to the terminal a predefined rule that the SRS uses to transmit on the N antenna subsets.
  • the 1-bit high-layer signaling is sent to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether the aperiodic sounding reference signal is enabled according to a predefined rule in the N antennas.
  • the bit physical layer signaling is used to trigger the aperiodic SRS to perform consecutive N transmissions on the valid SRS resource; wherein the valid SRS resource finger can be used for Sending the SRS resource of the aperiodic SRS. .
  • a device for transmitting a sounding reference signal comprising: a first sending module, configured to send a sounding reference signal SRS on a subset of N antennas according to a predefined rule, where A positive integer, each antenna subset includes at least one antenna; the SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets.
  • the predefined rule includes: when the frequency hopping function of the SRS is not enabled, the transmit antenna subset index a(n SRS ) where the SRS transmission is performed after the nth SRS times is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to be hopped is an odd number, the nth SRS times the transmit antenna subset index a where the SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to hop are even and K is an integer multiple of 4, the sending of the n Sth SRS transmission is performed.
  • the antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: when the sounding reference signal frequency hopping function is enabled and the number of subbands K that are allowed to hop are even and K is a non-integer multiple of 4, the nth SRS secondary SRS transmission is located
  • the transmit antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: transmitting a periodic SRS on the N antenna subsets.
  • the predefined rule includes: sending an aperiodic SRS on the N antenna subsets, where one-time triggering N times aperiodic SRS transmission is supported.
  • the N times of aperiodic SRS transmissions are respectively sent on N consecutive uplink transmission symbols in the special subframe.
  • the apparatus before transmitting the sounding reference signal on the N antenna subsets according to a predefined rule, the apparatus further comprises: a dividing module configured to divide the transmitting antenna into the N antenna subsets.
  • the method further includes: receiving signaling on the base station side, where the signaling is used to indicate that the SRS is as described Predefined rules are sent on the N subsets of antennas.
  • the predefined rule includes: determining, according to the enabling or not of the SRS frequency hopping function and the number of times the SRS is transmitted, determining a transmit antenna subset index in which the SRS is transmitted.
  • the predefined rule includes: determining, according to at least a number of subbands that allow frequency hopping and a number of times of transmitting the SRS, a subset of transmitting antennas in which the SRS is transmitted. index.
  • the N is 4 and there is one antenna in each antenna subset.
  • the predefined rule includes: selecting, according to the downlink channel state information, selecting the antenna subset corresponding to the best downlink channel to send the SRS.
  • a signaling configuration apparatus for sounding a reference signal including: a second sending module, configured to send, to the terminal, the terminal to indicate that the terminal is in the terminal according to a predefined rule. Signaling for transmitting a sounding reference signal SRS on a subset of N antennas, wherein N is a positive integer, each antenna subset includes at least one antenna; and at least two antenna subsets of the SRS in the N antenna subset Not sent at the same time.
  • the predefined rule includes: when the frequency hopping function of the SRS is not enabled, the transmit antenna subset index a(n SRS ) where the SRS transmission is performed after the nth SRS times is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to be hopped is an odd number, the nth SRS times the transmit antenna subset index a where the SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rule includes: when the frequency hopping function of the SRS is enabled and the number of subbands K that are allowed to hop are even and K is an integer multiple of 4, the sending of the n Sth SRS transmission is performed.
  • the antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: when the sounding reference signal hopping function is enabled and the number of subbands K that are allowed to hop are even and K is a non-integer multiple of 4, the nth SRS secondary SRS transmission is located
  • the transmit antenna subset index a(n SRS ) is determined as follows:
  • the predefined rule includes: determining, according to the enabling or not of the SRS frequency hopping function and the number of times the SRS is transmitted, determining a transmit antenna subset index in which the SRS is transmitted.
  • the predefined rule includes: determining, according to at least a number of subbands that allow frequency hopping and a number of times of transmitting the SRS, a subset of transmitting antennas in which the SRS is transmitted. index.
  • the second sending module further includes: a first sending unit, configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether The predefined rules send SRS on the N antenna subsets of the terminal.
  • a first sending unit configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether The predefined rules send SRS on the N antenna subsets of the terminal.
  • the second sending module further includes: a first reusing unit, configured to reuse an antenna selection function in the existing protocol for indicating to the terminal whether to enable the SRS on the two antennas, wherein the antenna selection function And means for indicating to the terminal whether to send an SRS on the N antenna subsets of the terminal according to the predefined rule.
  • the second sending module further includes: a second sending unit, configured to send 2-bit high-layer signaling to the terminal, where the 2-bit high-layer signaling indicates to the terminal whether according to the predefined
  • the rule sends the SRS on the N antenna subsets of the terminal and the predefined rule.
  • the second sending module further includes: a third sending unit, configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal that the SRS is in the The predefined rules used for transmission on the N antenna subsets.
  • a third sending unit configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal that the SRS is in the The predefined rules used for transmission on the N antenna subsets.
  • the second sending module further includes: a fourth sending unit, configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether to enable non- The periodic sounding reference signal is sent on the N antenna subsets according to a predefined rule; the second reuse unit is configured to enable the terminal to enable the aperiodic sounding reference signal according to a predefined rule if the one-bit high layer signaling indicates that the terminal is in accordance with a predefined rule.
  • a fourth sending unit configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether to enable non- The periodic sounding reference signal is sent on the N antenna subsets according to a predefined rule
  • the second reuse unit is configured to enable the terminal to enable the aperiodic sounding reference signal according to a predefined rule if the one-bit high layer signaling indicates that the terminal is in accordance with a predefined rule.
  • the valid SRS resource refers to an SRS resource that can be used to transmit the aperiodic SRS.
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for executing a method for transmitting a sounding reference signal in the foregoing embodiment.
  • the antenna of the terminal is divided into N antenna subsets, and each antenna subset includes at least one antenna, and then the sounding reference signal SRS is transmitted on the N antenna subsets according to a predefined rule, where The SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets, and solves the problem that the SRS handover transmission between multiple antennas, especially multiple antennas of two antennas or more, cannot be supported in the related art.
  • FIG. 1 is a flowchart of a method of transmitting a sounding reference signal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a signaling configuration method of sounding reference signals according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing the structure of a transmitting apparatus for detecting a reference signal according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a signaling configuration apparatus for sounding reference signals according to an embodiment of the present invention
  • FIG. 5A is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 2 according to an embodiment of the present invention
  • 5B is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 3 according to an embodiment of the present invention
  • FIG. 5C is a schematic diagram of a four-antenna SRS transmission method when the number of SRS hopping subbands is 4 according to an embodiment of the present invention
  • 5D is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS frequency hopping subbands is 6 according to an embodiment of the present invention
  • FIG. 6A is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 2 according to the embodiment of the present invention
  • 6B is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 3 according to Embodiment 2 of the present invention
  • 6C is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS frequency hopping subbands is 4 according to Embodiment 2 of the present invention
  • 6D is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 6 according to the embodiment of the present invention
  • FIG. 7A is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 2 according to Embodiment 3 of the present invention.
  • FIG. 7B is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 3 according to Embodiment 3 of the present invention
  • FIG. 7C is a schematic diagram of a four-antenna SRS transmission method when the number of SRS hopping subbands is 4 according to Embodiment 3 of the present invention.
  • FIG. 7D is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 6 according to Embodiment 3 of the present invention.
  • FIG. 8A is a four-antenna when the number of SRS frequency hopping subbands is 2 according to an embodiment of the present invention. Schematic diagram of SRS transmission method
  • FIG. 8B is a schematic diagram of a four-antenna SRS transmission method when the number of SRS hopping sub-bands is three according to an embodiment of the present invention.
  • FIG. 8C is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 4 according to an embodiment of the present invention.
  • 8D is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 6 according to an embodiment of the present invention
  • 9A is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 2 according to Embodiment 5 of the present invention.
  • 9B is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 3 according to Embodiment 5 of the present invention.
  • 9C is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 4 according to Embodiment 5 of the present invention.
  • 9D is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 6 according to an embodiment of the present invention.
  • FIG. 10A is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 2 according to an embodiment of the present invention
  • FIG. 10B is a schematic diagram of a four-antenna SRS transmission method when the number of SRS hopping subbands is three according to an embodiment of the present invention.
  • 10C is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 4 according to an embodiment of the present invention
  • FIG. 10D is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is six according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for transmitting a sounding reference signal according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 The terminal sends the sounding reference signal SRS on the N antenna subsets according to a predefined rule, where N is a positive integer, each antenna subset includes at least one antenna, and the SRS is at least two antennas in the N antenna subset.
  • the subset is not sent at the same time.
  • the antenna of the terminal is divided into N antenna subsets, and each antenna subset includes at least one antenna, and then the sounding reference signal SRS is transmitted on the N antenna subsets according to a predefined rule, where The SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets, that is, the SRS can be switched and transmitted on a subset of the plurality of transmit antennas, so that the same SRS resource can be applied to different SRS antennas. Therefore, the problem of SRS handover transmission between multiple antennas, especially multiple antennas of two antennas or more, cannot be supported in the related art.
  • the predefined rules involved in this embodiment may include the following:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located Determine according to the following formula:
  • the transmitting antenna subset index a where the nth SRS secondary SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rules include: transmitting periodic SRS on N antenna subsets.
  • the predefined rule includes: transmitting the aperiodic SRS on the N antenna subsets, wherein the one-time triggering N times of the aperiodic SRS transmission is supported.
  • the N aperiodic SRS transmissions are respectively sent on N consecutive uplink transmission symbols in the special subframe.
  • step S102 the sounding reference signal is transmitted on the N antenna subsets according to a predefined rule.
  • the method of this embodiment further includes dividing the transmit antenna into N antenna subsets.
  • step S102 before the sounding reference signal is transmitted on the N antenna subsets according to the predefined rule, the method further includes: receiving signaling on the base station side, where the signaling is used to indicate that the SRS is in N according to a predefined rule. Send on the antenna subset.
  • the predefined rule involved in this embodiment may be: selecting an antenna subset corresponding to the best downlink channel to send the SRS according to the downlink channel state information.
  • the pre-defined rule of (1) above may be summarized as: determining, according to at least the enabling or not of the SRS frequency hopping function and the number of times of transmitting the SRS, the transmit antenna subset index in which the SRS is transmitted; and (2)
  • the predefined rule to (3) can be summarized on the basis of (1): in the case that the frequency hopping function is enabled, the predefined rule includes: at least according to the number of subbands and the transmission station that are allowed to hop. The number of SRSs is determined to determine the transmit antenna subset index at which the SRS is transmitted.
  • N is 4 in the embodiment, and one antenna is in each antenna subset.
  • FIG. 2 is a flowchart of a signaling configuration method for sounding reference signals according to an embodiment of the present invention. As shown in FIG. 2, the steps of the method include:
  • Step S202 The base station sends, to the terminal, signaling for instructing the terminal to send the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule, where N is a positive integer, and each antenna subset includes at least one antenna;
  • the SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets.
  • the foregoing step S202 can be used to indicate that the base station can instruct the terminal to send the sounding reference signal SRS on the N antenna subsets of the terminal according to the predefined rule, that is, the SRS can be switched on the subset of the multiple transmitting antennas, so that the same SRS
  • the resources can be applied to different SRS antennas, thereby solving the problem in the related art that SRS handover transmission between multiple antennas, especially multiple antennas of two antennas or more, cannot be supported.
  • the predefined rules involved in this embodiment may include the following:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is The following formula determines:
  • the transmit antenna subset index a where the nth SRS secondary SRS transmission is located ( n SRS ) is determined according to the following formula:
  • the predefined rule of (5) above may be summarized as: determining, according to at least the enabling or not of the SRS frequency hopping function and the number of times of transmitting the SRS, the transmit antenna subset index in which the SRS is transmitted.
  • the predefined rules for (6) to (8) can be summarized as follows, in the case where the frequency hopping function is enabled, at least according to the number of subbands allowed to hop and the number of times of transmitting SRS. Determine the transmit antenna subset index at which the SRS is transmitted.
  • the base station sends a signaling manner to the terminal for instructing the terminal to send the sounding reference signal SRS on the N antenna subsets of the terminal according to the predefined rule, which can be implemented as follows:
  • Manner 1 Sending 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether to send the SRS on the N antenna subsets of the terminal according to a predefined rule.
  • Manner 2 Sending 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate that the antenna selection function for indicating whether to enable the SRS on the two antennas in the existing protocol is reused, and the antenna selection function is used.
  • the SRS is indicated to indicate to the terminal whether to transmit the SRS on the N antenna subsets of the terminal according to a predefined rule.
  • Manner 3 Sending 2-bit high-layer signaling to the terminal, where the 2-bit high-level signaling indicates to the terminal whether to send the SRS and the predefined rule adopted on the N antenna subsets of the terminal according to a predefined rule.
