WO2017050033A1 - 一种信息发送及确定、关系确定的方法及装置 - Google Patents

一种信息发送及确定、关系确定的方法及装置 Download PDF

Info

Publication number
WO2017050033A1
WO2017050033A1 PCT/CN2016/093960 CN2016093960W WO2017050033A1 WO 2017050033 A1 WO2017050033 A1 WO 2017050033A1 CN 2016093960 W CN2016093960 W CN 2016093960W WO 2017050033 A1 WO2017050033 A1 WO 2017050033A1
Authority
WO
WIPO (PCT)
Prior art keywords
quasi
information
csi
location
pilot
Prior art date
Application number
PCT/CN2016/093960
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
蔡剑兴
肖华华
李永
王瑜新
鲁照华
吴昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP23184230.3A priority Critical patent/EP4283910A3/en
Priority to US15/763,272 priority patent/US10651910B2/en
Priority to EP16847915.2A priority patent/EP3355637B1/en
Priority to JP2018515855A priority patent/JP7165052B2/ja
Publication of WO2017050033A1 publication Critical patent/WO2017050033A1/zh
Priority to US16/838,425 priority patent/US11245452B2/en
Priority to US17/559,107 priority patent/US11777578B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a method and apparatus for information transmission and determination, relationship determination.
  • the terminal can obtain some statistical characteristic parameters of the channel between the base station and the terminal in advance, the terminal can effectively utilize these statistical characteristic parameters to improve the estimation accuracy of the demodulation pilot, improve the performance of the receiver, and effectively Noise is suppressed, and statistical characteristic parameters can be applied to different estimation algorithms and reception algorithms.
  • the pilot signals transmitted by the same base station can accurately measure the statistical channel characteristics, that is, the measurement of these statistical characteristic parameters is generally for the pilot signals sent by the same base station, such as channel state information measurement guide.
  • CSI-RS Channel State Information Reference Signal
  • CRS Cell Specific Reference Signal
  • frequency offset and time offset calibration can also be measured by CSI-RS or CRS transmitted by the same base station, thereby completing calibration for frequency offset and time offset.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • the quasi-common position information indication is For the quasi-common location, the two transmit large-scale characteristics of the channel with the same CSI-RS pilot, such as delay spread, Doppler spread, Doppler shift, and average delay, which can be used to understand the quasi-common position as current data and DMRS. It is similar to the same base station transmission.
  • quasi-co-location information indication is and remapping (RE mapping)
  • Table 1 shows the meaning of each state of the quasi-common position indication and the data channel resource unit mapping notification signaling.
  • DCI Downlink Control Information
  • Multicast/multicast single frequency network (MBSFN) subframe configuration parameter information is Multicast/multicast single frequency network (MBSFN) subframe configuration parameter information.
  • Zero Power (Zero Power for short) CSI-RS parameter configuration information CSI-RS parameter configuration information.
  • Non-Zero Power (Non-Zero Power, nicknamed NZP) CSI-RS information.
  • the base station can dynamically switch to the transmitting base station in the process of transmitting data to the terminal, and only needs to dynamically indicate the above information through the 2 bit signaling, so that the remapping RE can be solved. Mapping problem, and the problem of pilot and data transmission quasi-co-location changes
  • FIG. 1 is a schematic diagram of generating a plurality of virtual cells in the case of different precoding pilots according to the related art.
  • Table 2 shows the case where different precoding pilots correspond to explicit sets of different pilot configurations, as shown in Table 2.
  • NZP CSI-RS configuration 1 Precoding pilot 1 Precoded weight1/Beam 1
  • NZP CSI-RS configuration 2 Precoding pilot 2 Precoded weight1/Beam 1 ?? .... ; NZP CSI-RS configuration
  • Precoding pilot N Precoded weight1/Beam N
  • Table 3 shows the case where different port groups in the same set of non-zero-power CSI-RS pilot configurations correspond to pre-coded pilots with different weights, as shown in Table 3.
  • Table 3 The pilots on different port groups in the same set of non-zero-power CSI-RS pilot configurations i correspond to pre-coded pilots with different weights, respectively.
  • Table 4 is that the pilots on different subframes in the same non-zero power CSI-RS pilot configuration i correspond to Precoding pilots with different weights are shown in Table 4.
  • Table 5 shows the case where the pilots in different frequency domain positions in the same set of non-zero-power CSI-RS pilot configurations i correspond to pre-coded pilots of different weights, respectively, as shown in Table 5.
  • Table 5 The pilots in different frequency domain positions in the same set of non-zero-power CSI-RS pilot configurations i correspond to pre-coded pilots of different weights, respectively.
  • the downlink quasi-common location indication and the data channel resource unit mapping notification signaling only support notifying a set of NZP CSI-RS configuration as a quasi-co-location binding with the currently transmitted data channel, but Mode 2, 3 or 4, the notification of the associated quasi-common position information cannot treat different ports, different subframes and different sub-bands (frequency domain) differently, so this method will affect channel estimation performance and receiver performance. . And for mode 1, 2, 3 or 4, when multiple beams appear in one cell, it will be similar to forming multiple virtual cells as shown in FIG. 1. At this time, the relevant 2bit downlink quasi-common position indication and data channel resources Unit mapping notification signaling no longer meets the requirements.
  • the embodiment of the invention provides a method and a device for information transmission and determination, relationship determination, and solves the problem that the channel estimation performance of the terminal cannot be distinguished by different precoding pilots in the notification signaling of the quasi-common position information in the related art. Poor question.
  • the quasi-co-located non-zero power CSI-RS pilot indication information in the parameter set includes indication information of one or more non-zero-power CSI-RS port groups of the quasi-co-location.
  • the one or more quasi-co-located non-zero power CSI-RS port groups correspond to the same set of non-zero power CSI-RS configurations.
  • the non-zero-power CSI-RS pilot indication information of the quasi-co-location in the parameter set includes CSI-RS time domain location indication information of the quasi-co-location.
  • the CSI-RS time domain location indication information of the quasi-co-location includes any one of the following: offset information indication information and subframe set indication information.
  • the non-zero-power CSI-RS pilot indication information of the quasi-co-location in the parameter set includes CSI-RS frequency domain location indication information of the quasi-co-location.
  • the CSI-RS frequency domain location indication information of the quasi-co-location includes any one of the following: resource block RB set information and subband set information.
  • the CSI-RS port corresponding to the demodulation reference signal DMRS port in the subframe and the non-zero power CSI-RS pilot indication information in the quasi-co-located position is quasi-co-located.
  • the non-zero-power CSI-RS pilot indication information determines the quasi-co-located channel state information measurement pilot CSI-RS information; or, when M>1, the terminal receives the parameter set selection information through the physical layer control signaling, and according to the quasi-common
  • the non-zero power CSI-RS pilot indication information and the parameter set selection information of the location determine the quasi-co-located CSI-RS information of the demodulation reference signal DMRS in the subframe in which the physical layer control signaling is currently located.
  • the quasi-co-located non-zero power CSI-RS pilot indication information in the parameter set includes indication information of one or more non-zero-power CSI-RS port groups of the quasi-co-location.
  • the one or more quasi-co-located non-zero power CSI-RS port groups correspond to the same set of non-zero power CSI-RS configurations.
  • the non-zero-power CSI-RS pilot indication information of the quasi-co-location in the parameter set includes CSI-RS time domain location indication information of the quasi-co-location.
  • the CSI-RS time domain location indication information of the quasi-co-location includes any one of the following: offset information indication information and subframe set indication information.
  • the non-zero-power CSI-RS pilot indication information of the quasi-co-location in the parameter set includes CSI-RS frequency domain location indication information of the quasi-co-location.
  • the CSI-RS frequency domain location indication information of the quasi-co-location includes any one of the following: resource block RB set information and subband set information.
  • the quasi-co-location relationship between the ports is determined by the terminal according to the type of the quasi-co-location relationship and the type indication signaling of the high-layer signaling configuration, and determining the set of quasi-co-location relationships between the antenna ports.
  • the method for determining the relationship further includes: the terminal instructing the PMI to be enabled according to the precoding matrix
  • the configuration parameter determines a set of types of N quasi-co-location relationships.
  • the method for determining the relationship further includes: determining, by the terminal, a type set of N quasi-co-location relationships according to the measurement restriction configuration parameter.
  • the N quasi-co-location relationship includes the following types: the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 of the base station quasi-common position measurement pilot configuration signaling indicates a quasi-common Location.
  • An apparatus for transmitting information includes: a first sending module and a second sending module.
  • the signaling indicates parameter set selection information of a subframe currently transmitting the physical layer control signaling.
  • An apparatus for information determination includes: a receiving module, a first determining module, and a second determining module.
  • a device for determining a relationship includes: a third determining module, a fourth determining module, and a fifth determining module.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the information transmitting method, the information determining method, and the relationship determining method.
  • CSI-RS pilot indication information the non-zero-power CSI-RS pilot indication information of the quasi-co-located position is used by the terminal to acquire a large-scale characteristic of the channel; when M>1, the base station indicates the current transmission by using physical layer control signaling
  • the parameter set selection information of the subframe of the physical layer control signaling when M>1, the base station indicates the current transmission by using physical layer control signaling.
  • the scheme of the embodiment of the present invention can enable the terminal to determine the used CSI-RS pilot configuration information according to the non-zero power CSI-RS pilot indication information at the quasi-co-location, and instruct the terminal to acquire the large-scale characteristic of the channel, so that the terminal can
  • the large-scale characteristics of the acquired channels are matched, and the quasi-common position information of the current data is obtained, which solves the problem that the large-scale characteristics of the channel acquired by the terminal are inaccurate in the notification signaling of the quasi-common position information in the related art.
  • the effect of improving the channel estimation performance of the terminal is achieved.
  • FIG. 1 is a schematic diagram of generating multiple virtual cells in the case of different precoding pilots according to the related art
  • FIG. 2 is a flowchart of a method of transmitting information according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a method of information determination in accordance with an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an apparatus for transmitting information according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of an apparatus for information determination according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of an apparatus for determining a relationship according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of precoding pilots in which multiple different beams appear in the same cell according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram 1 of implementing CSI-RS pilots of multiple beams according to an embodiment of the present invention.
  • FIG. 10 is a second schematic diagram of implementing CSI-RS pilots of multiple beams according to an embodiment of the present invention.
  • 11 is a schematic diagram 3 of implementing CSI-RS pilots of multiple beams according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of different sub-band positions having different beams according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for sending information according to an embodiment of the present invention. As shown in FIG. 2, the process includes steps S201-S202:
  • M is a positive integer
  • each parameter set includes a non-zero power channel state information measurement pilot CSI-RS guide
  • the frequency indication information, the non-zero power CSI-RS pilot indication information of the quasi-co-location is used by the terminal to acquire a large-scale characteristic of the channel.
  • Step S202 When M>1, the base station indicates, by using physical layer control signaling, parameter set selection information of a subframe in which the physical layer control signaling is currently sent.
  • the large-scale characteristics of the channel in step S201 refer to delay spread, Doppler spread, Doppler shift, and average delay.
  • the quasi-co-located non-zero power CSI-RS pilot indication information in the parameter set includes indication information of one or more quasi-co-located non-zero power CSI-RS port groups.
  • the non-zero power CSI-RS of the one or more beams is present due to one or more beams on the non-zero power CSI-RS port group of one or more quasi-co-located locations.
  • the terminal may be instructed to determine, according to the indication information of the non-zero-power CSI-RS port group of the quasi-co-location, the non-zero-power CSI-RS port group on the different quasi-co-locations Zero power CSI-RS configuration.
  • the one or more quasi-co-located non-zero power CSI-RS port groups correspond to the same set of non-zero power CSI-RS configurations.
  • a set of non-zero power CSI-RS configurations refers to non-zero power CSI-RS information of quasi-co-locations configured in the related art.
  • the terminal may be instructed to determine multiple ones of the non-zero power CSI-RS port groups of one or more quasi-co-locations according to different weights corresponding to the same set of non-zero power CSI-RS configurations.
  • the quasi-coordinated non-zero power CSI-RS pilot indication information in the parameter set includes CSI-RS time domain location indication information of the quasi-co-location.
  • the non-zero power CSI of one or more beams located at different time domain locations due to one or more beams in the non-zero power CSI-RS time domain locations of different quasi-co-locations The RS is different. Therefore, the terminal may be instructed to determine, according to the non-zero-power CSI-RS time domain location indication information of the quasi-co-location, that the beams on the non-zero-power CSI-RS time domain locations of different quasi-co-locations respectively correspond to Co-located non-zero power CSI-RS configuration.
  • the quasi-co-located CSI-RS time domain location indication information includes any one of the following: offset information indication information and subframe set indication information.
  • the quasi-co-located non-zero power CSI-RS pilot indication information in the parameter set includes CSI-RS frequency domain position indication information of the quasi-co-location.
  • the non-zero power CSI of one or more beams located at different frequency domain locations due to one or more beams corresponding to the non-zero power CSI-RS frequency domain locations of different quasi-co-locations The RS is different. Therefore, the terminal may be instructed to determine, according to the non-zero-power CSI-RS frequency domain location indication information of the quasi-co-location, that the beams on the non-zero-power CSI-RS frequency domain locations of different quasi-co-locations respectively correspond to Co-located non-zero power CSI-RS configuration.
  • the quasi-co-located CSI-RS frequency domain location indication information includes any one of the following: resource block RB set information and subband set information.
  • the parameter set may not only indicate different weights corresponding to a set of non-zero power CSI-RS configurations, but may also indicate more than two sets of non-zero power CSI-RS configurations, and the two sets or more The weight of the non-zero power CSI-RS configuration.
  • the CSI-RS port corresponding to the non-zero power CSI-RS pilot indication information of the quasi-co-located position of the demodulation reference signal DMRS port in the subframe is quasi-co-located.
  • the terminal may be caused to determine a demodulation reference signal DMRS port having a quasi-co-location with the CSI-RS port where the current data is located, thereby improving channel estimation accuracy.
  • the method for transmitting the above information is described from the base station side, and the method for determining the information of the embodiment of the present invention is described below on the terminal side.
