WO2017050051A1 - 一种电动汽车充电电缆及其制备方法 - Google Patents

一种电动汽车充电电缆及其制备方法 Download PDF

Info

Publication number
WO2017050051A1
WO2017050051A1 PCT/CN2016/094603 CN2016094603W WO2017050051A1 WO 2017050051 A1 WO2017050051 A1 WO 2017050051A1 CN 2016094603 W CN2016094603 W CN 2016094603W WO 2017050051 A1 WO2017050051 A1 WO 2017050051A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging cable
electric vehicle
line
wire
copper
Prior art date
Application number
PCT/CN2016/094603
Other languages
English (en)
French (fr)
Inventor
黄冬莲
张柏宇
赵玲艳
刘红亮
Original Assignee
深圳市联嘉祥科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市联嘉祥科技股份有限公司 filed Critical 深圳市联嘉祥科技股份有限公司
Publication of WO2017050051A1 publication Critical patent/WO2017050051A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • the present invention relates to the field of power cable technologies, and in particular, to an electric vehicle quick charging cable that is resistant to twisting, crushing, and tensile, and a method for preparing the same.
  • an electric vehicle charging cable and a preparation method thereof are provided, which can not only realize the rapid realization of the electric vehicle. It is charged and has the characteristics of resistance to twisting, crushing resistance and high tensile strength.
  • the present invention provides an electric vehicle charging cable, which includes, in order from the inside to the outside, a cable core, a filling material, a wrapping tape, a ribbon-shaped honeycomb material, and an outer sheath; [0007]
  • the cable core includes a power supply line for transmitting a power supply charging current, a ground line for providing ground protection, an auxiliary power line for auxiliary charging at a low voltage, and a signal for transmitting a charging state signal.
  • the power supply line, the ground line, the auxiliary power line, and the signal transmission control line respectively comprise a copper conductor and an insulating layer covering the outside of the copper conductor;
  • the signal transmission control line further includes: a nylon wire rope filled on the corresponding insulating layer, a sequentially wound aluminum-plastic composite tape layer, and a tinned copper wire braid layer wrapped on the aluminum-plastic composite tape layer, And an inner sheath that is squeezed onto the braid.
  • the copper conductor used in the charging cable is oxygen-free copper or single crystal copper subjected to pulse current annealing, and the diameter of the monofilament of the oxygen-free copper or single crystal copper is less than 0.15 mm.
  • the elongation of the monofilament is greater than 20 ⁇ 3 ⁇ 4.
  • the thickness of the insulating layer in the charging cable is 0.5 ⁇ 1.8mm, and the thickness of the inner sheath is 0.5.
  • the thickness of the outer sheath is 2.2 ⁇ 2.4mm.
  • the insulating layer in the charging cable is made of a thermoplastic TPEE composite material.
  • the inner sheath and the outer sheath are both made of a thermoplastic polyether polyurethane TPU composite material.
  • the ribbon-shaped honeycomb material is made of a ribbon-shaped honeycomb polyethylene or a ribbon-shaped honeycomb rubber, has a thickness of 4 to 8 mm, a width of 5 to 10 cm, and is wound around the wrapping tape, and Contains an air layer to cushion the pressure from the outside.
  • the present invention also provides a method for preparing an electric vehicle charging cable, comprising the following steps: [0016] Sl, by drawing copper conductor material, pulse current annealing, stranding treatment, obtaining multiple roots a copper conductor; [0017] S2, an insulating layer is coated on each of the copper conductors by using an extrusion die to obtain at least two first insulated wires, at least one second insulated wire, and at least one third insulation a wire and at least two fourth insulated wires; wherein the first insulated wire is a power source wire, the second insulated wire is a ground wire, the third insulated wire is an auxiliary power wire, and the fourth insulated wire Used to form a signal transmission control line;
  • the electric vehicle charging cable includes, in order from the inside to the outside, a cable inner core, a filling material, a wrapping tape, a ribbon-shaped honeycomb material and an outer sheath;
  • the cable inner core includes a power supply line for transmitting a power source charging current, a ground line for providing ground protection, an auxiliary power line for auxiliary charging at a low voltage, and a signal transmission control line for transmitting a state of charge signal;
  • the grounding wire, the auxiliary power supply line and the signal transmission control line respectively comprise a copper conductor and an insulating layer covering the outside of the copper conductor;
  • the signal transmission control line further comprises: a nylon wire rope filled on the corresponding insulating layer a successively wound aluminum-plastic composite tape layer, a tinned copper wire braid wrapped on the aluminum-plastic composite tape layer, and an inner sheath extruded on the braid.
  • the conductor is made of oxygen-free copper or single crystal copper with a monofilament diameter of less than 0.15 mm and a filament elongation of more than 20%. The diameter of the monofilament is small and the elongation is high.
  • the current carrying capacity per unit cross-sectional area Large, to meet the requirements of fast charging, the same number of copper wire, can effectively distribute the external force of the cable, so that the conductor of the invention has strong electrical conductivity, no hydrogen brittle phenomenon is not easy to break, and has strong resistance to bending.
  • the inner sheath and the outer sheath are made of thermoplastic polyether polyurethane TPU composite material, which is resistant to oil, distortion, elastic recovery and long service life of the cable.
  • a ribbon-like honeycomb material (such as a ribbon-like honeycomb polyethylene material or a ribbon-like honeycomb rubber material) is wound around the tape to increase the air layer, buffer pressure, and improve the cable's resistance to rolling.
  • FIG. 1 is a schematic cross-sectional view of an electric vehicle charging cable according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a ribbon-shaped honeycomb material in an electric vehicle charging cable according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method for preparing an electric vehicle charging cable according to an embodiment of the present invention.
  • the embodiment of the present invention solves the technical problem that the charging speed of the electric vehicle charging cable in the prior art is not fast, and is easily damaged after being frequently dragged, by providing an electric vehicle charging cable, which can not only realize the electric vehicle. It is fast charging and has the characteristics of resistance to twisting, crushing and tensile strength.
