WO2017045948A1 - Method for operating a battery cell - Google Patents

Method for operating a battery cell Download PDF

Info

Publication number
WO2017045948A1
WO2017045948A1 PCT/EP2016/070819 EP2016070819W WO2017045948A1 WO 2017045948 A1 WO2017045948 A1 WO 2017045948A1 EP 2016070819 W EP2016070819 W EP 2016070819W WO 2017045948 A1 WO2017045948 A1 WO 2017045948A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
signal
pulsating
anode
electrical signal
Prior art date
Application number
PCT/EP2016/070819
Other languages
German (de)
French (fr)
Inventor
Alexandra Wilde
Niluefer Baba
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2017045948A1 publication Critical patent/WO2017045948A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for operating a battery cell, which has a negative terminal and a positive terminal.
  • Electrical energy can be stored by means of batteries. Batteries convert chemical reaction energy into electrical energy. Here are batteries.
  • Primary batteries and secondary batteries distinguished. Primary batteries are only functional once, while secondary batteries, also referred to as accumulators, are rechargeable.
  • a battery comprises one or more battery cells.
  • lithium-ion battery cells and lithium-metal battery cells are used in an accumulator. These are characterized among other things by high energy densities, thermal stability and extremely low self-discharge. Lithium-ion battery cells and lithium-metal battery cells are used, inter alia, in motor vehicles, in particular in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (plug-in hybrid electric vehicles). PHEV) are used.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • plug-in hybrid electric vehicles plug-in hybrid electric vehicles
  • PHEV plug-in hybrid electric vehicles
  • Lithium metal battery cells have a positive electrode, also known as
  • Cathode is called, and a negative electrode, which is also referred to as anode on.
  • the cathode and the anode each include one
  • the active material for the cathode is, for example, a metal oxide.
  • Active material for the anode is, for example, lithium. But also graphite is used as an active material for anodes.
  • the active material of the anode contains lithium atoms.
  • Battery cell ie during a discharge process, electrons flow in an external circuit from the anode to the cathode.
  • lithium ions migrate from the anode to the cathode during a discharge process.
  • the lithium ions migrate from the cathode to the anode.
  • the electrodes of the battery cell are formed like a film and under
  • Interlayer of a separator which separates the anode from the cathode, wound into an electrode coil.
  • Such an electrode winding is also referred to as a jelly roll.
  • the electrodes may also be stacked to form an electrode stack.
  • a battery cell typically includes one or more electrode coils or electrode stacks.
  • the electrodes and separator are surrounded by a generally liquid electrolyte.
  • the electrolyte is conductive to the lithium ions and allows the transport of lithium ions between the electrodes.
  • the battery cell further comprises a cell housing, which is made of aluminum, for example.
  • the cell housing is, for example prismatic, in particular cuboid, designed and pressure-resistant.
  • Terminals are located outside of the cell housing. After this
  • a soft film may be provided which the electrode winding or
  • a generic battery cell comprising an anode and a cathode, wherein the active material of the anode comprises lithium, is known for example from US 5,728,482 A.
  • a problem with known lithium metal battery cells and with other battery cells is a dendritic growth of the anode.
  • lithium can dendritisch deposit on the anode and grow from there to the cathode.
  • Growing dendrites can perforate the separator and cause local shorts inside the battery cell.
  • growing dendrites can significantly reduce the life of the battery cell and even cause thermal damage to the battery cell, also known as thermal runaway.
  • pulse separation are designed and is therefore also referred to as "pulse separation”.
  • a method of operating a battery cell having a negative terminal and a positive terminal is proposed.
  • the terminals of the battery cell are connected to an electrical signal source, and the battery cell is acted upon by a pulsed electrical signal generated by the signal source.
  • the battery cell By acting on the battery cell with a pulsating signal, a dendrite-reduced or dendrite-free deposition of lithium takes place on an anode of the battery cell connected to the negative terminal. In particular, a pulse separation takes place. Lithium thus deposits more homogeneously on the anode, and growth of dendrites is inhibited or suppressed.
  • the battery cell is acted upon with a pulsating voltage signal.
  • a driving force for an electrochemical reaction can be controlled.
  • the voltage signal can be superimposed on a rest voltage of the battery cell.
  • the battery cell is charged with a pulsating current signal.
  • the current signal is a flow of electroactive species to the anode
  • the current signal can be superimposed on a quiescent current of the battery cell.
  • the pulsating electrical signal generated by the signal source is rectangular. But other designs of the signal are quite conceivable, for example, a triangular shape or a harmonic oscillation.
  • the battery cell is charged during a charging process with the pulsating electrical signal.
  • the signal source may be integrated in a charging device for charging the battery cell.
  • the battery cell is acted upon during a discharging process with the pulsating electrical signal.
  • the signal source may be constantly connected to the battery cell. If it is a traction battery in an electric vehicle, the signal source may be integrated into a battery control device.
  • the battery cell is initially charged after its preparation with the pulsating electrical signal.
  • an increased number of statistically distributed germinal centers can be generated on the anode, which causes a later homogeneous deposition of lithium on the anode.
  • a non-dendritic Preferably, before and / or during the application of the pulsating electrical signal to the battery cell, a non-dendritic,
  • state of the battery cell determined.
  • the non-dendritic or dendrite-reduced state of the battery cell can then be determined by means of non-linear chaos control
  • the chaos control is, for example, in the corresponding chapter in the Lexicon of Physics, under Controlling Chaos Edward Ott, Celso Grebogi, and James A. Yorke Phys. Rev. Lett. 64, 2837 - Published 4 June 1990.
  • the shape of the pulsating electrical signal is advantageously determined in such a way that when the battery cell is acted upon by the determined pulsating electrical signal
  • the shape of the signal can be described by several parameters. These parameters include, for example, an amplitude, a period and a shape of the signal. Possible
  • Forms of the signal are for example a rectangular shape, a triangular shape or a harmonic oscillation.
  • the determination of the shape of the signal can be carried out, for example, by means of the floquet mode method.
  • the current generated by the signal source, as well as the voltage generated by the signal source are determined by means of
  • Amplitude set The amplitudes of the required voltage signal and the required current signal and thus the necessary energy of
  • the state of the battery cell is performed as follows:
  • the battery cell is transferred to a chaotic state
  • the non-dendritic state of the battery cell is selected from the determined unstable states of the battery cell.
  • the non-dendritic is selected from the determined unstable states of the battery cell.
  • state is one of many unstable states with a regular dynamics, which can accept the battery cell, in particular the anode of the battery cell.
  • the method of attractor reconstruction is, for example, Chennaoui, A.; Pawelzik, K.; Liebert, W.; Schuster, H.G. Pfister, G .: Attractor reconstruction from filtered chaotic time series.
  • p. 4051 disclosed
  • the growth of dendrites in the battery cell in particular at the anode, especially at a lithium-metal anode, inhibited or suppressed.
  • the life of the battery cell is advantageously increased and a threat to the environment by damage, thermal destruction and thermal runaway of the battery cell is avoided.
  • the consumption of electrolyte is reduced and a
  • the inventive method further allows the commercial production of other types of batteries, such as lithium-sulfur or lithium-air, as well as battery types, which were previously not rechargeable due to strong dendrite formation at the lithium metal anode.
  • This particular battery cells with increased energy capacity can be produced. Furthermore, can
  • Terminals connect, narrower and easier to run.
  • the use of pure lithium metal electrodes leads to a reduced total weight of the battery cell and thus to an increased gravimetric energy density.
  • Figure 1 is a schematic representation of a battery cell
  • FIG. 2 shows a time profile of a pulsating voltage signal
  • FIG. 3 shows a time profile of a pulsating current signal
  • Figure 5 shows a time course of an initial pulsating current signal
  • Figure 6 is a schematic representation of an arrangement for determining a suitable shape of the pulsating signal.
  • a battery cell 2 is shown schematically in FIG.
  • the battery cell 2 comprises a cell housing 3, which is prismatic, in the present cuboid.
  • the cell housing 3 is designed to be electrically conductive and manufactured, for example, from aluminum or stainless steel.
  • the cell housing 3 may also be made of an electrically insulating material, such as plastic.
  • Other shapes of the cell housing 3 are conceivable, for example circular cylindrical.
  • a fixed cell housing 3 may also be provided a soft film when the battery cell 2 is designed as a pouch cell.
  • the battery cell 2 comprises a negative terminal 11 and a positive terminal 12. Via the terminals 11, 12, a voltage provided by the battery cell 2 can be tapped off. Furthermore, the battery cell 2 can also be charged via the terminals 11, 12.
  • the terminals 11, 12 are spaced from one another on a top surface of the prismatic cell housing 3.
  • an electrode coil is arranged, which has two electrodes, namely an anode 21 and a cathode 22.
  • the anode 21 and the cathode 22 are each made like a foil and wound with the interposition of a separator 18 to the electrode coil. It is also conceivable that a plurality of electrode windings are provided in the cell housing 3. Instead of the electrode winding, an electrode stack can also be provided, for example.
  • the anode 21 comprises an anodic active material 41, which is designed like a foil.
  • the anodic active material 41 has as a base material lithium or a lithium-containing alloy. Other types of metal electrodes are conceivable.
  • the anode 21 further comprises a current conductor 31, which also formed like a film. The anodic active material 41 and the current conductor 31 are laid flat against each other and connected to each other.
  • the current conductor 31 of the anode 21 is made electrically conductive and made of a metal, for example copper.
  • the current conductor 31 of the anode 21 is made electrically conductive and made of a metal, for example copper.
  • Anode 21 is electrically connected to the negative terminal 11 of the battery cell 2.
  • the cathode 22 comprises a cathodic active material 42, which is designed like a foil.
  • the cathodic active material 42 has a base material
  • the cathode 22 further includes a current collector 32, which is also formed like a foil.
  • the cathodic active material 42 and the current collector 32 are laid flat against each other and connected to each other.
  • the current collector 32 of the cathode 22 is made electrically conductive and made of a metal, for example aluminum.
  • the current collector 32 of the cathode 22 is electrically connected to the positive terminal 12 of the battery cell 2.
  • the anode 21 and the cathode 22 are separated from each other by the separator 18.
  • the separator 18 is also formed like a film.
  • the separator 18 is electrically insulating, but ionically conductive, so permeable to lithium ions.
  • the cell case 3 of the battery cell 2 is filled with a liquid electrolyte 15, or with a polymer electrolyte.
  • the electrolyte 15 surrounds the anode 21, the cathode 22 and the separator 18.
  • the electrolyte 15 is also ionically conductive.
  • the signal source 50 generates an electrical signal in the form of a pulsating voltage signal 60 or in the form of a pulsating
  • the battery cell 2 is acted upon by the signal generated by the signal source 50 pulsating electrical signal.
  • An exemplary time profile of a pulsating voltage signal 60 generated by the signal source 50 is shown in FIG. In this case, the time t is plotted on the x-axis and the voltage U. applied between the terminals 11, 12 is plotted on the y-axis.
  • the voltage signal 60 is present
  • the minimal voltage 62 corresponds approximately to an open circuit voltage of the battery cell 2.
  • An exemplary time profile of a generated by the signal source 50 pulsating current signal 70 is shown in Figure 3.
  • the time t is plotted on the x-axis and the current flowing through the terminals 11, 12 on the y-axis I.
  • the current signal 70 is rectangular in the present case and varies between a minimum current 72 and a maximum current 74. The minimum current 72 is thereby almost equal to zero.
  • FIG. 1 An exemplary time profile of an initial pulsating voltage signal 60 generated by the signal source 50 is shown in FIG.
  • the time t is plotted on the x-axis and on the y-axis between the
  • Terminals 11, 12 present voltage U.
  • the initial voltage signal 60 is present rectangular and varies between a minimum voltage 62 and a maximum voltage 64.
  • the minimum voltage 62 corresponds approximately to an open circuit voltage of the battery cell 2.
  • the quiescent voltage 66 corresponds to a charging voltage with which the battery cell 2 is charged further after the initial pulsating voltage signal 60 has ended.
  • FIG. 1 An exemplary time profile of an initial pulsating current signal 70 generated by the signal source 50 is shown in FIG.
  • the time t is plotted on the x-axis and the current I flowing through the terminals 11, 12 is plotted on the y-axis.
  • the initial current signal 70 is rectangular in the present case and varies between a minimum current 72 and a maximum current 74.
  • the minimum current 72 is approximately equal to zero.
  • the initial pulsating current signal 70 After expiration of a predetermined period of time ends the initial pulsating current signal 70.
  • a quiescent current 76 which in the present case is greater than the minimum current 72.
  • the quiescent current 76 corresponds to a charging current with which the battery cell 2 is charged further after the completion of the initial pulsating current signal 70.
  • An arrangement for determining a suitable form of the pulsating electrical signal that is, the pulsating voltage signal 60 or the pulsating current signal 70, is shown schematically in FIG.
  • the signal source 50 To the battery cell 2, the signal source 50 is connected.
  • the battery cell 2 is further connected to a load 55.
  • the battery cell 2 supplies an electrical power to the load 55 by means of a voltage U and a current I.
  • the signal source 50 detects the time profile of the said voltage U and of the said current I.
  • suitable forms of the pulsating voltage signal 60 and of the pulsating current signal 70 are determined.
  • the determination of the pulsating voltage signal 60 and of the pulsating current signal 70 is carried out in the present case by means of a floquet mode method.
  • Possible shapes of the pulsating voltage signal 60 and of the pulsating current signal 70 to be applied to the battery cell 2 are, for example, a rectangular shape, a triangular shape or a harmonic oscillation. But other shapes of the pulsating electrical signal are conceivable.
  • the voltage signal 60 generated by the signal source 50 and the current signal 70 generated by the signal source 50 are then modulated accordingly by means of the determined floquet modes. Also, one each determined suitable amplitude for the voltage signal 60 and the current signal 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention relates to a method for operating a battery cell (2) comprising a negative terminal (11) and a positive terminal (12); in said method, the terminals (11, 12) are connected to an electric signal source (50), and a pulsed electric signal (60, 70) generated by the signal source (50) is applied to the battery cell (2). -

Description

Beschreibung Titel  Description title
Verfahren zum Betrieb einer Batteriezelle  Method for operating a battery cell
Die Erfindung betrifft ein Verfahren zum Betrieb einer Batteriezelle, welche ein negatives Terminal und ein positives Terminal aufweist. The invention relates to a method for operating a battery cell, which has a negative terminal and a positive terminal.
Stand der Technik State of the art
Elektrische Energie ist mittels Batterien speicherbar. Batterien wandeln chemische Reaktionsenergie in elektrische Energie um. Hierbei werden Electrical energy can be stored by means of batteries. Batteries convert chemical reaction energy into electrical energy. Here are
Primärbatterien und Sekundärbatterien unterschieden. Primärbatterien sind nur einmal funktionsfähig, während Sekundärbatterien, die auch als Akkumulator bezeichnet werden, wieder aufladbar sind. Eine Batterie umfasst dabei eine oder mehrere Batteriezellen. Primary batteries and secondary batteries distinguished. Primary batteries are only functional once, while secondary batteries, also referred to as accumulators, are rechargeable. A battery comprises one or more battery cells.
In einem Akkumulator finden insbesondere sogenannte Lithium-Ionen- Batteriezellen sowie Lithium- Metall- Batteriezellen Verwendung. Diese zeichnen sich unter anderem durch hohe Energiedichten, thermische Stabilität und eine äußerst geringe Selbstentladung aus. Lithium-Ionen-Batteriezellen sowie Lithium- Metall- Batteriezellen kommen unter anderem in Kraftfahrzeugen, insbesondere in Elektrofahrzeugen (Electric Vehicle, EV), Hybridfahrzeugen (Hybride Electric Vehicle, HEV) sowie Plug-In-Hybridfahrzeugen (Plug-In-Hybride Electric Vehicle, PHEV) zum Einsatz. In particular, what are known as lithium-ion battery cells and lithium-metal battery cells are used in an accumulator. These are characterized among other things by high energy densities, thermal stability and extremely low self-discharge. Lithium-ion battery cells and lithium-metal battery cells are used, inter alia, in motor vehicles, in particular in electric vehicles (EV), hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (plug-in hybrid electric vehicles). PHEV) are used.
Lithium-Metall-Batteriezellen weisen eine positive Elektrode, die auch als Lithium metal battery cells have a positive electrode, also known as
Kathode bezeichnet wird, und eine negative Elektrode, die auch als Anode bezeichnet wird, auf. Die Kathode sowie die Anode umfassen je einen Cathode is called, and a negative electrode, which is also referred to as anode on. The cathode and the anode each include one
Stromableiter, auf den ein Aktivmaterial aufgebracht ist. Bei dem Aktivmaterial für die Kathode handelt es sich beispielsweise um ein Metalloxid. Bei dem Aktivmaterial für die Anode handelt es sich beispielsweise um Lithium. Aber auch Graphit ist als Aktivmaterial für Anoden verbreitet. Current conductor, on which an active material is applied. The active material for the cathode is, for example, a metal oxide. In which Active material for the anode is, for example, lithium. But also graphite is used as an active material for anodes.
Das Aktivmaterial der Anode enthält Lithiumatome. Beim Betrieb der The active material of the anode contains lithium atoms. When operating the
Batteriezelle, also bei einem Entladevorgang, fließen Elektronen in einem äußeren Stromkreis von der Anode zur Kathode. Innerhalb der Batteriezelle wandern Lithiumionen bei einem Entladevorgang von der Anode zur Kathode. Bei einem Ladevorgang der Batteriezelle wandern die Lithiumionen von der Kathode zu der Anode. Dabei werden die Lithiumionen auf der Anode Battery cell, ie during a discharge process, electrons flow in an external circuit from the anode to the cathode. Within the battery cell, lithium ions migrate from the anode to the cathode during a discharge process. During a charging process of the battery cell, the lithium ions migrate from the cathode to the anode. The lithium ions on the anode
elektrochemisch abgeschieden. electrochemically deposited.
Die Elektroden der Batteriezelle sind folienartig ausgebildet und unter The electrodes of the battery cell are formed like a film and under
Zwischenlage eines Separators, welcher die Anode von der Kathode trennt, zu einem Elektrodenwickel gewunden. Ein solcher Elektrodenwickel wird auch als Jelly-Roll bezeichnet. Die Elektroden können auch zu einem Elektrodenstapel übereinander geschichtet sein. Interlayer of a separator, which separates the anode from the cathode, wound into an electrode coil. Such an electrode winding is also referred to as a jelly roll. The electrodes may also be stacked to form an electrode stack.
Die beiden Elektroden des Elektrodenwickels oder des Elektrodenstapels werden mittels Kollektoren elektrisch mit Polen der Batteriezelle, welche auch als Terminals bezeichnet werden, verbunden. Eine Batteriezelle umfasst in der Regel eine oder mehrere Elektrodenwickel oder Elektrodenstapel. Die Elektroden und der Separator sind von einem in der Regel flüssigen Elektrolyt umgeben. Der Elektrolyt ist für die Lithiumionen leitfähig und ermöglicht den Transport der Lithiumionen zwischen den Elektroden. The two electrodes of the electrode coil or of the electrode stack are electrically connected by means of collectors to poles of the battery cell, which are also referred to as terminals. A battery cell typically includes one or more electrode coils or electrode stacks. The electrodes and separator are surrounded by a generally liquid electrolyte. The electrolyte is conductive to the lithium ions and allows the transport of lithium ions between the electrodes.
Die Batteriezelle weist ferner ein Zellengehäuse auf, welches beispielsweise aus Aluminium gefertigt ist. Das Zellengehäuse ist beispielsweise prismatisch, insbesondere quaderförmig, ausgestaltet und druckfest ausgebildet. Die The battery cell further comprises a cell housing, which is made of aluminum, for example. The cell housing is, for example prismatic, in particular cuboid, designed and pressure-resistant. The
Terminals befinden sich dabei außerhalb des Zellengehäuses. Nach dem Terminals are located outside of the cell housing. After this
Verbinden der Elektroden mit den Terminals wird der Elektrolyt in das Connecting the electrodes to the terminals will put the electrolyte in the
Zellengehäuse gefüllt. Anstelle eines festen Zellegehäuses kann auch eine weiche Folie vorgesehen sein, welche den Elektrodenwickel oder Cell housing filled. Instead of a fixed cell housing, a soft film may be provided which the electrode winding or
Elektrodenstapel umgibt. Derart ausgestaltete Batteriezellen werden auch als Pouchzellen bezeichnet. Eine gattungsgemäße Batteriezelle, die eine Anode und eine Kathode umfasst, wobei das Aktivmaterial der Anode Lithium aufweist, ist beispielsweise aus der US 5,728,482 A bekannt. Surrounds the electrode stack. Such designed battery cells are also referred to as pouch cells. A generic battery cell comprising an anode and a cathode, wherein the active material of the anode comprises lithium, is known for example from US 5,728,482 A.
Problematisch bei bekannten Lithium- Metall- Batteriezellen sowie bei anderen Batteriezellen ist ein dendritisches Wachstum der Anode. Während der sich wiederholenden Lade- und Entladevorgänge der Batteriezelle kann sich Lithium dendritisch auf der Anode ablagern und von dort auf die Kathode zu wachsen. Wachsende Dendrite können den Separator perforieren und lokale Kurzschlüsse innerhalb der Batteriezelle verursachen. Wachsende Dendrite können somit die Lebensdauer der Batteriezelle deutlich verringern und sogar eine thermische Zerstörung der Batteriezelle, was auch als thermisches Durchgehen bezeichnet wird, verursachen. A problem with known lithium metal battery cells and with other battery cells is a dendritic growth of the anode. During the repeated charging and discharging of the battery cell lithium can dendritisch deposit on the anode and grow from there to the cathode. Growing dendrites can perforate the separator and cause local shorts inside the battery cell. Thus, growing dendrites can significantly reduce the life of the battery cell and even cause thermal damage to the battery cell, also known as thermal runaway.
Ein elektrochemisches Beschichtungsverfahren zur Abscheidung einer Schicht an einem Werkstück ist in der WO 2010/046392 A2 offenbart. Die Abscheidung erfolgt dabei in mehreren Sequenzen, welche unter anderem pulsartig An electrochemical coating method for depositing a layer on a workpiece is disclosed in WO 2010/046392 A2. The deposition takes place in several sequences, which inter alia pulse-like
ausgestaltet sind, und wird daher auch als "Pulsabscheidung" bezeichnet. are designed and is therefore also referred to as "pulse separation".
Offenbarung der Erfindung Disclosure of the invention
Es wird ein Verfahren zum Betrieb einer Batteriezelle, welche ein negatives Terminal und ein positives Terminal aufweist, vorgeschlagen. Dabei werden die Terminals der Batteriezelle mit einer elektrischen Signalquelle verbunden, und die Batteriezelle wird mit einem von der Signalquelle erzeugten pulsierenden elektrischen Signal beaufschlagt. A method of operating a battery cell having a negative terminal and a positive terminal is proposed. In this case, the terminals of the battery cell are connected to an electrical signal source, and the battery cell is acted upon by a pulsed electrical signal generated by the signal source.
Durch die Beaufschlagung der Batteriezelle mit einem pulsierenden Signal erfolgt eine dendritreduzierte oder dendritfreie Abscheidung von Lithium auf einer mit dem negativen Terminal verbundenen Anode der Batteriezelle. Dabei findet insbesondere eine Pulsabscheidung statt. Lithium lagert sich somit homogener auf der Anode ab, und ein Wachstum von Dendriten ist gehemmt oder unterdrückt. Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird die Batteriezelle dabei mit einem pulsierenden Spannungssignal beaufschlagt. Mittels eines Spannungssignals ist eine Triebkraft für eine elektrochemische Reaktion kontrollierbar. Das Spannungssignal kann dabei einer Ruhespannung der Batteriezelle überlagert sein. By acting on the battery cell with a pulsating signal, a dendrite-reduced or dendrite-free deposition of lithium takes place on an anode of the battery cell connected to the negative terminal. In particular, a pulse separation takes place. Lithium thus deposits more homogeneously on the anode, and growth of dendrites is inhibited or suppressed. According to an advantageous embodiment of the invention, the battery cell is acted upon with a pulsating voltage signal. By means of a voltage signal, a driving force for an electrochemical reaction can be controlled. The voltage signal can be superimposed on a rest voltage of the battery cell.
Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung wird die Batteriezelle mit einem pulsierenden Stromsignal beaufschlagt. Mittels des Stromsignals ist ein Fluss von elektroaktiven Spezies zu der Anode According to another advantageous embodiment of the invention, the battery cell is charged with a pulsating current signal. By means of the current signal is a flow of electroactive species to the anode
kontrollierbar. Das Stromsignal kann dabei einem Ruhestrom der Batteriezelle überlagert sein. controllable. The current signal can be superimposed on a quiescent current of the battery cell.
Beispielsweise ist das von der Signalquelle erzeugte pulsierende elektrische Signal rechteckförmig. Aber auch andere Gestaltungen des Signals sind durchaus denkbar, beispielsweise eine Dreieckform oder eine harmonische Schwingung. For example, the pulsating electrical signal generated by the signal source is rectangular. But other designs of the signal are quite conceivable, for example, a triangular shape or a harmonic oscillation.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung wird die Batteriezelle dabei während eines Ladevorgangs mit dem pulsierenden elektrischen Signal beaufschlagt. In diesem Fall kann die Signalquelle in eine Ladevorrichtung zum Laden der Batteriezelle integriert sein. According to an advantageous embodiment of the invention, the battery cell is charged during a charging process with the pulsating electrical signal. In this case, the signal source may be integrated in a charging device for charging the battery cell.
Gemäß einer anderen vorteilhaften Ausgestaltung der Erfindung wird die Batteriezelle während eines Entladevorgangs mit dem pulsierenden elektrischen Signal beaufschlagt. In diesem Fall kann die Signalquelle ständig mit der Batteriezelle verbunden sein. Handelt es sich um eine Traktionsbatterie in einem Elektrofahrzeug, so kann die Signalquelle in ein Batteriesteuergerät integriert sein. According to another advantageous embodiment of the invention, the battery cell is acted upon during a discharging process with the pulsating electrical signal. In this case, the signal source may be constantly connected to the battery cell. If it is a traction battery in an electric vehicle, the signal source may be integrated into a battery control device.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die Batteriezelle initial nach ihrer Herstellung mit dem pulsierenden elektrischen Signal beaufschlagt. Dadurch kann auf der Anode eine erhöhte Zahl von statistisch verteilten Keimzentren erzeugt werden, welche eine spätere homogene Abscheidung von Lithium auf der Anode bewirkt. Eine weitere Beaufschlagung der Batteriezelle mit dem pulsierenden elektrischen Signal im According to a further advantageous embodiment of the invention, the battery cell is initially charged after its preparation with the pulsating electrical signal. As a result, an increased number of statistically distributed germinal centers can be generated on the anode, which causes a later homogeneous deposition of lithium on the anode. Another Actuation of the battery cell with the pulsating electrical signal in
Betrieb ist somit nicht erforderlich. Operation is not required.
Vorzugsweise wird vor und/oder während der Beaufschlagung der Batteriezelle mit dem pulsierenden elektrischen Signal ein nicht-dendritischer, Preferably, before and / or during the application of the pulsating electrical signal to the battery cell, a non-dendritic,
beziehungsweise ein dendritreduzierter, Zustand der Batteriezelle ermittelt. or a dendritreduzierter, state of the battery cell determined.
Mittels nichtlinearer Chaoskontrolle kann dann der so ermittelte nichtdendritische, beziehungsweise dendritreduzierte, Zustand der Batteriezelle The non-dendritic or dendrite-reduced state of the battery cell can then be determined by means of non-linear chaos control
angesteuert und eingestellt werden. be controlled and adjusted.
Die Chaoskontrolle ist beispielsweise in dem entsprechenden Kapitel im Lexikon der Physik, unter Controlling Chaos Edward Ott, Celso Grebogi, and James A. Yorke Phys. Rev. Lett. 64, 2837 - Published 4 June 1990, offenbart. Die Form des pulsierenden elektrischen Signals wird vorteilhaft derart ermittelt, dass bei Beaufschlagung der Batteriezelle mit dem ermittelten pulsierenden The chaos control is, for example, in the corresponding chapter in the Lexicon of Physics, under Controlling Chaos Edward Ott, Celso Grebogi, and James A. Yorke Phys. Rev. Lett. 64, 2837 - Published 4 June 1990. The shape of the pulsating electrical signal is advantageously determined in such a way that when the battery cell is acted upon by the determined pulsating electrical signal
elektrischen Signal der nicht-dendritische, beziehungsweise dendritreduzierte, electrical signal of the non-dendritic or dendrite-reduced,
Zustand der Batteriezelle stabilisiert wird. Die Form des Signals ist dabei durch mehrere Parameter beschreibbar. Zu diesen Parametern gehören beispielsweise eine Amplitude, eine Periodendauer sowie eine Gestalt des Signals. Mögliche Condition of the battery cell is stabilized. The shape of the signal can be described by several parameters. These parameters include, for example, an amplitude, a period and a shape of the signal. Possible
Gestalten des Signals sind beispielsweise eine Rechteckform, eine Dreieckform oder eine harmonische Schwingung.  Forms of the signal are for example a rectangular shape, a triangular shape or a harmonic oscillation.
Die Ermittlung der Form des Signals ist beispielsweise mittels Floquetmoden- Methode durchführbar. Der von der Signalquelle erzeugte Strom, sowie die von der Signalquelle erzeugte Spannung werden dabei mittels ermittelter The determination of the shape of the signal can be carried out, for example, by means of the floquet mode method. The current generated by the signal source, as well as the voltage generated by the signal source are determined by means of
Floquetmoden entsprechend moduliert. Anschließend wird eine geeignete Floquet modes modulated accordingly. Subsequently, a suitable
Amplitude festgelegt. Die Amplituden des erforderlichen Spannungssignals sowie des erforderlichen Stromsignals und damit die notwendige Energie des Amplitude set. The amplitudes of the required voltage signal and the required current signal and thus the necessary energy of
pulsierenden elektrischen Signals sind relativ gering. pulsating electrical signal are relatively low.
Die Floquetmoden-Methode ist beispielsweise in dem Aufsatz "Giant The floquet-mode method is described, for example, in the article "Giant
Improvement of Time-Delayed Feedback Control by Spatio-Temporal Filtering" von Nilüfer Baba, Andreas Amann, Eckehard Schöll, and Wolfram Just, erschienen im Phys. Rev. Lett. 89, 074101 - Published 26 July 2002, Improvement of Time-Delayed Feedback Control by Spatio-Temporal Filtering "by Nilüfer Baba, Andreas Amann, Eckehard Schöll, and Wolfram Just, appeared in the Phys. Rev. Lett. 89, 074101 - Published 26 July 2002,
beschrieben. described.
Die Ermittlung des nicht-dendritischen, beziehungsweise dendritreduzierten, The determination of the non-dendritic or dendrite-reduced,
Zustands der Batteriezelle wird insbesondere folgendermaßen durchgeführt: In particular, the state of the battery cell is performed as follows:
Zunächst wird die Batteriezelle in einen chaotischen Zustand überführt, First, the battery cell is transferred to a chaotic state,
anschließend werden instabile Zustände der Batteriezelle ermittelt, und aus den ermittelten instabilen Zuständen der Batteriezelle wird dann der nichtdendritische Zustand der Batteriezelle ausgewählt. Der nicht-dendritische, Subsequently, unstable states of the battery cell are determined, and then the non-dendritic state of the battery cell is selected from the determined unstable states of the battery cell. The non-dendritic,
beziehungsweise dendritreduzierte, Zustand ist dabei einer von vielen instabilen Zuständen mit einer regulären Dynamik, welche die Batteriezelle, insbesondere die Anode der Batteriezelle, annehmen kann. or dendrite-reduced, state is one of many unstable states with a regular dynamics, which can accept the battery cell, in particular the anode of the battery cell.
Die Ermittlung des nicht-dendritischen, beziehungsweise dendritreduzierten, The determination of the non-dendritic or dendrite-reduced,
Zustands kann beispielsweise mittels bekannter Methoden der nichtlinearen State, for example, by known methods of nonlinear
Dynamik, insbesondere der Methode der Attraktor-Rekonstruktion, erfolgen. Dynamics, in particular the method of attractor reconstruction.
Mittels linearer Stabilitätsanalyse können die instabilen Zustände mit regulärer Dynamik als instabile Fixpunkte der Batteriezelle bestimmt werden. Aus den so bestimmten instabilen Zuständen mit regulärer Dynamik kann somit der By means of linear stability analysis, the unstable states with regular dynamics can be determined as unstable fixed points of the battery cell. From the thus determined unstable states with regular dynamics, the
gewünschte instabile nicht-dendritische, beziehungsweise dendritreduzierte, desired unstable non-dendritic or dendrite-reduced,
Zustand ausgewählt werden. State can be selected.
Die Methode der Attraktor-Rekonstruktion ist beispielsweise Chennaoui, A. ; Pawelzik, K. ; Liebert, W. ; Schuster, H. G. ; Pfister, G.: Attractor reconstruction from filtered chaotic time series. In: Physical Review A 41 (1990), p. 4051, offenbart The method of attractor reconstruction is, for example, Chennaoui, A.; Pawelzik, K.; Liebert, W.; Schuster, H.G. Pfister, G .: Attractor reconstruction from filtered chaotic time series. In: Physical Review A 41 (1990), p. 4051, disclosed
Vorteile der Erfindung Advantages of the invention
Durch das erfindungsgemäße Verfahren ist das Wachstum von Dendriten in der Batteriezelle, insbesondere an der Anode, besonders an einer Lithium-Metall- Anode, gehemmt oder unterdrückt. Dadurch ist die Lebensdauer der Batteriezelle vorteilhaft erhöht und eine Gefährdung der Umwelt durch eine Schädigung, eine thermische Zerstörung sowie ein thermisches Durchgehen der Batteriezelle ist vermieden. Ferner ist der Verbrauch an Elektrolyt verringert und ein By the method according to the invention, the growth of dendrites in the battery cell, in particular at the anode, especially at a lithium-metal anode, inhibited or suppressed. As a result, the life of the battery cell is advantageously increased and a threat to the environment by damage, thermal destruction and thermal runaway of the battery cell is avoided. Furthermore, the consumption of electrolyte is reduced and a
Trockenlaufen der Batteriezelle ist vermieden. Auch die Gefahr eines Kurzschlusses innerhalb der Batteriezelle durch eine Perforation des Separators ist verringert. Es findet keine Volumenvergrößerung durch Wachstum von Dendriten innerhalb der Batteriezelle statt und damit auch keine Beschädigung des Gehäuses der Batteriezelle. Dry running of the battery cell is avoided. Also the danger of a Short-circuiting inside the battery cell through a perforation of the separator is reduced. There is no increase in volume due to growth of dendrites within the battery cell and thus no damage to the housing of the battery cell.
Das erfindungsgemäße Verfahren gestattet ferner die kommerzielle Fertigung von weiteren Batterietypen, beispielsweise Lithium-Schwefel oder Lithium-Luft, sowie von Batterietypen, welche bisher aufgrund von starker Dendritenbildung an der Lithium- Metall- Anode nicht wieder aufladbar waren. Damit sind insbesondere Batteriezellen mit erhöhter Energiekapazität herstellbar. Ferner können The inventive method further allows the commercial production of other types of batteries, such as lithium-sulfur or lithium-air, as well as battery types, which were previously not rechargeable due to strong dendrite formation at the lithium metal anode. This particular battery cells with increased energy capacity can be produced. Furthermore, can
Stromableiter, welche die Elektroden, insbesondere die Anode, mit den Current conductor, which the electrodes, in particular the anode, with the
Terminals verbinden, schmaler und leichter ausgeführt werden. Die Verwendung von reinen Lithium-Metall-Elektroden führt zu einem verringerten Gesamtgewicht der Batteriezelle und somit zu einer erhöhten gravimetrischen Energiedichte. Terminals connect, narrower and easier to run. The use of pure lithium metal electrodes leads to a reduced total weight of the battery cell and thus to an increased gravimetric energy density.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Embodiments of the invention will be explained in more detail with reference to the drawings and the description below.
Es zeigen: Show it:
Figur 1 eine schematische Darstellung einer Batteriezelle mit Figure 1 is a schematic representation of a battery cell with
angeschlossener Signalquelle,  connected signal source,
Figur 2 einen zeitlichen Verlauf eines pulsierenden Spannungssignals, FIG. 2 shows a time profile of a pulsating voltage signal,
Figur 3 einen zeitlichen Verlauf eines pulsierenden Stromsignals, FIG. 3 shows a time profile of a pulsating current signal,
Figur 4 einen zeitlichen Verlauf eines initialen pulsierenden 4 shows a time course of an initial pulsating
Spannungssignals,  Voltage signal,
Figur 5 einen zeitlichen Verlauf eines initialen pulsierenden Stromsignals und Figur 6 eine schematische Darstellung einer Anordnung zur Ermittlung einer geeigneten Form des pulsierenden Signals. Figure 5 shows a time course of an initial pulsating current signal and Figure 6 is a schematic representation of an arrangement for determining a suitable shape of the pulsating signal.
Ausführungsformen der Erfindung Embodiments of the invention
Eine Batteriezelle 2 ist in Figur 1 schematisch dargestellt. Die Batteriezelle 2 umfasst ein Zellengehäuse 3, welches prismatisch, vorliegend quaderförmig, ausgebildet ist. Das Zellengehäuse 3 ist vorliegend elektrisch leitend ausgeführt und beispielsweise aus Aluminium oder Edelstahl gefertigt. Das Zellengehäuse 3 kann aber auch aus einem elektrisch isolierenden Material, beispielsweise Kunststoff, gefertigt sein. Auch andere Formen des Zellengehäuses 3 sind denkbar, beispielsweise kreiszylindrisch. Anstelle eines festen Zellengehäuses 3 kann auch eine weiche Folie vorgesehen sein, wenn die Batteriezelle 2 als Pouchzelle ausgestaltet ist. A battery cell 2 is shown schematically in FIG. The battery cell 2 comprises a cell housing 3, which is prismatic, in the present cuboid. In the present case, the cell housing 3 is designed to be electrically conductive and manufactured, for example, from aluminum or stainless steel. The cell housing 3 may also be made of an electrically insulating material, such as plastic. Other shapes of the cell housing 3 are conceivable, for example circular cylindrical. Instead of a fixed cell housing 3 may also be provided a soft film when the battery cell 2 is designed as a pouch cell.
Die Batteriezelle 2 umfasst ein negatives Terminal 11 und ein positives Terminal 12. Über die Terminals 11, 12 kann eine von der Batteriezelle 2 zur Verfügung gestellte Spannung abgegriffen werden. Ferner kann die Batteriezelle 2 über die Terminals 11, 12 auch geladen werden. Die Terminals 11, 12 sind beabstandet voneinander an einer Deckfläche des prismatischen Zellengehäuses 3 angeordnet. The battery cell 2 comprises a negative terminal 11 and a positive terminal 12. Via the terminals 11, 12, a voltage provided by the battery cell 2 can be tapped off. Furthermore, the battery cell 2 can also be charged via the terminals 11, 12. The terminals 11, 12 are spaced from one another on a top surface of the prismatic cell housing 3.
Innerhalb des Zellengehäuses 3 der Batteriezelle 2 ist ein Elektrodenwickel angeordnet, welcher zwei Elektroden, nämlich eine Anode 21 und eine Kathode 22, aufweist. Die Anode 21 und die Kathode 22 sind jeweils folienartig ausgeführt und unter Zwischenlage eines Separators 18 zu dem Elektrodenwickel gewickelt. Es ist auch denkbar, dass mehrere Elektrodenwickel in dem Zellengehäuse 3 vorgesehen sind. Anstelle des Elektrodenwickels kann auch beispielsweise ein Elektrodenstapel vorgesehen sein. Within the cell housing 3 of the battery cell 2, an electrode coil is arranged, which has two electrodes, namely an anode 21 and a cathode 22. The anode 21 and the cathode 22 are each made like a foil and wound with the interposition of a separator 18 to the electrode coil. It is also conceivable that a plurality of electrode windings are provided in the cell housing 3. Instead of the electrode winding, an electrode stack can also be provided, for example.
Die Anode 21 umfasst ein anodisches Aktivmaterial 41, welches folienartig ausgeführt ist. Das anodische Aktivmaterial 41 weist als Grundstoff Lithium oder eine Lithium enthaltende Legierung auf. Auch anders geartete Metallelektroden sind denkbar. Die Anode 21 umfasst ferner einen Stromableiter 31, welcher ebenfalls folienartig ausgebildet ist. Das anodische Aktivmaterial 41 und der Stromableiter 31 sind flächig aneinander gelegt und miteinander verbunden. The anode 21 comprises an anodic active material 41, which is designed like a foil. The anodic active material 41 has as a base material lithium or a lithium-containing alloy. Other types of metal electrodes are conceivable. The anode 21 further comprises a current conductor 31, which also formed like a film. The anodic active material 41 and the current conductor 31 are laid flat against each other and connected to each other.
Der Stromableiter 31 der Anode 21 ist elektrisch leitfähig ausgeführt und aus einem Metall gefertigt, beispielsweise aus Kupfer. Der Stromableiter 31 derThe current conductor 31 of the anode 21 is made electrically conductive and made of a metal, for example copper. The current conductor 31 of the
Anode 21 ist elektrisch mit dem negativen Terminal 11 der Batteriezelle 2 verbunden. Anode 21 is electrically connected to the negative terminal 11 of the battery cell 2.
Die Kathode 22 umfasst ein kathodisches Aktivmaterial 42, welches folienartig ausgeführt ist. Das kathodische Aktivmaterial 42 weist als Grundstoff ein The cathode 22 comprises a cathodic active material 42, which is designed like a foil. The cathodic active material 42 has a base material
Metalloxid auf, beispielsweise Lithium- Kobalt-Oxid (LiCo02). Die Kathode 22 umfasst ferner einen Stromableiter 32, welcher ebenfalls folienartig ausgebildet ist. Das kathodische Aktivmaterial 42 und der Stromableiter 32 sind flächig aneinander gelegt und miteinander verbunden. Metal oxide, for example, lithium cobalt oxide (LiCo0 2 ). The cathode 22 further includes a current collector 32, which is also formed like a foil. The cathodic active material 42 and the current collector 32 are laid flat against each other and connected to each other.
Der Stromableiter 32 der Kathode 22 ist elektrisch leitfähig ausgeführt und aus einem Metall gefertigt, beispielsweise aus Aluminium. Der Stromableiter 32 der Kathode 22 ist elektrisch mit dem positiven Terminal 12 der Batteriezelle 2 verbunden. The current collector 32 of the cathode 22 is made electrically conductive and made of a metal, for example aluminum. The current collector 32 of the cathode 22 is electrically connected to the positive terminal 12 of the battery cell 2.
Die Anode 21 und die Kathode 22 sind durch den Separator 18 voneinander getrennt. Der Separator 18 ist ebenfalls folienartig ausgebildet. Der Separator 18 ist elektrisch isolierend ausgebildet, aber ionisch leitfähig, also für Lithiumionen durchlässig. The anode 21 and the cathode 22 are separated from each other by the separator 18. The separator 18 is also formed like a film. The separator 18 is electrically insulating, but ionically conductive, so permeable to lithium ions.
Das Zellengehäuse 3 der Batteriezelle 2 ist mit einem flüssigen Elektrolyt 15, oder mit einem Polymerelektrolyt, gefüllt. Der Elektrolyt 15 umgibt dabei die Anode 21, die Kathode 22 und den Separator 18. Auch der Elektrolyt 15 ist ionisch leitfähig. The cell case 3 of the battery cell 2 is filled with a liquid electrolyte 15, or with a polymer electrolyte. The electrolyte 15 surrounds the anode 21, the cathode 22 and the separator 18. The electrolyte 15 is also ionically conductive.
An die Terminals 11, 12 der Batteriezelle 2 ist eine Signalquelle 50 To the terminals 11, 12 of the battery cell 2 is a signal source 50th
angeschlossen. Die Signalquelle 50 erzeugt ein elektrisches Signal in Form eines pulsierenden Spannungssignals 60 oder in Form eines pulsierenden connected. The signal source 50 generates an electrical signal in the form of a pulsating voltage signal 60 or in the form of a pulsating
Stromsignals 70. Die Batteriezelle 2 wird von dem von der Signalquelle 50 erzeugten pulsierenden elektrischen Signal beaufschlagt. Ein beispielhafter zeitlicher Verlauf eines von der Signalquelle 50 erzeugten pulsierenden Spannungssignals 60 ist in Figur 2 dargestellt. Dabei ist auf der x- Achse die Zeit t aufgetragen und auf der y-Achse die zwischen den Terminals 11, 12 anliegende Spannung U. Das Spannungssignal 60 ist vorliegend Current signal 70. The battery cell 2 is acted upon by the signal generated by the signal source 50 pulsating electrical signal. An exemplary time profile of a pulsating voltage signal 60 generated by the signal source 50 is shown in FIG. In this case, the time t is plotted on the x-axis and the voltage U. applied between the terminals 11, 12 is plotted on the y-axis. The voltage signal 60 is present
rechteckförmig und schwankt zwischen einer Minimalspannung 62 und einer Maximalspannung 64. Die Minimalspannung 62 entspricht dabei annähernd einer Leerlaufspannung der Batteriezelle 2. Ein beispielhafter zeitlicher Verlauf eines von der Signalquelle 50 erzeugten pulsierenden Stromsignals 70 ist in Figur 3 dargestellt. Dabei ist auf der x-Achse die Zeit t aufgetragen und auf der y-Achse der durch die Terminals 11, 12 fließende Strom I. Das Stromsignal 70 ist vorliegend rechteckförmig und schwankt zwischen einem Minimalstrom 72 und einer Maximalstrom 74. Der Minimalstrom 72 ist dabei annähernd gleich null. The minimal voltage 62 corresponds approximately to an open circuit voltage of the battery cell 2. An exemplary time profile of a generated by the signal source 50 pulsating current signal 70 is shown in Figure 3. In this case, the time t is plotted on the x-axis and the current flowing through the terminals 11, 12 on the y-axis I. The current signal 70 is rectangular in the present case and varies between a minimum current 72 and a maximum current 74. The minimum current 72 is thereby almost equal to zero.
Ein beispielhafter zeitlicher Verlauf eines von der Signalquelle 50 erzeugten initialen pulsierenden Spannungssignals 60 ist in Figur 4 dargestellt. Dabei ist auf der x-Achse die Zeit t aufgetragen und auf der y-Achse die zwischen den An exemplary time profile of an initial pulsating voltage signal 60 generated by the signal source 50 is shown in FIG. Here, the time t is plotted on the x-axis and on the y-axis between the
Terminals 11, 12 anliegende Spannung U. Das initiale Spannungssignal 60 ist vorliegend rechteckförmig und schwankt zwischen einer Minimalspannung 62 und einer Maximalspannung 64. Die Minimalspannung 62 entspricht dabei annähernd einer Leerlaufspannung der Batteriezelle 2. Nach Ablauf einer vorgegebenen Zeitdauer endet das initiale pulsierende Terminals 11, 12 present voltage U. The initial voltage signal 60 is present rectangular and varies between a minimum voltage 62 and a maximum voltage 64. The minimum voltage 62 corresponds approximately to an open circuit voltage of the battery cell 2. After a predetermined period of time ends the initial pulsating
Spannungssignal 60. Zwischen den Terminals 11, 12 der Batteriezelle 2 liegt eine Ruhespannung 66 an, welche vorliegend größer als die Minimalspannung 62 ist. Die Ruhespannung 66 entspricht einer Ladespannung, mit welcher die Batteriezelle 2 nach Beendigung des initialen pulsierenden Spannungssignals 60 weiter geladen wird.  Voltage signal 60. Between the terminals 11, 12 of the battery cell 2 is applied to a rest voltage 66, which in the present case is greater than the minimum voltage 62. The quiescent voltage 66 corresponds to a charging voltage with which the battery cell 2 is charged further after the initial pulsating voltage signal 60 has ended.
Ein beispielhafter zeitlicher Verlauf eines von der Signalquelle 50 erzeugten initialen pulsierenden Stromsignals 70 ist in Figur 5 dargestellt. Dabei ist auf der x-Achse die Zeit t aufgetragen und auf der y-Achse der durch die Terminals 11, 12 fließende Strom I. Das initiale Stromsignal 70 ist vorliegend rechteckförmig und schwankt zwischen einem Minimalstrom 72 und einer Maximalstrom 74. Der Minimalstrom 72 ist dabei annähernd gleich null. An exemplary time profile of an initial pulsating current signal 70 generated by the signal source 50 is shown in FIG. In this case, the time t is plotted on the x-axis and the current I flowing through the terminals 11, 12 is plotted on the y-axis. The initial current signal 70 is rectangular in the present case and varies between a minimum current 72 and a maximum current 74. The minimum current 72 is approximately equal to zero.
Nach Ablauf einer vorgegebenen Zeitdauer endet das initiale pulsierende Stromsignal 70. Durch die Terminals 11, 12 fließt ein Ruhestrom 76 an, welcher vorliegend größer als der Minimalstrom 72 ist. Der Ruhestrom 76 entspricht einem Ladestrom, mit welchem die Batteriezelle 2 nach Beendigung des initialen pulsierenden Stromsignals 70 weiter geladen wird. Eine Anordnung zur Ermittlung einer geeigneten Form des pulsierenden elektrischen Signals, also des pulsierenden Spannungssignals 60 oder des pulsierenden Stromsignals 70, ist in Figur 6 schematisch dargestellt. An die Batteriezelle 2 ist die Signalquelle 50 angeschlossen. Die Batteriezelle 2 ist ferner mit einem Verbraucher 55 verbunden. Die Batteriezelle 2 liefert dabei an den Verbraucher 55 eine elektrische Leistung mittels einer Spannung U und eines Stromes I. After expiration of a predetermined period of time ends the initial pulsating current signal 70. Through the terminals 11, 12 flows to a quiescent current 76, which in the present case is greater than the minimum current 72. The quiescent current 76 corresponds to a charging current with which the battery cell 2 is charged further after the completion of the initial pulsating current signal 70. An arrangement for determining a suitable form of the pulsating electrical signal, that is, the pulsating voltage signal 60 or the pulsating current signal 70, is shown schematically in FIG. To the battery cell 2, the signal source 50 is connected. The battery cell 2 is further connected to a load 55. The battery cell 2 supplies an electrical power to the load 55 by means of a voltage U and a current I.
Die Signalquelle 50 erfasst den zeitlichen Verlauf der besagten Spannung U und des besagten Stromes I. In der Signalquelle 50 oder in einer externen, hier nicht dargestellten Signalverarbeitungseinheit werden geeignete Formen des pulsierenden Spannungssignals 60 sowie des pulsierenden Stromsignals 70 ermittelt. Die Ermittlung des pulsierenden Spannungssignals 60 sowie des pulsierenden Stromsignals 70 wird vorliegend mittels Floquetmoden-Methode durchgeführt. The signal source 50 detects the time profile of the said voltage U and of the said current I. In the signal source 50 or in an external signal processing unit, not shown here, suitable forms of the pulsating voltage signal 60 and of the pulsating current signal 70 are determined. The determination of the pulsating voltage signal 60 and of the pulsating current signal 70 is carried out in the present case by means of a floquet mode method.
Mögliche Gestalten des pulsierenden Spannungssignals 60 sowie des pulsierenden Stromsignals 70, mit welche die Batteriezelle 2 zu beaufschlagen ist, sind beispielsweise eine Rechteckform, eine Dreieckform oder eine harmonische Schwingung. Aber auch andere Gestalten des pulsierenden elektrischen Signals sind denkbar. Possible shapes of the pulsating voltage signal 60 and of the pulsating current signal 70 to be applied to the battery cell 2 are, for example, a rectangular shape, a triangular shape or a harmonic oscillation. But other shapes of the pulsating electrical signal are conceivable.
Das von der Signalquelle 50 erzeugte Spannungssignal 60 sowie das von der Signalquelle 50 erzeugte Stromsignals 70 werden anschließend mittels der ermittelten Floquetmoden entsprechend moduliert. Auch werden jeweils eine geeignete Amplitude für das Spannungssignal 60 sowie für das Stromsignal 70 festgelegt. The voltage signal 60 generated by the signal source 50 and the current signal 70 generated by the signal source 50 are then modulated accordingly by means of the determined floquet modes. Also, one each determined suitable amplitude for the voltage signal 60 and the current signal 70.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch dieThe invention is not limited to the embodiments described herein and the aspects highlighted therein. Rather, within the by the
Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen. Claims specified range a variety of modifications possible, which are within the scope of expert action.

Claims

Ansprüche claims
1. Verfahren zum Betrieb einer Batteriezelle (2), welche ein negatives Terminal (11) und ein positives Terminal (12) aufweist, A method of operating a battery cell (2) having a negative terminal (11) and a positive terminal (12),
wobei die Terminals (11, 12) mit einer elektrischen Signalquelle (50) verbunden werden, und  the terminals (11, 12) being connected to an electrical signal source (50), and
wobei die Batteriezelle (2) mit einem von der Signalquelle (50) erzeugten pulsierenden elektrischen Signal (60, 70) beaufschlagt wird.  wherein the battery cell (2) is acted upon by a pulsating electrical signal (60, 70) generated by the signal source (50).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass 2. The method according to claim 1, characterized in that
die Batteriezelle (2) mit einem pulsierenden Spannungssignal (60) beaufschlagt wird.  the battery cell (2) with a pulsating voltage signal (60) is applied.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass 3. The method according to claim 1, characterized in that
die Batteriezelle (2) mit einem pulsierenden Stromsignal (70) beaufschlagt wird.  the battery cell (2) with a pulsating current signal (70) is acted upon.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch 4. The method according to any one of the preceding claims, characterized
gekennzeichnet, dass  marked that
das von der Signalquelle (50) erzeugte pulsierende elektrische Signal (60, 70) rechteckförmig ist.  the pulsating electrical signal (60, 70) generated by the signal source (50) is rectangular.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch 5. The method according to any one of the preceding claims, characterized
gekennzeichnet, dass  marked that
die Batteriezelle (2) während eines Ladevorgangs mit dem pulsierenden elektrischen Signal (60, 70) beaufschlagt wird.  the battery cell (2) during a charging with the pulsating electrical signal (60, 70) is applied.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass 6. The method according to any one of claims 1 to 4, characterized in that
die Batteriezelle (2) während eines Entladevorgangs mit dem  the battery cell (2) during a discharge with the
pulsierenden elektrischen Signal (60, 70) beaufschlagt wird. pulsating electrical signal (60, 70) is applied.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass 7. The method according to any one of the preceding claims, characterized in that
die Batteriezelle (2) initial nach ihrer Herstellung mit dem pulsierenden elektrischen Signal (60, 70) beaufschlagt wird.  the battery cell (2) initially after its manufacture with the pulsating electrical signal (60, 70) is applied.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch 8. The method according to any one of the preceding claims, characterized
gekennzeichnet, dass  marked that
ein nicht-dendritischer Zustand der Batteriezelle (2) ermittelt wird.  a non-dendritic state of the battery cell (2) is determined.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass 9. The method according to claim 8, characterized in that
die Form des pulsierenden elektrischen Signals (60, 70) derart ermittelt wird, dass der nicht-dendritische Zustand der Batteriezelle (2) stabilisiert wird.  the shape of the pulsating electrical signal (60, 70) is determined such that the non-dendritic state of the battery cell (2) is stabilized.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass 10. The method according to claim 9, characterized in that
zur Ermittlung des nicht-dendritischen Zustands der Batteriezelle (2) die Batteriezelle (2) in einen chaotischen Zustand überführt wird, instabile Zustände der Batteriezelle (2) ermittelt werden, und  to determine the non-dendritic state of the battery cell (2), the battery cell (2) is converted into a chaotic state, unstable states of the battery cell (2) are determined, and
aus den ermittelten instabilen Zuständen der Batteriezelle (2) der nichtdendritische Zustand der Batteriezelle (2) ausgewählt wird.  from the determined unstable states of the battery cell (2) the non-dendritic state of the battery cell (2) is selected.
PCT/EP2016/070819 2015-09-17 2016-09-05 Method for operating a battery cell WO2017045948A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217815.3 2015-09-17
DE102015217815.3A DE102015217815A1 (en) 2015-09-17 2015-09-17 Method for operating a battery cell

Publications (1)

Publication Number Publication Date
WO2017045948A1 true WO2017045948A1 (en) 2017-03-23

Family

ID=56853649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/070819 WO2017045948A1 (en) 2015-09-17 2016-09-05 Method for operating a battery cell

Country Status (2)

Country Link
DE (1) DE102015217815A1 (en)
WO (1) WO2017045948A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018211264A1 (en) * 2018-07-09 2020-01-09 Volkswagen Aktiengesellschaft Method of charging a battery and control unit
DE102018211265A1 (en) * 2018-07-09 2020-01-09 Volkswagen Aktiengesellschaft Method of charging a battery and control unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728482A (en) 1995-12-22 1998-03-17 Canon Kabushiki Kaisha Secondary battery and method for manufacturing the same
WO2010046392A2 (en) 2008-10-23 2010-04-29 Happy Plating Gmbh Electrochemical coating method
DE102011087496A1 (en) * 2011-11-30 2013-06-27 H-Tech Ag Method and device for charging rechargeable cells
US20140123477A1 (en) * 2012-11-02 2014-05-08 Sion Power Corporation Electrode active surface pretreatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677612A (en) * 1996-08-02 1997-10-14 The United States Of America As Represented By The Secretary Of The Army Lead-acid battery desulfator/rejuvenator
DE102012220117A1 (en) * 2012-11-05 2014-05-08 Magna Electronics Europe Gmbh & Co. Kg Pulsating machine for lead-acid battery used in motor car, has electronic system which applies desulphation pulses to vehicle battery to block application of current voltage pulses by serving circuit carried out in provided vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728482A (en) 1995-12-22 1998-03-17 Canon Kabushiki Kaisha Secondary battery and method for manufacturing the same
US5728482B1 (en) 1995-12-22 1999-11-09 Canon Kk Secondary battery and method for manufacturing the same
WO2010046392A2 (en) 2008-10-23 2010-04-29 Happy Plating Gmbh Electrochemical coating method
DE102011087496A1 (en) * 2011-11-30 2013-06-27 H-Tech Ag Method and device for charging rechargeable cells
US20140123477A1 (en) * 2012-11-02 2014-05-08 Sion Power Corporation Electrode active surface pretreatment

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASGHAR ARYANFAR ET AL: "Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations", JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 5, no. 10, 15 May 2014 (2014-05-15), US, pages 1721 - 1726, XP055316785, ISSN: 1948-7185, DOI: 10.1021/jz500207a *
CELSO GREBOGI; JAMES A. YORKE: "Phys. Rev. Lett.", vol. 64, 4 June 1990, article "Lexikon der Physik, unter Controlling Chaos Edward Ott", pages: 2837
CHENNAOUI, A.; PAWELZIK, K.; LIEBERT, W.; SCHUSTER, H. G.; PFISTER, G.: "Attractor reconstruction from filtered chaotic time series", PHYSICAL REVIEW, vol. A 41, 1990, pages 4051
DAVID A WETZ ET AL: "Elevated rate cycling of high power electrochemical energy storage devices for use as the prime power source of an EM launcher", ELECTROMAGNETIC LAUNCH TECHNOLOGY (EML), 2012 16TH INTERNATIONAL SYMPOSIUM ON, IEEE, 15 May 2012 (2012-05-15), pages 1 - 6, XP032456941, ISBN: 978-1-4673-0306-4, DOI: 10.1109/EML.2012.6325175 *
GEORGE H. LANE ET AL: "An Azo-Spiro Mixed Ionic Liquid Electrolyte for Lithium Metal-LiFePO[sub 4] Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 157, no. 7, 1 January 2010 (2010-01-01), US, pages A876, XP055319245, ISSN: 0013-4651, DOI: 10.1149/1.3429138 *
VON NILÜFER BABA; ANDREAS AMANN; ECKEHARD SCHÖLL; WOLFRAM JUST: "Giant Improvement of Time-Delayed Feedback Control by Spatio-Temporal Filtering", PHYS. REV. LETT., vol. 89, 26 July 2002 (2002-07-26), pages 074101

Also Published As

Publication number Publication date
DE102015217815A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
DE102015211110A1 (en) Active material for a cathode of a battery cell, cathode and battery cell
DE112010000945T5 (en) Energy storage device with porous electrode
EP2583330A1 (en) Rechargeable battery cell and battery
WO2018059967A1 (en) Method for producing an electrode stack for a battery cell, and battery cell
DE102016203918A1 (en) Method for producing an electrode stack, electrode stack and battery cell
DE102020127849A1 (en) CERAMIC COATING FOR LITHIUM OR SODIUM METAL ELECTRODES
DE102015117648A1 (en) METAL ION BATTERY WITH OFFSET POTENTIAL MATERIAL
EP3657575A1 (en) Composite electrode with homogeneous deposition method
DE102021105975A1 (en) PRE-LITHERATION OF BATTERY ELECTRODE MATERIAL
EP3300141B1 (en) Method for the preparation of an electrode stack for a battery cell and battery cell
WO2017045948A1 (en) Method for operating a battery cell
WO2015173179A1 (en) Lithium-air battery
EP3093905B1 (en) Battery cell and method for controlling ion flux within the battery cell
DE102015223141A1 (en) Circuit arrangement and method for detecting a short circuit in a battery cell
WO2016184654A1 (en) Method for operating a rechargeable battery cell and battery control device
WO2022079169A1 (en) Method for providing a battery cell and use of such a battery cell
EP3216073B1 (en) Electrode for a battery cell and battery cell
WO2016177575A1 (en) Separator for a battery cell and battery cell
EP3319099A1 (en) Battery cell and a battery with electroactive polymers
WO2016050430A1 (en) Electrode for a battery cell and battery cell
DE102014222332A1 (en) Layer structure for a galvanic element
DE102018220388A1 (en) Battery system
DE102016210838A1 (en) Anode for a battery cell, method for making an anode and battery cell
WO2017148653A1 (en) Method for producing an electrode, electrode and battery cell
DE102017213244A1 (en) Electrode unit for a battery cell, battery cell and method for producing an electrode unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16760095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16760095

Country of ref document: EP

Kind code of ref document: A1