  • FIG. 3 is a flowchart of a method for information determination according to an embodiment of the present invention. As shown in FIG. 3, the process includes steps S301-S303:
  • the frequency indication information, the non-zero power CSI-RS pilot indication information of the quasi-co-located position is used by the terminal to acquire the large-scale characteristic of the channel.
  • Step S303 When M>1, the terminal receives the parameter set selection information through the physical layer control signaling, and determines the physical layer control signaling according to the non-zero power CSI-RS pilot indication information and the parameter set selection information of the quasi-co-location.
  • the terminal can be matched according to the large-scale characteristics of the acquired channel, and the quasi-common position information of the current data is obtained, and the channel that is obtained by the terminal in the notification signaling of the quasi-common position information in the related art is solved.
  • the quasi-co-located non-zero power CSI-RS pilot indication information in the parameter set includes indication information of one or more quasi-co-located non-zero power CSI-RS port groups.
  • the terminal determines, according to the indication information of the non-zero-power CSI-RS port group of the quasi-co-location, the quasi-common position corresponding to the beams on the non-zero-power CSI-RS port group of different quasi-co-locations. Non-zero power CSI-RS configuration.
  • the one or more quasi-co-located non-zero power CSI-RS port groups correspond to the same set of non-zero power CSI-RS configurations.
  • the terminal determines, according to different weights corresponding to the same set of non-zero-power CSI-RS configurations, multiple beams on the non-zero-power CSI-RS port group of one or more quasi-co-locations. Corresponding final calculated non-zero power CSI-RS configuration of quasi-common location.
  • the quasi-coordinated non-zero power CSI-RS pilot indication information in the parameter set includes CSI-RS time domain location indication information of the quasi-co-location.
  • the terminal determines, according to the non-zero-power CSI-RS time domain location indication information of the quasi-co-location, the quasi-coherent corresponding to the beams on the non-zero-power CSI-RS time domain locations of different quasi-co-locations.
  • the CSI-RS time domain location indication information of the quasi-co-location is any one of the following: offset information indication information, and subframe set indication information.
  • the quasi-co-located non-zero power CSI-RS pilot indication information in the parameter set includes CSI-RS frequency domain position indication information of the quasi-co-location.
  • the terminal may be instructed to determine, according to the non-zero power CSI-RS frequency domain location indication information of the quasi-co-location, the beams on the non-zero power CSI-RS frequency domain locations of different quasi-co-locations respectively.
  • the quasi-co-located CSI-RS frequency domain location indication information includes any one of the following: resource block RB set information and subband set information.
  • the parameter set may not only indicate different weights corresponding to a set of non-zero power CSI-RS configurations, but may also indicate more than two sets of non-zero power CSI-RS configurations, and the two sets or more The weight of the non-zero power CSI-RS configuration.
  • FIG. 4 is a flowchart of a method for determining a relationship according to an embodiment of the present invention. As shown in FIG. 4, the process includes steps S401-S403:
  • Step S403 When N>1, the terminal determines the set of quasi-co-location relationships between the antenna ports according to the type of the quasi-co-location relationship and the type indication signaling of the high-layer signaling configuration.
  • the terminal may determine the quasi-co-location relationship between the antenna ports according to the determined set of the types of the one or more quasi-co-location relationships, and the terminal obtains the quasi-common position information of the current data, and the solution is solved.
  • the notification signaling of the quasi-common location information indicates that the large-scale characteristics of the channel acquired by the terminal are not clear, and the channel estimation performance of the terminal is improved.
  • the terminal determines the type set of the N quasi-co-location relationships according to the precoding matrix indicating the PMI enabling configuration parameter.
  • the terminal determines a set of types of N quasi-co-location relationships according to the measurement limit configuration parameter.
  • the N quasi-co-location relationship includes the following types: the terminal assumes a dedicated demodulation pilot port 7-14, and the base station quasi-common position measurement pilot configuration signaling indicates a common pilot port 0-3 It is a quasi-common position.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in the embodiments of the present invention.
  • a device for transmitting and determining information and determining the relationship is also provided, and the device is provided.
  • the foregoing embodiments and optional implementations have been implemented, and the descriptions thereof have been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of an apparatus for transmitting information according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes a first transmitting module 51 and a second transmitting module 52, which will be described below.
  • M is a positive integer
  • each parameter set includes a non-zero power channel state information measurement pilot of the quasi-common position
  • the CSI-RS pilot indication information, the non-zero-power CSI-RS pilot indication information of the quasi-co-location is used for the terminal to acquire the large-scale characteristic of the channel;
  • the second sending module 52 is connected to the first sending module 51, and is set to be When M>1, the parameter set selection information of the subframe in which the physical layer control signaling is currently transmitted is indicated by the physical layer control signaling.
  • FIG. 6 is a structural block diagram of an apparatus for determining information according to an embodiment of the present invention. As shown in FIG. 6, the apparatus includes a receiving module 61, a first determining module 62, and a second determining module 63. The apparatus will be described below.
  • the RS pilot indication information, the non-zero power CSI-RS pilot indication information of the quasi-co-located position is used for the terminal to acquire the large-scale characteristic of the channel;
  • the first determining module 62 is connected to the receiving module 61, and is set to be based on the quasi-common position.
  • the non-zero-power CSI-RS pilot indication information determines the quasi-co-located channel state information measurement pilot CSI-RS information; the second determining module 63 is connected to the receiving module 61, and is configured to control through the physical layer when M>1
  • the signaling receives the parameter set selection information, and determines the quasi-co-location of the demodulation reference signal DMRS in the subframe in which the physical layer control signaling is currently located according to the non-zero power CSI-RS pilot indication information and the parameter set selection information of the quasi-co-location CSI-RS information.
  • FIG. 7 is a structural block diagram of an apparatus for determining a relationship according to an embodiment of the present invention. As shown in FIG. 7, the apparatus includes: a third determining module 71, a fourth determining module 72, and a fifth determining module 73. Be explained.
  • the fifth determining module 73 is connected to the third determining module 71, and is configured to: when N>1, according to the type of the quasi-common position relationship and the high-level letter
  • the configured type indicates signaling to determine a set of quasi-co-location relationships between antenna ports.
  • each of the foregoing modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • the notification of the quasi-common position information cannot treat different ports, different subframes, and different sub-bands differently. Therefore, the same quasi-co-location NZP CSI-RS configuration must be used when transmitting with different beams. Measurements are made, but in reality different beams have different channel characteristics (logical channels, the terminal can only see logical channels), so this method will affect channel estimation performance and receiver performance. Moreover, when multiple beams appear in one cell, similarly, multiple virtual cells as shown in FIG. 1 are formed. At this time, the related 2-bit indication signaling no longer satisfies the requirement, and in some cases, it may be supported by up to 16 or more. The choice of beam. But the overhead of simple extension signaling is not a good idea.
  • the embodiment of the present invention provides a method for indicating quasi-common position information (ie, the foregoing
  • FIG. 8 is a schematic diagram of precoding pilots in which multiple different beams appear in the same cell according to an embodiment of the present invention.
  • K 8 beams
  • the first case is a first case:
  • the second case is a first case
  • Table 7 corresponds to a set of NZP CSI-RS pilots for each beam.
  • CSI-RS configuration Included port Beam (Beam) Configuration 1 15,16, Beam1 Configuration 2 15,16, Beam2 Configuration 3 15,16, Beam3 Configuration 4 15,16, Beam4 Configuration 5 15,16, Beam5 Configuration 6 15,16, Beam6 Configuration 7 15,16, Beam7 Configuration 8 15,16, Beam8
  • the notification of the relevant quasi-common position indication is associated with the entire set of NZP CSI-RS pilot configurations, and the ports included therein are not distinguished by different delay spread, Doppler spread, Doppler shift, and average delay. Situation, therefore, if using the relevant quasi-co-location NZP The notification mechanism of CSI-RS information will have insufficient accuracy and affect performance.
  • a solution is provided to: inform the information of the set of ports.
  • Table 8 shows the instructions for separately configuring the four beams in the same NZP CSI-RS configuration information.
  • the four most likely corresponding Beams can be configured for the UE, and then dynamically selected by the DCI.
  • Different UEs are configured with different Beams, and the Beam here refers to the port group.
  • this method can more accurately indicate the CSI-RS port group information that is quasi-co-located with the current subframe DMRS, instead of all the port information contained in the entire NZP CSI-RS, which is more accurate.
  • This method can include all 8 Beams.
  • Table 9 shows the instructions for separately configuring the eight beams in the same NZP CSI-RS configuration information.
  • the quasi-common position indication information in the second case may be extended to indicate more ports with the current DMRS quasi-co-location
  • it can also be configured as shown in Table 10.
  • Table 10 in the CSI-RS configuration of a set of quasi-co-locations indicated by each quasi-co-location NZP CSI-RS configuration ID, Contains one or more port groups.
  • Table 10 configures port information for 8 beams.
  • FIG. 9 is a schematic diagram 1 of implementing CSI-RS pilots of multiple beams, as shown in FIG.
  • the same subframe position transmits different beams and triggers different channel quantization information feedback at different positions to support multiple precoding pilots in a more flexible manner.
  • the related art informs a set of periodic NZP CSI-RS configurations, which is equivalent to the fact that all subframes in FIG. 9 are considered to have a quasi-co-location relationship with the DMRS of the current data transmission subframe, which obviously causes a problem.
  • One solution is to add time domain location indication information, such as subframe offset information and subframe set information, to each set based on the original quasi-co-location NZP CSI-RS configuration, and pass the DCI.
  • the Set selects the signaling to make the selection.
  • Table 11 is a mapping table for time domain position indication by subframe offset information, as shown in Table 11, which is an indication of adding a subframe offset offset to the original parameter set.
  • Table 11 shows the time domain position indication by adding the subframe offset information.
  • FIG. 10 is a schematic diagram 2 of implementing CSI-RS pilots of multiple beams. As shown in FIG. 10, multiple windows are defined. In the same window, the precoding weights of CSI-RSs are unchanged, and the windows may be changed.
  • Table 12 shows the time domain position indication by adding window offset information
  • FIG. 11 is a schematic diagram 3 of implementing CSI-RS pilots of multiple beams. As shown in FIG. 11, precoding weights in the time domain may be round-robined.
  • Table 13 is a mapping table for time domain location indication by adding subframe collection information. As shown in Table 13, on the basis of the original quasi-co-location NZP CSI-RS configuration, the subframe set information is added in each Set, and is selected by the Set selection signaling in the DCI.
  • Table 13 indicates time domain location by adding subframe set information.
  • FIG. 12 is a schematic diagram of different subband locations having different beams.
  • Related technology through It is known that a set of periodic NZP CSI-RS configurations, which are equivalent to all RB/subband transmission CSI-RSs in FIG. 12, are considered to have a quasi-co-location relationship with the DMRS of the current data transmission subframe. Inaccurate, one solution is to increase the frequency domain location indication information in each Set based on the original quasi-co-location NZP CSI-RS configuration, and select through the Set selection signaling in the DCI.
  • Table 14 is an indication of the frequency domain position by notifying the subband position, and thus the different subband positions correspond to different weights.
  • the CSI-RS configuration IDs of the sub-bands 1, 2, 3, and 4 are all 1, the weights of each sub-band are different, and therefore, different CSI-RS information configurations for different sub-band positions can be implemented.
  • Table 14 indicates the frequency domain location by notifying the subband position
  • Table 15 is an indication of the frequency domain position by notifying the RB position, and thus different RB positions correspond to different weights.
  • the CSI-RS configuration IDs of the RB1-50 are all 1, the weights of each RB location are different, and therefore, different CSI-RS information configurations for different RB locations can be implemented.
  • Table 15 is an indication of the frequency domain location by notifying the RB location
  • the terminal side needs to receive the high-level configuration signaling sent by the base station in order to obtain the CSI-RS pilot information of the current quasi-co-location.
  • the high-level configuration signaling sent by the base station may be a set of four parameters, and each parameter set includes the following table 16.
  • Table 18 shows the same port corresponding to a set of CSI-RS configurations.
  • the terminal can learn the pilot configuration of one or more sets of quasi-co-locations through Table 16, Table 17, or Table 18, and can obtain the configuration information of the specific port group in the pilot configuration.
  • the terminal receives the DCI related to the downlink scheduling in the downlink physical layer control signaling in the subframe with the downlink data scheduling, and obtains the indication information of the Set selection, and determines the parameterSet ID corresponding to the subframe in which the terminal is currently located.
  • the terminal determines the quasi-common position CSI-RS of the current DMRS according to the parameterSet ID Pilot port group.
  • the terminal After acquiring the CSI-RS pilot port group, the terminal obtains large-scale channel characteristics such as delay spread, Doppler spread, Doppler shift, and average delay based on the included CSI-RS port measurement, and obtains the above delay spread, Doppler spread, Doppler After shift and and average delay information, it is considered that when the DMRS also has a delay spread, Doppler spread, Doppler shift, and average delay similar to the above CSI-RS port, the terminal considers that the CSI-RS port group and the DMRS are quasi-co-shared.
  • the CSI-RS pilot information corresponding to the CSI-RS port group is determined to obtain a large-scale channel characteristic for improving channel estimation and data reception performance.
  • the terminal side needs to receive the high-level configuration signaling sent by the base station, and the high-level configuration signaling sent by the base station may be a set of four parameters, and each parameter set includes Table 19 The information shown can be bound to the indication parameters of the RE mapping.
  • Table 19 contains the pilot configuration IDs of the eight sets of quasi-co-locations.
  • the terminal can learn the pilot configuration of more than one set of common positions through Table 19.
  • the terminal receives the DCI related to the downlink scheduling in the downlink physical layer control signaling on the subframe with the downlink data scheduling, and obtains the indication information of the Set selection.
  • the terminal determines a parameter Set ID according to the subframe in which the terminal is currently located, and determines multiple sets of CSI-RS pilots of the quasi-common position of the current DMRS according to the parameter Set ID.
