WO2017046954A1 - Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator - Google Patents

Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator Download PDF

Info

Publication number
WO2017046954A1
WO2017046954A1 PCT/JP2015/076756 JP2015076756W WO2017046954A1 WO 2017046954 A1 WO2017046954 A1 WO 2017046954A1 JP 2015076756 W JP2015076756 W JP 2015076756W WO 2017046954 A1 WO2017046954 A1 WO 2017046954A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
coils
electrical machine
coil
rotating electrical
Prior art date
Application number
PCT/JP2015/076756
Other languages
French (fr)
Japanese (ja)
Inventor
池田 剛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017540444A priority Critical patent/JP6524247B2/en
Priority to CN201590000583.6U priority patent/CN206379852U/en
Priority to PCT/JP2015/076756 priority patent/WO2017046954A1/en
Publication of WO2017046954A1 publication Critical patent/WO2017046954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to a method of manufacturing a rotating electrical machine, and more particularly to a magnetization process of the rotating electrical machine.
  • a winding method called concentrated winding in which a coil wire is wound directly around one tooth of a stator, is often employed.
  • the coil wire length can be shortened compared to the so-called distributed winding in which the coil wire is wound over a plurality of teeth of the stator, so that loss due to coil wire resistance can be reduced and the efficiency of the electric motor can be increased.
  • concentrated winding the volume of the coil can be reduced, so that the electric motor can be reduced in size.
  • Permanent magnets are generally used for rotors of electric motors that employ concentrated winding stators.
  • the rotor permanent magnet magnetization method includes a pre-assembly magnetization method in which the rotor has a permanent magnet before assembling the stator and rotor, and a large current in the stator after the stator and rotor are assembled.
  • There are two types of built-in magnetization methods in which the magnetic member of the rotor is magnetized by the generated magnetic field.
  • the built-in magnetizing method is not affected by the magnetic force of the permanent magnet of the rotor at the time of assembling, so that the assembling property is better than the pre-assembling magnetizing method.
  • the magnetic member of the rotor is made of a magnetic material that has not yet been magnetized.
  • Patent Document 1 as a built-in magnetization of a rotor of an electric motor employing a concentrated winding stator, a magnetized power source is connected between two phases of three phases of a three-phase Y-connected stator, and a high voltage pulse voltage is applied.
  • a method for magnetizing a magnetic member of a rotor by generating a magnetic flux is disclosed.
  • a rare-earth magnet utilizes the fact that the saturation magnetization magnetic field required at high temperatures is reduced, and a heat medium is circulated inside the rotor during built-in magnetization to increase the temperature of the magnetic member of the rotor.
  • a method of incorporating and magnetizing in a state is disclosed.
  • Patent Document 3 discloses a method of performing magnetization twice by changing the phase of a rotor when performing built-in magnetization. Since the magnetic flux density distribution is not uniform in one magnetization, a weakly magnetized portion appears in the rotor, but the weakly magnetized portion of the rotor is supplemented.
  • the magnetic field required for built-in magnetization is 2T or more, and the voltage applied to the coil wire at that time is about several kV and the current is as large as several thousand A. Become. Thereby, the subject that the load to the insulating film of a coil wire is applied at the time of built-in magnetization occurs.
  • the present invention solves these problems, and reduces the damage to the insulating coating on the coil wire surface without increasing the size of the equipment during built-in magnetization, while reducing the damage to the magnetic material of the rotor. It is an object of the present invention to provide a method of manufacturing a rotating electrical machine capable of built-in magnetization that is given a magnetic force, a stator of the rotating electrical machine, and a rotating electrical machine including the stator.
  • a method of manufacturing a rotating electrical machine includes: a cylindrical stator having a plurality of teeth provided projecting inward; and a rotor having a magnetic member rotatably provided on an inner diameter portion of the stator.
  • the built-in magnetization is performed in a state where a plurality of coils are wound in parallel on one tooth of the stator of the rotating electrical machine, the required maximum voltage is reduced by the number of coils wound in parallel.
  • the load on the insulation film of the coil wire can be reduced.
  • FIG. 5 A split core is extracted from the stator of FIG. It is the figure showing the cross section of the split core of FIG. 5 is an example in which the number of turns of each coil is changed in the divided core of FIG. It is a perspective view of the division
  • FIG. 1 is a perspective view of a stator 10 of a rotating electrical machine according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram of the structure of the stator 10 and the rotor 50 in a cross section perpendicular to the rotating shaft 52 of the rotating electrical machine according to the first embodiment of the present invention.
  • FIG. 3 shows the split core 20 extracted from the stator 10 of FIG.
  • the stator 10 is configured by arranging a plurality of divided cores 20 in a circular shape.
  • the stator 10 is fixed in advance inside a casing of a rotating electrical machine such as an electric motor. As shown in FIG.
  • a rotor 50 having a magnetic member 51 that is not magnetized is inserted with a predetermined gap between the inner diameter side of the stator 10 and the inside where the teeth 23 are arranged in a circle.
  • the rotor 50 is held in a rotatable state by the rotation shaft 52 being supported by a bearing or the like inside the casing of the rotating electrical machine.
  • the casing and bearings of the rotating electrical machine are not shown.
  • the plurality of divided cores 20 are each provided with teeth 23 projecting toward the inner diameter side of the stator 10.
  • a plurality of coils 40 are wound around the teeth 23.
  • two coils 40 (40a, 40b) are wound to simplify the explanation, and each coil 40 (40a, 40b) has only one turn of the coil wire. The wound one is shown.
  • the winding direction of each coil 40 (40a, 40b) is the same direction.
  • the start end portion 41a indicates a portion at the start of winding of the coil 40a
  • the end portion 42a indicates a portion at the end of winding of the coil 40a.
  • the start end portion 41b indicates a portion at the start of winding of the coil 40b
  • the end portion 42b indicates a portion at the end of winding of the coil 40b.
  • a permanent magnet is used for the rotor 50 of the rotating electrical machine that employs the concentrated winding stator 10.
  • a method of magnetizing the permanent magnet of the rotor 50 there is a pre-assembly magnetization method in which the magnetic member 51 is magnetized before the stator 10 and the rotor 50 are assembled. Further, there is a built-in magnetization method in which a high voltage is applied to the stator 10 after the stator 10 and the rotor 50 are assembled, and the magnetic member 51 is magnetized by the generated magnetic field to obtain a permanent magnet.
  • the built-in magnetization method has better assembly than the pre-assembly magnetization method because the magnetic member 51 of the rotor 50 does not have a magnetic force during assembly and does not affect the work of the magnetic force. It has become.
  • the built-in magnetization method is adopted.
  • FIG. 4 is a view showing a cross section of the split core 20 of FIG. A cross section taken along a plane perpendicular to the longitudinal direction of the split core 20 in FIG. 3 is represented as shown in FIG.
  • a voltage is applied in a state where a plurality of electrically independent coils 40 wound around the teeth 23 are electrically connected in parallel to a magnetized power source. That is, the coil 40a and the coil 40b have the start end portions 41a and 41b connected to one of the two electrodes of the magnetized power source, the end portions 42a and 42b connected to the other electrode, and a high-voltage DC voltage. Apply. Thereby, the magnetic field of the same direction arises in the coil 40a and the coil 40b, and the magnetic member 51 of the rotor 50 is magnetized by the magnetic field.
  • the coils 40a and 40b of the split core 20 are electrically connected.
  • the electrical connection between the coil 40a on the inner diameter side of the stator 10 and the coil 40b on the outer diameter side of the stator 10 is connected in series. That is, the terminal end portion 42b of the outer diameter side coil 40b and the starting end portion 41a of the inner diameter side coil 40a are connected, and the current flowing in the coil 40 as one coil 40 is directed from the outer diameter side of the stator 10 toward the inner diameter side. Connected to flow in one direction.
