WO2017046835A1 - Assembly operation teaching device and assembly operation teaching method - Google Patents

Assembly operation teaching device and assembly operation teaching method Download PDF

Info

Publication number
WO2017046835A1
WO2017046835A1 PCT/JP2015/075963 JP2015075963W WO2017046835A1 WO 2017046835 A1 WO2017046835 A1 WO 2017046835A1 JP 2015075963 W JP2015075963 W JP 2015075963W WO 2017046835 A1 WO2017046835 A1 WO 2017046835A1
Authority
WO
WIPO (PCT)
Prior art keywords
arms
component
assembly
information
hand
Prior art date
Application number
PCT/JP2015/075963
Other languages
French (fr)
Japanese (ja)
Inventor
博文 田口
中須 信昭
大毅 梶田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/075963 priority Critical patent/WO2017046835A1/en
Publication of WO2017046835A1 publication Critical patent/WO2017046835A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • the present invention relates to a part assembly operation teaching device and an assembly operation teaching method.
  • Patent Document 1 discloses an invention related to teaching about parts replacement of a double-arm robot.
  • Patent Document 1 states that “when a robot arranges objects in a predetermined direction, the robot grips the object using the first arm of the robot, turns the grasped object, and attaches the object to the first arm during the turn. When the mark in the object is detected using the mark detection sensor, the turning is stopped, the object gripped by the first arm is transferred to the second arm, and the object is placed at a preset position. ""
  • Patent Document 1 teaching of robot operation is performed in advance, and a label on which information is registered is attached to each target component (described as “work” in the document), and the component is held based on the label information. Means for determining the operation including replacement have been used. However, in the method disclosed in Patent Document 1, the robot operation teaching still has a load taught by the person in charge of the robot, and it is also necessary to attach a label in advance for each target part.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, reduce the burden of teaching work of a multi-arm robot, and further teach the assembly operation of parts that shortens the time required for teaching and the operating time of the robot. It is to realize an apparatus and an assembly operation teaching method.
  • an apparatus for teaching an assembling operation for a robot having a plurality of arms on which a hand is mounted is assembled into a robot hand or a part that can be handled according to part information, robot information, and part type.
  • a database for storing information related to tools necessary for assembly an assembly order generation unit for generating an assembly order by gripping parts with hands attached to a plurality of arms, and a plurality of units based on the assembly order generated by the assembly order generation unit.
  • Generated by a replacement information generator and a replacement information generator that generates information for transferring the gripped parts between hands mounted on multiple arms when the parts are gripped and assembled by the hands attached to the arms.
  • Motion path generation unit that generates motion paths for multiple arms when assembling parts with a robot using part replacement information, and motion path generation And a coherence determination unit that determines whether there is interference between the plurality of arms in the operation path of the plurality of arms generated in step 1, and whether there is interference between the hand holding the component and the component to which the gripped component is assembled.
  • the transfer information generation unit the absolute value of the inner product with the normal vector of the grip surface before the transfer is minimized as the grip surface after the replacement of the parts to be transferred between the hands mounted on the plurality of arms. A surface having a normal vector was selected.
  • a method for teaching an assembling operation for a robot having a plurality of arms is a hand attached to a plurality of arms of a robot that can handle each part type, robot information, and part type.
  • Using the information on the tools necessary for assembling the parts generate a sequence for gripping and assembling the parts with a robot with multiple arms, and grip the parts with the hand attached to the robot arm based on the generated assembly order.
  • the method includes determining the presence or absence of interference with the component to which the gripped component is assembled, and generating the replacement information is the gripping surface after the replacement of the component that is transferred between the hands attached to the plurality of arms.
  • the surface having the normal vector that minimizes the absolute value of the inner product with the normal vector of the gripping surface before the replacement is selected.
  • an assembly teaching device capable of reliably generating a robot motion including a change-over motion by utilizing multiple arms (including double arms) in a short time.
  • 1 is a system configuration diagram illustrating a first embodiment of an assembly operation teaching apparatus according to the present invention. It is a table
  • FIG. 1 is a perspective view of a robot hand holding a board and components for explaining a change-over operation in a first embodiment of an assembly operation teaching apparatus according to the present invention.
  • FIG. 3 is a perspective view of a robot hand and components for explaining a change-over operation in the first embodiment of the assembly operation teaching apparatus according to the present invention. It is sectional drawing which shows the state which mounted the board
  • FIG. 10 is a diagram for explaining a change-over operation in the third embodiment of the assembly operation teaching device according to the present invention, in which a board on which electronic components not included in the 3D-CAD information held by the take-out hand are mounted is held. It is a side view which shows the state which hold
  • FIG. 10 is a diagram for explaining a change-over operation in the third embodiment of the assembly operation teaching device according to the present invention, in which a board on which an electronic component not included in the 3D-CAD information is mounted is positioned by the transfer-side hand. It is a side view which shows the state which hold
  • FIG. 10 is a diagram for explaining a change-over operation in the third embodiment of the assembly operation teaching device according to the present invention, in which a board on which an electronic component not included in the 3D-CAD information is mounted is positioned by the transfer-side hand.
  • the tool center point (TCP) of the replacement hand obtained by gripping a position D away from the tool, and the tool center point (TCP) of the replacement hand obtained from the 3D-CAD information coincide with the center of gravity position of the substrate.
  • It is a side view which shows the state mounted in the to-be-assembled part according to the point P on the to-be-assembled part corresponding to the tool center point (TCP) in the case of being.
  • FIG. 1 is a diagram showing a system configuration of an assembly operation teaching system according to the present invention.
  • an assembly motion teaching apparatus and an assembly motion teaching system applied to motion teaching of a multi-arm robot, particularly a double-arm robot will be described.
  • the assembly operation teaching system includes an assembly operation teaching device 500, an input device 501 for inputting data to the assembly operation teaching device 500, a display device 502 for displaying a teaching state or input value in the assembly operation teaching device 500, and model data.
  • a 3D-CAD device 504 that generates part information is provided, and a vision system 505 that interpolates data that is not created by the 3D-CAD device with a camera.
  • the input device 501, the display device 502, the 3D-CAD device 504, and the vision system 505 of this embodiment are connected to the assembly operation teaching device 500 via a network, but may be part of the assembly teaching device 500.
  • an assembly motion teaching system applied to motion teaching of a multi-arm robot, particularly a double-arm robot, will be described, but the present invention is not limited to a double-arm.
  • the assembly operation teaching device 500 includes a database (hereinafter referred to as DB) 510 and a control unit 600.
  • the DB 510 is a database configured by a storage device in the assembly operation teaching apparatus 500, and stores part information 511, robot information 512, and hand / tool-part type information 513.
  • the control unit 600 includes an allocation unit 601, a replacement information generation unit 602, an operation path generation unit 603, an interference determination unit 604, an assembly time calculation unit / assembly path distance calculation unit 605.
  • the transfer information generation unit 602 includes a component transfer necessity determination unit 602a that determines whether or not a component needs to be replaced by the robot hand, and a component gripping position that generates information on which position of the component the robot hand should grip An information generation unit 602b and a component replacement position information generation unit 602c that generates a replacement position and a replacement posture with multiple arms (including two arms) are provided.
  • the component information 511 of this embodiment includes, for example, a component ID 201, a component type 202, an assembly sequence (generated by the assembly sequence generation unit 511a) 203, and information that specifies torque that can be handled without holding other arms (for example, effective length). 204, mass 205, and installation surface friction coefficient 206).
  • the robot information of this embodiment includes, for example, a robot ID 301, a position of the robot body 302, an arm ID 303 of a plurality of arms provided in the robot, an arm position 304, and a supply assembly candidate position 305 registered for performing component supply and component assembly. , A handle 306 and a tool 307 that can be handled, and a generated torque 308 generated by the tool during work.
  • the hand / tool-part type information 513 is information for specifying a hand or a tool that can be handled for each part type.
  • An example of the data table 400 of the hand / tool-part type information 513 is shown in FIG.
  • the data table 400 includes a component type 411, a hand 412, and a tool 413.
  • the hand 412 grips a part, and has a claw type (eg, 2 claw type, 3 claw type), a gripping type (eg, a type that grips a part by closing inside, a type that grips a part by opening outside), suction There are types such as type and finger type, and these are displayed in the data table 400 as hand A, hand B, hand C,.
  • the tool 413 is a tool such as a screwdriver or a spanner necessary for assembling the parts.
  • TCP Tool Center Point position
  • the allocation unit 601 allocates an arm, a hand, and a tool that handle the component to each component.
  • the replacement information generation unit 602 includes a component replacement necessity determination unit 602a, a component gripping position information generation unit 602b, and a component replacement position information generation unit 602c.
  • gripping position information is generated when the part is gripped with a hand, and information is generated as to which position is to be used for the holding operation using multiple arms.
  • the operation path generation unit 603 reads the supply position and assembly position of each component, and the position information for performing the replacement operation generated by the replacement information generation unit 602, and generates the operation path of the arm that carries between them.
  • the interference determination unit 604 causes interference between a plurality of arms and interference between a component gripped by the arm or an arm gripping the component and an assembly destination component. Judgment is made.
  • the assembly time calculation unit / assembly path distance calculation unit 605 calculates the time required for assembling the parts and the distance of the assembly path based on the operation path generated by the operation path generation unit 603.
  • the function of each part of the assembly operation teaching apparatus 500 will be described in more detail along with the operation flow.
  • FIG. 7 shows an operation flow of the present assembly operation teaching device (operation flow diagram).
  • the allocation unit 601 first acquires the part information 511 from the DB 510. If there is insufficient information, the allocating unit 601 acquires information from the 3D-CAD device 504 or the vision system 505 (S1002) and stores it in the DB 510 as component information 511.
  • the allocation unit 601 acquires the robot information 512 from the DB 510 (S1004). Next, the allocation unit 601 generates an assembly order from the component information 511 (S1006). Subsequently, the number N of parts to be assembled is set from the part information 511 and the assignment unit 601 (S1010). Further, the value of the counter n that counts the components in the next step is reset to 0 (S1020).
  • the value of the counter n is incremented by one (S1040), and the nth assembly is set (S1050).
  • FIG. 10 shows, as an example, a diagram in which the substrate 110 is moved by a robot.
  • claw 160a have each shown the thing of the open-and-close type 2 claw type.
  • FIG. 10 indicates a state in which the substrate 110 is delivered in a packaged state, and shows a case in which a plurality of substrates are delivered in a vertically leaning state.
  • Reference numeral 1002 in FIG. 10 shows a state where one board 110 is held by the component take-out hand 150 and the claw 150a and is lifted upward from the state 1001 in FIG.
  • 1003 in FIG. 10 is a diagram in the middle of changing the substrate 110 from the claw 150a of the hand 150 to the claw 160a of the hand 160, while the claw 150a holds the thickness direction of the substrate 110.
  • the claw 160a shows that the substrate 110 is gripped in the short width direction.
  • An arrow O in the drawing indicates a direction in which the claw 160a is opened to release the holding of the substrate 100, and an arrow C indicates a direction in which the claw 160a is closed and the holding of the substrate 110 is performed.
  • 1004 shows a state immediately after the transfer operation from the hand 150 to the end 160 is finished.
  • the claw 150 a of the take-out side hand 150 releases the substrate 110, and the surface of the substrate 110 is roughly cut by the claw 160 a of the hand 160. It is in a horizontal position.
  • the substrate 110 is placed on a mounting surface (not shown), the claw 160a of the hand 160 is opened, and the gripping of the substrate 110 is released.
  • 110 is a substrate as a replacement component
  • 150 is a robot's component extraction side hand
  • 150a is a claw at the tip of the component extraction side hand 150
  • FIG. 11A shows a state where the upper and lower surfaces of the substrate 110 are gripped by the claws 150 a of the hand 150 and moved in the direction of arrow E to take out the substrate 110 from the substrate rack 115.
  • reference numeral 120 denotes a component on which the substrate 110 is placed.
  • the component 120 is formed with a recess 120a so that the substrate 110 fits therein, and the hand 150 and the claw 150a holding the substrate 110 are shown in the drawing. Moving in the direction of arrow D, the substrate 110 is about to be placed on the component 120 (FIG. 11C described later).
  • FIG. 11C shows a state where the substrate 110 is about to be placed in the recess 120a of the component 120 in a state where the substrate 110 is held by the claw 150a of the hand 150 as shown in FIG. 11B.
  • FIG. 6 is a diagram illustrating an example in which the part 110 is replaced and the posture of the hand 160 with respect to the part 120 is changed. Each symbol in the figure is the same as that described with reference to FIGS. 11A to 11C, and 110 a indicates a side surface of the substrate 110.
  • FIG. 12A shows that the transfer of the substrate 110 from the claw 150a of the hand 150 to the claw 160a of the hand 160 is finished, the posture of the hand 160 with respect to the component 120 is changed, and the substrate 110 is about to be placed on the component 120.
  • 12B shows a cross section AA of FIG. 12A in a state where the substrate 110 is gripped by the claw 160a and the substrate 110 is fitted in the recess 120a of the component 120, and the substrate 110 is transferred from the claw 150a to the claw 160a.
  • the necessity of the changeover operation that is, the determination of necessity of the changeover operation will be described in detail using the determination table 1350 shown in FIG.
  • the major classification of whether or not there is a need for replacement is as operating conditions 1351: 1) when the part removal direction is the same as the assembly direction 2) when the part removal direction is different from the assembly direction (part supply posture and assembly direction) Is different).
  • the classification consider the movable area 1352 of the take-out hand in 1) and 2).
  • the necessity / non-necessity column 1354 determines whether the change-over operation is necessary.
  • the take-out hand does not reach the assembly area in the moveable area column 1352 of the take-out hand, it is determined that the change-over operation is necessary in the necessity / unnecessity determination column 1354 of the change-over operation.
  • the take-out hand In the column 1352 of the take-out hand movable area, the take-out hand is within the movable range up to the assembly area, but in the column 1353 for checking whether or not there is interference between the take-out hand and the surrounding work environment at the time of assembly. It can be seen that if there is interference between the take-out hand and the surrounding work environment during assembly, it is determined that the change-over operation is necessary in the column 1354 for whether or not the change-over operation is required.
  • the determination of whether or not to change parts in FIG. 1 is performed in S1060 of FIG.
  • the process proceeds from a via point C described later to S1260.
  • the component holding position information generation unit 602b generates the component holding positions on the take-out side and the transfer side ( (S1070) Based on this result, the component replacement position information generation unit 602c generates replacement position information considering the replacement time (S1090).
  • the camera of the vision system 505 images the assembly target part and checks whether it is necessary to confirm the presence or absence of interference by actual recognition (S1100). In other words, if it is necessary to confirm the presence / absence of interference at the time of transfer by the camera, the process proceeds to the via point B and proceeds to S1230 shown in FIG. On the other hand, in the case of No, if it is clear that there is no interference between components at the time of replacement, and if it is not necessary to confirm the presence or absence of interference by the camera, the process proceeds to S1120.
  • S1120 it is checked whether the number of parts to be assembled, N, is confirmed, and whether the generation of the gripping position has been completed. If NO, the process returns to waypoint A and the process of S1040 is performed. On the other hand, in the case of Yes, the process proceeds to waypoint C, and the process of S1260 described later is executed.
  • Interference avoidance exchange position generation which is information of an exchange position for avoiding interference, is performed from an image obtained by imaging.
  • TCP position Tool Center Point, hereinafter referred to as TCP
  • TCP Tool Center Point
  • the operation path The generation unit 603 uses the information on the replacement position generated in S1090 or the information on the interference avoidance replacement position generated in S1230 and the information on the TCP position correction amount at the time of assembly obtained in S1240, the operation path The generation unit 603 generates an arm motion path for the dual-arm robot.
  • the interference determination unit 604 confirms interference when the arm of the double-arm robot moves (S1270). If there is interference (with interference), the process returns to the waypoint C and returns to S1260. The arm movement path generation process is performed again. On the other hand, if there is no interference (no interference), a robot operation program is generated (S1280), and the dual-arm robot is operated according to the created program to assemble parts (S1290).
  • FIG. 14 to FIG. 16 detail the concept of generating the component gripping positions on the component take-out side and the exchange side according to the present invention.
  • the upper part is a perspective view for explaining the present invention
  • the lower part is a view of the component as viewed from the component gripping surface direction.
  • a column 1411 includes a part 200 to be replaced as a part 200 having a substantially cubic shape, and a component take-off side on the component take-out hand side described later.
  • the normal vector 175 of the hand TCP 173 and the claw 172 (gripping surface) is shown.
  • the hand for replacement 180 shows the normal vector 185 of the hand 183 for gripping the part, the TCP 183 for the hand serving as the point of the part replacement side hand teaching position in the robot, and the nail 183 (grip surface).
  • the component assembly surface 200b sharing the surface with other components at the time of component assembly may interfere with the assembled component when it is gripped by the claws provided in the hand for assembling the component. It is assumed that the surface 200b is not gripped by the claws of the hand that is finally assembled.
  • a normal vector is set for each of the gripping surface of the first hand and the other gripping surface, and the normal vector of each surface of the part corresponding to the gripping surface of the hand is set.
  • Each gripping surface is set or determined so that the absolute value of the inner product is minimized.
  • the normal vector described hereinafter in the present invention represents a normal unit vector unless otherwise specified.
  • the angle ⁇ 1 formed by the normal vectors of the replacement claw 182 is substantially orthogonal (the angle formed by the vectors is approximately 90 °), and the inner product value thereof is zero. Therefore, it satisfies the setting of each gripping surface so that the absolute value of the inner product of the normal vectors of the surfaces corresponding to the gripping surface of the hand is minimized.
  • the part 300 to be transferred is a substantially hexagonal column
  • the part take-out hand is 270
  • the claw is 272
  • the TCP is 273
  • the nail normal vector is 275
  • the replacement hand is 280
  • the nail is 282
  • the TCP is 283, and the nail method
  • the line vector is 275.
  • FIG. 9 is an example of a flow processed by the component gripping position generation unit 602b.
  • an area candidate capable of gripping a part with the nail at the leading end of the hand on the extraction side is extracted (S1202).
  • a gripping position is determined from the region candidates that can be gripped (S1203).
  • a method for determining the gripping position from the region candidates for example, it may be determined that the position is close to the center of gravity of the component and the moment of the nail and the hand becomes as small as possible when gripped.
  • the friction coefficient of the part surface it may be determined to grip a position having a large friction coefficient, that is, a position that is difficult to slip when gripping.
  • the normal vector of the extraction side gripping surface is defined (S1204).
  • the holding position candidate on the transfer side is also extracted from the DB 510 (S1205).
  • 1 is added to the value of the counter n (S1209).
  • a normal vector of the nth replacement side gripping surface is defined from the information of the replacement side gripping area candidate extraction (S1205) and the combination number set of grippable surfaces (S1206) (S1210).
  • S1205 the information of the replacement side gripping area candidate extraction
  • S1206 the combination number set of grippable surfaces
  • S1211 it is checked whether or not the hand on the gripping surface side is the assembly surface side (S1211). If it is not the assembly surface side (in the case of No), the process returns to S1209. On the other hand, in the case of Yes, the process proceeds to S1212 to calculate the absolute value of the inner product of the extraction-side normal vector (S1204) and the replacement-side normal vector (S1210).
  • the value with a smaller absolute value of the inner product is updated (S1213), and the surface on which the absolute value of the inner product is minimized on the transfer side gripping surface and the number of the surface are stored (S1214). This process is evaluated for the number of grippable surfaces (if S1215 is No, steps S1209 to S1214 are repeated).
  • the replacement gripping surface having the smallest inner product is determined (S1219), and then the replacement gripping position is determined (S1220).
  • the holding-side gripping position for example, a position close to the center of gravity of the component and a position where the moment is reduced as much as possible to the claws and the hand as in the method of determining the gripping position on the take-out side.
  • gripping a position where the friction coefficient is large that is, a non-slip position when gripping, or at that time, It may be determined at a position where there is no interference.
  • FIG. 15 shows a case where the part shape to be transferred is a deformed hexagonal note
  • FIGS. 16A and 16B show trapezoidal pillars.
  • the replacement pattern (3) shown in the column 1510 of FIG. 15 is the part 450 to be replaced, and the claw 352 and the claw 352 of the component take-out hand 350 with respect to the assembly surface 450b of the part 450.
  • the normal vector of the nail 402 and the nail 402 of the hand 400 is 405.
  • the normal vectors 355 and 405 are substantially 90 degrees at right angles, and the inner product of the normal vectors is 0 (the absolute value of the inner product is the minimum value).
  • the replacement pattern (4) shown in the column 1520 the normal vectors 355 and 405 are substantially 90 degrees perpendicular to each other and the inner product value is the minimum value as shown in the column 1522. Since the surface 450b is held, the replacement pattern (4) shown in the column 1520 is excluded from the candidates.
  • the normal vectors 355 and 405 are substantially parallel as shown in the column 1532, the absolute value of the normal vector value is 1, and the inner product value is a possible value.
  • the surface that can be selected as the gripping surface of the claw due to the part supply form, the limitation of the assembly surface 450b, and the limit of the surface that can grip the part is limited as in the replacement pattern (5).
  • a combination of the gripping surfaces of this pattern may be used.
  • the part to be transferred is 480
  • the part constituting part comes to the part take-out side hand 480a
  • the part assembly side is 480b
  • the part take-out side hand is 460
  • the hand claw is 462
  • the normal vector is 465
  • the hand on the exchange side is 470
  • the nail of the hand is 472
  • the normal vector of the hand is 475.
  • the surface on which the component 480 can be gripped by the replacement hand 470 and the claw 472 is only the assembly surface 480b and its opposing surface 480c, regardless of the value of the normal vector.
  • FIG. 17A to 19 show the above contents in a simplified manner.
  • FIG. 17A is a view of the hand and parts as seen from the front
  • FIG. 17B is a view of them as seen from the side.
  • the part is 780
  • the hand is 700
  • the claws that hold the part are 700a and 700b. is there.
  • the normal vector of the claws 700a and 700b indicates 705.
  • an area that can be gripped by the claws 700a and 700b of the take-out side hand 700 and the claws of the replacement hand is set on the part 780.
  • the gripping surface is determined by an evaluation index such as a sufficient gripping area or gripping an area close to the position of the center of gravity of the component.
  • the normal vector on the nail of the take-out hand and / or the surface on the part gripped by the nail is defined.
  • FIG. 18A shows the part 780 as seen from the front
  • FIG. 18B shows the part 780 as seen from the side.
  • the posture (part gripping surface) of the replacement hand 750 is then determined.
  • this method is defined so that the normal vector of the hand on the exchange side is defined, and the gripping surface that minimizes the absolute value of the inner product in the normal vector direction of the takeout hand surface can be selected and gripped (this book In the case of the figure, it determines the posture (orientation) of the right hand (inner product 0)) replacement side hand.
  • FIG. 19 shows the positional relationship between the extraction-side normal vector 705 and the replacement-side normal vector 755.
  • the normal vectors 705 and 755 are substantially orthogonal ( ⁇ 90 °) as shown in FIG.
  • the interference between the robot hand holding the part and the part to be assembled Since the path that does not cause interference can be created in advance by checking the coherency of the machine, the number of steps for teaching the transfer path by teaching can be reduced, and the time required for teaching can be greatly shortened. Became.
  • an arrow R1 indicates that the part is gripped by the take-out hand and headed to the replacement position SP.
  • the arrow L1 shows the operation of the hand on the exchange side, and indicates that it is heading from the arbitrary position to the exchange position SP.
  • the parts held by the take-out hand at the transfer position SP are transferred to the transfer-side hand and moved in the assembly position direction (not shown) indicated by the arrow L2.
  • the take-out hand retreats as indicated by an arrow R2 so as to reach the next operation.
  • 20A and 20B show that the operation time (or operation distance) at R1 is shorter than the operation time (or operation distance) at L1, as shown by R1 length ⁇ L1 length.
  • 20A and 20B are diagrams showing the same contents, but the route indicated by the arrow R1 and the route indicated by R2 may pass through different routes as shown in FIG. 20A, or as shown in FIG. 20B.
  • the route indicated by the arrow R1 and the route indicated by R2 may be the same route. The same applies to the route indicated by the arrow L1 and the route indicated by the arrow L2.
  • FIGS. 22A and 22B show the case where R1 length> L1 length.
  • the time required for the operation to the changeover position is R1
  • the time required from the start position of the other arm to the changeover position SP is L1
  • the changeover position SP to the end point position (assembly position) is L2
  • Max (R1, L1) + L2 minimum value (minimum operating time)
  • the operation path distance to the change position is WR1
  • the operation path distance required from the start position of the other arm to the change position is WL1
  • the action required for the operation from the change position SP to the end position is WL2
  • WR1 + WL1 + WL2 minimum value (shortest operation path)
  • the start position of the arm may be the home position of the arm or the final position in the assembly operation of the previous part.
  • the time R1, L1, and L2 required for the operation can be calculated by a general method such as a method of calculating by robot simulation or a method of calculating from the operation path distance (WR1, WL1, WL2).
  • FIGS. 23A to 27B show diagrams when it is not necessary to change the grip position information obtained from the 3D-CAD information.
  • FIG. 25A, FIG. 25B, FIG. 26A, FIG. 26B, FIG. 27A, and FIG. 27B show that it is necessary to change grip position information obtained from 3D-CAD information as a result of position detection of parts or hands and nails by a camera. A diagram in some cases is shown.
  • 780 is a component, and in the present embodiment, a substrate is shown as an example, and 780 g is the center of gravity of the substrate 780.
  • the point P represents a point obtained by projecting the TCP position on the XY plane when there is no need to change the grip position information.
  • the substrate 790 is a substrate on which other electronic components on the substrate surface are mounted, and is mounted on the original 3D-CAD information obtained from the 3D-CAD device 504 shown in FIG.
  • the existence of the electronic component is not reflected, and the existence is recognized by the entity recognition by the camera which is the vision system 550 shown in FIG.
  • Reference numeral 790g denotes the position of the center of gravity of the substrate 790.
  • the part extraction side hand 795 shown in FIG. 27A shows an unintentionally long claw 795a, and 798 indicates the TCP of the part extraction side hand 795.
  • Reference numerals 799 in FIGS. 24B, 26B, 26C, and 27B denote parts to be assembled on which the substrate 780 or 790 is placed.
  • the point P indicates a point obtained by projecting the TCP position on the XY plane when there is no need to change the grip position information.
  • FIG. 23A shows a state in which the substrate 780 is gripped and moved by the take-out hand 720 and the claw 720a of the take-out hand 720.
  • FIG. 23B shows a state in which a change operation is about to be performed with the transfer hand 730 and its claws 730a from the state of FIG. 23A.
  • 24A and 24B are views of the state when the substrate is placed on the part to be assembled when viewed from the side when the substrate is changed in this situation.
  • the claw 730 a of the holding-side hand 730 holds the vicinity of the center of gravity 780 g of the substrate 780 and places the substrate 780 on the assembly target part 799.
  • FIG. 25A, FIG. 25B, FIG. 26A, and FIG. 26B show an example in which an electronic component 790b that is not included in the 3D-CAD information obtained from the 3D-CAD device 504 is mounted on the substrate 790 as described above. Yes.
  • the position, size, and the like of the electronic component 790b are confirmed by entity recognition by the vision system 505, here a camera.
  • FIG. 25A is a diagram showing a state in which the board 790 is gripped by the component take-out side hand 720 and the claw 720a.
  • the electronic part 790a is on the board 790, so Since the holding-side hand 730 and the electronic component 790a interfere with each other at the position where the substrate 790 is to be grasped, a state in which the holding-side hand 730 is moved by the distance D to a position where there is no interference is shown.
  • the position change of the exchange-side hand 730 is performed by changing the position information of the TCP 733 of the exchange-side hand 730.
  • FIG. 26A is a view of this state as viewed from the side. Since there is an electronic component 790b that is not included in the 3D-CAD information on the substrate 790, the substrate 790 is being moved at a position moved by the distance D to a position where it does not interfere with the camera of the vision system 505.
  • FIG. 26B is an explanatory diagram showing that the TCP 733 position needs to be moved by the distance D when it is placed on the assembly target part 799 because the TCP 733 position of the transfer hand 730 is moved by the distance D.
  • the operation point of the robot is controlled by the TCP position, and the position information is extracted from the 3D-CAD information of the 3D-CAD device 504.
  • the TCP 733 position when the correction of the distance D is not required is preferably such that the gripping center of the claw 730a is located immediately above the point P in the drawing.
  • FIG. 26B shows this state in which the correct position moves from the position on the XY plane obtained from the 3D-CAD information of the 3D-CAD device 504 to the value corrected by the distance D. is there.
  • FIGS. 27A and 27B A similar example will be described with reference to FIGS. 27A and 27B.
  • the difference from the configuration described with reference to FIGS. 26A and 26B is that, instead of mounting the electronic component 790a on the substrate 780, a claw 795a attached to the component take-out side hand 795 is provided in the 3D of the 3D-CAD device 504.
  • An example in which a long object is attached to the nail 795a obtained from the CAD information is shown.
  • the claw 795 attached to the replacement hand 730 and the component take-out hand 795 interferes, so the replacement hand 730 is moved by the distance D to avoid interference. ing.
  • the number of assembly steps that require teaching can be reduced, so that the time required for teaching can be greatly shortened. Became.
  • FIG. 28 shows an example in which the display unit 502 and the input unit 501 used in the first to third embodiments of the present invention correspond to one input screen.
  • An input / output screen 900 includes, for example, a touch panel input type liquid crystal display panel or a data input keyboard and an information display liquid crystal panel (not shown).
  • the work name is 901
  • the component supply layout CAD diagram is 902a
  • the product placement completed CAD diagram is 902b
  • the assembly operation simulation screen including the moving operation by the robot is shown by 904.
  • 904a is a component supply state
  • 904b is a component or product assembly state
  • 904c is a double-arm robot body
  • 904d is a relative origin of the robot
  • 904e and 904f are arms of a double-arm robot
  • 904g and 904h are robot hands ( 904i shows an example of an assembly part, here, a substrate.
  • 910 is an execution start button for starting assembly order generation
  • 911 is an execution start button for starting operation teaching to the robot
  • 912 is a confirmation lower screen for the time required for the transfer operation
  • 913 is a typical operation of the robot It is the display part for confirmation of a point (passing point).
  • the part gripping claw attached to the hand has been described with an example of the openable / closable two claws, but is not limited thereto.
  • the suction hand is used for both the combination of the gripping surface on the part where the inner product of the normal vector of the nail and the normal vector of the suction surface of the suction hand is the smallest, What is necessary is just to set the holding surface on a component so that the inner product of the normal vectors of both suction surfaces is minimized.
  • the present invention has been described by taking the assembly operation teaching apparatus as an example, but the scope of application of the present invention is not limited to this and may be applied as an assembly operation teaching method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The purpose of the present invention is to realize assembly operation teaching technology that will lighten a burden of teaching work for teaching a dual-arm robot and that includes a component grip change operation which will reduce the time required for teaching as well as the time for the robot to perform operation work. To achieve this purpose, provided is a device for teaching an assembly operation to a robot, the device comprising: a database that stores component information, robot information and information relating to a robot hand or tool required for the assembly of components; an assembly order generation unit that generates the order in which the components are to be assembled; a grip change information generation unit that generates information for changing a hand that grips a component, from one hand to the other, when the component is gripped by the hand and assembled on the basis of the generated assembly order; an operation path generation unit that generates the operation paths of a plurality of arms when the components are assembled by the robot using the component grip change information; and an interference determination unit that determines whether there is interference between the plurality of arms in the operation paths thereof, and whether there is interference between the hand gripping a component and a destination component to which the gripped component is to be attached. The grip change information generation unit is configured such that, as the post-grip-change gripping plane of a component for which a grip change between hands is performed, a plane that includes the normal vector for which the absolute value of the inner product with the normal vector of the pre-grip-change gripping plane is the smallest is selected.

