WO2017043723A1 - 과열 상태 배터리 냉각 충전 장치 및 방법 - Google Patents

과열 상태 배터리 냉각 충전 장치 및 방법 Download PDF

Info

Publication number
WO2017043723A1
WO2017043723A1 PCT/KR2016/003199 KR2016003199W WO2017043723A1 WO 2017043723 A1 WO2017043723 A1 WO 2017043723A1 KR 2016003199 W KR2016003199 W KR 2016003199W WO 2017043723 A1 WO2017043723 A1 WO 2017043723A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
cooling
temperature
voltage
Prior art date
Application number
PCT/KR2016/003199
Other languages
English (en)
French (fr)
Inventor
강현찬
Original Assignee
주식회사 알파트로닉스
강현찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알파트로닉스, 강현찬 filed Critical 주식회사 알파트로닉스
Priority to US15/752,589 priority Critical patent/US20180241098A1/en
Publication of WO2017043723A1 publication Critical patent/WO2017043723A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for overheating battery cooling charging, and more particularly, to an apparatus for and method for overheating battery cooling charging and rapidly charging a battery in a state overheated above a set temperature. It is about.
  • FIG. 1 is a graph showing changes in a charging voltage and a charging current for explaining a conventional battery charging method.
  • the horizontal axis represents time
  • the vertical axis represents current or voltage intensity
  • the dashed-dotted line graph shows the current graph
  • the solid line graph shows the voltage graph.
  • Lithium-based batteries are usually charged by the Constant Current Constant Voltage (CCCV) method. That is, as shown in FIG. 1, the battery is charged with the constant current I1 (T1 section). At this time, the voltage V1 of the battery continues to rise. After the T1 section passes, charging is performed at the constant voltage V2 (T2 section). And charging is complete
  • CCCV Constant Current Constant Voltage
  • the conventional CCCV charging method has a problem in that the battery life is reduced when the battery maintains a high current charge state or maintains a voltage charge state in a state in which the battery is overheated above a predetermined temperature.
  • the present invention has been proposed to solve the above-described problems, and when the battery consisting of multiple cells connected in series rises above a set temperature, the battery is driven in a constant current charging mode through a pulse width control that varies according to the battery temperature, and is charged. It is an object of the present invention to provide an overheated battery cooling charging device and method for charging a battery by gradually reducing the current when the voltage is higher than the set voltage.
  • the temperature measuring unit for measuring the battery temperature;
  • a voltage measuring unit measuring a battery voltage;
  • a charging mode setting unit configured to set the charging mode to one of the constant current charging mode, the constant voltage charging mode, and the cooling charging mode based on the battery temperature measured by the temperature measuring unit and the battery voltage measured by the voltage measuring unit;
  • a battery charger configured to charge the battery based on a charging signal and a charging mode setter including a power interruption section and a charging section, wherein the charging mode setter is a charging mode in a cooling charging mode when the battery temperature is equal to or higher than a set temperature.
  • the battery charging unit When the battery charging unit is set to the cooling charging mode in the charging mode setting unit, the battery charging unit charges the battery with a constant current in the charging section of the charging signal, and varies the pulse width of the charging section based on whether the battery temperature measured by the temperature measuring unit is increased or decreased. .
  • the battery charger decreases the charge interval pulse width of the charge signal when the battery temperature increases, and increases the charge interval pulse width of the charge signal when the battery temperature decreases.
  • the battery charger gradually reduces the constant current for charging the battery.
  • the battery charger sets different amounts of the constant current according to the magnitude of the constant current.
  • an overheat state battery cooling charging method using an overheat state battery cooling charging device, comprising: measuring a battery temperature; Measuring a battery voltage; Setting the charging mode to one of the constant current charging mode, the constant voltage charging mode, and the cooling charging mode based on the measured battery temperature and the battery voltage; And charging the battery based on a charging signal including an armistice section and a charging section and the set charging mode.
  • the charging mode is set to the cooling charging mode when the battery temperature is higher than or equal to the set temperature. do.
  • the charging of the battery may include: charging the battery with a constant current in a charging section of the charging signal when the battery is set to the cooling charging mode; And varying a pulse width of a charging section based on whether the measured battery temperature is increased or decreased.
  • variable pulse width of the charging section may include: decreasing the pulse width of the charging section when the battery temperature increases; And increasing the charging period pulse width of the charging signal when the battery temperature decreases.
  • the charging of the battery may further include gradually reducing the constant current for charging the battery when the battery voltage measured during charging in the cooling charging mode is greater than or equal to the set voltage.
  • the amount of reduction of the constant current is set differently according to the magnitude of the constant current charging the battery.
  • the apparatus and method for overheating battery cooling charging is driven in a constant current charging mode through a pulse width control that varies according to the battery temperature when a battery composed of multiple cells connected in series rises above a set temperature, and the charging voltage is increased. If the set voltage is over, the current is gradually reduced to charge the battery, thereby increasing the output delivery speed to minimize the charging time, and fast charging is possible for charging the capacity of about 70% within about 30 minutes.
  • the cycle characteristics of the service life are also improved.
  • the overheated battery cooling charging device and method is capable of improving the battery cycle life of about 25% compared to the conventional CCCV charging method by charging the battery by gradually reducing the current when the charging voltage is above the set voltage. There is.
  • the overheated battery cooling charging device and method charges the battery by varying the pulse width of the charging section in accordance with the battery temperature when the battery in the overheating state, thereby minimizing the temperature rise of the battery due to the charging to stably charge the battery It can work.
  • 1 is a view for explaining a conventional battery charging device.
  • FIG. 2 is a view for explaining an overheat state battery cooling charging device according to an embodiment of the present invention.
  • 3 to 7 are views for explaining the battery charging unit of FIG.
  • FIG. 8 is a flowchart illustrating a method for cooling an overheated battery according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a step of charging a battery in the constant current charging mode or the constant voltage charging mode of FIG. 8.