  • Embodiments of the present invention provide an electric vehicle charging cable, which includes, in order from the inside to the outside, a cable core, a filling material, a wrapping tape, a ribbon-shaped honeycomb material, and an outer sheath; a power supply line for transmitting a power source charging current, a ground line for providing ground protection, an auxiliary power line for auxiliary charging at a low voltage, and a signal transmission control line for transmitting a charging state signal;
  • the ground line, the auxiliary power line, and the signal transmission control line respectively include a copper conductor and an insulating layer covering the outside of the copper conductor;
  • the signal transmission control line further includes: a nylon filled on the corresponding insulating layer a wire rope, a layer of successively wound aluminum-plastic composite tape, a tinned copper wire braid wrapped on the aluminum-plastic composite tape layer, and an inner sheath extruded on the braid.
  • the cable inner core of the charging cable has a large current carrying capacity, meets the requirement of fast charging, and has a large number of the same copper wire, and can effectively and uniformly disperse the external force of the cable, so that the conductor of the present invention is It has strong electrical conductivity, no hydrogen brittleness and is not easy to break. It has strong bending resistance and will not break after more than millions of round-trip bending movements.
  • the ribbon honeycomb material is wrapped around the tape, which increases The air layer, buffer pressure, improves the cable's resistance to rolling.
  • the utility model effectively solves the technical problem that the charging speed of the electric vehicle charging cable in the prior art is not fast, and is easily damaged after being frequently dragged.
  • FIG. 1 a schematic cross-sectional view of a twist-resistant, crush-resistant and tensile-resistant electric vehicle quick charging cable provided by the present invention is shown.
  • Figure 1 shows the electric vehicle quick charging cable of the present invention, from the inside to the outside, including: a cable inner core 1, a filling material 2, a wrapping tape 3, a strip-shaped honeycomb material 4 and an outer sheath 5;
  • the cable core 1 includes: a power supply line 11 for transmitting a power supply charging current, a ground line 12 for providing grounding protection, an auxiliary power supply line 13 for auxiliary charging at a low voltage, and a transmission charging state.
  • the signal transmission control line 14 ; wherein, the power supply line 11, the ground line 12, the auxiliary power line 13 and the signal transmission control line 14 respectively comprise a copper conductor and an insulating layer covering the outside of the copper conductor.
  • the power supply line 11 is composed of a first copper conductor 111 and a first insulating layer 112 covering the outside of the first copper conductor 111.
  • the grounding wire 12 is covered by the second copper conductor 121 and wrapped on the outside of the second copper conductor 121.
  • the second insulating layer 122 is formed.
  • the auxiliary power line 13 is composed of a third copper conductor 131 and a third insulating layer 132 covering the outside of the third copper conductor 131.
  • the signal transmission control line 14 includes a fourth copper conductor 141 and a cladding.
  • the first, second, third, and fourth copper conductors (111, 121, 131, 141) may be the same material, such as oxygen-free copper or single crystal copper; first, second, third, and fourth insulating layers (112, 122) , 132, 142) Can be made of the same material, such as thermoplastic TPEE composite.
  • the method further includes: a nylon wire 143 filled on the corresponding insulating layer (ie, the fourth insulating layer 142), a sequentially wound aluminum-plastic composite tape layer 144, and a tinned copper wire woven layer 145 wrapped on the aluminum-plastic composite tape layer 144. And an inner sheath 146 extruded onto the braid 145; wherein the inner sheath 146 is made of a thermoplastic polyether polyurethane TP U composite.
  • the filling material 2 may be a high-strength PP rope for filling a wire group (ie, the cable core 1) composed of the power source line 1, the grounding line 2, the auxiliary power line 3, and the signal transmission control line 4;
  • the bag 3 is wrapped around the cable core 1 with high strength PP rope filling; please refer to FIG. 1 and FIG. 2, the band-shaped honeycomb material 4 can be a band-shaped honeycomb having a thickness of 4 to 8 mm and a width of 5 to 10 cm.
  • a polyethylene material or a ribbon-shaped honeycomb rubber material is successively wound around the outer side of the wrapping tape 3; the outer sheath 5 is also made of a thermoplastic polyether polyurethane TPU composite material.
  • the copper conductor (including the first copper conductor 111, the second copper conductor 121, the third copper conductor 131, and the fourth copper conductor 141) used in the charging cable is subjected to pulse current annealing treatment.
  • Oxygen-free copper or single crystal copper the oxygen-free copper or single crystal copper has a small monofilament diameter (specifically less than 0.15 mm), and the monofilament has a high elongation (specifically more than 20%); wherein, copper The tow is twisted to obtain a copper conductor.
  • the conductor material is subjected to pulse current annealing treatment, and the current carrying capacity per unit cross-sectional area is large, which can meet the requirements of fast charging.
  • the same number of copper wires can effectively disperse the external force of the cable, so that the conductor of the invention has strong electrical conductivity, is not easily broken without hydrogen embrittlement, and has strong bending resistance, after exceeding millions of times. It will not break after round-trip bending.
  • each of the signal transmission control lines 14 includes two insulated wires formed by the fourth copper conductor 141 covering the fourth insulating layer 142.
  • the two insulated wires are twisted, and a plurality of (for example, three) nylon wires 143 are filled on both sides of the two insulated wires of the twisted pair, and are wound around the twisted insulated wire filled with the nylon wire 143.
  • the aluminum-plastic composite tape layer 144 is wrapped with a tinned copper wire braid 145 on the aluminum-plastic composite tape layer 144, and the inner sheath 146 is extruded on the braid layer 145 to obtain a signal transmission control line 14.
  • the two insulated wires in the signal transmission control line 14 are twisted to reduce the loop area of the disturbed circuit, reduce the capacitive coupling and mutual inductance coupling between the wires, and the braid layer 145 and the aluminum-plastic composite strip layer 144 are double-shielded to suppress signal transmission.