  • the terminal After acquiring multiple sets of CSI-RS pilot port groups, the terminal obtains large-scale characteristics of the channel based on the included CSI-RS port measurement, such as delay spread, Doppler spread, Doppler shift, and average delay; the terminal will measure multiple sets of pilots. The result is averaged; after the average processed missed measurement information is measured, the terminal determines the delay spread, Doppler spread, Doppler shift, and average delay corresponding to the DMRS and the average delay spread of the multiple sets of CSI-RS configurations, Doppler spread, Doppler shift, and average delay approximation; the terminal determines the average of the large-scale characteristics of the channel corresponding to multiple sets of pilot measurements and uses it for channel estimation and data reception.
  • the terminal After the average processed missed measurement information is measured, the terminal determines the delay spread, Doppler spread, Doppler shift, and average delay corresponding to the DMRS and the average delay spread of the multiple sets of CSI-RS configurations, Doppler spread, Doppler shift, and average delay approx
  • the terminal side needs to receive the high-level configuration signaling sent by the base station, and the high-level configuration signaling sent by the base station may be a set of four parameters, and each parameter set includes Table 20 Or the information shown in Table 21, which can be bound to the indication parameters of the RE mapping.
  • Table 20 Different subframe positions in the same set of CSI-RS configurations respectively correspond to precoding pilot information.
  • Table 21 The different subframe positions in the two sets of CSI-RS configurations respectively correspond to precoding pilot information.
  • the terminal can obtain one or more sets of pilot configurations of the quasi-co-locations through Table 20 or Table 21, and can obtain configuration information of specific subframe positions in the pilot configuration.
  • the terminal receives the DCI related to the downlink scheduling in the downlink physical layer control signaling in the subframe with the downlink data scheduling, and obtains the indication information of the Set selection, and determines the parameterSet ID according to the subframe in which the terminal is currently located.
  • the terminal determines a quasi-co-located CSI-RS pilot subframe position of the current DMRS according to the determined parameterSet ID.
  • the terminal After obtaining the CSI-RS pilot subframe position, the terminal obtains delay spread, Doppler spread, Doppler shift, and average delay based on the received CSI-RS subframe measurement. After the foregoing information is obtained, the terminal considers that the DMRS also has the foregoing subframe. (time domain) position CSI-RS port approximate delay spread, Doppler spread, Doppler shift, and average delay; the terminal will confirm that the pre-coded pilot information corresponding to the CSI RS pilot subframe position and the DMRS are quasi-co-located, And precoding pilot information corresponding to the CSI RS pilot subframe position is used for channel estimation and data reception.
  • the terminal side needs to receive the high-level configuration signaling sent by the base station, and the high-level configuration signaling sent by the base station may be a set of four parameters, and each parameter set includes Table 22 Or Table 23 information, which can be bound to the indication parameters of the RE mapping.
  • Table 22 Precoding pilot indication relationship table corresponding to different window positions in the same set of CSI-RS configurations
  • the terminal can learn one or more sets of pilot configurations of the quasi-co-locations through Table 22 or Table 23, and can obtain configuration information of specific window positions in the pilot configuration.
  • the terminal receives the DCI related to the downlink scheduling in the downlink physical layer control signaling in the subframe with the downlink data scheduling, and obtains the indication information of the Set selection, and determines the parameterSet ID according to the subframe in which the terminal is currently located.
  • the terminal determines a quasi-co-located CSI-RS pilot subframe position of the current DMRS according to the parameter Set ID (a subframe in which the CSI-RS is transmitted included in the indicated window).
  • the terminal After obtaining the CSI-RS pilot subframe position, the terminal obtains delay spread, Doppler spread, Doppler shift, and average delay based on the received CSI-RS subframe measurement. After the foregoing information is obtained, the terminal considers that the DMRS also has the foregoing subframe. (time domain) position CSI-RS port approximate Delay spread, Doppler spread, Doppler shift, and average delay; the terminal will confirm that the pre-coded pilot information corresponding to the CSI RS pilot subframe position and the DMRS are quasi-co-located, and corresponding to the CSI RS pilot subframe position The precoded pilot information is used for channel estimation and data reception.
  • the terminal side needs to receive the high-level configuration signaling sent by the base station, and the high-level configuration signaling sent by the base station may be a set of four parameters, and each parameter set includes Table 24 The information shown can be bound to the indication parameters of the RE mapping.
  • Table 24 Two sets of CSI-RS configurations correspond to subframe groups in different time domains.
  • the terminal can learn one or more sets of pilot configurations of the quasi-co-locations through the table 24, and can obtain configuration information of the subframe group positions in the pilot configuration.
  • the terminal receives the DCI related to the downlink scheduling in the downlink physical layer control signaling in the subframe with the downlink data scheduling, and obtains the indication information of the Set selection, and determines the parameterSet ID according to the subframe in which the terminal is currently located.
  • the terminal determines a quasi-co-located CSI-RS pilot subframe position of the current DMRS according to the parameter Set ID (subframes included in the indicated subframe group).
  • the terminal After acquiring the location of the CSI-RS pilot subframe, the terminal obtains delay spread, Doppler spread, Doppler shift, and average delay based on the received CSI-RS subframe measurement. After the above information is measured, the terminal considers that the DMRS also has the time domain described above. Position CSI-RS port approximate delay spread, Doppler spread, Doppler shift, and average delay; the terminal will confirm the CSI RS pilot.
  • the precoding pilot information corresponding to the frame position is quasi-co-located with the DMRS, and the precoded pilot information corresponding to the CSI RS pilot subframe position is used for channel estimation and data reception. .
  • the terminal side needs to receive the high-level configuration signaling sent by the base station, and the high-level configuration signaling sent by the base station may be a set of four parameters, and each parameter set includes Table 25 Or the information shown in Table 26, which can be bound to the indication parameters of the RE mapping.
  • Table 25 Instructions for adding subband positions in the original parameter set under two sets of CSI-RS configurations
  • Table 26 indicates an indication of adding an RB set to the original parameter set in the same set of CSI-RS configurations.
  • the terminal can learn the pilot configuration of one or more sets of quasi-co-locations through Table 25 or Table 26, and can obtain the configuration information of the frequency domain location in the pilot configuration.
  • the terminal receives the DCI related to the downlink scheduling in the downlink physical layer control signaling in the subframe with the downlink data scheduling, and obtains the indication information of the Set selection, and determines the parameterSet ID according to the subframe in which the terminal is currently located.
  • the terminal determines a quasi-co-located CSI-RS pilot frequency domain location (RB set or subband) of the current DMRS according to the parameterSet ID.
  • the terminal After obtaining the CSI-RS pilot frequency domain location, the terminal obtains delay spread, Doppler spread, Doppler shift, and average delay based on the CSI-RS frequency domain measurement included in these locations. After the above information is measured, the terminal considers that the DMRS also has the above frequency.
  • the delay of the CSI-RS port is similar to the delay spread, Doppler spread, Doppler shift, and average delay; the terminal will confirm that the pre-coded pilot information corresponding to the CSI RS pilot frequency domain position is quasi-co-located with the DMRS, and the CSI is The precoded pilot information corresponding to the RS pilot frequency domain position is used for channel estimation and data reception.
  • the base station and the terminal can assume that there are multiple types of quasi-co-location relationships: for example, the following three types can be included:
  • the first type the terminal assumes that the common pilot port 0-3; the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 are quasi-co-located.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the second type and the third type are all configurations that require the base station quasi-co-location measurement pilot configuration signaling to perform some quasi-co-location measurement pilots; the third type configures the common pilot port CRS of the quasi-co-location, and the second The class configures the channel information measurement pilot port CSI-RS of the quasi-co-location.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the terminal can determine the type of the quasi-co-location relationship according to the configuration of the PMI in the feedback state. For example, when the PMI reporting of all the processes is not enabled, the terminal assumes a dedicated demodulation pilot port 7-14, and the base station is quasi-common.
  • the common pilot port 0-3 indicated by the location measurement pilot configuration signaling is a quasi-co-location; when the PMI of at least one CSI process is enabled, the terminal assumes a dedicated demodulation pilot port 7-14, and the base station is
  • the channel measurement pilot ports 15-22 indicated by the co-location measurement pilot configuration signaling are quasi-co-located.
  • the base station and the terminal can assume that there are multiple types of quasi-co-location relationships: for example, the following three types can be included:
  • the first type the terminal assumes that the common pilot port 0-3; the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 are quasi-co-located.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the second type and the third type are all configurations that require the base station quasi-co-location measurement pilot configuration signaling to perform some quasi-co-location measurement pilots; the third type configures the common pilot port CRS of the quasi-co-location, and the second The class configures the channel information measurement pilot port CSI-RS of the quasi-co-location.
  • the terminal can determine the type set of the quasi-co-location relationship according to the configuration parameter of the PMI in the feedback state. For example, when the PMI reporting of all the processes is not enabled, you can configure one of the following types:
  • the first type the terminal assumes that the common pilot port 0-3; the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 are quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the base station performs quasi-co-location relationship type configuration through 1-bit signaling.
  • the base station and the terminal can assume that there are multiple types of quasi-co-location relationships: for example, the following three types can be included:
  • the first type the terminal assumes that the common pilot port 0-3; the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 are quasi-co-located.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the second type and the third type are all configurations that require the base station quasi-co-location measurement pilot configuration signaling to perform some quasi-co-location measurement pilots; the third type configures the common pilot port CRS of the quasi-co-location, and the second The class configures the channel information measurement pilot port CSI-RS of the quasi-co-location.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the terminal may determine the type of the quasi-co-location relationship according to the CSI-RS measurement restriction parameter configuration. For example, when one of the CSI-RS measurement limits of all processes is enabled, the terminal assumes a dedicated demodulation pilot port 7-14, The common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-location; when the CSI-RS measurement limit of all processes is not enabled, the terminal assumes a dedicated demodulation pilot port 7- 14.
  • the base station quasi-common position measurement pilot configuration signaling indicates that the channel measurement pilot ports 15-22 are quasi-co-located.
  • the base station and the terminal can assume that there are multiple types of quasi-co-location relationships: for example, the following three types can be included:
  • the first type the terminal assumes that the common pilot port 0-3; the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 are quasi-co-located.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the second type and the third type are all configurations that require the base station quasi-co-location measurement pilot configuration signaling to perform some quasi-co-location measurement pilots; the third type configures the common pilot port CRS of the quasi-co-location, and the second The class configures the channel information measurement pilot port CSI-RS of the quasi-co-location.
  • the terminal may determine a type set of the quasi-co-location relationship according to the CSI-RS measurement restriction configuration. For example, when there is a CSI-RS measurement restriction enable of a CSI process, one of the following sets may be configured:
  • the first type the terminal assumes that the common pilot port 0-3; the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 are quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the second type the terminal assumes the dedicated demodulation pilot port 7-14, and the channel measurement pilot port 15-22 indicated by the base station quasi-common position measurement pilot configuration signaling is quasi-co-located.
  • the third type the terminal assumes a dedicated demodulation pilot port 7-14, and the common pilot port 0-3 indicated by the base station quasi-common position measurement pilot configuration signaling is a quasi-co-location.
  • the base station performs quasi-co-location relationship type configuration through 1-bit signaling.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the information transmitting method, the information determining method, and the relationship determining method.
  • the embodiment of the invention further provides a storage medium.
  • the storage medium may be configured to store program codes S11-S12 for performing the following steps:
  • the base station indicates, by using physical layer control signaling, parameter set selection information of a subframe that currently sends physical layer control signaling.
  • the storage medium is further arranged to store program code S21-S22 for performing the following steps:
  • the indication information, the non-zero power CSI-RS pilot indication information of the quasi-common location is used by the terminal to acquire the large-scale characteristic of the channel.
  • the terminal determines the quasi-co-located channel state information measurement pilot CSI-RS information according to the non-zero power CSI-RS pilot indication information of the quasi-co-location.
  • the terminal receives the parameter set selection information through the physical layer control signaling, and determines the current physical layer control signaling according to the non-zero power CSI-RS pilot indication information and the parameter set selection information of the quasi-co-location.
  • the processor executes the execution code S31-S33 of the following steps according to the stored program code in the storage medium:
  • the terminal determines a quasi-co-location relationship between the antenna ports according to the type of the quasi-co-location relationship.
  • the terminal determines the set of quasi-co-location relationships between the antenna ports according to the type of the quasi-co-location relationship and the type indication signaling of the high-layer signaling configuration.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), and a random access memory (Random Access).
  • Memory referred to as RAM
  • mobile hard disk disk or optical disk, and other media that can store program code.
  • each module or step of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into a plurality of integrated circuit modules, or a plurality of the modules or steps are fabricated as a single integrated circuit module. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • the scheme of the embodiment of the present invention can enable the terminal to determine the used CSI-RS pilot configuration information according to the non-zero power CSI-RS pilot indication information at the quasi-co-location, and instruct the terminal to acquire the large-scale characteristic of the channel, so that the terminal can
  • the large-scale characteristics of the acquired channels are matched, and the quasi-common position information of the current data is obtained, which solves the problem that the large-scale characteristics of the channel acquired by the terminal are inaccurate in the notification signaling of the quasi-common position information in the related art.
  • the effect of improving the channel estimation performance of the terminal is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息发送及确定、关系确定的方法及装置,其中,该信息发送的方法包括:基站通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率CSI-RS导频指示信息,该准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;当M>1时,基站还通过物理层控制信令指示当前发送该物理层控制信令的子帧的参数集合选择信息。

Description

一种信息发送及确定、关系确定的方法及装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种信息发送及确定、关系确定的方法及装置。
背景技术
信道解调时,如果终端能够预先获取基站到终端之间信道的一些统计特性参数,终端就可以有效的利用这些统计特性参数来提高解调导频的估计准确度,提高接收机性能,有效的压制噪声,并可以将统计特性参数应用于不同的估计算法和接收算法。需要指出的是,只有同一基站发送的导频信号才可以准确测量出上述统计信道特性,也即,这些统计特性参数的测量一般是针对相同基站发出来的导频信号,如信道状态信息测量导频(Channel State Information Reference Signal,简称为CSI-RS)或者小区共有导频(Cell specific Reference Signal,简称为CRS)。
除此之外,基站进行信号发射时,由于器件不可能非常的理想、不引入任何误差,因此实际***中,频偏和时偏问题是不可回避的。一般来说,频偏和时偏校准也可以通过相同基站发送的CSI-RS或CRS进行测量,从而完成对于频偏和时偏的校准。
在长期演进(Long Term Evolution,简称为LTE)/高级长期演进(Long Term Evolution-Advanced,简称为LTE-A)***中,当支持多点传输时,由于数据发送的基站对于终端来说是透明的,并且数据发送的基站可以动态的切换,终端无法准确的获知接收到的数据是由哪一个基站发送的,因此引入了准共位置信息指示(Quasi-Co-Location indicator)的定义和通知信令。
准共位置信息指示,代表了当前数据发送与通知的CSI-RS导频,与专有解调导频信号(de-Modulation Reference Signal,简称为DMRS)发送与通知的CSI-RS导频,是准共位置的,二者发送与通知的CSI-RS导频具有近似相同的信道的大尺度特性,如delay spread,Doppler spread,Doppler shift,average delay,可以将准共位置理解为当前数据与DMRS近似于同一基站发送。在3GPP TS 36.213的标准中,准共位置信息指示是和重映射(RE mapping)的 相关信息进行联合通知的,表1为准共位置指示和数据信道资源单元映射通知信令每个状态的含义。
表1准共位置指示和数据信道资源单元映射通知信令每个状态的含义
Figure PCTCN2016093960-appb-000001
如表1所示,在准共位置指示和数据信道资源单元映射通知信令中,使用了2bit的物理层下行控制信令(Downlink Control Information,简称为DCI)来动态的指示4个参数集(set),每个set包含一组参数,这一组参数包含了以下多个类别的信息:
-CRS的配置参数信息,包括端口数目以及频域shift的参数。
-多播/组播单频网络(Multimedia Broadcast multicast service Single Frequency Network,简称为MBSFN)子帧配置参数信息。
-零功率(Zero Power,简称为ZP)CSI-RS的参数配置信息。
-数据信道起始符号参数的配置信息。
-准共位置的非零功率(Non-Zero Power,简称为NZP)CSI-RS信息。
可以看出,基站在向终端发送数据的过程中,可以动态的切换发送基站,只需要通过这2bit信令动态的指示上述信息,就可以解决重新映射RE  mapping问题,以及导频与数据传输准共位置变化的问题
在早期版本中,CSI-RS都是非预编码导频,因此基站一般只发送一套CSI-RS。但由于导频和反馈开销的增强,引入预编码CSI-RS后,会出现同一基站发送多个预编码导频的情况,由于不同的预编导频分别对应于不同的预编码权值,这样相当于产生了多个虚拟小区,图1是根据相关技术中在不同预编码导频的情况下产生多个虚拟小区的示意图。
相关技术中有以下几种方式支持不同的预编码导频:
方式1:
表2给出了不同的预编码导频对应于显式的多套不同的导频配置的情况,如表2所示。
表2不同的预编码导频显式的对应于多套不同的导频配置
NZP CSI-RS configuration 1 预编码导频1 预编码weight1/Beam 1
NZP CSI-RS configuration 2 预编码导频2 预编码weight1/Beam 1
…… …… ……
NZP CSI-RS configuration N 预编码导频N 预编码weight1/Beam N
方式2:
表3给出了同一套非零功率CSI-RS导频配置下的不同端口组分别对应不同权值的预编码导频的情况,如表3所示。
表3同一套非零功率CSI-RS导频配置i下的不同端口组上的导频分别对应于不同权值的预编码导频
Figure PCTCN2016093960-appb-000002
方式3:
表4是同一非零功率CSI-RS导频配置i下不同子帧上的导频分别对应于 不同权值的预编码导频,如表4所示。
表4同一非零功率CSI-RS导频配置i下不同子帧上的导频分别对应于不同权值的预编码导频
Figure PCTCN2016093960-appb-000003
方式4:
表5为同一套非零功率CSI-RS导频配置i下的不同频域位置上的导频分别对应于不同权值的预编码导频的情况,如表5所示。
表5同一套非零功率CSI-RS导频配置i下的不同频域位置上的导频分别对应于不同权值的预编码导频
Figure PCTCN2016093960-appb-000004
由此可知,相关技术中,下行准共位置指示和数据信道资源单元映射通知信令仅仅支持通知一套NZP CSI-RS configuration作为与目前传输的数据信道进行准共位置的绑定,但是,对于方式2、3或4,相关的准共位置信息的通知不能区别对待不同的端口、不同的子帧和不同的子带(频域),因此这种方法会影响到信道估计性能和接收机性能。并且对于方式1、2、3或4,当一个小区出现多个波束时,会类似于形成如图1所示的多个虚拟小区,此时,相关的2bit下行准共位置指示和数据信道资源单元映射通知信令不再满足需求。
针对相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,目前尚未提出解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种信息发送及确定、关系确定的方法及装置,解决了相关技术中准共位置信息的通知信令中不能区分不同的预编码导频而导致终端的信道估计性能等不佳的问题。
一种信息发送的方法,包括:基站通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;当M>1时,基站通过物理层控制信令指示当前发送所述物理层控制信令的子帧的参数集合选择信息。
可选地,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含一个或多个准共位置的非零功率CSI-RS端口组的指示信息。
可选地,所述一个或多个准共位置的非零功率CSI-RS端口组对应于同一套非零功率CSI-RS配置。
可选地,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS时域位置指示信息。
可选地,所述准共位置的CSI-RS时域位置指示信息包括以下任一项:偏置信息指示信息和子帧集合指示信息。
可选地,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS频域位置指示信息。
可选地,所述准共位置的CSI-RS频域位置指示信息包括以下任一项:资源块RB集合信息和子带集合信息。
可选地,所述参数集合中包含准共位置的非零功率CSI-RS配置指示信息,其中,所述准共位置的非零功率CSI-RS配置指示信息用于指示Y套非零功率CSI-RS配置,Y>=2,Y为正整数。
可选地,所述子帧中的解调参考信号DMRS端口与所述准共位置的非零功率CSI-RS导频指示信息对应的CSI-RS端口是准共位置的。
一种信息确定的方法,包括:终端通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;当M=1时,终端根据所述准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息;或者,当M>1时,终端通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和所述参数集合选择信息,确定所述物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
可选地,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含一个或多个准共位置的非零功率CSI-RS端口组的指示信息。
可选地,所述一个或多个准共位置的非零功率CSI-RS端口组对应于同一套非零功率CSI-RS配置。
可选地,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS时域位置指示信息。
可选地,所述准共位置的CSI-RS时域位置指示信息包括以下任一项:偏置信息指示信息和子帧集合指示信息。
可选地,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS频域位置指示信息。
可选地,所述准共位置的CSI-RS频域位置指示信息包括以下任一项:资源块RB集合信息和子带集合信息。
可选地,所述参数集合中包含准共位置的Y套非零功率CSI-RS配置指示信息,其中,Y>=2,Y为正整数。
一种关系确定的方法,包括:终端确定N种准共位置关系的类型的集合,N>=1,N为正整数;当N=1时,终端根据所述准共位置关系的类型确定天线端口间的准共位置关系;或者,当N>1时,终端根据所述准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
可选地,该关系确定的方法还包括:终端根据预编码矩阵指示PMI使能 配置参数确定N种准共位置关系的类型集合。
可选地,该关系确定的方法还包括:终端根据测量限制配置参数确定N种准共位置关系的类型集合。
可选地,所述N准共位置关系包括以下类型:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
一种信息发送的装置,包括:第一发送模块和第二发送模块。
第一发送模块,设置为通过高层信令发送M个参数集合,M为正整数,其中,M>=1,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;第二发送模块,设置为当M>1时,通过物理层控制信令指示当前发送所述物理层控制信令的子帧的参数集合选择信息。
一种信息确定的装置,包括:接收模块、第一确定模块和第二确定模块。
接收模块,设置为通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;第一确定模块,设置为当M=1时,根据所述准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息;第二确定模块,设置为当M>1时,通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和所述参数集合选择信息,确定所述物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
一种关系确定的装置,包括:第三确定模块、第四确定模块和第五确定模块。
第三确定模块,确定N种准共位置关系的类型的集合,N>=1,N为正整数;第四确定模块,设置为当N=1时,根据所述准共位置关系的类型确定天线端口间的准共位置关系;或者,第五确定模块,设置为当N>1时,根据所 述准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的信息发送方法、信息确定方法以及关系确定方法。
本发明实施例方案,采用基站通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;当M>1时,基站通过物理层控制信令指示当前发送所述物理层控制信令的子帧的参数集合选择信息。通过本发明实施例方案可以使终端根据在准共位置的非零功率CSI-RS导频指示信息确定使用的CSI-RS导频配置信息,并指示终端获取信道的大尺度特性,可以使终端根据获取的信道的大尺度特性进行匹配,获得当前数据的准共位置信息,解决了相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,进而达到了提高终端的信道估计性能的效果。
附图概述
图1是根据相关技术中在不同预编码导频的情况下产生多个虚拟小区的示意图;
图2是根据本发明实施例的信息发送的方法的流程图;
图3是根据本发明实施例的信息确定的方法的流程图;
图4是根据本发明实施例的关系确定的方法的流程图;
图5是根据本发明实施例的信息发送的装置的结构框图;
图6是根据本发明实施例的信息确定的装置的结构框图;
图7是根据本发明实施例的关系确定的装置的结构框图;
图8是根据本发明实施例的同一个小区中出现多个不同波束的预编码导频的示意图;
图9为本发明实施例的实现多个波束的CSI-RS导频的示意图一;
图10为本发明实施例的实现多个波束的CSI-RS导频的示意图二;
图11为本发明实施例的实现多个波束的CSI-RS导频的示意图三;
图12为本发明实施例的不同的子带位置具有不同波束的示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信息发送的方法,图2是根据本发明实施例的信息发送的方法的流程图,如图2所示,该流程包括步骤S201-S202:
步骤S201,基站通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,该准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性。
步骤S202,当M>1时,基站通过物理层控制信令指示当前发送物理层控制信令的子帧的参数集合选择信息。
步骤S201中的信道的大尺度特性指的是delay spread,Doppler spread,Doppler shift,和average delay。通过上述步骤,可以使终端根据获取的信道的大尺度特性进行匹配,获得当前数据的准共位置信息,解决了相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,进而达到了提高终端的信道估计性能的效果。
在一个可选的实施例中,上述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含一个或多个准共位置的非零功率CSI-RS端口组的指示信息。在该可选实施例中,由于一个或多个准共位置的非零功率CSI-RS端口组上对应着一个或者多个波束,而这一个或多个波束的非零功率CSI-RS是存在 差别的,因此可以指示终端根据准共位置的非零功率CSI-RS端口组的指示信息来确定不同的准共位置的非零功率CSI-RS端口组上的波束分别对应的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,一个或多个准共位置的非零功率CSI-RS端口组对应于同一套非零功率CSI-RS配置。一套非零功率CSI-RS配置指的是相关技术中配置的准共位置的非零功率CSI-RS信息。在该可选实施例中,可以指示终端根据对应于同一套非零功率CSI-RS配置的不同的权值,确定一个或多个准共位置的非零功率CSI-RS端口组上的多个波束分别对应的最终计算得出的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS时域位置指示信息。在该可选实施例中,由于不同准共位置的非零功率CSI-RS时域位置上对应着一个或者多个波束,而位于不同时域位置的一个或多个波束的非零功率CSI-RS是存在差别的,因此可以指示终端根据准共位置的非零功率CSI-RS时域位置指示信息来确定不同的准共位置的非零功率CSI-RS时域位置上的波束分别对应的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,准共位置的CSI-RS时域位置指示信息包括以下任一项:偏置信息指示信息和子帧集合指示信息。
在一个可选的实施例中,参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS频域位置指示信息。在该可选实施例中,由于不同准共位置的非零功率CSI-RS频域位置上对应着一个或者多个波束,而位于不同频域位置的一个或多个波束的非零功率CSI-RS是存在差别的,因此可以指示终端根据准共位置的非零功率CSI-RS频域位置指示信息来确定不同的准共位置的非零功率CSI-RS频域位置上的波束分别对应的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,准共位置的CSI-RS频域位置指示信息包括以下任一项:资源块RB集合信息和子带集合信息。
在一个可选的实施例中,参数集合中包含准共位置的非零功率CSI-RS配置指示信息,其中,该准共位置的非零功率CSI-RS配置指示信息用于指示 Y套非零功率CSI-RS配置,Y>=2,Y为正整数。在该可选实施例中,参数集合可不仅仅指示一套非零功率CSI-RS配置上对应的不同的权值,也可以指示两套以上的非零功率CSI-RS配置,以及该两套以上的非零功率CSI-RS配置对应的权值。
在一个可选的实施例中,子帧中的解调参考信号DMRS端口与上述准共位置的非零功率CSI-RS导频指示信息对应的CSI-RS端口是准共位置的。在该可选实施例中,可以使得终端确定具有与当前数据所在的CSI-RS端口准共位置的解调参考信号DMRS端口,进而提高信道估计的准确性。
以上信息的发送方法是从基站侧进行描述的,下面在终端侧对本发明实施例的信息确定的方法进行说明。
本发明实施例提供了一种信息确定的方法,图3是根据本发明实施例的信息确定的方法的流程图,如图3所示,该流程包括步骤S301-S303:
步骤S301:终端通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性。
步骤S302:当M=1时,终端根据准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息。
步骤S303:当M>1时,终端通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和参数集合选择信息,确定物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
通过上述步骤,可以使终端根据获取的信道的大尺度特性进行匹配,获得当前数据的准共位置信息,解决了相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,进而达到了提高终端的信道估计性能的效果。
在一个可选的实施例中,参数集合中的准共位置的非零功率CSI-RS导频指示信息包含一个或多个准共位置的非零功率CSI-RS端口组的指示信息。在 该可选实施例中,终端根据准共位置的非零功率CSI-RS端口组的指示信息来确定不同的准共位置的非零功率CSI-RS端口组上的波束分别对应的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,一个或多个准共位置的非零功率CSI-RS端口组对应于同一套非零功率CSI-RS配置。在该可选实施例中,终端根据对应于同一套非零功率CSI-RS配置的不同的权值,确定一个或多个准共位置的非零功率CSI-RS端口组上的多个波束分别对应的最终计算得出的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS时域位置指示信息。在该可选实施例中,终端根据准共位置的非零功率CSI-RS时域位置指示信息来确定不同的准共位置的非零功率CSI-RS时域位置上的波束分别对应的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,准共位置的CSI-RS时域位置指示信息为以下任一项:偏置信息指示信息,子帧集合指示信息。
在一个可选的实施例中,参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS频域位置指示信息。在该可选实施例中,可以指示终端根据准共位置的非零功率CSI-RS频域位置指示信息来确定不同的准共位置的非零功率CSI-RS频域位置上的波束分别对应的准共位置的非零功率CSI-RS配置。
在一个可选的实施例中,准共位置的CSI-RS频域位置指示信息包括以下任一项:资源块RB集合信息和子带集合信息。
在一个可选的实施例中,参数集合中包含准共位置的Y套非零功率CSI-RS配置指示信息,其中,Y>=2,Y为正整数。在该可选实施例中,参数集合可不仅仅指示一套非零功率CSI-RS配置上对应的不同的权值,也可以指示两套以上的非零功率CSI-RS配置,以及该两套以上的非零功率CSI-RS配置对应的权值。
在终端确定准共位置信道状态信息测量导频CSI-RS信息之前或之后,本 发明实施例还提供了一种关系确定的方法,图4是根据本发明实施例的关系确定的方法的流程图,如图4所示,该流程包括步骤S401-S403:
步骤S401:终端确定N种准共位置关系的类型的集合,N>=1,N为正整数。
步骤S402:当N=1时,终端根据准共位置关系的类型确定天线端口间的准共位置关系。
步骤S403:当N>1时,终端根据准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
在该可选实施例中,可以使终端根据确定的一种或多种准共位置关系的类型的集合,确定天线端口间的准共位置关系,终端获得当前数据的准共位置信息,解决了相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,进而达到了提高终端的信道估计性能的效果。
在一个可选的实施例中,终端根据预编码矩阵指示PMI使能配置参数确定N种准共位置关系的类型集合。
在一个可选的实施例中,终端根据测量限制配置参数确定N种准共位置关系的类型集合。
在一个可选的实施例中,N准共位置关系包括以下类型:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括多个指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明实施例所述的方法。
在本实施例中还提供了一种信息发送及确定、关系确定的装置,该装置 用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的信息发送的装置的结构框图,如图5所示,该装置包括第一发送模块51和第二发送模块52,下面对该装置进行说明。
第一发送模块51,设置为通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;第二发送模块52,连接于上述第一发送模块51,设置为当M>1时,通过物理层控制信令指示当前发送物理层控制信令的子帧的参数集合选择信息。
图6是根据本发明实施例的信息确定的装置的结构框图,如图6所示,该装置包括接收模块61及第一确定模块62、第二确定模块63,下面对该装置进行说明。
接收模块61,设置为通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;第一确定模块62,连接于上述接收模块61,设置为根据准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息;第二确定模块63,连接于上述接收模块61,设置为当M>1时,通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和参数集合选择信息,确定物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
图7是根据本发明实施例的关系确定的装置的结构框图,如图7所示,该装置包括:第三确定模块71、第四确定模块72和第五确定模块73,下面对该装置进行说明。
第三确定模块71,确定N种准共位置关系的类型的集合,N>=1,N为正整数;第四确定模块72,连接于上述第三确定模块71,设置为当N=1时, 根据准共位置关系的类型确定天线端口间的准共位置关系;第五确定模块73,连接于上述第三确定模块71,设置为当N>1时,根据准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
需要说明的是,上述每个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
下面结合具体的实施环境,对本发明实施例的信息发送、确定的方法及装置进行说明。
实施例一
相关技术中,准共位置信息的通知不能区别对待不同的端口、不同的子帧和不同的子带,因此,使用不同的波束进行传输时都必须采用相同的准共位置的NZP CSI-RS configuration进行测量,但实际上不同的波束具有不同的信道特性(逻辑信道,终端只能看到逻辑信道),因此这种方法会影响到信道估计性能和接收机性能。并且,当一个小区出现多个波束时,类似于形成了如图1的多个虚拟小区,此时,相关的2bit指示信令不再满足需求,在部分情况下可能要支持高达16个及以上的波束的选择。但简单的扩展信令带来的开销并不是一个好的办法。
为了解决相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,本发明实施例提供了一种准共位置信息的指示方法(即上述信息的发送方法),包括:基站通过高层信令M个参数集合(parameter Set),其中,M>=1,M为正整数,;在每个参数集合中,包含一组准共位置的非零功率CSI-RS导频指示信息;并且,当M>1时,基站还通过物理层控制信令指示终端当前所在子帧的参数集合选择信息。
图8是根据本发明实施例的同一个小区中出现多个不同波束的预编码导频的示意图,如图8所示,当同一个小区中出现了很多个不同波束的预编码导频时,假设这里存在K=8个波束,每个波束对应一组L=2port的导频,L为整数,那么终端需要测量K=8个导频端口组,并选出相应的端口组上报CSI。
此时分为两种情况:
第一种情况:
表6 8×2个port属于同一套NZP CSI-RS导频配置的配置表
Figure PCTCN2016093960-appb-000005
第二种情况:
表7每个波束对应一套NZP CSI-RS导频
CSI-RS配置 包含的端口 波束(Beam)
配置1 15,16, Beam1
配置2 15,16, Beam2
配置3 15,16, Beam3
配置4 15,16, Beam4
配置5 15,16, Beam5
配置6 15,16, Beam6
配置7 15,16, Beam7
配置8 15,16, Beam8
对于第一种情况,相关的准共位置指示的通知是与整个一套NZP CSI-RS导频配置关联的,不区分其中包含的port有不同的delay spread,Doppler spread,Doppler shift,and average delay的情况,因此,如果使用相关的准共位置NZP  CSI-RS信息的通知机制,会出现不够准确的问题,影响性能。
根据本发明实施例,提供一个解决办法是:通知port集合的信息。
例如,在配置8个Set时,可以这样如表8这样配置:
表8对同一套NZP CSI-RS配置信息下的4个波束进行分别配置的指示
Figure PCTCN2016093960-appb-000006
这种方式可以先针对UE配置4个最有可能对应的Beam,再通过DCI进行动态的选择,不同的UE配置不同的Beam,这里的Beam就是指port组。相比于原来的方式,这种方式能够更精确的指示与当前子帧DMRS准共位置的CSI-RS端口组信息,而不是整个NZP CSI-RS包含的所有端口信息,更加准确。
在配置4个Set时,还可以如表9这样配置,这种方法可以包含所有的8个Beam。
表9对同一套NZP CSI-RS配置信息下的8个波束进行分别配置的指示
Figure PCTCN2016093960-appb-000007
Figure PCTCN2016093960-appb-000008
对于第二种情况,根据实施例一中的准共位置信息的指示方法,对第二种情况中的准共位置指示信息可以进行扩展,用于指示与当前DMRS准共位置的更多的端口,在配置4个Set时,还可以如表10这样配置,其中,在表10中,每个准共位置NZP CSI-RS配置ID所指示的一套准共位置的CSI-RS配置中,均包含一个或多个端口组。
表10对8个波束的端口信息进行配置
Figure PCTCN2016093960-appb-000009
实施例二
图9为实现多个波束的CSI-RS导频的示意图一,如图9所示,通过在不 同的子帧位置发送不同的波束,并在不同的位置触发不同的信道量化信息反馈,来以比较灵活的方式支持多个预编码导频。
相关技术通知的是一套周期NZP CSI-RS配置,相当于图9中所有子帧都被认为是与当前数据发送子帧的DMRS具有准共位置的关系,这显然会出现问题。一种解决办法是,在原有的准共位置NZP CSI-RS配置基础上,在每个Set中均增加时域位置指示信息,例如,子帧偏置信息和子帧集合信息等,并通过DCI中的Set选择信令进行选择。
表11为通过子帧偏置信息进行时域位置指示的映射表,如表11所示,其是在原有的参数集合中增加子帧偏置offset的指示。
表11通过增加子帧偏置信息进行时域位置指示
Figure PCTCN2016093960-appb-000010
图10为实现多个波束的CSI-RS导频的示意图二,如图10所示,定义多个窗,在同一个窗内CSI-RS的预编码权值不变,窗间可以发生改变。
为了避免图10中所有子帧都与当前数据发送子帧的DMRS具有准共位置的关系,另一种解决是,在原有的参数集合中增加窗偏置offset的指示,表12为通过窗偏置信息进行时域位置指示的映射表。
表12通过增加窗偏置信息进行时域位置指示
Figure PCTCN2016093960-appb-000011
图11为实现多个波束的CSI-RS导频的示意图三,如图11所示,在时域上的预编码权值可以进行轮循。
同样,为了避免图11中所有子帧都与当前数据发送子帧的DMRS具有准共位置的关系,一种解决办法是:表13为通过增加子帧集合信息进行时域位置指示的映射表,如表13所示,在原有的准共位置NZP CSI-RS配置基础上,在每个Set中均增加子帧集合信息,并通过DCI中的Set选择信令进行选择。
表13通过增加子帧集合信息进行时域位置指示
Figure PCTCN2016093960-appb-000012
实施例三
在配置的***带宽较大时,不同的频域位置上使用的预编码导频可能会发生变化,图12是不同的子带位置具有不同波束的示意图。相关技术中,通 知的是一套周期NZP CSI-RS配置,相当于图12中所有RB/子带发送的CSI-RS都被认为是与当前数据发送子帧的DMRS具有准共位置的关系,这种理解是不准确的,一种解决办法是,在原有的准共位置NZP CSI-RS配置基础上,在每个Set中均增加频域位置指示信息,并通过DCI中的Set选择信令进行选择。
表14是通过通知子带位置进行频域位置的指示,进而不同的子带位置对应着不同的权值。虽然子带1、2、3、4的CSI-RS配置ID都为1,但是每个子带的权值不同,因此,可以实现对于不同的子带位置进行不同的CSI-RS信息配置。
表14通过通知子带位置进行频域位置的指示
Figure PCTCN2016093960-appb-000013
表15是通过通知RB位置进行频域位置的指示,进而不同的RB位置对应着不同的权值。虽然RB1-50的CSI-RS配置ID都为1,但是每个RB位置的权值不同,因此,可以实现对于不同的RB位置进行不同的CSI-RS信息配置。
表15是通过通知RB位置进行频域位置的指示
Figure PCTCN2016093960-appb-000014
Figure PCTCN2016093960-appb-000015
实施例四
终端侧为了获取当前准共位置的CSI-RS导频信息,首先需要接收基站发送的高层配置信令,基站发送的高层配置信令可以为4个参数集合,每个参数集合中包含以下表16、表17或表18的内容信息,这些信息可以和RE mapping的指示参数绑定。
表16同一套CSI-RS配置下不同端口的预编码导频配置表
Figure PCTCN2016093960-appb-000016
表17两套CSI-RS配置下不同端口的预编码导频配置表
Figure PCTCN2016093960-appb-000017
Figure PCTCN2016093960-appb-000018
表18同一端口分别对应于一套CSI-RS配置
Figure PCTCN2016093960-appb-000019
终端可以通过表16、表17或表18获知一套或多套准共位置的导频配置,并可以获知导频配置中的具体端口组的配置信息。
终端在有下行数据调度的子帧上,接收下行物理层控制信令中下行调度相关的DCI,并获得Set选择的指示信息,确定与终端当前所在子帧对应的parameterSet ID。终端根据parameterSet ID确定当前DMRS的准共位置CSI-RS 导频port组。
终端获取CSI-RS导频port组后,基于包含的CSI-RS port测量获得大尺度信道特性如delay spread,Doppler spread,Doppler shift,and average delay;并在测量得到上述delay spread,Doppler spread,Doppler shift,and average delay信息后,认为在DMRS也具有与上述CSI-RS port近似的delay spread,Doppler spread,Doppler shift,and average delay的情况下,终端认为该CSI-RS port组与DMRS是准共位置的,确定将该CSI-RS port组对应的CSI-RS导频信息,获取大尺度信道特性用于提升信道估计与数据的接收性能。
实施例五
终端侧为了获取当前准共位置的CSI-RS导频信息,首先需要接收基站发送的高层配置信令,基站发送的高层配置信令可以为4个参数集合,每个参数集合中包含如表19所示的各项信息,这些信息可以和RE mapping的指示参数绑定。
表19对于8个波束的不同端口组的配置关系表
Figure PCTCN2016093960-appb-000020
表19中包含了8套准共位置的导频配置ID,终端可以通过表19获知大于1套准共位置的导频配置。
终端在有下行数据调度的子帧上,接收下行物理层控制信令中下行调度相关的DCI,并获得Set选择的指示信息。终端根据终端当前所在的子帧,确定parameterSet ID,并根据该parameterSet ID确定当前DMRS的准共位置的多套CSI-RS导频。
终端获取多套CSI-RS导频port组后,分别基于包含的CSI-RS port测量获得信道的大尺度特性,如delay spread,Doppler spread,Doppler shift,and average delay;终端将多套导频测量的结果进行平均处理;测量得到平均处理后的打拼测量信息后,终端确定DMRS对应的delay spread,Doppler spread,Doppler shift,and average delay与上述多套CSI-RS配置的平均delay spread,Doppler spread,Doppler shift,and average delay近似;终端确定将多套导频测量对应的信道大尺度特性的平均值,并将其用于信道估计与数据的接收。
实施例六
终端侧为了获取当前准共位置的CSI-RS导频信息,首先需要接收基站发送的高层配置信令,基站发送的高层配置信令可以为4个参数集合,每个参数集合中包含如表20或表21中所示的信息,这些信息可以和RE mapping的指示参数绑定。
表20同一套CSI-RS配置下的不同子帧位置分别对应于预编码导频信息
Figure PCTCN2016093960-appb-000021
表21两套CSI-RS配置下的不同子帧位置分别对应于预编码导频信息
Figure PCTCN2016093960-appb-000022
Figure PCTCN2016093960-appb-000023
终端可以通过表20或表21获知一套或多套准共位置的导频配置,并可以获知导频配置中的具体子帧位置的配置信息。
终端在有下行数据调度的子帧上接收下行物理层控制信令中下行调度相关的DCI,并获得Set选择的指示信息,根据终端当前所在子帧确定parameterSet ID。终端根据确定的parameterSet ID确定当前DMRS的准共位置CSI-RS导频子帧位置。
终端获取CSI-RS导频子帧位置后,基于包含的CSI-RS子帧测量获得delay spread,Doppler spread,Doppler shift,and average delay;测量得到上述信息后,终端认为DMRS也具有与上述子帧(时域)位置CSI-RS port近似的delay spread,Doppler spread,Doppler shift,and average delay;终端将确认该CSI RS导频子帧位置对应的预编码导频信息与DMRS为准共位置的,并将该CSI RS导频子帧位置对应的预编码导频信息用于信道估计与数据的接收。
实施例七
终端侧为了获取当前准共位置的CSI-RS导频信息,首先需要接收基站发送的高层配置信令,基站发送的高层配置信令可以为4个参数集合,每个参数集合中包含如表22或表23信息,这些信息可以和RE mapping的指示参数绑定。
表22同一套CSI-RS配置下对应于不同窗位置的预编码导频指示关系表
Figure PCTCN2016093960-appb-000024
表23两CSI-RS配置下对应于不同窗位置的预编码导频指示关系表
Figure PCTCN2016093960-appb-000025
终端可以通过表22或表23获知一套或多套准共位置的导频配置,并可以获知导频配置中的具体窗位置的配置信息。
终端在有下行数据调度的子帧上接收下行物理层控制信令中下行调度相关的DCI,并获得Set选择的指示信息,根据终端当前所在的子帧确定parameterSet ID。终端根据parameterSet ID确定当前DMRS的准共位置CSI-RS导频子帧位置(指示的窗内包含的发送CSI-RS的子帧)。
终端获取CSI-RS导频子帧位置后,基于包含的CSI-RS子帧测量获得delay spread,Doppler spread,Doppler shift,and average delay;测量得到上述信息后,终端认为DMRS也具有与上述子帧(时域)位置CSI-RS port近似的 delay spread,Doppler spread,Doppler shift,and average delay;终端将确认该CSI RS导频子帧位置对应的预编码导频信息与DMRS为准共位置的,并将该CSI RS导频子帧位置对应的预编码导频信息用于信道估计与数据的接收。
实施例八
终端侧为了获取当前准共位置的CSI-RS导频信息,首先需要接收基站发送的高层配置信令,基站发送的高层配置信令可以为4个参数集合,每个参数集合中包含如表24所示的信息,这些信息可以和RE mapping的指示参数绑定。
表24两套CSI-RS配置对应于不同时域下的子帧组
Figure PCTCN2016093960-appb-000026
终端可以通过表24获知一套或多套准共位置的导频配置,并可以获知导频配置中的子帧组位置的配置信息。
终端在有下行数据调度的子帧上接收下行物理层控制信令中下行调度相关的DCI,并获得Set选择的指示信息,根据终端当前所在的子帧确定parameterSet ID。终端根据parameterSet ID确定当前DMRS的准共位置CSI-RS导频子帧位置(指示的子帧组内包含的子帧)。
终端获取CSI-RS导频子帧位置后,基于包含的CSI-RS子帧测量获得delay spread,Doppler spread,Doppler shift,and average delay;测量得到上述信息后,终端认为DMRS也具有与上述时域位置CSI-RS port近似的delay spread,Doppler spread,Doppler shift,and average delay;终端将确认该CSI RS导频子 帧位置对应的预编码导频信息与DMRS为准共位置的,并将该CSI RS导频子帧位置对应的预编码导频信息用于信道估计与数据的接收。.
实施例九
终端侧为了获取当前准共位置的CSI-RS导频信息,首先需要接收基站发送的高层配置信令,基站发送的高层配置信令可以为4个参数集合,每个参数集合中包含如表25或表26所示的信息,这些信息可以和RE mapping的指示参数绑定。
表25两套CSI-RS配置下在原有的参数集合中增加子带位置的指示
Figure PCTCN2016093960-appb-000027
表26同一套CSI-RS配置下在原有的参数集合中增加RB集合的指示
Figure PCTCN2016093960-appb-000028
终端可以通过表25或表26获知一套或多套准共位置的导频配置,并可以获知导频配置中的频域位置的配置信息。
终端在有下行数据调度的子帧上接收下行物理层控制信令中下行调度相关的DCI,并获得Set选择的指示信息,根据终端当前所在的子帧确定parameterSet ID。终端根据parameterSet ID确定当前DMRS的准共位置CSI-RS导频频域位置(RB集合或子带)。
终端获取CSI-RS导频频域位置后,基于这些位置包含的CSI-RS频域测量获得delay spread,Doppler spread,Doppler shift,and average delay;测量得到上述信息后,终端认为DMRS也具有与上述频域位置CSI-RS port近似的delay spread,Doppler spread,Doppler shift,and average delay;终端将确认该CSI RS导频频域位置对应的预编码导频信息与DMRS为准共位置的,并将该CSI RS导频频域位置对应的预编码导频信息用于信道估计与数据的接收。
实施例十
对于一种下行传输模式,例如LTE-A中定义的传输模式10,基站和终端可以假设存在多种准共位置关系的类型:例如,可以包括如下三类:
第一类:终端假设公共导频端口0-3;专有解调导频端口7-14,信道测量导频端口15-22是准共位置的。
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
这里第二类和第三类都是需要基站准共位置测量导频配置信令进行一些准共位置测量导频的配置;第三类配置的是准共位置的公共导频端口CRS,第二类配置的是准共位置的信道信息测量导频端口CSI-RS。
也可以是只有2类,即仅包括第二类及第三类。
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
终端可以根据反馈时PMI的使能参数配置来确定准共位置关系的类型,例如,当所有进程的PMI上报均不使能,则终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的;当至少有一个CSI进程的PMI的使能时,终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
实施例十一
对于一种下行传输模式,例如LTE-A中定义的传输模式10,基站和终端可以假设存在多种准共位置关系的类型:例如,可以包括如下三类:
第一类:终端假设公共导频端口0-3;专有解调导频端口7-14,信道测量导频端口15-22是准共位置的。
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
这里第二类和第三类都是需要基站准共位置测量导频配置信令进行一些准共位置测量导频的配置;第三类配置的是准共位置的公共导频端口CRS,第二类配置的是准共位置的信道信息测量导频端口CSI-RS。
终端可以根据反馈时PMI的使能参数配置来确定准共位置关系的类型集合,例如,当所有进程的PMI上报均不使能,则可以配置以下集合中的一种类型:
第一类:终端假设公共导频端口0-3;专有解调导频端口7-14,信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
当所有至少一个进程的PMI上报使能,则可以配置以下集合中的任意一种类型:
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
基站通过1bit信令进行准共位置关系类型的配置。
实施例十二
对于一种下行传输模式,例如LTE-A中定义的传输模式10,基站和终端可以假设存在多种准共位置关系的类型:例如,可以包括如下三类:
第一类:终端假设公共导频端口0-3;专有解调导频端口7-14,信道测量导频端口15-22是准共位置的。
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
这里第二类和第三类都是需要基站准共位置测量导频配置信令进行一些准共位置测量导频的配置;第三类配置的是准共位置的公共导频端口CRS,第二类配置的是准共位置的信道信息测量导频端口CSI-RS。
也可以是只有2类:
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
终端可以根据CSI-RS测量限制参数配置来确定准共位置关系的类型,例如,当所有进程的CSI-RS测量限制中有一个使能,则终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的;当所有进程的CSI-RS测量限制均不使能,终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
实施例十三
对于一种下行传输模式,例如LTE-A中定义的传输模式10,基站和终端可以假设存在多种准共位置关系的类型:例如,可以包括如下三类:
第一类:终端假设公共导频端口0-3;专有解调导频端口7-14,信道测量导频端口15-22是准共位置的。
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
这里第二类和第三类都是需要基站准共位置测量导频配置信令进行一些准共位置测量导频的配置;第三类配置的是准共位置的公共导频端口CRS,第二类配置的是准共位置的信道信息测量导频端口CSI-RS。
终端可以根据CSI-RS测量限制配置来确定准共位置关系的类型集合,例如,当存在一个CSI进程的CSI-RS测量限制使能,则可以配置以下集合中的一种类型:
第一类:终端假设公共导频端口0-3;专有解调导频端口7-14,信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
当所有CSI进程的CSI-RS测量限制均不使能,则可以配置以下集合中的任意一种类型:
第二类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的信道测量导频端口15-22是准共位置的。
第三类:终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
基站通过1bit信令进行准共位置关系类型的配置。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现所述的信息发送方法、信息确定方法以及关系确定方法。
本发明实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码S11-S12:
S11,基站通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,该准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性。
S12,当M>1时,基站通过物理层控制信令指示当前发送物理层控制信令的子帧的参数集合选择信息。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码S21-S22:
S21,终端通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性。
S22,当M=1时,终端根据准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息。
S23,当M>1时,终端通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和参数集合选择信息,确定物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行以下步骤的执行代码S31-S33:
S31,终端确定N种准共位置关系的类型的集合,N>=1,N为正整数。
S32,当N=1时,终端根据准共位置关系的类型确定天线端口间的准共位置关系。
S33,当N>1时,终端根据准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access  Memory,简称为RAM)、移动硬盘、磁碟或者光盘等多种可以存储程序代码的介质。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明实施例的每个模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明可选实施例而已,并不用于限制本发明实施例,对于本领域的技术人员来说,本发明实施例可以有多种更改和变化。凡在本发明实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。
工业实用性
通过本发明实施例方案可以使终端根据在准共位置的非零功率CSI-RS导频指示信息确定使用的CSI-RS导频配置信息,并指示终端获取信道的大尺度特性,可以使终端根据获取的信道的大尺度特性进行匹配,获得当前数据的准共位置信息,解决了相关技术中准共位置信息的通知信令中指示不明确而导致终端获取的信道的大尺度特性不准确的问题,进而达到了提高终端的信道估计性能的效果。