Description

組立動作教示装置及び組立動作教示方法Assembly operation teaching device and assembly operation teaching method
 本発明は部品の組立動作教示装置及び組立動作教示方法に関する。 The present invention relates to a part assembly operation teaching device and an assembly operation teaching method.
 組立自動化においてロボットを活用し、組立動作プログラムを生成する場合、通常は直接ロボットを動作させながら行うダイレクトティーチングが一般的である。このダイレクトティーチングでは、ロボットに望むべき一連の動作を全てティーチングする必要がある。また、複雑なティーチング作業、あるいは長時間にわたるティーチング作業は、ティーチング作業者の大きな負担となっていた。 When creating an assembly operation program using a robot in assembly automation, direct teaching is generally performed while operating the robot directly. In this direct teaching, it is necessary to teach all of a series of operations that should be desired by the robot. In addition, complicated teaching work or long-time teaching work has been a heavy burden on the teaching worker.
 近年では、顧客ニーズの多様化により製品の生産形態が少品種大量生産型から多品種変量生産型に移行してきており、ロボットを活用した組立も多品種への対応を余儀なくされ、ティーチング作業者の負担を加速度的に増大させることとなっている。 In recent years, the diversification of customer needs has shifted the product production form from low-mix, high-volume production to multi-variable, variable-volume production, and assembly using a robot is also forced to support a wide variety of products. The burden is to be increased at an accelerated rate.
 さらにより複雑な作業動作にも対応可能な双腕ロボットも増えつつあり、複数の腕を持つことからさらにティーチング作業の負担は増える傾向がある。
また、双腕ロボットを活用することにより、部品の持替をロボット一台で行うことが可能となり、組立作業時の治具レス化による低コスト化の方向にある。
Furthermore, the number of double-arm robots that can cope with more complex work movements is increasing, and the burden of teaching work tends to increase due to having multiple arms.
In addition, by utilizing a double-arm robot, it is possible to change parts with a single robot, and there is a tendency to reduce costs by eliminating jigs during assembly work.
 そこで、双腕ロボットの部品持替に関するティーチングに関する発明として、例えば特開2011-669号公報(特許文献1)がある。 Therefore, for example, Japanese Patent Application Laid-Open No. 2011-669 (Patent Document 1) discloses an invention related to teaching about parts replacement of a double-arm robot.
 この特許文献1には「ロボットにより対象物を所定方向に並べる際に、ロボットの第1アームを用いて対象物を把持し、把持された対象物を旋回させ、旋回中に第1アームに取付けられたマーク検出センサを用いて対象物中のマークを検出すると、当該旋回を停止し、第1アームにより把持された対象物を第2アームに持替えて予め設定された位置に対象物を載置する。」と記載されている。 This Patent Document 1 states that “when a robot arranges objects in a predetermined direction, the robot grips the object using the first arm of the robot, turns the grasped object, and attaches the object to the first arm during the turn. When the mark in the object is detected using the mark detection sensor, the turning is stopped, the object gripped by the first arm is transferred to the second arm, and the object is placed at a preset position. ""
特開2011-669号公報JP 2011-669 A
 特許文献1ではロボットの動作教示は予めティーチングを行っておく、対象となる部品(文献中では「ワーク」と記載)ごとに情報が登録されたラベルを貼り付け、そのラベル情報を基に部品持替をはじめとする動作を決定する手段が用いられていた。しかし、特許文献1の方法では、ロボット動作ティーチングはロボット担当者が教示する負荷が残っており、また対象部品ごとに予めラベルを貼り付けなくてはならないという作業も必要であった。 In Patent Document 1, teaching of robot operation is performed in advance, and a label on which information is registered is attached to each target component (described as “work” in the document), and the component is held based on the label information. Means for determining the operation including replacement have been used. However, in the method disclosed in Patent Document 1, the robot operation teaching still has a load taught by the person in charge of the robot, and it is also necessary to attach a label in advance for each target part.
 本発明の目的は、上記した従来技術の課題を解決して、複腕ロボットのティーチング作業の負担を軽減し、さらにティーチングに要する時間、ロボットの動作作業時間も短時間化する部品の組立動作教示装置及び組立動作教示方法を実現することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, reduce the burden of teaching work of a multi-arm robot, and further teach the assembly operation of parts that shortens the time required for teaching and the operating time of the robot. It is to realize an apparatus and an assembly operation teaching method.
 上記した課題を解決するために、本発明では、ハンドを装着するアームを複数備えたロボットに対する組立動作を教示する装置を、部品情報とロボット情報と部品種別ごとに扱えるロボットのハンドまたは部品の組立に必要なツールに関する情報を記憶するデータベースと、複数のアームに装着したハンドで部品を把持して組み立てる順序を生成する組立順序生成部と、組立順序生成部で生成した組立順序に基づいて複数のアームに装着したハンドで部品を把持して組み立てるときに把持した部品を複数のアームに装着したハンド間で持替るための情報を生成する持替情報生成部と、持替情報生成部で生成した部品の持替情報を用いてロボットで部品を組み立てるときの複数のアームの動作経路を生成する動作経路生成部と、動作経路生成部で生成した複数のアームの動作経路における複数のアーム間の干渉の有無及び部品を把持したハンドと把持した部品を組み付ける先の部品との干渉の有無を判定する干渉性判定部とを備えて構成し、持替情報生成部では、複数のアームに装着したハンド間で持替る部品の持替後の把持面として、持替前の把持面の法線ベクトルとの内積の絶対値が最少となる法線ベクトルを有する面を選択するようにした。 In order to solve the above-described problems, in the present invention, an apparatus for teaching an assembling operation for a robot having a plurality of arms on which a hand is mounted is assembled into a robot hand or a part that can be handled according to part information, robot information, and part type. A database for storing information related to tools necessary for assembly, an assembly order generation unit for generating an assembly order by gripping parts with hands attached to a plurality of arms, and a plurality of units based on the assembly order generated by the assembly order generation unit. Generated by a replacement information generator and a replacement information generator that generates information for transferring the gripped parts between hands mounted on multiple arms when the parts are gripped and assembled by the hands attached to the arms. Motion path generation unit that generates motion paths for multiple arms when assembling parts with a robot using part replacement information, and motion path generation And a coherence determination unit that determines whether there is interference between the plurality of arms in the operation path of the plurality of arms generated in step 1, and whether there is interference between the hand holding the component and the component to which the gripped component is assembled. In the transfer information generation unit, the absolute value of the inner product with the normal vector of the grip surface before the transfer is minimized as the grip surface after the replacement of the parts to be transferred between the hands mounted on the plurality of arms. A surface having a normal vector was selected.
 また、課題を解決するために、本発明では、複数のアームを備えたロボットに対する組立動作を教示する方法を、部品情報とロボット情報と部品種別ごとに扱えるロボットの複数のアームに装着するハンドまたは部品の組み立てに必要なツールに関する情報を用いて複数のアームを備えたロボットで部品を把持して組み立てる順序を生成し、生成した組立順序に基づいてロボットのアームに装着したハンドで部品を把持して組み立てるときに把持した部品を複数のアームに装着したハンド間で持替る必要の有無を判定し、把持した部品を複数のアームに装着したハンド間で持替る必要があると判定した場合に把持した部品を複数のアームに装着したハンド間で持替るための情報を生成し、生成した部品の持替情報を用いて複数のアームを備えたロボットで部品を組み立てるときの複数のアームの動作経路を生成し、生成した複数のアームの動作経路における複数のアーム及び複数のアームに装着したハンド間の干渉の有無及び部品を把持したハンドと把持した部品を組み付ける先の部品との干渉の有無を判定することを含む方法とし、持替情報を生成することを、複数のアームに装着したハンド間で持替る部品の持替後の把持面として、持替前の把持面の法線ベクトルとの内積の絶対値が最少となる法線ベクトルを有する面を選択するようにした。 In order to solve the problem, in the present invention, a method for teaching an assembling operation for a robot having a plurality of arms is a hand attached to a plurality of arms of a robot that can handle each part type, robot information, and part type. Using the information on the tools necessary for assembling the parts, generate a sequence for gripping and assembling the parts with a robot with multiple arms, and grip the parts with the hand attached to the robot arm based on the generated assembly order. Determines whether it is necessary to transfer the gripped parts between hands attached to multiple arms, and grips when it is determined that the gripped parts need to be transferred between hands attached to multiple arms. Generate information for transferring the parts that have been mounted on multiple arms, and prepare multiple arms using the generated replacement information for the parts. Generating a movement path of a plurality of arms when assembling a part with a robot, a plurality of arms in the generated movement path of the plurality of arms, and presence / absence of interference between hands mounted on the plurality of arms, and a hand holding the part The method includes determining the presence or absence of interference with the component to which the gripped component is assembled, and generating the replacement information is the gripping surface after the replacement of the component that is transferred between the hands attached to the plurality of arms. As described above, the surface having the normal vector that minimizes the absolute value of the inner product with the normal vector of the gripping surface before the replacement is selected.
 本発明によれば、複腕(双腕を含む)活用による持替動作を含めたロボット動作生成が確実に短時間で可能となる組立教示装置を実現することができる。 According to the present invention, it is possible to realize an assembly teaching device capable of reliably generating a robot motion including a change-over motion by utilizing multiple arms (including double arms) in a short time.
本発明による組立動作教示装置の第1の実施の形態を表すシステム構成図である。1 is a system configuration diagram illustrating a first embodiment of an assembly operation teaching apparatus according to the present invention. 本発明による組立動作教示装置の第1の実施の形態における部品情報の一例を示す表である。It is a table | surface which shows an example of the component information in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態におけるロボット情報の一例を示す表である。It is a table | surface which shows an example of the robot information in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態におけるハンド/ツール-部品種別情報の一例を示す表である。It is a table | surface which shows an example of the hand / tool-part classification information in 1st Embodiment of the assembly operation teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態におけるハンド情報の一例を示す表である。It is a table | surface which shows an example of the hand information in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態におけるツール情報の一例を示す表である。It is a table | surface which shows an example of the tool information in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態に係る組立動作教示装置の処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process of the assembly operation teaching apparatus which concerns on 1st Embodiment of the assembly operation teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態に係るビジョンシステムで得た画像を用いた持ち替え情報生成部における処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process in the change information generation part using the image obtained with the vision system which concerns on 1st Embodiment of the assembly operation teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態に係る動作経路生成部及び干渉性判定部における処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process in the action path | route production | generation part and coherence determination part which concern on 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態に係る部品把持位置生成部における処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process in the components holding position production | generation part which concerns on 1st Embodiment of the assembly operation teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態における持替動作の一連の流れを説明する図である。It is a figure explaining a series of flows of the exchange operation in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明するロボットのハンドと基板ラックの斜視図である。It is a perspective view of the hand of a robot and a board | substrate rack explaining the change-over operation | movement in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明する基板を把持したロボットハンドと部品の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a robot hand holding a board and components for explaining a change-over operation in a first embodiment of an assembly operation teaching apparatus according to the present invention. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明するロボットハンドと部品の干渉の状態を示す断面図である。It is sectional drawing which shows the state of the interference of the robot hand explaining components in the 1st Embodiment of the assembly operation teaching apparatus by this invention, and components. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明するロボットハンドと部品の斜視図である。FIG. 3 is a perspective view of a robot hand and components for explaining a change-over operation in the first embodiment of the assembly operation teaching apparatus according to the present invention. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明するロボットハンドで把持した基板を部品に載置した状態を示す断面図である。It is sectional drawing which shows the state which mounted the board | substrate hold | gripped with the robot hand explaining the moving operation | movement in 1st Embodiment of the assembly operation teaching apparatus by this invention on the components. 本発明による組立動作教示装置の第1の実施の形態における持替動作要否パターンを示す表である。It is a table | surface which shows the movement operation necessity pattern in 1st Embodiment of the assembly operation teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態における持替パターンを説明する表である。It is a table | surface explaining the change pattern in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態における持替パターンを説明する表である。It is a table | surface explaining the change pattern in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention. 本発明による組立動作教示装置の第1の実施の形態における持ち替えパターンを説明する部品とハンドの斜視図である。It is a perspective view of a part and a hand explaining a change pattern in a 1st embodiment of an assembly operation teaching device by the present invention. 本発明による組立動作教示装置の第1の実施の形態における持ち替えパターンを説明する部品とハンドのA方向矢視図である。It is an A direction arrow view of components and a hand explaining a change pattern in a 1st embodiment of an assembly operation teaching device by the present invention. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明する図であって、ハンドで部品を把持した状態の正面図である。It is a figure explaining the change-over operation in 1st Embodiment of the assembly operation | movement teaching apparatus by this invention, Comprising: It is a front view of the state which hold | gripped components with the hand. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明する図であって、ハンドで部品を把持した状態の側面図である。It is a figure explaining the change-over operation in 1st Embodiment of the assembly operation teaching apparatus by this invention, Comprising: It is a side view of the state which hold | gripped components with the hand. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明する図であって、取り出し側ハンドと持替側ハンドで部品を把持した状態の正面図である。It is a figure explaining the exchange operation in 1st Embodiment of the assembly operation teaching apparatus by this invention, Comprising: It is a front view of the state which hold | gripped components with the taking-out side hand and the exchange side hand. 本発明による組立動作教示装置の第1の実施の形態における持替動作を説明する図であって、取り出し側ハンドと持替側ハンドで部品を把持した状態の側面図である。It is a figure explaining the exchange operation in 1st Embodiment of the assembly operation teaching apparatus by this invention, Comprising: It is a side view of the state which hold | gripped components with the taking-out side hand and the exchange side hand. 本発明による組立動作教示装置における持替動作を説明する図で、取り出し側法線ベクトルと持替側法線ベクトルの関係を示す図である。It is a figure explaining the change operation | movement in the assembly operation | movement teaching device by this invention, and is a figure which shows the relationship between a taking-out side normal vector and a transfer side normal vector. 本発明による組立動作教示装置の第2の実施の形態における取り出し側ハンドと持替側ハンドとの動作の軌跡を示す図で、取り出し側ハンドの経路の方が持替側ハンドの経路よりも短い場合であって、持替位置への行きと帰りとの経路が離れている状態を示す図である。It is a figure which shows the locus | trajectory of operation | movement with the taking-out side hand and the exchange side hand in 2nd Embodiment of the assembly operation teaching apparatus by this invention, The path | route of an extraction side hand is shorter than the path | route of a exchange side hand It is a case, Comprising: It is a figure which shows the state from which the path | route to the return position and the return are separated. 本発明による組立動作教示装置の第2の実施の形態における取り出し側ハンドと持替側ハンドとの動作の軌跡を示す図で、取り出し側ハンドの経路の方が持替側ハンドの経路よりも短い場合であって、持替位置への行きと帰りとの経路が同じ状態を示す図である。It is a figure which shows the locus | trajectory of operation | movement with the taking-out side hand and the exchange side hand in 2nd Embodiment of the assembly operation teaching apparatus by this invention, The path | route of an extraction side hand is shorter than the path | route of a exchange side hand It is a case, Comprising: It is a figure which shows the state where the path | route to the return position and the return are the same. 本発明による組立動作教示装置の第2の実施の形態における取り出し側ハンドと持替側ハンドとの動作の軌跡を示す図で、取り出し側ハンドの経路の長さと持替側ハンドの経路の長さが同じ場合であって、持替位置への行きと帰りとの経路が離れている状態を示す図である。It is a figure which shows the locus | trajectory of the operation | movement of the taking-out side hand and the exchange side hand in 2nd Embodiment of the assembly operation teaching apparatus by this invention, and shows the path length of the take-out side hand and the path length of the exchange-side hand. It is a figure which is the same, Comprising: It is a figure which shows the state from which the path | route to the return position and the return is separated. 本発明による組立動作教示装置の第2の実施の形態における取り出し側ハンドと持替側ハンドとの動作の軌跡を示す図で、取り出し側ハンドの経路の長さと持替側ハンドの経路の長さが同じ場合であって、持替位置への行きと帰りとの経路が同じ状態を示す図である。