  • Manner 4 transmitting 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal a predefined rule used by the SRS to transmit on the N antenna subsets.
  • Manner 5 transmitting 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether the aperiodic sounding reference signal is enabled to be sent on the N antenna subsets according to a predefined rule;
  • the 1-bit high-level signaling indicates that the terminal enables the aperiodic sounding reference signal to be transmitted on the N antenna subsets according to a predefined rule, and reuses the existing one for triggering the aperiodic
  • the 1-bit physical layer signaling sent by the SRS is used to trigger the aperiodic SRS to perform consecutive N transmissions on the valid SRS resource; wherein the valid SRS resource refers to the SRS resource that can be used to send the aperiodic SRS.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • a device for transmitting a sounding reference signal and a signaling configuration device are provided, which are used to implement the above-mentioned embodiments and preferred embodiments, and are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a transmitting apparatus for detecting a reference signal according to an embodiment of the present invention.
  • the apparatus is applied to a terminal side, and the apparatus includes: a first transmitting module 32 configured to transmit a sound on a subset of N antennas according to a predefined rule.
  • Reference signal SRS where N is a positive integer, each antenna subset contains at least one antenna; SRS is transmitted at different times on at least two antenna subsets of the N antenna subsets.
  • the predefined rules involved in this embodiment may include the following:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmitting antenna subset index a where the nth SRS secondary SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rules include: sending cycles on N antenna subsets SRS.
  • the predefined rule includes: transmitting the aperiodic SRS on the N antenna subsets, wherein the one-time triggering N times of the aperiodic SRS transmission is supported.
  • the N aperiodic SRS transmissions are respectively sent on N consecutive uplink transmission symbols in the special subframe.
  • the apparatus of this embodiment further includes: a third sending module, configured to divide the transmitting antenna into N antenna subsets.
  • the apparatus of this embodiment further includes: a receiving module, configured to receive the signaling of the base station side, where the signaling is used to indicate that the SRS is in accordance with the pre- The definition rules are sent on N antenna subsets.
  • the predefined rule involved in this embodiment may be: selecting an antenna subset corresponding to the best downlink channel to send the SRS according to the downlink channel state information.
  • the pre-defined rule of (9) above may be summarized as: determining, according to at least the enabling or not of the SRS frequency hopping function and the number of times of transmitting the SRS, the transmit antenna subset index in which the SRS is transmitted; and (10)
  • the predefined rule to (12) can be summarized on the basis of (9): in the case that the frequency hopping function is enabled, the predefined rule includes: at least according to the number of subbands and the transmission station that are allowed to hop. The number of SRSs is determined to determine the transmit antenna subset index at which the SRS is transmitted.
  • FIG. 4 is a structural block diagram of a signaling configuration apparatus for sounding reference signals according to an embodiment of the present invention.
  • the apparatus is applied to a device side, and the apparatus includes: a second sending module 42 configured to send to a terminal. And signaling to the terminal to transmit the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule, where N is a positive integer, each antenna subset includes at least one antenna; and the SRS is in the N antenna subset At least two antenna subsets are not sent at the same time.
  • the predefined rules involved in this embodiment may include the following:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located Determine according to the following formula:
  • the transmitting antenna subset index a where the nth SRS secondary SRS transmission is located (n SRS ) is determined according to the following formula:
  • the predefined rule of (13) above may be summarized as: determining, according to at least the enabling or not of the SRS frequency hopping function and the number of times of transmitting the SRS, the transmit antenna subset index in which the SRS is transmitted.
  • the predefined rules for (14) to (16) can be summarized as follows, in the case where the frequency hopping function is enabled, at least according to the number of subbands allowed to hop and the number of times of transmitting SRS. Determine the transmit antenna subset index at which the SRS is transmitted.
  • signaling for transmitting, by the terminal, the terminal to transmit the sounding reference signal SRS on the N antenna subsets of the terminal according to a predefined rule may be implemented by:
  • the first sending unit sends a 1-bit high-level signaling to the terminal, where the 1-bit high-level signaling is used to indicate to the terminal whether to send the SRS on the N antenna subsets of the terminal according to a predefined rule.
  • the first reuse unit is configured to reuse an antenna selection function in the existing protocol for indicating whether to enable the SRS on the two antennas, and the antenna selection function is used to indicate to the terminal whether the N antennas in the terminal are according to a predefined rule. Send SRS on the set.
  • the second sending unit sends the 2-bit high-layer signaling to the terminal, where the 2-bit high-level signaling indicates to the terminal whether to send the SRS and the adopted predefined rule on the N antenna subsets of the terminal according to a predefined rule.
  • the third sending unit is configured to send 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal, the predefined rule that the SRS uses to transmit on the N antenna subsets.
  • a fourth sending unit transmitting 1-bit high-layer signaling to the terminal, where the 1-bit high-layer signaling is used to indicate to the terminal whether the aperiodic sounding reference signal is enabled to be sent on the N antenna subsets according to a predefined rule;
  • the dual-use unit is configured to re-use the existing one for triggering the aperiodic SRS transmission if the 1-bit high-level signaling indicates that the terminal enables the aperiodic sounding reference signal to be transmitted on the N antenna subsets according to a predefined rule.
  • the bit physical layer signaling is used to trigger the aperiodic SRS to perform consecutive N transmissions on the valid SRS resources; wherein the valid SRS resources refer to SRS resources that can be used to transmit the aperiodic SRS.
  • each of the above modules can be implemented by software or hardware.
  • the latter can be implemented in the following manner, but is not limited thereto: the above modules are all located in the same processor; or, the above modules are respectively located in multiple processors.
  • the optional embodiment provides a method for transmitting and signaling a sounding reference signal.
  • the switching of the sounding reference signal on multiple transmitting antennas can be implemented, so that the same SRS resource is used. It can be applied to different SRS antennas, which saves SRS resources compared to multiple antennas (the number of antennas is at least greater than 2), which is beneficial to solve the problem of insufficient SRS capacity in large-scale MIMO systems. It is also advantageous for the base station in the TDD system to obtain all downlink channel information by using the sounding reference signal of the terminal.
  • the embodiment of the invention provides a method for transmitting and signaling a sounding reference signal, and the steps of the method include:
  • Step S301 The base station sends signaling to the terminal, where the terminal is configured to send the sounding reference signal according to a predefined rule.
  • Step S302 The terminal receives the signaling sent by the base station, and sends the sounding reference signal on the N antenna subsets according to a predefined rule.
  • each antenna subset contains at least one antenna. There may also be only one antenna per subset of antennas, where N is an integer greater than two.
  • the terminal transmits the transmit antenna to N before the terminal transmits the sounding reference signal on the N antenna subsets according to a predefined rule.
  • a subset For example, N is equal to and there is only one antenna per subset of antennas, indicating that the terminal has 4 transmit antennas, and the terminal will transmit the sounding reference signals on the four antennas according to a predefined rule.
  • the predefined rule may also be understood as a rule of antenna switching or a rule of antenna selection.
  • the base station may also indicate to the terminal to send the sounding reference signal according to a predefined rule in one of the following ways:
  • the 1-bit high-level signaling indicates to the terminal whether to send the sounding reference signal according to a predefined rule. For example, when the 1-bit high-level signaling indication is 0, it means that the predefined rules are not followed. Then, the sounding reference signal is sent. When the indication is 1, it indicates that the sounding reference signal is transmitted according to a predefined rule.
  • the 1-bit high-level signaling may reuse the 1-bit high-layer signaling used in the existing protocol to indicate whether to enable the antenna selection transmission function of the two antennas, or may be the newly added 1-bit high-layer signaling.
  • Manner 2 The terminal is instructed by the 2-bit high-layer signaling whether to send the sounding reference signal and the predefined rule adopted according to the predefined rule.
  • the two bits can be jointly notified, for example, as shown in Table 1; the two bits can also be independently notified; for example, one of the bits is an antenna selection transmission in the existing protocol for indicating whether to turn on the two antennas to the terminal.
  • the 1-bit high-level signaling when the terminal has a subset of N SRS transmit antennas (the total number of transmit antennas included in the N transmit antenna subsets is greater than 2), the 1-bit high-level signaling simultaneously indicates to the terminal whether to follow
  • the predefined rule transmits the sounding reference signal on the N antenna subsets, and the second bit is valid only when the first bit indicates that the sounding reference signal is transmitted according to a predefined rule, and the second bit is used to indicate N transmissions to the terminal.
  • Predefined rules used for SRS transmission on the antenna subset For example, when the second bit indicates 0, it indicates that the predefined rule 1 is adopted, and when the second bit indicates 1, it indicates that the predefined rule 2 is adopted.
  • the predefined rule may be any one of Embodiment 1 to Embodiment 6 below.
  • Manner 3 The terminal is instructed to send a sounding reference signal according to a predefined rule by newly adding 1-bit physical layer signaling. This method is mainly used for transmitting on the N antenna subsets of the terminal.
  • the reference signal is limited to the case of a non-periodic sounding reference signal.
  • the newly added 1-bit physical layer signaling is valid only when the aperiodic sounding reference signal is triggered, that is, the 1-bit physical layer signaling indication used to trigger the aperiodic sounding reference signal in the existing protocol is 1 This newly added 1-bit physical layer signaling is effective.
  • the newly added 1-bit physical layer signaling indicates to the terminal that the antenna selection transmission function of the N antenna subset is turned on, and implicitly indicates to the terminal that the aperiodic sounding reference signal needs to be NK consecutive transmissions are used to complete the measurement of channel quality information of four antennas at full bandwidth.
  • Manner 4 transmitting, by the terminal, 1-bit high-layer signaling, to indicate to the terminal, whether to enable the aperiodic sounding reference signal to be sent on the N antenna subsets according to a predefined rule;
  • the signaling indicates that the terminal enables the aperiodic sounding reference signal to be sent on the N antenna subsets according to a predefined rule, and reuses the existing 1-bit physical layer signaling used to trigger the aperiodic SRS transmission to trigger the non-
  • the periodic SRS performs a continuous N transmissions on valid SRS resources.
  • the valid SRS resource refers to an SRS resource that can be used to send the aperiodic SRS.
  • the predefined rule includes the sounding reference signal transmitted on the N antenna subsets of the terminal according to the following predefined rules may be limited to the periodic sounding reference signal. Of course, it may be limited to the aperiodic sounding reference signal.
  • the aperiodic sounding reference signal needs to be supported.
  • the measurement of channel quality information of full bandwidth can be completed by triggering N consecutive transmissions at a time.
  • the N times aperiodic sounding reference signals are respectively transmitted on N consecutive uplink transmission symbols of the TDD system special subframe.
  • the periodic sounding reference signal completes the measurement of the channel quality information of the full bandwidth every NK times of the SRS transmission.
  • the predefined rule includes that the N antenna subsets that send the sounding reference signals are respectively located on the N consecutive uplink transmission symbols of the TDD system special subframe to send the SRS.
  • the predefined rule comprises the sounding reference signal being transmitted at different times on at least two antenna subsets in the N antenna subsets of the terminal.
  • the pre-defined rule packet used by the sounding reference signal to transmit on the N antenna subsets include:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following formula:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is determined according to the following equation:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located is The following formula determines:
  • the transmit antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located Determine according to the following formula:
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the terminal has four transmitting antennas, and the terminal sends the sounding reference signals on the four antennas according to a predefined rule, which specifically includes:
  • the terminal transmits the antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located according to the following formula:
  • the transmitting antenna subset index a(n SRS ) where the terminal is located in the nth SRS secondary SRS transmission is determined according to the following formula:
  • K indicates the number of SRS subbands that allow SRS frequency hopping when the SRS frequency domain hopping function is enabled.
  • K defaults to 1
  • n SRS indicates the counter of the user-specific SRS transmission times.
  • n SRS is a non-negative integer.
  • the SRS transmission antenna continuously switches.
  • the SRS frequency hopping function is enabled, the SRS transmitting antenna also switches with the frequency hopping of the SRS subband.
  • the terminal completes the transmission of the four antenna SRS on each subband, and the base station can utilize the SRS signals received from the four antennas on each subband.
  • the uplink/downlink channel quality information on each subband with four transmit antennas/four receive antennas is obtained.
  • FIG. 5B is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is three according to an embodiment of the present invention.
  • K 3, that is, when there are three frequency hopping subbands, the SRS is transmitted in four.
  • Transmission rule on the antenna With the switching of the sub-band, the transmission of the SRS is cyclically switched in the first antenna (TX0), the second antenna (TX1), the third antenna (TX2), and the fourth antenna (TX3).
  • FIG. 5C is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 4 according to an embodiment of the present invention.
  • the SRS is four.
  • TX2 fourth antenna (TX3), first antenna (TX0) transmission
  • 5D is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 6 according to an embodiment of the present invention.
  • K 6
  • the SRS is at four.
  • the (TX2), the fourth antenna (TX3), and the first antenna (TX0) are sequentially cycled.