  • Each divided core 20 constituting the stator 10 has the same structure.
  • FIG. 5 is an example in which the number of turns of each of the coils 40 in the split core 20 of FIG. 4 is changed.
  • the first embodiment as an example, a configuration in which two electrically independent coils 40a and 40b are wound by one turn is shown.
  • the number of coils 40 and the number of turns of each coil 40 are as follows. It is not limited to.
  • FIG. 4 a configuration in which two electrically independent coils 40a and 40b are wound by 52 turns each is also possible.
  • the coil 40a is hatched.
  • Embodiment 2 the method of connecting the plurality of coils 40 in each divided core 20 is changed from the first embodiment.
  • the difference from the first embodiment will be mainly described.
  • FIG. 6 is a perspective view of the split core 20 of the stator 10 of the rotating electrical machine according to the second embodiment of the present invention.
  • the plurality of coils 40a and coils 40b wound around the split core 20 are electrically connected by pressure bonding.
  • a cylindrical butt sleeve 30 such as a bare crimp sleeve for copper wire defined in “JIS C 2806” is used.
  • the start end portion 41a of the coil 40a and the end portion 42b of the coil 40b are inserted into the butt sleeve 30 and are crimped in that state for electrical connection.
  • electrical connection can be achieved with a simple process, and the productivity of the rotating electrical machine is increased.
  • Embodiment 3 FIG.
  • the method of connecting the plurality of coils 40 in each divided core 20 is changed from the first embodiment.
  • the difference from the first embodiment will be mainly described.
  • FIG. 7 is a perspective view of the split core 20 of the stator 10 of the rotating electrical machine according to the third embodiment of the present invention.
  • the plurality of coils 40a and coils 40b wound around the split core 20 are electrically connected by brazing using the braze 60.
  • the coil wires of the coils 40a and 40b are brought into contact with each other as shown in FIG. 6, and the solder 60 is attached around the coil wires to make electrical connection.
  • FIG. 8 is a view showing a cross section of the brazed portion of FIG. A cross section substantially perpendicular to the central axis of the coil wire of the start end portion 41a and the end end portion 42b at the portion of the row 60 in FIG. 7 is expressed as shown in FIG.
  • the solder 60 has a shape that covers the surface of the coil wire as shown in FIG.
  • the temperature in the compressor rises up to 130 ° C., so that the solder 60 has a melting point higher than that and is inexpensive.
  • the alloy composition is Sn96.5% ⁇ It is preferable to use a material such as Ag3% -Cu0.5% lead-free solder.
  • Embodiment 4 FIG.
  • the method of connecting the plurality of coils 40 in each divided core 20 is changed from the first embodiment.
  • the difference from the first embodiment will be mainly described.
  • FIG. 9 is a perspective view of the split core 20 of the stator 10 of the rotating electrical machine according to the fourth embodiment of the present invention.
  • the plurality of coils 40a and coils 40b wound around the split core 20 are electrically connected by switching the switch 70.
  • the start end 41a of the coil 40a and the end end 42b of the coil 40b are connected to the switch 70.
  • the switch 70 is configured to switch between a state where the coils 40a and 40b are electrically independent and a state where they are electrically connected in series by sliding the slide portion 71.
  • the coil 40a and the coil 40b are electrically independent at the time of built-in magnetization, and the coil 40a and the coil 40b are electrically switched by switching the switch 70 after the built-in magnetization.
  • the state of being connected in series can be switched with one touch.
  • the switch 70 for example, a slide switch that can switch between connection and non-connection between the two contacts by shifting the slide portion 71 may be used.
  • a method of manufacturing a rotating electrical machine according to the present invention includes a cylindrical stator 10 having a plurality of teeth 23 provided to protrude inward, and a magnetic member 51 provided rotatably on an inner diameter portion of the stator 10.
  • a rotating electric machine having a rotor 50 and a winding step of winding a plurality of coils 40 around each of a plurality of teeth 23 in a concentrated manner, and applying a magnetizing voltage to each of the plurality of coils 40.
  • built-in magnetization can be performed by applying a voltage in parallel to each of the coils 40a and 40b wound in parallel around one tooth 23 of the stator 10 of the rotating electrical machine. . Therefore, the maximum voltage required for magnetization is reduced by the number of coils 40 wound in parallel. Therefore, the load on the insulating film of the coil wire of each coil 40 due to the voltage applied to each coil 40 can be reduced. As a result, the reliability of the rotating electrical machine can be improved.
  • built-in magnetization built-in magnetization can be performed with the same equipment as in the past, and there is no need to enlarge the equipment.
  • connection step can switch the connection of the plurality of coils 40 between an electrically connected state and a non-electrically connected state. This is done by the switch 70. By configuring in this way, there is an effect that the electrical connection of the coil 40 of the split core 20 can be performed in a short time after the built-in magnetization.
  • the stator of the rotating electrical machine according to the present invention is a stator 10 of the rotating electrical machine having a plurality of teeth 23 that are cylindrical and project toward the inner diameter side, and each of the plurality of teeth 23.
  • a plurality of electrically independent coils 40 are wound in a concentrated manner. With this configuration, it is possible to apply a voltage in parallel to each of the coil 40a and the coil 40b wound in parallel around one tooth 23 of the stator 10 of the rotating electrical machine. Therefore, the magnetization process in the manufacturing method of the rotating electrical machine according to the above (1) to (4) can be realized, and the load on the insulating film of the coil wire of each coil 40 due to the voltage applied to each coil 40 can be reduced. In addition, the reliability of the rotating electrical machine can be improved. Further, in the case of built-in magnetization, the magnetizing process can be performed with the same equipment as the conventional one, and there is no need to increase the size of the equipment.
  • the plurality of coils 40 are connected to each other so that the magnetic fields generated when a current flows through the coils 40 are generated in the same direction.
  • a switch 70 that can switch between an electrically connected state and an electrically unconnected state.
  • a rotating electrical machine includes the stator 10 of the rotating electrical machine of (6) above. With this configuration, it is possible to provide a rotating electrical machine including a rotor having a magnetic force equivalent to that of the related art while reducing the load on the insulating film of the coil wire of each coil 40 due to the voltage applied to each coil 40. Further, in the case of built-in magnetization, built-in magnetization can be performed with the same equipment as in the prior art, and it is possible to manufacture a rotating electrical machine without the need to increase the size of the equipment. Moreover, electrical connection of the plurality of coils 40 of the split core 20 can be performed in a short time, and the time required for manufacturing the rotating electrical machine can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Provided are a method for manufacturing a rotary electric machine, a stator for a rotary electric machine, and a rotary electric machine equipped with a stator, with are capable of magnetization with the same magnetic force as the prior art, while minimizing the load placed on coil wires. The method for manufacturing a rotary electric machine manufactures a rotary electric machine equipped with a cylindrical stator having a plurality of teeth protruding toward the inside, and a rotor provided so as to be capable of rotating in the inner diameter portion of the stator, and having a magnetic material. This method has: a winding step wherein a plurality of coils are wound on each of a plurality of teeth as a concentrated winding; a magnetization step wherein a magnetization voltage is applied to each of the plurality of coils, thereby magnetizing the magnetic material; and a connection step wherein the multiple coils are connected electrically such that the magnetic field generated when current runs through each coil is generated in the same direction.