It is a figure which shows the locus | trajectory of the operation | movement of the taking-out side hand and the exchange side hand in 2nd Embodiment of the assembly operation teaching apparatus by this invention, and shows the path length of the take-out side hand and the path length of the exchange-side hand. Is a diagram showing a state where the route to the changeover position and the return route are the same. 本発明による組立動作教示装置の第2の実施の形態における取り出し側ハンドと持替側ハンドとの動作の軌跡を示す図で、取り出し側ハンドの経路の方が持替側ハンドの経路よりも長い場合であって、持替位置への行きと帰りとの経路が離れている状態を示す図である。It is a figure which shows the locus | trajectory of operation | movement with the taking-out side hand and the exchange side hand in 2nd Embodiment of the assembly operation teaching apparatus by this invention, The path | route of an extraction side hand is longer than the path | route of a exchange side hand It is a case, Comprising: It is a figure which shows the state from which the path | route to the return position and the return are separated. 本発明による組立動作教示装置の第2の実施の形態における取り出し側ハンドと持替側ハンドとの動作の軌跡を示す図で、取り出し側ハンドの経路の方が持替側ハンドの経路よりも長い場合であって、持替位置への行きと帰りとの経路が同じ状態を示す図である。It is a figure which shows the locus | trajectory of operation | movement with the taking-out side hand and the exchange side hand in 2nd Embodiment of the assembly operation teaching apparatus by this invention, The path | route of an extraction side hand is longer than the path | route of a exchange side hand It is a case, Comprising: It is a figure which shows the state where the path | route to the return position and the return are the same. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報から得られた把持位置情報を変更する必要がない場合のハンドで部品を把持した状態の正面図である。It is a figure explaining the change operation in 3rd Embodiment of the assembly operation | movement teaching apparatus by this invention, Comprising: A part is grasped with the hand when it is not necessary to change the holding position information obtained from 3D-CAD information FIG. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報から得られた把持位置情報を変更する必要がない場合の取り出し側ハンドと持替側ハンドで部品を把持した状態の正面図である。It is a figure explaining the change-over operation | movement in 3rd Embodiment of the assembly operation | movement teaching device by this invention, Comprising: When it is not necessary to change the holding | grip position information obtained from 3D-CAD information, a take-out hand and holding It is a front view of the state which grasped parts with the exchange side hand. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報から得られた把持位置情報を変更する必要がない場合の取り出し側ハンドと持替側ハンドで部品を把持した状態の正面図である。It is a figure explaining the change-over operation | movement in 3rd Embodiment of the assembly operation | movement teaching device by this invention, Comprising: When it is not necessary to change the holding | grip position information obtained from 3D-CAD information, a take-out hand and holding It is a front view of the state which grasped parts with the exchange side hand. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報から得られた把持位置情報を変更する必要がない場合の持替側ハンドで把持した部品を被組み立て部品上に載置する状態の正面図である。It is a figure explaining the change operation in 3rd Embodiment of the assembly operation teaching apparatus by this invention, Comprising: With the change side hand when it is not necessary to change the holding | grip position information obtained from 3D-CAD information It is a front view of the state which mounts the hold | gripped components on to-be-assembled components. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報には無い電子部品が搭載された基板を取り出し側ハンドで把持した状態を示す側面図である。It is a figure explaining the change-over operation in 3rd Embodiment of the assembly operation teaching apparatus by this invention, Comprising: The state in which the board | substrate with which the electronic component which is not in 3D-CAD information was mounted was hold | gripped with the taking-out hand is shown. It is a side view. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報には無い電子部品が搭載された基板を取り出し側ハンドで把持した状態を示す正面図である。It is a figure explaining the change-over operation in 3rd Embodiment of the assembly operation teaching apparatus by this invention, Comprising: The state in which the board | substrate with which the electronic component which is not in 3D-CAD information was mounted was hold | gripped with the taking-out hand is shown. It is a front view. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、左側は持替側ハンドが基板の搭載された3D-CAD情報には無い電子部品と重なっている状態、右側は持替側ハンドが基板に搭載された3D-CAD情報には無い電子部品の位置からD離れた位置を把持した状態を示す正面図である。It is a figure explaining the change operation in 3rd Embodiment of the assembly operation teaching apparatus by this invention, Comprising: The left side overlaps with the electronic component which is not in the 3D-CAD information with which the change side hand was mounted. The right side is a front view showing a state in which the hand on the exchange side grips a position D apart from the position of the electronic component not included in the 3D-CAD information mounted on the board. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、取り出し側ハンドで把持された3D-CAD情報には無い電子部品が搭載された基板を、持替側ハンドで電子部品の位置からD離れた位置を把持した状態を示す側面図である。FIG. 10 is a diagram for explaining a change-over operation in the third embodiment of the assembly operation teaching device according to the present invention, in which a board on which electronic components not included in the 3D-CAD information held by the take-out hand are mounted is held. It is a side view which shows the state which hold | gripped the position which left | separated D from the position of the electronic component with the replacement | exchange side hand. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報には無い電子部品が搭載された基板を持替側ハンドで電子部品の位置からD離れた位置を把持して被組立部品に正しく搭載した状態を示す側面図である。FIG. 10 is a diagram for explaining a change-over operation in the third embodiment of the assembly operation teaching device according to the present invention, in which a board on which an electronic component not included in the 3D-CAD information is mounted is positioned by the transfer-side hand. It is a side view which shows the state which hold | gripped the position away from D and was correctly mounted in the to-be-assembled part. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、3D-CAD情報には無い電子部品が搭載された基板を持替側ハンドで電子部品の位置からD離れた位置を把持して持替側ハンドのツールセンターポイント(TCP)を、3D-CAD情報から得られた持替側ハンドのツールセンターポイント(TCP)が基板の重心位置と一致している場合のツールセンターポイント(TCP)に対応する被組立部品上の点Pに合わせて被組立部品に搭載した状態を示す側面図である。FIG. 10 is a diagram for explaining a change-over operation in the third embodiment of the assembly operation teaching device according to the present invention, in which a board on which an electronic component not included in the 3D-CAD information is mounted is positioned by the transfer-side hand. The tool center point (TCP) of the replacement hand obtained by gripping a position D away from the tool, and the tool center point (TCP) of the replacement hand obtained from the 3D-CAD information coincide with the center of gravity position of the substrate. It is a side view which shows the state mounted in the to-be-assembled part according to the point P on the to-be-assembled part corresponding to the tool center point (TCP) in the case of being. 本発明による組立動作教示装置の第3の実施の形態における基板を取り出し側ハンドと持替側ハンドとで把持した状態を示す側面図であり、取り出し側ハンドの爪の長さが3D-CADデータの爪の長さよりも長い場合に、持替側ハンドで基板の重心の位置からD離れた位置を把持した状態を示す側面図である。It is a side view which shows the state which hold | gripped the board | substrate in the 3rd Embodiment of the assembly operation teaching apparatus by this invention with the extraction side hand and the exchange side hand, and the length of the nail | claw of an extraction side hand is 3D-CAD data. It is a side view which shows the state which hold | gripped the position which left | separated D from the position of the gravity center of a board | substrate with the exchange-side hand when it is longer than the length of a nail | claw. 本発明による組立動作教示装置の第3の実施の形態における持替動作を説明する図であって、持替側ハンドで基板を基板の重心位置からD離れた位置を把持して被組立部品に正しく搭載した状態を示す側面図である。It is a figure explaining the change operation in 3rd Embodiment of the assembly operation teaching apparatus by this invention, Comprising: A board | substrate is hold | gripped in the position distant from the gravity center position of a board | substrate with the change side hand, and it becomes an assembly target part. It is a side view which shows the state mounted correctly. 本発明による組立動作教示装置の各実施例に共通な入出力画面の一例を示す画面の正面図である。It is a front view of the screen which shows an example of the input / output screen common to each Example of the assembly operation | movement teaching apparatus by this invention.
 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第1の実施の形態First embodiment
 本発明の第1の実施形態を、図1~図17を用いて説明する。 
 図1は本発明による組立動作教示システムのシステム構成を示す図である。本説明では複腕ロボット、特に双腕ロボットの動作ティーチングに適用される組立動作教示装置および組立動作教示システムについて説明する。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a system configuration of an assembly operation teaching system according to the present invention. In this description, an assembly motion teaching apparatus and an assembly motion teaching system applied to motion teaching of a multi-arm robot, particularly a double-arm robot will be described.
 本組立動作教示システムは、組立動作教示装置500、組立動作教示装置500へデータ入力を行う入力装置501、組立動作教示装置500での教示状態または入力値を表示する表示装置502、モデルデータを含む部品情報を生成する3D-CAD装置504、3D-CAD装置で作成されないデータをカメラでスキャナ補間するビジョンシステム505、を備えている。 The assembly operation teaching system includes an assembly operation teaching device 500, an input device 501 for inputting data to the assembly operation teaching device 500, a display device 502 for displaying a teaching state or input value in the assembly operation teaching device 500, and model data. A 3D-CAD device 504 that generates part information is provided, and a vision system 505 that interpolates data that is not created by the 3D-CAD device with a camera.
 ここで本実施例の入力装置501、表示装置502、3D-CAD装置504、ビジョンシステム505は、組立動作教示装置500とネットワークで接続されているが、組立教示装置500の一部としても構わない。本実施例では複腕ロボット、特に双腕ロボットの動作ティーチングに適用される組立動作教示システムに関して説明するが、双腕に限定されるものではない。 Here, the input device 501, the display device 502, the 3D-CAD device 504, and the vision system 505 of this embodiment are connected to the assembly operation teaching device 500 via a network, but may be part of the assembly teaching device 500. . In the present embodiment, an assembly motion teaching system applied to motion teaching of a multi-arm robot, particularly a double-arm robot, will be described, but the present invention is not limited to a double-arm.
 組立動作教示装置500は、データベース(以下DB)510、制御部600を備えている。DB510は組立動作教示装置500内の記憶装置で構成されたデータベースであり、部品情報511、ロボット情報512、ハンド/ツール-部品種別情報513が格納されている。制御部600は、割付部601、持替情報生成部602、動作経路生成部603、干渉判定部604、組立時間計算部・組立経路距離計算部605を備えている。 The assembly operation teaching device 500 includes a database (hereinafter referred to as DB) 510 and a control unit 600. The DB 510 is a database configured by a storage device in the assembly operation teaching apparatus 500, and stores part information 511, robot information 512, and hand / tool-part type information 513. The control unit 600 includes an allocation unit 601, a replacement information generation unit 602, an operation path generation unit 603, an interference determination unit 604, an assembly time calculation unit / assembly path distance calculation unit 605.
 持替情報生成部602には、ロボットハンドによる部品の持替の要否を判定する部品持替要否判定部602a、ロボットハンドが部品のどの位置を把持すべきかの情報を生成する部品把持位置情報生成部602b、および複腕(双腕を含む)での持替位置や持替姿勢を生成する部品持替位置情報生成部602cを備えている。 The transfer information generation unit 602 includes a component transfer necessity determination unit 602a that determines whether or not a component needs to be replaced by the robot hand, and a component gripping position that generates information on which position of the component the robot hand should grip An information generation unit 602b and a component replacement position information generation unit 602c that generates a replacement position and a replacement posture with multiple arms (including two arms) are provided.
 各部について以下詳説する。 
 [DB510] 
 まず、DB510の各情報について詳述する。
Each part will be described in detail below.
[DB510]
First, each information of DB510 is explained in full detail.
 <部品情報511>
 部品情報511のデータテーブル200の一例を図2に示す。本実施例の部品情報511は、例えば、部品ID201、部品種別202、組立順序(組立順序生成部511aで生成)203、他のアームの保持なしで取り扱えるトルクを特定する情報(例えば、有効長さ204、質量205、設置面摩擦係数206)が含まれている。
<Part information 511>
An example of the data table 200 of the component information 511 is shown in FIG. The component information 511 of this embodiment includes, for example, a component ID 201, a component type 202, an assembly sequence (generated by the assembly sequence generation unit 511a) 203, and information that specifies torque that can be handled without holding other arms (for example, effective length). 204, mass 205, and installation surface friction coefficient 206).
 <ロボット情報512>
 ロボット情報512のデータテーブル300の一例を図3に示す。本実施例のロボット情報は、例えば、ロボットID301、ロボット本体の位置302、ロボットが備える複数のアームのアームID303、アーム位置304、部品供給と部品組立を行うために登録された供給組立候補位置305、取り扱えるハンド306とツール307、および作業時にツールで発生させる発生トルク308が含まれている。
<Robot information 512>
An example of the data table 300 of the robot information 512 is shown in FIG. The robot information of this embodiment includes, for example, a robot ID 301, a position of the robot body 302, an arm ID 303 of a plurality of arms provided in the robot, an arm position 304, and a supply assembly candidate position 305 registered for performing component supply and component assembly. , A handle 306 and a tool 307 that can be handled, and a generated torque 308 generated by the tool during work.
 <ハンド/ツール-部品種別情報513>
 ハンド/ツール-部品種別情報513は、部品種別毎に扱えるハンドまたはツールを特定する情報である。ハンド/ツール-部品種別情報513のデータテーブル400の一例を図4に示す。データテーブル400は、部品種類411、ハンド412、ツール413で構成される。
<Hand / Tool-Part Type Information 513>
The hand / tool-part type information 513 is information for specifying a hand or a tool that can be handled for each part type. An example of the data table 400 of the hand / tool-part type information 513 is shown in FIG. The data table 400 includes a component type 411, a hand 412, and a tool 413.
 ハンド412は部品を把持するものであり、爪タイプ(例、2爪タイプ、3爪タイプ)、把持タイプ(例、内側閉じで部品を把持するタイプ、外側開きで部品を把持するタイプ)、吸着タイプ、指タイプなどの種別があり、それらをデータテーブル400では、ハンドA、ハンドB、ハンドC、…のように表示してある。ツール413は部品の組立に必要なドライバ、スパナ等の工具である。 The hand 412 grips a part, and has a claw type (eg, 2 claw type, 3 claw type), a gripping type (eg, a type that grips a part by closing inside, a type that grips a part by opening outside), suction There are types such as type and finger type, and these are displayed in the data table 400 as hand A, hand B, hand C,. The tool 413 is a tool such as a screwdriver or a spanner necessary for assembling the parts.
 また、ハンド種別551およびツール種別651にハンドのTool Center Point位置(以下、TCPと記す)から部品把持面および作業点までのオフセット量552及び652の情報を図5、図6のデータテーブル550及び650に示す。 Further, information on offset amounts 552 and 652 from the Tool Center Point position (hereinafter referred to as TCP) of the hand to the component gripping surface and the work point in the hand type 551 and the tool type 651 are shown in the data table 550 in FIG. 5 and FIG. 650.
 [制御部600の概要]
 割付部601は、各部品に対して、当該部品を取り扱うアーム、ハンド、ツールの割付を行う。 
 持替情報生成部602は、部品持替要否判定部602a、部品把持位置情報生成部602b、部品持替位置情報生成部602cを備えており、それぞれ部品持替が必要か否か(詳しくは後述図7で説明)、部品をハンドで把持する際の把持位置情報生成、複腕を使った持替動作をどの位置で実行するかの情報生成を行っている。
[Overview of Control Unit 600]
The allocation unit 601 allocates an arm, a hand, and a tool that handle the component to each component.
The replacement information generation unit 602 includes a component replacement necessity determination unit 602a, a component gripping position information generation unit 602b, and a component replacement position information generation unit 602c. As will be described later with reference to FIG. 7, gripping position information is generated when the part is gripped with a hand, and information is generated as to which position is to be used for the holding operation using multiple arms.
 動作経路生成部603は、各部品の供給位置と組立位置及び持替情報生成部602で生成した持替動作を行う位置情報を読み出し、それらの間の搬送を行うアームの動作経路を生成する。 
 干渉判定部604は、動作経路生成部603で生成された動作経路において、複数のアーム間の干渉、及びアームで把持した部品又は部品を把持したアームと組付け先の部品との干渉が生じるかの判定を行う。 
 組立時間計算部・組立経路距離計算部605は、動作経路生成部603で生成された動作経路に基づいて、部品の組立時間に要する時間及び組立経路の距離の計算を行う。 
 以下、組立動作教示装置500の各部の機能を動作フローとともにさらに詳細に説明する。
The operation path generation unit 603 reads the supply position and assembly position of each component, and the position information for performing the replacement operation generated by the replacement information generation unit 602, and generates the operation path of the arm that carries between them.
In the motion path generated by the motion path generation unit 603, the interference determination unit 604 causes interference between a plurality of arms and interference between a component gripped by the arm or an arm gripping the component and an assembly destination component. Judgment is made.
The assembly time calculation unit / assembly path distance calculation unit 605 calculates the time required for assembling the parts and the distance of the assembly path based on the operation path generated by the operation path generation unit 603.