  • the common mode radiation of the control line is the common mode radiation of the control line.
  • the inner sheath 146 and the outer sheath 5 are all made of a thermoplastic polyether polyurethane TPU composite material, which has good elasticity, strong restoring force and high tensile strength.
  • the thickness of the insulating layer (including the first insulating layer 112, the second insulating layer 122, the third insulating layer 132, and the fourth insulating layer 142) in the charging cable is 0.5 to 1.8 mm.
  • the inner sheath 146 has a thickness of 0.5 to 0.8 mm, and the outer sheath 5 has a thickness of 2.2 to 2.4 mm. The electrical performance of the cable during fast charging is guaranteed.
  • the ribbon-shaped honeycomb material 4 is made of ribbon-shaped honeycomb polyethylene or ribbon-shaped honeycomb rubber, and is wound around the wrapping tape 3, and the inner air layer buffers the pressure brought by the outside. Improve the anti-rolling ability of the cable.
  • an embodiment of the present invention further provides a method for preparing an electric vehicle charging cable, including the following steps:
  • Sl by drawing copper conductor material, pulse current annealing, stranding treatment, obtaining a plurality of copper conductors; Wherein the copper conductor material is processed through the pulse current annealing single crystal copper or oxygen-free copper, the oxygen-free copper or a copper filament diameter is smaller than the monocrystalline 0 .l 5mm, monofilament elongation greater than 20%; copper The stranded strands are stranded to obtain a copper conductor.
  • the conductor material is subjected to pulse current annealing treatment, and the current carrying capacity per unit cross-sectional area is large, which can meet the requirements of fast charging.
  • the same number of copper wires can effectively disperse the external force of the cable, so that the conductor of the invention has strong electrical conductivity, is not easily broken without hydrogen embrittlement, and has strong bending resistance, after exceeding millions of times. It will not break after round-trip bending.
  • an insulating layer is coated on each of the copper conductors by using an extrusion die to obtain at least two first insulated wires, at least one second insulated wire, at least one third insulated wire, and at least Two fourth insulated wires; wherein the first insulated wire is a power source wire 11 , the second insulated wire is a ground wire 12 , the third insulated wire is an auxiliary power wire 13 , and the fourth insulated wire Used to form a signal transmission control line 14;
  • S4 the power power line 11, the ground line 12, the auxiliary power line 13 and the signal transmission control line 14 form a line group, and the line group is filled with a high-strength PP rope ( That is, the filling material 2), is wound around the wrapping tape 3, and wraps the strip-shaped honeycomb material 4 outside the wrapping tape 3;
  • a high-strength PP rope That is, the filling material 2
  • the above charging cable preparation method is used to prepare the above charging cable, and therefore, the method is identical to one or more embodiments of the above charging cable, and will not be further described herein.
  • the electric vehicle charging cable includes:
  • Two power supply lines 11 having a cross-sectional area of 120 mm 2 have a monofilament diameter of 0.15 mm and a bare copper wire stranded, and the first insulating layer 112 is a thermoplastic TPEE composite material, and the outer diameter of the core wire is 18.10 mm;
  • Two auxiliary power lines 13 having a cross-sectional area of 6 mm 2 having a monofilament diameter of 0.15 mm, stranded bare copper wires, a third insulating layer 132 being a thermoplastic TPEE composite material, and an outer diameter of the core wires of 5.39 mm;
  • Two signal transmission control lines 14 having an outer diameter of 4.10 mm, each of the signal transmission control lines 14 includes two insulated wires (ie, the fourth insulated wires); each of the insulated wires has a cross-sectional area of 1 mm 2
  • the diameter of the monofilament is 0.15 mm
  • the bare copper wire is stranded
  • the fourth insulating layer 142 is a thermoplastic TPEE composite material
  • the outer diameter of the core wire is 2.50 mm; the two insulated wires are twisted, and two of the two insulated wires are twisted.
  • Three nylon ropes 143 are added to the sides for filling, and the aluminum-plastic composite tape layer 1 44 is wound outside the twisted insulated wire filled with the nylon wire 143, and the tin-plated copper wire braid is wrapped on the aluminum-plastic composite tape layer 144.
  • the braid layer 145 is obtained by braiding a copper wire having a diameter of 0.10 mm, and the inner sheath 146 is compounded by a thermoplastic polyether polyurethane TPU.
  • the inner sheath 146 has a thickness of 0.6 mm;
  • two power supply lines 11, a grounding line 12, two auxiliary power lines 13 and two signal transmission control lines 14 are arranged according to the structure of FIG. 1 to form a line group, and are sequentially filled with a high-density PP rope ( That is, the filling material 2) is wound around the wrapping tape 3, and the outer side is wound with the ribbon-shaped honeycomb material 4, and the outer protective layer 5 of the thermoplastic polyether polyurethane TPU composite material is extruded, thereby finally obtaining a distortion resistance, crushing resistance and tensile strength.
  • Electric vehicle quick charging cable is provided.
  • the electric vehicle quick charging cable and the preparation method thereof for implementing the electromagnetic radiation resistant of the present invention have the following beneficial effects:
  • the conductor adopts a copper wire with a small monofilament diameter and a high elongation. After a pulse annealing process, the current carrying capacity is large, which satisfies the requirements of fast charging, and the number of the same copper wire is large, and the cable can be effectively and uniformly dispersed.
  • the external force makes the conductor of the invention have strong electrical conductivity, is not easy to break without hydrogen embrittlement, has strong bending resistance, and does not break after more than millions of round-trip bending movements;
  • the inner sheath 146 and the outer sheath 5 are made of a thermoplastic polyether polyurethane TPU composite material, which is resistant to oil, distortion, elastic recovery, and has a long service life of the cable;
  • the ribbon-shaped honeycomb material (such as ribbon-shaped honeycomb polyethylene material or ribbon-shaped honeycomb rubber material) is wrapped around the tape, the air layer is added, the buffer pressure is increased, and the cable crushing resistance is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)