Description

回転電機の製造方法、回転電機のステータ、及びそのステータを備える回転電機Rotating electrical machine manufacturing method, rotating electrical machine stator, and rotating electrical machine including the stator
 本発明は、回転電機の製造方法に関し、特にその回転電機の着磁工程に関する。 The present invention relates to a method of manufacturing a rotating electrical machine, and more particularly to a magnetization process of the rotating electrical machine.
 近年、電動機の効率を高めるため、ステータの1つのティースに直接コイル線を巻回する集中巻きと呼ばれる巻線方式を採用することが多くなっている。ステータの複数のティースにまたがってコイル線を巻回す分布巻きと呼ばれるものよりも、コイル線長を短くできるためコイル線抵抗による損失を減らし、電動機の効率を高めることができる。また、集中巻きを採用することにより、コイルの体積が小さくできるため電動機を小型化できるという特徴がある。 In recent years, in order to increase the efficiency of an electric motor, a winding method called concentrated winding, in which a coil wire is wound directly around one tooth of a stator, is often employed. The coil wire length can be shortened compared to the so-called distributed winding in which the coil wire is wound over a plurality of teeth of the stator, so that loss due to coil wire resistance can be reduced and the efficiency of the electric motor can be increased. In addition, by adopting concentrated winding, the volume of the coil can be reduced, so that the electric motor can be reduced in size.
 集中巻のステータを採用した電動機の回転子には一般的に永久磁石が用いられている。回転子の永久磁石の着磁方式は、ステータと回転子とを組み立てる前において回転子が永久磁石を有している組立前着磁方式と、ステータと回転子とを組み立てた後にステータに大電流を流し、その発生磁場により回転子の磁性部材に着磁をする組込着磁方式の2通りある。組込着磁方式は、組立の際にその回転子の永久磁石の磁力による影響がないため、組立前着磁方式より組立性が良いものとなっている。なお回転子の磁性部材は、まだ着磁されていない磁性材料により構成されている。 ) Permanent magnets are generally used for rotors of electric motors that employ concentrated winding stators. The rotor permanent magnet magnetization method includes a pre-assembly magnetization method in which the rotor has a permanent magnet before assembling the stator and rotor, and a large current in the stator after the stator and rotor are assembled. There are two types of built-in magnetization methods in which the magnetic member of the rotor is magnetized by the generated magnetic field. The built-in magnetizing method is not affected by the magnetic force of the permanent magnet of the rotor at the time of assembling, so that the assembling property is better than the pre-assembling magnetizing method. The magnetic member of the rotor is made of a magnetic material that has not yet been magnetized.
 特許文献1では、集中巻のステータを採用した電動機の回転子の組込着磁として、3相Y結線のステータの3相のうち2相間に着磁電源を接続し、高圧パルス電圧を印加することによって磁束を発生させて回転子の磁性部材を着磁する方法が開示されている。 In Patent Document 1, as a built-in magnetization of a rotor of an electric motor employing a concentrated winding stator, a magnetized power source is connected between two phases of three phases of a three-phase Y-connected stator, and a high voltage pulse voltage is applied. A method for magnetizing a magnetic member of a rotor by generating a magnetic flux is disclosed.
 特許文献2では、希土類磁石が高温で必要な飽和着磁磁場が低下することを利用し、組込着磁時に回転子の内側に熱媒を流通させ、回転子の磁性部材の温度を上げた状態で組込着磁する方法が開示されている。 In Patent Document 2, a rare-earth magnet utilizes the fact that the saturation magnetization magnetic field required at high temperatures is reduced, and a heat medium is circulated inside the rotor during built-in magnetization to increase the temperature of the magnetic member of the rotor. A method of incorporating and magnetizing in a state is disclosed.
 特許文献3では、組込着磁をする際に、回転子の位相を変化させ2回着磁する方法が開示されている。1回の着磁では磁束密度分布が均一でないため、回転子に着磁の弱い部分が出てきてしまうが、回転子の着磁の弱い部分を補完している。 Patent Document 3 discloses a method of performing magnetization twice by changing the phase of a rotor when performing built-in magnetization. Since the magnetic flux density distribution is not uniform in one magnetization, a weakly magnetized portion appears in the rotor, but the weakly magnetized portion of the rotor is supplemented.
特許第3889532号公報Japanese Patent No. 3889532 特開2013-240224号公報JP 2013-240224 A 特許第3601288号公報Japanese Patent No. 3601288
 しかし、特許文献1に開示されている技術では、組込着磁に必要となる磁場は2T以上であり、その際にコイル線にかかる電圧は数kV程度、電流は数千Aと大きなものとなる。これにより、組込着磁時にコイル線の絶縁被膜への負荷がかかるという課題がある。 However, in the technique disclosed in Patent Document 1, the magnetic field required for built-in magnetization is 2T or more, and the voltage applied to the coil wire at that time is about several kV and the current is as large as several thousand A. Become. Thereby, the subject that the load to the insulating film of a coil wire is applied at the time of built-in magnetization occurs.
 また、特許文献2に開示されている技術では、回転子を構成する回転軸に熱媒体を通すため、熱媒体を循環させる設備が必要となり、設備が大型化するという課題がある。 Further, in the technique disclosed in Patent Document 2, since the heat medium is passed through the rotating shaft constituting the rotor, a facility for circulating the heat medium is required, and there is a problem that the facility is enlarged.
 また、特許文献3に開示されている技術では、2回組込着磁をすることで組込着磁に必要な磁束密度のむらを平均化しているが、着磁に必要となる最低磁束密度は、組込着時を1回実施する場合と変わらない。よって、特許文献1に開示されている技術と同様にコイル線の絶縁被膜への負荷がかかるという課題がある。 Further, in the technique disclosed in Patent Document 3, the unevenness of the magnetic flux density necessary for the built-in magnetization is averaged by performing the built-in magnetization twice, but the minimum magnetic flux density necessary for the magnetization is This is the same as when the installation is carried out once. Therefore, similarly to the technique disclosed in Patent Document 1, there is a problem that a load is applied to the insulating film of the coil wire.
 この発明は、これらの課題を解決するものであり、組込着磁時に設備を大型化することなく、コイル線表面の絶縁被膜に与えるダメージを軽減しつつ、回転子の磁性材料に従来と同様の磁力を与えられる組込着磁ができる回転電機の製造方法、回転電機のステータ、及びそのステータを備える回転電機を提供することを目的としている。 The present invention solves these problems, and reduces the damage to the insulating coating on the coil wire surface without increasing the size of the equipment during built-in magnetization, while reducing the damage to the magnetic material of the rotor. It is an object of the present invention to provide a method of manufacturing a rotating electrical machine capable of built-in magnetization that is given a magnetic force, a stator of the rotating electrical machine, and a rotating electrical machine including the stator.
 本発明に係る回転電機の製造方法は、内側に突出して設けられている複数のティースを有する円筒状のステータと、該ステータの内径部に回転可能に設けられ磁性部材を有する回転子と、を備える回転電機の製造方法であって、前記複数のティースのそれぞれに複数のコイルを集中巻きで巻回す巻回工程と、前記複数のコイルのそれぞれに着磁電圧を印可することにより前記磁性部材に着磁する着磁工程と、前記複数のコイルを、各コイルに電流が流れた際に生じる磁界が同一方向に生じるように電気的に接続する接続工程と、を有する。 A method of manufacturing a rotating electrical machine according to the present invention includes: a cylindrical stator having a plurality of teeth provided projecting inward; and a rotor having a magnetic member rotatably provided on an inner diameter portion of the stator. A rotating step of winding a plurality of coils around each of the plurality of teeth, and applying a magnetizing voltage to each of the plurality of coils to the magnetic member. A magnetizing step of magnetizing, and a connecting step of electrically connecting the plurality of coils such that a magnetic field generated when a current flows through each coil is generated in the same direction.
 本発明によれば、回転電機のステータの一つのティースに複数のコイルが並列に巻かれている状態で組込着磁を行うため、必要な最大電圧が並列に巻いたコイルの数だけ少なくなり、コイル線の絶縁皮膜への負荷を軽減できる。また、組込着磁の際に、回転子を高温にする必要がないため、組込着磁の設備を大型化する必要がない回転電機の製造方法を提供することができる。 According to the present invention, since the built-in magnetization is performed in a state where a plurality of coils are wound in parallel on one tooth of the stator of the rotating electrical machine, the required maximum voltage is reduced by the number of coils wound in parallel. The load on the insulation film of the coil wire can be reduced. Further, since there is no need to increase the temperature of the rotor at the time of built-in magnetization, it is possible to provide a method for manufacturing a rotating electrical machine that does not require an increase in the size of built-in magnetization equipment.