Hereinafter, the function of each part of the assembly operation teaching apparatus 500 will be described in more detail along with the operation flow.
 [組立動作教示装置の動作フロー]
 図7は本組立動作教示装置の動作フローを示している(動作フロー図である)。 
 組立動作教示装置500のスタートが開始される(START S1000)と、まず割付部601は部品情報511をDB510から取得する。もし、不足する情報がある場合には、割付部601は3D-CAD装置504またはビジョンシステム505から情報を取得し(S1002)、部品情報511としてDB510に格納する。
[Operation flow of assembly operation teaching device]
FIG. 7 shows an operation flow of the present assembly operation teaching device (operation flow diagram).
When the start of the assembly operation teaching apparatus 500 is started (START S1000), the allocation unit 601 first acquires the part information 511 from the DB 510. If there is insufficient information, the allocating unit 601 acquires information from the 3D-CAD device 504 or the vision system 505 (S1002) and stores it in the DB 510 as component information 511.
 次に割付部601はロボット情報512をDB510から取得する(S1004)。 
 次に割付部601は部品情報511から組立順序を生成する(S1006)。 
 引き続き部品情報511、割付部601から組立対象部品数Nを設定する(S1010)。 
 また、次のステップで部品をカウントするカウンタnの値を0にリセットする(S1020)。
Next, the allocation unit 601 acquires the robot information 512 from the DB 510 (S1004).
Next, the allocation unit 601 generates an assembly order from the component information 511 (S1006).
Subsequently, the number N of parts to be assembled is set from the part information 511 and the assignment unit 601 (S1010).
Further, the value of the counter n that counts the components in the next step is reset to 0 (S1020).
 引き続き経由点Aを経由し、次にカウンタnの値を1つだけ増やし(S1040)、n番目の組立をセットする(S1050)。次に、ロボットの一連の作業(組立作業)中に部品やツール等の持替の要否判定を行う(S1060)。 Subsequently, via the waypoint A, the value of the counter n is incremented by one (S1040), and the nth assembly is set (S1050). Next, it is determined whether or not parts, tools, etc. need to be changed during a series of operations (assembly operations) of the robot (S1060).
 ここで部品の持替について図10から図12を用いて説明する。 
 図10は一例として基板110をロボットで移動させる図を示したもので、本図中、基板110、ロボットの部品取出側ハンド150、部品取出側ハンド150の先端にある部品把持用の爪150a、持替側ハンド160、持替側ハンド160の先端にある部品把持用の爪160aである。ここで、爪150a、および爪160aはそれぞれ、開閉式の2爪タイプの物を示している。部品を把持する場合はこの2爪を矢印C方向に閉じ、挟み込んで行い、部品を解放する際はこの2爪を矢印O方向に開くことで行う。
Here, the replacement of parts will be described with reference to FIGS.
FIG. 10 shows, as an example, a diagram in which the substrate 110 is moved by a robot. In this figure, the substrate 110, the robot component extraction side hand 150, the component gripping claws 150a at the tip of the component extraction side hand 150, It is a claw 160a for gripping parts at the tip of the exchange hand 160 and the exchange hand 160. Here, the nail | claw 150a and the nail | claw 160a have each shown the thing of the open-and-close type 2 claw type. When gripping a part, the two claws are closed and sandwiched in the direction of arrow C, and when releasing the part, the two claws are opened in the direction of arrow O.
 図10の1001は、基板110が荷姿で納入された状態を示しており、基板は垂直に立てかけられた状態で複数枚納入される場合を示す。図10の1002は、基板110の一枚を部品取出側ハンド150、および爪150aで把持し、図10の1001の状態から上方に持ち上げた様子を示している。 10 indicates a state in which the substrate 110 is delivered in a packaged state, and shows a case in which a plurality of substrates are delivered in a vertically leaning state. Reference numeral 1002 in FIG. 10 shows a state where one board 110 is held by the component take-out hand 150 and the claw 150a and is lifted upward from the state 1001 in FIG.
 図10の1003は、基板110をハンド150の爪150aからハンド160の爪160aに持替えている途中の図であり、爪150aが基板110の厚み方向を把持しているのに対し、ハンド160の爪160aは基板110の短手幅方向を把持している様子を示している。図中の矢印Oは爪160aが開いて基板100の把持を開放する方向、矢印Cは爪160aが閉じて基板110を把持する方向を示す。 1003 in FIG. 10 is a diagram in the middle of changing the substrate 110 from the claw 150a of the hand 150 to the claw 160a of the hand 160, while the claw 150a holds the thickness direction of the substrate 110. The claw 160a shows that the substrate 110 is gripped in the short width direction. An arrow O in the drawing indicates a direction in which the claw 160a is opened to release the holding of the substrate 100, and an arrow C indicates a direction in which the claw 160a is closed and the holding of the substrate 110 is performed.
 図10の1004はハンド150からンド160への持替動作が終わった直後の様子を示し、取出側ハンド150の爪150aは基板110を解放し、ハンド160の爪160aにより基板110の面を略水平姿勢にしている。引き続き図10の1005に示すように基板110を図示しない載置面に置き、ハンド160の爪160aを開いて基板110の把持を解放することで一連の持替動作は終了する。 In FIG. 10, 1004 shows a state immediately after the transfer operation from the hand 150 to the end 160 is finished. The claw 150 a of the take-out side hand 150 releases the substrate 110, and the surface of the substrate 110 is roughly cut by the claw 160 a of the hand 160. It is in a horizontal position. Subsequently, as shown by reference numeral 1005 in FIG. 10, the substrate 110 is placed on a mounting surface (not shown), the claw 160a of the hand 160 is opened, and the gripping of the substrate 110 is released.
 また持替動作の別の例として、図11A乃至11Cと図12A及び図12Bを用いて説明する。 Further, another example of the changeover operation will be described with reference to FIGS. 11A to 11C and FIGS. 12A and 12B.
 図11A中、持替用の部品としての基板は110、ロボットの部品取出側ハンドは150、部品取出側ハンド150先端の爪は150a、基板110を複数枚格納している基板ラック115、である。図11Aは、ハンド150の爪150aにより基板110の上下面を把持し、矢印E方向に移動して基板110を基板ラック115から取り出そうとしている様子を示す。 In FIG. 11A, 110 is a substrate as a replacement component, 150 is a robot's component extraction side hand, 150a is a claw at the tip of the component extraction side hand 150, and is a substrate rack 115 storing a plurality of substrates 110. . FIG. 11A shows a state where the upper and lower surfaces of the substrate 110 are gripped by the claws 150 a of the hand 150 and moved in the direction of arrow E to take out the substrate 110 from the substrate rack 115.
 また図11B中、120は基板110が載置される部品であり、部品120には基板110が嵌り合うように凹部120aが形成されており、基板110を把持したハンド150および爪150aは図中矢印D方向に移動し、基板110が部品120に載置されようとする(後述図11C)。 In FIG. 11B, reference numeral 120 denotes a component on which the substrate 110 is placed. The component 120 is formed with a recess 120a so that the substrate 110 fits therein, and the hand 150 and the claw 150a holding the substrate 110 are shown in the drawing. Moving in the direction of arrow D, the substrate 110 is about to be placed on the component 120 (FIG. 11C described later).
 図11Cは、図11Bに示したように基板110をハンド150の爪150aで把持した状態で、基板110を部品120の凹部120aに置こうとした場合の様子を示している。このように爪150aで把持した状態で基板110を部品120の凹部120aに嵌めようとした場合、ハンド150の爪150aは破線120b部で部品120と干渉してしまう。そこで、詳細は後述するが、部品110を持替え、部品干渉を無くす動作が必要になる。 FIG. 11C shows a state where the substrate 110 is about to be placed in the recess 120a of the component 120 in a state where the substrate 110 is held by the claw 150a of the hand 150 as shown in FIG. 11B. Thus, when it is going to fit the board | substrate 110 in the recessed part 120a of the component 120 in the state hold | gripped with the nail | claw 150a, the nail | claw 150a of the hand 150 will interfere with the component 120 in the broken line 120b part. Therefore, as will be described in detail later, it is necessary to change the part 110 and eliminate the part interference.
 図12A及び図12Bは、図11Cの状態で発生する爪150aと部品120の干渉を無くすよう、部品取出側のハンド150で最終的に部品を載置するのではなく、一度、別のハンド160で部品110の持替を行い、部品120に対するハンド160の姿勢を変えた例を示した図である。図中の各記号は前述の図11A乃至図11Cで説明したものと同一であり、110aは基板110の側面を示している。 12A and 12B show that, in order to eliminate the interference between the claw 150a and the part 120 that occurs in the state of FIG. 11C, the part is not finally placed by the hand 150 on the part take-out side, but once the other hand 160 is placed. FIG. 6 is a diagram illustrating an example in which the part 110 is replaced and the posture of the hand 160 with respect to the part 120 is changed. Each symbol in the figure is the same as that described with reference to FIGS. 11A to 11C, and 110 a indicates a side surface of the substrate 110.
 図12Aは、基板110をハンド150の爪150aからハンド160の爪160aに持替を終了し、部品120に対するハンド160の姿勢を変え、基板110を部品120に載置しようとしているところである。図12Bは、爪160aで基板110を把持して部品120の凹部120aに基板110を嵌め込んだ状態における図12Aの断面A-Aを示し、爪150aから爪160aに基板110の持替を行い、爪160aで基板110の側面110aを把持することにより、爪160aと部品120では干渉の発生は無くなる。 FIG. 12A shows that the transfer of the substrate 110 from the claw 150a of the hand 150 to the claw 160a of the hand 160 is finished, the posture of the hand 160 with respect to the component 120 is changed, and the substrate 110 is about to be placed on the component 120. 12B shows a cross section AA of FIG. 12A in a state where the substrate 110 is gripped by the claw 160a and the substrate 110 is fitted in the recess 120a of the component 120, and the substrate 110 is transferred from the claw 150a to the claw 160a. By holding the side surface 110a of the substrate 110 with the claw 160a, interference between the claw 160a and the component 120 is eliminated.
 ここで持替動作の必要性、つまり持替動作要否判定について、図13に示した判定表1350を用いて詳説する。まず持替要否判定の大きな分類は、動作条件1351として、1)部品の取出し方向と組立方向が同じ方向の場合、2)部品の取出し方向と組立方向が違う場合(部品供給姿勢と組立方向が違う場合)が考えられる。それらの分類に付いて1)、2)の中で取出し側ハンドの可働領域1352を考える。組立領域へ取出し側ハンドで把持した状態のまま移動し、組立領域まで手が届くか否か、組立時に取出し側ハンドおよび周辺作業環境に干渉があるか/無いか1353、を確認し、持ち替え動作の要/否の欄1354で持ち替え動作の要/否を判定する。 Here, the necessity of the changeover operation, that is, the determination of necessity of the changeover operation will be described in detail using the determination table 1350 shown in FIG. First, the major classification of whether or not there is a need for replacement is as operating conditions 1351: 1) when the part removal direction is the same as the assembly direction 2) when the part removal direction is different from the assembly direction (part supply posture and assembly direction) Is different). Regarding the classification, consider the movable area 1352 of the take-out hand in 1) and 2). Move to the assembly area while gripping with the take-out hand, check whether the hand reaches the assembly area, and check if the take-out hand and surrounding work environment have interference at the time of assembly 1353 The necessity / non-necessity column 1354 determines whether the change-over operation is necessary.
 それらを整理すると、取出し側ハンドの可働領域の欄1352で取出側ハンドが組立領域まで届かない場合には、持ち替え動作の要/否判定の欄1354で持替動作が必要と判定し、また、取出し側ハンドの可働領域の欄1352で取出側ハンドが組立領域まで可働範囲内であるが、組立時に取出し側ハンドおよび周辺作業環境に干渉があるか/無いかをチェックする欄1353において組立時に取出側ハンドおよび周辺作業環境に干渉がある場合に、持ち替え動作の要/否判定の欄1354で持替動作が必要と判定されることが分かる。図1の部品持替要否判定部602aにおいて図7のS1060の判定を行っている。 When these are arranged, if the take-out hand does not reach the assembly area in the moveable area column 1352 of the take-out hand, it is determined that the change-over operation is necessary in the necessity / unnecessity determination column 1354 of the change-over operation. In the column 1352 of the take-out hand movable area, the take-out hand is within the movable range up to the assembly area, but in the column 1353 for checking whether or not there is interference between the take-out hand and the surrounding work environment at the time of assembly. It can be seen that if there is interference between the take-out hand and the surrounding work environment during assembly, it is determined that the change-over operation is necessary in the column 1354 for whether or not the change-over operation is required. The determination of whether or not to change parts in FIG. 1 is performed in S1060 of FIG.
 ここで、S1060における組立時の持替要否判定の結果がNoの場合、即ち組立時の持替が不要な場合には、後述する経由点CからS1260へ進む。 
 一方、S1060における組立時の持替要否判定の結果がYes、つまり持替動作が必要な場合は、部品把持位置情報生成部602bで取出側と持替側との部品把持位置生成を行い(S1070)、この結果に基づいて部品持替位置情報生成部602cで持替時間を考慮した持替位置情報を生成する(S1090)。
Here, if the result of the determination of whether or not to change at the time of assembly in S1060 is No, that is, if the change at the time of assembly is not necessary, the process proceeds from a via point C described later to S1260.
On the other hand, if the result of the determination of whether or not to change during assembly in S1060 is Yes, that is, if a change operation is required, the component holding position information generation unit 602b generates the component holding positions on the take-out side and the transfer side ( (S1070) Based on this result, the component replacement position information generation unit 602c generates replacement position information considering the replacement time (S1090).
 次に、この生成した持替位置情報に基づいて、ビジョンシステム505のカメラで組立対象部品を撮像して実態認識による干渉の有無確認の必要が有るかをチェックし(S1100)、Yesの場合、即ちカメラによる持替時の干渉有無確認が必要な場合には、経由点Bに進んで図8に示すS1230へ進む。一方、Noの場合、持替時の部品間の干渉がないことが明らかであってカメラによる干渉有無確認が必要でない場合には、S1120へ進む。 Next, based on the generated replacement position information, the camera of the vision system 505 images the assembly target part and checks whether it is necessary to confirm the presence or absence of interference by actual recognition (S1100). In other words, if it is necessary to confirm the presence / absence of interference at the time of transfer by the camera, the process proceeds to the via point B and proceeds to S1230 shown in FIG. On the other hand, in the case of No, if it is clear that there is no interference between components at the time of replacement, and if it is not necessary to confirm the presence or absence of interference by the camera, the process proceeds to S1120.
 S1120では、組立対象部品数Nまで組立時の持替要否の確認と部品把持位置生成が完了したかをチェックし、Noの場合には経由点Aに戻ってS1040の処理を行う。一方、Yesの場合には、経由点Cに進んで後述するS1260の処理を実行する。 In S1120, it is checked whether the number of parts to be assembled, N, is confirmed, and whether the generation of the gripping position has been completed. If NO, the process returns to waypoint A and the process of S1040 is performed. On the other hand, in the case of Yes, the process proceeds to waypoint C, and the process of S1260 described later is executed.
 S1100でカメラによる持替時の干渉有無確認が必要と判定して、図8Aに示す経由点BからS1230に進んだ場合には、S1230においてビジョンシステム505のカメラで組立対象部品を撮像し、この撮像して得られた画像から干渉を回避するための持替位置の情報である干渉回避持替位置生成を行う。次に、この生成した干渉回避持替位置の情報に基づいて、この持ち替えた部品を組み立てるときのTCP位置(Tool Center Point 、以下 TCPと記す)の補正を行い(S1240)、経由点Cから図8BのS1260へ進む。 If it is determined in S1100 that the presence / absence of interference at the time of transfer by the camera needs to be confirmed and the process proceeds to S1230 from the transit point B shown in FIG. Interference avoidance exchange position generation, which is information of an exchange position for avoiding interference, is performed from an image obtained by imaging. Next, based on the generated interference avoidance replacement position information, the TCP position (Tool Center Point, hereinafter referred to as TCP) is corrected when assembling the replaced part (S1240). Proceed to S1260 of 8B.
 図8BのS1260においては、S1090で生成した持替位置の情報、又はS1230で生成した干渉回避持替位置の情報とS1240で得られた組立時のTCP位置補正量の情報を用いて、動作経路生成部603において双腕ロボットのアーム動作経路を生成する。 In S1260 of FIG. 8B, using the information on the replacement position generated in S1090 or the information on the interference avoidance replacement position generated in S1230 and the information on the TCP position correction amount at the time of assembly obtained in S1240, the operation path The generation unit 603 generates an arm motion path for the dual-arm robot.
 次に、この生成したアーム動作経路から、干渉性判定部604において双腕ロボットのアーム移動時の干渉確認を行い(S1270)、干渉が有る場合(干渉有)には経由点Cに戻ってS1260のアーム動作経路生成の処理を再度行う。一方、干渉が無い場合(干渉無)には、ロボット動作プログラムを生成し(S1280)、この作成したプログラムに従って双腕ロボットを動作させて部品の組み立てを行う(S1290)。 Next, from the generated arm movement path, the interference determination unit 604 confirms interference when the arm of the double-arm robot moves (S1270). If there is interference (with interference), the process returns to the waypoint C and returns to S1260. The arm movement path generation process is performed again. On the other hand, if there is no interference (no interference), a robot operation program is generated (S1280), and the dual-arm robot is operated according to the created program to assemble parts (S1290).
 ここで図7の部品の取出側、持替側の部品把持位置生成(S1070)について図14、図15、図16を用いて説明する。図14~図16は本発明による部品の取出側、持替側の部品把持位置生成の考え方を詳説している。図中の上段は本発明を説明する斜視図、下段は部品を部品把持面方向から見た図を示している。 Here, the component take-out position generation (S1070) on the component take-out side and the exchange side in FIG. 7 will be described with reference to FIGS. 14, 15, and 16. FIG. FIG. 14 to FIG. 16 detail the concept of generating the component gripping positions on the component take-out side and the exchange side according to the present invention. In the drawing, the upper part is a perspective view for explaining the present invention, and the lower part is a view of the component as viewed from the component gripping surface direction.
 図14での列1410の持替パターン(1)において、欄1411には、持替対象となる部品は略立方体形状を成している部品200、部品200の構成面で後述部品取出ハンド側の面になる面200a、部品組立時に他の部品と面を共有する部品組立面は200b、部品取出側ハンドは170、部品把持用の爪172、ロボットでの部品取出側ハンド教示位置のポイントとなるハンドのTCP173、爪172(把持面)の法線ベクトル175を示している。 In the replacement pattern (1) of the column 1410 in FIG. 14, a column 1411 includes a part 200 to be replaced as a part 200 having a substantially cubic shape, and a component take-off side on the component take-out hand side described later. The surface 200a to be a surface, the component assembly surface 200b that shares a surface with other components at the time of component assembly, the component extraction side hand 170, the component gripping claws 172, and the point of the component extraction side hand teaching position in the robot. The normal vector 175 of the hand TCP 173 and the claw 172 (gripping surface) is shown.