Abstract

一种电动汽车充电电缆及其制备方法,该充电电缆从内到外依次包括电缆内芯(1)、填充材料(2)、绕包带(3)、带状蜂窝状材料(4)和外护套(5);电缆内芯(1)包括动力电源线(11)、接地线(12)、信号传输控制线(14)和辅助电源线(13),其分别包括铜导体(111、121、131、141)和包覆于铜导体(111、121、131、141)外侧的绝缘层(112、122、132、142);信号传输控制线(14)还包括:填充于对应绝缘层(142)上的尼龙丝绳(143),相继缠绕的铝塑复合带层(144),包裹于铝塑复合带层(144)上的编织层(145),及挤包于编织层(145)上的内护套(146)。该充电电缆解决了目前电动汽车充电电缆充电速度不快,以及被频繁拖拽后容易损坏的技术问题,不仅能够实现对电动汽车快速充电,而且具有耐扭曲、耐碾压及抗拉强度高的特性。

Description

一种电动汽车充电电缆及其制备方法
技术领域
[0001] 本发明涉及电力电缆技术领域, 尤其涉及一种耐扭曲、 耐碾压、 抗拉的电动汽 车快速充电电缆及其制备方法。
背景技术
[0002] 随着社会的发展, 全球能源危机不断加剧、 石油资源日趋枯竭、 大气污染和全 球气温变暖日益严重, 而汽车作为人们出行不可或缺的交通工具, 通常依靠烧 油驱动, 会加剧能源和环境危机。 对此, 汽车产业推出了新能源电动汽车, 可 避免或减少烧油, 有利于促进环境保护和缓解传统能源的短缺危机, 具有广阔 的市场发展前景。 电动汽车充电电缆作为电动汽车不可缺少的充电配件, 同样 具有十分广阔的市场发展前景。
技术问题
[0003] 一方面, 随着人们生活节奏的加快, 要求电动汽车充电电缆具有快速充电的性 育^ 另一方面, 随着新能源电动汽车 (包括环保节能电动汽车和混合电动汽车 ) 应用越来越广泛, 对充电站用充电电缆的使用也越来越多, 在为众多电动汽 车充电吋, 充电电缆会被频繁的拖拽, 从而容易造成其损坏, 影响电缆的使用 寿命。
[0004] 可见, 现有技术中存在电动汽车充电电缆充电速度不快, 以及被频繁拖拽后容 易损坏的技术问题。
问题的解决方案
技术解决方案
[0005] 针对现有技术中存在的电动汽车充电电缆充电速度不快, 以及被频繁拖拽后容 易损坏的技术问题, 提供了一种电动汽车充电电缆及其制备方法, 不仅能够实 现对电动汽车快速充电, 而且具有耐扭曲、 耐碾压及抗拉强度高的特性。
[0006] 一方面, 本发明提供了一种电动汽车充电电缆, 从内到外依次包括: 电缆内芯 、 填充材料、 绕包带、 带状蜂窝状材料和外护套; [0007] 所述电缆内芯包括用于传输动力电源充电电流的动力电源线、 用于提供接地保 护的接地线、 用于在低压下辅助充电的辅助电源线和用于传输充电状态信号的 信号传输控制线;
[0008] 所述动力电源线、 所述接地线、 所述辅助电源线和所述信号传输控制线分别包 括铜导体和包覆于铜导体外侧的绝缘层;
[0009] 所述信号传输控制线还包括: 填充于对应绝缘层上的尼龙丝绳, 相继缠绕的铝 塑复合带层, 包裹于所述铝塑复合带层上的镀锡铜丝编织层, 以及挤包于所述 编织层上的内护套。
[0010] 可选的, 所述充电电缆所采用的铜导体为经过脉冲电流退火处理的无氧铜或者 单晶铜, 所述无氧铜或者单晶铜的单丝直径小于 0.15mm, 所述单丝的伸长率大 于 20<¾。
[0011] 可选的, 所述充电电缆中绝缘层的厚度为 0.5~1.8mm, 所述内护套的厚度为 0.5
~0.8mm, 所述外护套的厚度为 2.2~2.4mm。
[0012] 可选的, 所述充电电缆中绝缘层由热塑性 TPEE复合材料制成。
[0013] 可选的, 所述内护套和所述外护套均由热塑性聚醚类聚氨酯 TPU复合材料制得
[0014] 可选的, 所述带状蜂窝状材料由带状蜂窝状聚乙烯或者带状蜂窝状橡胶制得, 厚度 4~8mm, 宽度 5~10cm, 缠绕在所述绕包带外, 且内含空气层, 用于缓冲外 部带来的压力。
[0015] 另一方面, 本发明还提供了一种电动车充电电缆的制备方法, 包括以下步骤: [0016] Sl、 通过将铜导体材料拉丝、 脉冲电流退火、 绞合处理后, 获得多根铜导体; [0017] S2、 采用挤压式模具在每根所述铜导体外包覆绝缘层, 以得到至少两根第一绝 缘线、 至少一根第二绝缘线、 至少一根第三绝缘线和至少两根第四绝缘线; 其 中, 所述第一绝缘线为动力电源线, 所述第二绝缘线为接地线, 所述第三绝缘 线为辅助电源线, 所述第四绝缘线用于构成信号传输控制线;
[0018] S3、 将每两根所述第四绝缘线对绞, 加尼龙丝绳填充, 相继缠绕铝塑复合带, 在所述铝塑复合带上包裹镀锡铜丝编织层, 以及在所述编织层上挤包内护套, 进而得到所述信号传输控制线; [0019] S4、 将所述动力电源线、 所述接地线、 所述辅助电源线和所述信号传输控制线 构成线组, 并在所述线组上填充高强度 PP绳, 相继缠绕绕包带, 并在所述绕包 带外缠绕带状蜂窝状材料;
[0020] S5、 在所述带状蜂窝状材料外紧压包覆外护套。
发明的有益效果
有益效果
[0021] 本发明中提供的一个或多个技术方案, 至少具有如下技术效果或优点:
[0022] 由于在本发明方案中, 电动汽车充电电缆从内到外依次包括: 电缆内芯、 填充 材料、 绕包带、 带状蜂窝状材料和外护套; 所述电缆内芯包括用于传输动力电 源充电电流的动力电源线、 用于提供接地保护的接地线、 用于在低压下辅助充 电的辅助电源线和用于传输充电状态信号的信号传输控制线; 所述动力电源线 、 所述接地线、 所述辅助电源线和所述信号传输控制线分别包括铜导体和包覆 于铜导体外侧的绝缘层; 所述信号传输控制线还包括: 填充于对应绝缘层上的 尼龙丝绳, 相继缠绕的铝塑复合带层, 包裹于所述铝塑复合带层上的镀锡铜丝 编织层, 以及挤包于所述编织层上的内护套。 有效的解决了现有技术中电动汽 车充电电缆充电速度不快, 以及被频繁拖拽后容易损坏的技术问题。 首先, 导 体选用单丝直径小于 0.15mm和单丝伸长率大于 20%的无氧铜或者单晶铜, 单丝 直径较小和伸长率高, 经过脉冲电流退火处理, 单位截面积载流能力大, 满足 快速充电的要求, 同吋铜丝数量多, 能有效均匀分散电缆所受的外力, 使得本 发明导体的导电性能强, 无氢脆现象不容易断裂, 具有极强的抗弯折能力, 在 经过超过数百万次往返弯折运动后不会断裂。 其次, 内护套和外护套采用热塑 性聚醚类聚氨酯 TPU复合材料制成, 耐油、 耐扭曲、 弹力回复快, 电缆的使用寿 命长。 再次, 带状蜂窝状材料 (如带状蜂窝状聚乙烯材料或者带状蜂窝状橡胶 材料) 缠绕在包带外, 增加了空气层, 缓冲压力, 提高了电缆的抗碾压能力。 对附图的简要说明
附图说明
[0023] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据提供的附图获得其他的附图。
[0024] 图 1为本发明实施例提供的一种电动汽车充电电缆截面示意图;
[0025] 图 2为本发明实施例提供的一种电动汽车充电电缆中带状蜂窝状材料的结构示 意图;
[0026] 图 3为本发明实施例提供的一种电动车充电电缆的制备方法的流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0027] 本发明实施例通过提供一种电动汽车充电电缆, 解决了现有技术中存在的电动 汽车充电电缆充电速度不快, 以及被频繁拖拽后容易损坏的技术问题, 不仅能 够实现对电动汽车快速充电, 而且具有耐扭曲、 耐碾压及抗拉强度高的特性。
[0028] 本发明实施例的技术方案为解决上述技术问题, 总体思路如下:
[0029] 本发明实施例提供了一种电动汽车充电电缆, 从内到外依次包括: 电缆内芯、 填充材料、 绕包带、 带状蜂窝状材料和外护套; 所述电缆内芯包括用于传输动 力电源充电电流的动力电源线、 用于提供接地保护的接地线、 用于在低压下辅 助充电的辅助电源线和用于传输充电状态信号的信号传输控制线; 所述动力电 源线、 所述接地线、 所述辅助电源线和所述信号传输控制线分别包括铜导体和 包覆于铜导体外侧的绝缘层; 所述信号传输控制线还包括: 填充于对应绝缘层 上的尼龙丝绳, 相继缠绕的铝塑复合带层, 包裹于所述铝塑复合带层上的镀锡 铜丝编织层, 以及挤包于所述编织层上的内护套。
[0030] 可见, 在本发明实施例中, 充电电缆的电缆内芯载流量大, 满足快速充电的要 求, 同吋铜丝数量多, 能有效均匀分散电缆所受的外力, 使得本发明导体的导 电性能强, 无氢脆现象不容易断裂, 具有极强的抗弯折能力, 在经过超过数百 万次往返弯折运动后不会断裂; 带状蜂窝状材料缠绕在包带外, 增加了空气层 , 缓冲压力, 提高了电缆的抗碾压能力。 有效的解决了现有技术中电动汽车充 电电缆充电速度不快, 以及被频繁拖拽后容易损坏的技术问题。
[0031] 为了更好的理解上述技术方案, 下面将结合说明书附图以及具体的实施方式对 上述技术方案进行详细的说明, 应当理解本发明实施例以及实施例中的具体特 征是对本申请技术方案的详细的说明, 而不是对本申请技术方案的限定, 在不 冲突的情况下, 本发明实施例以及实施例中的技术特征可以相互组合。
[0032] 如图 1所示, 为本发明提供的一种耐扭曲、 耐碾压及抗拉电动汽车快速充电电 缆的截面示意图。 图 1所示本发明电动汽车快速充电电缆, 从内到外依次包括: 电缆内芯 1、 填充材料 2、 绕包带 3、 带状蜂窝状材料 4和外护套 5;
[0033] 电缆内芯 1包括: 用于传输动力电源充电电流的动力电源线 11、 用于提供接地 保护的接地线 12、 用于在低压下辅助充电的辅助电源线 13和用于传输充电状态 信号的信号传输控制线 14; 其中, 动力电源线 11、 接地线 12、 辅助电源线 13和 信号传输控制线 14分别包括铜导体和包覆于铜导体外侧的绝缘层。 具体的, 动 力电源线 11由第一铜导体 111和包覆于第一铜导体 111外侧的第一绝缘层 112构成 , 接地线 12由第二铜导体 121和包覆于第二铜导体 121外侧的第二绝缘层 122构成 , 辅助电源线 13由第三铜导体 131和包覆于第三铜导体 131外侧的第三绝缘层 132 构成, 信号传输控制线 14包括第四铜导体 141和包覆于第四铜导体 141外侧的第 四绝缘层 142。 具体的, 第一、 二、 三、 四铜导体 (111、 121、 131、 141) 可为 相同材质, 如无氧铜或者单晶铜; 第一、 二、 三、 四绝缘层 (112、 122、 132、 142) 可由相同材质制成, 如由热塑性 TPEE复合材料制成。
[0034] 图 1右边为充电电缆的整体截面示意图、 左边为充电电缆中信号传输控制线 14 的截面放大图, 如图 1左边信号传输控制线 14的截面放大图所示, 信号传输控制 线 14还包括: 填充于对应绝缘层 (即第四绝缘层 142) 上的尼龙丝绳 143, 相继 缠绕的铝塑复合带层 144, 包裹于铝塑复合带层 144上的镀锡铜丝编织层 145, 以 及挤包于编织层 145上的内护套 146; 其中, 内护套 146由热塑性聚醚类聚氨酯 TP U复合材料制得。