本発明の実施の形態1に係る回転電機のステータの斜視図である。It is a perspective view of the stator of the rotary electric machine which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転電機の回転軸に垂直な断面におけるステータ及び回転子の構造の説明図である。It is explanatory drawing of the structure of the stator and rotor in a cross section perpendicular | vertical to the rotating shaft of the rotary electric machine which concerns on Embodiment 1 of this invention. 図1のステータから分割コアを抜き出したものである。1. A split core is extracted from the stator of FIG. 図3の分割コアの断面を表した図である。It is the figure showing the cross section of the split core of FIG. 図4の分割コアにおいて、コイルのそれぞれのターン数を変更した例である。5 is an example in which the number of turns of each coil is changed in the divided core of FIG. 本発明の実施の形態2に係る回転電機のステータの分割コアの斜視図である。It is a perspective view of the division | segmentation core of the stator of the rotary electric machine which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る回転電機のステータの分割コアの斜視図である。It is a perspective view of the split core of the stator of the rotary electric machine which concerns on Embodiment 3 of this invention. 図7のロウ付け部の断面を表した図である。It is the figure showing the cross section of the brazing part of FIG. 本発明の実施の形態4に係る回転電機のステータの分割コアの斜視図である。It is a perspective view of the split core of the stator of the rotary electric machine which concerns on Embodiment 4 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。符号に添え字(例えば「10a」の「a」)が付されている場合、添え字が付されていない符号については、その添え字が付されたもの全体を指すものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one. When a subscript (for example, “a” of “10a”) is added to the code, the code without the subscript refers to the whole of the subscript.
 実施の形態1.
 図1は、本発明の実施の形態1に係る回転電機のステータ10の斜視図である。図2は、本発明の実施の形態1に係る回転電機の回転軸52に垂直な断面におけるステータ10及び回転子50の構造の説明図である。図3は、図1のステータ10から分割コア20を抜き出したものである。ステータ10は、複数の分割コア20を円形に配置して構成されている。ステータ10は、例えば電動機等の回転電機の筐体の内側に予め固定される。図2に示されるように、ステータ10の内径側、ティース23が円形に並べられている内側に所定の空隙を隔てて、着磁されていない磁性部材51を有する回転子50が挿入されている。回転子50は、回転電機の筐体内部において、回転軸52が軸受等に支持されることにより、回転可能な状態で保持される。なお、回転電機の筐体及び軸受は図示省略されている。
Embodiment 1 FIG.
FIG. 1 is a perspective view of a stator 10 of a rotating electrical machine according to Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram of the structure of the stator 10 and the rotor 50 in a cross section perpendicular to the rotating shaft 52 of the rotating electrical machine according to the first embodiment of the present invention. FIG. 3 shows the split core 20 extracted from the stator 10 of FIG. The stator 10 is configured by arranging a plurality of divided cores 20 in a circular shape. The stator 10 is fixed in advance inside a casing of a rotating electrical machine such as an electric motor. As shown in FIG. 2, a rotor 50 having a magnetic member 51 that is not magnetized is inserted with a predetermined gap between the inner diameter side of the stator 10 and the inside where the teeth 23 are arranged in a circle. . The rotor 50 is held in a rotatable state by the rotation shaft 52 being supported by a bearing or the like inside the casing of the rotating electrical machine. The casing and bearings of the rotating electrical machine are not shown.
 (巻回工程)
 複数ある分割コア20は、それぞれティース23がステータ10の内径側に突出させて設けられている。ティース23には、複数のコイル40が巻回されている。図1~図3では、説明を簡単にするために、2本のコイル40(40a、40b)が巻回されており、それぞれのコイル40(40a、40b)は、それぞれコイル線が1ターンだけ巻回されたものが示されている。また、それぞれのコイル40(40a、40b)の巻方向は、同一方向である。始端部41aは、コイル40aの巻き始めの時の部分を示し、終端部42aはコイル40aの巻き終わりの部分を示す。同じように、始端部41bは、コイル40bの巻き始めの時の部分を示し、終端部42bは、コイル40bの巻き終わりの部分を示す。ステータ10が回転電機内に固定され、回転子50の磁性部材51に着磁する工程を経る前においては、コイル40aとコイル40bとは、それぞれ電気的に独立している。なお、巻回工程は、実施の形態1において説明されている、電気的に独立した2本のコイル40a及びコイル40bをそれぞれ1ターンだけ巻回された構成のものを製造する工程に限定されるものでは無い。2本以上のコイル40が1つのティース23に巻回されていても良いし、各コイル40が1ターン以上巻回されていても良い。
(Winding process)
The plurality of divided cores 20 are each provided with teeth 23 projecting toward the inner diameter side of the stator 10. A plurality of coils 40 are wound around the teeth 23. In FIG. 1 to FIG. 3, two coils 40 (40a, 40b) are wound to simplify the explanation, and each coil 40 (40a, 40b) has only one turn of the coil wire. The wound one is shown. Moreover, the winding direction of each coil 40 (40a, 40b) is the same direction. The start end portion 41a indicates a portion at the start of winding of the coil 40a, and the end portion 42a indicates a portion at the end of winding of the coil 40a. Similarly, the start end portion 41b indicates a portion at the start of winding of the coil 40b, and the end portion 42b indicates a portion at the end of winding of the coil 40b. Before the stator 10 is fixed in the rotating electrical machine and the magnetic member 51 of the rotor 50 is magnetized, the coil 40a and the coil 40b are electrically independent from each other. Note that the winding process is limited to the process described in the first embodiment for manufacturing a structure in which two electrically independent coils 40a and 40b are each wound by one turn. It is not a thing. Two or more coils 40 may be wound around one tooth 23, or each coil 40 may be wound one turn or more.
 (着磁工程)
 集中巻のステータ10を採用した回転電機の回転子50には永久磁石が用いられる。回転子50の永久磁石の着磁方式は、ステータ10と回転子50とを組み立てる前に磁性部材51に着磁する組立前着磁方式がある。また、ステータ10と回転子50とを組み立てた後にステータ10に高電圧を印可し、その発生磁場により磁性部材51に着磁し、永久磁石を得る組込着磁方式がある。組込着磁方式は、組み立ての際にその回転子50の磁性部材51が磁力を有しておらず、磁力の作業への影響がないため、組立前着磁方式より組立性が良いものとなっている。実施の形態1に係る回転電機においては、組込着磁方式を採用している。
(Magnetization process)
A permanent magnet is used for the rotor 50 of the rotating electrical machine that employs the concentrated winding stator 10. As a method of magnetizing the permanent magnet of the rotor 50, there is a pre-assembly magnetization method in which the magnetic member 51 is magnetized before the stator 10 and the rotor 50 are assembled. Further, there is a built-in magnetization method in which a high voltage is applied to the stator 10 after the stator 10 and the rotor 50 are assembled, and the magnetic member 51 is magnetized by the generated magnetic field to obtain a permanent magnet. The built-in magnetization method has better assembly than the pre-assembly magnetization method because the magnetic member 51 of the rotor 50 does not have a magnetic force during assembly and does not affect the work of the magnetic force. It has become. In the rotating electrical machine according to the first embodiment, the built-in magnetization method is adopted.
 図4は、図3の分割コア20の断面を表した図である。図3の分割コア20の長手方向に垂直な面で断面を取ると図4に示されるように表される。組込着磁は、ティース23に巻回された複数の電気的に独立なコイル40を、着磁電源に電気的に並列接続した状態で電圧の印可を行う。つまり、コイル40aとコイル40bとは、始端部41a、41bを着磁電源の2つの電極のうち一方の電極に接続し、終端部42a、42bを他方の電極に接続し、高圧の直流電圧を印可する。これにより、コイル40aとコイル40bとに同じ方向の磁界が生じ、その磁界により回転子50の磁性部材51が着磁される。 FIG. 4 is a view showing a cross section of the split core 20 of FIG. A cross section taken along a plane perpendicular to the longitudinal direction of the split core 20 in FIG. 3 is represented as shown in FIG. In the built-in magnetization, a voltage is applied in a state where a plurality of electrically independent coils 40 wound around the teeth 23 are electrically connected in parallel to a magnetized power source. That is, the coil 40a and the coil 40b have the start end portions 41a and 41b connected to one of the two electrodes of the magnetized power source, the end portions 42a and 42b connected to the other electrode, and a high-voltage DC voltage. Apply. Thereby, the magnetic field of the same direction arises in the coil 40a and the coil 40b, and the magnetic member 51 of the rotor 50 is magnetized by the magnetic field.
 (コイル40aとコイル40bとの接続工程)
 その後、分割コア20のコイル40a及びコイル40bの電気的な接続を行う。図3に示されている1つの分割コア20において、ステータ10の内径側にあるコイル40aとステータ10の外径側にあるコイル40bとの電気的な接続は、直列に接続される。すなわち、外径側のコイル40bの終端部42bと内径側のコイル40aの始端部41aとが接続され、1つのコイル40としてコイル40内を流れる電流がステータ10の外径側から内径側へ向けて一方向に流れるように接続される。つまり、コイル40aとコイル40bとが接続された状態でコイル40に電流が流れると、コイル40a、コイル40bにそれぞれ同じ回転方向の電流が流れ、同一方向の磁界が生じるように接続される。なお、ステータ10を構成する各分割コア20は、それぞれが同じ構造である。
(Connection process between coil 40a and coil 40b)
Thereafter, the coils 40a and 40b of the split core 20 are electrically connected. In one split core 20 shown in FIG. 3, the electrical connection between the coil 40a on the inner diameter side of the stator 10 and the coil 40b on the outer diameter side of the stator 10 is connected in series. That is, the terminal end portion 42b of the outer diameter side coil 40b and the starting end portion 41a of the inner diameter side coil 40a are connected, and the current flowing in the coil 40 as one coil 40 is directed from the outer diameter side of the stator 10 toward the inner diameter side. Connected to flow in one direction. That is, when a current flows through the coil 40 in a state where the coils 40a and 40b are connected, currents in the same rotational direction flow through the coils 40a and 40b, respectively, so that a magnetic field in the same direction is generated. Each divided core 20 constituting the stator 10 has the same structure.
 (効果)
 上記で説明したように、組込着磁をする際には、分割コア20に巻き回されている電気的に独立した複数のコイル40a及びコイル40bを並列に接続し、直流電圧を印可する。よって、組込着磁に必要な電圧は、組込着磁時に電気的に独立したコイル数だけ分割することができるため、1つあたりのコイル40にかかる電圧は、コイル数が分割されるほど低くてすみ、ひいてはコイル40のコイル線の絶縁被膜への負荷を軽減することができる。
(effect)
As described above, when the built-in magnetization is performed, a plurality of electrically independent coils 40a and 40b wound around the split core 20 are connected in parallel to apply a DC voltage. Therefore, since the voltage required for built-in magnetization can be divided by the number of coils that are electrically independent during built-in magnetization, the voltage applied to each coil 40 is such that the number of coils is divided. As a result, the load on the insulating film of the coil wire of the coil 40 can be reduced.
 図5は、図4の分割コア20において、コイル40のそれぞれのターン数を変更した例である。実施の形態1では一例として電気的に独立した2本のコイル40a及びコイル40bをそれぞれ1ターンだけ巻回された構成を示したが、コイル40の本数、それぞれのコイル40のターン数は、これに限定されない。例えば図4のように電気的に独立した2本のコイル40aとコイル40bとをそれぞれ52ターンずつ巻き回した構成も可能である。図4において、コイル40aはハッチングを施して表してある。 FIG. 5 is an example in which the number of turns of each of the coils 40 in the split core 20 of FIG. 4 is changed. In the first embodiment, as an example, a configuration in which two electrically independent coils 40a and 40b are wound by one turn is shown. However, the number of coils 40 and the number of turns of each coil 40 are as follows. It is not limited to. For example, as shown in FIG. 4, a configuration in which two electrically independent coils 40a and 40b are wound by 52 turns each is also possible. In FIG. 4, the coil 40a is hatched.
 実施の形態2.
 実施の形態2においては、実施の形態1に対し、それぞれの分割コア20における複数のコイル40同士の接続の方法を変更したものである。以下、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
In the second embodiment, the method of connecting the plurality of coils 40 in each divided core 20 is changed from the first embodiment. Hereinafter, the difference from the first embodiment will be mainly described.
 図6は、本発明の実施の形態2に係る回転電機のステータ10の分割コア20の斜視図である。組込着磁を実施した後において、分割コア20に巻き回してある複数のコイル40aとコイル40bとの電気的な接続を圧着により行うものである。コイル40aとコイル40bとのコイル線の圧着については、例えば、「JIS C 2806」に規定されている銅線用裸圧着スリーブといった、筒型の突合せ用スリーブ30を用いる。突合せ用スリーブ30の内部にコイル40aの始端部41aとコイル40bの終端部42bとを挿入し、その状態で圧着して電気的な接続を行う。筒型の突合せ用スリーブ30により圧着を行うことにより、簡易な工程で電気的な接続ができ、回転電機の生産性が高くなる。 FIG. 6 is a perspective view of the split core 20 of the stator 10 of the rotating electrical machine according to the second embodiment of the present invention. After the built-in magnetization, the plurality of coils 40a and coils 40b wound around the split core 20 are electrically connected by pressure bonding. For the crimping of the coil wire between the coil 40a and the coil 40b, for example, a cylindrical butt sleeve 30 such as a bare crimp sleeve for copper wire defined in “JIS C 2806” is used. The start end portion 41a of the coil 40a and the end portion 42b of the coil 40b are inserted into the butt sleeve 30 and are crimped in that state for electrical connection. By crimping with the cylindrical butt sleeve 30, electrical connection can be achieved with a simple process, and the productivity of the rotating electrical machine is increased.
 実施の形態3.
 実施の形態3も、実施の形態1に対し、それぞれの分割コア20における複数のコイル40同士の接続の方法を変更したものである。以下、実施の形態1との相違点を中心に説明する。
Embodiment 3 FIG.
In the third embodiment, the method of connecting the plurality of coils 40 in each divided core 20 is changed from the first embodiment. Hereinafter, the difference from the first embodiment will be mainly described.
 図7は、本発明の実施の形態3に係る回転電機のステータ10の分割コア20の斜視図である。組込着磁を実施した後において、分割コア20に巻き回してある複数のコイル40aとコイル40bとの電気的な接続をロウ60を用いてロウ付けにより行うものである。コイル40aとコイル40bとのコイル線を図6のように接した状態にし、コイル線の周りにロウ60を付着させて電気的な接続を行う。 FIG. 7 is a perspective view of the split core 20 of the stator 10 of the rotating electrical machine according to the third embodiment of the present invention. After the built-in magnetization, the plurality of coils 40a and coils 40b wound around the split core 20 are electrically connected by brazing using the braze 60. The coil wires of the coils 40a and 40b are brought into contact with each other as shown in FIG. 6, and the solder 60 is attached around the coil wires to make electrical connection.
 図8は、図7のロウ付け部の断面を表した図である。図7におけるロウ60の部分で、始端部41a及び終端部42bのコイル線の中心軸に略垂直な断面を取ると図8の様に表される。ロウ60の形状はロウ60の消費を抑えるため、図8のようにコイル線の表面を覆う形にすることが望ましい。組込着磁後にコイル40aの始端部41aとコイル40bの終端部42bとをロウ60を用い電気的な接続を行うことにより、回転電機を構成する部品数が少なくでき、直接材料費を安くできるという効果がある。例えばステータ10が圧縮機に組み込まれる場合は、圧縮機内の温度が最大で130℃まで上がるため、ロウ60は、それ以上の融点を持ち、また安価である、例えば合金組成がSn96.5%-Ag3%-Cu0.5%の鉛フリーはんだといった材料を用いると良い。 FIG. 8 is a view showing a cross section of the brazed portion of FIG. A cross section substantially perpendicular to the central axis of the coil wire of the start end portion 41a and the end end portion 42b at the portion of the row 60 in FIG. 7 is expressed as shown in FIG. In order to suppress the consumption of the solder 60, it is desirable that the solder 60 has a shape that covers the surface of the coil wire as shown in FIG. By electrically connecting the start end 41a of the coil 40a and the end end 42b of the coil 40b after the built-in magnetization using the solder 60, the number of parts constituting the rotating electrical machine can be reduced, and the material cost can be directly reduced. There is an effect. For example, when the stator 10 is incorporated in a compressor, the temperature in the compressor rises up to 130 ° C., so that the solder 60 has a melting point higher than that and is inexpensive. For example, the alloy composition is Sn96.5% − It is preferable to use a material such as Ag3% -Cu0.5% lead-free solder.
 実施の形態4.
 実施の形態4も、実施の形態1に対し、それぞれの分割コア20における複数のコイル40同士の接続の方法を変更したものである。以下、実施の形態1との相違点を中心に説明する。
Embodiment 4 FIG.
In the fourth embodiment, the method of connecting the plurality of coils 40 in each divided core 20 is changed from the first embodiment. Hereinafter, the difference from the first embodiment will be mainly described.
 図9は、本発明の実施の形態4に係る回転電機のステータ10の分割コア20の斜視図である。組込着磁を実施した後において、分割コア20に巻き回してある複数のコイル40aとコイル40bとの電気的な接続を、スイッチ70の切替により行うものである。組込着磁前にコイル40aの始端部41aとコイル40bの終端部42bとをスイッチ70につないでおく。そして、スイッチ70は、スライド部71をスライドさせることにより、コイル40a及びコイル40bが電気的に独立している状態と電気的に直列に接続されている状態とを切り替えられるようにされている。このようにしておくことで、組込着磁時にはコイル40aとコイル40bとが電気的に独立にされており、また組込着磁後はスイッチ70の切り替えでコイル40aとコイル40bとが電気的に直列に接続されている状態をワンタッチで切り替えることができる。この構成により、組込着磁後において、分割コア20のコイル40の電気的な接続を短時間で行うことができるという効果がある。スイッチ70は、例えば、スライド部71をずらすことにより、2つの接点間の接続、非接続を切り替えることができるスライドスイッチ等を用いると良い。 FIG. 9 is a perspective view of the split core 20 of the stator 10 of the rotating electrical machine according to the fourth embodiment of the present invention. After the built-in magnetization, the plurality of coils 40a and coils 40b wound around the split core 20 are electrically connected by switching the switch 70. Before the built-in magnetization, the start end 41a of the coil 40a and the end end 42b of the coil 40b are connected to the switch 70. The switch 70 is configured to switch between a state where the coils 40a and 40b are electrically independent and a state where they are electrically connected in series by sliding the slide portion 71. In this way, the coil 40a and the coil 40b are electrically independent at the time of built-in magnetization, and the coil 40a and the coil 40b are electrically switched by switching the switch 70 after the built-in magnetization. The state of being connected in series can be switched with one touch. With this configuration, there is an effect that after the built-in magnetization, the coil 40 of the split core 20 can be electrically connected in a short time. As the switch 70, for example, a slide switch that can switch between connection and non-connection between the two contacts by shifting the slide portion 71 may be used.
 (発明の効果)
 (1)本発明に係る回転電機の製造方法は、内側に突出して設けられている複数のティース23を有する円筒状のステータ10と、ステータ10の内径部に回転可能に設けられ磁性部材51を有する回転子50と、を備える回転電機の製造方法であって、複数のティース23のそれぞれに複数のコイル40を集中巻きで巻回す巻回工程と、複数のコイル40のそれぞれに着磁電圧を印可することにより磁性部材51に着磁する着磁工程と、複数のコイル40を、各コイル40に電流が流れた際に生じる磁界が同一方向に生じるように電気的に接続する接続工程と、を有する。
 このように構成することにより、例えば、回転電機のステータ10の一つのティース23に並列に巻回されたコイル40a及びコイル40bのそれぞれに並列に電圧をかけて組込着磁を行うことができる。よって、着磁に必要な最大電圧は、並列に巻いたコイル40の数だけ少なくなる。よって、各コイル40にかけた電圧よる各コイル40のコイル線の絶縁皮膜への負荷を軽減できる。ひいては、回転電機の信頼性を向上できる。また、組込着磁の際に、従来と同じ設備で組込着磁が可能であり、設備の大型化の必要がない。
(The invention's effect)
(1) A method of manufacturing a rotating electrical machine according to the present invention includes a cylindrical stator 10 having a plurality of teeth 23 provided to protrude inward, and a magnetic member 51 provided rotatably on an inner diameter portion of the stator 10. A rotating electric machine having a rotor 50 and a winding step of winding a plurality of coils 40 around each of a plurality of teeth 23 in a concentrated manner, and applying a magnetizing voltage to each of the plurality of coils 40. A magnetizing step of magnetizing the magnetic member 51 by applying, a connecting step of electrically connecting the plurality of coils 40 such that a magnetic field generated when a current flows through each coil 40 is generated in the same direction; Have
With this configuration, for example, built-in magnetization can be performed by applying a voltage in parallel to each of the coils 40a and 40b wound in parallel around one tooth 23 of the stator 10 of the rotating electrical machine. . Therefore, the maximum voltage required for magnetization is reduced by the number of coils 40 wound in parallel. Therefore, the load on the insulating film of the coil wire of each coil 40 due to the voltage applied to each coil 40 can be reduced. As a result, the reliability of the rotating electrical machine can be improved. In addition, in the case of built-in magnetization, built-in magnetization can be performed with the same equipment as in the past, and there is no need to enlarge the equipment.
 (2)上記(1)の回転電機の製造方法において、接続工程は、複数のコイル40の接続を圧着により行う。このように構成することにより、簡易な工程で電気的な接続ができ、回転電機の生産性が高くなる。 (2) In the method for manufacturing a rotating electrical machine of (1) above, in the connecting step, the plurality of coils 40 are connected by pressure bonding. With this configuration, electrical connection can be made with a simple process, and the productivity of the rotating electrical machine is increased.
 (3)上記(1)の回転電機の製造方法において、接続工程は、複数のコイル40の接続をロウ付けにより行う。このように構成することにより、回転電機を構成する部品数が少なくでき、直接材料費を安くできるという効果がある。 (3) In the method for manufacturing a rotating electrical machine of (1) above, in the connecting step, the plurality of coils 40 are connected by brazing. By configuring in this way, it is possible to reduce the number of parts constituting the rotating electrical machine and to directly reduce the material cost.
 (4)上記(1)の回転電機の製造方法において、接続工程は、複数のコイル40の接続を、電気的に接続されている状態と電気的に接続されていない状態とを切り替えることができるスイッチ70により行う。このように構成することにより、組込着磁後において、分割コア20のコイル40の電気的な接続を短時間で行うことができるという効果がある。 (4) In the method for manufacturing a rotating electrical machine according to (1), the connection step can switch the connection of the plurality of coils 40 between an electrically connected state and a non-electrically connected state. This is done by the switch 70. By configuring in this way, there is an effect that the electrical connection of the coil 40 of the split core 20 can be performed in a short time after the built-in magnetization.
 (5)また、本発明に係る回転電機のステータは、円筒状で、内径側に突出して設けられている複数のティース23を有する、回転電機のステータ10であって、複数のティース23のそれぞれは、電気的に独立した複数のコイル40が集中巻で巻回されている。
 このように構成することにより、回転電機のステータ10の一つのティース23に並列に巻回されたコイル40a及びコイル40bのそれぞれに並列に電圧をかけることができる。よって、上記(1)~(4)に係る回転電機の製造方法における着磁工程が実現でき、各コイル40にかけた電圧よる各コイル40のコイル線の絶縁皮膜への負荷を軽減できる。また、ひいては、回転電機の信頼性を向上できる。また、組込着磁の際に、従来と同じ設備で着磁工程が可能であり、設備の大型化の必要がない。
(5) Further, the stator of the rotating electrical machine according to the present invention is a stator 10 of the rotating electrical machine having a plurality of teeth 23 that are cylindrical and project toward the inner diameter side, and each of the plurality of teeth 23. A plurality of electrically independent coils 40 are wound in a concentrated manner.
With this configuration, it is possible to apply a voltage in parallel to each of the coil 40a and the coil 40b wound in parallel around one tooth 23 of the stator 10 of the rotating electrical machine. Therefore, the magnetization process in the manufacturing method of the rotating electrical machine according to the above (1) to (4) can be realized, and the load on the insulating film of the coil wire of each coil 40 due to the voltage applied to each coil 40 can be reduced. In addition, the reliability of the rotating electrical machine can be improved. Further, in the case of built-in magnetization, the magnetizing process can be performed with the same equipment as the conventional one, and there is no need to increase the size of the equipment.
 (6)上記(5)の回転電機のステータ10は、複数のコイル40は、各コイル40に電流が流れた際に生じる磁界が同一方向に生じるように、複数のコイル40の接続は、電気的に接続されている状態と電気的に接続されていない状態とを切り替えることができるスイッチ70により行われる。このように構成することにより、上記(5)と同様な効果を得つつ、組込着磁後において、分割コア20の複数のコイル40の電気的な接続を短時間で行うことができる。 (6) In the stator 10 of the rotating electrical machine of (5) above, the plurality of coils 40 are connected to each other so that the magnetic fields generated when a current flows through the coils 40 are generated in the same direction. This is performed by a switch 70 that can switch between an electrically connected state and an electrically unconnected state. By comprising in this way, the electrical connection of the some coil 40 of the division | segmentation core 20 can be performed in a short time after built-in magnetization, obtaining the effect similar to said (5).
 (7)本発明に係る回転電機は、上記(6)の回転電機のステータ10を備える。このように構成することにより、各コイル40にかけた電圧よる各コイル40のコイル線の絶縁皮膜への負荷を軽減しつつ、従来と同等な磁力を有する回転子を備える回転電機が提供できる。また、組込着磁の際に、従来と同じ設備で組込着磁が可能であり、設備の大型化の必要がなく回転電機が製造できる。また、分割コア20の複数のコイル40の電気的な接続を短時間で行うことができ、回転電機の製造にかかる時間を短縮できる。 (7) A rotating electrical machine according to the present invention includes the stator 10 of the rotating electrical machine of (6) above. With this configuration, it is possible to provide a rotating electrical machine including a rotor having a magnetic force equivalent to that of the related art while reducing the load on the insulating film of the coil wire of each coil 40 due to the voltage applied to each coil 40. Further, in the case of built-in magnetization, built-in magnetization can be performed with the same equipment as in the prior art, and it is possible to manufacture a rotating electrical machine without the need to increase the size of the equipment. Moreover, electrical connection of the plurality of coils 40 of the split core 20 can be performed in a short time, and the time required for manufacturing the rotating electrical machine can be shortened.
 10 ステータ、20 分割コア、23 ティース、30 突合せ用スリーブ、40 コイル、40a コイル、40b コイル、41a 始端部、41b 始端部、42a 終端部、42b 終端部、50 回転子、51 磁性部材、52 回転軸、60 ロウ、70 スイッチ、71 スライド部。 10 stators, 20 split cores, 23 teeth, 30 butt sleeves, 40 coils, 40a coils, 40b coils, 41a start end, 41b start end, 42a end end, 42b end end, 50 rotor, 51 magnetic member, 52 rotations Axis, 60 row, 70 switch, 71 slide part.

Claims (7)

  1.  内側に突出して設けられている複数のティースを有する円筒状のステータと、該ステータの内径部に回転可能に設けられ磁性部材を有する回転子と、を備える回転電機の製造方法であって、
     前記複数のティースのそれぞれに複数のコイルを集中巻きで巻回す巻回工程と、
     前記複数のコイルのそれぞれに着磁電圧を印可することにより前記磁性部材に着磁する着磁工程と、
     前記複数のコイルを、各コイルに電流が流れた際に生じる磁界が同一方向に生じるように電気的に接続する接続工程と、を有する、回転電機の製造方法。
    A method of manufacturing a rotating electrical machine comprising: a cylindrical stator having a plurality of teeth provided projecting inward; and a rotor having a magnetic member rotatably provided on an inner diameter portion of the stator,
    A winding step of winding a plurality of coils around each of the plurality of teeth in a concentrated manner;
    A magnetization step of magnetizing the magnetic member by applying a magnetization voltage to each of the plurality of coils;
    And a connecting step of electrically connecting the plurality of coils such that a magnetic field generated when a current flows through each coil is generated in the same direction.
  2.  前記接続工程は、
     前記複数のコイルの接続を圧着により行う、請求項1に記載の回転電機の製造方法。
    The connecting step includes
    The method of manufacturing a rotating electrical machine according to claim 1, wherein the plurality of coils are connected by pressure bonding.
  3.  前記接続工程は、
     前記複数のコイルの接続をロウ付けにより行う、請求項1に記載の回転電機の製造方法。
    The connecting step includes
    The method of manufacturing a rotating electrical machine according to claim 1, wherein the plurality of coils are connected by brazing.
  4.  前記接続工程は、
     前記複数のコイルの接続を、電気的に接続されている状態と電気的に接続されていない状態とを切り替えることができるスイッチにより行う、請求項1に記載の回転電機の製造方法。
    The connecting step includes
    The method of manufacturing a rotating electrical machine according to claim 1, wherein the plurality of coils are connected by a switch capable of switching between an electrically connected state and a non-electrically connected state.
  5.  円筒状で、内径側に突出して設けられている複数のティースを有する、回転電機のステータであって、
     前記複数のティースのそれぞれは、
     電気的に独立した複数のコイルが集中巻で巻回されている、回転電機のステータ。
    A stator of a rotating electric machine having a plurality of teeth that are cylindrical and project to the inner diameter side,
    Each of the plurality of teeth is
    A stator for a rotating electrical machine in which a plurality of electrically independent coils are wound in a concentrated manner.
  6.  前記複数のコイルは、
     各コイルに電流が流れた際に生じる磁界が同一方向に生じるように接続されており、
     前記複数のコイルの接続は、
     電気的に接続されている状態と電気的に接続されていない状態を切り替えることができるスイッチにより行われる、請求項5に記載の回転電機のステータ。
    The plurality of coils are:
    It is connected so that the magnetic field generated when current flows through each coil is generated in the same direction.
    The connection of the plurality of coils is
    The stator of the rotating electrical machine according to claim 5, wherein the stator is switched by a switch capable of switching between an electrically connected state and an electrically unconnected state.
  7.  請求項6に記載の回転電機のステータを備える、回転電機。 A rotating electrical machine comprising the rotating electrical machine stator according to claim 6.
PCT/JP2015/076756 2015-09-18 2015-09-18 Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator WO2017046954A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017540444A JP6524247B2 (en) 2015-09-18 2015-09-18 METHOD OF MANUFACTURING ROTATING ELECTRIC ELECTRIC MACHINE, STATOR OF ROTATING ELECTRIC ELECTRIC MACHINE, AND ROTATING ELECTRIC ELECTRIC MACHINE WITH THE STATOR
CN201590000583.6U CN206379852U (en) 2015-09-18 2015-09-18 The stator of electric rotating machine and the electric rotating machine for possessing the stator
PCT/JP2015/076756 WO2017046954A1 (en) 2015-09-18 2015-09-18 Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/076756 WO2017046954A1 (en) 2015-09-18 2015-09-18 Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator

Publications (1)

Publication Number Publication Date
WO2017046954A1 true WO2017046954A1 (en) 2017-03-23

Family

ID=58288462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076756 WO2017046954A1 (en) 2015-09-18 2015-09-18 Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator

Country Status (3)

Country Link
JP (1) JP6524247B2 (en)
CN (1) CN206379852U (en)
WO (1) WO2017046954A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240617A1 (en) * 2019-05-24 2020-12-03 三菱電機株式会社 Method for manufacturing electric motor, electric motor, compressor, and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274617A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2005168086A (en) * 2003-11-28 2005-06-23 Sankyo Seiki Mfg Co Ltd Method of magnetizing permanent magnet of concentrated winding type motor, and concentrated winding type motor
JP2010119263A (en) * 2008-11-14 2010-05-27 Denso Corp Motor and controller for the same
JP2010124636A (en) * 2008-11-20 2010-06-03 Sumitomo Electric Ind Ltd Coil unit and stator
JP2014107983A (en) * 2012-11-28 2014-06-09 Mitsuba Corp Electric motor
JP2014220948A (en) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 Stator for rotary electric machine, and rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903849B2 (en) * 2002-06-05 2007-04-11 日産自動車株式会社 Stator structure of electric motor and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274617A (en) * 2002-03-18 2003-09-26 Matsushita Electric Ind Co Ltd Permanent magnet motor
JP2005168086A (en) * 2003-11-28 2005-06-23 Sankyo Seiki Mfg Co Ltd Method of magnetizing permanent magnet of concentrated winding type motor, and concentrated winding type motor
JP2010119263A (en) * 2008-11-14 2010-05-27 Denso Corp Motor and controller for the same
JP2010124636A (en) * 2008-11-20 2010-06-03 Sumitomo Electric Ind Ltd Coil unit and stator
JP2014107983A (en) * 2012-11-28 2014-06-09 Mitsuba Corp Electric motor
JP2014220948A (en) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 Stator for rotary electric machine, and rotary electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240617A1 (en) * 2019-05-24 2020-12-03 三菱電機株式会社 Method for manufacturing electric motor, electric motor, compressor, and air conditioner
JPWO2020240617A1 (en) * 2019-05-24 2021-10-21 三菱電機株式会社 Motor manufacturing methods, motors, compressors, and air conditioners
JP7058802B2 (en) 2019-05-24 2022-04-22 三菱電機株式会社 How to make motors, motors, compressors, and air conditioners

Also Published As

Publication number Publication date
CN206379852U (en) 2017-08-04
JPWO2017046954A1 (en) 2018-04-12
JP6524247B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5991172B2 (en) Manufacturing method of electric motor
JP5692247B2 (en) Collective conductor for motor winding
CN107026526B (en) Motor
JP4486678B2 (en) Rotating motor armature, rotating motor and manufacturing method thereof
JP2013240257A (en) Non-welding connection method for stator winding coil and rotation motor using the same
JP2014087100A (en) Stator for rotary electric machine
US11095178B2 (en) Motor having concentratedly-wound stator coil
JPWO2020054233A1 (en) Stator of rotary electric machine and rotary electric machine provided with the stator
WO2010010906A1 (en) Three-phase dc motor
US10439349B2 (en) Rotor for brush motor and on-vehicle brush motor
US10236735B2 (en) Electric conductor for coil and rotating electric machine
WO2017046954A1 (en) Method for manufacturing rotary electric machine, stator for rotary electric machine, and rotary electric machine equipped with stator
JP6238554B2 (en) Rotating electric machine stator and rotating electric machine
JP7198985B2 (en) motor
CN110571965B (en) Rotating electric machine and method for manufacturing same
JP2008306913A (en) Armature for electric motor and electric motor
JP5980096B2 (en) Electric motor
JP2012196043A (en) Method for winding coil of dc motor and dc motor
JP5738084B2 (en) Commutator, rotor provided with commutator, and method of manufacturing rotor provided with commutator
JP2010004597A (en) Motor with brush
JP6863167B2 (en) Rotating machine stator
JP2012157116A (en) Dc motor with brush
JP7195180B2 (en) Stator and rotating electric machine
JP2017131035A (en) motor
JP2021197756A (en) Method for manufacturing armature, and armature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540444

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904140

Country of ref document: EP

Kind code of ref document: A1