  • the transmission law of SRS on the four antennas under other K values can be calculated by using the formula in the first scheme, and will not be described here in view of the space.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the terminal has four transmitting antennas, and the terminal sends the sounding reference signals on the four antennas according to a predefined rule, which specifically includes:
  • the terminal transmits the antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located according to the following formula:
  • K indicates the number of SRS subbands that allow SRS frequency hopping when the SRS frequency domain hopping function is enabled.
  • K defaults to 1
  • n SRS indicates the counter of the user-specific SRS transmission times.
  • n SRS is a non-negative integer.
  • the antenna is also switched.
  • the SRS transmitting antenna does not switch during an SRS frequency domain hopping period.
  • the SRS transmitting antenna switches only when entering a new SRS frequency domain hopping period.
  • scheme 2 also completes the transmission of the four antenna SRS on each subband in 4K SRS transmissions.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the terminal has four transmitting antennas, and the terminal sends the sounding reference signals on the four antennas according to a predefined rule, which specifically includes:
  • the terminal transmits the antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located according to the following formula:
  • the transmitting antenna subset index a(n SRS ) where the terminal is located in the nth SRS secondary SRS transmission is determined according to the following formula:
  • K indicates the number of SRS subbands that allow SRS frequency hopping when the SRS frequency domain hopping function is enabled.
  • K defaults to 1
  • n SRS indicates the counter of the user-specific SRS transmission times.
  • n SRS is a non-negative integer.
  • the third feature of the scheme is that when the SRS frequency hopping function is enabled, and K is even, the SRS transmission antenna is switched once every two times (ie, each pair), and the antenna switching rule and protocol between the pair and the pair are performed.
  • the existing two-antenna SRS transmission antenna switching law is the same.
  • Scheme 3 also completes the transmission of the four antenna SRS on each subband in 4K SRS transmissions.
  • the transmission rule of SRS on the four antennas under other K values can be calculated by using the formula in the third scheme. For the sake of space, it will not be repeated here.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the terminal has four transmitting antennas, and the terminal sends the sounding reference signals on the four antennas according to a predefined rule, which specifically includes:
  • the terminal transmits the antenna subset index a(n SRS ) where the nth SRS secondary SRS transmission is located according to the following formula:
  • the transmitting antenna subset index a(n SRS ) where the terminal is located in the nth SRS secondary SRS transmission is determined according to the following formula:
  • K indicates the number of SRS subbands that allow SRS frequency hopping when the SRS frequency domain hopping function is enabled.
  • K defaults to 1
  • n SRS indicates the counter of the user-specific SRS transmission times.
  • n SRS is a non-negative integer.
  • the scheme 3 is the same as the scheme 1.
  • the characteristic is that the SRS transmission antenna continuously switches with the change of the number of SRS transmissions.
  • the SRS transmission antenna also switches with the frequency hopping of the SRS subband.
  • the switching sequence is slightly different, especially when the SRS frequency hopping function is enabled and K is even.
  • the terminal completes the transmission of the four antenna SRS on each subband, and the base station can utilize the SRS signals received from the four antennas on each subband.
  • the uplink/downlink channel quality information on each subband with four transmit antennas/four receive antennas is obtained.
  • FIG. 8B is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is three according to an embodiment of the present invention.
  • K 3, that is, when there are three frequency hopping subbands, the SRS is transmitted in four.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the terminal has four transmitting antennas, and the terminal sends the sounding reference signals on the four antennas according to a predefined rule, which specifically includes:
  • the four SRS transmit antennas of the terminal are divided into two groups, which are respectively referred to as a first antenna group and a second antenna group (the group indexes are 0 and 1 respectively).
  • the SRSs are simultaneously transmitted on the two antennas in the group and orthogonalized by using different cyclic shift sequences, and the inter-group antennas are not simultaneously transmitted.
  • the antenna included in the first antenna group is the first antenna (TX0) and the second antenna (TX1)
  • the antenna included in the second antenna group is the third antenna (TX2) and the fourth antenna ( TX3).
  • the index of the transmitting antenna group where the terminal is located in the nth SRS secondary SRS transmission Determine according to the following formula:
  • the index of the transmitting antenna group where the terminal is located in the nth SRS secondary SRS transmission Determine according to the following formula:
  • K indicates the number of SRS subbands that allow SRS frequency hopping when the SRS frequency domain hopping function is enabled.
  • K defaults to 1
  • n SRS indicates the counter of the user-specific SRS transmission times.
  • n SRS is a non-negative integer.
  • the SRS transmission antenna group switches regularly.
  • the SRS transmitting antenna group also switches regularly as the SRS subband hops.
  • FIG. 9A is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 2 according to Embodiment 5 of the present invention.
  • K 2, that is, when there are two frequency hopping subbands, the SRS is four. Transmission law on the transmit antenna (two antenna groups).
  • FIG. 9B is a schematic diagram of a method for transmitting a four-antenna SRS when the number of SRS hopping subbands is 3 according to the fifth embodiment of the present invention.
  • K 3, that is, when there are three frequency hopping subbands, the SRS is transmitted in four.
  • Transmission rule on the antenna Two transmitting antenna groups: With the switching of the sub-bands, the transmission of the SRS is cyclically switched on the first antenna group (TX0 and TX1) and the second antenna group (TX2 and TX3).
  • the transmission rule of SRS on the four antennas under other K values can be calculated by using the formula in the scheme 5, and will not be described here in view of the space.
  • the terminal has four transmitting antennas, and the terminal sends the sounding reference signals on the four antennas according to a predefined rule, which specifically includes:
  • the four SRS transmit antennas of the terminal are divided into two groups, which are respectively referred to as a first antenna group and a second antenna group (the group indexes are 0 and 1 respectively).
  • the SRSs are simultaneously transmitted on the two antennas in the group and orthogonalized by using different cyclic shift sequences, and the inter-group antennas are not simultaneously transmitted.
  • the antenna included in the first antenna group is the first antenna (TX0) and the second antenna (TX1)
  • the antenna included in the second antenna group is the third antenna (TX2) and the fourth antenna ( TX3).
  • the index of the transmitting antenna group where the terminal is located in the nth SRS secondary SRS transmission Determine according to the following formula:
  • K indicates the number of SRS subbands that allow SRS frequency hopping when the SRS frequency domain hopping function is enabled.
  • K defaults to 1
  • n SRS indicates the counter of the user-specific SRS transmission times.
  • n SRS is a non-negative integer.
  • the feature of this scheme is that the SRS transmitting antenna only switches once every K times of SRS transmission.
  • the SRS subband hopping function is enabled, the SRS transmitting antenna is switched at the same time as each SRS subband hopping period is switched.
  • FIG. 10A is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 2 according to the embodiment of the present invention.
  • K 2, that is, when there are two frequency hopping subbands, the SRS is four.