[0035] 填充材料 2可采用高强度 PP绳, 用于对动力电源线 1、 接地线 2、 辅助电源线 3和 信号传输控制线 4构成的线组 (即电缆内芯 1) 进行填充; 绕包带 3绕包在具有高 强度 PP绳填充的电缆内芯 1上; 请结合图 1和图 2, 带状蜂窝状材料 4具体可为厚 度 4~8mm、 宽度 5~10cm的带状蜂窝状聚乙烯材料或者带状蜂窝状橡胶材料, 相 继缠绕在绕包带 3的外侧; 外护套 5同样由热塑性聚醚类聚氨酯 TPU复合材料制得 [0036] 在具体实施过程中, 所述充电电缆所采用的铜导体 (包括第一铜导体 111、 第 二铜导体 121、 第三铜导体 131、 第四铜导体 141) 为经过脉冲电流退火处理的无 氧铜或者单晶铜, 所述无氧铜或者单晶铜的单丝直径较小 (具体小于 0.15mm) , 所述单丝的伸长率高 (具体大于 20%) ; 其中, 铜丝束绞绞合后得到铜导体。 导体材料经过脉冲电流退火处理, 单位截面积载流能力大, 能够满足快速充电 的要求。 同吋铜丝数量多, 能有效均匀分散电缆所受的外力, 使得本发明导体 的导电性能强, 无氢脆现象不容易断裂, 具有极强的抗弯折能力, 在经过超过 数百万次往返弯折运动后不会断裂。
[0037] 在具体实施过程中, 每根信号传输控制线 14包括两根由第四铜导体 141包覆第 四绝缘层 142构成的绝缘线。 这两根绝缘线对绞, 在对绞的两个绝缘线的两侧各 加多根 (如 3根) 尼龙丝绳 143进行填充, 并在填充有尼龙丝绳 143的对绞绝缘线 外缠绕铝塑复合带层 144, 在铝塑复合带层 144上包裹镀锡铜丝编织层 145, 以及 在编织层 145上挤包内护套 146, 进而得到信号传输控制线 14。 信号传输控制线 1 4中两根绝缘线对绞, 减小受扰电路的回路面积, 减少电线间的电容耦合和互感 耦合, 编织层 145与铝塑复合带层 144双层屏蔽, 抑制信号传输控制线的共模辐 射。
[0038] 在具体实施过程中, 内护套 146和外护套 5均由热塑性聚醚类聚氨酯 TPU复合材 料制得, 弹力好, 回复力强, 抗拉强度高。
[0039] 在具体实施过程中, 所述充电电缆中绝缘层 (包括第一绝缘层 112、 第二绝缘 层 122、 第三绝缘层 132、 第四绝缘层 142) 的厚度为 0.5~1.8mm, 内护套 146的厚 度为 0.5~0.8mm, 外护套 5的厚度为 2.2~2.4mm。 保证了电缆在快速充电过程中的 电气性能。
[0040] 在具体实施过程中, 带状蜂窝状材料 4由带状蜂窝状聚乙烯或者带状蜂窝状橡 胶制得, 缠绕在绕包带 3外, 内含空气层缓冲外部带来的压力, 提高了电缆的抗 碾压能力。
[0041] 基于同一发明构思, 请参考图 3, 本发明实施例还提供了一种电动车充电电缆 的制备方法, 包括以下步骤:
[0042] Sl、 通过将铜导体材料拉丝、 脉冲电流退火、 绞合处理后, 获得多根铜导体; 其中, 铜导体材料为经过脉冲电流退火处理的无氧铜或者单晶铜, 所述无氧铜 或者单晶铜的单丝直径小于 0.l5mm、 单丝伸长率大于 20%; 铜丝束绞绞合后得 到铜导体。 导体材料经过脉冲电流退火处理, 单位截面积载流能力大, 能够满 足快速充电的要求。 同吋铜丝数量多, 能有效均匀分散电缆所受的外力, 使得 本发明导体的导电性能强, 无氢脆现象不容易断裂, 具有极强的抗弯折能力, 在经过超过数百万次往返弯折运动后不会断裂。
[0043] S2、 采用挤压式模具在每根所述铜导体外包覆绝缘层, 以得到至少两根第一绝 缘线、 至少一根第二绝缘线、 至少一根第三绝缘线和至少两根第四绝缘线; 其 中, 所述第一绝缘线为动力电源线 11, 所述第二绝缘线为接地线 12, 所述第三 绝缘线为辅助电源线 13, 所述第四绝缘线用于构成信号传输控制线 14;
[0044] S3、 将每两根所述第四绝缘线对绞, 加尼龙丝绳 143填充, 相继缠绕铝塑复合 带层 144, 在所述铝塑复合带层 144上包裹镀锡铜丝编织层 145, 以及在所述编织 层 145上挤包内护套 146, 进而得到所述信号传输控制线 14;
[0045] S4、 将所述动力电源线 11、 所述接地线 12、 所述辅助电源线 13和所述信号传输 控制线 14构成线组, 并在所述线组上填充高强度 PP绳 (即填充材料 2) , 相继缠 绕绕包带 3, 并在所述绕包带 3外缠绕带状蜂窝状材料 4;
[0046] S5、 在带状蜂窝状材料 4外紧压包覆外护套 5; 其中, 外护套 5由热塑性聚醚类 聚氨酯 TPU复合材料制得。
[0047] 根据上面的描述, 上述充电电缆制备方法用于制备上述充电电缆, 所以, 该方 法与上述充电电缆的一个或多个实施例一致, 在此就不再一一赘述了。
[0048] 下面给出一种电动汽车充电电缆的具体结构说明, 请结合图 1, 该电动汽车充 电电缆包括:
[0049] 两根横截面积为 120mm 2的动力电源线 11, 其单丝直径为 0.15mm, 裸铜丝绞合 , 第一绝缘层 112为热塑性 TPEE复合材料, 芯线外径 18.10mm;
[0050] 一根横截面积为 35mm 2的接地线 12, 其单丝直径为 0.15mm, 裸铜丝绞合, 第 二绝缘层 122为热塑性 TPEE复合材料, 芯线外径 18.10mm;
[0051] 两根横截面积为 6mm 2的辅助电源线 13, 其单丝直径为 0.15mm, 裸铜丝绞合, 第三绝缘层 132为热塑性 TPEE复合材料, 芯线外径 5.39mm; [0052] 两根外径为 4.10mm的信号传输控制线 14, 每根信号传输控制线 14包括两根绝 缘线 (即所述第四绝缘线) ; 每根绝缘线的横截面积为 lmm 2
, 单丝直径为 0.15mm, 裸铜丝绞合, 第四绝缘层 142为热塑性 TPEE复合材料, 芯线外径 2.50mm; 这两根绝缘线对绞, 在对绞的两个绝缘线的两侧各加 3根尼龙 丝绳 143进行填充, 并在填充有尼龙丝绳 143的对绞绝缘线外缠绕铝塑复合带层 1 44, 在铝塑复合带层 144上包裹镀锡铜丝编织层 145, 以及在编织层 145上挤包内 护套 146, 进而得到信号传输控制线 14; 其中, 编织层 145采用直径 0.10mm的铜 丝编织获得, 内护套 146由热塑性聚醚类聚氨酯 TPU复合材料制成, 内护套 146厚 度为 0.6mm;
[0053] 其中, 两根动力电源线 11、 一根接地线 12、 两根辅助电源线 13和两根信号传输 控制线 14按照图 1的结构排列构成线组, 并相继填充高密度 PP绳 (即填充材料 2 ) , 缠绕绕包带 3, 外侧再缠绕带状蜂窝状材料 4, 押出热塑性聚醚类聚氨酯 TPU 复合材料的外护层 5, 最终获得一种耐扭曲、 耐碾压及抗拉电动汽车快速充电电 缆。
[0054] 总而言之, 实施本发明的抗电磁辐射的电动汽车快速充电电缆及其制备方法, 具有以下有益效果:
[0055] 1) 导体采用较小单丝直径和高伸长率的铜丝, 经过脉冲退火工艺, 载流量大 , 满足快速充电的要求, 同吋铜丝数量多, 能有效均匀分散电缆所受的外力, 使得本发明导体的导电性能强, 无氢脆现象不容易断裂, 具有极强的抗弯折能 力, 在经过超过数百万次往返弯折运动后不会断裂;
[0056] 2) 内护套 146和外护套 5采用热塑性聚醚类聚氨酯 TPU复合材料制成, 耐油、 耐扭曲、 弹力回复快, 电缆的使用寿命长;
[0057] 3) 带状蜂窝状材料 (如带状蜂窝状聚乙烯材料或者带状蜂窝状橡胶材料) 缠 绕在包带外, 增加了空气层, 缓冲压力, 提高了电缆的抗碾压能力。
[0058] 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创 造性概念, 则可对这些实施例做出另外的变更和修改。 所以, 所附权利要求意 欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0059] 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等 同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
一种电动汽车充电电缆, 其特征在于, 从内到外依次包括: 电缆内芯 、 填充材料、 绕包带、 带状蜂窝状材料和外护套;
所述电缆内芯包括用于传输动力电源充电电流的动力电源线、 用于提 供接地保护的接地线、 用于在低压下辅助充电的辅助电源线和用于传 输充电状态信号的信号传输控制线;
所述动力电源线、 所述接地线、 所述辅助电源线和所述信号传输控制 线分别包括铜导体和包覆于铜导体外侧的绝缘层;
所述信号传输控制线还包括: 填充于对应绝缘层上的尼龙丝绳, 相继 缠绕的铝塑复合带层, 包裹于所述铝塑复合带层上的镀锡铜丝编织层 , 以及挤包于所述编织层上的内护套。
如权利要求 1所述的电动汽车充电电缆, 其特征在于, 所述充电电缆 所采用的铜导体为经过脉冲电流退火处理的无氧铜或者单晶铜, 所述 无氧铜或者单晶铜的单丝直径小于 0.15mm, 所述单丝的伸长率大于 2 0<¾。
如权利要求 1所述的电动汽车充电电缆, 其特征在于, 所述充电电缆 中绝缘层的厚度为 0.5~1.8mm, 所述内护套的厚度为 0.5~0.8mm, 所 述外护套的厚度为 2.2~2.4mm。
如权利要求 1所述的电动汽车充电电缆, 其特征在于, 所述充电电缆 中绝缘层由热塑性 TPEE复合材料制成。
如权利要求 1所述的电动汽车充电电缆, 其特征在于, 所述内护套和 所述外护套均由热塑性聚醚类聚氨酯 TPU复合材料制得。
如权利要求 1所述的电动汽车充电电缆, 其特征在于, 所述带状蜂窝 状材料由带状蜂窝状聚乙烯或者带状蜂窝状橡胶制得, 厚度 4~8mm , 宽度 5~10cm, 缠绕在所述绕包带外, 且内含空气层, 用于缓冲外 部带来的压力。
一种电动车充电电缆的制备方法, 其特征在于, 包括以下步骤:
Sl、 通过将铜导体材料拉丝、 脉冲电流退火、 绞合处理后, 获得多根 铜导体;
52、 采用挤压式模具在每根所述铜导体外包覆绝缘层, 以得到至少两 根第一绝缘线、 至少一根第二绝缘线、 至少一根第三绝缘线和至少两 根第四绝缘线; 其中, 所述第一绝缘线为动力电源线, 所述第二绝缘 线为接地线, 所述第三绝缘线为辅助电源线, 所述第四绝缘线用于构 成信号传输控制线;
53、 将每两根所述第四绝缘线对绞, 加尼龙丝绳填充, 相继缠绕铝塑 复合带, 在所述铝塑复合带上包裹镀锡铜丝编织层, 以及在所述编织 层上挤包内护套, 进而得到所述信号传输控制线;
54、 将所述动力电源线、 所述接地线、 所述辅助电源线和所述信号传 输控制线构成线组, 并在所述线组上填充高强度 PP绳, 相继缠绕绕 包带, 在所述绕包带外缠绕带状蜂窝状材料;
55、 在所述带状蜂窝状材料外紧压包覆外护套。
PCT/CN2016/094603 2015-09-24 2016-08-11 一种电动汽车充电电缆及其制备方法 WO2017050051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510615225.2 2015-09-24
CN201510615225.2A CN106558368B (zh) 2015-09-24 2015-09-24 一种电动汽车充电电缆及其制备方法

Publications (1)

Publication Number Publication Date
WO2017050051A1 true WO2017050051A1 (zh) 2017-03-30

Family

ID=58385825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094603 WO2017050051A1 (zh) 2015-09-24 2016-08-11 一种电动汽车充电电缆及其制备方法

Country Status (2)

Country Link
CN (1) CN106558368B (zh)
WO (1) WO2017050051A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109725A (zh) * 2017-11-30 2018-06-01 安徽华通电缆集团有限公司 一种新能源防火充电电缆
CN109243673A (zh) * 2018-09-27 2019-01-18 昆山信昌电线电缆有限公司 家用便携式电动汽车充电连接电缆
DE102019110878B4 (de) 2019-04-26 2023-12-07 Leoni Kabel Gmbh Kombinationskabel zur elektrischen Energie- und Datenübertragung
CN110942857A (zh) * 2019-11-28 2020-03-31 安徽怡和电缆有限公司 一种耐挤压抗变形的低压电力电缆
CN112201399B (zh) * 2020-09-28 2022-03-29 安徽蒙特尔电缆集团有限公司 一种耐弯曲抗碾压新能源汽车充电电缆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2705863Y (zh) * 2004-04-30 2005-06-22 比瑞利天津电力电缆有限公司 气囊电缆
CN102509583A (zh) * 2011-11-25 2012-06-20 成都亨通光通信有限公司 风力电缆
CN202495273U (zh) * 2011-10-21 2012-10-17 常州船用电缆有限责任公司 一种海上石油平台用变频电缆
CN203644430U (zh) * 2013-10-30 2014-06-11 刘明秀 特种装备用复合电缆
CN103928105A (zh) * 2014-05-05 2014-07-16 昆山联滔电子有限公司 线缆
CN203871063U (zh) * 2014-05-08 2014-10-08 铜陵中冠电缆有限公司 电动汽车交流充电***用电缆
CN204288907U (zh) * 2014-12-26 2015-04-22 广东天虹电缆有限公司 一种汽车充电桩用电线电缆
CN205069206U (zh) * 2015-09-24 2016-03-02 深圳市联嘉祥科技股份有限公司 一种电动汽车充电电缆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008011737U1 (de) * 2008-09-03 2010-01-14 Coroplast Fritz Müller Gmbh & Co. Kg Ummantelte elektrische Leitung
CN202067579U (zh) * 2011-05-18 2011-12-07 新亚特电缆股份有限公司 一种新能源中型汽车快速充电用电缆
CN202067578U (zh) * 2011-05-18 2011-12-07 新亚特电缆股份有限公司 一种新能源小型汽车快速充电用电缆
CN203520920U (zh) * 2013-10-21 2014-04-02 四川省川西电缆有限责任公司 一种用于电动汽车充电的充电桩电缆及其插件组件
CN104517675A (zh) * 2014-11-28 2015-04-15 上海摩恩电气股份有限公司 一种新能源电动汽车充电桩电缆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2705863Y (zh) * 2004-04-30 2005-06-22 比瑞利天津电力电缆有限公司 气囊电缆
CN202495273U (zh) * 2011-10-21 2012-10-17 常州船用电缆有限责任公司 一种海上石油平台用变频电缆
CN102509583A (zh) * 2011-11-25 2012-06-20 成都亨通光通信有限公司 风力电缆
CN203644430U (zh) * 2013-10-30 2014-06-11 刘明秀 特种装备用复合电缆
CN103928105A (zh) * 2014-05-05 2014-07-16 昆山联滔电子有限公司 线缆
CN203871063U (zh) * 2014-05-08 2014-10-08 铜陵中冠电缆有限公司 电动汽车交流充电***用电缆
CN204288907U (zh) * 2014-12-26 2015-04-22 广东天虹电缆有限公司 一种汽车充电桩用电线电缆
CN205069206U (zh) * 2015-09-24 2016-03-02 深圳市联嘉祥科技股份有限公司 一种电动汽车充电电缆

Also Published As

Publication number Publication date
CN106558368B (zh) 2018-11-20
CN106558368A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2017050051A1 (zh) 一种电动汽车充电电缆及其制备方法
WO2018223827A1 (zh) 超大截面高电压低损耗光纤复合海底电缆及其制备方法
CN103971848B (zh) 电动汽车交流充电***用电缆及其制造方法
WO2020119308A1 (zh) 一种用于新能源汽车充电的空心电缆制造方法及电缆
CN109872842A (zh) 一种智慧能源机场充电用中频卷绕软电缆及其生产工艺
CN205692585U (zh) 柔性新能源汽车用充电桩电缆
CN201965966U (zh) 一种电动汽车交流充电电缆
CN205069206U (zh) 一种电动汽车充电电缆
WO2018059433A1 (zh) 一种电动汽车直流充电电缆及其制备方法
CN201036064Y (zh) 一种动力控制复合扁电缆
CN201965954U (zh) 一种电动汽车直流充电电缆
CN212276873U (zh) 一种抗压抗拉电缆
CN201514796U (zh) 收放式动力控制复合电缆
CN202905263U (zh) 一种抗挤压型同心导体电力电缆
CN203871063U (zh) 电动汽车交流充电***用电缆
CN215183246U (zh) 一种轻量化超导铝合金芯车内高压电缆
CN202422807U (zh) 港口用移动电力控制复合电缆
CN104376911A (zh) 耐气候高导电复合结构电力电缆及其制造方法
CN107507669A (zh) 一种抗扭抗拉港机电缆
CN208315235U (zh) 一种扁形矿用电缆
CN201594404U (zh) 额定电压450/750v耐特低温橡套软电缆
CN206075893U (zh) 一种紧密型电缆线
CN110828054A (zh) 一种新能源电动汽车车内高压电缆及其制备方法
CN103762019A (zh) 抗电磁干扰软电缆及制备方法
CN203520938U (zh) 一种用于电动汽车交流充电的充电电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847933

Country of ref document: EP

Kind code of ref document: A1