 同様に持替用ハンドは180、部品把持用の爪182、ロボットでの部品持替側ハンド教示位置のポイントとなるハンドのTCP183、爪183(把持面)の法線ベクトル185を示している。ここで、部品組立時に他の部品と面を共有する部品組立面200bは、最終的に部品を組立てるハンドに備えた爪で把持すると、組立済みの部品と干渉することが考えられるので、部品組立面200bは最終的に組立をするハンドの爪では把持しないものとする。 Similarly, the hand for replacement 180 shows the normal vector 185 of the hand 183 for gripping the part, the TCP 183 for the hand serving as the point of the part replacement side hand teaching position in the robot, and the nail 183 (grip surface). Here, it is conceivable that the component assembly surface 200b sharing the surface with other components at the time of component assembly may interfere with the assembled component when it is gripped by the claws provided in the hand for assembling the component. It is assumed that the surface 200b is not gripped by the claws of the hand that is finally assembled.
 またここで図1の部品把持情報生成部602bと、図7に示す取出側、持替側の部品把持位置生成(S1070)の考え方について説明する。 Here, the concept of the component gripping information generation unit 602b of FIG. 1 and the component gripping position generation (S1070) of the take-out side and the replacement side shown in FIG. 7 will be described.
 本発明では、第一のハンドの把持面と他方の把持面にそれぞれの法線ベクトルを設定し、前記部品の面であって、前記ハンドの把持面に対応する面の各々の法線ベクトルの内積の絶対値が最小となるように各々の把持面を設定もしくは決定するものとしている。また、本発明で以降述べる法線ベクトルとは、特に指定のない限り法線単位ベクトルを表すものとする。 In the present invention, a normal vector is set for each of the gripping surface of the first hand and the other gripping surface, and the normal vector of each surface of the part corresponding to the gripping surface of the hand is set. Each gripping surface is set or determined so that the absolute value of the inner product is minimized. The normal vector described hereinafter in the present invention represents a normal unit vector unless otherwise specified.
 この考え方を図14の列1410に示す持替パターン(1)の例のように設定した場合を考えると、欄1412に示すように、部品取出側の爪172の法線ベクトル175と、部品持替側の爪182の法線ベクトルの成す角θ1は略直交(ベクトル同士の成す角は略90°)しており、それらの内積値は0となる。よってハンドの把持面に対応する面の各々の法線ベクトルの内積の絶対値が最小となるように各々の把持面を設定することを満足している。 Considering the case where this concept is set as in the example of the replacement pattern (1) shown in the column 1410 of FIG. 14, as shown in the column 1412, the normal vector 175 of the claw 172 on the component takeout side and the component holding The angle θ1 formed by the normal vectors of the replacement claw 182 is substantially orthogonal (the angle formed by the vectors is approximately 90 °), and the inner product value thereof is zero. Therefore, it satisfies the setting of each gripping surface so that the absolute value of the inner product of the normal vectors of the surfaces corresponding to the gripping surface of the hand is minimized.
 次に図14の列1420に示す持替パターン(2)の場合の例について説明する。本図では、持替作業をする部品300を略六角柱とした例を示している。ここで欄1421に示すように、部品取出側ハンドは270、爪は272、TCPは273、爪の法線ベクトルは275、持替側ハンドは280、爪は282、TCPは283、爪の法線ベクトルは275、である。これら法線ベクトルの内積の絶対値を計算すると、欄1422に示すように、COS(θ2)となり、0とはならないが、本図の例ではθ2=90°になる持替側の爪位置では部品上に面が無く把持はできないため、COS(θ2)を計算し値が最小になる2つの把持面を決定する。 Next, an example of the replacement pattern (2) shown in the column 1420 of FIG. 14 will be described. In the figure, an example in which the part 300 to be transferred is a substantially hexagonal column is shown. Here, as shown in the column 1421, the part take-out hand is 270, the claw is 272, the TCP is 273, the nail normal vector is 275, the replacement hand is 280, the nail is 282, the TCP is 283, and the nail method The line vector is 275. When the absolute value of the inner product of these normal vectors is calculated, as shown in the column 1422, COS (θ2) is obtained and does not become 0, but in the example of this figure, at the nail position on the moving side where θ2 = 90 °. Since there is no surface on the part and gripping is not possible, COS (θ2) is calculated to determine the two gripping surfaces that minimize the value.
 これらの動作フローを図9に纏める。図9は前記部品把持位置生成部602bで処理されるフローの一例である。ここで処理が開始されると、まず取出側のハンド先端の爪で部品を把持が可能な領域候補を抽出する(S1202)。引き続き、前記把持が可能な領域候補の中から把持位置を決定する(S1203)。この際、領域候補から把持位置を決定する方法としては、例えば、部品の重心位置に近く、把持した際に爪およびハンドにモーメントが極力小さくなる位置に決定する、とか、部品情報に含んでも良い部品表面の摩擦係数を参考にし、摩擦係数の大きい、つまり把持する際に滑りにくい位置を把持するように決定しても良い。 These operation flows are summarized in FIG. FIG. 9 is an example of a flow processed by the component gripping position generation unit 602b. When the process is started, first, an area candidate capable of gripping a part with the nail at the leading end of the hand on the extraction side is extracted (S1202). Subsequently, a gripping position is determined from the region candidates that can be gripped (S1203). At this time, as a method for determining the gripping position from the region candidates, for example, it may be determined that the position is close to the center of gravity of the component and the moment of the nail and the hand becomes as small as possible when gripped. With reference to the friction coefficient of the part surface, it may be determined to grip a position having a large friction coefficient, that is, a position that is difficult to slip when gripping.
 引き続き、取出側把持面の法線ベクトルを定義する(S1204)。一方、持替側の把持位置領域候補も前記DB510から抽出する(S1205)。この時、持替側の把持が可能な面の組合せ数(開閉式2爪を使用する場合、把持対象となる対向する2面で1組とカウント)Nをセットし(S1206)、続いてカウンタn=0にセットする(S1207)。次にカウンタnの値を1加算する(S1209)。 Subsequently, the normal vector of the extraction side gripping surface is defined (S1204). On the other hand, the holding position candidate on the transfer side is also extracted from the DB 510 (S1205). At this time, the number of combinations of surfaces that can be gripped on the holding side (when using two open / close claws, one set is counted for two opposing surfaces to be gripped) N is set (S1206), and then the counter n = 0 is set (S1207). Next, 1 is added to the value of the counter n (S1209).
 次に前記持替側把持領域候補抽出(S1205)、把持可能面の組合せ数セット(S1206)の情報から、n番目の持替側把持面の法線ベクトルを定義する(S1210)。次に、把持面側のハンドが組立面側かどうかをチェックし(S1211)、組立面側でない場合(Noの場合)にはS1209へ戻る。一方、Yesの場合にはS1212へ進んで、取出側法線ベクトル(S1204)と持替側法線ベクトル(S1210)の内積の絶対値を計算する。ここで、より内積の絶対値の小さくなる値を更新し(S1213)、持替側把持面で内積の絶対値が最小となる面、およびそれが何番目の面かを記憶する(S1214)。この処理を把持可能面の数だけ評価する(S1215でNoの場合S1209からS1214までを繰返す)。 Next, a normal vector of the nth replacement side gripping surface is defined from the information of the replacement side gripping area candidate extraction (S1205) and the combination number set of grippable surfaces (S1206) (S1210). Next, it is checked whether or not the hand on the gripping surface side is the assembly surface side (S1211). If it is not the assembly surface side (in the case of No), the process returns to S1209. On the other hand, in the case of Yes, the process proceeds to S1212 to calculate the absolute value of the inner product of the extraction-side normal vector (S1204) and the replacement-side normal vector (S1210). Here, the value with a smaller absolute value of the inner product is updated (S1213), and the surface on which the absolute value of the inner product is minimized on the transfer side gripping surface and the number of the surface are stored (S1214). This process is evaluated for the number of grippable surfaces (if S1215 is No, steps S1209 to S1214 are repeated).
 把持可能面の数だけ評価が終わると(S1215でYesの場合)、内積の絶対値が最小となる持替側把持面が決定し(S1219)、続いて持替側把持位置を決定する(S1220)。ここで持替側把持位置を決定する方法としては、前記取出側の把持位置を決定する方法同様に、例えば、部品の重心位置に近く、把持した際に爪およびハンドにモーメントが極力小さくなる位置に決定する、とか、部品情報に含んでも良い部品表面の摩擦係数を参考にし、摩擦係数の大きい、つまり把持する際に滑りにくい位置を把持する、あるいはその際に、取出側のハンドもしくは爪との干渉が無い位置に決定をしても構わない。 When the evaluation is completed for the number of grippable surfaces (Yes in S1215), the replacement gripping surface having the smallest inner product is determined (S1219), and then the replacement gripping position is determined (S1220). ). Here, as a method for determining the holding-side gripping position, for example, a position close to the center of gravity of the component and a position where the moment is reduced as much as possible to the claws and the hand as in the method of determining the gripping position on the take-out side. Or gripping a position where the friction coefficient is large, that is, a non-slip position when gripping, or at that time, It may be determined at a position where there is no interference.
 引き続き、更に持替のパターンについて図15、図16A及び図16Bを用いて説明する。図15では持替対象となる部品形状は変形六角注、図16A及び図16Bは台形柱、の場合を示している。 Subsequently, further description will be given of the transfer pattern with reference to FIGS. 15, 16A and 16B. FIG. 15 shows a case where the part shape to be transferred is a deformed hexagonal note, and FIGS. 16A and 16B show trapezoidal pillars.
 図15の列1510に示す持替パターン(3)は、欄1511に示すように、持替対象となる部品450、部品450の組立面450bに対し、部品取出側ハンド350の爪352、爪352の法線ベクトルが355、一方、持替側ハンド400の爪402、爪402の法線ベクトルが405である。 As shown in the column 1511, the replacement pattern (3) shown in the column 1510 of FIG. 15 is the part 450 to be replaced, and the claw 352 and the claw 352 of the component take-out hand 350 with respect to the assembly surface 450b of the part 450. , While the normal vector of the nail 402 and the nail 402 of the hand 400 is 405.
 図の欄1512に示すように法線ベクトル355と405は略直角90°であり、法線ベクトルの内積は0である(内積の絶対値としては最小値)。列1520に示した持替パターン(4)でも欄1522に示すように法線ベクトル355と405は略直角90°であり内積値も最小値であるが、持替側ハンド400の爪402で組立面450bを把持しているため、列1520に示した持替パターン(4)は候補から外す。 As shown in the column 1512 of the figure, the normal vectors 355 and 405 are substantially 90 degrees at right angles, and the inner product of the normal vectors is 0 (the absolute value of the inner product is the minimum value). In the replacement pattern (4) shown in the column 1520, the normal vectors 355 and 405 are substantially 90 degrees perpendicular to each other and the inner product value is the minimum value as shown in the column 1522. Since the surface 450b is held, the replacement pattern (4) shown in the column 1520 is excluded from the candidates.
 列1530に示した持替パターン(5)は欄1532に示すように法線ベクトル355と405が略平行であり、法線ベクトルの値の絶対値は1であり、内積値としては取りえる値の最大値であるが、部品供給形態や、組立面450bの制限、部品の把持可能な面の制限で爪の把持面として選択できる面が持替パターン(5)のように限られるものであれば、本パターンの把持面の組合せとなっても構わない。 In the replacement pattern (5) shown in the column 1530, the normal vectors 355 and 405 are substantially parallel as shown in the column 1532, the absolute value of the normal vector value is 1, and the inner product value is a possible value. However, the surface that can be selected as the gripping surface of the claw due to the part supply form, the limitation of the assembly surface 450b, and the limit of the surface that can grip the part is limited as in the replacement pattern (5). For example, a combination of the gripping surfaces of this pattern may be used.
 図16では、持替対象となる部品が480、部品を構成する面で部品取出側ハンドが来る面が480a、部品の組立面が480b、部品取出側ハンドが460、ハンドの爪が462、ハンドの法線ベクトルが465、持替側ハンドが470、ハンドの爪が472、ハンドの法線ベクトルが475、である。 In FIG. 16, the part to be transferred is 480, the part constituting part comes to the part take-out side hand 480a, the part assembly side is 480b, the part take-out side hand is 460, the hand claw is 462, the hand The normal vector is 465, the hand on the exchange side is 470, the nail of the hand is 472, and the normal vector of the hand is 475.
 この場合、持替側ハンド470および爪472で部品480を把持できる面は、法線ベクトルの値によらず、組立面480bとその対向面480cのみなので、本パターンでは持替が不可能となり、例えば図1に示す表示部502、もしくは後述する図23の表示画面上に持替動作不可の表示をし、使用者にアラームをあげるものであっても構わない。 In this case, the surface on which the component 480 can be gripped by the replacement hand 470 and the claw 472 is only the assembly surface 480b and its opposing surface 480c, regardless of the value of the normal vector. For example, the display unit 502 shown in FIG. 1 or a display screen shown in FIG.
 以上、述べた内容を、簡略化して説明したものを図17A~図19に示す。 
 図17A,はハンド、部品を正面から見た図、図17Bはそれらを側面から見た図、であり、同図中、部品は780、ハンドは700、部品を把持する爪は700a,700bである。また爪700a,700bの法線ベクトルは705を示している。
17A to 19 show the above contents in a simplified manner.
FIG. 17A is a view of the hand and parts as seen from the front, and FIG. 17B is a view of them as seen from the side. In FIG. 17B, the part is 780, the hand is 700, and the claws that hold the part are 700a and 700b. is there. The normal vector of the claws 700a and 700b indicates 705.
 まず、部品780上で取出側ハンド700の爪700a,700b、および持替側ハンドの爪で把持可能な領域を設定する。この段階では、把持可能な領域は複数存在する場合もあるが、把持エリアを充分取れる、または部品重心位置に近い領域を把持する等の評価指標により把持面を決定する。この時、取出側ハンドの爪、およびまたは爪で把持する部品上の面での法線ベクトルを定義する。 First, an area that can be gripped by the claws 700a and 700b of the take-out side hand 700 and the claws of the replacement hand is set on the part 780. At this stage, there may be a plurality of grippable areas, but the gripping surface is determined by an evaluation index such as a sufficient gripping area or gripping an area close to the position of the center of gravity of the component. At this time, the normal vector on the nail of the take-out hand and / or the surface on the part gripped by the nail is defined.
 引き続き、図18A及び図18Bを用いて説明する。図17A,及び図17Bと同様に、図18Aは部品780を正面から見た図、図18Bは部品780を側面から見た図を示している。図18Aで取出側ハンドで部品780を把持した状態で、次に持替側ハンド750の姿勢(部品の把持面)を定める。 The description will be continued with reference to FIGS. 18A and 18B. Similarly to FIGS. 17A and 17B, FIG. 18A shows the part 780 as seen from the front, and FIG. 18B shows the part 780 as seen from the side. In FIG. 18A, with the part 780 gripped by the take-out hand, the posture (part gripping surface) of the replacement hand 750 is then determined.
 この定め方は前述の通り、持替側ハンドの法線ベクトルを定義し、取出側ハンド面の法線ベクトル方向の内積の絶対値が最小になる把持面を選択して把持できるように(本図の場合、直角(内積0))持替側ハンドの姿勢(向き)を決定するものである。 As described above, this method is defined so that the normal vector of the hand on the exchange side is defined, and the gripping surface that minimizes the absolute value of the inner product in the normal vector direction of the takeout hand surface can be selected and gripped (this book In the case of the figure, it determines the posture (orientation) of the right hand (inner product 0)) replacement side hand.
 図19は取出側法線ベクトル705と持替側法線ベクトル755の位置関係を示す。図17A、図17B、図18A、図18Bの例では図19に示すように法線ベクトル705と755同士が略直交(θ≒90°)である例である。 FIG. 19 shows the positional relationship between the extraction-side normal vector 705 and the replacement-side normal vector 755. In the examples of FIGS. 17A, 17B, 18A, and 18B, the normal vectors 705 and 755 are substantially orthogonal (θ≈90 °) as shown in FIG.
 本実施例によれば、複数のハンドを備えたロボットを用いて部品を他の部品に組付けるときに、部品を把持したロボットハンドと組付ける先の部品との干渉性や、複数のハンド間の干渉性を事前にチェックして干渉を発生させない経路を事前に作成することができるので、ティーチングによる搬送経路の教示を行う工数を低減でき、ティーチングに要する時間を大幅に短縮することができるようになった。 According to this embodiment, when a part is assembled to another part using a robot having a plurality of hands, the interference between the robot hand holding the part and the part to be assembled, Since the path that does not cause interference can be created in advance by checking the coherency of the machine, the number of steps for teaching the transfer path by teaching can be reduced, and the time required for teaching can be greatly shortened. Became.
第2の実施の形態Second embodiment
 引き続き、本発明の第2の実施形態として、持替動作において、持替が行われる適切な位置について図20A~図21Bを用いて説明する。双腕を使った持替動作を行う場合、持替動作を行う位置の決定も作業効率を考慮することが重要となる。 Subsequently, as a second embodiment of the present invention, an appropriate position where the change is performed in the change operation will be described with reference to FIGS. 20A to 21B. When carrying out a changing operation using two arms, it is important to consider the work efficiency when determining the position for the changing operation.
 図20A及び図20Bにおいて、矢印R1は取出側ハンドで部品を把持し、持替位置SPに向かうことを示している。一方、矢印L1は持替側ハンドの動作を示したもので、任意の位置から持替位置SPに向かうことを示している。持替位置SPで取出側ハンドで把持していた部品を持替側ハンドに引き渡し、矢印L2で示す組立位置方向(図示せず)に移動する。一方、取出側ハンドは持替位置SPを経由した後、次の動作を迎えるべく、矢印R2のごとく退避を行う。 20A and 20B, an arrow R1 indicates that the part is gripped by the take-out hand and headed to the replacement position SP. On the other hand, the arrow L1 shows the operation of the hand on the exchange side, and indicates that it is heading from the arbitrary position to the exchange position SP. The parts held by the take-out hand at the transfer position SP are transferred to the transfer-side hand and moved in the assembly position direction (not shown) indicated by the arrow L2. On the other hand, after the take-out hand passes through the transfer position SP, the take-out hand retreats as indicated by an arrow R2 so as to reach the next operation.
 図20A及び図20BではR1長さ<L1長さで図示しているように、R1での動作時間(または動作距離)がL1での動作時間(または動作距離)より短い様子を示している。図20Aと図20Bは同じ内容を示している図であるが、図20Aに示すように矢印R1の経路とR2の経路はお互い離れた違うルートを通っても良いし、図20Bに示すように矢印R1の経路とR2の経路は同じ経路を通るものでも構わない。また矢印L1の経路と,矢印L2の経路についても同様である。 20A and 20B show that the operation time (or operation distance) at R1 is shorter than the operation time (or operation distance) at L1, as shown by R1 length <L1 length. 20A and 20B are diagrams showing the same contents, but the route indicated by the arrow R1 and the route indicated by R2 may pass through different routes as shown in FIG. 20A, or as shown in FIG. 20B. The route indicated by the arrow R1 and the route indicated by R2 may be the same route. The same applies to the route indicated by the arrow L1 and the route indicated by the arrow L2.