  • FIG. 10 is a flowchart for explaining a step of charging a battery in the cooling mode of FIG.
  • FIG. 2 is a view for explaining the overheat state battery cooling charging apparatus according to an embodiment of the present invention.
  • 3 to 6 are diagrams for describing the battery charger of FIG. 2.
  • the overheated battery cooling charging device 100 (hereinafter, the cooling charging device 100) includes a temperature measuring unit 120, a voltage measuring unit 140, a charging mode setting unit 160, and a battery. 200 is configured to include a charging unit 180.
  • the temperature measuring unit 120 measures a temperature (hereinafter, referred to as a battery temperature) of the battery 200 charged by the cooling charging device 100. In this case, when the charging of the battery 200 starts, the temperature measuring unit 120 measures the battery temperature at set time intervals. The temperature measuring unit 120 transmits the measured battery temperature to the charging mode setting unit 160.
  • a battery temperature a temperature of the battery 200 charged by the cooling charging device 100.
  • the voltage measuring unit 140 measures a voltage (hereinafter, referred to as a battery voltage) of the battery 200 charged by the cooling charging device 100. That is, the voltage measuring unit 140 measures the voltage of the battery 200 when receiving the battery voltage measurement request from the charging unit 180 of the battery 200. In this case, the voltage measuring unit 140 measures the battery voltage in a state where the charging of the battery 200 is stopped. The voltage measuring unit 140 transmits the measured battery voltage to the charging unit 180 of the battery 200.
  • a battery voltage a voltage of the battery 200 charged by the cooling charging device 100. That is, the voltage measuring unit 140 measures the voltage of the battery 200 when receiving the battery voltage measurement request from the charging unit 180 of the battery 200. In this case, the voltage measuring unit 140 measures the battery voltage in a state where the charging of the battery 200 is stopped. The voltage measuring unit 140 transmits the measured battery voltage to the charging unit 180 of the battery 200.
  • the charging mode setting unit 160 sets the constant current charging mode when the battery 200 is connected to the cooling charging device 100.
  • the charging mode setting unit 160 sets the constant voltage charging mode when the battery voltage measured by the voltage measuring unit 140 is greater than or equal to the reference voltage. That is, the charging mode setting unit 160 sets the constant current charging mode when the battery 200 is initially charged, and sets the constant voltage charging mode when the battery voltage is equal to or greater than the reference voltage during the constant current charging.
  • the charging mode setting unit 160 sets the cooling charging mode based on the battery temperature and the set temperature received from the temperature measuring unit 120. That is, the charging mode setting unit 160 receives the battery temperature from the temperature measuring unit 120 while charging the battery 200 in the constant current charging mode or the constant voltage charging mode. The charging mode setting unit 160 sets the cooling charging mode based on the received battery temperature and the set temperature. At this time, the charging mode setting unit 160 sets the cooling charging mode when the battery temperature is equal to or higher than the set temperature.
  • the battery 200 charging unit 180 charges the battery 200 based on the charging mode set by the charging mode setting unit 160. That is, the charging unit 180 of the battery 200 charges the battery 200 in one charging mode among the constant current charging mode, the constant voltage charging mode, and the cooling charging mode. To this end, as shown in FIG. 3, the charging unit 180 of the battery 200 includes a constant current charging module 182, a constant voltage charging module 184, and a cooling charging module 186.
  • the constant current charging module 182 charges the battery 200 with a constant current based on the charging signal when the charging mode setting unit 160 is set to the constant current charging mode. That is, as shown in FIG. 4, the charging signal includes a power interruption section in which a current is not applied, and a charging section in which the battery 200 is charged by applying a constant current.
  • the constant current charging module 182 supplies a constant current in the charging section to charge the battery 200, and stops the constant current charging of the battery 200 by blocking the constant current supply in the cease-fire section.
  • the constant current charging module 182 transmits a battery voltage measurement request to the voltage measuring unit 140 in the ceasefire period.
  • the constant voltage charging module 184 charges the battery 200 at a constant voltage based on a charging signal when the charging mode setting unit 160 is set to the constant voltage charging mode. That is, the charging signal includes a cease-fire period in which no voltage is applied and a charging period in which the battery 200 is charged by applying a constant voltage.
  • the charging signal includes a charging section and a gage section.
  • the constant voltage charging module 184 supplies the constant voltage in the charging section to charge the battery 200, and stops the constant voltage charging of the battery 200 by blocking the constant voltage supply in the cease-fire section.
  • the constant voltage charging module 184 transmits a battery voltage measurement request to the voltage measuring unit 140 in the ceasefire period.
  • the cooling charging module 186 charges the battery 200 with a constant current based on a charging signal when the charging mode setting unit 160 is set to the cooling charging mode. That is, the charging signal includes a power interruption section in which no current is applied and a charging section in which the constant current is charged to charge the battery 200.
  • the cooling charging module 186 supplies the constant current in the charging section to charge the battery 200, and stops the constant current charging of the battery 200 by cutting off the constant current supply in the cease-fire section.
  • the cooling charging module 186 transmits a battery voltage measurement request to the voltage measuring unit 140 in the ceasefire section.
  • the cooling charging module 186 When the cooling charging module 186 is set to the cooling charging mode in the charging mode setting unit 160, the cooling charging module 186 transmits a battery temperature measurement request to the temperature measuring unit 120 at a set main period.
  • the cooling charging module 186 changes the charging section pulse width of the charging signal based on the battery temperature received immediately before the battery temperature received from the temperature measuring unit 120. In this case, when the battery temperature increases, the cooling charging module 186 decreases the pulse width of the charging section of the charging signal.
  • the cooling charging module 186 increases the pulse width of the charging section of the charging signal when the battery temperature decreases. Thereafter, the cooling charging module 186 charges the battery 200 with a constant current based on the charging signal in which the pulse width of the charging section is changed. For example, as shown in FIG.
  • the cooling charging module 186 decreases the pulse width of the charging section while maintaining the pulse width of the gage section. As illustrated in FIG. 6, when the battery temperature decreases, the cooling charging module 186 increases the pulse width of the charging section while maintaining the pulse width of the gage section.
  • the cooling charging module 186 gradually lowers the constant current for charging the battery 200 based on the battery voltage and the set voltage. That is, the cooling charging module 186 transmits a battery voltage measurement request to the voltage measuring unit 140 in the cease-fire period of the charging signal.
  • the cooling charging module 186 charges the battery 200 by lowering the constant current step by step when the battery voltage is greater than or equal to the set voltage. For example, as shown in FIG. 7, when the constant current for charging the battery 200 is 2A and the set voltage is set to 4.2V, the cooling charging module 186 is about 0.2A when the battery voltage is 4.2V or more.
  • the battery 200 is charged with a constant current of about 1.8A.
  • the battery voltage decreases slightly from 4.2V as the constant current decreases, and then increases to 4.2V again.
  • the cooling charging module 186 charges the battery 200 with a constant current of about 1.6A which is lowered by about 0.2A again.
  • the cooling charging module 186 decreases by about 0.2A when the constant current is in the range of 2A to 1A, and decreases by about 0.1A when the constant current is in the range of about 0.5A or more and less than 1A, and the constant current in the range of less than about 0.5A. Decrease by approximately 0.05 A.
  • FIG. 8 is a flowchart illustrating a cooling charging method of an overheated state battery 200 according to an exemplary embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a step of charging the battery 200 in the constant current charging mode or the constant voltage charging mode of FIG. 8, and
  • FIG. 10 is a flowchart illustrating a step of charging the battery in the cooling mode of FIG. 9.
  • the overheated state battery cooling charging device 100 charges the battery 200 in the constant current charging mode or the constant voltage charging mode when the battery 200 is connected (S100).
  • the steps of charging the battery 200 in the constant current charging mode or the constant voltage charging mode will be described with reference to FIG. 9.
  • the cooling charging device 100 charges the battery 200 with a constant current based on the charging signal (S120). That is, the cooling charging device 100 sets to the constant current charging mode when the battery 200 is initially connected. When the cooling charging device 100 is set to the constant current charging mode, the cooling charging device 100 charges the battery 200 with the constant current based on the charging signal. At this time, the cooling charging device 100 charges the battery 200 by supplying a constant current in the charging section of the charging signal, and stops the constant current charging of the battery 200 by cutting off the constant current supply in the cease-fire section.
  • the cooling charging device 100 measures the battery voltage in the cease-fire interval of the charging signal (S130). That is, the cooling charging device 100 measures the battery voltage in the cease-fire interval of the charging signal in the constant current charging state.
  • the cooling charging device 100 charges the battery 200 at a constant voltage (S150). That is, the cooling charging device 100 sets to the constant voltage charging mode when the battery voltage is higher than or equal to the reference voltage.
  • the cooling charging device 100 charges the battery 200 by supplying a constant voltage in the charging section of the charging signal, and stops the constant voltage charging of the battery 200 by blocking the supply of the constant voltage in the cease-fire section.
  • the cooling charging device 100 measures the battery temperature while charging the battery 200 in the constant current charging mode or the constant voltage charging mode (S200).
  • the cooling charging device 100 charges the battery 200 in the cooling charging mode (S400).
  • the steps of charging the battery 200 in the cooling charging mode will be described with reference to FIG. 10.
  • the cooling charging device 100 charges the battery 200 with a constant current based on the charging signal (S410). That is, the cooling charging device 100 charges the battery 200 by supplying a constant current in the charging section, and stops the constant current charging of the battery 200 by blocking the supply of the constant current in the cease-fire section.
  • the cooling charging device 100 measures the battery temperature and the battery voltage of the battery 200 being charged (S420). In this case, the cooling charging device 100 measures the battery voltage in the cease-fire period of the charging signal. The cooling charging device 100 measures the battery temperature at set cycle intervals.
  • the cooling charging device 100 decreases the charging interval pulse width of the charging signal (S440). That is, when the battery temperature rises from the previous measurement, the cooling charging device 100 decreases the charging section pulse width for cooling the battery 200.
  • the cooling charging device 100 increases the charging interval pulse width of the charging signal (S460). That is, the cooling charging device 100 increases the pulse width of the charging section to shorten the charging time of the battery 200 when the battery temperature is lower than the previous measurement.
  • the cooling charging device 100 reduces the constant current for charging the battery 200 (S480). At this time, the cooling charging device 100 varies the amount of constant current decrease according to the constant current and decreases step by step. Here, the cooling charging device 100 maintains the current constant current when the battery voltage is less than or equal to the reference voltage.
  • the cooling charging device 100 repeats the above steps S410 to S470.
  • the apparatus and method for overheating battery cooling charging is driven in a constant current charging mode through a pulse width control that varies according to the battery temperature when a battery composed of multiple cells connected in series rises above a set temperature. If the set voltage is over, the current is gradually reduced to charge the battery, thereby increasing the output delivery speed to minimize the charging time, and fast charging is possible for charging the capacity of about 70% within about 30 minutes.
  • the cycle characteristics of the service life are also improved.
  • the overheated battery cooling charging device and method is capable of improving the battery cycle life of about 25% compared to the conventional CCCV charging method by charging the battery by gradually reducing the current when the charging voltage is above the set voltage. There is.
  • the overheated battery cooling charging device and method charges the battery by varying the pulse width of the charging section in accordance with the battery temperature when the battery in the overheating state, thereby minimizing the temperature rise of the battery due to the charging to stably charge the battery It can work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

직렬 연결된 다중셀로 구성되는 배터리가 과열되면 배터리 온도에 따른 펄스 폭 제어를 통해 정전류로 배터리를 충전하도록 한 과열 상태 배터리 냉각 충전 장치 및 방법이 제시된다. 제시된 과열 상태 배터리 냉각 충전 장치는 배터리 온도 및 배터리 전압을 근거로 정전류 충전 모드, 정전압 충전 모드 및 냉각 충전 모드 중에 하나로 충전 모드를 설정하고, 휴전 구간 및 충전 구간을 포함하는 충전 신호 및 충전 모드를 근거로 배터리를 충전하되, 배터리 온도가 설정 온도 이상이면 냉각 충전 모드로 충전 모드를 설정하고, 배터리 온도의 변화에 따라 충전 구간의 펄스 폭을 가변한다.

Description

과열 상태 배터리 냉각 충전 장치 및 방법
본 발명은 과열 상태 배터리 냉각 충전 장치 및 방법에 관한 것으로, 더욱 상세하게는 설정 온도 이상 과열된 상태의 배터리를 급송 충전하는 과열 상태 배터리 냉각 충전 장치 및 방법(CHARGING APPARATUS AND METHOD FOR COOLING OVERHEATED BATTERY)에 대한 것이다.
도 1은 종래의 배터리 충전 방법을 설명하기 위한 충전 전압 및 충전 전류의 변화를 나타낸 그래프이다. 도 1에서 가로축은 시간, 세로축은 전류 또는 전압의 세기, 1점 쇄선 그래프는 전류 그래프, 실선 그래프는 전압 그래프를 나타낸다.
리튬(Lithium) 계열의 배터리는 보통 CCCV(Constant Current Constant Voltage) 방법으로 충전된다. 즉, 도 1에 도시된 바와 같이, 정전류(I1)로 배터리 충전을 진행한다(T1 구간). 이때, 배터리의 전압(V1)은 계속 상승하게 된다. 그리고, T1 구간이 지난 후 정전압(V2)으로 충전을 진행한다(T2 구간). 그리고, 충전 전류(I2)가 최저가 되는 때에 충전을 종료한다.
이때, 종래의 CCCV 충전 방법에서는 대략 4.2 V 정도의 상한 전압에 도달하면, 미리 설정한 낮은 전류값에 도달할 때까지 CV 조건을 유지한다. 이 경우, CV 조건에 의한 충전시간이 증가하게 되어 전체적인 배터리 충전시간이 길어지는 문제점이 있다.
또한, 종래의 CCCV 충전 방법에서는 배터리가 설정 온도 이상으로 과열된 상태에서 고전류 충전 상태를 유지하거나, 전압 충전 상태를 유지하는 경우 배터리 수명이 저하되는 문제점이 있다.
또한, 종래의 CCCV 충전 방식에서는 배터리 수명 저하를 방지하기 위해서 배터리가 과열되면 배터리가 설정 온도 이하로 떨어질 때까지 충전을 중단하기 때문에 배터리 충전시간이 길어지는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 직렬 연결된 다중셀로 구성되는 배터리가 설정 온도 이상으로 상승하면 배터리 온도에 따라 가변하는 펄스 폭 제어를 통한 정전류 충전 모드로 구동하고, 충전 전압이 설정 전압 이상이면 전류를 단계적으로 감소시켜 배터리를 충전하도록 한 과열 상태 배터리 냉각 충전 장치 및 방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 장치는, 배터리 온도를 측정하는 온도 측정부; 배터리 전압을 측정하는 전압 측정부; 온도 측정부에서 측정한 배터리 온도 및 전압 측정부에서 측정한 배터리 전압을 근거로 정전류 충전 모드, 정전압 충전 모드 및 냉각 충전 모드 중에 하나로 충전 모드를 설정하는 충전 모드 설정부; 및 휴전 구간 및 충전 구간을 포함하는 충전 신호 및 충전 모드 설정부에서 설정된 충전 모드를 근거로 배터리를 충전하는 배터리 충전부를 포함하고, 충전 모드 설정부는 배터리 온도가 설정 온도 이상이면 냉각 충전 모드로 충전 모드를 설정한다.
배터리 충전부는, 충전 모드 설정부에서 냉각 충전 모드로 설정되면 충전 신호의 충전 구간에서 정전류로 배터리를 충전하되, 온도 측정부에서 측정한 배터리 온도의 증감 여부를 근거로 충전 구간의 펄스폭을 가변한다.
배터리 충전부는, 배터리 온도가 증가하면 충전 신호의 충전 구간 펄스폭을 감소시키고, 배터리 온도가 감소하면 충전 신호의 충전 구간 펄스폭을 증가시킨다.
배터리 충전부는, 전압 충전부에서 측정한 배터리 전압이 설정 전압 이상이면, 배터리 충전을 위한 정전류를 단계적으로 감소시킨다.
배터리 충전부는, 정전류의 크기에 따라 정전류의 감소량을 다르게 설정한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 방법은, 과열 상태 배터리 냉각 충전 장치를 이용한 과열 상태 배터리 냉각 충전 방법에 있어서, 배터리 온도를 측정하는 단계; 배터리 전압을 측정하는 단계; 측정한 배터리 온도 및 배터리 전압을 근거로 정전류 충전 모드, 정전압 충전 모드 및 냉각 충전 모드 중에 하나로 충전 모드를 설정하는 단계; 및 휴전 구간 및 충전 구간을 포함하는 충전 신호 및 설정된 충전 모드를 근거로 배터리를 충전하는 단계를 포함하고, 충전 모드를 설정하는 단계에서는, 배터리 온도가 설정 온도 이상이면 냉각 충전 모드로 충전 모드를 설정한다.
배터리를 충전하는 단계는, 냉각 충전 모드로 설정되면 충전 신호의 충전 구간에서 정전류로 배터리를 충전하는 단계; 및 측정한 배터리 온도의 증감 여부를 근거로 충전 구간의 펄스폭을 가변하는 단계를 포함한다.
충전 구간의 펄스폭을 가변하는 단계는, 배터리 온도가 증가하면 충전 구간의 펄스폭을 감소시키는 단계; 및 배터리 온도가 감소하면 충전 신호의 충전 구간 펄스폭을 증가시키는 단계를 포함한다.
배터리를 충전하는 단계는, 냉각 충전 모드로 충전 중에 측정한 배터리 전압이 설정 전압 이상이면, 배터리 충전을 위한 정전류를 단계적으로 감소시키는 단계를 더 포함한다.
정전류를 단계적으로 감소시키는 단계에서는, 배터리를 충전하는 정전류의 크기에 따라 정전류의 감소량을 다르게 설정된다.
본 발명에 의하면, 과열 상태 배터리 냉각 충전 장치 및 방법은 직렬 연결된 다중셀로 구성되는 배터리가 설정 온도 이상으로 상승하면 배터리 온도에 따라 가변하는 펄스 폭 제어를 통한 정전류 충전 모드로 구동하고, 충전 전압이 설정 전압 이상이면 전류를 단계적으로 감소시켜 배터리를 충전함으로써, 출력전달 속도를 증가시켜 충전시간을 최소화할 수 있고, 대략 30분 정도 이내에 대략 70% 정도의 용량을 충전하는 고속충전이 가능하고, 배터리 수명의 사이클 특성도 향상되는 효과가 있다.
또한, 과열 상태 배터리 냉각 충전 장치 및 방법은 충전 전압이 설정 전압 이상이면 전류를 단계적으로 감소시켜 배터리를 충전함으로써, 종래의 CCCV 충전 방법에 비해 대략 25% 정도의 배터리 사이클 수명을 향상시킬 수 있는 효과가 있다.
또한, 과열 상태 배터리 냉각 충전 장치 및 방법은 과열 상태인 배터리의 충전시 배터리 온도에 따라 충전 구간의 펄스폭을 가변하여 배터리를 충전함으로써, 충전에 따른 배터리의 온도 상승을 최소화하여 배터리를 안정적으로 충전할 수 있는 효과가 있다.
도 1은 종래의 배터리 충전 장치를 설명하기 위한 도면.
도 2는 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 장치를 설명하기 위한 도면.
도 3 내지 도 7은 도 2의 배터리 충전부를 설명하기 위한 도면.
도 8은 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 방법을 설명하기 위한 흐름도.
도 9는 도 8의 정전류 충전 모드 또는 정전압 충전 모드로 배터리를 충전하는 단계를 설명하기 위한 흐름도.
도 10은 도 9의 냉각 모드로 배터리를 충전하는 단계를 설명하기 위한 흐름도.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
이하, 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 장치를 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 2는 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 장치를 설명하기 위한 도면이다. 도 3 내지 도 6은 도 2의 배터리 충전부를 설명하기 위한 도면이다.
도 2에 도시된 바와 같이, 과열 상태 배터리 냉각 충전 장치(100; 이하, 냉각 충전 장치(100))는 온도 측정부(120), 전압 측정부(140), 충전 모드 설정부(160), 배터리(200) 충전부(180)를 포함하여 구성된다.
온도 측정부(120)는 냉각 충전 장치(100)에 의해 충전되는 배터리(200)의 온도(이하, 배터리 온도)를 측정한다. 이때, 온도 측정부(120)는 배터리(200)의 충전이 시작되면 설정 시간 간격으로 배터리 온도를 측정한다. 온도 측정부(120)는 측정한 배터리 온도를 충전 모드 설정부(160)에게로 전송한다.
전압 측정부(140)는 냉각 충전 장치(100)에 의해 충전되는 배터리(200)의 전압(이하, 배터리 전압)을 측정한다. 즉, 전압 측정부(140)는 배터리(200) 충전부(180)로부터 배터리 전압 측정 요청을 수신하면 배터리(200)의 전압을 측정한다. 이때, 전압 측정부(140)는 배터리(200)의 충전이 중지된 상태에서 배터리 전압을 측정한다. 전압 측정부(140)는 측정한 배터리 전압을 배터리(200) 충전부(180)에게로 전송한다.
충전 모드 설정부(160)는 배터리(200)가 냉각 충전 장치(100)에 접속되면 정전류 충전 모드로 설정한다. 충전 모드 설정부(160)는 전압 측정부(140)에서 측정한 배터리 전압이 기준 전압 이상이면 정전압 충전 모드로 설정한다. 즉, 충전 모드 설정부(160)는 배터리(200)의 초기 충전시 정전류 충전 모드로 설정하고, 정전류 충전 중에 배터리 전압이 기준 전압 이상이면 정전압 충전 모드로 설정한다.
충전 모드 설정부(160)는 온도 측정부(120)로부터 수신한 배터리 온도 및 설정 온도를 근거로 냉각 충전 모드를 설정한다. 즉, 충전 모드 설정부(160)는 정전류 충전 모드 또는 정전압 충전 모드로 배터리(200)를 충전하는 중에 온도 측정부(120)로부터 배터리 온도를 수신한다. 충전 모드 설정부(160)는 수신한 배터리 온도와 설정 온도를 근거로 냉각 충전 모드를 설정한다. 이때, 충전 모드 설정부(160)는 배터리 온도가 설정 온도 이상이면 냉각 충전 모드로 설정한다.
배터리(200) 충전부(180)는 충전 모드 설정부(160)에서 설정된 충전 모드를 근거로 배터리(200)를 충전한다. 즉, 배터리(200) 충전부(180)는 정전류 충전 모드, 정전압 충전 모드 및 냉각 충전 모드 중에 하나의 충전 모드로 배터리(200)를 충전한다. 이를 위해, 도 3에 도시된 바와 같이, 배터리(200) 충전부(180)는 정전류 충전모듈(182), 정전압 충전모듈(184), 냉각 충전모듈(186)을 포함하여 구성된다.
정전류 충전모듈(182)은 충전 모드 설정부(160)에서 정전류 충전 모드로 설정되면 충전신호를 근거로 정전류로 배터리(200)를 충전한다. 즉, 도 4에 도시된 바와 같이, 충전신호는 전류가 인가되지 않는 휴전 구간과, 정전류를 인가하여 배터리(200)를 충전하는 충전 구간을 포함한다. 정전류 충전모듈(182)은 충전 구간에서 정전류를 공급하여 배터리(200)를 충전하고, 휴전 구간에서 정전류 공급을 차단하여 배터리(200)의 정전류 충전을 중지한다. 정전류 충전모듈(182)은 휴전 구간에서 전압 측정부(140)에게로 배터리 전압 측정 요청을 전송한다.
정전압 충전모듈(184)은 충전 모드 설정부(160)에서 정전압 충전 모드로 설정되면 충전신호를 근거로 정전압으로 배터리(200)를 충전한다. 즉, 충전신호는 전압이 인가되지 않는 휴전 구간과, 정전압을 인가하여 배터리(200)를 충전하는 충전 구간을 포함한다. 충전신호는 충전 구간 및 휴전 구간을 포함한다. 정전압 충전모듈(184)은 충전 구간에서 정전압을 공급하여 배터리(200)를 충전하고, 휴전 구간에서 정전압 공급을 차단하여 배터리(200)의 정전압 충전을 중지한다. 정전압 충전모듈(184)은 휴전 구간에서 전압 측정부(140)에게로 배터리 전압 측정 요청을 전송한다.
냉각 충전모듈(186)은 충전 모드 설정부(160)에서 냉각 충전 모드로 설정되면 충전신호를 근거로 정전류로 배터리(200)를 충전한다. 즉, 충전신호는 전류가 인가되지 않는 휴전 구간과, 정전류를 인가하여 배터리(200)를 충전하는 충전 구간을 포함한다. 냉각 충전모듈(186)은 충전 구간에서 정전류를 공급하여 배터리(200)를 충전하고, 휴전 구간에서 정전류 공급을 차단하여 배터리(200)의 정전류 충전을 중지한다. 냉각 충전모듈(186)은 휴전 구간에서 전압 측정부(140)에게로 배터리 전압 측정 요청을 전송한다.
냉각 충전모듈(186)은 충전 모드 설정부(160)에서 냉각 충전 모드로 설정되면 설정 주기간격으로 배터리 온도 측정 요청을 온도 측정부(120)에게로 전송한다. 냉각 충전모듈(186)은 온도 측정부(120)로부터 수신한 배터리 온도를 직전에 수신한 배터리 온도를 근거로 충전신호의 충전 구간 펄스폭을 변경한다. 이때, 냉각 충전모듈(186)은 배터리 온도가 증가하면 충전신호의 충전 구간의 펄스폭을 감소시킨다. 냉각 충전모듈(186)은 배터리 온도가 감소하면 충전신호의 충전 구간의 펄스폭을 증가시킨다. 이후, 냉각 충전모듈(186)은 충전 구간의 펄스폭이 변경된 충전신호를 근거로 정전류로 배터리(200)를 충전한다. 예를 들어, 도 5에 도시된 바와 같이, 냉각 충전모듈(186)은 배터리 온도가 증가하면 휴전 구간의 펄스폭은 그대로 유지한 상태에서 충전 구간의 펄스폭을 감소시킨다. 도 6에 도시된 바와 같이, 냉각 충전모듈(186)은 배터리 온도가 감소하면 휴전 구간의 펄스폭은 그대로 유지한 상태에서 충전 구간의 펄스폭을 증가시킨다.
냉각 충전모듈(186)은 배터리 전압 및 설정 전압을 근거로 배터리(200) 충전을 위한 정전류를 단계적으로 하강시킨다. 즉, 냉각 충전모듈(186)은 충전신호의 휴전 구간에서 전압 측정부(140)에게로 배터리 전압 측정 요청을 전송한다. 냉각 충전모듈(186)은 배터리 전압이 설정 전압 이상이면 정전류를 단계적으로 하강시켜 배터리(200)를 충전한다. 예를 들어, 도 7에 도시된 바와 같이, 배터리(200) 충전을 위한 정전류가 2A이고, 설정 전압이 4.2V로 설정된 경우, 냉각 충전모듈(186)은 배터리 전압이 4.2V 이상이면 대략 0.2A 정도 하강시킨 1.8A 정도의 정전류로 배터리(200)를 충전한다. 이때, 배터리 전압은 정전류가 낮아짐에 따라 4.2V에서 약간 감소한 후, 다시 4.2V까지 증가하게 된다. 냉각 충전모듈(186)은 배터리 전압이 4.2V로 증가하면 다시 대략 0.2A 정도 하강시킨 1.6A 정도의 정전류로 배터리(200)를 충전한다. 냉각 충전모듈(186)은 2A 내지 1A 정도 범위의 정전류인 경우 대략 0.2A 정도씩 감소시키고, 대략 0.5A 이상 1A 미만인 범위의 정전류인 경우 대략 0.1A 정도씩 감소시키고, 대략 0.5A 미만인 범위에서는 정전류를 대략 0.05A 정도씩 감소시킨다.
이하, 본 발명의 실시예에 따른 과열 상태 배터리 냉각 충전 방법을 첨부된 도면을 참조하여 상세하게 설명하면 아래와 같다. 도 8은 본 발명의 실시예에 따른 과열 상태 배터리(200) 냉각 충전 방법을 설명하기 위한 흐름도이다. 도 9는 도 8의 정전류 충전 모드 또는 정전압 충전 모드로 배터리(200)를 충전하는 단계를 설명하기 위한 흐름도이고, 도 10은 도 9의 냉각 모드로 배터리를 충전하는 단계를 설명하기 위한 흐름도이다.
과열 상태 배터리 냉각 충전 장치(100; 이하, 냉각 충전 장치(100))는 배터리(200)가 연결되면 정전류 충전 모드 또는 정전압 충전 모드로 배터리(200)를 충천한다(S100). 여기서, 도 9를 참조하여 정전류 충전 모드 또는 정전압 충전 모드로 배터리(200)를 충전하는 단계를 설명하면 아래와 같다.
배터리(200)가 냉각 충전 장치(100)에 접속되면(S110; 예), 냉각 충전 장치(100)는 충전신호를 근거로 정전류로 배터리(200)를 충전한다(S120). 즉, 냉각 충전 장치(100)는 배터리(200)가 최초 접속되면 정전류 충전 모드로 설정한다. 냉각 충전 장치(100)는 정전류 충전 모드로 설정되면 충전신호를 근거로 정전류로 배터리(200)를 충전한다. 이때, 냉각 충전 장치(100)는 충전신호의 충전 구간에서 정전류를 공급하여 배터리(200)를 충전하고, 휴전 구간에서 정전류 공급을 차단하여 배터리(200)의 정전류 충전을 중지한다.
냉각 충전 장치(100)는 충전신호의 휴전 구간에서 배터리 전압을 측정한다(S130). 즉, 냉각 충전 장치(100)는 정전류 충전 상태에서 충전신호의 휴전 구간이면 배터리 전압을 측정한다.
배터리 전압이 기준 전압 이상이면(S140; 예), 냉각 충전 장치(100)는 정전압으로 배터리(200)를 충전한다(S150). 즉, 냉각 충전 장치(100)는 배터리 전압이 기준 전압 이상이면 정전압 충전 모드로 설정한다. 냉각 충전 장치(100)는 충전신호의 충전 구간에서 정전압을 공급하여 배터리(200)를 충전하고, 휴전 구간에서 정전압 공급을 차단하여 배터리(200)의 정전압 충전을 중지한다.
냉각 충전 장치(100)는 정전류 충전 모드 또는 정전압 충전 모드로 배터리(200)를 충전하는 중에 배터리 온도를 측정한다(S200).
측정한 배터리 온도가 설정 온도 이상이면(S300; 예), 냉각 충전 장치(100)는 냉각 충전 모드로 배터리(200)를 충전한다(S400). 여기서, 도 10을 참조하여 냉각 충전 모드로 배터리(200)를 충전하는 단계를 설명하면 아래와 같다.
냉각 충전 장치(100)는 충전신호를 근거로 정전류로 배터리(200)를 충전한다(S410). 즉, 냉각 충전 장치(100)는 충전 구간에서 정전류를 공급하여 배터리(200)를 충전하고, 휴전 구간에서 정전류 공급을 차단하여 배터리(200)의 정전류 충전을 중지한다.
냉각 충전 장치(100)는 충전중인 배터리(200)의 배터리 온도 및 배터리 전압을 측정한다(S420). 이때, 냉각 충전 장치(100)는 충전신호의 휴전 구간에서 배터리 전압을 측정한다. 냉각 충전 장치(100)는 설정 주기 간격으로 배터리 온도를 측정한다.
측정한 배터리 온도가 이전 측정한 배터리 온도보다 상승하면(S430; 예), 냉각 충전 장치(100)는 충전신호의 충전 구간 펄스폭을 감소시킨다(S440). 즉, 냉각 충전 장치(100)는 배터리 온도가 이전 측정시보다 상승하면 배터리(200)의 냉각을 위해 충전 구간 펄스폭을 감소시킨다.
배터리 온도가 이전 측정시보다 하강하면(S450; 예), 냉각 충전 장치(100)는 충전신호의 충전 구간 펄스폭을 증가시킨다(S460). 즉, 냉각 충전 장치(100)는 이전 측정시보다 배터리 온도가 하강하면 배터리(200)의 충전시간을 단축하기 위해 충전 구간의 펄스폭을 증가시킨다.
측정한 배터리 전압이 기준 전압 이상이면(S470; 예), 냉각 충전 장치(100)는 배터리(200) 충전을 위한 정전류를 감소시킨다(S480). 이때, 냉각 충전 장치(100)는 정전류에 따라 정전류 감소량을 다르게 하며 단계적으로 감소시킨다. 여기서, 냉각 충전 장치(100)는 배터리 전압이 기준 전압 이하이면 현재의 정전류를 유지한다.
충전이 완료되지 않으면(S490; 아니오), 냉각 충전 장치(100)는 상술한 S410 단계 내지 S470 단계를 반복 수행한다.
상술한 바와 같이, 과열 상태 배터리 냉각 충전 장치 및 방법은 직렬 연결된 다중셀로 구성되는 배터리가 설정 온도 이상으로 상승하면 배터리 온도에 따라 가변하는 펄스 폭 제어를 통한 정전류 충전 모드로 구동하고, 충전 전압이 설정 전압 이상이면 전류를 단계적으로 감소시켜 배터리를 충전함으로써, 출력전달 속도를 증가시켜 충전시간을 최소화할 수 있고, 대략 30분 정도 이내에 대략 70% 정도의 용량을 충전하는 고속충전이 가능하고, 배터리 수명의 사이클 특성도 향상되는 효과가 있다.
또한, 과열 상태 배터리 냉각 충전 장치 및 방법은 충전 전압이 설정 전압 이상이면 전류를 단계적으로 감소시켜 배터리를 충전함으로써, 종래의 CCCV 충전 방법에 비해 대략 25% 정도의 배터리 사이클 수명을 향상시킬 수 있는 효과가 있다.
또한, 과열 상태 배터리 냉각 충전 장치 및 방법은 과열 상태인 배터리의 충전시 배터리 온도에 따라 충전 구간의 펄스폭을 가변하여 배터리를 충전함으로써, 충전에 따른 배터리의 온도 상승을 최소화하여 배터리를 안정적으로 충전할 수 있는 효과가 있다.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.

Claims (10)

  1. 배터리 온도를 측정하는 온도 측정부;
    배터리 전압을 측정하는 전압 측정부;
    상기 온도 측정부에서 측정한 배터리 온도 및 상기 전압 측정부에서 측정한 배터리 전압을 근거로 정전류 충전 모드, 정전압 충전 모드 및 냉각 충전 모드 중에 하나로 충전 모드를 설정하는 충전 모드 설정부; 및
    휴전 구간 및 충전 구간을 포함하는 충전 신호 및 상기 충전 모드 설정부에서 설정된 충전 모드를 근거로 배터리를 충전하는 배터리 충전부를 포함하고,
    상기 충전 모드 설정부는
    배터리 온도가 설정 온도 이상이면 냉각 충전 모드로 충전 모드를 설정하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 장치.
  2. 청구항 1에 있어서,
    상기 배터리 충전부는,
    상기 충전 모드 설정부에서 냉각 충전 모드로 설정되면 충전 신호의 충전 구간에서 정전류로 배터리를 충전하되, 상기 온도 측정부에서 측정한 배터리 온도의 증감 여부를 근거로 상기 충전 구간의 펄스폭을 가변하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 장치.
  3. 청구항 2에 있어서,
    상기 배터리 충전부는,
    배터리 온도가 증가하면 상기 충전 신호의 충전 구간 펄스폭을 감소시키고, 배터리 온도가 감소하면 상기 충전 신호의 충전 구간 펄스폭을 증가시키는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 장치.
  4. 청구항 2에 있어서,
    상기 배터리 충전부는,
    상기 전압 충전부에서 측정한 배터리 전압이 설정 전압 이상이면, 상기 배터리 충전을 위한 정전류를 단계적으로 감소시키는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 장치.
  5. 청구항 4에 있어서,
    상기 배터리 충전부는,
    정전류의 크기에 따라 정전류의 감소량을 다르게 설정하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 장치.
  6. 과열 상태 배터리 냉각 충전 장치를 이용한 과열 상태 배터리 냉각 충전 방법에 있어서,
    배터리 온도를 측정하는 단계;
    배터리 전압을 측정하는 단계;
    상기 측정한 배터리 온도 및 배터리 전압을 근거로 정전류 충전 모드, 정전압 충전 모드 및 냉각 충전 모드 중에 하나로 충전 모드를 설정하는 단계; 및
    휴전 구간 및 충전 구간을 포함하는 충전 신호 및 상기 설정된 충전 모드를 근거로 배터리를 충전하는 단계를 포함하고,
    상기 충전 모드를 설정하는 단계에서는,
    배터리 온도가 설정 온도 이상이면 냉각 충전 모드로 충전 모드를 설정하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 방법.
  7. 청구항 6에 있어서,
    상기 배터리를 충전하는 단계는,
    냉각 충전 모드로 설정되면 충전 신호의 충전 구간에서 정전류로 배터리를 충전하는 단계; 및
    상기 측정한 배터리 온도의 증감 여부를 근거로 상기 충전 구간의 펄스폭을 가변하는 단계를 포함하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 방법.
  8. 청구항 7에 있어서,
    상기 충전 구간의 펄스폭을 가변하는 단계는,
    상기 배터리 온도가 증가하면 상기 충전 구간의 펄스폭을 감소시키는 단계; 및
    상기 배터리 온도가 감소하면 상기 충전 신호의 충전 구간 펄스폭을 증가시키는 단계를 포함하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 방법.
  9. 청구항 7에 있어서,
    상기 배터리를 충전하는 단계는,
    냉각 충전 모드로 충전 중에 상기 측정한 배터리 전압이 설정 전압 이상이면, 상기 배터리 충전을 위한 정전류를 단계적으로 감소시키는 단계를 더 포함하는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 방법.
  10. 청구항 9에 있어서,
    상기 정전류를 단계적으로 감소시키는 단계에서는,
    배터리를 충전하는 정전류의 크기에 따라 정전류의 감소량을 다르게 설정되는 것을 특징으로 하는 과열 상태 배터리 냉각 충전 방법.
PCT/KR2016/003199 2015-09-10 2016-03-29 과열 상태 배터리 냉각 충전 장치 및 방법 WO2017043723A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,589 US20180241098A1 (en) 2015-09-10 2016-03-29 Apparatus and method for cooling and charging overheated battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0128625 2015-09-10
KR1020150128625A KR101738846B1 (ko) 2015-09-10 2015-09-10 과열 상태 배터리 냉각 충전 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2017043723A1 true WO2017043723A1 (ko) 2017-03-16

Family

ID=58240062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003199 WO2017043723A1 (ko) 2015-09-10 2016-03-29 과열 상태 배터리 냉각 충전 장치 및 방법

Country Status (3)

Country Link
US (1) US20180241098A1 (ko)
KR (1) KR101738846B1 (ko)
WO (1) WO2017043723A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355793B2 (en) * 2017-04-27 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Power supplying device, power storage system, and charging method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063998A (ko) 2017-11-30 2019-06-10 에스케이이노베이션 주식회사 배터리팩의 온도 제어 방법 및 장치
CN111183561B (zh) * 2018-09-12 2024-02-23 Oppo广东移动通信有限公司 充电控制方法和装置、电子设备、计算机可读存储介质
KR20210079940A (ko) * 2019-12-20 2021-06-30 엘지전자 주식회사 충전기 및 제어 방법
CN111211595B (zh) * 2020-01-14 2021-11-09 北京小米移动软件有限公司 充电方法和装置、电子设备、存储介质
KR20220068572A (ko) 2020-11-19 2022-05-26 강현찬 배터리 내부저항을 이용한 과열 방지 급속 충전 장치 및 방법
EP4068561A1 (en) * 2021-01-28 2022-10-05 Contemporary Amperex Technology Co., Limited Charging method and power conversion device
WO2022160190A1 (zh) * 2021-01-28 2022-08-04 宁德时代新能源科技股份有限公司 充电的方法、动力电池的电池管理***和充电桩
DE102022104742A1 (de) * 2021-07-22 2023-01-26 Shimano Inc. Fahrradkomponente, berührungsloses ladesystem und berührungsloses ladeverfahren
KR102539392B1 (ko) * 2021-08-02 2023-06-01 주식회사 현대케피코 배터리 충전방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100280308B1 (ko) * 1992-01-22 2001-02-01 리차아드 코프 배터리의 충전, 융해 및 포맷 방법 및 장치
JP2003199262A (ja) * 2001-11-12 2003-07-11 Hewlett Packard Co <Hp> バッテリ充電装置
KR20120028350A (ko) * 2009-11-20 2012-03-22 파나소닉 주식회사 충전 제어 회로, 전지팩 및 충전 시스템
KR20150046638A (ko) * 2013-10-22 2015-04-30 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 충전 방법
KR20150071970A (ko) * 2013-12-19 2015-06-29 삼성전자주식회사 충전 회로, 이를 포함하는 충전 시스템 및 무선전력 수신기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419531B1 (ko) 2000-11-13 2004-02-19 주식회사 알파트로닉스 과열 방지 기능을 구비한 배터리의 초급속 충전장치
JP4716695B2 (ja) * 2004-09-03 2011-07-06 三洋電機株式会社 充電方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100280308B1 (ko) * 1992-01-22 2001-02-01 리차아드 코프 배터리의 충전, 융해 및 포맷 방법 및 장치
JP2003199262A (ja) * 2001-11-12 2003-07-11 Hewlett Packard Co <Hp> バッテリ充電装置
KR20120028350A (ko) * 2009-11-20 2012-03-22 파나소닉 주식회사 충전 제어 회로, 전지팩 및 충전 시스템
KR20150046638A (ko) * 2013-10-22 2015-04-30 삼성에스디아이 주식회사 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 충전 방법
KR20150071970A (ko) * 2013-12-19 2015-06-29 삼성전자주식회사 충전 회로, 이를 포함하는 충전 시스템 및 무선전력 수신기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355793B2 (en) * 2017-04-27 2022-06-07 Panasonic Intellectual Property Management Co., Ltd. Power supplying device, power storage system, and charging method

Also Published As

Publication number Publication date
US20180241098A1 (en) 2018-08-23
KR101738846B1 (ko) 2017-05-23
KR20170030992A (ko) 2017-03-20

Similar Documents

Publication Publication Date Title
WO2017043723A1 (ko) 과열 상태 배터리 냉각 충전 장치 및 방법
CN105703447B (zh) 充电电池组的直接平衡充电方法
US8222870B2 (en) Battery management systems with adjustable charging current
JP5230563B2 (ja) 制御可能なアダプタ出力を備えたバッテリ管理システム
CN101325272B (zh) 平衡充电方法及其装置
WO2017086512A1 (ko) 열적 안전성을 고려한 배터리의 급속 충전 시스템 및 방법
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
WO2013183952A1 (ko) 이차전지의 충전방법
CN104993534B (zh) 一种移动终端及其充电控制方法
CN108512280B (zh) 一种串联电池组均衡充电控制方法
US20140159664A1 (en) Method of manufacturing battery pack and battery pack
CN104078716A (zh) 一种电池充电方法及处理器
WO2018135735A1 (ko) 배터리 충전 방법 및 충전 시스템
KR20180066292A (ko) 이차전지의 수명 단축 및 폭발 방지를 위한 배터리의 급속 충전 시스템 및 방법
CN103138014A (zh) 以温差调控方式在线维护蓄电池组的装置和方法
CN114744728A (zh) 一种基于安卓平衡充电的管理与控制方法、充电器和***
WO2019093625A1 (ko) 충전 제어 장치 및 방법
CN107231010B (zh) 一种电压补偿型电池保护器及均衡方法
JP2011154925A (ja) リチウムイオン組電池の充電システムおよび充電方法
CN205565813U (zh) 充电电池组的直接平衡充电装置
CN201854071U (zh) 一种电池组充电管理***
CN105871000B (zh) 一种直流充电机的电流控制方法
CN211556939U (zh) 一种电池组用平衡保护电路
WO2018080237A2 (ko) 배터리 충전상태에 따라 충전종료 시기를 조절하는 전기자동차의 배터리충전제어장치 및 방법
WO2021142595A1 (zh) 充电控制方法、充电器、充电***及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15752589

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844543

Country of ref document: EP

Kind code of ref document: A1