Claims (24)

  1. 一种信息发送的方法,包括:
    基站通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;
    当M>1时,基站通过物理层控制信令指示当前发送所述物理层控制信令的子帧的参数集合选择信息。
  2. 根据权利要求1所述的信息发送的方法,其中,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含一个或多个准共位置的非零功率CSI-RS端口组的指示信息。
  3. 根据权利要求2所述的信息发送的方法,其中,所述一个或多个准共位置的非零功率CSI-RS端口组对应于同一套非零功率CSI-RS配置。
  4. 根据权利要求1所述的信息发送的方法,其中,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS时域位置指示信息。
  5. 根据权利要求4所述的信息发送的方法,其中,所述准共位置的CSI-RS时域位置指示信息包括以下任一项:偏置信息指示信息和子帧集合指示信息。
  6. 根据权利要求1所述的信息发送的方法,其中,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS频域位置指示信息。
  7. 根据权利要求6所述的信息发送的方法,其中,所述准共位置的CSI-RS频域位置指示信息包括以下任一项:资源块RB集合信息和子带集合信息。
  8. 根据权利要求1至7中任一项所述的信息发送的方法,其中,所述参数集合中包含准共位置的非零功率CSI-RS配置指示信息,其中,所述准共位置的非零功率CSI-RS配置指示信息用于指示Y套非零功率CSI-RS配置,Y>=2,Y为正整数。
  9. 根据权利要求1至7中任一项所述的信息发送的方法,其中,所述子 帧中的解调参考信号DMRS端口与所述准共位置的非零功率CSI-RS导频指示信息对应的CSI-RS端口是准共位置的。
  10. 一种信息确定的方法,包括:
    终端通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;
    当M=1时,终端根据所述准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息;或者,
    当M>1时,终端通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和所述参数集合选择信息,确定所述物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
  11. 根据权利要求10所述的信息确定的方法,其中,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含一个或多个准共位置的非零功率CSI-RS端口组的指示信息。
  12. 根据权利要求11所述的信息确定的方法,其中,所述一个或多个准共位置的非零功率CSI-RS端口组对应于同一套非零功率CSI-RS配置。
  13. 根据权利要求10所述的信息确定的方法,其中,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS时域位置指示信息。
  14. 根据权利要求13所述的信息确定的方法,其中,所述准共位置的CSI-RS时域位置指示信息包括以下任一项:偏置信息指示信息和子帧集合指示信息。
  15. 根据权利要求10所述的信息确定的方法,其中,所述参数集合中的准共位置的非零功率CSI-RS导频指示信息包含准共位置的CSI-RS频域位置指示信息。
  16. 根据权利要求15所述的信息确定的方法,其中,所述准共位置的 CSI-RS频域位置指示信息包括以下任一项:资源块RB集合信息和子带集合信息。
  17. 根据权利要求10至16中任一项所述的信息确定的方法,其中,所述参数集合中包含准共位置的Y套非零功率CSI-RS配置指示信息,其中,Y>=2,Y为正整数。
  18. 一种关系确定的方法,包括:
    终端确定N种准共位置关系的类型的集合,N>=1,N为正整数;
    当N=1时,终端根据所述准共位置关系的类型确定天线端口间的准共位置关系;或者,
    当N>1时,终端根据所述准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
  19. 根据权利要求18所述的关系确定的方法,还包括:
    终端根据预编码矩阵指示PMI使能配置参数确定N种准共位置关系的类型集合。
  20. 根据权利要求18所述的关系确定的方法,还包括:
    终端根据测量限制配置参数确定N种准共位置关系的类型集合。
  21. 根据权利要求18所述的关系确定的方法,其中,所述N种准共位置关系包括以下类型:
    终端假设专有解调导频端口7-14,基站准共位置测量导频配置信令指示的公共导频端口0-3是准共位置的。
  22. 一种信息发送的装置,包括:第一发送模块和第二发送模块;
    所述第一发送模块,设置为通过高层信令发送M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;
    所述第二发送模块,设置为当M>1时,通过物理层控制信令指示当前发送所述物理层控制信令的子帧的参数集合选择信息。
  23. 一种信息确定的装置,包括:接收模块、第一确定模块和第二确定模块;
    所述接收模块,设置为通过高层信令接收M个参数集合,其中,M>=1,M为正整数,每个参数集合中,包含准共位置的非零功率信道状态信息测量导频CSI-RS导频指示信息,所述准共位置的非零功率CSI-RS导频指示信息用于终端获取信道的大尺度特性;
    第一确定模块,设置为当M=1时,根据所述准共位置的非零功率CSI-RS导频指示信息确定准共位置信道状态信息测量导频CSI-RS信息;
    第二确定模块,设置为当M>1时,通过物理层控制信令接收参数集合选择信息,并根据准共位置的非零功率CSI-RS导频指示信息和所述参数集合选择信息,确定所述物理层控制信令当前所在子帧中解调参考信号DMRS的准共位置CSI-RS信息。
  24. 一种关系确定的装置,包括:第三确定模块、第四确定模块和第五确定模块;
    所述第三确定模块,确定N种准共位置关系的类型的集合,N>=1,N为正整数;
    所述第四确定模块,设置为当N=1时,根据所述准共位置关系的类型确定天线端口间的准共位置关系;
    所述第五确定模块,设置为当N>1时,根据所述准共位置关系的类型和高层信令配置的类型指示信令,确定天线端口间的准共位置关系的集合。
PCT/CN2016/093960 2015-09-25 2016-08-08 一种信息发送及确定、关系确定的方法及装置 WO2017050033A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP23184230.3A EP4283910A3 (en) 2015-09-25 2016-08-08 Information sending, information determining and relationship determining methods and devices
US15/763,272 US10651910B2 (en) 2015-09-25 2016-08-08 Information sending,information determing and relationship determining methods and devices
EP16847915.2A EP3355637B1 (en) 2015-09-25 2016-08-08 Information sending, information determining and relationship determining methods and devices
JP2018515855A JP7165052B2 (ja) 2015-09-25 2016-08-08 情報送信及び決定、関係決定方法及び装置
US16/838,425 US11245452B2 (en) 2015-09-25 2020-04-02 Information sending, information determining and relationship determining methods and devices
US17/559,107 US11777578B2 (en) 2015-09-25 2021-12-22 Information sending, information determining and relationship determining methods and devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510623608.4A CN106559879B (zh) 2015-09-25 2015-09-25 信息发送及确定、关系确定的方法及装置
CN201510623608.4 2015-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/763,272 A-371-Of-International US10651910B2 (en) 2015-09-25 2016-08-08 Information sending,information determing and relationship determining methods and devices
US16/838,425 Continuation US11245452B2 (en) 2015-09-25 2020-04-02 Information sending, information determining and relationship determining methods and devices

Publications (1)

Publication Number Publication Date
WO2017050033A1 true WO2017050033A1 (zh) 2017-03-30

Family

ID=58385826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093960 WO2017050033A1 (zh) 2015-09-25 2016-08-08 一种信息发送及确定、关系确定的方法及装置

Country Status (5)

Country Link
US (3) US10651910B2 (zh)
EP (2) EP4283910A3 (zh)
JP (1) JP7165052B2 (zh)
CN (1) CN106559879B (zh)
WO (1) WO2017050033A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533390A (ja) * 2016-11-04 2019-11-14 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信方法、通信機器、ネットワークデバイスおよび端末
EP3565169A4 (en) * 2017-06-16 2020-03-18 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, NETWORK DEVICE, TERMINAL DEVICE, AND SYSTEM
CN112152687A (zh) * 2017-06-16 2020-12-29 华为技术有限公司 通信方法、终端及网络设备
JP2021503832A (ja) * 2017-11-17 2021-02-12 中興通訊股▲ふん▼有限公司Zte Corporation 情報処理方法、通信装置、および記憶媒体
JP2021507573A (ja) * 2018-01-10 2021-02-22 富士通株式会社 シグナリング指示及び受信方法、装置及び通信システム
EP3737022A4 (en) * 2018-02-11 2021-03-10 Huawei Technologies Co., Ltd. PROCESS, DEVICE AND EQUIPMENT FOR DETERMINING QUASI-COLOCATION INFORMATION

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559879B (zh) * 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
WO2017151027A1 (en) 2016-03-02 2017-09-08 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices operating with fine timing reference signals transmitted occasionally
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107888236B (zh) * 2016-09-30 2021-06-29 华为技术有限公司 一种用于数据传输的方法和装置
CN108023631B (zh) * 2016-11-04 2023-08-22 华为技术有限公司 传输信息的方法和设备
US10820331B2 (en) * 2017-02-03 2020-10-27 Samsung Electronics Co., Ltd Method for controlling wireless communication in beamforming-based cellular system
RU2732078C1 (ru) * 2017-04-25 2020-09-11 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ и устройство обработки сигналов
CN108111269B (zh) * 2017-05-05 2023-01-10 中兴通讯股份有限公司 一种信道状态信息导频传输方法与装置
US10587939B2 (en) * 2017-05-09 2020-03-10 Zte Corporation Dynamic capacity allocation in optical communication networks
US10554262B2 (en) 2017-05-12 2020-02-04 Qualcomm Incorporated Cross-sub-band quasi co-location signaling
CN108111270B (zh) * 2017-06-16 2022-12-30 中兴通讯股份有限公司 导频信号发送、接收方法及装置
CN108112078B (zh) * 2017-06-20 2023-08-29 中兴通讯股份有限公司 上行数据信道起始符号位置的配置方法、装置及存储介质
JP7139413B2 (ja) * 2017-07-21 2022-09-20 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャンネル状態情報参照信号を送受信する方法、及びこのための装置
CN113541909A (zh) 2017-08-11 2021-10-22 中兴通讯股份有限公司 参考信号的配置方法及装置
CN108111281B (zh) * 2017-09-12 2022-03-01 中兴通讯股份有限公司 数据信道参数配置方法及装置
US11089487B2 (en) * 2018-01-31 2021-08-10 Qualcomm Incorporated Cross-band QCL beam determination
CN108199819A (zh) 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
US11510252B2 (en) * 2018-07-04 2022-11-22 Ntt Docomo, Inc. Terminal, radio communication method, base station, and system
CN110769426B (zh) * 2018-07-27 2023-06-09 哈尔滨海能达科技有限公司 一种基于融合基站动态分配信道的方法和控制装置
CN110891301B (zh) * 2018-09-10 2021-08-24 维沃移动通信有限公司 一种信道测量方法、终端设备和网络侧设备
CN110535592B (zh) * 2018-09-28 2023-02-03 中兴通讯股份有限公司 一种信息传输的方法及相关设备
CN111416639B (zh) * 2019-01-07 2021-06-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP3925309A1 (en) * 2019-02-14 2021-12-22 Sony Group Corporation Terminal device, system and methods
CN110536394B (zh) * 2019-03-29 2024-04-05 中兴通讯股份有限公司 功率控制方法、装置和***
US11088779B2 (en) * 2019-04-30 2021-08-10 Charter Communications Operating, Llc Methods and apparatus for supporting transmission bursts
WO2021114127A1 (en) * 2019-12-11 2021-06-17 Qualcomm Incorporated Quasi-colocation configuration
WO2021179311A1 (zh) * 2020-03-13 2021-09-16 华为技术有限公司 一种信道状态信息csi测量的指示方法和通信装置
US20220030593A1 (en) * 2020-07-24 2022-01-27 Qualcomm Incorporated Communicating across a wideband using sub-bands

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001678A (zh) * 2011-09-10 2013-03-27 华为技术有限公司 多节点协作传输的方法和装置
US20130322373A1 (en) * 2012-05-31 2013-12-05 Samsung Electronics Co., Ltd. Transmission method and apparatus in a wireless communication system
CN103795513A (zh) * 2012-10-31 2014-05-14 中兴通讯股份有限公司 一种下行控制信息的配置、获取方法、基站和终端
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
CN104350695A (zh) * 2012-06-05 2015-02-11 Lg电子株式会社 在无线通信***中接收控制信息的方法和设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119091A1 (ko) 2012-02-11 2013-08-15 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 하향링크 데이터 채널 수신 방법 및 이를 위한 장치
KR20150035591A (ko) * 2012-07-03 2015-04-06 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
KR102086515B1 (ko) * 2012-09-16 2020-03-09 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102148651B1 (ko) 2012-09-21 2020-08-27 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 송수신하는 방법 및 이를 위한 장치
EP2905914B1 (en) * 2012-10-04 2018-08-15 LG Electronics Inc. Method and apparatus for transreceiving downlink signal by considering antenna port relationship in wireless communication system
WO2014054901A1 (ko) 2012-10-04 2014-04-10 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
EP3432502B1 (en) * 2012-10-04 2019-12-04 LG Electronics Inc. Method and apparatus for transreceiving downlink signal by considering antenna port relationship in wireless communication system
ES2760478T3 (es) * 2012-10-30 2020-05-14 Huawei Tech Co Ltd Método para procesar un canal de control de enlace descendente físico mejorado y equipo de usuario
US9307521B2 (en) * 2012-11-01 2016-04-05 Samsung Electronics Co., Ltd. Transmission scheme and quasi co-location assumption of antenna ports for PDSCH of transmission mode 10 for LTE advanced
US11139862B2 (en) 2012-11-02 2021-10-05 Samsung Electronics Co., Ltd. Configuration of rate matching and interference measurement resources for coordinated multi-point transmission
JP2014096777A (ja) * 2012-11-12 2014-05-22 Ntt Docomo Inc 無線通信方法、無線通信システム、無線基地局及びユーザ端末
EP2942888B1 (en) 2013-01-07 2018-08-01 LG Electronics Inc. Method for receiving a downlink signal from a plurality of transmission points by a user equipment and corresponding user equipment
KR20150121002A (ko) 2013-02-21 2015-10-28 엘지전자 주식회사 무선 통신 시스템에서 대규모 mimo를 위한 안테나 포트 간 qcl 설정 방법 및 이를 위한 장치
JPWO2014148318A1 (ja) 2013-03-18 2017-02-16 シャープ株式会社 基地局、端末、通信システム、通信方法および集積回路
KR102232420B1 (ko) * 2013-03-27 2021-03-26 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 참조 신호를 설정하는 방법 및 이를 위한 장치
WO2015016575A1 (ko) * 2013-07-29 2015-02-05 엘지전자 주식회사 전송포인트 선택에 기반하여 다중 전송포인트 협력을 수행하는 방법 및 이를 수행하는 장치
US10419095B2 (en) * 2015-01-05 2019-09-17 Lg Electronics Inc. Method for configuring channel state information using polarization characteristics of antenna in wireless communication system and device therefor
CN106559879B (zh) 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001678A (zh) * 2011-09-10 2013-03-27 华为技术有限公司 多节点协作传输的方法和装置
CN104106223A (zh) * 2012-02-11 2014-10-15 Lg电子株式会社 报告信道状态信息的方法、其支持方法及所述方法的设备
US20130322373A1 (en) * 2012-05-31 2013-12-05 Samsung Electronics Co., Ltd. Transmission method and apparatus in a wireless communication system
CN104350695A (zh) * 2012-06-05 2015-02-11 Lg电子株式会社 在无线通信***中接收控制信息的方法和设备
CN103795513A (zh) * 2012-10-31 2014-05-14 中兴通讯股份有限公司 一种下行控制信息的配置、获取方法、基站和终端

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128349B2 (en) 2016-11-04 2021-09-21 Huawei Technologies Co., Ltd. Communication method, communications apparatus, network device, and terminal
JP2019533390A (ja) * 2016-11-04 2019-11-14 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信方法、通信機器、ネットワークデバイスおよび端末
US11546020B2 (en) 2016-11-04 2023-01-03 Huawei Technologies Co., Ltd. Communication method, communications apparatus, network device, and terminal
EP3565169A4 (en) * 2017-06-16 2020-03-18 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, NETWORK DEVICE, TERMINAL DEVICE, AND SYSTEM
CN112152687A (zh) * 2017-06-16 2020-12-29 华为技术有限公司 通信方法、终端及网络设备
CN112152687B (zh) * 2017-06-16 2024-04-09 华为技术有限公司 通信方法、终端及网络设备
US11063723B2 (en) 2017-06-16 2021-07-13 Huawei Technologies Co., Ltd. Communication method, network device, terminal device, and system
JP2021503832A (ja) * 2017-11-17 2021-02-12 中興通訊股▲ふん▼有限公司Zte Corporation 情報処理方法、通信装置、および記憶媒体
JP7058733B2 (ja) 2017-11-17 2022-04-22 中興通訊股▲ふん▼有限公司 情報処理方法、通信装置、および記憶媒体
US11777665B2 (en) 2017-11-17 2023-10-03 Zte Corporation Information processing method, communication device and storage medium
JP7040617B2 (ja) 2018-01-10 2022-03-23 富士通株式会社 シグナリング指示及び受信方法、装置及び通信システム
JP2021507573A (ja) * 2018-01-10 2021-02-22 富士通株式会社 シグナリング指示及び受信方法、装置及び通信システム
EP3737022A4 (en) * 2018-02-11 2021-03-10 Huawei Technologies Co., Ltd. PROCESS, DEVICE AND EQUIPMENT FOR DETERMINING QUASI-COLOCATION INFORMATION
US11909559B2 (en) 2018-02-11 2024-02-20 Huawei Technologies Co., Ltd. Quasi co-location information determining method, apparatus, and device

Also Published As

Publication number Publication date
CN106559879A (zh) 2017-04-05
US20200235798A1 (en) 2020-07-23
CN106559879B (zh) 2019-08-02
US11777578B2 (en) 2023-10-03
EP4283910A2 (en) 2023-11-29
US11245452B2 (en) 2022-02-08
EP3355637A1 (en) 2018-08-01
EP3355637A4 (en) 2018-09-19
JP7165052B2 (ja) 2022-11-02
EP3355637B1 (en) 2023-08-09
JP2018530243A (ja) 2018-10-11
US20220116092A1 (en) 2022-04-14
US20180287681A1 (en) 2018-10-04
EP4283910A3 (en) 2024-02-21
US10651910B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2017050033A1 (zh) 一种信息发送及确定、关系确定的方法及装置
US11765603B2 (en) CSI feedback design for new radio
US10111112B2 (en) Method and device for reporting channel state information
CN105991231B (zh) 获取信道状态信息csi的方法及装置
EP2701425B1 (en) Method, device, and system for reporting channel quality indicator
JP5723032B2 (ja) キャリアアグリゲーション中、周期的なcsi報告の優先規則
US10205497B2 (en) Signal transmission method and apparatus
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
CN109644025B (zh) 具有波束赋形训练和信道估计的参考信号
CN110138469B (zh) 一种移动终端及其信道状态信息测量参考信号的测量方法
US11109251B2 (en) Method and apparatus for channel state information reporting
CN109155693B (zh) 低复杂度多配置csi报告
CN106559182B (zh) 信道参数的配置获取方法、装置及***
KR20150131369A (ko) 기준 신호를 송수신하는 방법 및 장치, 사용자 기기, 및 기지국
CN107888307B (zh) 干扰测量方法、装置及***,干扰测量指示方法及装置
EP3200356A1 (en) Channel state information feedback method, device and system
WO2017167156A1 (zh) Dmrs的发送方法及装置
WO2016082224A1 (zh) 一种资源配置的方法、用户设备及基站
JP7291257B2 (ja) 端末、基地局、通信システム及び無線通信方法
WO2012122912A1 (zh) 一种解调导频物理资源块绑定解调的方法及***
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
CN115150025B (zh) Csi反馈方法、相关设备及可读存储介质
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763272

Country of ref document: US

Ref document number: 2018515855

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016847915

Country of ref document: EP