 また図21A,図21BではR1長さ≒L1長さの場合、図22A,図22BではR1長さ>L1長さの場合をそれぞれ示した図となっている。 21A and 21B show the case where R1 length≈L1 length, and FIGS. 22A and 22B show the case where R1 length> L1 length.
 ここで、持替動作については、持替位置までの動作に要する時間をR1、他方の腕の始点位置から持替位置SPまでに要する時間をL1、持替位置SPから終点位置(組立て位置)までの動作に要する時間をL2とした時、
    Max(R1,L1)+L2=最小値(最小動作時間)
となるように、持替位置SPを設定する。
Here, regarding the changeover operation, the time required for the operation to the changeover position is R1, the time required from the start position of the other arm to the changeover position SP is L1, and the changeover position SP to the end point position (assembly position). When the time required for the operation until is L2,
Max (R1, L1) + L2 = minimum value (minimum operating time)
The replacement position SP is set so that
 もしくは、持替位置までの動作経路距離をWR1、他方の腕の始点位置から持替え動作位置までに要する動作経路距離をWL1、持替位置SPから終点位置(組立て位置)までの動作に要する動作経路距離をWL2とした時、
    WR1+WL1+WL2=最小値(最短動作経路)
となるように、持替位置SPを選定することで、持替動作時間の短縮化を図ることが可能となる。
Alternatively, the operation path distance to the change position is WR1, the operation path distance required from the start position of the other arm to the change position is WL1, and the action required for the operation from the change position SP to the end position (assembly position) When the route distance is WL2,
WR1 + WL1 + WL2 = minimum value (shortest operation path)
Thus, it is possible to shorten the changeover operation time by selecting the changeover position SP.
 ここで、腕の始点位置とは、腕のホームポジションであってもよいし、前部品の組立動作における最終位置としてもよい。動作に要する時間R1、L1、L2は、ロボットシミュレーションで算出する方法や動作経路距離(WR1,WL1,WL2)から算出する方法など、一般的な方法で算出することができる。 Here, the start position of the arm may be the home position of the arm or the final position in the assembly operation of the previous part. The time R1, L1, and L2 required for the operation can be calculated by a general method such as a method of calculating by robot simulation or a method of calculating from the operation path distance (WR1, WL1, WL2).
 本実施例によれば、実施例1で説明した効果に加えて、複数のハンドを備えたロボットを用いて部品を他の部品に組付けるときに、部品を把持したロボットハンドと組付ける先の部品との干渉を避けるための部品の持ち替え動作を含めた組立動作を効率よく短時間で行うことができるようになった。 According to the present embodiment, in addition to the effects described in the first embodiment, when a part is assembled to another part using a robot having a plurality of hands, Assembling operations including changing parts to avoid interference with parts can be performed efficiently and in a short time.
第3の実施の形態Third embodiment
 図23A~図27Bを用いて本発明の第3の実施の形態について説明する。 
 本実施形態は、カメラによる実体補正に関するものである。図23A,図23B、図24A,図24Bは、3D-CAD情報から得られた把持位置情報を変更する必要のない場合の図を示している。また、図25A,図25B、図26A,図26B、図27A,図27Bは、カメラによる部品もしくはハンド、爪の位置検出の結果、3D-CAD情報から得られた把持位置情報を変更する必要のある場合の図を示している。
A third embodiment of the present invention will be described with reference to FIGS. 23A to 27B.
This embodiment relates to substance correction by a camera. FIG. 23A, FIG. 23B, FIG. 24A, and FIG. 24B show diagrams when it is not necessary to change the grip position information obtained from the 3D-CAD information. FIG. 25A, FIG. 25B, FIG. 26A, FIG. 26B, FIG. 27A, and FIG. 27B show that it is necessary to change grip position information obtained from 3D-CAD information as a result of position detection of parts or hands and nails by a camera. A diagram in some cases is shown.
 ここで、780は部品であり本実施の形態では一例として基板を示し、780gは基板780の重心位置を示している。部品の取出側ハンド720、取出側ハンド720の先端に付いた部品把持用の爪720a、取出側ハンドのTCP723、持替側ハンド730、持替側ハンド730先端に付いた部品把持用の爪730a、持替側ハンドのTCP733である。 Here, 780 is a component, and in the present embodiment, a substrate is shown as an example, and 780 g is the center of gravity of the substrate 780. The component take-out hand 720, the component gripping claw 720a attached to the tip of the take-out hand 720, the TCP 723 of the take-out hand, the replacement hand 730, and the component gripping claw 730a attached to the tip of the replacement hand 730 , TCP 733 of the hand on the exchange side.
 また、点Pは、把持位置情報を変更する必要のない場合のTCP位置をXY平面上に投影した点を表している。 Further, the point P represents a point obtained by projecting the TCP position on the XY plane when there is no need to change the grip position information.
 一方、基板790は基板面上にある他の電子部品が搭載されている状態の基板であり、図1に示した3D-CAD装置504から得られるオリジナルの3D-CAD情報には搭載されている電子部品の存在が反映されていないものであり、図1に示したビジョンシステム550であるカメラでの実体認識でその存在が認識されたものである。790gは基板790の重心位置を示している。 On the other hand, the substrate 790 is a substrate on which other electronic components on the substrate surface are mounted, and is mounted on the original 3D-CAD information obtained from the 3D-CAD device 504 shown in FIG. The existence of the electronic component is not reflected, and the existence is recognized by the entity recognition by the camera which is the vision system 550 shown in FIG. Reference numeral 790g denotes the position of the center of gravity of the substrate 790.
 図27Aに示した部品取出側ハンド795は3D-CAD装置504から得られる3D-CAD情報と異なり意図せずに、その爪795aが長いものを示し、798は部品取出側ハンド795のTCPを示している。また、図24B,図26B,図26C,図27Bの799は、基板780又は790が載置される被組立部品を示している。 Unlike the 3D-CAD information obtained from the 3D-CAD device 504, the part extraction side hand 795 shown in FIG. 27A shows an unintentionally long claw 795a, and 798 indicates the TCP of the part extraction side hand 795. ing. Reference numerals 799 in FIGS. 24B, 26B, 26C, and 27B denote parts to be assembled on which the substrate 780 or 790 is placed.
 また、点Pは、把持位置情報を変更する必要のない場合のTCP位置をXY平面上に投影した点を示している。 Further, the point P indicates a point obtained by projecting the TCP position on the XY plane when there is no need to change the grip position information.
 図23Aの状態は、取出側ハンド720、および取出側ハンド720の爪720aで基板780が把持され移動している状態を示している。図23Bは、図23Aの状態から、持替用ハンド730およびその爪730aでまさに持替動作を行おうとしている様子である。 23A shows a state in which the substrate 780 is gripped and moved by the take-out hand 720 and the claw 720a of the take-out hand 720. FIG. FIG. 23B shows a state in which a change operation is about to be performed with the transfer hand 730 and its claws 730a from the state of FIG. 23A.
 この状態では全て図1に示した3D-CAD装置504から得られる3D-CAD情報と実体の状態が一致しているので、ロボットを動作(制御)させる場合、3D-CAD装置504から得られる3D-CAD情報を基にした部品把持位置情報生成部602bで行う把持位置生成、動作経路生成部603で行う動作経路生成で何ら問題の発生はない。 In this state, since the 3D-CAD information obtained from the 3D-CAD device 504 shown in FIG. 1 and the state of the entity all match, the 3D obtained from the 3D-CAD device 504 is operated when the robot is operated (controlled). There is no problem in the gripping position generation performed by the component gripping position information generation unit 602b based on the CAD information and the operation path generation performed by the motion path generation unit 603.
 またこの状況での基板持替時、基板を被組立部品に置く際の状態を側面側から見た図が図24A,図24Bである。持替側ハンド730の爪730aは基板780の重心位置780g付近を把持し、被組立部品799上に基板780を載置する。 24A and 24B are views of the state when the substrate is placed on the part to be assembled when viewed from the side when the substrate is changed in this situation. The claw 730 a of the holding-side hand 730 holds the vicinity of the center of gravity 780 g of the substrate 780 and places the substrate 780 on the assembly target part 799.
 図25A,図25B、図26A,図26Bは前記の通り、基板790上に、3D-CAD装置504から得られる3D-CAD情報には無い電子部品790bが搭載されていた場合の例を示している。電子部品790bの位置、大きさ等はビジョンシステム505、ここではカメラによる実体認識で確認される。 FIG. 25A, FIG. 25B, FIG. 26A, and FIG. 26B show an example in which an electronic component 790b that is not included in the 3D-CAD information obtained from the 3D-CAD device 504 is mounted on the substrate 790 as described above. Yes. The position, size, and the like of the electronic component 790b are confirmed by entity recognition by the vision system 505, here a camera.
 図25Aは基板790を部品取出側ハンド720および爪720aで把持した状態を示した図、図25Bでは、基板790上に電子部品790aがあるため、電子部品790aが無い時に持替側ハンド730が基板790を掴みに来る位置では持替側ハンド730と電子部品790aが干渉してしまうため、干渉しない位置まで距離Dだけ持替側ハンド730を移動させた場合の様子を示している。この時、言うまでもなく、持替側ハンド730の位置変更は持替側ハンド730のTCP733の位置情報を変更して行うものである。 FIG. 25A is a diagram showing a state in which the board 790 is gripped by the component take-out side hand 720 and the claw 720a. In FIG. 25B, the electronic part 790a is on the board 790, so Since the holding-side hand 730 and the electronic component 790a interfere with each other at the position where the substrate 790 is to be grasped, a state in which the holding-side hand 730 is moved by the distance D to a position where there is no interference is shown. At this time, needless to say, the position change of the exchange-side hand 730 is performed by changing the position information of the TCP 733 of the exchange-side hand 730.
 図26Aは、この時の様子を側面側から見た図である。基板790上に3D-CAD情報にはない電子部品790bがあるため、ビジョンシステム505のカメラにより干渉しない位置まで距離Dだけ移動した位置で基板790の持替動作を行っている状態である。図26Bは距離Dだけ持替ハンド730のTCP733位置を移動させたために、被組立部品799上に載置する際にもTCP733位置を距離Dだけ移動させる必要があることを示す説明図である。 FIG. 26A is a view of this state as viewed from the side. Since there is an electronic component 790b that is not included in the 3D-CAD information on the substrate 790, the substrate 790 is being moved at a position moved by the distance D to a position where it does not interfere with the camera of the vision system 505. FIG. 26B is an explanatory diagram showing that the TCP 733 position needs to be moved by the distance D when it is placed on the assembly target part 799 because the TCP 733 position of the transfer hand 730 is moved by the distance D.
 これまで述べてきたように、ロボットの動作点はTCP位置で制御され、その位置情報は3D-CAD装置504の3D-CAD情報から抽出される。距離Dの補正を必要としない場合のTCP733位置は図中P点の直上に爪730aの把持中心が位置するのが望ましい。 As described above, the operation point of the robot is controlled by the TCP position, and the position information is extracted from the 3D-CAD information of the 3D-CAD device 504. The TCP 733 position when the correction of the distance D is not required is preferably such that the gripping center of the claw 730a is located immediately above the point P in the drawing.
 しかしながら、TCP733を3D-CAD装置504の直上に移動してしまうと図26Cに示す位置に持替側ハンド730が位置してしまい、正しく基板790を被組立部品799上に載置することができなくなる。そのため、3D-CAD装置504の3D-CAD情報より得られたXY平面上位置より、距離Dだけ補正した値のところまで移動するのが正しい位置となるこの状態を表しているのが図26Bである。 However, if the TCP 733 is moved immediately above the 3D-CAD device 504, the transfer hand 730 is positioned at the position shown in FIG. 26C, and the substrate 790 can be correctly placed on the assembly target 799. Disappear. For this reason, FIG. 26B shows this state in which the correct position moves from the position on the XY plane obtained from the 3D-CAD information of the 3D-CAD device 504 to the value corrected by the distance D. is there.
 引き続き同様な例について、図27A、図27Bを用いて説明する。 
 前記した図26A、図26Bで説明した構成との相違点は、基板780には電子部品790aが搭載されていない代わりに、部品取出側ハンド795に付く爪795aが、3D-CAD装置504の3D-CAD情報により得られる爪795aに対し実体が長いものが装着された場合の例を示している。この例でも図26Aおよび図26Bの場合と同様、持替側ハンド730と部品取出側ハンド795に付く爪795が干渉してしまうため、持替側ハンド730を距離Dだけ移動して干渉を避けている。
A similar example will be described with reference to FIGS. 27A and 27B.
The difference from the configuration described with reference to FIGS. 26A and 26B is that, instead of mounting the electronic component 790a on the substrate 780, a claw 795a attached to the component take-out side hand 795 is provided in the 3D of the 3D-CAD device 504. An example in which a long object is attached to the nail 795a obtained from the CAD information is shown. In this example as well as in the case of FIG. 26A and FIG. 26B, the claw 795 attached to the replacement hand 730 and the component take-out hand 795 interferes, so the replacement hand 730 is moved by the distance D to avoid interference. ing.
 この状態で被組立部品799上に基板780を置くときの補正に付いては前記図25を用いて説明したものと考え方は同じであるため、ここでの説明は省略する。 In this state, the correction for placing the substrate 780 on the part 799 to be assembled is the same as the concept described with reference to FIG. 25, and the description thereof is omitted here.
 本実施例によれば、実施例1及び2で説明した効果に加えて、ティーチングが必要となるような組立工程数を減らすことができるので、ティーチングに要する時間を大幅に短縮することができるようになった。 According to the present embodiment, in addition to the effects described in the first and second embodiments, the number of assembly steps that require teaching can be reduced, so that the time required for teaching can be greatly shortened. Became.
 図28は本発明の実施例1乃至3で用いる表示部502、および入力部501をひとつの入力画面で対応する一例を示したものである。900は入出力画面で例えばタッチパネル入力式の液晶表示パネルもしくは、図示しないデータ入力用キーボードおよび情報表示用の液晶パネルから構成される。 FIG. 28 shows an example in which the display unit 502 and the input unit 501 used in the first to third embodiments of the present invention correspond to one input screen. An input / output screen 900 includes, for example, a touch panel input type liquid crystal display panel or a data input keyboard and an information display liquid crystal panel (not shown).
 一例として、作業名称を901に、部品供給レイアウトCAD図を902aに、製品載置完成CAD図を902bに、ロボットでの持替動作を含む組立動作シミュレーション画面を904に示す。ここで904aは部品の供給状態、904bは部品もしくは製品の組立状態、904cは双腕ロボット本体、904dはロボットの相対原点、904e、904fは双腕ロボットのアーム、904g、904hはロボットのハンド(部品把持用の爪を含む)、904iは組立部品、ここでは基板の例を示している。 As an example, the work name is 901, the component supply layout CAD diagram is 902a, the product placement completed CAD diagram is 902b, and the assembly operation simulation screen including the moving operation by the robot is shown by 904. Here, 904a is a component supply state, 904b is a component or product assembly state, 904c is a double-arm robot body, 904d is a relative origin of the robot, 904e and 904f are arms of a double-arm robot, 904g and 904h are robot hands ( 904i shows an example of an assembly part, here, a substrate.
 910は組立順序生成を開始するための実行開始ボタン、911はロボットに動作教示を開始させるための実行開始ボタン、912は持替動作に要する時間の確認下画面、913はロボットの代表的な動作点(通過点)の確認用表示部、である。 910 is an execution start button for starting assembly order generation, 911 is an execution start button for starting operation teaching to the robot, 912 is a confirmation lower screen for the time required for the transfer operation, and 913 is a typical operation of the robot It is the display part for confirmation of a point (passing point).
 以上、これまで述べた実施の形態では、ハンドに付く部品把持用の爪は開閉式2爪の例を以て説明してきたがそれに限られず、双腕の一方に開閉式の爪、他方に吸着ハンドを用いた場合いおいては、爪の法線ベクトルと吸着ハンドの吸着面の法線ベクトルの内積が最小になる部品上の把持面の組合せ、双腕の両方に吸着ハンドを用いた場合でも、両者吸着面の法線ベクトルの内積が最小になるような部品上の把持面を設定すれば良い。 As described above, in the embodiments described so far, the part gripping claw attached to the hand has been described with an example of the openable / closable two claws, but is not limited thereto. In the case of use, even if the suction hand is used for both the combination of the gripping surface on the part where the inner product of the normal vector of the nail and the normal vector of the suction surface of the suction hand is the smallest, What is necessary is just to set the holding surface on a component so that the inner product of the normal vectors of both suction surfaces is minimized.
 以上、これまで本発明を組立動作教示装置を例に説明してきたが、発明の適用範囲はこれに限られず、組立動作教示方法、として適用しても構わない。 As described above, the present invention has been described by taking the assembly operation teaching apparatus as an example, but the scope of application of the present invention is not limited to this and may be applied as an assembly operation teaching method.
 以上の実施例によれば、複雑な持替動作の組合せが考えられるロボット動作生成において、容易に適切な持替動作情報の生成、ひいてはロボットティーチング作業時間の短縮化、省力化、低コスト化を実現することが可能となる。 According to the above embodiment, in robot motion generation that can be considered as a combination of complicated replacement movements, it is possible to easily generate appropriate replacement movement information, thereby shortening the robot teaching work time, saving labor, and reducing costs. It can be realized.
 150,160…ハンド  150a,160a…爪  500…組立教示装置  501…入力装置  502…出力装置  504…3D-CAD装置  505…ビジョンシステム  510…DB  511…部品情報DB(部品形状情報)  512…ロボット情報DB  600…制御部  601…割付部  601a…組立順序生成部  602…持替情報生成部  602a…部品持替要否判定部  602b…部品把持位置情報生成部  602c…部品持替位置情報生成部  603…動作経路生成部  604…干渉判定部  605…組立時間計算部/組立経路距離計算部  110,780,790…部品(基板)  200,300,450,480…部品
700,750…ハンド  900…入力部および表示部。
DESCRIPTION OF SYMBOLS 150,160 ... Hand 150a, 160a ... Claw 500 ... Assembly teaching device 501 ... Input device 502 ... Output device 504 ... 3D-CAD device 505 ... Vision system 510 ... DB 511 ... Part information DB (part shape information) 512 ... Robot information DB 600 ... Control unit 601 ... Assignment unit 601a ... Assembly order generation unit 602 ... Replacement information generation unit 602a ... Component replacement necessity determination unit 602b ... Component gripping position information generation unit 602c ... Component replacement position information generation unit 603 ... Operation path generation unit 604 ... interference determination unit 605 ... assembly time calculation unit / assembly path distance calculation unit 110, 780, 790 ... parts (board) 200, 300, 450, 480 ... parts 700, 750 ... hand 900 ... input part and Display section.