  • the transmission rule on the transmit antenna two transmit antenna groups).
  • n SRS 0 to 1
  • FIG. 10B is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is three according to an embodiment of the present invention.
  • K 3 that is, when there are three frequency hopping subbands, the SRS is transmitted in four.
  • the transmission law on the antenna two transmit antenna groups).
  • n SRS 0 to 2
  • the transmission rule on (two transmit antenna groups).
  • n SRS 0 to 3
  • each SRS transmission SRS is transmitted on the first antenna group (TX0 and TX1); in the second SRS hopping period (n SRS) Within 4 to 7), each SRS transmission, the SRS is transmitted on the second antenna group (TX2 and TX3).
  • FIG. 10D is a schematic diagram of a four-antenna SRS transmission method when the number of SRS frequency hopping subbands is 6 according to the embodiment of the present invention.
  • K 6, that is, when there are six frequency hopping subbands, the SRS is four.
  • the transmission rule on the transmit antenna two transmit antenna groups.
  • n SRS 0 to 5
  • the transmission rule of the SRS on the four antennas in the case of other K values can be calculated by using the formula in the sixth embodiment, and will not be described here.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the sounding reference signal SRS is sent on the N antenna subsets according to a predefined rule, where N is a positive integer, each antenna subset includes at least one antenna; and the SRS is in at least two antenna subsets of the N antenna subsets. Not sent at the same time.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the antenna of the terminal is divided into N antenna subsets, and each antenna subset includes at least one antenna, and then the sounding reference signal SRS is transmitted on the N antenna subsets according to a predefined rule.
  • the manner in which the SRS is sent at different times on at least two antenna subsets in the N antenna subsets solves the problem that the related art cannot support multiple antennas, especially two days.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种探测参考信号的发送方法及装置、信令配置方法及装置,其中,该方法,包括:按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;SRS在N个天线子集中的至少两个天线子集上不同时发送。通过本发明实施例,解决了相关技术中无法支持在多天线尤其是两天线以上的多天线之间的SRS切换发送的问题。

Description

探测参考信号的发送方法及装置、信令配置方法及装置 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种探测参考信号的发送方法及装置、信令配置方法及装置。
背景技术
长期演进(Long Term Evolution,简称为LTE)中,探测参考信号(Sounding Reference Signal,简称为SRS)主要用于上行信道质量的测量。
在频域上,SRS传输需要覆盖频域所关心的频段,这可以通过两种做法实现:一种是通过发送一个足够大的宽带SRS,来覆盖整个频段;另一种是通过发送多个窄带SRS,并在频域上进行跳频,然后将一连串发送的SRS联合起来,就能覆盖整个带宽。
在同一个SRS带宽内,多个用户可以在同一个频率梳(comb)上使用不同的循环移位(Cyclic Shift,简称为CS),通过码分复用发送SRS,也可以在不同的频谱梳上,通过频分复用发送SRS。具体来说,在LTE***中,在某个SRS带宽(通常是4个物理资源块的整数倍)内发送SRS的用户,可以的循环移位有8个,可以使用的频谱梳为2个,所以用户总共有16个可用来发送SRS的资源。这些资源对于单输入单输出(Single Input Single Output,简称为SISO)或者单输入多输出(Single Input Multiple Output,简称为SIMO)来说是足够了,但是对于多输入多输出(Multiple Input Multiple Output,简称为MIMO)来说,可能面临多天线所带来的SRS资源不足问题。LTE支持两天线用户利用天线选择功能发送SRS,即两天线SRS切换发送,即对于指定SRS带宽,在同一时刻仅在一个天线上发送SRS,两个天线轮流发送SRS,完成两天线SRS的信道质量信息探测。LTE-A在R10阶段引入非周期SRS,非周期SRS通过动态触发的方式提高了SRS资源的灵活配置和有效利用,但是并没有从根本上提高SRS资 源容量。随着大规模多输入多输出(Massive Multiple Input Multiple Output,简称为Massive MIMO)技术的引入,SRS资源容量受到再次挑战。
在时分双工(Time Division Duplexing,简称为TDD)***中,由于上下行物理信道具有互易性,基站还可以通过SRS的测量直接获得下行信道质量信息。这样可以避免用户过多的反馈开销,提高基站的下行数据传输质量和能力。然而,虽然下行已经支持多发四收的情况,但是目前上行仅支持用户两天线之间的SRS切换发送,在下行接收天线数目和上行发送天线数目不等的情况,基站无法通过SRS探测获得全部的下行信道状态信息。
针对相关技术中的上述问题,目前尚未存在有效的解决方案。
发明内容
本发明实施例提供了一种探测参考信号的发送方法及装置、信令配置方法及装置,以至少解决相关技术中无法支持在多天线尤其是两天线以上的多天线之间的SRS切换发送的问题。
根据本发明实施例的一个方面,提供了一种探测参考信号的发送方法,包括:按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
可选地,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000001
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000002
或,
Figure PCTCN2016098830-appb-000003
或,
Figure PCTCN2016098830-appb-000004
或,
Figure PCTCN2016098830-appb-000005
或,
Figure PCTCN2016098830-appb-000006
可选地,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000007
或,
Figure PCTCN2016098830-appb-000008
或,
Figure PCTCN2016098830-appb-000009
或,
Figure PCTCN2016098830-appb-000010
或,
Figure PCTCN2016098830-appb-000011
可选地,所述预定义规则包括:在所述N个天线子集上发送周期SRS。
可选地,所述预定义规则包括:在所述N个天线子集上发送非周期SRS,其中,支持一次触发N次非周期SRS传输。
可选地,所述N次非周期SRS传输分别在特殊子帧中的N个连续的上行传输符号上发送。
可选地,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述方法还包括:将发送天线划分为所述N个天线子集。
可选地,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述方法还包括:接收基站侧的信令,其中,所述信令用于指示所述SRS按照所述预定义规则在所述N个天线子集上发送。
可选地,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,所述N为4,每个天线子集中有一个天线。
可选地,所述预定义规则包括:根据下行信道状态信息,选择对应最佳下行信道的天线子集发送所述SRS。
根据本发明实施例的另一个方面,提供了一种探测参考信号的信令配置方法,包括:向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
可选地,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索 引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000012
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000013
或,
Figure PCTCN2016098830-appb-000014
或,
Figure PCTCN2016098830-appb-000015
或,
Figure PCTCN2016098830-appb-000016
或,
Figure PCTCN2016098830-appb-000017
可选地,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000018
或,
Figure PCTCN2016098830-appb-000019
或,
Figure PCTCN2016098830-appb-000020
或,
Figure PCTCN2016098830-appb-000021
或,
Figure PCTCN2016098830-appb-000022
可选地,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
可选地,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:重用现有协议中用于向所述终端指示是否开启SRS在两天线上的天线选择功能,其中,该天线选择功能用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
可选地,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:向所述终端发送2比特高层信令,其中,该2比特高层信令向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS以及所采用的预定义规则。
可选地,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示SRS在所述N个天线子集上发送所采用的预定义规则。
可选地,向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送;若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送,则重用现有的用于触发非周期SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送;其中,所述有效的SRS资源指可被用于 发送所述非周期SRS的SRS资源。。
根据本发明实施例的再一个方面,提供了一种探测参考信号的发送装置,包括:第一发送模块,设置为按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
可选地,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000023
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000024
或,
Figure PCTCN2016098830-appb-000025
或,
Figure PCTCN2016098830-appb-000026
或,
Figure PCTCN2016098830-appb-000027
或,
Figure PCTCN2016098830-appb-000028
可选地,所述预定义规则包括:当探测参考信号跳频功能使能且允许 跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000029
或,
Figure PCTCN2016098830-appb-000030
或,
Figure PCTCN2016098830-appb-000031
或,
Figure PCTCN2016098830-appb-000032
或,
Figure PCTCN2016098830-appb-000033
可选地,所述预定义规则包括:在所述N个天线子集上发送周期SRS。
可选地,所述预定义规则包括:在所述N个天线子集上发送非周期SRS,其中,支持一次触发N次非周期SRS传输。
可选地,所述N次非周期SRS传输分别在特殊子帧中的N个连续的上行传输符号上发送。
可选地,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述装置还包括:划分模块,设置为将发送天线划分为所述N个天线子集。
可选地,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述方法还包括:接收基站侧的信令,其中,所述信令用于指示所述SRS按照所述预定义规则在所述N个天线子集上发送。
可选地,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,所述N为4,每个天线子集中有一个天线。
可选地,所述预定义规则包括:根据下行信道状态信息,选择对应最佳下行信道的天线子集发送所述SRS。
根据本发明实施例的又一个方面,提供了一种探测参考信号的信令配置装置,包括:第二发送模块,设置为向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
可选地,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000034
可选地,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000035
或,
Figure PCTCN2016098830-appb-000036
或,
Figure PCTCN2016098830-appb-000037
或,
Figure PCTCN2016098830-appb-000038
或,
Figure PCTCN2016098830-appb-000039
可选地,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000040
或,
Figure PCTCN2016098830-appb-000041
或,
Figure PCTCN2016098830-appb-000042
或,
Figure PCTCN2016098830-appb-000043
或,
Figure PCTCN2016098830-appb-000044
可选地,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,所述第二发送模块还包括:第一发送单元,设置为向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
可选地,所述第二发送模块还包括:第一重用单元,设置为重用现有协议中用于向所述终端指示是否开启SRS在两天线上的天线选择功能,其中,该天线选择功能用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
可选地,所述第二发送模块还包括:第二发送单元,设置为向所述终端发送2比特高层信令,其中,该2比特高层信令向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS以及所采用的预定义 规则。
可选地,所述第二发送模块还包括:第三发送单元,设置为向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示SRS在所述N个天线子集上发送所采用的预定义规则。
可选地,所述第二发送模块还包括:第四发送单元,设置为向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送;第二重用单元,设置为若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送,则重用现有的用于触发非周期SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送;其中,所述有效的SRS资源指可被用于发送所述非周期SRS的SRS资源。。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的探测参考信号的发送方法。
通过本发明实施例,采用将终端的天线划分为N个天线子集,而该每个天线子集中至少包括一个天线,进而按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,SRS在N个天线子集中的至少两个天线子集上不同时发送的方式,解决了相关技术中无法支持在多天线尤其是两天线以上的多天线之间的SRS切换发送的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的探测参考信号的发送方法的流程图;
图2是根据本发明实施例的探测参考信号的信令配置方法的流程图;
图3是根据本发明实施例的探测参考信号的发送装置的结构框图;
图4是根据本发明实施例的探测参考信号的信令配置装置的结构框图;
图5A是根据本发明实施例一当SRS跳频子带数目为2时的四天线SRS发送方法示意图;
图5B是根据本发明实施例一当SRS跳频子带数目为3时的四天线SRS发送方法示意图;
图5C是根据本发明实施例一当SRS跳频子带数目为4时的四天线SRS发送方法示意图;
图5D是根据本发明实施例一当SRS跳频子带数目为6时的四天线SRS发送方法示意图;
图6A是根据本发明实施例二当SRS跳频子带数目为2时的四天线SRS发送方法示意图;
图6B是根据本发明实施例二当SRS跳频子带数目为3时的四天线SRS发送方法示意图;
图6C是根据本发明实施例二当SRS跳频子带数目为4时的四天线SRS发送方法示意图;
图6D是根据本发明实施例二当SRS跳频子带数目为6时的四天线SRS发送方法示意图;
图7A是根据本发明实施例三当SRS跳频子带数目为2时的四天线SRS发送方法示意图;
图7B是根据本发明实施例三当SRS跳频子带数目为3时的四天线SRS发送方法示意图;
图7C是根据本发明实施例三当SRS跳频子带数目为4时的四天线SRS发送方法示意图;
图7D是根据本发明实施例三当SRS跳频子带数目为6时的四天线SRS发送方法示意图;
图8A是根据本发明实施例四当SRS跳频子带数目为2时的四天线 SRS发送方法示意图;
图8B是根据本发明实施例四当SRS跳频子带数目为3时的四天线SRS发送方法示意图;
图8C是根据本发明实施例四当SRS跳频子带数目为4时的四天线SRS发送方法示意图;
图8D是根据本发明实施例四当SRS跳频子带数目为6时的四天线SRS发送方法示意图;
图9A是根据本发明实施例五当SRS跳频子带数目为2时的四天线SRS发送方法示意图;
图9B是根据本发明实施例五当SRS跳频子带数目为3时的四天线SRS发送方法示意图;
图9C是根据本发明实施例五当SRS跳频子带数目为4时的四天线SRS发送方法示意图;
图9D是根据本发明实施例六当SRS跳频子带数目为6时的四天线SRS发送方法示意图;
图10A是根据本发明实施例六当SRS跳频子带数目为2时的四天线SRS发送方法示意图;
图10B是根据本发明实施例六当SRS跳频子带数目为3时的四天线SRS发送方法示意图;
图10C是根据本发明实施例六当SRS跳频子带数目为4时的四天线SRS发送方法示意图;
图10D是根据本发明实施例六当SRS跳频子带数目为6时的四天线SRS发送方法示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种探测参考信号的发送方法,图1是根据本发明实施例的探测参考信号的发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,终端按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;SRS在N个天线子集中的至少两个天线子集上不同时发送。
由上述步骤S102可知,将终端的天线划分为N个天线子集,而该每个天线子集中至少包括一个天线,进而按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,SRS在N个天线子集中的至少两个天线子集上不同时发送,也就是说,SRS在多个发送天线的子集上可以切换的发送,使得相同的SRS资源可以应用在不同的SRS天线上,从而解决了相关技术中无法支持在多天线尤其是两天线以上的多天线之间的SRS切换发送的问题。
在本实施例的可选实施方式中,本实施例中涉及到的预定义规则可以包括如下:
(1)在SRS的跳频功能不使能时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
(2):在SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000045
(3):在SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000046
或,
Figure PCTCN2016098830-appb-000047
或,
Figure PCTCN2016098830-appb-000048
或,
Figure PCTCN2016098830-appb-000049
或,
Figure PCTCN2016098830-appb-000050
(4):当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000051
或,
Figure PCTCN2016098830-appb-000052
或,
Figure PCTCN2016098830-appb-000053
或,
Figure PCTCN2016098830-appb-000054
或,
Figure PCTCN2016098830-appb-000055
此外,需要说明的是,预定义规则包括:在N个天线子集上发送周期SRS。以及该预定义规则包括:在N个天线子集上发送非周期SRS,其中,支持一次触发N次非周期SRS传输。其中,N次非周期SRS传输分别在特殊子帧中的N个连续的上行传输符号上发送。
而在步骤S102,按照预定义规则在N个天线子集上发送探测参考信号 之前,本实施例的方法还包括:将发送天线划分为N个天线子集。
此外,而在步骤S102,按照预定义规则在N个天线子集上发送探测参考信号之前,方法还包括:接收基站侧的信令,其中,信令用于指示SRS按照预定义规则在N个天线子集上发送。
另外,本实施例中涉及到的预定义规则还可以是:根据下行信道状态信息,选择对应最佳下行信道的天线子集发送SRS。
对于上述(1)的预定义规则可以归纳为:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引;而(2)至(3)的预定义规则,在(1)的基础上可以归纳为:在所述跳频功能使能的情况下,该预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
可选地,在本实施例的可选实施方式中,本实施例的可选为N为4,每个天线子集中有一个天线。
图2是根据本发明实施例的探测参考信号的信令配置方法的流程图,如图2所示,该方法的步骤包括:
步骤S202:基站向终端发送用于指示终端按照预定义规则在终端的N个天线子集上发送探测参考信号SRS的信令,其中,N为正整数,每个天线子集中至少包含一个天线;SRS在N个天线子集中的至少两个天线子集上不同时发送。
通过上述步骤S202可知,基站可以指示终端按照预定义规则在终端的N个天线子集上发送探测参考信号SRS的,即SRS在多个发送天线的子集上可以切换的发送,使得相同的SRS资源可以应用在不同的SRS天线上,从而解决了相关技术中无法支持在多天线尤其是两天线以上的多天线之间的SRS切换发送的问题。
在本实施例的可选实施方式中,本实施例中涉及到的预定义规则可以包括如下:
(5)在SRS的跳频功能不使能时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
(6)在SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000056
(7)在SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000057
或,
Figure PCTCN2016098830-appb-000058
或,
Figure PCTCN2016098830-appb-000059
或,
Figure PCTCN2016098830-appb-000060
或,
Figure PCTCN2016098830-appb-000061
(8)当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000062
或,
Figure PCTCN2016098830-appb-000063
或,
Figure PCTCN2016098830-appb-000064
或,
Figure PCTCN2016098830-appb-000065
或,
Figure PCTCN2016098830-appb-000066
需要说明的是上述(5)的预定义规则可以归纳为:至少根据SRS跳频功能的使能与否和传输SRS的次数确定传输SRS所在的发送天线子集索引。而基于(5)的预定义规则,对于(6)至(8)的预定义规则可以归纳为,在跳频功能使能的情况下,至少根据允许跳频的子带数目和传输SRS的次数确定传输SRS所在的发送天线子集索引。
对于本实施例中涉及到的步骤S202,基站向终端发送用于指示终端按照预定义规则在终端的N个天线子集上发送探测参考信号SRS的信令的方式,可以通过如下方式来实现:
方式一:向终端发送1比特高层信令,其中,该1比特高层信令用于向终端指示是否按照预定义规则在终端的N个天线子集上发送SRS。
方式二:向终端发送1比特高层信令,其中,该1比特高层信令用于指示重用现有协议中用于向终端指示是否开启SRS在两天线上的天线选择功能,该天线选择功能用于向终端指示是否按照预定义规则在终端的N个天线子集上发送SRS。
方式三:向终端发送2比特高层信令,其中,该2比特高层信令向终端指示是否按照预定义规则在终端的N个天线子集上发送SRS以及所采用的预定义规则。
方式四:向终端发送1比特高层信令,其中,该1比特高层信令用于向终端指示SRS在N个天线子集上发送所采用的预定义规则。
方式五:向终端发送1比特高层信令,其中,该1比特高层信令用于向终端指示是否使能非周期探测参考信号按照预定义的规则在N个天线子集上发送;同时若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在N个天线子集上发送,则重用现有的用于触发非周期 SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送;其中,有效的SRS资源指可被用于发送非周期SRS的SRS资源。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
在本实施例中还提供了一种探测参考信号的发送装置以及信令配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的探测参考信号的发送装置的结构框图,装置应用于终端侧,该装置包括:第一发送模块32,设置为按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;SRS在N个天线子集中的至少两个天线子集上不同时发送。
在本实施例的可选实施方式中,本实施例中涉及到的预定义规则可以包括如下:
(9)在SRS的跳频功能不使能时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
(10):在SRS的跳频功能使能且允许跳频的子带数目K为奇数时, 第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000067
(11):在SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000068
或,
Figure PCTCN2016098830-appb-000069
或,
Figure PCTCN2016098830-appb-000070
或,
Figure PCTCN2016098830-appb-000071
或,
Figure PCTCN2016098830-appb-000072
(12):当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000073
或,
Figure PCTCN2016098830-appb-000074
或,
Figure PCTCN2016098830-appb-000075
或,
Figure PCTCN2016098830-appb-000076
或,
Figure PCTCN2016098830-appb-000077
此外,需要说明的是,预定义规则包括:在N个天线子集上发送周期 SRS。以及该预定义规则包括:在N个天线子集上发送非周期SRS,其中,支持一次触发N次非周期SRS传输。其中,N次非周期SRS传输分别在特殊子帧中的N个连续的上行传输符号上发送。
而在按照预定义规则在N个天线子集上发送探测参考信号之前,本实施例的装置还包括:第三发送模块,设置为将发送天线划分为N个天线子集。
此外,在按照预定义规则在N个天线子集上发送探测参考信号之前,本实施例的装置还包括:接收模块,设置为接收基站侧的信令,其中,信令用于指示SRS按照预定义规则在N个天线子集上发送。
另外,本实施例中涉及到的预定义规则还可以是:根据下行信道状态信息,选择对应最佳下行信道的天线子集发送SRS。
对于上述(9)的预定义规则可以归纳为:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引;而(10)至(12)的预定义规则,在(9)的基础上可以归纳为:在所述跳频功能使能的情况下,该预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
图4是根据本发明实施例的探测参考信号的信令配置装置的结构框图,如图4所示,该装置应用于装置侧,该装置包括:第二发送模块42,设置为向终端发送用于指示终端按照预定义规则在终端的N个天线子集上发送探测参考信号SRS的信令,其中,N为正整数,每个天线子集中至少包含一个天线;SRS在N个天线子集中的至少两个天线子集上不同时发送。
在本实施例的可选实施方式中,本实施例中涉及到的预定义规则可以包括如下:
(13)在SRS的跳频功能不使能时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
(14):在SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N;或,
Figure PCTCN2016098830-appb-000078
(15):在SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000079
或,
Figure PCTCN2016098830-appb-000080
或,
Figure PCTCN2016098830-appb-000081
或,
Figure PCTCN2016098830-appb-000082
或,
Figure PCTCN2016098830-appb-000083
(16):当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000084
或,
Figure PCTCN2016098830-appb-000085
或,
Figure PCTCN2016098830-appb-000086
或,
Figure PCTCN2016098830-appb-000087
或,
Figure PCTCN2016098830-appb-000088
需要说明的是上述(13)的预定义规则可以归纳为:至少根据SRS跳频功能的使能与否和传输SRS的次数确定传输SRS所在的发送天线子集索引。而基于(13)的预定义规则,对于(14)至(16)的预定义规则可以归纳为,在跳频功能使能的情况下,至少根据允许跳频的子带数目和传输SRS的次数确定传输SRS所在的发送天线子集索引。
对于本实施例中涉及到的第二发送模块,可以通过如下单元来实现用于向终端发送用于指示终端按照预定义规则在终端的N个天线子集上发送探测参考信号SRS的信令:
第一发送单元:向终端发送1比特高层信令,其中,该1比特高层信令用于向终端指示是否按照预定义规则在终端的N个天线子集上发送SRS。
第一重用单元:设置为重用现有协议中用于向终端指示是否开启SRS在两天线上的天线选择功能,该天线选择功能用于向终端指示是否按照预定义规则在终端的N个天线子集上发送SRS。
第二发送单元:向终端发送2比特高层信令,其中,该2比特高层信令向终端指示是否按照预定义规则在终端的N个天线子集上发送SRS以及所采用的预定义规则。
第三发送单元:向终端发送1比特高层信令,其中,该1比特高层信令用于向终端指示SRS在N个天线子集上发送所采用的预定义规则。
第四发送单元:向终端发送1比特高层信令,其中,该1比特高层信令用于向终端指示是否使能非周期探测参考信号按照预定义的规则在N个天线子集上发送;第二重用单元,设置为若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在N个天线子集上发送,则重用现有的用于触发非周期SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送;其中,有效的SRS资源指可被用于发送非周期SRS的SRS资源。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于 后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合本发明的可选实施例对本发明进行举例说明;
本可选实施例提供了一种探测参考信号的发送和信令配置方法,通过采用本可选实施例的方法,可以实现探测参考信号在多个发送天线上的切换发送,使得相同的SRS资源可以应用在不同的SRS天线上,相比于多天线(天线数至少大于2)同时发送的情况,节省了SRS资源,有利于解决大规模多输入多输出***中的SRS容量不足的问题,同时也有利于TDD***中基站能够利用终端的探测参考信号获得全部的下行信道信息。
本发明实施例提出一种探测参考信号的发送和信令配置方法,该方法的步骤包括:
步骤S301:基站向终端发送信令,用于指示终端按照预定义规则发送探测参考信号;
步骤S302:终端接收基站发送的信令,并按照预定义规则在N个天线子集上发送探测参考信号。
其中,N为正整数,每个天线子集中至少包含一个天线。每个天线子集中也可以只有一个天线,这时N为大于2的整数。当每个天线子集中至少有一个天线子集包含至少两个天线时,可选地,在终端按照预定义规则在N个天线子集上发送探测参考信号之前,将终端的发送天线划分为N个子集。例如N等于且每个天线子集只有1个天线,表示终端有4个发送天线,终端将按照预定义规则在这四个天线上发送探测参考信号。
可选地,该预定义规则也可以理解为天线切换的规则或者天线选择的规则。
此外,基站也可以通过下面几种方式之一向终端指示按照预定义规则发送探测参考信号:
方式一:通过1比特高层信令向终端指示是否按照预定义规则发送探测参考信号。例如当这1比特高层信令指示为0时,表示不按照预定义规 则发送探测参考信号,当指示为1时,表示按照预定义规则发送探测参考信号。其中,这1比特高层信令可以重用现有协议中用于向终端指示是否开启两天线的天线选择发送功能的1比特高层信令,也可以是新增加的1比特高层信令。
方式二:通过2比特高层信令向终端指示是否按照预定义规则发送探测参考信号以及所采用的预定义规则。其中,这两个比特可以联合进行通知,例如表格1所示;这两个比特也可以独立进行通知;例如,其中一个比特为现有协议中用于向终端指示是否开启两天线的天线选择发送功能的1比特高层信令,当终端具有N个SRS发送天线子集(N个发送天线子集所包含的总的发送天线数大于2)时,该1比特高层信令同时向终端指示是否按照预定义规则在N个天线子集上发送探测参考信号,第二个比特只有当第一个比特指示按照预定义规则发送探测参考信号时才有效,第二个比特用于向终端指示N个发送天线子集上SRS发送所采用的预定义规则,例如当第二个比特指示为0时,表示采用预定义规则1,当第二个比特指示为1时,表示采用预定义规则2。可选地,该预定义规则可以是下文中实施例一到实施例六中的其中任意一种。
表1
Figure PCTCN2016098830-appb-000089
方式三:通过新增加1比特物理层信令向终端指示是否按照预定义规则发送探测参考信号。该方式主要用于当终端的N个天线子集上发送的探 测参考信号仅限于非周期探测参考信号的情况。该新增加的1比特物理层信令只有在非周期探测参考信号被触发的情况下才是有效的,即现有协议中用于触发非周期探测参考信号的1比特物理层信令指示为1的时候该新增加的1比特物理层信令才是有效的。可选地,当非周期探测参考信号被触发,该新增加1比特物理层信令向终端指示开启N天线子集的天线选择发送功能的同时向终端隐含指示该非周期探测参考信号需要被连续发送NK次,用于完成一次四个天线在全带宽下的信道质量信息的测量。
方式四:向所述终端发送1比特高层信令用于向所述终端指示是否使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送;同时若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送,则重用现有的用于触发非周期SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送。其中,所述有效的SRS资源指可被用于发送所述非周期SRS的SRS资源。
可选地,预定义规则包括按照下述预定义规则在终端的N个天线子集上发送的探测参考信号可以仅限于周期探测参考信号。当然,也可以是仅限于非周期探测参考信号,按照下述预定的规则在终端的N个天线子集上发送的探测参考信号仅限于非周期探测参考信号的时候,非周期探测参考信号需要支持一次触发连续N次发送,才能完成全带宽的信道质量信息的测量。优选地,所述N次非周期探测参考信号分别在TDD***特殊子帧的N个连续的上行传输符号上发送。而当仅限于周期性探测参考信号的时候,周期性探测参考信号在每NK次SRS传输中,完成一次全带宽的信道质量信息的测量。
可选地,预定义规则包括发送探测参考信号的N个天线子集分别位于TDD***特殊子帧的N个连续的上行传输符号上发送SRS。
可选地,该预定义规则包括探测参考信号在终端的N个天线子集中至少两个天线子集上不同时发送。
可选地,探测参考信号在N个天线子集上发送所采用的预定义规则包 括:
当探测参考信号跳频功能不使能的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N。
当探测参考信号跳频功能使能且允许跳频的子带数目K为奇数的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod N,或者,
Figure PCTCN2016098830-appb-000090
当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000091
或者,
Figure PCTCN2016098830-appb-000092
或者,
Figure PCTCN2016098830-appb-000093
或者,
Figure PCTCN2016098830-appb-000094
或者,
Figure PCTCN2016098830-appb-000095
当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000096
或者,
Figure PCTCN2016098830-appb-000097
或者,
Figure PCTCN2016098830-appb-000098
或者,
Figure PCTCN2016098830-appb-000099
或者,
Figure PCTCN2016098830-appb-000100
下面将通过如下实施例来说明本实施例所描述的探测参考信号在N个发送天线子集上发送所采用的预定义规则:
实施例一:
终端具有四个发送天线,终端按照预定义规则在四个天线上发送探测参考信号,具体包括:
当SRS频域跳频功能不使能情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod 4
当SRS频域跳频功能使能的情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000101
其中,
Figure PCTCN2016098830-appb-000102
Figure PCTCN2016098830-appb-000103
其中,K表示SRS频域跳频功能使能情况下允许SRS跳频的SRS子带数目,SRS跳频功能不使能情况下K默认为1,nSRS表示用户专有的SRS发送次数的计数器,nSRS为非负整数。
在方案一中,随着SRS传输次数的改变,SRS发送天线不断发生切换。当SRS跳频功能使能时,随着SRS子带的跳频,SRS发送天线也发生切换。
图5A是根据本发明实施例一当SRS跳频子带数目为2时的四天线SRS发送方法示意图,如图5A所示,K=2,即有两个跳频子带时SRS在四个发送天线上的发送规律。随着两个子带的切换,SRS的发送天线也发生切换:当第0次SRS传输(nSRS=0)时,SRS在子带0和第一天线(TX0)上发送;当第1次SRS传输(nSRS=1)时,SRS在子带1和第二天线(TX1)上发送;当第2次SRS传输(nSRS=2)时,SRS的子带跳频进入第二个跳频周期,SRS在子带0和第三天线(TX2)上发送;当第3次SRS传输(nSRS=3)时,SRS的子带跳频处于第二个跳频周期,SRS在子带1和第四天线(TX3)上发送;当第4次SRS传输(nSRS=4)时,SRS的子带跳频进入第三个跳频周期,SRS在子带0和第二天线(TX1)上发送;当第5次SRS传输(nSRS=5)时,SRS的子带跳频处于第三个跳频周期,SRS在子带1和第三天线(TX2)上发送;当第6次SRS传输(nSRS=6)时,SRS的子带跳频进入第四个跳频周期,SRS在子带0和第四天线(TX3)上发送;当第7次SRS传输(nSRS=7)时,SRS的子带跳频处于第四个跳频周期,SRS在子带1和第1天线(TX0)上发送;在之后的SRS传输中,SRS的发送规律以此类推。由此可见,在4K(这里K=2)次SRS传输中,终端在每个子带上都完成了四天线SRS的发送,基站则可以利用每个子带上从四个天线接收到的SRS信号,获得具有四个发送天线/四个接收天线时各个子带上的上行/下行信道质量信息。
图5B是根据本发明实施例一当SRS跳频子带数目为3时的四天线SRS发送方法示意图,如图5B所示,K=3,即有三个跳频子带时SRS在四个发送天线上的发送规律:随着子带的切换,SRS的发送在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)循环依次切换。
图5C是根据本发明实施例一当SRS跳频子带数目为4时的四天线SRS发送方法示意图,如图5C所示,K=4,即有四个跳频子带时SRS在四个发送天线上的发送规律:随着子带的切换,第一个SRS子带跳频周期(nSRS=0~3)中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上依次发送;在第二个SRS子带跳频周期(nSRS=4~7)中, SRS分别在第二天线(TX1)、第三天线(TX2)、第四天线(TX3)、第一天线(TX0)上发送;在第三个SRS子带跳频周期(nSRS=8~11)中,SRS分别在第三天线(TX2)、第四天线(TX3)、第一天线(TX0)、第二天线(TX1)上发送;在第四个SRS子带跳频周期(nSRS=12~15)中,SRS分别在第四天线(TX3)、第一天线(TX0)、第二天线(TX1)、第三天线(TX2)上依次发送。
图5D是根据本发明实施例一当SRS跳频子带数目为6时的四天线SRS发送方法示意图,如图5D所示,K=6,时即有六个跳频子带时SRS在四个发送天线上的发送规律:每4K次SRS传输中,在前两个子带跳频周期(nSRS=0~11)内,SRS的发送在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)循环依次切换;在后两个子带跳频周期(nSRS=12~23)内,SRS的发送在第二天线(TX1)、第三天线(TX2)、第四天线(TX3)、第一天线(TX0)循环依次切换。
其它K值情况下SRS在四个天线上的发送规律,可以利用方案一中的公式一一推算出来,鉴于篇幅,这里不再赘述。
实施例二:
终端具有四个发送天线,终端按照预定义规则在四个天线上发送探测参考信号,具体包括:
当SRS频域跳频功能不使能或者使能的情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000104
其中,K表示SRS频域跳频功能使能情况下允许SRS跳频的SRS子带数目,SRS跳频功能不使能情况下K默认为1,nSRS表示用户专有的SRS发送次数的计数器,nSRS为非负整数。
不同于方案一的每次子带切换的同时天线也进行切换,方案二中,当 SRS跳频功能使能时,一个SRS频域跳频周期内,SRS发送天线不进行切换,只有在每次进入一个新的SRS频域跳频周期时,SRS发送天线才进行切换。同方案一一样,方案二也是在4K次SRS传输中完成每个子带上四天线SRS的发送。
图6A是根据本发明实施例二当SRS跳频子带数目为2时的四天线SRS发送方法示意图,如图6A所示,K=2,即有两个跳频子带时SRS在四个发送天线上的发送规律:在第一个SRS跳频周期(nSRS=0~1)内,SRS在第一天线(TX0)上发送;在第二个SRS跳频周期(nSRS=2~3)内,SRS在第二天线(TX1)上发送;在第三个SRS跳频周期(nSRS=4~5)内,SRS在第三天线(TX2)上发送;在四个SRS跳频周期(nSRS=6~7)内,SRS在第四天线(TX3)上发送。
图6B是根据本发明实施例二当SRS跳频子带数目为3时的四天线SRS发送方法示意图,如图6B所示,K=3,即有三个跳频子带时SRS在四个发送天线上的发送规律:在第一个SRS跳频周期(nSRS=0~2)内,SRS在第一天线(TX0)上发送;在第二个SRS跳频周期(nSRS=3~5)内,SRS在第二天线(TX1)上发送;在第三个SRS跳频周期(nSRS=6~8)内,SRS在第三天线(TX2)上发送;在第四个SRS跳频周期(nSRS=9~11)内,SRS在第四天线(TX3)上发送。
图6C是根据本发明实施例二当SRS跳频子带数目为4时的四天线SRS发送方法示意图,如图6C所示,K=4,即有四个跳频子带时SRS在四个发送天线上的发送规律:在第一个SRS跳频周期(nSRS=0~3)内,SRS在第一天线(TX0)上发送;在第二个SRS跳频周期(nSRS=4~7)内,SRS在第二天线(TX1)上发送;在第三个SRS跳频周期(nSRS=8~11)内,SRS在第三天线(TX2)上发送;在第四个SRS跳频周期(nSRS=12~15)内,SRS在第四天线(TX3)上发送。
图6D是根据本发明实施例二当SRS跳频子带数目为6时的四天线SRS 发送方法示意图,如图6D所示,K=6,即有六个跳频子带时SRS在四个发送天线上的发送规律:在第一个SRS跳频周期(nSRS=0~5)内,SRS在第一天线(TX0)上发送;在第二个SRS跳频周期(nSRS=6~11)内,SRS在第二天线(TX1)上发送;在第三个SRS跳频周期(nSRS=12~17)内,SRS在第三天线(TX2)上发送;在第四个SRS跳频周期(nSRS=18~23)内,SRS在第四天线(TX3)上发送。
其它K值情况下SRS在四个天线上的发送规律,可以利用方案二中的公式一一推算出来,鉴于篇幅,这里不再赘述。
实施例三:
终端具有四个发送天线,终端按照预定义规则在四个天线上发送探测参考信号,具体包括:
当SRS频域跳频功能不使能情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod 4
当SRS频域跳频功能使能的情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000105
其中,
Figure PCTCN2016098830-appb-000106
其中,K表示SRS频域跳频功能使能情况下允许SRS跳频的SRS子带数目,SRS跳频功能不使能情况下K默认为1,nSRS表示用户专有的SRS发送次数的计数器,nSRS为非负整数。
方案三的特点在于当SRS跳频功能使能的情况下,且K是偶数时,每两次(即每一对)SRS传输切换一次SRS发送天线,对与对之间的天线切换规律与协议中现有的两天线SRS发送天线切换规律相同。方案三也是在4K次SRS传输中完成每个子带上四天线SRS的发送。
图7A是根据本发明实施例三当SRS跳频子带数目为2时的四天线SRS发送方法示意图如图7A所示,K=2,即有两个跳频子带时SRS在四个发送天线上的发送规律:在第一对SRS传输(nSRS=0~1)中,SRS在第一天线(TX0)上发送;在第二对SRS传输(nSRS=2~3)中,SRS在第二天线(TX1)上发送;在第三对SRS传输(nSRS=4~5)中,SRS在第三天线(TX2)上发送;在第四对SRS传输(nSRS=6~7)中,SRS在第四天线(TX3)上发送。
图7B是根据本发明实施例三当SRS跳频子带数目为3时的四天线SRS发送方法示意图,如图7B所示,K=3即有三个跳频子带时SRS在四个发送天线上的发送规律:当子带数为奇数时,SRS在四个发送天线上的发送规律与方案一相同,这里不再赘述。
图7C是根据本发明实施例三当SRS跳频子带数目为4时的四天线SRS发送方法示意图,如图7C所示,K=4即有四个跳频子带时SRS在四个发送天线上的发送规律:在第一对(nSRS=0~1)、第二对(nSRS=2~3)、第三对(nSRS=4~5)、第四对(nSRS=6~7)SRS传输中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上发送;在第五对(nSRS=8~9)、第六对(nSRS=10~11)、第七对(nSRS=12~13)、第八对(nSRS=14~15)SRS传输中,SRS分别在第二天线(TX1)、第三天线(TX2)、第四天线(TX3)、第一天线(TX0)上发送。
图7D是根据本发明实施例三当SRS跳频子带数目为6时的四天线SRS发送方法示意图如图7D所示,K=6,即有六个跳频子带时SRS在四个发送天线上的发送规律:在第一对(nSRS=0~1)、第二对(nSRS=2~3)、第三对(nSRS=4~5)、第四对(nSRS=6~7)SRS传输中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上发送;在第五对 (nSRS=8~9)、第六对(nSRS=10~11)、第七对(nSRS=12~13)、第八对(nSRS=14~15)SRS传输中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上发送;在第九对(nSRS=16~17)、第十对(nSRS=18~19)、第十一对(nSRS=20~21)、第十二对(nSRS=22~23)SRS传输中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上发送。
其它K值情况下SRS在四个天线上的发送规律,可以利用方案三中的公式一一推算出来,鉴于篇幅,这里不再赘述。
实施例四:
终端具有四个发送天线,终端按照预定义规则在四个天线上发送探测参考信号,具体包括:
当SRS频域跳频功能不使能情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
a(nSRS)=nSRSmod 4
当SRS频域跳频功能使能的情况下,终端在第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
Figure PCTCN2016098830-appb-000107
其中,
Figure PCTCN2016098830-appb-000108
Figure PCTCN2016098830-appb-000109
其中,K表示SRS频域跳频功能使能情况下允许SRS跳频的SRS子带 数目,SRS跳频功能不使能情况下K默认为1,nSRS表示用户专有的SRS发送次数的计数器,nSRS为非负整数。
方案三同方案一一样,其特点也是随着SRS传输次数的改变,SRS发送天线不断发生切换;当SRS跳频功能使能时,随着SRS子带的跳频,SRS发送天线也发生切换;但切换顺序略有不同,尤其是当SRS跳频功能使能且K为偶数的情况下。
图8A是根据本发明实施例四当SRS跳频子带数目为2时的四天线SRS发送方法示意图,如图8A所示,K=2即有两个跳频子带时SRS在四个发送天线上的发送规律。随着两个子带的切换,SRS的发送天线也发生切换:当第0次SRS传输(nSRS=0)时,SRS在子带0和第一天线(TX0)上发送;当第1次SRS传输(nSRS=1)时,SRS在子带1和第二天线(TX1)上发送;当第2次SRS传输(nSRS=2)时,SRS的子带跳频进入第二个跳频周期,SRS在子带0和第三天线(TX2)上发送;当第3次SRS传输(nSRS=3)时,SRS的子带跳频处于第二个跳频周期,SRS在子带1和第四天线(TX3)上发送;当第4次SRS传输(nSRS=4)时,SRS的子带跳频进入第三个跳频周期,SRS在子带0和第二天线(TX1)上发送;当第5次SRS传输(nSRS=5)时,SRS的子带跳频处于第三个跳频周期,SRS在子带1和第三天线(TX2)上发送;当第6次SRS传输(nSRS=6)时,SRS的子带跳频进入第四个跳频周期,SRS在子带0和第四天线(TX3)上发送;当第7次SRS传输(nSRS=7)时,SRS的子带跳频处于第四个跳频周期,SRS在子带1和第1天线(TX0)上发送;在之后的SRS传输中,SRS的发送规律以此类推。由此可见,在4K(这里K=2)次SRS传输中,终端在每个子带上都完成了四天线SRS的发送,基站则可以利用每个子带上从四个天线接收到的SRS信号,获得具有四个发送天线/四个接收天线时各个子带上的上行/下行信道质量信息。
图8B是根据本发明实施例四当SRS跳频子带数目为3时的四天线SRS发送方法示意图,如图8B所示,K=3,即有三个跳频子带时SRS在四个发送天线上的发送规律:随着子带的切换,SRS的发送在第一天线(TX0)、 第二天线(TX1)、第三天线(TX2)、第四天线(TX3)循环依次切换。
图8C是根据本发明实施例四当SRS跳频子带数目为4时的四天线SRS发送方法示意图,如图8C所示,K=4即有四个跳频子带时SRS在四个发送天线上的发送规律:随着子带的切换,在前四次SRS传输(nSRS=0~3)中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上依次发送;在第二个四次SRS传输(nSRS=4~7)中,SRS分别在第二天线(TX1)、第三天线(TX2)、第四天线(TX3)、第一天线(TX0)上发送;在第三个四次SRS传输(nSRS=8~11)中,SRS分别在第三天线(TX2)、第四天线(TX3)、第一天线(TX0)、第二天线(TX1)上发送;在第四个四次SRS传输(nSRS=12~15)中,SRS分别在第四天线(TX3)、第一天线(TX0)、第二天线(TX1)、第三天线(TX2)上依次发送。
图8D是根据本发明实施例四当SRS跳频子带数目为6时的四天线SRS发送方法示意图,如图8D所示,K=6时即有六个跳频子带时SRS在四个发送天线上的发送规律:随着子带的切换,在前四次SRS传输(nSRS=0~3)中,SRS分别在第一天线(TX0)、第二天线(TX1)、第三天线(TX2)、第四天线(TX3)上依次发送;在第二个四次SRS传输(nSRS=4~7)中,SRS分别在第一天线(TX0)、第二天线(TX1)、第四天线(TX3)、第一天线(TX0)上发送;在第三个四次SRS传输(nSRS=8~11)中,SRS分别在第二天线(TX1)、第三天线(TX2)、第四天线(TX3)、第一天线(TX0)上发送;在第四个四次SRS传输(nSRS=12~15)中,SRS分别在第三天线(TX2)、第四天线(TX3)、第一天线(TX0)、第二天线(TX1)上发送;在第五个四次SRS传输(nSRS=16~19)中,SRS分别在第三天线(TX2)、第四天线(TX3)、第二天线(TX1)、第三天线(TX2)上发送;在第六个四次SRS传输(nSRS=20~23)中,SRS分别在第四天线(TX3)、第一天线(TX0)、第二天线(TX1)、第三天线(TX2)上发送。
其它K值情况下SRS在四个天线上的发送规律,可以利用方案四中的公式一一推算出来,鉴于篇幅,这里不再赘述。
实施例五:
终端具有四个发送天线,终端按照预定义规则在四个天线上发送探测参考信号,具体包括:
将终端的四个SRS发送天线两两划分为两组,分别称为第一天线组和第二天线组(设组索引分别为0和1)。组内的两个天线上同时发送SRS并且通过使用不同的循环移位序列实现正交,组间天线不同时发送。后面为描述方便,我们假设第一天线组中包含的天线为第一天线(TX0)和第二天线(TX1),第二天线组中包含的天线为第三天线(TX2)和第四天线(TX3)。
当SRS频域跳频功能不使能情况下,终端在第nSRS次SRS传输所在的发送天线组的索引
Figure PCTCN2016098830-appb-000110
按照下式确定:
Figure PCTCN2016098830-appb-000111
当SRS频域跳频功能使能的情况下,终端在第nSRS次SRS传输所在的发送天线组的索引
Figure PCTCN2016098830-appb-000112
按照下式确定:
Figure PCTCN2016098830-appb-000113
其中,
Figure PCTCN2016098830-appb-000114
其中,K表示SRS频域跳频功能使能情况下允许SRS跳频的SRS子带数目,SRS跳频功能不使能情况下K默认为1,nSRS表示用户专有的SRS发送次数的计数器,nSRS为非负整数。
该方案中,随着SRS传输次数的改变,SRS发送天线组发生有规律地切换。当SRS跳频功能使能时,随着SRS子带的跳频,SRS发送天线组也发生有规律地切换。使用该方案,仅需要2K次传输,就能完成终端在四 个天线上的SRS发送。
图9A是根据本发明实施例五当SRS跳频子带数目为2时的四天线SRS发送方法示意图,如图9A所示,K=2,即有两个跳频子带时SRS在四个发送天线(两个天线组)上的发送规律。随着两个子带的切换,SRS的发送天线组也发生有规律地切换:当第0次SRS传输(nSRS=0)时,SRS在子带0和第一天线组(TX0和TX1)上发送;当第1次SRS传输(nSRS=1)时,SRS在子带1和第二天线组(TX2和TX3)上发送;当第2次SRS传输(nSRS=2)时,SRS的子带跳频进入第二个跳频周期,SRS在子带0和第二天线组(TX2和TX3)上发送;当第3次SRS传输(nSRS=3)时,SRS的子带跳频处于第二个跳频周期,SRS在子带1和第一天线组(TX0和TX1)上发送。
图9B是根据本发明实施例五当SRS跳频子带数目为3时的四天线SRS发送方法示意图,如图9B所示,K=3,即有三个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律:随着子带的切换,SRS的发送在第一天线组(TX0和TX1)、第二天线组(TX2和TX3)上循环依次切换。
图9C是根据本发明实施例五当SRS跳频子带数目为4时的四天线SRS发送方法示意图如图9C所示,K=4,即有四个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律:随着子带的切换,在第一个SRS子带跳频周期的前半个周期(nSRS=0~1)中,SRS分别在第一天线组(TX0和TX1)、第二天线组(TX2和TX3)上依次发送;在第一个SRS子带跳频周期的后半个周期(nSRS=2~3)中,SRS分别在第二天线组(TX2和TX3)、第一天线组(TX0和TX1)上依次发送;在第二个SRS子带跳频周期的前半个周期(nSRS=4~5)中,SRS分别在第一天线组(TX0和TX1)、第二天线组(TX2和TX3)上依次发送;在第二个SRS子带跳频周期的后半个周期(nSRS=6~7)中,SRS分别在第二天线组(TX2和TX3)、第一天线组(TX0和TX1)上依次发送。K=4时,用8次SRS传输就能完成4个子带上各自具有四个天线的SRS发送。
图9D是根据本发明实施例六当SRS跳频子带数目为6时的四天线SRS 发送方法示意图如图9D所示,K=6,即有六个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律:随着子带的切换,在每个SRS子带跳频周期的前半个周期(比如nSRS=0~1、nSRS=4~5、nSRS=8~9)中,SRS分别在第一天线组(TX0和TX1)、第二天线组(TX2和TX3)上依次发送;在每个SRS子带跳频周期的后半个周期(比如nSRS=2~3、nSRS=6~7、nSRS=10~11)中,SRS分别在第二天线组(TX2和TX3)、第一天线组(TX0和TX1)上依次发送。K=6时,用12次SRS传输就能完成6个子带上各自具有四个天线的SRS发送。
其它K值情况下SRS在四个天线上的发送规律,可以利用方案五中的公式一一推算出来,鉴于篇幅,这里不再赘述。
实施例六:
终端具有四个发送天线,终端按照预定义规则在四个天线上发送探测参考信号,具体包括:
将终端的四个SRS发送天线两两划分为两组,分别称为第一天线组和第二天线组(设组索引分别为0和1)。组内的两个天线上同时发送SRS并且通过使用不同的循环移位序列实现正交,组间天线不同时发送。后面为描述方便,我们假设第一天线组中包含的天线为第一天线(TX0)和第二天线(TX1),第二天线组中包含的天线为第三天线(TX2)和第四天线(TX3)。
当SRS频域跳频功能不使能或者使能的情况下,终端在第nSRS次SRS传输所在的发送天线组的索引
Figure PCTCN2016098830-appb-000115
按照下式确定:
Figure PCTCN2016098830-appb-000116
其中,K表示SRS频域跳频功能使能情况下允许SRS跳频的SRS子带数目,SRS跳频功能不使能情况下K默认为1,nSRS表示用户专有的SRS发送次数的计数器,nSRS为非负整数。该方案的特点是,每K次SRS传输,SRS发送天线才发生一次切换,当SRS子带跳频功能使能时,每一个SRS 子带跳频周期切换的同时,发生SRS发送天线的切换。
图10A是根据本发明实施例六当SRS跳频子带数目为2时的四天线SRS发送方法示意图,如图10A所示,K=2,即有两个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律。在第一个SRS跳频周期(nSRS=0~1)内,每次SRS传输时,SRS均在第一天线组(TX0和TX1)上发送;在第二个SRS跳频周期(nSRS=2~3)内,每次SRS传输,SRS均在第二天线组(TX2和TX3)上传输。
图10B是根据本发明实施例六当SRS跳频子带数目为3时的四天线SRS发送方法示意图,如图10B所示,K=3,即有三个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律。在第一个SRS跳频周期(nSRS=0~2)内,每次SRS传输时,SRS均在第一天线组(TX0和TX1)上发送;在第二个SRS跳频周期(nSRS=3~5)内,每次SRS传输,SRS均在第二天线组(TX2和TX3)上传输。
图10C是根据本发明实施例六当SRS跳频子带数目为4时的四天线SRS发送方法示意图如图10C所示,K=4即有四个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律。在第一个SRS跳频周期(nSRS=0~3)内,每次SRS传输时,SRS均在第一天线组(TX0和TX1)上发送;在第二个SRS跳频周期(nSRS=4~7)内,每次SRS传输,SRS均在第二天线组(TX2和TX3)上传输。
图10D是根据本发明实施例六当SRS跳频子带数目为6时的四天线SRS发送方法示意图,如图10D所示,K=6,即有六个跳频子带时SRS在四个发送天线(两个发送天线组)上的发送规律。在第一个SRS跳频周期(nSRS=0~5)内,每次SRS传输时,SRS均在第一天线组(TX0和TX1)上发送;在第二个SRS跳频周期(nSRS=6~11)内,每次SRS传输,SRS均在第二天线组(TX2和TX3)上传输。
其它K值情况下SRS在四个天线上的发送规律,可以利用实施例六中的公式一一推算出来,这里不再赘述。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;SRS在N个天线子集中的至少两个天线子集上不同时发送。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,采用将终端的天线划分为N个天线子集,而该每个天线子集中至少包括一个天线,进而按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,SRS在N个天线子集中的至少两个天线子集上不同时发送的方式,解决了相关技术中无法支持在多天线尤其是两天 线以上的多天线之间的SRS切换发送的问题。

Claims (52)

  1. 一种探测参考信号的发送方法,包括:
    按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
  2. 根据权利要求1所述的方法,其中,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN。
  3. 根据权利要求1所述的方法,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN;或,
    Figure PCTCN2016098830-appb-100001
  4. 根据权利要求1所述的方法,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100002
    或,
    Figure PCTCN2016098830-appb-100003
    或,
    Figure PCTCN2016098830-appb-100004
    或,
    Figure PCTCN2016098830-appb-100005
    或,
    Figure PCTCN2016098830-appb-100006
  5. 根据权利要求1所述的方法,其中,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100007
    或,
    Figure PCTCN2016098830-appb-100008
    或,
    Figure PCTCN2016098830-appb-100009
    或,
    Figure PCTCN2016098830-appb-100010
    或,
    Figure PCTCN2016098830-appb-100011
  6. 根据权利要求1所述的方法,其中,所述预定义规则包括:在所述N个天线子集上发送周期SRS。
  7. 根据权利要求1所述的方法,其中,所述预定义规则包括:在所述N个天线子集上发送非周期SRS,其中,支持一次触发N次非周期SRS传输。
  8. 根据权利要求1所述的方法,其中,所述预定义规则包括:所述发送探测参考信号的N个天线子集分别位于TDD***特殊子帧中的N个连续的上行传输符号上发送SRS。
  9. 根据权利要求1至8任一项所述的方法,其中,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述方法还包括:
    将发送天线划分为所述N个天线子集。
  10. 根据权利要求1至8任一项所述的方法,其中,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述方法还包括:
    接收基站侧的信令,其中,所述信令用于指示所述SRS按照所述预定义规则在所述N个天线子集上发送。
  11. 根据权利要求1至5中任一项所述的方法,其中,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  12. 根据权利要求11所述的方法,其中,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  13. 根据权利要求1所述的方法,其中,所述N为4,每个天线子集中有一个天线。
  14. 根据权利要求1所述的方法,其中,所述预定义规则包括:根据下行信道状态信息,选择对应最佳下行信道的天线子集发送所述SRS。
  15. 一种探测参考信号的信令配置方法,包括:
    向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
  16. 根据权利要求15所述的方法,其中,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN。
  17. 根据权利要求15所述的方法,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所 述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN;或,
    Figure PCTCN2016098830-appb-100012
  18. 根据权利要求15所述的方法,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100013
    或,
    Figure PCTCN2016098830-appb-100014
    或,
    Figure PCTCN2016098830-appb-100015
    或,
    Figure PCTCN2016098830-appb-100016
    或,
    Figure PCTCN2016098830-appb-100017
  19. 根据权利要求15所述的方法,其中,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100018
    或,
    Figure PCTCN2016098830-appb-100019
    或,
    Figure PCTCN2016098830-appb-100020
    或,
    Figure PCTCN2016098830-appb-100021
    或,
    Figure PCTCN2016098830-appb-100022
  20. 根据权利要求15至19任一项所述的方法,其中,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  21. 根据权利要求20所述的方法,其中,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  22. 根据权利要求15所述的方法,其中,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:
    向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
  23. 根据权利要求15所述的方法,其中,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:
    重用现有协议中用于向所述终端指示是否开启SRS在两天线上的天线选择功能,其中,该天线选择功能用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
  24. 根据权利要求15所述的方法,其中,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:
    向所述终端发送2比特高层信令,其中,该2比特高层信令向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS以及所采用的预定义规则。
  25. 根据权利要求15所述的方法,其中,向终端发送用于指示所述 终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:
    向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示SRS在所述N个天线子集上发送所采用的预定义规则。
  26. 根据权利要求15所述的方法,其中,向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令包括:
    向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送;
    若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送,则重用现有的用于触发非周期SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送;
    其中,所述有效的SRS资源指可被用于发送所述非周期SRS的SRS资源。
  27. 一种探测参考信号的发送装置,包括:
    第一发送模块,设置为按照预定义规则在N个天线子集上发送探测参考信号SRS,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
  28. 根据权利要求27所述的装置,其中,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN。
  29. 根据权利要求27所述的装置,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN;或,
    Figure PCTCN2016098830-appb-100023
  30. 根据权利要求27所述的装置,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100024
    或,
    Figure PCTCN2016098830-appb-100025
    或,
    Figure PCTCN2016098830-appb-100026
    或,
    Figure PCTCN2016098830-appb-100027
    或,
    Figure PCTCN2016098830-appb-100028
  31. 根据权利要求27所述的装置,其中,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100029
    或,
    Figure PCTCN2016098830-appb-100030
    或,
    Figure PCTCN2016098830-appb-100031
    或,
    Figure PCTCN2016098830-appb-100032
    或,
    Figure PCTCN2016098830-appb-100033
  32. 根据权利要求27所述的装置,其中,所述预定义规则包括:在所述N个天线子集上发送周期SRS。
  33. 根据权利要求27所述的装置,其中,所述预定义规则包括:在所述N个天线子集上发送非周期SRS,其中,支持一次触发N次非周期SRS传输。
  34. 根据权利要求33所述的装置,其中,所述N次非周期SRS传输分别在特殊子帧中的N个连续的上行传输符号上发送。
  35. 根据权利要求27至34任一项所述的装置,其中,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述装置还包括:
    划分模块,设置为将发送天线划分为所述N个天线子集。
  36. 根据权利要求27至34任一项所述的装置,其中,在按照预定义规则在N个天线子集上发送探测参考信号之前,所述装置还包括:
    接收模块,设置为接收基站侧的信令,其中,所述信令用于指示所述SRS按照所述预定义规则在所述N个天线子集上发送。
  37. 根据权利要求27至31中任一项所述的装置,其中,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  38. 根据权利要求37所述的装置,其中,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  39. 根据权利要求27所述的装置,其中,所述N为4,每个天线子集中有一个天线。
  40. 根据权利要求27所述的装置,其中,所述预定义规则包括:根据下行信道状态信息,选择对应最佳下行信道的天线子集发送所述SRS。
  41. 一种探测参考信号的信令配置装置,包括:
    第二发送模块,设置为向终端发送用于指示所述终端按照预定义规则在所述终端的N个天线子集上发送探测参考信号SRS的信令,其中,N为正整数,每个天线子集中至少包含一个天线;所述SRS在所述N个天线子集中的至少两个天线子集上不同时发送。
  42. 根据权利要求41所述的装置,其中,所述预定义规则包括:在所述SRS的跳频功能不使能时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN。
  43. 根据权利要求41所述的装置,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为奇数时,第nSRS次所述SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    a(nSRS)=nSRSmodN;或,
    Figure PCTCN2016098830-appb-100034
  44. 根据权利要求41所述的装置,其中,所述预定义规则包括:在所述SRS的跳频功能使能且允许跳频的子带数目K为偶数且K为4的整数倍时,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100035
    或,
    Figure PCTCN2016098830-appb-100036
    或,
    Figure PCTCN2016098830-appb-100037
    或,
    Figure PCTCN2016098830-appb-100038
    或,
    Figure PCTCN2016098830-appb-100039
  45. 根据权利要求41所述的装置,其中,所述预定义规则包括:当探测参考信号跳频功能使能且允许跳频的子带数目K为偶数且K为4的非整数倍的情况下,第nSRS次SRS传输所在的发送天线子集索引a(nSRS)按照下式确定:
    Figure PCTCN2016098830-appb-100040
    或,
    Figure PCTCN2016098830-appb-100041
    或,
    Figure PCTCN2016098830-appb-100042
    或,
    Figure PCTCN2016098830-appb-100043
    或,
    Figure PCTCN2016098830-appb-100044
  46. 根据权利要求41至45任一项所述的装置,其中,所述预定义规则包括:至少根据所述SRS跳频功能的使能与否和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  47. 根据权利要求46所述的装置,其中,在所述跳频功能使能的情况下,所述预定义规则包括:至少根据允许跳频的子带数目和传输所述SRS的次数确定传输所述SRS所在的发送天线子集索引。
  48. 根据权利要求41所述的装置,其中,所述第二发送模块还包括:
    第一发送单元,设置为向所述终端发送1比特高层信令,其中,该1 比特高层信令用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
  49. 根据权利要求41所述的装置,其中,所述第二发送模块还包括:
    第一重用单元,设置为重用现有协议中用于向所述终端指示是否开启SRS在两天线上的天线选择功能,其中,该天线选择功能用于向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS。
  50. 根据权利要求41所述的装置,其中,所述第二发送模块还包括:
    第二发送单元,设置为向所述终端发送2比特高层信令,其中,该2比特高层信令向所述终端指示是否按照所述预定义规则在终端的N个天线子集上发送SRS以及所采用的预定义规则。
  51. 根据权利要求41所述的装置,其中,所述第二发送模块还包括:
    第三发送单元,设置为向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示SRS在所述N个天线子集上发送所采用的预定义规则。
  52. 根据权利要求41所述的装置,其中,所述第二发送模块还包括:
    第四发送单元,设置为向所述终端发送1比特高层信令,其中,该1比特高层信令用于向所述终端指示是否使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送;
    第二重用单元,设置为若该1比特高层信令指示终端使能非周期探测参考信号按照预定义的规则在所述N个天线子集上发送,则重用现有的用于触发非周期SRS发送的1比特物理层信令用于触发非周期SRS在有效的SRS资源上进行连续的N次发送;
    其中,所述有效的SRS资源指可被用于发送所述非周期SRS的SRS 资源。
PCT/CN2016/098830 2015-09-25 2016-09-13 探测参考信号的发送方法及装置、信令配置方法及装置 WO2017050155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510623239.9A CN106559277A (zh) 2015-09-25 2015-09-25 探测参考信号的发送方法及装置、信令配置方法及装置
CN201510623239.9 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017050155A1 true WO2017050155A1 (zh) 2017-03-30

Family

ID=58385572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098830 WO2017050155A1 (zh) 2015-09-25 2016-09-13 探测参考信号的发送方法及装置、信令配置方法及装置

Country Status (2)

Country Link
CN (1) CN106559277A (zh)
WO (1) WO2017050155A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096277A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 用于多载波通信的载波切换方法、装置和***
CN111786752A (zh) * 2019-04-03 2020-10-16 华为技术有限公司 Csi测量方法及装置
WO2021035389A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Dynamic modification of sounding procedure configuration
CN113395736A (zh) * 2020-03-12 2021-09-14 ***通信有限公司研究院 信息处理方法、装置、相关设备及存储介质

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495879B (zh) * 2017-09-11 2020-09-25 电信科学技术研究院 一种资源配置方法、基站和终端
CN108599780A (zh) * 2018-03-16 2018-09-28 广东欧珀移动通信有限公司 多路选择开关和无线通信设备
CN108599778B (zh) * 2018-03-16 2020-06-23 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108199725A (zh) 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108494461B (zh) * 2018-03-16 2020-06-16 Oppo广东移动通信有限公司 无线通信设备
CN108512568A (zh) * 2018-03-16 2018-09-07 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108494413B (zh) * 2018-03-16 2020-03-17 Oppo广东移动通信有限公司 具有多路选择开关的电子设备
CN108512556B (zh) 2018-03-16 2020-06-16 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108512567B (zh) * 2018-03-16 2020-06-23 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108199727A (zh) 2018-03-16 2018-06-22 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN110278007B (zh) 2018-03-16 2020-10-20 Oppo广东移动通信有限公司 多路选择开关及相关产品
CN108390693A (zh) * 2018-03-16 2018-08-10 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108199728B (zh) * 2018-03-16 2020-05-19 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108462499A (zh) * 2018-03-16 2018-08-28 广东欧珀移动通信有限公司 多路选择开关及相关产品
CN108199729B (zh) 2018-03-16 2020-09-04 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108462506B (zh) 2018-03-16 2020-06-23 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108462498B (zh) 2018-03-16 2020-05-05 Oppo广东移动通信有限公司 多路选择开关、射频***和无线通信设备
CN108199730B (zh) 2018-03-16 2020-11-06 Oppo广东移动通信有限公司 多路选择开关、射频***以及无线通信设备
CN108599779B (zh) 2018-03-16 2020-03-10 Oppo广东移动通信有限公司 具有多路选择开关的无线通信设备
JP7136916B2 (ja) * 2018-04-04 2022-09-13 華為技術有限公司 サウンディング基準信号伝送方法、端末デバイス、およびコンピュータ読み取り可能な記憶媒体
CN112262588B (zh) * 2018-06-14 2022-05-06 华为技术有限公司 信道状态信息传输方法、相关装置及通信***
CN108964677B (zh) * 2018-07-23 2020-12-08 Oppo广东移动通信有限公司 射频***、天线切换控制方法及相关产品
CN108988903B (zh) 2018-07-23 2020-09-01 Oppo广东移动通信有限公司 射频***及电子设备
CN111262679A (zh) * 2020-01-17 2020-06-09 展讯通信(上海)有限公司 Srs资源的配置方法、***、设备、介质及基站
CN112835645B (zh) * 2021-02-05 2022-09-30 杭州迪普科技股份有限公司 一种规则配置的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098084A (zh) * 2009-12-15 2011-06-15 上海贝尔股份有限公司 发送和接收信道探测参考信号的方法及装置
CN102404029A (zh) * 2010-09-13 2012-04-04 电信科学技术研究院 周期探测参考信号的传输指示及传输方法、设备
US20140016620A1 (en) * 2012-07-13 2014-01-16 Samsung Electronics Co., Ltd Methods and apparatus for transmission of uplink sounding reference signals in a communication system with large number of antennas
CN103905104A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站
CN104639223A (zh) * 2009-01-13 2015-05-20 Lg电子株式会社 在多天线***中发送探测参考信号的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223167B (zh) * 2010-04-16 2015-11-25 华为技术有限公司 多天线***中的探测参考信号发送方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639223A (zh) * 2009-01-13 2015-05-20 Lg电子株式会社 在多天线***中发送探测参考信号的方法和装置
CN102098084A (zh) * 2009-12-15 2011-06-15 上海贝尔股份有限公司 发送和接收信道探测参考信号的方法及装置
CN102404029A (zh) * 2010-09-13 2012-04-04 电信科学技术研究院 周期探测参考信号的传输指示及传输方法、设备
US20140016620A1 (en) * 2012-07-13 2014-01-16 Samsung Electronics Co., Ltd Methods and apparatus for transmission of uplink sounding reference signals in a communication system with large number of antennas
CN103905104A (zh) * 2012-12-28 2014-07-02 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019096277A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 用于多载波通信的载波切换方法、装置和***
US11540278B2 (en) 2017-11-17 2022-12-27 Huawei Technologies Co., Ltd. Carrier switching method, apparatus, and system for multi-carrier communication
US11902953B2 (en) 2017-11-17 2024-02-13 Huawei Technologies Co., Ltd. Carrier switching method, apparatus, and system for multi-carrier communication
CN111786752A (zh) * 2019-04-03 2020-10-16 华为技术有限公司 Csi测量方法及装置
EP3937411A4 (en) * 2019-04-03 2022-05-18 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR MEASURING CSI
CN111786752B (zh) * 2019-04-03 2023-01-13 华为技术有限公司 Csi测量方法及装置
US12016048B2 (en) 2019-04-03 2024-06-18 Huawei Technologies Co., Ltd. CSI measurement method and apparatus
WO2021035389A1 (en) * 2019-08-23 2021-03-04 Qualcomm Incorporated Dynamic modification of sounding procedure configuration
CN113395736A (zh) * 2020-03-12 2021-09-14 ***通信有限公司研究院 信息处理方法、装置、相关设备及存储介质
CN113395736B (zh) * 2020-03-12 2022-11-08 ***通信有限公司研究院 信息处理方法、装置、相关设备及存储介质

Also Published As

Publication number Publication date
CN106559277A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2017050155A1 (zh) 探测参考信号的发送方法及装置、信令配置方法及装置
KR102301559B1 (ko) 정보 송신 방법 및 장치
WO2017076162A1 (zh) 测量参考信号srs处理方法和装置
CN111713037B (zh) 在具有至少四个天线的被调度实体中的探测参考信号天线切换
CN111213417B (zh) 增强的探测参考信号传输
RU2648258C1 (ru) Способ и устройство выделения ресурсов
WO2021208779A1 (zh) Srs的传输方法、装置、***、存储介质及电子装置
US20190273547A1 (en) Method and apparatus for channel state information reference signal (csi-rs)
RU2735548C1 (ru) Способ передачи сигналов, терминал и сетевое устройство
KR102356203B1 (ko) 자원 지시 방법, 단말 장치, 및 네트워크 장치
JP2012199932A5 (zh)
CN106922207A (zh) 基于探测参考信号的下行信道估计方法、装置以及通信***
WO2019137098A1 (zh) 一种参考信号的接收和发送方法、设备及计算机可读存储介质
JP6971321B2 (ja) 送信方法、ネットワークデバイス、及び端末デバイス
WO2011150742A1 (zh) 非周期srs的传输方法和设备
CN102083219A (zh) 非周期srs的传输方法和设备
CN110581725A (zh) 用于波束训练的方法和通信装置
JP7059294B2 (ja) 通信方法、ネットワークデバイス、および端末デバイス
CN105763288B (zh) 基于编码叠加的多用户编码方式的配置和确定方法、设备
US10230445B2 (en) Data transmission method, data reception method, data transmission device and data reception device
WO2019095785A1 (zh) 通信方法、***及存储介质和处理器
EP4209091A1 (en) Apparatus, system, and method of advanced wireless communication
CN110622459A (zh) 信道状态信息参考信号(csi-rs)的方法和设备
RU2747111C9 (ru) Пользовательское устройство и базовая станция
EP4266789A1 (en) Method for configuring srs transmission resource, and terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848037

Country of ref document: EP

Kind code of ref document: A1