Claims (12)

  1.  ハンドを装着するアームを複数備えたロボットに対する組立動作を教示する装置であって、
     部品情報とロボット情報と部品種別ごとに扱えるロボットのハンドまたは部品の組立に必要なツールに関する情報を記憶するデータベースと、
     前記複数のアームに装着したハンドで部品を把持して組み立てる順序を生成する組立順序生成部と、
     前記組立順序生成部で生成した組立順序に基づいて前記複数のアームに装着したハンドで前記部品を把持して組み立てるときに前記把持した部品を前記複数のアームに装着したハンド間で持替るための情報を生成する持替情報生成部と、
     前記持替情報生成部で生成した前記部品の持替情報を用いて前記ロボットで前記部品を組み立てるときの前記複数のアームの動作経路を生成する動作経路生成部と、
     前記動作経路生成部で生成した前記複数のアームの動作経路における前記複数のアーム間の干渉の有無及び前記部品を把持したハンドと前記把持した部品を組み付ける先の部品との干渉の有無を判定する干渉性判定部と
     を備え、前記持替情報生成部では、前記複数のアームに装着したハンド間で持替る前記部品の持替後の把持面として、前記持替前の把持面の法線ベクトルとの内積の絶対値が最少となる法線ベクトルを有する面を選択することを特徴とする組立動作教示装置。
    An apparatus for teaching an assembling operation for a robot having a plurality of arms on which a hand is attached,
    A database that stores information on tools necessary for assembling parts and robot information, and robot hands and parts that can be handled for each part type;
    An assembly sequence generation unit for generating an assembly sequence for gripping and assembling components with hands attached to the plurality of arms;
    For holding the gripped parts between the hands mounted on the plurality of arms when the parts are gripped and assembled by the hands mounted on the plurality of arms based on the assembly order generated by the assembly order generation unit. A transfer information generation unit for generating information;
    An operation path generation unit that generates operation paths of the plurality of arms when the robot assembles the part using the replacement information of the part generated by the replacement information generation unit;
    The presence / absence of interference between the plurality of arms in the movement path of the plurality of arms generated by the movement path generation unit and the presence / absence of interference between the hand holding the part and the part to which the gripped part is assembled are determined. A normality vector of the gripping surface before the replacement as the gripping surface after the replacement of the part to be transferred between the hands attached to the plurality of arms. An assembly operation teaching apparatus, wherein a surface having a normal vector that minimizes the absolute value of the inner product of the two is selected.
  2.  請求項1記載の組立動作教示装置であって、前記持替情報生成部は、前記把持した部品を前記複数のアームに装着したハンド間で持替る前記部品上の位置として、前記選択した面において、前記部品の重心に近い位置、又は、摩擦係数の大きい位置、又は、前記持替る前記複数のアームに装着したハンド間で干渉を起こさない位置を選定することを特徴とする組立動作教示装置。 The assembly operation teaching device according to claim 1, wherein the transfer information generation unit sets the gripped component on the selected surface as a position on the component to be transferred between hands mounted on the plurality of arms. An assembly operation teaching apparatus, wherein a position close to the center of gravity of the part, a position having a large friction coefficient, or a position that does not cause interference between the hands mounted on the plurality of arms to be replaced is selected.
  3.  請求項1記載の組立動作教示装置であって、前記持替情報生成部は、前記把持した部品を前記複数のアームに装着したハンド間で持替る位置を、持替位置までの動作に要する時間をR1、他方の腕の始点位置から持替位置SPまでに要する時間をL1、持替位置SPから終点位置(組立て位置)までの動作に要する時間をL2とした時に、R1とL1の大きい方とL2との和が最小となる位置に設定することを特徴とする組立動作教示装置。 The assembly operation teaching device according to claim 1, wherein the transfer information generating unit takes a time required for the operation to the change position from a position where the gripped parts are changed between the hands that are mounted on the plurality of arms. R1 is the larger of R1, L1 is the time required from the start position of the other arm to the replacement position SP, and L2 is the time required for the operation from the replacement position SP to the end position (assembly position). And an assembly operation teaching device, wherein the sum of L2 and L2 is set to a minimum position.
  4.  請求項1記載の組立動作教示装置であって、前記持替情報生成部は、前記把持した部品を前記複数のアームに装着したハンド間で持替る位置を、持替位置までの動作経路距離をWR1、他方の腕の始点位置から持替え動作位置までに要する動作経路距離をWL1、持替位置SPから終点位置(組立て位置)までの動作に要する動作経路距離をWL2とした時に、WR1とWL1とWL2との和が最小となる位置に設定することを特徴とする組立動作教示装置。 The assembly operation teaching apparatus according to claim 1, wherein the transfer information generation unit sets a position at which the gripped component is transferred between hands mounted on the plurality of arms, and an operation path distance to the change position. When WR1 is WL1, the movement path distance required from the start point position of the other arm to the holding position is WL1, and the movement path distance required for movement from the switching position SP to the end point position (assembly position) is WL2, WR1 and WL1 And an assembly operation teaching device, wherein the sum of WL2 and WL2 is set to a minimum position.
  5.  請求項1記載の組立動作教示装置であって、前記干渉性判定部は、カメラで撮像して得た前記把持した部品を組み付ける先の部品の画像を用いて前記部品を把持したハンドと前記把持した部品を組み付ける先の部品との干渉の有無を判定することを特徴とする組立動作教示装置。 The assembly operation teaching apparatus according to claim 1, wherein the coherency determination unit includes a hand that grips the part using an image of a part to which the gripped part is assembled, which is obtained by imaging with a camera, and the grip. An assembly operation teaching apparatus for determining whether or not there is interference with a part to which a part to be assembled is assembled.
  6.  請求項1記載の組立動作教示装置であって、前記持替情報生成部は、前記干渉性判定部で判定した前記部品を把持したハンドと前記把持した部品を組み付ける先の部品との干渉の有無の情報に基づいて前記把持した部品を前記複数のアームに装着したハンド間で持替るための情報を修正することを特徴とする組立動作教示装置。 The assembly operation teaching apparatus according to claim 1, wherein the transfer information generation unit includes interference between a hand gripping the component determined by the coherency determination unit and a component to which the gripped component is assembled. An assembly operation teaching device, wherein information for transferring the gripped part between hands mounted on the plurality of arms is corrected on the basis of the information.
  7.  部品情報とロボット情報と部品種別ごとに扱えるロボットの複数のアームに装着するハンドまたは部品の組み立てに必要なツールに関する情報を用いて複数のアームを備えたロボットで部品を把持して組み立てる順序を生成し、
     前記生成した組立順序に基づいて前記ロボットのアームに装着したハンドで前記部品を把持して組み立てるときに前記把持した部品を前記複数のアームに装着したハンド間で持替る必要の有無を判定し、
     前記把持した部品を前記複数のアームに装着したハンド間で持替る必要があると判定した場合に前記把持した部品を前記複数のアームに装着したハンド間で持替るための情報を生成し、
     前記生成した前記部品の持替情報を用いて前記複数のアームを備えたロボットで前記部品を組み立てるときの前記複数のアームの動作経路を生成し、
    前記生成した前記複数のアームの動作経路における前記複数のアーム及び前記複数のアームに装着したハンド間の干渉の有無及び前記部品を把持したハンドと前記把持した部品を組み付ける先の部品との干渉の有無を判定する
     ことを含む複数のアームを備えたロボットに対する組立動作を教示する方法であって、
    前記持替情報を生成することを、前記複数のアームに装着したハンド間で持替る前記部品の持替後の把持面として、前記持替前の把持面の法線ベクトルとの内積の絶対値が最少となる法線ベクトルを有する面を選択することを特徴とする組立動作教示方法。
    Use parts information, robot information, and information related to tools attached to multiple arms of a robot that can be handled for each type of robot or a tool required for assembling parts to generate an order to grasp and assemble parts with a robot equipped with multiple arms And
    Determining whether or not the gripped components need to be transferred between the hands mounted on the plurality of arms when the components are gripped and assembled with the hands mounted on the robot arm based on the generated assembly order;
    When it is determined that it is necessary to transfer the gripped parts between the hands attached to the plurality of arms, information for transferring the gripped parts between the hands attached to the plurality of arms is generated,
    Using the transfer information of the generated part to generate an operation path of the plurality of arms when the part is assembled by a robot having the plurality of arms;
    The presence or absence of interference between the plurality of arms and the hands mounted on the plurality of arms in the generated operation path of the plurality of arms, and interference between the hand holding the component and the component to which the gripped component is assembled. A method for teaching an assembling operation for a robot having a plurality of arms, including determining the presence or absence of
    The absolute value of the inner product of the normal vector of the gripping surface before the transfer as the gripping surface after the replacement of the part that is transferred between the hands attached to the plurality of arms is to generate the replacement information An assembly operation teaching method characterized by selecting a surface having a normal vector that minimizes.
  8.  請求項7記載の組立動作教示方法であって、前記持替情報を生成することが、前記把持した部品を前記複数のアームに装着したハンド間で持替る前記部品上の位置として、前記選択した面において、前記部品の重心に近い位置、又は、摩擦係数の大きい位置、又は、前記持替る前記複数のアームに装着したハンド間で干渉を起こさない位置選定することを含むことを特徴とする組立動作教示装置。 8. The assembly operation teaching method according to claim 7, wherein the generation of the replacement information is performed by selecting the position as the position on the component where the gripped component is transferred between hands mounted on the plurality of arms. Assembly, comprising selecting a position near the center of gravity of the component, a position having a large friction coefficient, or a position that does not cause interference between the hands mounted on the plurality of arms to be replaced. Operation teaching device.
  9.  請求項7記載の組立動作教示方法であって、前記持替情報を生成することが、前記把持した部品を前記複数のアームに装着したハンド間で持替る位置を、持替位置までの動作に要する時間をR1、他方の腕の始点位置から持替位置SPまでに要する時間をL1、持替位置SPから終点位置(組立て位置)までの動作に要する時間をL2とした時に、R1とL1の大きい方とL2との和が最小となる位置に設定することを含むことを特徴とする組立動作教示方法。 The assembly operation teaching method according to claim 7, wherein the generation of the replacement information is performed by changing a position where the gripped parts are transferred between the hands mounted on the plurality of arms to an operation of the replacement position. R1 is the time required for R1, L1 is the time required from the start position of the other arm to the transfer position SP, and L2 is the time required for the operation from the change position SP to the end position (assembly position). An assembly operation teaching method comprising: setting a position where the sum of the larger one and L2 is minimized.
  10.  請求項7記載の組立動作教示方法であって、前記持替情報を生成することが、前記把持した部品を前記複数のアームに装着したハンド間で持替る位置を、持替位置までの動作経路距離をWR1、他方の腕の始点位置から持替え動作位置までに要する動作経路距離をWL1、持替位置SPから終点位置(組立て位置)までの動作に要する動作経路距離をWL2とした時に、WR1とWL1とWL2との和が最小となる位置に設定することを含むことを特徴とする組立動作教示方法。 The assembly operation teaching method according to claim 7, wherein the generation of the replacement information includes a position at which the gripped component is transferred between the hands mounted on the plurality of arms, and an operation path to the replacement position. WR1 when the distance is WR1, the movement path distance required from the start position of the other arm to the changeover movement position is WL1, and the movement path distance required for the movement from the changeover position SP to the end position (assembly position) is WL2. And setting the position where the sum of WL1 and WL2 is minimized.
  11.  請求項7記載の組立動作教示方法であって、前記干渉性を判定することが、カメラで撮像して得た前記把持した部品を組み付ける先の部品の画像を用いて前記部品を把持したハンドと前記把持した部品を組み付ける先の部品との干渉の有無を判定することを含むことを特徴とする組立動作教示方法。 The assembly operation teaching method according to claim 7, wherein the determination of the coherence is performed by using a hand that grips the part using an image of a part to which the gripped part is imaged by a camera. An assembly operation teaching method comprising determining whether or not there is interference with a part to which the gripped part is assembled.
  12.  請求項7記載の組立動作教示方法であって、前記持替情報を生成することが、前記判定した前記部品を把持したハンドと前記把持した部品を組み付ける先の部品との干渉の有無の情報に基づいて前記把持した部品を前記複数のアームに装着したハンド間で持替るための情報を修正することを含むことを特徴とする組立動作教示方法。 8. The assembly operation teaching method according to claim 7, wherein the generation of the replacement information includes information on presence / absence of interference between the determined hand holding the component and a component to which the gripped component is assembled. An assembly operation teaching method comprising correcting information for transferring the gripped part between hands mounted on the plurality of arms based on the information.
PCT/JP2015/075963 2015-09-14 2015-09-14 Assembly operation teaching device and assembly operation teaching method WO2017046835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075963 WO2017046835A1 (en) 2015-09-14 2015-09-14 Assembly operation teaching device and assembly operation teaching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075963 WO2017046835A1 (en) 2015-09-14 2015-09-14 Assembly operation teaching device and assembly operation teaching method

Publications (1)

Publication Number Publication Date
WO2017046835A1 true WO2017046835A1 (en) 2017-03-23

Family

ID=58288264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075963 WO2017046835A1 (en) 2015-09-14 2015-09-14 Assembly operation teaching device and assembly operation teaching method

Country Status (1)

Country Link
WO (1) WO2017046835A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207835A (en) * 2020-09-18 2021-01-12 浙江大学 Method for realizing double-arm cooperative work task based on teaching learning
WO2022168609A1 (en) * 2021-02-05 2022-08-11 オムロン株式会社 Control system, motion planning device, control device, motion planning and control method, motion planning method, and control method
WO2023199456A1 (en) * 2022-04-14 2023-10-19 日本電気株式会社 Control device, robot system, control method, and recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288683A (en) * 1987-05-21 1988-11-25 株式会社東芝 Assembling robot
JP2008119770A (en) * 2006-11-09 2008-05-29 Honda Motor Co Ltd Robot hand and robot
JP2013059817A (en) * 2011-09-12 2013-04-04 Seiko Epson Corp Operation program creating device, program, robot control system, and robot system
JP2014024162A (en) * 2012-07-27 2014-02-06 Seiko Epson Corp Robot system, robot control device, robot control method and robot control program
JP2015085459A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Robot, robot system, control device and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288683A (en) * 1987-05-21 1988-11-25 株式会社東芝 Assembling robot
JP2008119770A (en) * 2006-11-09 2008-05-29 Honda Motor Co Ltd Robot hand and robot
JP2013059817A (en) * 2011-09-12 2013-04-04 Seiko Epson Corp Operation program creating device, program, robot control system, and robot system
JP2014024162A (en) * 2012-07-27 2014-02-06 Seiko Epson Corp Robot system, robot control device, robot control method and robot control program
JP2015085459A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Robot, robot system, control device and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207835A (en) * 2020-09-18 2021-01-12 浙江大学 Method for realizing double-arm cooperative work task based on teaching learning
WO2022168609A1 (en) * 2021-02-05 2022-08-11 オムロン株式会社 Control system, motion planning device, control device, motion planning and control method, motion planning method, and control method
WO2023199456A1 (en) * 2022-04-14 2023-10-19 日本電気株式会社 Control device, robot system, control method, and recording medium

Similar Documents

Publication Publication Date Title
JP6807949B2 (en) Interference avoidance device
US9902067B2 (en) Offline robot programming device
JP3708097B2 (en) Robot manual feeder
JP5071361B2 (en) Method for creating work program for double-arm robot and double-arm robot
WO2017046835A1 (en) Assembly operation teaching device and assembly operation teaching method
JP7360406B2 (en) Augmented reality visualization for robotic picking systems
Smisek et al. Haptic guidance in bilateral teleoperation: Effects of guidance inaccuracy
CN107457793B (en) Dynamic laser touch sensing with multi-robot dynamic user frame
Brunner et al. Task-directed programming of sensor-based robots
TW201834802A (en) Apparatus and method for generating robot program
JP6456557B1 (en) Gripping position / posture teaching apparatus, gripping position / posture teaching method, and robot system
JP2019150918A (en) Robot control device and robot control method
JPWO2018199035A1 (en) Articulated robot and articulated robot system
Selvaggio et al. Towards a self-collision aware teleoperation framework for compound robots
JP6533199B2 (en) Work processing system
WO2021100845A1 (en) Robot system and operation method for same
JP2024512827A (en) System and method for adaptive compliance-based robot assembly
US11992956B2 (en) Coordination system, handling device, and method
WO2018180300A1 (en) Robot task management system and robot task management program
Brunner et al. Programming robots via learning by showing in a virtual environment
Wang et al. From human to pushing leader robot: Leading a decentralized multirobot system for object handling
Paredes et al. Mechatronics design and robotic simulation of serial manipulators to perform automation tasks in the avocado Industry
WO2018180299A1 (en) Robot teaching device, method for controlling robot teaching device, and robot teaching program
Brecher et al. Robots and Robot Controllers
Watanabe et al. Grasp Motion Planning for box opening task by multi-fingered hands and arms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP