WO2017043274A1 - Die, method for manufacturing organic light-emitting diode, and organic light-emitting diode - Google Patents

Die, method for manufacturing organic light-emitting diode, and organic light-emitting diode Download PDF

Info

Publication number
WO2017043274A1
WO2017043274A1 PCT/JP2016/074002 JP2016074002W WO2017043274A1 WO 2017043274 A1 WO2017043274 A1 WO 2017043274A1 JP 2016074002 W JP2016074002 W JP 2016074002W WO 2017043274 A1 WO2017043274 A1 WO 2017043274A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
mold
convex portions
layer
electrode
Prior art date
Application number
PCT/JP2016/074002
Other languages
French (fr)
Japanese (ja)
Inventor
弘毅 本郷
啓 篠塚
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to CN201680051921.8A priority Critical patent/CN108029174B/en
Priority to JP2017539088A priority patent/JP6642581B2/en
Priority to KR1020187006289A priority patent/KR20180052619A/en
Publication of WO2017043274A1 publication Critical patent/WO2017043274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a mold, an organic light emitting diode manufacturing method, and an organic light emitting diode.
  • This application claims priority based on Japanese Patent Application No. 2015-178324 for which it applied to Japan on September 10, 2015, and uses the content here.
  • Organic light-emitting diodes are light-emitting elements that utilize organic electroluminescence.
  • An organic light emitting diode generally has a configuration in which an anode and a cathode are provided on both sides of an organic semiconductor layer including a light emitting layer containing an organic light emitting material.
  • the organic semiconductor layer includes an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like as necessary.
  • Organic light-emitting diodes have advantages such as low viewing angle dependency, low power consumption, and extremely thin devices.
  • the organic light emitting diode does not necessarily have sufficient light extraction efficiency.
  • the light extraction efficiency is the ratio of the light energy released into the atmosphere from the light extraction surface (for example, the substrate surface in the case of the bottom emission type) with respect to the light energy generated in the light emitting layer.
  • One factor that reduces the light extraction efficiency is the effect of surface plasmons.
  • the distance between the light emitting layer and the metal cathode is close. Therefore, a part of the near-field light generated in the light emitting layer is lost by being converted to surface plasmons on the surface of the cathode, and the light extraction efficiency of the organic light emitting diode is lowered.
  • the light extraction efficiency is an index that affects the brightness of a display equipped with an organic light emitting diode, illumination, and the like, and various methods for improving it have been studied.
  • Patent Document 1 discloses a structure in which a two-dimensional lattice structure with convex portions or concave portions is provided on the surface of a metal layer (cathode).
  • the two-dimensional lattice structure on the surface of the metal layer converts surface plasmon energy into light, and the converted light is extracted outside the device.
  • the two-dimensional lattice structure on the surface of the metal layer is obtained by reflecting the two-dimensional lattice structure provided on the substrate.
  • Patent Document 2 discloses forming an organic semiconductor layer in an organic thin film solar cell by a coating method such as a spin coating method, an ink jet method, or a slit coating method.
  • the organic thin film solar cell has the same configuration as the organic light emitting diode, and the organic semiconductor layer of the organic light emitting diode can be formed by a coating method.
  • a method of processing a two-dimensional lattice structure on a substrate such as the method described in Patent Document 1 has a problem that the processing cost of the substrate becomes high. Further, when a two-dimensional lattice structure is manufactured by processing the substrate, there is a problem that the organic semiconductor layer formed on the substrate cannot be formed using the coating method described in Patent Document 2. Since the coating method uses a liquid phase material at the time of coating, the uneven shape (two-dimensional lattice structure) is easily filled. Therefore, compared with the vacuum film-forming method, the reflectivity of the uneven shape on the surface of the substrate is lowered on the surface of the metal layer. If the reflectivity of the shape is low, it is difficult to provide a desired shape necessary for extracting surface plasmons on the second electrode.
  • an organic semiconductor layer or the like by coating has advantages such as a reduction in manufacturing cost accompanying simplification of manufacturing equipment and an improvement in throughput by shortening a time such as evacuation. Therefore, there is a strong demand to form an organic semiconductor layer using a coating method.
  • the present inventors adopted a method of fabricating an organic light emitting diode by sequentially performing a coating process, a stamper process for fabricating a concavo-convex shape, and a vacuum film forming process.
  • this method at least a part of the organic semiconductor layer is first formed by a coating method in a coating process.
  • a mold having a shape opposite to the desired irregularities is pressed against the outermost surface of the coating layer obtained in the coating step, thereby forming the desired irregularities on the outermost layer of the coating layer.
  • the remaining layer that was not formed in the coating process is formed by a vacuum film formation method.
  • This method eliminates the need to process the substrate, reduces the processing cost of the substrate, reduces the number of layers formed by vacuum film formation, and improves the manufacturing throughput, and provides an uneven shape. After the formation, since a vacuum film forming method is used, there is an advantage that a desired uneven shape can be reflected on the second electrode.
  • the present invention has been made in view of the above circumstances. It is an object of the present invention to provide a mold for manufacturing an organic light emitting diode capable of exhibiting sufficient light emission characteristics even when a method combining a coating process, a stamper process, and a vacuum film forming process is used.
  • the inventors of the present invention have made extensive studies to solve the above problems.
  • the organic light emitting diode may exhibit sufficient light emission characteristics even when the organic light emitting diode is manufactured by combining the coating process, the stamper process, and the vacuum film forming process. I found out that I can do it.
  • a mold according to an aspect of the present invention has a flat surface on a main surface and a plurality of convex portions, and an average pitch of the plurality of convex portions is 50 nm to 5 ⁇ m, and the plurality of convex portions
  • the average aspect ratio of the plurality of protrusions is 0.01 to 1, and 80% or more of the plurality of convex portions has a predetermined curved surface, and the predetermined curved surface has a predetermined point on the predetermined curved surface.
  • the inclination angle is within 60 °.
  • an area ratio of the flat surface in the main surface may be 5 to 50%.
  • the flat surface and the convex portion having the predetermined curved surface are connected so as to satisfy the condition of the predetermined curved surface. It may be.
  • the predetermined curved portion constituting the plurality of convex portions includes at least one inflection portion,
  • the closest distance from the first inflection portion closest to the flat surface to the flat surface among the inflection portions may be 1/10 or more of the average pitch of the plurality of convex portions.
  • a height of the portion of the ridge line portion closest to the flat surface from the flat surface is a height of the convex portion connecting the ridge line portions from the flat surface. It may be 50% to 90% with respect to the height.
  • an organic semiconductor layer including a light emitting layer on a surface of the substrate with an electrode having a transparent first electrode on the substrate, on which the first electrode is formed. And the second electrode are formed by an application step and a subsequent vacuum film formation step, wherein the method (1) to (1) is performed between the application step and the vacuum film formation step.
  • a stamper that presses the mold according to any one of 7) against the outermost surface of the coating layer formed in the coating step, and forms an inverted shape of the shape of the main surface of the mold on the outermost surface of the coating layer.
  • An organic light-emitting diode includes a base, a transparent first electrode, an organic semiconductor layer including a light-emitting layer, and a second electrode in order, and the organic of the second electrode
  • the surface on the semiconductor layer side has a flat surface and a plurality of convex portions protruding from the flat surface toward the base, and the average pitch of the plurality of convex portions is 50 nm to 5 ⁇ m, and the plurality of convex portions
  • the average aspect ratio of the portion is 0.01 to 1, and 80% or more of the plurality of convex portions has a predetermined curved surface, and the predetermined curved surface is an arbitrary point of the predetermined curved surface.
  • the second point is a first tangent plane that is in contact with the first point.
  • the inclination angle of the second tangent plane in contact with the second point is within 60 °.
  • an area ratio of the flat surface in the surface of the second electrode on the organic semiconductor layer side may be 5 to 50%.
  • the metal mold according to one embodiment of the present invention can exhibit sufficient light emission characteristics even when the organic light emitting diode is manufactured by combining the coating process, the stamper process, and the vacuum film forming process.
  • the organic light-emitting diode according to one embodiment of the present invention has desired light-emitting characteristics and can efficiently take out generated surface plasmons.
  • the method for producing an organic light emitting diode according to one embodiment of the present invention can produce an organic light emitting diode that can efficiently extract surface plasmons at low cost.
  • FIG. 1 is a perspective view schematically showing a mold according to one aspect of the present invention.
  • the mold 10 according to one aspect of the present invention is provided with a plurality of flat surfaces 1a to 1n and a plurality of convex portions 2a to 2n on the main surface 10A.
  • the plurality of flat surfaces 1a to 1n are disposed in a region surrounded by the most adjacent convex portion among the plurality of convex portions 2a to 2n.
  • a hexagonal shape in a plan view is drawn, and a flat surface is disposed in the center region.
  • the plurality of convex portions 2a to 2n are partially connected.
  • FIG. 2 is a cross-sectional view taken along a plane connecting the center point of the convex portion of the mold according to one aspect of the present invention and the center point of the flat surface.
  • the cross section as shown in FIG. 2 is obtained as an AFM (Atomic Force Microscope) image or a microscope image obtained by observing a cut sample with an electron microscope.
  • AFM Anatomic Force Microscope
  • the cross section by the AFM image is a cut through the center point 2An of the protrusion 2n and the center point 1An of the flat surface 1n from the AFM image taken for a square region 30 to 40 times the average pitch P of the protrusions 2a to 2n. It is obtained by extracting the cross-section information of the surface.
  • the cross section is obtained by cutting out the cross section passing through the center point 2An of the convex portion 2n from the mold 10 with FIB (Focused Ion Beam) or the like.
  • FIB Flucused Ion Beam
  • a cutting direction for obtaining a cross section is a direction along the arrangement direction of the convex portions 2a to 2n.
  • the center points 2Aa to 2An of the convex portions 2a to 2n are set based on the measurement result of AFM. Specifically, a plurality of contour lines are drawn every 20 nm for each of the convex portions 2a to 2n in parallel with the reference plane, and the center of gravity (point determined by the x and y coordinates) of each contour line is obtained. The average positions of these barycentric points (the values determined by the average of the x coordinates and the average of the y coordinates) are the center points 2Aa to 2An of the convex portions 2a to 2n.
  • the reference plane is a measurement plane after the tilt correction is performed from the image information having the tilt measured by the AFM.
  • the center points 1Aa to 1An of the flat surfaces 1a to 1n are set based on the measurement result of AFM. Specifically, an inscribed circle that is inscribed in a plan view is provided on each of the plurality of flat surfaces 1a to 1n. The centers of the inscribed circles are the center points 1Aa to 1An of the flat surfaces 1a to 1n.
  • the convex portions 2a to 2n are portions protruding with respect to the flat surfaces 1a to 1n.
  • the flat surfaces 1a to 1n mean regions where the inclination is within ⁇ 5 ° with respect to a plane passing through the center of gravity of the region connecting the adjacent convex portions and parallel to the reference surface of the AFM.
  • the convex portions 2 a to 2 n are two-dimensionally arranged on one surface of the mold 10.
  • “Two-dimensionally arranged” means a state in which a plurality of convex portions are arranged on the same plane.
  • the two-dimensional structure in which the plurality of convex portions are two-dimensionally arranged may be periodic or aperiodic.
  • the mold 10 can be suitably used when producing an uneven shape on an electrode made of a metal of an organic light emitting diode.
  • the uneven shape contributes to taking out surface plasmons generated on the electrode surface.
  • the organic light emitting diode produced using the mold 10 emits light in a narrow frequency band, the two-dimensional arrangement of the plurality of convex portions is preferably periodic.
  • the alignment direction of the straight line connecting adjacent convex portions is two directions and the crossing angle is 90 ° (square lattice), and the straight line connecting adjacent convex portions And the orientation direction of which is three directions and the crossing angle is 120 ° (hexagonal lattice, honeycomb lattice).
  • the “positional relationship at an intersection angle of 120 °” specifically refers to a relationship that satisfies the following conditions. First, a line segment L1 having a length equal to the average pitch P is drawn from one center point 2Aa in the direction of the adjacent center point 2Ab. Next, a line segment L2 having a length equal to the average pitch P is drawn from the center point 2Aa in the direction of 120 ° with respect to the line segment L1. If the center point adjacent to the center point 2Aa is within 15% of the average pitch P from the end point of each line segment L1 on the side opposite to the center point 2Aa, the crossing angle is 120 °. The positional relationship where the intersection angle is 90 degrees is defined by replacing the above description of “120 °” with “90 °”.
  • the mold 10 has an increased strength and particularly improved durability during repeated use.
  • the honeycomb lattice shape can be rephrased as a relationship in which the tops of the plurality of convex portions 2a to 2n are located at the vertices of the hexagon in a plan view as viewed from the direction perpendicular to the flat surfaces 1a to 1n.
  • the organic light emitting diode manufactured using the mold 10 emits light in a wide frequency band or light in a plurality of frequency bands different from each other, the two-dimensional structure of the plurality of convex portions 2a to 2n.
  • the arrangement is preferably aperiodic. “Aperiodic arrangement” refers to a state in which the distance between the centers of the convex portions 2a to 2n and the arrangement direction are not constant.
  • the average pitch P is a distance between adjacent convex portions, and can be specifically obtained as follows.
  • the adjacent convex portion means an adjacent convex portion without a flat surface in FIG.
  • an AFM image is obtained for a randomly selected region on the main surface 10A of the mold 10 and a square region whose side is 30 to 40 times the average pitch P.
  • the designed pitch is about 300 nm
  • an image of an area of 9 ⁇ m ⁇ 9 ⁇ m to 12 ⁇ m ⁇ 12 ⁇ m is obtained.
  • the adjacent distance between the convexes in the area obtained by measuring, by averaging the distance between adjacent measured to determine the average pitch P 1 in the region.
  • each region is preferably selected at least 1 mm apart, more preferably 5 mm to 1 cm apart.
  • the average pitch P of the convex portions 2a to 2n is 50 nm to 5 ⁇ m, and preferably 50 nm to 500 nm. If the average pitch of the convex portions 2a to 2n is within this range, surface plasmons can be efficiently extracted from the metal electrode in the organic light-emitting diode fabricated using the mold 10.
  • the protrusions 2a to 2n have a cyclic structure formed of Ca to Cn for each area. As a macroscopic whole, each of the areas Ca to Cn may have an aperiodic structure.
  • Each area Ca to Cn shown in FIG. 3 is an area in which the intersection angle of the center point of each convex portion with respect to the center point of the flat surface is aligned in a positional relationship of 120 °. In FIG. 3, for convenience, the position of the center point of each of the convex portions 2a to 2n is indicated by a circle u centered on the center point.
  • the mode Q of each area Ca to Cn (mode value of each area) is preferably in the following range.
  • the modal area Q is in the AFM image measurement range of 10 [mu] m ⁇ 10 [mu] m, is preferably 0.026 ⁇ m 2 ⁇ 6.5 ⁇ m 2.
  • the average pitch P of less than 1 ⁇ m than 500 nm the modal area Q is in the AFM image measurement range of 10 [mu] m ⁇ 10 [mu] m, is preferably 0.65 ⁇ m 2 ⁇ 26 ⁇ m 2.
  • the periodic structure is a polycrystalline body having a random lattice orientation macroscopically. Therefore, when surface plasmons are converted into propagating light on the metal surface and radiated. The emission angle of radiation light with respect to the planar direction becomes random, and the emission light extracted from the element can be prevented from having anisotropy.
  • the standard deviation of ⁇ ab in the 10 ⁇ m ⁇ 10 ⁇ m AFM image measurement range is preferably 0.08 ⁇ m 2 or more.
  • the standard deviation of ⁇ ab in the 10 ⁇ m ⁇ 10 ⁇ m AFM image measurement range is preferably 1.95 ⁇ m 2 or more.
  • the standard deviation of ⁇ ab in the AFM image measurement range of 50 ⁇ m ⁇ 50 ⁇ m is preferably 8.58 ⁇ m 2 or more.
  • the surface plasmon radiated from the metal surface to a predetermined angle is excellent in the effect of averaging the emission angle in the planar direction to the outside of the device, and the emitted light has anisotropy. This can be suppressed.
  • the degree of randomness of the shapes of the areas Ca to Cn is preferably such that the ratio of a to b in the formula (1) and the standard deviation of a / b are 0.1 or more.
  • the randomness of the lattice orientation of each area Ca to Cn preferably satisfies the following conditions. First, a straight line K0 connecting the center points of any two adjacent convex portions in any area (I) is drawn. Next, one area (II) adjacent to the area (I) is selected, and the three protrusions in the area (II) are connected to the center point of the three protrusions adjacent to the protrusion. Draw the straight lines K1 to K3.
  • the lattice orientations of the area (I) and the area (II) are Define different.
  • the areas adjacent to the area (I) there are preferably two or more areas having a lattice orientation different from the lattice orientation of the area (I), preferably 3 or more, and more preferably 5 or more.
  • the convex portion is a polycrystalline structure in which the lattice orientation is aligned in each of the areas Ca to Cn but is not aligned macroscopically.
  • the randomness of the macroscopic lattice orientation can be evaluated by the ratio between the maximum value and the minimum value of the FFT (Fast Fourier Transform) fundamental wave.
  • the ratio between the maximum value and the minimum value of the FFT fundamental wave is obtained by acquiring an AFM image, obtaining a two-dimensional Fourier transform image thereof, and drawing a circle away from the origin by the wave number of the fundamental wave.
  • the point having the largest amplitude and the point having the smallest amplitude are extracted and obtained as a ratio of the amplitudes.
  • the lattice orientations of the convex portions are uniform, and it can be said that the structure has high single crystallinity when the convex portions are regarded as two-dimensional crystals.
  • the ratio of the maximum value and the minimum value of the FFT fundamental wave is small, the lattice orientations of the convex portions are not aligned, and when the convex portions are regarded as a two-dimensional crystal, it can be said to have a polycrystalline structure.
  • the average aspect ratio of the plurality of convex portions 2a to 2n is 0.01 to 1, and preferably 0.05 to 0.5.
  • the average aspect ratio means the average height H of the convex portions 2a to 2n with respect to the average width D of the convex portions 2a to 2n.
  • the average aspect ratio of the mold 10 is 0.01 or less, the organic light-emitting diode manufactured using the mold 10 cannot sufficiently obtain the effect of extracting surface plasmons as radiation light.
  • the average aspect ratio is 1 or more, it is difficult to configure the convex portion with a predetermined curved surface described later. In addition, it becomes difficult to transfer the shape using the mold 10 when manufacturing the organic light emitting diode.
  • the average aspect ratio of the convex portions 2a to 2n is measured by AFM.
  • AFM AFM image is obtained for one region of 25 ⁇ m 2 (5 ⁇ m ⁇ 5 ⁇ m) randomly selected on the main surface 10A of the mold 10.
  • a line is drawn in the diagonal direction of the obtained AFM image, and the height and width of each of the plurality of convex portions 2a to 2n crossing the line are measured.
  • the height of the convex portion means the distance from the flat surfaces 1a to 1n to the top of the convex portion
  • the width of the convex portion means the diameter of the inscribed circle centered on the central point of the convex portion when viewed in plan. .
  • region is calculated
  • More than 80% of the convex portions 2a to 2n are constituted by a predetermined curved surface.
  • the proportion of the convex portions having a predetermined curved surface among the plurality of convex portions is more preferably 90% or more, and further preferably 95% or more.
  • the predetermined curved surface is defined as follows.
  • FIG. 4 is a schematic cross-sectional view in which a mold is cut at an arbitrary cross section passing through the center point of the convex portion, and one convex portion is enlarged.
  • an arbitrary point is selected as the first point p1 from the curved surface 2B constituting the convex portion 2n.
  • a tangent plane with respect to the first point p1 is defined as a first tangent plane t1.
  • a point shifted from the first point p1 by 1/10 of the average pitch toward the center point 2An of the convex portion 2n is defined as a second point p2.
  • the deviation by 1/10 of the average pitch means a distance L moved in parallel with the flat surface 1 from the first point p1 toward the center point 2An.
  • a tangential plane with respect to the second point p2 is defined as a second tangential plane t2.
  • the inclination angle of the second tangent plane t2 with respect to the first tangent plane t1 is ⁇ .
  • the convex portion 2n is a predetermined curved surface.
  • the inclination angle ⁇ is preferably within 45 °, and more preferably within 30 °.
  • FIG. 5 is a schematic cross-sectional view when the mold according to one embodiment of the present invention is pressed against the surface of a laminate formed by coating.
  • the stacked body 20 includes a first layer 21, a second layer 22, and a third layer 23.
  • the mold 10 is pressed against the third layer 23 of the stacked body 20, the convex portions 2 a to 2 n of the mold 10 are pressed against the stacked body 20 first. Therefore, a force F1 is applied to each layer constituting the stacked body 20 from the top of the convex portions 2a to 2n toward the outer peripheral portion.
  • the material constituting each layer is also supplied to the space between the plurality of convex portions 2a to 2n of the mold 10 by this force F1.
  • each layer constituting the stacked body 20 is deformed to have a shape corresponding to the mold 10.
  • the force F1 applied to each layer of the laminate 20 spreads from the top of the convex portions 2a to 2n pressed without stress concentration toward the outer peripheral portion. This is because the convex portions 2a to 2n of the mold 10 are formed of a predetermined curved surface and have a gentle shape. If the force F1 is not stress concentrated, each of the first layer 21, the second layer 22, and the third layer 23 spreads uniformly in the in-plane direction. Therefore, it can avoid that each thickness becomes extremely thin.
  • the material of each layer is sufficiently supplied along the predetermined curved surface 2B to the boundary portion 3 between the plurality of convex portions 2a to 2n and the flat surface of the mold 10, which is generally a portion where voids are easily generated. That is, it is possible to prevent a gap from occurring in the boundary portion 3.
  • FIG. 6 is a schematic cross-sectional view when a mold having no predetermined curved surface is pressed against the surface of the laminate formed by coating.
  • die 15 shown in FIG. 6 has the corner
  • the tangent planes at two points sandwiching the corner portion 155 do not satisfy the relationship of a predetermined curved surface. Therefore, the force F2 applied to each layer constituting the stacked body 20 is not uniformly distributed along the shape of the convex portion 152n, and stress concentrates in the vicinity of the corner portion 155.
  • each of the first layer 21, the second layer 22, and the third layer 23 cannot spread uniformly in the in-plane direction. Therefore, each layer may be cut in the vicinity of the corner 155 or the layer thickness may be extremely thin. In addition, a sufficient amount of material cannot be supplied to the boundary portion 153 between the convex portion 152n and the flat surface, and voids are easily generated.
  • the layer constituting the stacked body 20 corresponds to any layer constituting the organic light emitting diode.
  • the organic light emitting diode does not emit light or does not exhibit sufficient light emission characteristics at the cut portion. That is, by using the mold 10 according to this embodiment, it is possible to avoid the problem that the organic light emitting diode does not emit light or does not exhibit sufficient light emission characteristics.
  • the boundary 3 is also gentle in order to avoid the generation of a gap between the mold 10 and the laminate 20. That is, in any of the connecting portions of the convex portions 2a to 2n and the flat surface, the inclination angle of the tangential plane at a point deviated by 1/10 of the average pitch from any one point with respect to the tangential plane at any one point is within 60 °. It is preferable to satisfy the relationship.
  • FIG. 7 is a schematic cross-sectional view when a mold according to another aspect of the present invention is pressed against the surface of a laminate formed by coating.
  • 7 has a plurality of convex portions and a flat surface 31, and a boundary portion 33 between the plurality of convex portions and the flat surface 31 is connected by a predetermined curved surface. That is, also in the connection part of the flat surface 31 and the convex part 32n, the relationship in which the inclination angle of the tangent plane at a point deviated by 1/10 of the average pitch from any one point with respect to the tangent plane at any one point is within 60 °. Fulfill. That is, the boundary portion 33 becomes gentle.
  • the predetermined curved portion constituting a convex portion has at least one or more curved portion p in, inflection can be realized by satisfying both the curved surface connecting the first inflection p1 in the flat surface 31 of the flattest surface 31 side of the part p in is convex downward.
  • Curved portion p in is a collection of inflection points in the cross section of the convex portion, the portion to be changed from a convex curved surface on the convex curved surface below, or a convex curved surface on the convex curved surface below This is the part to change.
  • the inflection part pin is formed in a line shape along the convex part 32n in plan view.
  • the closest distance from the first inflection part p1 in to the flat surface 31 is preferably 1/10 or more of the average pitch P of the plurality of convex parts, and more preferably 1/5 or more.
  • the closest distance is the distance of the narrowest portion of the width between the first inflection part p11n and the flat surface 31 when the convex part 32n is viewed in plan. If the closest distance from the first inflection part p1 in to the flat surface 31 is 1/10 or more of the average pitch P of the plurality of convex parts, the inclination of the boundary part 33 can be made gentler.
  • FIG. 8 is a schematic cross-sectional view when a layer is formed on the transferred material shown in FIG. 7 by a vacuum film forming method.
  • the boundary portion 33 between the flat surface 31 and the convex portion 32n is gentle. Therefore, the boundary portion 23A of the curved surface 20A formed on the outermost surface of the laminate 20 using the mold 30 is also gentle. In general, in the portion where the shape changes sharply, the throwing-around of film-forming particles during vacuum film formation often changes greatly.
  • the shape of the curved surface 20A including the boundary portion 23A is gentle, the throwing-in of the film-forming particles does not change greatly, and a uniform layer can be formed.
  • the main surface (outermost surface) 20A of the laminate 20 is gentle. Therefore, the outer surface 26B of the vacuum-deposited layer 26 can sufficiently reflect the shape of the main surface 20A.
  • “sufficient reflection” does not need to completely reflect the shape formed in the stamper process.
  • the average pitch of the convex portions constituting the outer surface 26B of the vacuum-deposited layer 26 is within ⁇ 10% compared to the average pitch of the convex portions constituting the main surface 20A, and the vacuum film was formed.
  • the vacuum-deposited layer 26 If the average height of the convex portions constituting the outer surface 26B of the layer 26 is within ⁇ 10% of the average height of the convex portions constituting the main surface 20A, the vacuum-deposited layer 26 It can be said that the outer surface 26B sufficiently reflects the shape of the main surface 20A.
  • the measurement method of the average pitch P mentioned above can be applied to the measurement of the average pitch said here.
  • the measurement method of the average height H mentioned above is applicable to the measurement of average height.
  • the vacuum-deposited layer 26 is an electrode
  • the outer surface 26B does not need to have a shape that sufficiently reflects the shape of the main surface 20A. Even in this case, since the main surface 20A is gentle, the thickness of the layer 26 is not reduced or cut.
  • the area ratio of the flat surfaces 1a to 1n in the main surface 10A is preferably 5 to 50%, more preferably 5 to 30%.
  • the area ratio of the flat surfaces 1a to 1n in the main surface 10A is 5% or more, the aspect ratio of the concavities and convexities for extracting surface plasmons in the organic light emitting diode manufactured using this mold can be reduced.
  • the area ratio of the flat surfaces 1a to 1n in the main surface 10A is 50% or less, it is possible to suppress the surface plasmon from being captured by the flat surface in the organic light emitting diode manufactured using this mold.
  • FIG. 9 is a schematic cross-sectional view of the mold according to one aspect of the present invention cut by a plane connecting the centers of adjacent convex portions. More specifically, it is a cross-sectional view cut along a plane connecting the center points of adjacent convex portions in FIG.
  • the dotted lines in FIG. 9 are approximate curves of the convex portions 2a to 2n.
  • the approximate curve can be obtained by approximating the center points 2Aa to 2An of the convex portions 2a to 2n with vertices by a normal distribution.
  • the boundaries between the convex portions 2a to 2n and the ridge line portion 4 are approximate curves.
  • Adjacent convex portions are connected by a ridge line portion 4.
  • the center points 2Aa to 2An side of the approximate curve are the convex portions 2a to 2n, and the opposite side is the ridge line portion 4.
  • the connecting portion between the ridge line portion 4 and the convex portions 2a to 2n and the connecting portion between the ridge line portion 4 and the flat surfaces 1a to 1n are preferably connected so as to satisfy a predetermined curved surface condition.
  • At least a part of the ridge line portion 4 is preferably present on the flat surface 1 n side from the convex portion 2 n connecting the ridge line portion 4. That is, it is preferable that the height h from the flat surface 1n of the ridge line portion 4 closest to the flat surface 1n is lower than the height H from the flat surface 1n of the convex portion 2n connecting the ridge line portion 4.
  • FIG. 13 is a plan view of the main part of the mold according to the present embodiment viewed from a direction perpendicular to the flat surface.
  • the tops of the plurality of convex portions 2a to 2n are located at the apexes of the hexagons constituting the honeycomb lattice (hexagonal lattice) in a plan view from a direction perpendicular to the flat surface 1n.
  • the spread of the resin or the like when the mold is pressed against the transfer object becomes even, and the pressure can be evenly applied to the transfer object. If pressure can be applied uniformly, for example, even when the transfer object is a thin layer, it is possible to avoid the layer being cut or the layer thickness becoming extremely thin.
  • the height h from the flat surface 1n of the portion closest to the flat surface 1n of the ridge line portion 4 shown in FIG. 9 is 50 with respect to the height H from the flat surface 1n of the convex portion 2n connecting the ridge line portion 4. % To 90% is preferable, and 60 to 85% is more preferable. If the height h of the ridge line portion 4 is too low, the strength of the mold is lowered, and if the height h of the ridge line portion 4 is too high, the air escape path is reduced.
  • FIG. 10 is a schematic perspective view of a mold according to another aspect of the present invention.
  • the mold 40 shown in FIG. 10 is different from the above-described mold 10 and the like in that the convex portions 42a to 42n are arranged so as to be separated from each other and are formed by one flat surface 41.
  • FIG. 11 is a schematic perspective view of a mold according to another aspect of the present invention.
  • the mold 50 has a plurality of convex portions 52a to 52n and a plurality of flat surfaces 51a to 51n.
  • the positional relationship between the convex portion and the flat surface is reversed.
  • the plurality of convex portions 52a to 52n are disposed in a region surrounded by the flat surfaces closest to each other among the plurality of flat surfaces 51a to 51n.
  • each convex portion 52a to 52n is formed by a predetermined curved surface. It can suppress that the layer which comprises a laminated body is cut
  • the mold according to one aspect of the present invention has a convex portion having a predetermined curved surface. Therefore, the organic light emitting diode manufactured using the mold 10 does not have a thin layer portion or a portion where no layer is formed, and can efficiently extract surface plasmons.
  • the mold can be formed using electron beam lithography, mechanical cutting, laser lithography, laser thermal lithography, interference exposure, reduction exposure, anodization of aluminum, a method using a particle mask, or the like.
  • the mold is preferably produced using a method using a particle mask.
  • the method using a particle mask is a method of performing an etching process after forming a particle single layer film as an etching mask on a flat surface of a mold base material. In the method using the particle mask, the base material directly under the particle is not etched and becomes a convex portion.
  • FIG. 14 is a diagram schematically showing a mold manufacturing method.
  • a single particle film etching mask 62 made of a large number of particles M is formed on the substrate 61 (FIG. 14A).
  • a method of forming the single particle film etching mask 62 on the substrate 61 for example, a method using a so-called LB method (Langmuir-Blodgett method) can be used.
  • the method for forming the single particle film etching mask 62 includes a dropping step in which a dispersion liquid in which particles are dispersed in a solvent is dropped onto a liquid surface in a water tank, and a single particle composed of particles by volatilizing the solvent.
  • a dispersion liquid is prepared by adding particles having a hydrophobic surface to a hydrophobic organic solvent composed of one or more of volatile solvents such as chloroform, methanol, ethanol, and methyl ethyl ketone. Further, as shown in FIG. 15, a water tank (trough) V is prepared, and water W is added as a liquid (hereinafter sometimes referred to as lower layer water) for developing particles on the liquid surface. And a dispersion liquid is dripped at the liquid level of lower layer water (drip process).
  • the solvent as the dispersion medium is volatilized, and the particles are developed in a single layer on the liquid surface of the lower layer water to form a single particle film F that is two-dimensionally closely packed (single particle film forming step).
  • hydrophobic particle when a hydrophobic particle is selected as the particle, it is necessary to select a hydrophobic particle as the solvent.
  • the lower layer water needs to be hydrophilic, and water is usually used as described above. By combining in this way, as will be described later, self-organization of particles proceeds, and a two-dimensional closest packed single particle film F is formed.
  • hydrophilic particles and solvents may be selected. In that case, a hydrophobic liquid is selected as the lower layer water.
  • the single particle film F formed on the liquid surface by the single particle film forming step is then transferred onto the substrate 61 that is the object to be etched in the single layer state (transfer step).
  • the base body 61 may be planar, and may include part or all of a non-planar shape such as a curved surface, an inclination, or a step.
  • the single particle film F can cover the surface of the substrate while maintaining the two-dimensional close-packed state even if the substrate 61 is not flat.
  • the hydrophobic substrate 61 is lowered from above and brought into contact with the single particle film F, both of which are hydrophobic.
  • the single particle film F may be transferred to the substrate 61 and transferred by the affinity between F and the substrate 61.
  • the base 61 is arranged in a substantially horizontal direction in the lower layer water of the water tank before the single particle film F is formed, and the liquid level is changed after the single particle film F is formed on the liquid surface.
  • the single particle film F may be transferred onto the substrate 61 by being gradually lowered. According to these methods, the single particle film F can be transferred onto the substrate 61 without using a special apparatus. Even in the case of a single particle film F having a larger area, it is preferable to adopt a so-called LB trough method in that it can be easily transferred onto the substrate 1 while maintaining its secondary close packed state.
  • the plurality of particles M are arranged in a substantially single layer on the flat surface 61 a that is one surface of the base 61. That is, the single particle film F of the particles M is formed on the flat surface 61a.
  • the single particle film F thus formed functions as a single particle etching mask 62.
  • the substrate 61 provided with the single particle etching mask 62 on one side is subjected to gas phase etching and surface processing (etching process).
  • the etching gas passes through the gaps of the particles M constituting the etching mask 62 and reaches the surface of the substrate 61, A groove is formed in the portion. And the cylinder 63 appears in the position corresponding to each particle
  • the groove 61m is formed at the center of the three particles M arranged on the equilateral triangle by close packing. Therefore, the groove 61m is located at the apex of the regular hexagon with the cylinder 63 as the center.
  • the particles M constituting the single particle film etching mask 62 are not particularly limited, and for example, gold particles, colloidal silica particles, or the like can be used. Moreover, what is generally used can be used for etching gas. For example, Ar, SF 6 , F 2 , CF 4 , C 4 F 8 , C 5 F 8 , C 2 F 6 , C 3 F 6 , C 4 F 6 , CHF 3 , CH 2 F 2 , CH 3 F, C 3 F 8 , Cl 2 , CCl 4 , SiCl 4 , BCl 2 , BCl 3 , BC 2 , Br 2 , Br 3 , HBr, CBrF 3 , HCl, CH 4 , NH 3 , O 2 , H 2 , N 2 , CO, CO 2 and the like can be used.
  • These particles M and etching gas can be changed according to the substrate 61 to be etched.
  • the etching gas is reactive with glass such as CF 4 and CHF 3. If a material is used, the etching rate of the gold particles becomes relatively slow, and the glass substrate is selectively etched.
  • FIGS. 1, 10, and 11 can be obtained in desired shapes by changing dry etching conditions. Further, wet etching may be used in combination in order to further smooth the surface shape of the convex portion.
  • the dry etching conditions include the material of the particles constituting the particle mask, the material of the original plate, the type of etching gas, the bias power, the source power, the gas flow rate and pressure, and the etching time.
  • a flat surface can be obtained by increasing the flow rate of the initial etching gas and gradually decreasing the flow rate.
  • the average pitch of the convex portions can be freely changed by changing the particle diameter of the particles to be used. Moreover, when forming a non-periodic structure using a particle
  • the base 61 shown in FIG. 14B is transferred an odd number of times.
  • a transfer body 71 shown in FIG. 14C is obtained.
  • the produced base 61 is transferred with a resin.
  • the surface of the obtained resin transfer product is coated with a metal plating such as Ni by electroforming or the like. By covering the metal plating, the hardness of the transfer body 71 is increased, and the shape adjustment described later becomes possible.
  • a flat surface 71n is formed at a position corresponding to the cylinder 63 of the base body 61 in the transfer body 71.
  • a convex portion 72n is formed at a position corresponding to the groove portion 61m of the base 61 in the transfer body 71. Therefore, the convex part 72 is located at the vertex of a regular hexagon with the flat surface 71n as the center. That is, a shape corresponding to FIG. 1 is obtained.
  • a predetermined curved surface may not be formed on the surface of the transfer body 71.
  • a corner 72a may be formed at the top of the convex 72n.
  • the corner portion 72a is a portion that does not satisfy a predetermined curved surface. Therefore, the corner portion 72a is removed, and the outer surface of the convex portion 72n is changed to a predetermined curved surface.
  • Further etching may be performed by wet etching or dry etching. Hereinafter, the case of dry etching will be specifically described.
  • the transfer body 71 is irradiated with plasma P generated by a plasma etching apparatus to perform physical etching.
  • Physical etching is different from reactive etching used in the etching process.
  • the chemical species converted into plasma react with the transfer body 71, and the etching proceeds.
  • etching is performed by a physical force in which a plasma chemical species collides with the transfer body 71. Therefore, in physical etching, the etching rate varies between a portion having a high probability of colliding with plasma chemical species and a portion having a low probability, and has anisotropy of etching as compared with reactive etching.
  • the physical etching is a process similar to the ashing process.
  • the plasma etching apparatus chemical species converted into plasma between the upper electrode and the lower electrode are used. Specifically, the lower electrode having a low potential and the transfer body 71 are electrically connected to charge the transfer body 71. The chemical species converted into plasma between the upper electrode and the lower electrode are attracted to the transfer body 71 having a low potential and collide with the transfer body 71 at a high speed.
  • the charged transfer body 71 has a pointed portion such as the corner portion 72a, the charge is concentrated on the portion. Therefore, a lot of plasma species are attracted to the pointed part. That is, the probability that the pointed part collides with the chemical species converted into plasma is higher than the other part.
  • the portion is etched earlier than the other portions. That is, the corner portion 72a of the convex portion 72 is gradually scraped to form the convex portion 2n having a predetermined curved surface (FIG. 14 (e)).
  • etching gas used for physical etching for example, a rare gas such as argon, oxygen, or the like can be used. These gases are poor in reactivity and physical etching proceeds.
  • a reactive etching gas may be used as an etching gas used for physical etching.
  • a gas having a reactive property such as CF 4, CHF 3.
  • the etching conditions are adjusted so that etching by physical collision becomes more prominent than chemical reactivity of ionic species.
  • the etching conditions are adjusted so that the potential difference between the upper electrode and the lower electrode is increased. When the potential difference between the upper electrode and the lower electrode is increased, the collision speed of the plasmatized chemical species is increased, and the physical etching effect becomes more significant than the reactive etching effect.
  • the physical etching is preferably performed using argon or oxygen under a low pressure and a high bias.
  • the specific conditions differ depending on the apparatus and cannot be determined unconditionally.
  • the pressure is 0.5 to 1.0 Pa, 0.5 to 1.. It is preferable to apply a bias of 5 W / cm 2 . Even when other dry etching gases are used, the above range is not greatly deviated, but it is preferable to shorten the processing time. This is because the etching rate is fast and the corner 62a may be etched more than expected.
  • a sharp portion may be formed also in the ridge line portion (see FIGS. 1 and 9) between the adjacent convex portions 72n. Even in this case, the sharp portion in the ridge line portion is removed simultaneously with the corner portion 72a by physical etching.
  • the mold produced by the above-described method may be used directly as a mold, or may be used as a mold for actually using a duplicate produced using the produced mold as an original plate.
  • the replica can be produced by transferring the produced mold an even number of times. Specifically, first, the produced mold is transferred with a resin. The surface of the obtained odd-numbered transfer body is coated with a metal plating such as Ni by electroforming or the like. By coating the metal plating, the hardness of the transfer body is increased odd times, and further transfer can be performed. Then, the odd-numbered transfer body is further transferred to produce an even-numbered transfer body. The even-numbered transfer body has the same shape as the produced mold. Finally, the surface of the transfer body is evenly plated with a metal such as Ni by electroforming or the like, thereby completing the replication of the mold.
  • the mold 30 shown in FIG. 7 in which the boundary portions 33 between the plurality of convex portions 32n and the flat surface 31 are also connected by a predetermined curved surface can be produced by the following method.
  • a first method there is a method in which physical etching is performed between the above-described etching step and an odd number of times of transfer.
  • the top of the cylinder 63 becomes gentle, and the shape of the recess of the transfer body 71n becomes gentle.
  • FIG. 12 is a schematic cross-sectional view of an organic light-emitting diode element 100 according to an aspect of the present invention.
  • the organic light emitting diode element 100 includes a base 110, a first electrode 120, an organic semiconductor layer 130 including a light emitting layer 133, and a second electrode 140 in this order.
  • the organic semiconductor layer 130 shown in FIG. 12 includes a hole injection layer 131 and a hole transport layer 132 between the first electrode 120 and the light emitting layer 133 in addition to the light emitting layer 133, and the light emitting layer 133 and the second electrode 140 An electron transport layer 134 and an electron injection layer 135 are provided therebetween.
  • Each of the hole injection layer 131, the hole transport layer 132, the electron transport layer 134, and the electron injection layer 135 is not necessarily provided, and may be omitted.
  • the organic light-emitting diode element 100 of the present invention may further include other layers as long as the effects of the present invention are not impaired.
  • the first electrode 120 and the second electrode 140 apply a voltage to the organic semiconductor layer 130.
  • a voltage is applied between the first electrode 120 and the second electrode 140, electrons and holes are injected into the light emitting layer 133, and these combine to generate light.
  • the generated light is directly transmitted through the first electrode 120 and taken out of the device, or once reflected by the second electrode 140 and taken out of the device.
  • the second electrode 140 has a two-dimensional structure in which a plurality of convex portions 142a to 142n are two-dimensionally arranged on the surface 140A on the light emitting layer 133 side.
  • the two-dimensional structure may be periodic or aperiodic, similar to the mold described above.
  • the average pitch of the plurality of convex portions 142a to 142n is 50 nm to 5 ⁇ m, and preferably 50 nm to 500 nm.
  • the average pitch can be obtained by the same method as the average pitch in the mold. If the average pitch of the convex portions 142a to 142n is within this range, the energy captured as surface plasmons can be efficiently radiated to the surface 140A of the second electrode, which is a metal electrode, and extracted as light.
  • the average aspect ratio of the plurality of convex portions 142a to 142n is 0.01 to 1, and preferably 0.05 to 0.5.
  • the average aspect ratio can be obtained by the same method as the average aspect ratio in the mold. If the average aspect ratio of the projections 142a to 142n on the light emitting layer side surface of the second electrode 140 is within this range, the energy captured as surface plasmons on the surface 140A of the second electrode, which is a metal electrode, is efficiently used. Can be emitted as light.
  • the capture of surface plasmons occurs in the following process.
  • the light emitting layer 133 emits light from the light emitting molecules
  • near-field light is generated in the immediate vicinity of the light emitting point. Since the distance between the light emitting layer 133 and the second electrode 140 is very short, the near-field light is converted into the energy of the propagation surface plasmon at the surface of the second electrode 140.
  • Propagation type surface plasmon on the surface of metal has a surface electromagnetic field caused by free electron density waves generated by incident electromagnetic waves (such as near-field light). In the case of surface plasmons existing on a flat metal surface, the dispersion curve of surface plasmons and the dispersion line of light (space propagation light) do not intersect.
  • the surface plasmon energy cannot be extracted as light.
  • the metal surface has a two-dimensional periodic structure
  • the dispersion curve of surface plasmons diffracted by the two-dimensional periodic structure intersects with the dispersion curve of spatially propagated light.
  • the energy of the surface plasmon can be extracted outside the device as radiant light.
  • the two-dimensional periodic structure is provided, the energy of light lost as surface plasmons can be extracted.
  • the extracted energy is radiated from the surface of the second electrode 140 as space propagating light. At this time, the light radiated from the second electrode 140 has high directivity, and most of the light travels toward the extraction surface. Therefore, high intensity light is emitted from the extraction surface, and the extraction efficiency is improved.
  • the predetermined curved surface is defined in the same manner as the predetermined curved surface in the mold.
  • a flat surface 141 is formed between the plurality of convex portions 142a to 142n.
  • the area ratio occupied by the flat surface 141 is preferably 5 to 50%, and more preferably 5 to 30%.
  • the area ratio of the flat surface 141 on the surface 140A of the second electrode is 5% or more, the aspect ratio of the unevenness for taking out surface plasmons can be reduced.
  • the area ratio of the flat surface 141 on the surface 140A of the second electrode is 50% or less, the surface plasmon captured on the surface 140A of the second electrode can be efficiently converted into light.
  • the second electrode 140 is preferably a material having a large negative value of the real part of the complex dielectric constant, and is preferably selected from a metal material having a high plasma frequency that is advantageous for extracting surface plasmons.
  • a metal material having a high plasma frequency include simple substances such as gold, silver, copper, aluminum, and magnesium, alloys of gold and silver, and alloys of silver and copper.
  • a metal material having a resonance frequency with respect to the entire visible light region is preferable, and the use of silver or aluminum is particularly preferable.
  • the second electrode 140 may have a stacked structure of two or more layers.
  • the thickness of the second electrode 140 is not particularly limited. For example, it is 20 to 2000 nm, preferably 50 to 500 nm.
  • the reflectance is lowered and the front luminance is lowered. If it is thicker than 500 nm, damage due to heat and radiation during film formation and mechanical damage due to film stress accumulate in a layer made of an organic material such as the organic light emitting layer 133.
  • the organic semiconductor layer 130 is made of an organic material.
  • uneven shapes are formed at the interface between the light emitting layer 133 and the electron transport layer 134 of the organic semiconductor layer 130 and at the interface between the electron transport layer 134 and the electron injection layer 135.
  • This uneven shape is opposite to the main surface 10 ⁇ / b> A of the mold 10.
  • the uneven shape is not necessarily formed at the interface between the light emitting layer 133 and the electron transport layer 134 of the organic semiconductor layer 130 and the interface between the electron transport layer 134 and the electron injection layer 135.
  • the uneven shape may be formed on the surface on the second electrode 140 side of any layer constituting the organic semiconductor layer. All the layers on the second electrode 140 side have a shape reflecting the uneven shape rather than the layer on which the uneven shape is formed.
  • the light emitting layer 133 is composed of an organic light emitting material.
  • the organic light emitting material include Tris [1-phenylisoquinoline-C2, N] iridium (III) (Ir (piq) 3), 1,4-bis [4- (N, N-diphenylaminostyrylbenzene)] (DPAVB), Examples thereof include pigment compounds such as Bis [2- (2-benzoxazolyl) phenolato] Zinc (II) (ZnPBO).
  • the host material include a hole transport material and an electron transport material.
  • organic materials are generally used.
  • examples of the material (hole injection material) constituting the hole injection layer 131 include compounds such as 4,4 ′, 4 ′′ -tris (N, N-2-naphthylphenylamino) triphenylamine (2-TNATA). .
  • hole transport material for example, N, N′-diphenyl-N, N′-bis (1-naphthyl)-(1,1′-biphenyl) -4,4 ′ -Aromatic amine compounds such as diamine (NPD), copper phthalocyanine (CuPc), N, N'-Diphenyl-N, N'-di (m-tolyl) benzidine (TPD), and the like.
  • NPD diamine
  • CuPc copper phthalocyanine
  • TPD N, N'-Diphenyl-N, N'-di (m-tolyl) benzidine
  • a material (electron transport material) constituting the electron transport layer 134 and a material (electron injection material) constituting the electron injection layer 13 for example, 2,5-Bis (1-naphthyl) -1,3,4-oxadiazole Oxadiol compounds such as (BND), 2- (4-tert-Butylphenyl) -5- (4-biphenylyl) -1,3,4-oxadiazole (PBD), Tris (8-quinolinolato) aluminum (Alq), etc. And metal complex compounds.
  • the total thickness of the organic semiconductor layer including the light emitting layer 133 is usually 30 to 500 nm.
  • a transparent conductor that transmits visible light is used for the first electrode 120.
  • the transparent conductor which comprises the 1st electrode 120 is not specifically limited, A well-known thing can be used as a transparent conductive material. For example, indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide (Zinc Oxide (ZnO)), zinc-tin oxide (ZTO) )) and the like.
  • the thickness of the first electrode 120 is usually 50 to 500 nm.
  • the material constituting the substrate 110 may be an inorganic material, an organic material, or a combination thereof.
  • the inorganic material include various glasses such as quartz glass, non-alkali glass, and white plate glass, and transparent inorganic minerals such as mica.
  • the organic material include a resin film such as a cycloolefin film and a polyester film, and a fiber reinforced plastic material in which fine fibers such as cellulose nanofiber are mixed in the resin film.
  • the substrate 110 has a high visible light transmittance.
  • the transmittance is in the range of visible light (wavelength 380 nm to 800 nm) without giving a bias to the spectrum, and the transmittance is 70% or more, preferably 80% or more, more preferably 90% or more.
  • each layer constituting the organic light emitting diode 100 can be measured by a spectroscopic ellipsometer, a contact step meter, an AFM, or the like.
  • An organic light emitting diode manufacturing method includes an organic semiconductor layer including a light emitting layer and a second electrode on a surface of a substrate with an electrode having a transparent first electrode on the substrate. Is a manufacturing method of an organic light emitting diode formed by a coating process and a subsequent vacuum film forming process. Between the coating process and the vacuum film-forming process, the above mold is pressed against the outermost surface of the coating layer formed in the coating process, and the inverted shape of the main surface of the mold is formed on the outermost surface of the coating layer A stamper process.
  • the substrate with electrodes forms a transparent first electrode on a transparent substrate.
  • the substrate and the first electrode those described above can be used.
  • a method for forming the first electrode on the substrate a known method can be used.
  • a transparent electrode material such as ITO can be formed on the substrate by sputtering.
  • a commercially available substrate with electrodes may be purchased.
  • ⁇ Application process> a part or all of the layers constituting the organic semiconductor layer are formed by coating.
  • a coating method a known method can be used. For example, spin coating, bar coating, slit coating, die coating, spray coating, an ink jet method, or the like can be used.
  • the coating method does not require a vacuum environment when laminating, and does not require large-scale equipment. Further, since the time for vacuuming or the like is not required, the throughput for manufacturing the organic light emitting diode can be improved.
  • the stamper process is a method of forming an uneven shape by a so-called imprint method.
  • the coating liquid constituting the coating layer follows the shape of the mold. Since the coating liquid has a viscosity enough to maintain the shape, the shape is maintained even after the mold is removed.
  • the coating liquid has dried and evaporated, if the glass transition point exists in the material forming the film formation layer, press the mold while the film formation layer is heated above the glass transition point. It is possible to give a shape.
  • the mold according to one embodiment of the present invention is pressed against the outermost layer of the coating layer formed in the coating process.
  • the outermost layer is the last layer formed in the coating process, and is the layer farthest from the substrate when the coating process is completed.
  • a mold is pressed against the surface of the light emitting layer 133 on the second electrode 140 side to transfer the inverted shape of the mold.
  • the mold according to one embodiment of the present invention includes a plurality of convex portions having a predetermined curved surface and a flat surface.
  • the force applied to the light emitting layer 133 is dispersed along a predetermined curved surface. As a result, it can be avoided that the thickness of the light emitting layer 133 becomes extremely thin, the light emitting layer 133 is cut, or the like.
  • the layer that is not formed in the coating step and the second electrode among the layers constituting the organic semiconductor layer are formed by a vacuum film formation method.
  • a vacuum deposition method a vacuum deposition method, a sputtering method, a CVD (chemical vapor deposition method), or the like can be used.
  • CVD chemical vapor deposition method
  • the vacuum film forming method has a higher reflectivity reflecting the shape of the substrate than the coating method. Therefore, the shape of the convex part and flat surface formed in the outermost layer of the coating layer in the stamper process is reflected in the layer laminated on the outermost layer of the coating layer.
  • the recess and the flat surface are preferably connected by a predetermined curved surface. That is, it is preferable that the boundary between the concave portion and the flat surface is gentle.
  • the layer thickness of the layer formed by vacuum film formation can be further suppressed from becoming non-uniform.
  • the stamper process using a mold having a predetermined shape is included, desired unevenness can be easily formed on the light emitting layer side of the second electrode. .
  • the organic light emitting diode manufactured by this method can extract surface plasmons and obtain high light emission characteristics.
  • 10A main surface, 1a to 1n, 41, 51a to 51n: flat surface, 2a to 2n, 32n, 42a to 42n, 52a to 52n: convex portion, 2Aa to 2An: Center point, 1 Aa to 1 An: Center point, 2B: Curved surface, 20: Laminate, 21: First layer, 22: Second layer, 23: Third layer, 26: Layer, 26B: Outer surface, 3, 33: boundary part, 4: ridge line part, 100: organic light emitting diode, 110: substrate, 120: first electrode, 130: organic semiconductor layer, 131: hole injection layer, 132: hole transport layer, 133: light emitting layer 134: electron transport layer, 135: electron injection layer, 140: second electrode, 142a to 142n: convex portion

Abstract

This die has a flat surface and a plurality of projections on the principal surface. The average pitch of the plurality of projections is 50 nm to 5 μm, and the average aspect ratio of the plurality of projections is 0.01 to 1. Eighty percent or more of the plurality of projections have a prescribed curved surface. In the prescribed curved surface, an inclined angle of a second tangent plane in contact with a second point relative to a first tangent plane in contact with a first point is within the range of 60°, where the first point represents any point on the prescribed curved surface and the second point represents a point displaced from the first point by 1/10 of the average pitch.

Description

金型、有機発光ダイオードの製造方法及び有機発光ダイオードMold, organic light emitting diode manufacturing method, and organic light emitting diode
本発明は、金型、有機発光ダイオードの製造方法及び有機発光ダイオードに関する。本願は、2015年9月10日に、日本に出願された特願2015-178324号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a mold, an organic light emitting diode manufacturing method, and an organic light emitting diode. This application claims priority based on Japanese Patent Application No. 2015-178324 for which it applied to Japan on September 10, 2015, and uses the content here.
 有機発光ダイオードは、有機エレクトロルミネッセンスを利用した発光素子である。有機発光ダイオードは、一般的に、有機発光材料を含有する発光層を含む有機半導体層の両面にそれぞれ陽極、陰極が設けられた構成を有する。有機半導体層は、発光層の他、必要に応じて電子注入層、電子輸送層、ホール輸送層、ホール注入層などを有する。有機発光ダイオードは、視野角依存性が少ない、消費電力が少ない、極めて薄いものができる等の利点を有する。 Organic light-emitting diodes are light-emitting elements that utilize organic electroluminescence. An organic light emitting diode generally has a configuration in which an anode and a cathode are provided on both sides of an organic semiconductor layer including a light emitting layer containing an organic light emitting material. In addition to the light emitting layer, the organic semiconductor layer includes an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, and the like as necessary. Organic light-emitting diodes have advantages such as low viewing angle dependency, low power consumption, and extremely thin devices.
一方で、有機発光ダイオードは、光取出し効率が必ずしも充分とはいえない。光取出し効率は、発光層で発生した光エネルギーに対する光の取出し面(例えばボトムエミッション型の場合は基体面)から大気中に放出される光エネルギーの割合である。
光取出し効率を低下させる要因の一つとして表面プラズモンの影響がある。有機発光ダイオードでは、発光層と金属である陰極との間の距離が近い。そのため、発光層で生じた近接場光の一部は陰極の表面で表面プラズモンに変換されて失われ、有機発光ダイオードの光取出し効率が低下する。光取出し効率は、有機発光ダイオードを備えたディスプレイ、照明等の明るさに影響する指標であり、改善するための種々の方法が検討されている。
On the other hand, the organic light emitting diode does not necessarily have sufficient light extraction efficiency. The light extraction efficiency is the ratio of the light energy released into the atmosphere from the light extraction surface (for example, the substrate surface in the case of the bottom emission type) with respect to the light energy generated in the light emitting layer.
One factor that reduces the light extraction efficiency is the effect of surface plasmons. In the organic light emitting diode, the distance between the light emitting layer and the metal cathode is close. Therefore, a part of the near-field light generated in the light emitting layer is lost by being converted to surface plasmons on the surface of the cathode, and the light extraction efficiency of the organic light emitting diode is lowered. The light extraction efficiency is an index that affects the brightness of a display equipped with an organic light emitting diode, illumination, and the like, and various methods for improving it have been studied.
 光取出し効率を高めるために、特許文献1には、凸部または凹部による二次元格子構造を金属層(陰極)の表面に設けた構造が開示されている。金属層表面の二次元格子構造は、表面プラズモンのエネルギーを光に変換し、変換された光が素子外部へ取り出される。特許文献1では、金属層表面の二次元格子構造を、基体に設けた二次元格子構造を反映させて得ている。具体的には、二次元格子構造が設けられた基体上に第1電極、発光層を含む有機半導体層、第2電極を積層することにより、第2電極の発光層側の面に、基体と同等の二次元格子構造を反映させている。 In order to increase the light extraction efficiency, Patent Document 1 discloses a structure in which a two-dimensional lattice structure with convex portions or concave portions is provided on the surface of a metal layer (cathode). The two-dimensional lattice structure on the surface of the metal layer converts surface plasmon energy into light, and the converted light is extracted outside the device. In Patent Document 1, the two-dimensional lattice structure on the surface of the metal layer is obtained by reflecting the two-dimensional lattice structure provided on the substrate. Specifically, by laminating a first electrode, an organic semiconductor layer including a light emitting layer, and a second electrode on a base provided with a two-dimensional lattice structure, the base and the surface of the second electrode on the light emitting layer side are formed. An equivalent two-dimensional lattice structure is reflected.
 一般的に、有機半導体層および第1、第2電極は、スパッタリングや蒸着法を用いた真空成膜法により形成される。これに対し、特許文献2には、有機薄膜太陽電池における有機半導体層をスピンコート法、インクジェット法、スリットコート法等の塗布法によって形成することが開示されている。有機薄膜太陽電池は、有機発光ダイオードと同様の構成を有しており、有機発光ダイオードの有機半導体層も塗布法によって形成できる。 Generally, the organic semiconductor layer and the first and second electrodes are formed by a vacuum film forming method using sputtering or vapor deposition. On the other hand, Patent Document 2 discloses forming an organic semiconductor layer in an organic thin film solar cell by a coating method such as a spin coating method, an ink jet method, or a slit coating method. The organic thin film solar cell has the same configuration as the organic light emitting diode, and the organic semiconductor layer of the organic light emitting diode can be formed by a coating method.
国際公開第2012/60404号International Publication No. 2012/60404 国際公開第2014/208713号International Publication No. 2014/208713
 しかしながら、例えば特許文献1に記載された方法のような基体に二次元格子構造を加工する方法は、基体の加工コストが高くなるという問題がある。また、基体を加工して二次元格子構造を作製した場合、基体上に形成される有機半導体層は、特許文献2に記載の塗布法を用いて形成できないという問題がある。塗布法は塗布時に液相の材料を用いるため、凹凸形状(二次元格子構造)が埋まりやすい。そのため、真空成膜法と比較して、基体表面の凹凸形状の反映性が金属層表面において低くなる。形状の反映性が低いと、第2電極に表面プラズモンを取り出すために必要な所望の形状を設けることが難しくなる。 However, for example, a method of processing a two-dimensional lattice structure on a substrate such as the method described in Patent Document 1 has a problem that the processing cost of the substrate becomes high. Further, when a two-dimensional lattice structure is manufactured by processing the substrate, there is a problem that the organic semiconductor layer formed on the substrate cannot be formed using the coating method described in Patent Document 2. Since the coating method uses a liquid phase material at the time of coating, the uneven shape (two-dimensional lattice structure) is easily filled. Therefore, compared with the vacuum film-forming method, the reflectivity of the uneven shape on the surface of the substrate is lowered on the surface of the metal layer. If the reflectivity of the shape is low, it is difficult to provide a desired shape necessary for extracting surface plasmons on the second electrode.
一方で、有機半導体層等を塗布で形成することは、製造設備の簡素化に伴う製造コストの低減、真空引き等の時間を短縮することによるスループットの向上、等の利点を有する。そのため、塗布法を用いて有機半導体層を形成したいという強い要望がある。 On the other hand, forming an organic semiconductor layer or the like by coating has advantages such as a reduction in manufacturing cost accompanying simplification of manufacturing equipment and an improvement in throughput by shortening a time such as evacuation. Therefore, there is a strong demand to form an organic semiconductor layer using a coating method.
 そこで本発明者らは、塗布工程、凹凸形状を作製するスタンパ工程、真空成膜工程を順に行い有機発光ダイオードを作製する方法を採用した。この方法では、まず塗布工程において、塗布法により有機半導体層の少なくとも一部を形成する。次いで、塗布工程で得られた塗布層の最外面に所望の凹凸と反対形状の金型を押し当て、塗布層の最外層に所望の凹凸を形成する。最後に、塗布工程で形成しなかった残りの層を真空成膜法により形成する。この方法は、基体を加工する必要がないため基体の加工コストが低減するという利点、真空成膜により作製する層数を減らすことができるため、製造に係るスループットが向上するという利点、凹凸形状を形成した後は、真空成膜法を用いるため、第2電極に所望の凹凸形状を反映させることができるという利点を有する。 Therefore, the present inventors adopted a method of fabricating an organic light emitting diode by sequentially performing a coating process, a stamper process for fabricating a concavo-convex shape, and a vacuum film forming process. In this method, at least a part of the organic semiconductor layer is first formed by a coating method in a coating process. Next, a mold having a shape opposite to the desired irregularities is pressed against the outermost surface of the coating layer obtained in the coating step, thereby forming the desired irregularities on the outermost layer of the coating layer. Finally, the remaining layer that was not formed in the coating process is formed by a vacuum film formation method. This method eliminates the need to process the substrate, reduces the processing cost of the substrate, reduces the number of layers formed by vacuum film formation, and improves the manufacturing throughput, and provides an uneven shape. After the formation, since a vacuum film forming method is used, there is an advantage that a desired uneven shape can be reflected on the second electrode.
 しかしながら、発明者らは更なる検討の結果、塗布工程、スタンパ工程及び真空成膜工程を組み合わせて作製した有機発光ダイオードは、想定される発光強度に比べて十分な発光強度を得ることができないという問題に気付いた。 However, as a result of further studies, the inventors have found that organic light-emitting diodes produced by combining the coating process, stamper process and vacuum film-forming process cannot obtain sufficient light emission intensity compared to the assumed light emission intensity. I noticed the problem.
 本発明は、上記事情に鑑みてなされたものである。塗布工程、スタンパ工程及び真空成膜工程を組み合わせた方法を用いた場合でも、十分な発光特性を示すことができる有機発光ダイオードを作製するための金型を提供することを課題とする。 The present invention has been made in view of the above circumstances. It is an object of the present invention to provide a mold for manufacturing an organic light emitting diode capable of exhibiting sufficient light emission characteristics even when a method combining a coating process, a stamper process, and a vacuum film forming process is used.
 本発明者等は、上記課題を解決すべく、鋭意研究を進めた。
 その結果、金型の形状を所定の形状とすることで、有機発光ダイオードを塗布工程、スタンパ工程及び真空成膜工程を組み合わせて作製した場合でも、有機発光ダイオードが十分な発光特性を示すことができることを見出した。
The inventors of the present invention have made extensive studies to solve the above problems.
As a result, by setting the shape of the mold to a predetermined shape, the organic light emitting diode may exhibit sufficient light emission characteristics even when the organic light emitting diode is manufactured by combining the coating process, the stamper process, and the vacuum film forming process. I found out that I can do it.
 本発明は、以下の発明を含む。
(1)本発明の一態様に係る金型は、主面に平坦面と、複数の凸部とを有し、前記複数の凸部の平均ピッチは50nm~5μmであり、前記複数の凸部の平均アスペクト比は0.01~1であり、前記複数の凸部のうち80%以上は所定の湾曲面を有し、前記所定の湾曲面は、前記所定の湾曲面の任意の点を第1点とし、前記第1点から前記平均ピッチの1/10だけずれた点を第2点とした際に、前記第1点に接する第1接平面に対する前記第2点に接する第2接平面の傾き角が60°以内である。
The present invention includes the following inventions.
(1) A mold according to an aspect of the present invention has a flat surface on a main surface and a plurality of convex portions, and an average pitch of the plurality of convex portions is 50 nm to 5 μm, and the plurality of convex portions The average aspect ratio of the plurality of protrusions is 0.01 to 1, and 80% or more of the plurality of convex portions has a predetermined curved surface, and the predetermined curved surface has a predetermined point on the predetermined curved surface. A second tangent plane that is in contact with the second point with respect to the first tangent plane that is in contact with the first point when the second point is a point that is shifted from the first point by 1/10 of the average pitch. The inclination angle is within 60 °.
(2)上記(1)に記載の金型において、前記主面における前記平坦面の占める面積率が5~50%であってもよい。 (2) In the mold according to (1), an area ratio of the flat surface in the main surface may be 5 to 50%.
(3)上記(1)または(2)のいずれかに記載の金型において、前記平坦面と前記所定の湾曲面を有する凸部とが、前記所定の湾曲面の条件を満たすように連結されていてもよい。 (3) In the mold according to any one of (1) and (2), the flat surface and the convex portion having the predetermined curved surface are connected so as to satisfy the condition of the predetermined curved surface. It may be.
(4)上記(1)~(3)のいずれか一つに記載の金型において、前記複数の凸部を構成する前記所定の湾曲部は少なくとも1つ以上の変曲部を有し、前記変曲部のうち最も前記平坦面に近い第1変曲部から前記平坦面までの最近接距離が、前記複数の凸部の平均ピッチの1/10以上であってもよい。 (4) In the mold according to any one of (1) to (3), the predetermined curved portion constituting the plurality of convex portions includes at least one inflection portion, The closest distance from the first inflection portion closest to the flat surface to the flat surface among the inflection portions may be 1/10 or more of the average pitch of the plurality of convex portions.
(5)上記(1)~(4)のいずれか一つに記載の金型であって、前記複数の凸部はハニカム格子を形成し、前記複数の凸部の頂部は、前記平坦面に対して垂直な方向からの平面視で、前記ハニカム格子を構成する六角形の頂点に位置する構成でもよい。 (5) The mold according to any one of (1) to (4), wherein the plurality of convex portions form a honeycomb lattice, and the top portions of the plurality of convex portions are formed on the flat surface. Alternatively, it may be configured to be located at the apex of the hexagon that constitutes the honeycomb lattice in a plan view from a direction perpendicular to the direction.
(6)上記(5)に記載の金型であって、前記六角形の頂点に位置する凸部は、前記六角形の隣接する頂点に位置する凸部との間に稜線部を有し、前記稜線部の少なくとも一部は、前記稜線部を繋ぐ凸部より前記平坦面側に存在してもよい。 (6) The mold according to (5), wherein the convex portion positioned at the vertex of the hexagon has a ridge portion between the convex portion positioned at the adjacent vertex of the hexagon, At least a part of the ridge line portion may be present on the flat surface side from a convex portion connecting the ridge line portions.
(7)上記(6)に記載の金型であって、前記稜線部の最も前記平坦面に近い部分の前記平坦面からの高さは、前記稜線部を繋ぐ凸部の前記平坦面からの高さに対して50%~90%であってもよい。 (7) In the mold according to (6), a height of the portion of the ridge line portion closest to the flat surface from the flat surface is a height of the convex portion connecting the ridge line portions from the flat surface. It may be 50% to 90% with respect to the height.
(8)本発明の一態様に係る有機発光ダイオードの製造方法において、基体上に透明な第1電極を有する電極付き基体の前記第1電極が形成された面に、発光層を含む有機半導体層と第2電極とを、塗布工程とその後の真空成膜工程とにより形成する有機発光ダイオードの製造方法であって、前記塗布工程と前記真空成膜工程との間に、上記(1)~(7)のいずれか一つに記載の金型を前記塗布工程で形成した塗布層の最外面に押し当て、前記金型の主面の形状の反転形状を前記塗布層の最外面に形成するスタンパ工程を有する。 (8) In the method for manufacturing an organic light emitting diode according to one aspect of the present invention, an organic semiconductor layer including a light emitting layer on a surface of the substrate with an electrode having a transparent first electrode on the substrate, on which the first electrode is formed. And the second electrode are formed by an application step and a subsequent vacuum film formation step, wherein the method (1) to (1) is performed between the application step and the vacuum film formation step. 7) A stamper that presses the mold according to any one of 7) against the outermost surface of the coating layer formed in the coating step, and forms an inverted shape of the shape of the main surface of the mold on the outermost surface of the coating layer. Process.
(9)本発明の一態様に係る有機発光ダイオードは、基体と、透明な第1電極と、発光層を含む有機半導体層と、第2電極とを順に有し、前記第2電極の前記有機半導体層側の面は、平坦面と、前記平坦面から前記基体に向かって突出した複数の凸部とを有し、前記複数の凸部の平均ピッチは50nm~5μmであり、前記複数の凸部の平均アスペクト比は0.01~1であり、前記複数の凸部のうち80%以上は所定の湾曲面を有し、前記所定の湾曲面は、前記所定の湾曲面の任意の点を第1点とし、前記第1点から前記凸部の中心点に向かって前記平均ピッチの1/10だけずれた点を第2点とした際に、前記第1点に接する第1接平面に対する前記第2点に接する第2接平面の傾き角が60°以内である。 (9) An organic light-emitting diode according to an aspect of the present invention includes a base, a transparent first electrode, an organic semiconductor layer including a light-emitting layer, and a second electrode in order, and the organic of the second electrode The surface on the semiconductor layer side has a flat surface and a plurality of convex portions protruding from the flat surface toward the base, and the average pitch of the plurality of convex portions is 50 nm to 5 μm, and the plurality of convex portions The average aspect ratio of the portion is 0.01 to 1, and 80% or more of the plurality of convex portions has a predetermined curved surface, and the predetermined curved surface is an arbitrary point of the predetermined curved surface. When the first point is a point that is shifted from the first point by 1/10 of the average pitch toward the center point of the convex portion, the second point is a first tangent plane that is in contact with the first point. The inclination angle of the second tangent plane in contact with the second point is within 60 °.
(10)上記(9)に記載の有機発光ダイオードにおいて、前記第2電極の前記有機半導体層側の面における前記平坦面の占める面積率が5~50%であってもよい。 (10) In the organic light emitting diode according to (9), an area ratio of the flat surface in the surface of the second electrode on the organic semiconductor layer side may be 5 to 50%.
 本発明の一態様にかかる金型は、有機発光ダイオードを塗布工程、スタンパ工程及び真空成膜工程を組み合わせて作製した場合でも、有機発光ダイオードが十分な発光特性を示すことができる。 The metal mold according to one embodiment of the present invention can exhibit sufficient light emission characteristics even when the organic light emitting diode is manufactured by combining the coating process, the stamper process, and the vacuum film forming process.
 本発明の一態様に係る有機発光ダイオードは、所望の発光特性を有すると共に、生じた表面プラズモンを効率よく取り出すことができる。 The organic light-emitting diode according to one embodiment of the present invention has desired light-emitting characteristics and can efficiently take out generated surface plasmons.
 本発明の一態様に係る有機発光ダイオードの製造方法は、表面プラズモンを効率よく取り出すことができる有機発光ダイオードを低コストで作製することができる。 The method for producing an organic light emitting diode according to one embodiment of the present invention can produce an organic light emitting diode that can efficiently extract surface plasmons at low cost.
本発明の一態様にかかる金型の斜視模式図である。It is a perspective schematic diagram of the metal mold | die concerning 1 aspect of this invention. 本発明の一態様にかかる金型を、金型に形成された凸部の中心点と平坦面の中心点を通る面で切断した断面模式図である。It is the cross-sectional schematic diagram which cut | disconnected the metal mold | die concerning 1 aspect of this invention by the surface which passes along the center point of the convex part formed in the metal mold | die, and the center point of a flat surface. 本発明の一態様にかかる金型の平面模式図である。It is a plane schematic diagram of the metal mold | die concerning 1 aspect of this invention. 本発明の一態様に係る金型を、金型に形成された凸部の中心点を通る面で切断した図であって、一つの凸部を拡大した断面図である。It is the figure which cut | disconnected the metal mold | die which concerns on 1 aspect of this invention in the surface which passes along the center point of the convex part formed in the metal mold | die, Comprising: It is sectional drawing which expanded one convex part. 本発明の一態様に係る金型を、塗布により形成された積層体表面に押し付けた際の断面模式図である。It is a cross-sectional schematic diagram at the time of pressing the metal mold | die which concerns on 1 aspect of this invention to the laminated body surface formed by application | coating. 所定の湾曲面を有さない金型を、塗布により形成された積層体表面に押し付けた際の断面模式図である。It is a cross-sectional schematic diagram at the time of pressing the metal mold | die which does not have a predetermined curved surface to the laminated body surface formed by application | coating. 本発明の別の態様に係る金型を、塗布により形成された積層体表面に押し付けた際の断面模式図である。It is a cross-sectional schematic diagram at the time of pressing the metal mold | die which concerns on another aspect of this invention to the laminated body surface formed by application | coating. 図7に示す転写物上に、真空成膜法で層を形成した場合の断面模式図である。It is a cross-sectional schematic diagram at the time of forming a layer by the vacuum film-forming method on the transcription | transfer material shown in FIG. 本発明の一態様に係る金型の隣接する凸部に沿って切断した断面模式図である。It is a cross-sectional schematic diagram cut | disconnected along the convex part which the metal mold | die which concerns on 1 aspect of this invention adjoins. 本発明の別の態様に係る金型の斜視模式図である。It is a perspective schematic diagram of the metal mold | die which concerns on another aspect of this invention. 本発明の別の態様に係る金型の斜視模式図である。It is a perspective schematic diagram of the metal mold | die which concerns on another aspect of this invention. 本発明の一態様に係る有機発光ダイオード素子の断面模式図である。It is a cross-sectional schematic diagram of the organic light emitting diode element which concerns on 1 aspect of this invention. 本実施形態にかかる金型の要部を平坦面に対して垂直な方向からの平面視した図である。It is the figure which planarly viewed the principal part of the metal mold | die concerning this embodiment from the direction perpendicular | vertical with respect to a flat surface. 金型の製造方法を模式的に示した図である。It is the figure which showed the manufacturing method of the metal mold | die typically. 金型の製造過程における滴下工程および単粒子膜形成工程を模式的に示した図である。It is the figure which showed typically the dripping process and single particle film formation process in the manufacture process of a metal mold | die.
 以下、図面を用いて各構成を説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, each configuration will be described with reference to the drawings. In the drawings used in the following description, in order to make the features easy to understand, the portions that become the features may be shown in an enlarged manner for the sake of convenience. The materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately modified and implemented without departing from the scope of the invention.
「金型」
 図1は、本発明の一態様に係る金型を模式的に示す斜視図である。本発明の一態様に係る金型10には、主面10Aに複数の平坦面1a~1nと、複数の凸部2a~2nとが設けられている。複数の平坦面1a~1nは、複数の凸部2a~2nのうち最隣接する凸部によって囲まれた領域内に配設されている。図1においては、最隣接する凸部の中心点を結ぶと平面視六角形が描かれ、その中央の領域に平坦面が配設されている。複数の凸部2a~2nは一部で連結している。
"Mold"
FIG. 1 is a perspective view schematically showing a mold according to one aspect of the present invention. The mold 10 according to one aspect of the present invention is provided with a plurality of flat surfaces 1a to 1n and a plurality of convex portions 2a to 2n on the main surface 10A. The plurality of flat surfaces 1a to 1n are disposed in a region surrounded by the most adjacent convex portion among the plurality of convex portions 2a to 2n. In FIG. 1, when connecting the center points of the most adjacent convex portions, a hexagonal shape in a plan view is drawn, and a flat surface is disposed in the center region. The plurality of convex portions 2a to 2n are partially connected.
 図2は、本発明の一態様に係る金型の凸部の中心点と平坦面の中心点を結ぶ面で切断した断面図である。図2に示すような断面は、AFM(原子間力顕微鏡)イメージまたは切断サンプルを電子顕微鏡で観察した顕微鏡画像として得られる。 FIG. 2 is a cross-sectional view taken along a plane connecting the center point of the convex portion of the mold according to one aspect of the present invention and the center point of the flat surface. The cross section as shown in FIG. 2 is obtained as an AFM (Atomic Force Microscope) image or a microscope image obtained by observing a cut sample with an electron microscope.
 AFMイメージによる断面は、凸部2a~2nの平均ピッチPの30~40倍の正方形の領域について撮影したAFMイメージから、凸部2nの中心点2Anと平坦面1nの中心点1Anとを通る切断面の断面情報を取り出して得られる。
断面は、金型10をFIB(Focused Ion Beam)等で凸部2nの中心点2Anを通る断面を切り出して得られる。断面の顕微鏡画像は、その断面を光学顕微鏡で観察して得られる。金型の断面形状が切断により変形する恐れのある場合は、切断に耐えうる材料で凸部表面を覆うかまたは凸部を樹脂等で包埋した上で切断することが好ましい。
The cross section by the AFM image is a cut through the center point 2An of the protrusion 2n and the center point 1An of the flat surface 1n from the AFM image taken for a square region 30 to 40 times the average pitch P of the protrusions 2a to 2n. It is obtained by extracting the cross-section information of the surface.
The cross section is obtained by cutting out the cross section passing through the center point 2An of the convex portion 2n from the mold 10 with FIB (Focused Ion Beam) or the like. The microscopic image of the cross section is obtained by observing the cross section with an optical microscope. When there is a possibility that the cross-sectional shape of the mold is deformed by cutting, it is preferable to cut the surface after covering the surface of the convex portion with a material that can withstand cutting or embedding the convex portion with a resin or the like.
AFMイメージで測定した断面と顕微鏡画像で観察した断面のいずれも得られる場合は、AFMイメージで測定した断面を優先する。AFMイメージで測定した断面の方が、所定の切断面の測定面を得やすく、断面形状を確認しやすいためである。凸部2a~2nが規則的に配列している場合は、断面を得るための切断方向を凸部2a~2nの配列方向に沿った方向とすることが好ましい。 When both the cross section measured with the AFM image and the cross section observed with the microscope image are obtained, the cross section measured with the AFM image is given priority. This is because the cross-section measured with the AFM image is easier to obtain a measurement surface of a predetermined cut surface, and the cross-sectional shape is easier to confirm. When the convex portions 2a to 2n are regularly arranged, it is preferable that a cutting direction for obtaining a cross section is a direction along the arrangement direction of the convex portions 2a to 2n.
 凸部2a~2nの中心点2Aa~2Anは、AFMの測定結果に基づき設定する。具体的には、基準面と平行に各凸部2a~2nについて20nm毎に複数の等高線を引き、各等高線の重心点(x座標とy座標で決定される点)を求める。これらの各重心点の平均位置(各x座標の平均とy座標の平均で決定される位値)を、各凸部2a~2nの中心点2Aa~2Anとする。基準面は、AFMで測定した傾きを有する画像情報から傾き補正を行った後の測定面である。
 平坦面1a~1nの中心点1Aa~1Anは、AFMの測定結果に基づき設定する。具体的には、複数の平坦面1a~1nのそれぞれに平面視内接する内接円を設ける。この内接円の中心を平坦面1a~1nの中心点1Aa~1Anとする。
The center points 2Aa to 2An of the convex portions 2a to 2n are set based on the measurement result of AFM. Specifically, a plurality of contour lines are drawn every 20 nm for each of the convex portions 2a to 2n in parallel with the reference plane, and the center of gravity (point determined by the x and y coordinates) of each contour line is obtained. The average positions of these barycentric points (the values determined by the average of the x coordinates and the average of the y coordinates) are the center points 2Aa to 2An of the convex portions 2a to 2n. The reference plane is a measurement plane after the tilt correction is performed from the image information having the tilt measured by the AFM.
The center points 1Aa to 1An of the flat surfaces 1a to 1n are set based on the measurement result of AFM. Specifically, an inscribed circle that is inscribed in a plan view is provided on each of the plurality of flat surfaces 1a to 1n. The centers of the inscribed circles are the center points 1Aa to 1An of the flat surfaces 1a to 1n.
 凸部2a~2nは、平坦面1a~1nに対して突出した部分である。平坦面1a~1nとは、最隣接する凸部を結んだ領域の重心点を通りAFMの基準面と平行な面に対し、傾きが±5゜以内である領域を意味する。 The convex portions 2a to 2n are portions protruding with respect to the flat surfaces 1a to 1n. The flat surfaces 1a to 1n mean regions where the inclination is within ± 5 ° with respect to a plane passing through the center of gravity of the region connecting the adjacent convex portions and parallel to the reference surface of the AFM.
凸部2a~2nは、金型10の一面に二次元に配置されている。「二次元に配置」とは、複数の凸部が、同一平面上に配置されている状態をいう。複数の凸部が二次元に配置された二次元構造は、周期的であっても非周期的であってもよい。 The convex portions 2 a to 2 n are two-dimensionally arranged on one surface of the mold 10. “Two-dimensionally arranged” means a state in which a plurality of convex portions are arranged on the same plane. The two-dimensional structure in which the plurality of convex portions are two-dimensionally arranged may be periodic or aperiodic.
金型10は、有機発光ダイオードの金属からなる電極に凹凸形状を作製する際に好適に用いることができる。凹凸形状は、電極表面に生じた表面プラズモンを取り出すことに寄与する。金型10を用いて作製される有機発光ダイオードが狭い周波数帯域の光を発光する場合には、複数の凸部の二次元的な配置は、周期的であることが好ましい。 The mold 10 can be suitably used when producing an uneven shape on an electrode made of a metal of an organic light emitting diode. The uneven shape contributes to taking out surface plasmons generated on the electrode surface. When the organic light emitting diode produced using the mold 10 emits light in a narrow frequency band, the two-dimensional arrangement of the plurality of convex portions is preferably periodic.
周期的な二次元構造の好ましい具体例として、隣接する凸部を結んだ直線の配向方向が2方向で、その交差角度が90°であるもの(正方格子)、隣接する凸部を結んだ直線の配向方向が3方向で、その交差角度が120°であるもの(六方格子、ハニカム格子)等が挙げられる。 As a preferable specific example of the periodic two-dimensional structure, the alignment direction of the straight line connecting adjacent convex portions is two directions and the crossing angle is 90 ° (square lattice), and the straight line connecting adjacent convex portions And the orientation direction of which is three directions and the crossing angle is 120 ° (hexagonal lattice, honeycomb lattice).
「交差角度が120°の位置関係」とは、具体的には、以下の条件を満たす関係をいう。まず、1つの中心点2Aaから、隣接する中心点2Abの方向に長さが平均ピッチPと等しい長さの線分L1を引く。次いで中心点2Aaから、線分L1に対して、120゜の方向に、平均ピッチPと等しい長さの線分L2を引く。中心点2Aaに隣接する中心点が、中心点2Aaと反対側における各線分L1の終点から、各々平均ピッチPの15%以内の範囲にあれば、交差角度が120°の位置関係にある。交差角度が90度の位置関係とは、上述の「120°」との記載を「90°」と読み替えることで定義される。 The “positional relationship at an intersection angle of 120 °” specifically refers to a relationship that satisfies the following conditions. First, a line segment L1 having a length equal to the average pitch P is drawn from one center point 2Aa in the direction of the adjacent center point 2Ab. Next, a line segment L2 having a length equal to the average pitch P is drawn from the center point 2Aa in the direction of 120 ° with respect to the line segment L1. If the center point adjacent to the center point 2Aa is within 15% of the average pitch P from the end point of each line segment L1 on the side opposite to the center point 2Aa, the crossing angle is 120 °. The positional relationship where the intersection angle is 90 degrees is defined by replacing the above description of “120 °” with “90 °”.
凸部2a~2nが上記関係を満たすように周期的に配置されると、凸部2a~2nの配置の周期と、表面プラズモンの周期が共鳴し、特定の周波数帯域の光の取出し効率が高まる。また凸部2a~2nがハニカム格子状に配列した場合、金型10は、強度が増し、繰り返し利用時の耐久性が特に高まる。ハニカム格子状は、平坦面1a~1nに対して垂直な方向から見た平面視で、複数の凸部2a~2nの頂部が、六角形の頂点に位置する関係と言い換えることもできる。 When the protrusions 2a to 2n are periodically arranged so as to satisfy the above relationship, the arrangement period of the protrusions 2a to 2n and the surface plasmon period resonate, and the light extraction efficiency in a specific frequency band is increased. . In addition, when the convex portions 2a to 2n are arranged in a honeycomb lattice shape, the mold 10 has an increased strength and particularly improved durability during repeated use. The honeycomb lattice shape can be rephrased as a relationship in which the tops of the plurality of convex portions 2a to 2n are located at the vertices of the hexagon in a plan view as viewed from the direction perpendicular to the flat surfaces 1a to 1n.
これに対し、金型10を用いて作製される有機発光ダイオードが、広い周波数帯域の光または互いに異なる複数の周波数帯域の光を発光する場合には、複数の凸部2a~2nの二次元的な配置は、非周期的であることが好ましい。「非周期な配置」とは、凸部2a~2nの中心間の間隔および配置方向が一定でない状態をいう。 On the other hand, when the organic light emitting diode manufactured using the mold 10 emits light in a wide frequency band or light in a plurality of frequency bands different from each other, the two-dimensional structure of the plurality of convex portions 2a to 2n. The arrangement is preferably aperiodic. “Aperiodic arrangement” refers to a state in which the distance between the centers of the convex portions 2a to 2n and the arrangement direction are not constant.
 ここで平均ピッチPは隣接する凸部間の距離であり、具体的には、以下のようにして求めることができる。ここで隣接する凸部とは、図1においては平坦面を介さずに隣接する凸部のことを意味する。
まず、金型10の主面10Aにおける無作為に選択された領域で、一辺が平均ピッチPの30~40倍の正方形の領域について、AFMイメージを得る。例えば、設計上のピッチが300nm程度の場合、9μm×9μm~12μm×12μmの領域のイメージを得る。そして、得られた領域内の各凸部の隣接間距離を計測し、計測した隣接間距離を平均することで、領域内の平均ピッチPを求める。このような処理を無作為に選択された合計25カ所以上の同面積の領域について同様に行い、各領域における平均ピッチP1~25を求める。こうして得られた25カ所以上の領域における平均ピッチP~P25の平均値が平均ピッチPである。この際、各領域同士は、少なくとも1mm離れて選択されることが好ましく、より好ましくは5mm~1cm離れて選択される。
Here, the average pitch P is a distance between adjacent convex portions, and can be specifically obtained as follows. Here, the adjacent convex portion means an adjacent convex portion without a flat surface in FIG.
First, an AFM image is obtained for a randomly selected region on the main surface 10A of the mold 10 and a square region whose side is 30 to 40 times the average pitch P. For example, when the designed pitch is about 300 nm, an image of an area of 9 μm × 9 μm to 12 μm × 12 μm is obtained. Then, the adjacent distance between the convexes in the area obtained by measuring, by averaging the distance between adjacent measured to determine the average pitch P 1 in the region. Similarly performed on the region of such a total of 25 places or more of the same area that is selected at random process, an average pitch P 1 ~ P 25 in each region. The average value of the average pitches P 1 to P 25 in the 25 or more regions thus obtained is the average pitch P. At this time, each region is preferably selected at least 1 mm apart, more preferably 5 mm to 1 cm apart.
 凸部2a~2nの平均ピッチPは、50nm~5μmであり、50nm~500nmであることが好ましい。凸部2a~2nの平均ピッチが当該範囲内であれば、金型10を用いて作製した有機発光ダイオードにおいて、金属電極から表面プラズモンを効率よく取り出すことができる。 The average pitch P of the convex portions 2a to 2n is 50 nm to 5 μm, and preferably 50 nm to 500 nm. If the average pitch of the convex portions 2a to 2n is within this range, surface plasmons can be efficiently extracted from the metal electrode in the organic light-emitting diode fabricated using the mold 10.
凸部2a~2nは、周期的な構造がエリアごとにCa~Cnで形成される。巨視的な全体としては、各エリアCa~Cnは、非周期的な構造となっていてもよい。図3に示す各エリアCa~Cnは、平坦面の中心点に対する各凸部の中心点の交差角度が120°の位置関係で整列している領域である。図3では、各凸部2a~2nの中心点の位置を、便宜上、その中心点を中心とする円uで示している。 The protrusions 2a to 2n have a cyclic structure formed of Ca to Cn for each area. As a macroscopic whole, each of the areas Ca to Cn may have an aperiodic structure. Each area Ca to Cn shown in FIG. 3 is an area in which the intersection angle of the center point of each convex portion with respect to the center point of the flat surface is aligned in a positional relationship of 120 °. In FIG. 3, for convenience, the position of the center point of each of the convex portions 2a to 2n is indicated by a circle u centered on the center point.
 各エリアCa~Cnの最頻面積Q(各エリア面積の最頻値)は、以下の範囲であることが好ましい。
 平均ピッチPが500nm未満の時、10μm×10μmのAFMイメージ測定範囲内における最頻面積Qは、0.026μm~6.5μmであることが好ましい。
 平均ピッチPが500nm以上1μm未満の時、10μm×10μmのAFMイメージ測定範囲内における最頻面積Qは、0.65μm~26μmであることが好ましい。
 平均ピッチPが1μm以上の時、50μm×50μmのAFMイメージ測定範囲内における最頻面積Qは、2.6μm~650μmであることが好ましい。
 最頻面積Qが好ましい範囲内であれば、周期的な構造は巨視的には格子方位がランダムな多結晶体となるため、金属表面で表面プラズモンが伝播光に変換されて輻射される際に、平面方向に関して輻射光の放出角度がランダムになり、素子から取り出される発光光が異方性を有することを抑制することができる。
The mode Q of each area Ca to Cn (mode value of each area) is preferably in the following range.
When the average pitch P is less than 500 nm, the modal area Q is in the AFM image measurement range of 10 [mu] m × 10 [mu] m, is preferably 0.026μm 2 ~ 6.5μm 2.
When the average pitch P of less than 1μm than 500 nm, the modal area Q is in the AFM image measurement range of 10 [mu] m × 10 [mu] m, is preferably 0.65μm 2 ~ 26μm 2.
When the average pitch P is not less than 1 [mu] m, most frequent area Q is in the AFM image measuring range of 50 [mu] m × 50 [mu] m, is preferably 2.6μm 2 ~ 650μm 2.
If the mode Q is within a preferable range, the periodic structure is a polycrystalline body having a random lattice orientation macroscopically. Therefore, when surface plasmons are converted into propagating light on the metal surface and radiated. The emission angle of radiation light with respect to the planar direction becomes random, and the emission light extracted from the element can be prevented from having anisotropy.
 各エリアCa~Cnは、図3に示すように、面積、形状及び格子方位がランダムである。
 面積のランダム性の度合いは、具体的には、以下の条件を満たすことが好ましい。
 まず、ひとつのエリアの境界線が外接する最大面積の楕円を描き、その楕円を下記式(1)で表す。
 X/a+Y/b=1・・・(1)
As shown in FIG. 3, the areas Ca to Cn have random areas, shapes, and lattice orientations.
Specifically, the degree of randomness of the area preferably satisfies the following conditions.
First, an ellipse having the maximum area circumscribed by the boundary line of one area is drawn, and the ellipse is expressed by the following formula (1).
X 2 / a 2 + Y 2 / b 2 = 1 (1)
 平均ピッチPが500nm未満の時、10μm×10μmのAFMイメージ測定範囲内におけるπabの標準偏差は、0.08μm以上であることが好ましい。
 平均ピッチPが500nm以上1μm未満の時、10μm×10μmのAFMイメージ測定範囲内におけるπabの標準偏差は、1.95μm以上であることが好ましい。
 平均ピッチPが1μm以上の時、50μm×50μmのAFMイメージ測定範囲内におけるπabの標準偏差は、8.58μm以上であることが好ましい。
 πabの標準偏差が好ましい範囲内であれば、金属表面から所定の角度に輻射される表面プラズモンの素子外部への平面方向に関する放出角度を平均化させる効果に優れ、発光光が異方性を有することを抑制することができる。
When the average pitch P is less than 500 nm, the standard deviation of πab in the 10 μm × 10 μm AFM image measurement range is preferably 0.08 μm 2 or more.
When the average pitch P is 500 nm or more and less than 1 μm, the standard deviation of πab in the 10 μm × 10 μm AFM image measurement range is preferably 1.95 μm 2 or more.
When the average pitch P is 1 μm or more, the standard deviation of πab in the AFM image measurement range of 50 μm × 50 μm is preferably 8.58 μm 2 or more.
If the standard deviation of πab is within a preferable range, the surface plasmon radiated from the metal surface to a predetermined angle is excellent in the effect of averaging the emission angle in the planar direction to the outside of the device, and the emitted light has anisotropy. This can be suppressed.
 各エリアCa~Cnの形状のランダム性の度合いは、具体的には、式(1)におけるaとbの比、a/bの標準偏差が0.1以上であることが好ましい。各エリアCa~Cnの格子方位のランダム性は、具体的には、以下の条件を満たすことが好ましい。
 まず、任意のエリア(I)における任意の隣接する2つの凸部の中心点を結ぶ直線K0を画く。次に、該エリア(I)に隣接する1つのエリア(II)を選択し、そのエリア(II)における任意の凸部と、その凸部に隣接する3つの凸部の中心点を結ぶ3本の直線K1~K3を画く。直線K1~K3が、直線K0を基準に60°ずつ回転させた6本の直線に対して、いずれも3度以上異なる角度を有する場合、エリア(I)とエリア(II)との格子方位が異なる、と定義する。
 エリア(I)に隣接するエリアの内、格子方位がエリア(I)の格子方位と異なるエリアが2以上存在することが好ましく、3以上存在することが好ましく、5以上存在することがさらに好ましい。
Specifically, the degree of randomness of the shapes of the areas Ca to Cn is preferably such that the ratio of a to b in the formula (1) and the standard deviation of a / b are 0.1 or more. Specifically, the randomness of the lattice orientation of each area Ca to Cn preferably satisfies the following conditions.
First, a straight line K0 connecting the center points of any two adjacent convex portions in any area (I) is drawn. Next, one area (II) adjacent to the area (I) is selected, and the three protrusions in the area (II) are connected to the center point of the three protrusions adjacent to the protrusion. Draw the straight lines K1 to K3. When the straight lines K1 to K3 have angles different from each other by 6 degrees or more with respect to the six straight lines rotated by 60 ° with respect to the straight line K0, the lattice orientations of the area (I) and the area (II) are Define different.
Of the areas adjacent to the area (I), there are preferably two or more areas having a lattice orientation different from the lattice orientation of the area (I), preferably 3 or more, and more preferably 5 or more.
 このとき凸部は、格子方位が各エリアCa~Cnの内では揃っているが、巨視的には揃っていない多結晶構造体である。巨視的な格子方位のランダム性は、FFT(高速フーリエ変換)基本波の最大値と最小値の比で評価できる。FFT基本波の最大値と最小値の比は、AFM像を取得し、その2次元フーリエ変換像を求め、基本波の波数だけ原点から離れた円周を作図し、この円周上の最も振幅の大きい点と最も振幅の小さな点を抽出し、その振幅の比として求める。
 FFT基本波の最大値と最小値の比が大きい場合は、凸部の格子方位が揃っており、凸部を2次元結晶とみなした場合単結晶性が高い構造と言える。反対に、FFT基本波の最大値と最小値の比が小さい場合は、凸部の格子方位が揃っておらず、凸部を2次元結晶とみなした場合は多結晶構造であると言える。
At this time, the convex portion is a polycrystalline structure in which the lattice orientation is aligned in each of the areas Ca to Cn but is not aligned macroscopically. The randomness of the macroscopic lattice orientation can be evaluated by the ratio between the maximum value and the minimum value of the FFT (Fast Fourier Transform) fundamental wave. The ratio between the maximum value and the minimum value of the FFT fundamental wave is obtained by acquiring an AFM image, obtaining a two-dimensional Fourier transform image thereof, and drawing a circle away from the origin by the wave number of the fundamental wave. The point having the largest amplitude and the point having the smallest amplitude are extracted and obtained as a ratio of the amplitudes.
When the ratio of the maximum value and the minimum value of the FFT fundamental wave is large, the lattice orientations of the convex portions are uniform, and it can be said that the structure has high single crystallinity when the convex portions are regarded as two-dimensional crystals. On the other hand, when the ratio of the maximum value and the minimum value of the FFT fundamental wave is small, the lattice orientations of the convex portions are not aligned, and when the convex portions are regarded as a two-dimensional crystal, it can be said to have a polycrystalline structure.
 複数の凸部2a~2nの平均アスペクト比は0.01~1であり、0.05~0.5であることが好ましい。平均アスペクト比とは、凸部2a~2nの平均幅Dに対する凸部2a~2nの平均高さHを意味する。金型10における平均アスペクト比が0.01以下であると、金型10を用いて作製した有機発光ダイオードにおいて、表面プラズモンを輻射光として取り出す効果を十分に得ることができない。これに対し、平均アスペクト比が1以上であると、凸部を後述する所定の湾曲面で構成することが難しくなる。また有機発光ダイオードの製造時において金型10を用いた形状の転写が難しくなる。 The average aspect ratio of the plurality of convex portions 2a to 2n is 0.01 to 1, and preferably 0.05 to 0.5. The average aspect ratio means the average height H of the convex portions 2a to 2n with respect to the average width D of the convex portions 2a to 2n. When the average aspect ratio of the mold 10 is 0.01 or less, the organic light-emitting diode manufactured using the mold 10 cannot sufficiently obtain the effect of extracting surface plasmons as radiation light. On the other hand, when the average aspect ratio is 1 or more, it is difficult to configure the convex portion with a predetermined curved surface described later. In addition, it becomes difficult to transfer the shape using the mold 10 when manufacturing the organic light emitting diode.
 凸部2a~2nの平均アスペクト比は、AFMによって測定される。
 まず金型10の主面10Aの無作為に選択された25μm(5μm×5μm)の領域1箇所についてAFM像を得る。ついで、得たAFM像の対角線方向に線を引き、この線と交わった複数の凸部2a~2nのそれぞれの高さと幅を測定する。凸部の高さは平坦面1a~1nから凸部の頂部までの距離を意味し、凸部の幅は平面視した際に凸部の中心点を中心とした内接円の直径を意味する。そして、この領域における凸部の高さと幅の平均値を求める。同様の処理を、無作為に選択された合計25カ所の領域について行う。そして得られた25カ所の領域毎の凸部の高さと幅の平均値をさらに平均した値が平均高さと平均幅である。そして、平均高さを平均幅で割った値が、平均アスペクト比である。
The average aspect ratio of the convex portions 2a to 2n is measured by AFM.
First, an AFM image is obtained for one region of 25 μm 2 (5 μm × 5 μm) randomly selected on the main surface 10A of the mold 10. Next, a line is drawn in the diagonal direction of the obtained AFM image, and the height and width of each of the plurality of convex portions 2a to 2n crossing the line are measured. The height of the convex portion means the distance from the flat surfaces 1a to 1n to the top of the convex portion, and the width of the convex portion means the diameter of the inscribed circle centered on the central point of the convex portion when viewed in plan. . And the average value of the height and width of the convex part in this area | region is calculated | required. Similar processing is performed for a total of 25 regions selected at random. And the value which further averaged the average value of the height of the convex part for every 25 area | regions obtained and the width | variety is an average height and an average width | variety. A value obtained by dividing the average height by the average width is the average aspect ratio.
凸部2a~2nの80%以上は、所定の湾曲面により構成されている。複数の凸部のうち所定の湾曲面を有する凸部の割合は、90%以上であることがより好ましく、95%以上であることがさらに好ましい。所定の湾曲面は以下のように定義される。 More than 80% of the convex portions 2a to 2n are constituted by a predetermined curved surface. The proportion of the convex portions having a predetermined curved surface among the plurality of convex portions is more preferably 90% or more, and further preferably 95% or more. The predetermined curved surface is defined as follows.
 図4は、金型を凸部の中心点を通る任意の断面で切断し、その内の一つの凸部を拡大した断面模式図である。まず凸部2nを構成する湾曲面2Bから任意の1点を第1点p1として選択する。この第1点p1に対する接平面を第1接平面t1とする。また第1点p1から凸部2nの中心点2Anに向かって平均ピッチの1/10だけずれた点を第2点p2とする。ここで平均ピッチの1/10だけずれたとは、第1点p1から中心点2Anに向かって平坦面1と平行に移動した距離Lを意味する。この第2点p2に対する接平面を第2接平面t2とする。このとき第1接平面t1に対する第2接平面t2の傾き角をθとする。
 凸部2nの湾曲面2Bのどの部分においても、第1接平面t1に対する第2接平面t2の傾き角θが60°以内の関係を満たす場合、凸部2nは所定の湾曲面であるといえる。傾き角θは、45°以内であることが好ましく、30°以内であることがさらに好ましい。
FIG. 4 is a schematic cross-sectional view in which a mold is cut at an arbitrary cross section passing through the center point of the convex portion, and one convex portion is enlarged. First, an arbitrary point is selected as the first point p1 from the curved surface 2B constituting the convex portion 2n. A tangent plane with respect to the first point p1 is defined as a first tangent plane t1. A point shifted from the first point p1 by 1/10 of the average pitch toward the center point 2An of the convex portion 2n is defined as a second point p2. Here, the deviation by 1/10 of the average pitch means a distance L moved in parallel with the flat surface 1 from the first point p1 toward the center point 2An. A tangential plane with respect to the second point p2 is defined as a second tangential plane t2. At this time, the inclination angle of the second tangent plane t2 with respect to the first tangent plane t1 is θ.
In any part of the curved surface 2B of the convex portion 2n, when the inclination angle θ of the second tangential plane t2 with respect to the first tangential plane t1 satisfies the relationship within 60 °, the convex portion 2n is a predetermined curved surface. . The inclination angle θ is preferably within 45 °, and more preferably within 30 °.
 図5は、本発明の一態様に係る金型を、塗布により形成された積層体表面に押し付けた際の断面模式図である。積層体20は、第1の層21と、第2の層22と、第3の層23からなる。積層体20の第3の層23に金型10を押し付けると、金型10の凸部2a~2nが最初に積層体20に押し当てられる。そのため積層体20を構成する各層には凸部2a~2nの頂部から外周部に向かって力F1が加わる。この力F1により金型10の複数の凸部2a~2nの間の空間にも各層を構成する材料が供給される。その結果、積層体20を構成するそれぞれの層は変形し、金型10に対応した形状となる。 FIG. 5 is a schematic cross-sectional view when the mold according to one embodiment of the present invention is pressed against the surface of a laminate formed by coating. The stacked body 20 includes a first layer 21, a second layer 22, and a third layer 23. When the mold 10 is pressed against the third layer 23 of the stacked body 20, the convex portions 2 a to 2 n of the mold 10 are pressed against the stacked body 20 first. Therefore, a force F1 is applied to each layer constituting the stacked body 20 from the top of the convex portions 2a to 2n toward the outer peripheral portion. The material constituting each layer is also supplied to the space between the plurality of convex portions 2a to 2n of the mold 10 by this force F1. As a result, each layer constituting the stacked body 20 is deformed to have a shape corresponding to the mold 10.
積層体20の各層に加わる力F1は、応力集中することなく押し付けられた凸部2a~2nの頂部から外周部に向かって広がる。これは金型10の凸部2a~2nは所定の湾曲面からなり、なだらかな形状をしているためである。力F1が応力集中しなければ、第1の層21、第2の層22、第3の層23のそれぞれは、面内方向に均一に広がる。そのため、それぞれの厚みが極端に薄くなることをさけることができる。
また一般に空隙が生じやすい部分である金型10の複数の凸部2a~2nと平坦面との境界部3にも、所定の湾曲面2Bに沿って各層の材料が充分供給される。すなわち、境界部3に空隙が生じることも防ぐことができる。
The force F1 applied to each layer of the laminate 20 spreads from the top of the convex portions 2a to 2n pressed without stress concentration toward the outer peripheral portion. This is because the convex portions 2a to 2n of the mold 10 are formed of a predetermined curved surface and have a gentle shape. If the force F1 is not stress concentrated, each of the first layer 21, the second layer 22, and the third layer 23 spreads uniformly in the in-plane direction. Therefore, it can avoid that each thickness becomes extremely thin.
In addition, the material of each layer is sufficiently supplied along the predetermined curved surface 2B to the boundary portion 3 between the plurality of convex portions 2a to 2n and the flat surface of the mold 10, which is generally a portion where voids are easily generated. That is, it is possible to prevent a gap from occurring in the boundary portion 3.
これに対し、図6は、所定の湾曲面を有さない金型を、塗布により形成された積層体表面に押し付けた際の断面模式図である。図6に示す金型15の凸部152nは、形状が急峻に変化する角部155を有する。この角部155は、角部155を挟む2点における接平面が、所定の湾曲面の関係性を満たさない。そのため積層体20を構成する各層に加わる力F2は、凸部152nの形状に沿って均一に分散されず、角部155近傍に応力集中する。その結果、第1の層21、第2の層22、第3の層23のそれぞれは、面内方向に均一に広がることができない。そのため、各層が角部155近傍で切断されてしまったり、層厚が極端に薄くなったりする場合がある。
また凸部152nと平坦面との境界部153に、十分な量の材料を供給することができず、空隙が発生しやすくなる。
On the other hand, FIG. 6 is a schematic cross-sectional view when a mold having no predetermined curved surface is pressed against the surface of the laminate formed by coating. The convex part 152n of the metal mold | die 15 shown in FIG. 6 has the corner | angular part 155 from which a shape changes abruptly. In this corner portion 155, the tangent planes at two points sandwiching the corner portion 155 do not satisfy the relationship of a predetermined curved surface. Therefore, the force F2 applied to each layer constituting the stacked body 20 is not uniformly distributed along the shape of the convex portion 152n, and stress concentrates in the vicinity of the corner portion 155. As a result, each of the first layer 21, the second layer 22, and the third layer 23 cannot spread uniformly in the in-plane direction. Therefore, each layer may be cut in the vicinity of the corner 155 or the layer thickness may be extremely thin.
In addition, a sufficient amount of material cannot be supplied to the boundary portion 153 between the convex portion 152n and the flat surface, and voids are easily generated.
積層体20を構成する層は、有機発光ダイオードを構成するいずれかの層に対応する。有機発光ダイオードを構成する各層の一部が切断されると、切断された部分では有機発光ダイオードが発光しない、または十分な発光特性を示さないという問題が生じる。すなわち、本実施形態に係る金型10を用いることで、有機発光ダイオードが発光しない、または十分な発光特性を示さないという問題を避けることができる。 The layer constituting the stacked body 20 corresponds to any layer constituting the organic light emitting diode. When a part of each layer constituting the organic light emitting diode is cut, there is a problem that the organic light emitting diode does not emit light or does not exhibit sufficient light emission characteristics at the cut portion. That is, by using the mold 10 according to this embodiment, it is possible to avoid the problem that the organic light emitting diode does not emit light or does not exhibit sufficient light emission characteristics.
図5に戻って、金型10と積層体20の間に空隙が発生することを避けるためには、境界部3もなだらかであることが好ましい。すなわち、凸部2a~2nと平坦面の接続部分のいずれにおいても、任意の1点における接平面に対する任意の1点から平均ピッチの1/10ずれた点における接平面の傾き角が60°以内の関係を満たすことが好ましい。 Returning to FIG. 5, it is preferable that the boundary 3 is also gentle in order to avoid the generation of a gap between the mold 10 and the laminate 20. That is, in any of the connecting portions of the convex portions 2a to 2n and the flat surface, the inclination angle of the tangential plane at a point deviated by 1/10 of the average pitch from any one point with respect to the tangential plane at any one point is within 60 °. It is preferable to satisfy the relationship.
図7は、本発明の別の態様に係る金型を、塗布により形成された積層体表面に押し付けた際の断面模式図である。図7に示す金型30は、複数の凸部と平坦面31を有し、複数の凸部と平坦面31との境界部33は、所定の湾曲面により連結されている。すなわち、平坦面31と凸部32nの接続部分においても、任意の1点における接平面に対する任意の1点から平均ピッチの1/10ずれた点における接平面の傾き角が60°以内の関係を満たす。すなわち、境界部33はなだらかになる。 FIG. 7 is a schematic cross-sectional view when a mold according to another aspect of the present invention is pressed against the surface of a laminate formed by coating. 7 has a plurality of convex portions and a flat surface 31, and a boundary portion 33 between the plurality of convex portions and the flat surface 31 is connected by a predetermined curved surface. That is, also in the connection part of the flat surface 31 and the convex part 32n, the relationship in which the inclination angle of the tangent plane at a point deviated by 1/10 of the average pitch from any one point with respect to the tangent plane at any one point is within 60 °. Fulfill. That is, the boundary portion 33 becomes gentle.
図7に示す金型30を積層体20に押し付けると、凸部32nの頂部から外周部に向かって加わる力F1と、境界部33付近に加わる力F3のいずれもが応力集中しない。そのため、金型30の主面に沿って、各層を構成する材料はスムーズに広がる。その結果、金型10と積層体20の間に空隙が発生することを避けることができると共に、積層体20の各層の厚みを面内方向で均一にすることができる。 When the mold 30 shown in FIG. 7 is pressed against the laminate 20, neither the force F1 applied from the top of the convex portion 32n toward the outer peripheral portion or the force F3 applied near the boundary portion 33 is stress concentrated. Therefore, the material constituting each layer is smoothly spread along the main surface of the mold 30. As a result, it is possible to avoid the generation of voids between the mold 10 and the stacked body 20 and to make the thickness of each layer of the stacked body 20 uniform in the in-plane direction.
 金型30において、平坦面31と複数の凸部の境界部33をなだらかにすることは、凸部を構成する所定の湾曲部が少なくとも1つ以上の変曲部pinを有すること、変曲部pinのうち最も平坦面31側の第1変曲部p1inと平坦面31とを結ぶ曲面が下に凸であることを共に満たすことにより実現できる。変曲部pinは、凸部の断面における変曲点の集合体であり、上に凸の曲面から下に凸の曲面に変更する部分、又は下に凸の曲面から上に凸の曲面に変更する部分である。変曲部pinは平面視すると、凸部32nに沿ったライン状に形成されている。 In the mold 30, to the smooth flat surface 31 and a plurality of convex portions of the boundary portion 33, the predetermined curved portion constituting a convex portion has at least one or more curved portion p in, inflection can be realized by satisfying both the curved surface connecting the first inflection p1 in the flat surface 31 of the flattest surface 31 side of the part p in is convex downward. Curved portion p in is a collection of inflection points in the cross section of the convex portion, the portion to be changed from a convex curved surface on the convex curved surface below, or a convex curved surface on the convex curved surface below This is the part to change. The inflection part pin is formed in a line shape along the convex part 32n in plan view.
第1変曲部p1inから平坦面31までの最近接距離は、複数の凸部の平均ピッチPの1/10以上であることが好ましく、1/5以上であることがより好ましい。最近接距離とは、凸部32nを平面視した際の第1変曲部p11nと平坦面31間の幅のうち、最も幅の狭い部分の距離である。第1変曲部p1inから平坦面31までの最近接距離が、複数の凸部の平均ピッチPの1/10以上であれば、境界部33の傾斜をより緩やかにすることができる。 The closest distance from the first inflection part p1 in to the flat surface 31 is preferably 1/10 or more of the average pitch P of the plurality of convex parts, and more preferably 1/5 or more. The closest distance is the distance of the narrowest portion of the width between the first inflection part p11n and the flat surface 31 when the convex part 32n is viewed in plan. If the closest distance from the first inflection part p1 in to the flat surface 31 is 1/10 or more of the average pitch P of the plurality of convex parts, the inclination of the boundary part 33 can be made gentler.
 また金型30の境界部33をなだらかにすると、金型30を用いて作製された被転写物上に真空成膜法で層を形成した際に、真空成膜法で形成される層が被転写物の形状を反映する反映性が高まる。
 図8は、図7に示す転写物上に、真空成膜法で層を形成した場合の断面模式図である。図7に示す金型30は、平坦面31と凸部32nの境界部33がなだらかである。そのため、金型30を用いて積層体20の最表面に形成された湾曲面20Aの境界部23Aもなだらかである。形状が急峻に変化する部分は一般に真空成膜時の成膜粒子のつきまわりが大きく変化することが多い。これに対し境界部23Aを含む湾曲面20Aの形状がなだらかであれば、成膜粒子のつきまわりが大きく変化せず、均一な層を形成することができる。図8に示す転写物は、積層体20の主面(最表面)20Aがなだらかである。そのため、真空成膜した層26の外表面26Bは、主面20Aの形状を十分に反映することができる。ここで、「十分に反映」とは、スタンパ工程で形成した形状を完全に反映させることまでは要しない。真空成膜した層26の外表面26Bを構成している凸部の平均ピッチが主面20Aを構成している凸部の平均ピッチに比べて±10%以内であり、かつ、真空成膜した層26の外表面26Bを構成している凸部の平均高さが主面20Aを構成している凸部の平均高さに比べて±10%以内であれば、真空成膜した層26の外表面26Bは、主面20Aの形状を十分に反映していると言うことができる。ここで言う平均ピッチの測定には、上述した平均ピッチPの測定方法を適用できる。また、平均高さの測定には、上述した平均高さHの測定方法を適用できる。
 真空成膜した層26が電極である場合は、外表面26Bが主面20Aの形状を十分反映した形状となっている必要はない。この場合でも、主面20Aがなだらかであるため、層26の膜厚が薄くなったり、切断されることはない。
 湾曲面22Bや外表面26Bの形状を確認する方法としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)による断面観察や、観察面を被覆している層を除去した後に三次元電子顕微鏡やAFMによって観察する方法が挙げられる。
In addition, when the boundary portion 33 of the mold 30 is gently formed, when the layer is formed on the transfer object manufactured using the mold 30 by the vacuum film formation method, the layer formed by the vacuum film formation method is not covered. Reflection reflecting the shape of the transcript is enhanced.
FIG. 8 is a schematic cross-sectional view when a layer is formed on the transferred material shown in FIG. 7 by a vacuum film forming method. In the mold 30 shown in FIG. 7, the boundary portion 33 between the flat surface 31 and the convex portion 32n is gentle. Therefore, the boundary portion 23A of the curved surface 20A formed on the outermost surface of the laminate 20 using the mold 30 is also gentle. In general, in the portion where the shape changes sharply, the throwing-around of film-forming particles during vacuum film formation often changes greatly. On the other hand, if the shape of the curved surface 20A including the boundary portion 23A is gentle, the throwing-in of the film-forming particles does not change greatly, and a uniform layer can be formed. In the transferred material shown in FIG. 8, the main surface (outermost surface) 20A of the laminate 20 is gentle. Therefore, the outer surface 26B of the vacuum-deposited layer 26 can sufficiently reflect the shape of the main surface 20A. Here, “sufficient reflection” does not need to completely reflect the shape formed in the stamper process. The average pitch of the convex portions constituting the outer surface 26B of the vacuum-deposited layer 26 is within ± 10% compared to the average pitch of the convex portions constituting the main surface 20A, and the vacuum film was formed. If the average height of the convex portions constituting the outer surface 26B of the layer 26 is within ± 10% of the average height of the convex portions constituting the main surface 20A, the vacuum-deposited layer 26 It can be said that the outer surface 26B sufficiently reflects the shape of the main surface 20A. The measurement method of the average pitch P mentioned above can be applied to the measurement of the average pitch said here. Moreover, the measurement method of the average height H mentioned above is applicable to the measurement of average height.
When the vacuum-deposited layer 26 is an electrode, the outer surface 26B does not need to have a shape that sufficiently reflects the shape of the main surface 20A. Even in this case, since the main surface 20A is gentle, the thickness of the layer 26 is not reduced or cut.
As a method of confirming the shape of the curved surface 22B or the outer surface 26B, cross-sectional observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), or three-dimensional after removing a layer covering the observation surface Examples thereof include a method of observing with an electron microscope or AFM.
図1に戻って、主面10Aにおける平坦面1a~1nの占める面積率は5~50%であることが好ましく、5%~30%であることがより好ましい。主面10Aにおける平坦面1a~1nの面積率が5%以上であると、この金型を用いて作製した有機発光ダイオードにおいて表面プラズモンを取り出すための凹凸のアスペクト比を小さくすることができる。一方、主面10Aにおける平坦面1a~1nの面積率が50%以下であれば、この金型を用いて作製した有機発光ダイオードにおいて表面プラズモンが平坦面に捕捉されることを抑制できる。 Returning to FIG. 1, the area ratio of the flat surfaces 1a to 1n in the main surface 10A is preferably 5 to 50%, more preferably 5 to 30%. When the area ratio of the flat surfaces 1a to 1n in the main surface 10A is 5% or more, the aspect ratio of the concavities and convexities for extracting surface plasmons in the organic light emitting diode manufactured using this mold can be reduced. On the other hand, if the area ratio of the flat surfaces 1a to 1n in the main surface 10A is 50% or less, it is possible to suppress the surface plasmon from being captured by the flat surface in the organic light emitting diode manufactured using this mold.
図9は、本発明の一態様に係る金型を隣接する凸部の中心間を結ぶ面によって切断した断面模式図である。より具体的には、図1における隣接する凸部の中心点を結ぶ平面で切断した断面図である。図9における点線は、凸部2a~2nの近似曲線である。近似曲線は、凸部2a~2nの中心点2Aa~2Anを頂点に正規分布で近似することで得ることができる。凸部2a~2nと稜線部4の境界が近似曲線である。隣接する凸部は稜線部4により連結されている。近似曲線より中心点2Aa~2An側が凸部2a~2nであり、その反対側が稜線部4である。 FIG. 9 is a schematic cross-sectional view of the mold according to one aspect of the present invention cut by a plane connecting the centers of adjacent convex portions. More specifically, it is a cross-sectional view cut along a plane connecting the center points of adjacent convex portions in FIG. The dotted lines in FIG. 9 are approximate curves of the convex portions 2a to 2n. The approximate curve can be obtained by approximating the center points 2Aa to 2An of the convex portions 2a to 2n with vertices by a normal distribution. The boundaries between the convex portions 2a to 2n and the ridge line portion 4 are approximate curves. Adjacent convex portions are connected by a ridge line portion 4. The center points 2Aa to 2An side of the approximate curve are the convex portions 2a to 2n, and the opposite side is the ridge line portion 4.
稜線部4と凸部2a~2nの接続部、及び稜線部4と平坦面1a~1nの接続部は、所定の湾曲面の条件を満たすように連結されていることが好ましい。これらの接続部を所定の湾曲面の条件を満たすように連結することで、積層体に金型10を押し付けた際に生じる力をより均一に分散させることができる。すなわち、金型10を押し付ける積層体を構成する層が切断されることを抑制することができる。 The connecting portion between the ridge line portion 4 and the convex portions 2a to 2n and the connecting portion between the ridge line portion 4 and the flat surfaces 1a to 1n are preferably connected so as to satisfy a predetermined curved surface condition. By connecting these connecting portions so as to satisfy a predetermined curved surface condition, the force generated when the mold 10 is pressed against the laminate can be more uniformly dispersed. That is, it can suppress that the layer which comprises the laminated body which presses the metal mold | die 10 is cut | disconnected.
また、図9に示すように、稜線部4の少なくとも一部は、稜線部4を繋ぐ凸部2nより平坦面1n側に存在することが好ましい。すなわち、稜線部4の最も平坦面1nに近い部分の平坦面1nからの高さhは、稜線部4を繋ぐ凸部2nの平坦面1nからの高さHより低いことが好ましい。 Further, as shown in FIG. 9, at least a part of the ridge line portion 4 is preferably present on the flat surface 1 n side from the convex portion 2 n connecting the ridge line portion 4. That is, it is preferable that the height h from the flat surface 1n of the ridge line portion 4 closest to the flat surface 1n is lower than the height H from the flat surface 1n of the convex portion 2n connecting the ridge line portion 4.
図13は、本実施形態にかかる金型の要部を平坦面に対して垂直な方向からの平面視した図である。稜線部4の高さhが凸部2nの高さHより低いと、金型を被転写物に押し付けた際に、その部分を介して金型と被転写物との間に介在した空気が除かれる(図13の矢印)。すなわち、被転写物に空気が混入することを避け、均一な転写を行うことができる。 FIG. 13 is a plan view of the main part of the mold according to the present embodiment viewed from a direction perpendicular to the flat surface. When the height h of the ridge line portion 4 is lower than the height H of the convex portion 2n, when the mold is pressed against the transfer object, the air interposed between the mold and the transfer object via that portion Is removed (arrow in FIG. 13). That is, air can be prevented from being mixed into the transfer object and uniform transfer can be performed.
また、図13に示すように、平坦面1nに対して垂直な方向からの平面視で、複数の凸部2a~2nの頂部がハニカム格子(六方格子)を構成する六角形の頂点に位置する場合、金型を被転写物に押し付けた際の樹脂等の広がりが均等になり、被転写物に対して圧力を均等に加えることができる。均一に圧力を加えることができれば、例えば、被転写物が薄層の場合でも層が切断されてしまったり、層厚が極端に薄くなったりすることが避けられる。 Further, as shown in FIG. 13, the tops of the plurality of convex portions 2a to 2n are located at the apexes of the hexagons constituting the honeycomb lattice (hexagonal lattice) in a plan view from a direction perpendicular to the flat surface 1n. In this case, the spread of the resin or the like when the mold is pressed against the transfer object becomes even, and the pressure can be evenly applied to the transfer object. If pressure can be applied uniformly, for example, even when the transfer object is a thin layer, it is possible to avoid the layer being cut or the layer thickness becoming extremely thin.
また、図9に示す稜線部4の最も平坦面1nに近い部分の平坦面1nからの高さhは、稜線部4を繋ぐ凸部2nの平坦面1nからの高さHに対して、50%~90%であることが好ましく、60~85%であることがより好ましい。稜線部4の高さhが低すぎると金型の強度が低下し、稜線部4の高さhが高すぎると空気の逃げ道が少なくなる。 Further, the height h from the flat surface 1n of the portion closest to the flat surface 1n of the ridge line portion 4 shown in FIG. 9 is 50 with respect to the height H from the flat surface 1n of the convex portion 2n connecting the ridge line portion 4. % To 90% is preferable, and 60 to 85% is more preferable. If the height h of the ridge line portion 4 is too low, the strength of the mold is lowered, and if the height h of the ridge line portion 4 is too high, the air escape path is reduced.
ここまでは、図1の金型10を例に本発明の一実施形態について説明したが、金型の形状はこの構成に限られない。
図10は、本発明の別の態様に係る金型の斜視模式図である。図10に示す金型40は、凸部42a~42n同士が互いに離間して配置され、1つの平坦面41からなる点が上述の金型10等と異なる。
Up to this point, the embodiment of the present invention has been described by taking the mold 10 of FIG. 1 as an example, but the shape of the mold is not limited to this configuration.
FIG. 10 is a schematic perspective view of a mold according to another aspect of the present invention. The mold 40 shown in FIG. 10 is different from the above-described mold 10 and the like in that the convex portions 42a to 42n are arranged so as to be separated from each other and are formed by one flat surface 41.
 この他にも、例えば、図11のような構成でもよい。図11は、本発明の別の態様に係る金型の斜視模式図である。図11に示すように金型50は、複数の凸部52a~52nと、複数の平坦面51a~51nとを有する。図1に示す金型10と図11に示す金型50は、凸部と平坦面の位置関係が逆転している。すなわち、金型50において、複数の凸部52a~52nは、複数の平坦面51a~51nのうち最隣接する平坦面によって囲まれた領域内に配設されている。図11においては、最隣接する平坦面の中心点を結ぶと平面視六角形が描かれ、その中央の領域に凸部が配設されている。金型50のように複数の凸部52a~52nと平坦面51a~51nの位置関係が逆転する場合でも、各凸部52a~52nは所定の湾曲面により形成されているため、金型50を押し付けるスタンパ工程において積層体を構成する層が切断されることを抑制することができる。 Besides this, for example, a configuration as shown in FIG. FIG. 11 is a schematic perspective view of a mold according to another aspect of the present invention. As shown in FIG. 11, the mold 50 has a plurality of convex portions 52a to 52n and a plurality of flat surfaces 51a to 51n. In the mold 10 shown in FIG. 1 and the mold 50 shown in FIG. 11, the positional relationship between the convex portion and the flat surface is reversed. In other words, in the mold 50, the plurality of convex portions 52a to 52n are disposed in a region surrounded by the flat surfaces closest to each other among the plurality of flat surfaces 51a to 51n. In FIG. 11, when connecting the center points of the adjacent flat surfaces, a hexagonal shape in a plan view is drawn, and a convex portion is disposed in the center region. Even when the positional relationship between the plurality of convex portions 52a to 52n and the flat surfaces 51a to 51n is reversed as in the mold 50, each convex portion 52a to 52n is formed by a predetermined curved surface. It can suppress that the layer which comprises a laminated body is cut | disconnected in the stamper process pressed.
 本発明の一態様に係る金型は、所定の湾曲面を有する凸部を有する。そのため、金型10を用いて作製した有機発光ダイオードは、層厚の薄い部分や層が形成されていない部分を有さず、効率的に表面プラズモンを取り出すことができる。 The mold according to one aspect of the present invention has a convex portion having a predetermined curved surface. Therefore, the organic light emitting diode manufactured using the mold 10 does not have a thin layer portion or a portion where no layer is formed, and can efficiently extract surface plasmons.
「金型の製造方法」
金型は、電子ビームリソグラフィー、機械式切削加工、レーザーリソグラフィー、レーザー熱リソグラフィー、干渉露光、縮小露光、アルミニウムの陽極酸化法及び粒子マスクを利用した方法等を用いて形成することができる。中でも金型は、粒子マスクを利用した方法を用いて作製することが好ましい。粒子マスクを利用した方法とは、金型の母材の平坦面上に粒子単層膜をエッチングマスクとして形成した後に、エッチング処理を行う方法である。粒子マスクを利用した方法では、粒子直下の母材は、エッチングされず凸部となる。
"Mold manufacturing method"
The mold can be formed using electron beam lithography, mechanical cutting, laser lithography, laser thermal lithography, interference exposure, reduction exposure, anodization of aluminum, a method using a particle mask, or the like. In particular, the mold is preferably produced using a method using a particle mask. The method using a particle mask is a method of performing an etching process after forming a particle single layer film as an etching mask on a flat surface of a mold base material. In the method using the particle mask, the base material directly under the particle is not etched and becomes a convex portion.
 以下に、粒子マスクを利用した方法の具体例について説明する。図14は、金型の製造方法を模式的に示した図である。 Hereinafter, a specific example of a method using a particle mask will be described. FIG. 14 is a diagram schematically showing a mold manufacturing method.
 まず基体61上に多数の粒子Mからなる単粒子膜エッチングマスク62を形成する(図14(a))。基体61上に単粒子膜エッチングマスク62を形成する方法は、例えばいわゆるLB法(ラングミュア-ブロジェット法)の考え方を利用した方法を用いることができる。単粒子膜エッチングマスク62を形成する方法は、具体的には、溶剤中に粒子が分散した分散液を水槽内の液面に滴下する滴下工程と、溶剤を揮発させることより粒子からなる単粒子膜Fを形成する単粒子膜形成工程と、単粒子膜Fを基板上に移し取る移行工程とを有する。以下に各工程について具体的に説明する。 First, a single particle film etching mask 62 made of a large number of particles M is formed on the substrate 61 (FIG. 14A). As a method of forming the single particle film etching mask 62 on the substrate 61, for example, a method using a so-called LB method (Langmuir-Blodgett method) can be used. Specifically, the method for forming the single particle film etching mask 62 includes a dropping step in which a dispersion liquid in which particles are dispersed in a solvent is dropped onto a liquid surface in a water tank, and a single particle composed of particles by volatilizing the solvent. A single particle film forming step of forming the film F and a transfer step of transferring the single particle film F onto the substrate; Each step will be specifically described below.
(滴下工程および単粒子膜形成工程)
 まず、クロロホルム、メタノール、エタノール、メチルエチルケトンなどの揮発性の高い溶剤のうちの1種以上からなる疎水性の有機溶剤中に、表面が疎水性の粒子を加えて分散液を調製する。また、図15に示すように水槽(トラフ)Vを用意し、その液面上で粒子を展開させるための液体(以下、下層水という場合もある。)として水Wを入れる。
 そして、分散液を下層水の液面に滴下する(滴下工程)。すると、分散媒である溶剤が揮発するとともに、粒子が下層水の液面上に単層で展開し、2次元的に最密充填した単粒子膜Fが形成される(単粒子膜形成工程)。
(Drip process and single particle film formation process)
First, a dispersion liquid is prepared by adding particles having a hydrophobic surface to a hydrophobic organic solvent composed of one or more of volatile solvents such as chloroform, methanol, ethanol, and methyl ethyl ketone. Further, as shown in FIG. 15, a water tank (trough) V is prepared, and water W is added as a liquid (hereinafter sometimes referred to as lower layer water) for developing particles on the liquid surface.
And a dispersion liquid is dripped at the liquid level of lower layer water (drip process). Then, the solvent as the dispersion medium is volatilized, and the particles are developed in a single layer on the liquid surface of the lower layer water to form a single particle film F that is two-dimensionally closely packed (single particle film forming step). .
 このように、粒子として疎水性のものを選択した場合には、溶剤としても疎水性のものを選択する必要がある。一方、その場合、下層水は親水性である必要があり、通常、上述したように水を使用する。このように組み合わせることによって、後述するように、粒子の自己組織化が進行し、2次元的に最密充填した単粒子膜Fが形成される。ただし、粒子および溶剤として親水性のものを選択してもよく、その場合には、下層水として、疎水性の液体を選択する。 Thus, when a hydrophobic particle is selected as the particle, it is necessary to select a hydrophobic particle as the solvent. On the other hand, in that case, the lower layer water needs to be hydrophilic, and water is usually used as described above. By combining in this way, as will be described later, self-organization of particles proceeds, and a two-dimensional closest packed single particle film F is formed. However, hydrophilic particles and solvents may be selected. In that case, a hydrophobic liquid is selected as the lower layer water.
(移行工程)
 図15で示すように、単粒子膜形成工程により液面上に形成された単粒子膜Fを、ついで、単層状態のままエッチング対象物である基体61上に移し取る(移行工程)。基体61は平面状でもよく、曲面、傾斜、段差等の非平面形状を一部もしくは全部に含んでいても良い。
(Transition process)
As shown in FIG. 15, the single particle film F formed on the liquid surface by the single particle film forming step is then transferred onto the substrate 61 that is the object to be etched in the single layer state (transfer step). The base body 61 may be planar, and may include part or all of a non-planar shape such as a curved surface, an inclination, or a step.
単粒子膜Fは、基体61が平面でなくても2次元的な最密充填状態を維持しつつ基体表面を被覆することが可能である。単粒子膜Fを基体61上に移し取る具体的な方法には特に制限はない。例えば、第1の方法として、疎水性の基体61を単粒子膜Fに対して略平行な状態に保ちつつ、上方から降下させて単粒子膜Fに接触させ、ともに疎水性である単粒子膜Fと基体61との親和力により、単粒子膜Fを基体61に移行させ、移し取ってもよい。また第2の方法として、単粒子膜Fを形成する前にあらかじめ水槽の下層水内に基体61を略水平方向に配置しておき、単粒子膜Fを液面上に形成した後に液面を徐々に降下させることにより、基体61上に単粒子膜Fを移し取ってもよい。これらの方法によれば、特別な装置を使用せずに単粒子膜Fを基体61上に移し取ることができる。より大面積の単粒子膜Fであっても、その2次的な最密充填状態を維持したまま基体1上に移し取りやすい点で、いわゆるLBトラフ法を採用することが好ましい。 The single particle film F can cover the surface of the substrate while maintaining the two-dimensional close-packed state even if the substrate 61 is not flat. There is no particular limitation on the specific method for transferring the single particle film F onto the substrate 61. For example, as a first method, while maintaining the hydrophobic substrate 61 in a state substantially parallel to the single particle film F, the hydrophobic substrate 61 is lowered from above and brought into contact with the single particle film F, both of which are hydrophobic. The single particle film F may be transferred to the substrate 61 and transferred by the affinity between F and the substrate 61. As a second method, the base 61 is arranged in a substantially horizontal direction in the lower layer water of the water tank before the single particle film F is formed, and the liquid level is changed after the single particle film F is formed on the liquid surface. The single particle film F may be transferred onto the substrate 61 by being gradually lowered. According to these methods, the single particle film F can be transferred onto the substrate 61 without using a special apparatus. Even in the case of a single particle film F having a larger area, it is preferable to adopt a so-called LB trough method in that it can be easily transferred onto the substrate 1 while maintaining its secondary close packed state.
この移行工程によって、基体61の一方の面である平坦面61aに複数の粒子Mが、略単一層で配列される。すなわち、粒子Mの単粒子膜Fが平坦面61a上に形成される。 By this transition process, the plurality of particles M are arranged in a substantially single layer on the flat surface 61 a that is one surface of the base 61. That is, the single particle film F of the particles M is formed on the flat surface 61a.
(エッチング工程)
このように形成された単粒子膜Fは単粒子エッチングマスク62として機能する。単粒子エッチングマスク62が片面に設けられた基体61を、気相エッチングして表面加工する(エッチング工程)。
(Etching process)
The single particle film F thus formed functions as a single particle etching mask 62. The substrate 61 provided with the single particle etching mask 62 on one side is subjected to gas phase etching and surface processing (etching process).
具体的には、気相エッチングを開始すると、まず図14(b)に示すように、エッチングマスク62を構成している粒子Mの隙間をエッチングガスが通り抜けて基体61の表面に到達し、その部分に溝が形成される。そして、各粒子Mに対応する位置にそれぞれ円柱63が現れる。円柱63の間には溝部61mが形成される。溝部61mは、最密充填により正三角形上に配置された3つの粒子Mの中央に形成される。そのため、溝部61mは、円柱63を中心に正六角形の頂点に位置する。 Specifically, when the gas phase etching is started, first, as shown in FIG. 14B, the etching gas passes through the gaps of the particles M constituting the etching mask 62 and reaches the surface of the substrate 61, A groove is formed in the portion. And the cylinder 63 appears in the position corresponding to each particle | grain M, respectively. Between the cylinders 63, groove portions 61m are formed. The groove 61m is formed at the center of the three particles M arranged on the equilateral triangle by close packing. Therefore, the groove 61m is located at the apex of the regular hexagon with the cylinder 63 as the center.
単粒子膜エッチングマスク62を構成する粒子Mは、特に限定されないが、例えば金粒子、コロイダルシリカ粒子等を用いることができる。またエッチングガスは、一般に用いられるものを用いることができる。例えば、Ar、SF、F、CF、C、C、C、C、C、CHF、CH、CHF、C、Cl、CCl、SiCl、BCl、BCl、BC、Br、Br、HBr、CBrF、HCl、CH、NH、O、H、N、CO、COなどを使用できる。 The particles M constituting the single particle film etching mask 62 are not particularly limited, and for example, gold particles, colloidal silica particles, or the like can be used. Moreover, what is generally used can be used for etching gas. For example, Ar, SF 6 , F 2 , CF 4 , C 4 F 8 , C 5 F 8 , C 2 F 6 , C 3 F 6 , C 4 F 6 , CHF 3 , CH 2 F 2 , CH 3 F, C 3 F 8 , Cl 2 , CCl 4 , SiCl 4 , BCl 2 , BCl 3 , BC 2 , Br 2 , Br 3 , HBr, CBrF 3 , HCl, CH 4 , NH 3 , O 2 , H 2 , N 2 , CO, CO 2 and the like can be used.
これらの粒子Mおよびエッチングガスは、エッチングされる基体61に合わせて変更することができる。例えば単粒子膜エッチングマスク62を構成する粒子Mとして金粒子を選択し、基体61としてガラス基板を選択してこれらを組み合わせた場合、エッチングガスにCF、CHFなどのガラスと反応性のあるものを用いると、金粒子のエッチング速度が相対的に遅くなり、ガラス基板のほうが選択的にエッチングされる。 These particles M and etching gas can be changed according to the substrate 61 to be etched. For example, when gold particles are selected as the particles M constituting the single particle film etching mask 62 and a glass substrate is selected as the base 61 and these are combined, the etching gas is reactive with glass such as CF 4 and CHF 3. If a material is used, the etching rate of the gold particles becomes relatively slow, and the glass substrate is selectively etched.
図1、図10及び図11に示すような種々の形状の金型は、ドライエッチング条件を変化させることで、所望の形状を得ることができる。また凸部の表面形状をよりなだらかにするために、ウェットエッチングを併用してもよい。
ドライエッチングの各条件としては、粒子マスクを構成する粒子の材質、原板の材質、エッチングガスの種類、バイアスパワー、ソースパワー、ガスの流量及び圧力、エッチング時間等が挙げられる。平坦面は、初期のエッチングガスの流量を高め、徐々に流量を低減することで得ることができる。また図1に示す金型10のように稜線部を残す場合は、粒子マスクに用いる粒子の硬度を高くすることで得ることができる。
Various shapes of molds as shown in FIGS. 1, 10, and 11 can be obtained in desired shapes by changing dry etching conditions. Further, wet etching may be used in combination in order to further smooth the surface shape of the convex portion.
Examples of the dry etching conditions include the material of the particles constituting the particle mask, the material of the original plate, the type of etching gas, the bias power, the source power, the gas flow rate and pressure, and the etching time. A flat surface can be obtained by increasing the flow rate of the initial etching gas and gradually decreasing the flow rate. Moreover, when leaving a ridgeline part like the metal mold | die 10 shown in FIG. 1, it can obtain by making the hardness of the particle | grains used for a particle | grain mask high.
凸部の平均ピッチ等は、使用する粒子の粒子径を変更することで自由に変更することができる。また粒子単層膜を利用して非周期構造を形成する場合、粒子径の異なる複数の粒子を用いることで作製することができる。 The average pitch of the convex portions can be freely changed by changing the particle diameter of the particles to be used. Moreover, when forming a non-periodic structure using a particle | grain single layer film | membrane, it can produce by using several particle | grains from which a particle diameter differs.
(奇数回転写工程)
次いで、図14(b)に示す基体61を、奇数回転写する。奇数回転写により、図14(c)に示す転写体71が得られる。具体的には、まず作製した基体61を樹脂で転写する。得られた樹脂転写品の表面に、電鋳等によりNi等の金属メッキを被覆する。金属メッキが被覆されることで、転写体71の硬度が高まり、後述する形状調整等が可能になる。
(Odd transfer process)
Next, the base 61 shown in FIG. 14B is transferred an odd number of times. By the odd number of times of transfer, a transfer body 71 shown in FIG. 14C is obtained. Specifically, first, the produced base 61 is transferred with a resin. The surface of the obtained resin transfer product is coated with a metal plating such as Ni by electroforming or the like. By covering the metal plating, the hardness of the transfer body 71 is increased, and the shape adjustment described later becomes possible.
基体61の円柱63の頂部は、粒子Mで被覆されているため平坦面である。そのため、転写体71において基体61の円柱63に対応する位置には、平坦面71nが形成される。また転写体71において基体61の溝部61mに対応する位置には、凸部72nが形成される。そのため、凸部72は、平坦面71nを中央に正六角形の頂点に位置する。すなわち、図1に対応する形状が得られる。 Since the top of the column 63 of the base body 61 is covered with the particles M, it is a flat surface. Therefore, a flat surface 71n is formed at a position corresponding to the cylinder 63 of the base body 61 in the transfer body 71. A convex portion 72n is formed at a position corresponding to the groove portion 61m of the base 61 in the transfer body 71. Therefore, the convex part 72 is located at the vertex of a regular hexagon with the flat surface 71n as the center. That is, a shape corresponding to FIG. 1 is obtained.
(形状調整工程)
 しかしながら転写体71の表面には、所定の湾曲面が形成されていない場合がある。例えば、凸部72nの頂部に角部72aが形成される場合がある。角部72aは、所定の湾曲面を満たさない部分である。そこで、角部72aを除去し、凸部72nの外表面を所定の湾曲面にする。更なるエッチングは、ウェットエッチングで行ってもドライエッチングで行ってもよい。以下、ドライエッチングの場合について具体的に説明する。
(Shape adjustment process)
However, a predetermined curved surface may not be formed on the surface of the transfer body 71. For example, a corner 72a may be formed at the top of the convex 72n. The corner portion 72a is a portion that does not satisfy a predetermined curved surface. Therefore, the corner portion 72a is removed, and the outer surface of the convex portion 72n is changed to a predetermined curved surface. Further etching may be performed by wet etching or dry etching. Hereinafter, the case of dry etching will be specifically described.
角部72aを除去するためには、図14(d)に示すように、転写体71に対して、プラズマエッチング装置によって生じたプラズマPを照射して、物理エッチングを行う。 In order to remove the corner portion 72a, as shown in FIG. 14D, the transfer body 71 is irradiated with plasma P generated by a plasma etching apparatus to perform physical etching.
物理エッチングは、エッチング工程で用いられる反応性エッチングとは異なる。反応性エッチングは、プラズマ化された化学種が転写体71と反応することでエッチングが進行する。これに対し、物理エッチングは、プラズマ化された化学種が転写体71に衝突する物理力によりエッチングする。そのため、物理エッチングは、プラズマ化された化学種が衝突する確率の高い部分と確率の低い部分とでエッチング速度にばらつきがあり、反応性エッチングと比較してエッチングの異方性を有する。物理エッチングは、アッシング処理と似た処理である。 Physical etching is different from reactive etching used in the etching process. In the reactive etching, the chemical species converted into plasma react with the transfer body 71, and the etching proceeds. On the other hand, in the physical etching, etching is performed by a physical force in which a plasma chemical species collides with the transfer body 71. Therefore, in physical etching, the etching rate varies between a portion having a high probability of colliding with plasma chemical species and a portion having a low probability, and has anisotropy of etching as compared with reactive etching. The physical etching is a process similar to the ashing process.
プラズマエッチング装置では、上部電極と下部電極の間でプラズマ化した化学種を利用する。具体的には、低電位の下部電極と転写体71を電気的に接続し、転写体71を帯電させる。上部電極と下部電極の間でプラズマ化した化学種は、低電位な転写体71に引き寄せられ、転写体71に向かって高速で衝突する。 In the plasma etching apparatus, chemical species converted into plasma between the upper electrode and the lower electrode are used. Specifically, the lower electrode having a low potential and the transfer body 71 are electrically connected to charge the transfer body 71. The chemical species converted into plasma between the upper electrode and the lower electrode are attracted to the transfer body 71 having a low potential and collide with the transfer body 71 at a high speed.
この際、帯電した転写体71に角部72aのような尖った部分があると、その部分に電荷は集中する性質がある。そのため、プラズマ化した化学種は、尖った部分に多く引き寄せられる。つまり、尖った部分は、その他の部分よりプラズマ化された化学種と衝突する確率が高まる。プラズマ化された化学種との衝突確率が高まると、その部分は、その他の部分より早くエッチングされる。すなわち、凸部72の角部72aは徐々に削られ、所定の湾曲面を有する凸部2nが形成される(図14(e))。 At this time, if the charged transfer body 71 has a pointed portion such as the corner portion 72a, the charge is concentrated on the portion. Therefore, a lot of plasma species are attracted to the pointed part. That is, the probability that the pointed part collides with the chemical species converted into plasma is higher than the other part. When the collision probability with the plasma chemical species increases, the portion is etched earlier than the other portions. That is, the corner portion 72a of the convex portion 72 is gradually scraped to form the convex portion 2n having a predetermined curved surface (FIG. 14 (e)).
 物理エッチングに用いられるエッチングガスとしては、例えば、アルゴン等の希ガス、酸素等を用いることができる。これらのガスは、反応性に乏しく、物理エッチングが進行する。 As an etching gas used for physical etching, for example, a rare gas such as argon, oxygen, or the like can be used. These gases are poor in reactivity and physical etching proceeds.
 また物理エッチングに用いられるエッチングガスとして、反応性を有するエッチングガスを用いてもよい。例えば、CF、CHF等の反応性を有するガスを用いることができる。この場合、イオン種の化学反応性よりも物理衝突によるエッチングが顕著となるように、エッチング条件を調整する。例えば、上部電極と下部電極間の電位差が大きくなるように、エッチング条件を調整する。上部電極と下部電極間の電位差が大きくなると、プラズマ化された化学種の衝突速度が高まり、物理エッチングの効果が反応性エッチングの効果より顕著となる。 Further, as an etching gas used for physical etching, a reactive etching gas may be used. For example, it is possible to use a gas having a reactive property such as CF 4, CHF 3. In this case, the etching conditions are adjusted so that etching by physical collision becomes more prominent than chemical reactivity of ionic species. For example, the etching conditions are adjusted so that the potential difference between the upper electrode and the lower electrode is increased. When the potential difference between the upper electrode and the lower electrode is increased, the collision speed of the plasmatized chemical species is increased, and the physical etching effect becomes more significant than the reactive etching effect.
物理エッチングは、アルゴン又は酸素を用い、低圧高バイアス下で行うことが好ましい。具体的な条件は装置によって異なるため一概には決定できないが、例えば誘導結合型プラズマ(ICP)を用いてドライエッチングする場合は、0.5~1.0Paの圧力で、0.5~1.5W/cmのバイアスを加えることが好ましい。その他のドライエッチングガスを用いる場合でも、上記範囲を大きく逸脱することはないが、処理時間を短くすることが好ましい。エッチングの速度が早く、角部62aが想定以上にエッチングされる場合があるためである。 The physical etching is preferably performed using argon or oxygen under a low pressure and a high bias. The specific conditions differ depending on the apparatus and cannot be determined unconditionally. For example, in the case of dry etching using inductively coupled plasma (ICP), the pressure is 0.5 to 1.0 Pa, 0.5 to 1.. It is preferable to apply a bias of 5 W / cm 2 . Even when other dry etching gases are used, the above range is not greatly deviated, but it is preferable to shorten the processing time. This is because the etching rate is fast and the corner 62a may be etched more than expected.
ここまで、角部72aについてのみ言及してきたが、例えば隣接する凸部72n間の稜線部(図1、図9参照)にも尖った部分が形成される場合もある。この場合でも、物理エッチングにより、角部72aと同時に、稜線部における尖った部分も除去される。 Up to this point, only the corner portion 72a has been described, but for example, a sharp portion may be formed also in the ridge line portion (see FIGS. 1 and 9) between the adjacent convex portions 72n. Even in this case, the sharp portion in the ridge line portion is removed simultaneously with the corner portion 72a by physical etching.
(複製工程)
 上述の方法で作製した金型は、直接金型として使用してもよいし、作製した金型を原版として作製した複製品を実際に使用する金型として用いてもよい。複製は、作製した金型を偶数回転写することにより作製することができる。具体的には、まず作製した金型を樹脂で転写する。得られた奇数回転写体の表面に、電鋳等によりNi等の金属メッキを被覆する。金属メッキが被覆されることで、奇数回転写体の硬度が高まり、更なる転写を行うことができる。そして、奇数回転写体をさらに転写し、偶数回転写体を作製する。偶数回転写体は、作製した金型と同様の形状となる。最後に偶数回転写体の表面に、電鋳等によりNi等の金属をメッキすることで、金型の複製が完成する。
(Replication process)
The mold produced by the above-described method may be used directly as a mold, or may be used as a mold for actually using a duplicate produced using the produced mold as an original plate. The replica can be produced by transferring the produced mold an even number of times. Specifically, first, the produced mold is transferred with a resin. The surface of the obtained odd-numbered transfer body is coated with a metal plating such as Ni by electroforming or the like. By coating the metal plating, the hardness of the transfer body is increased odd times, and further transfer can be performed. Then, the odd-numbered transfer body is further transferred to produce an even-numbered transfer body. The even-numbered transfer body has the same shape as the produced mold. Finally, the surface of the transfer body is evenly plated with a metal such as Ni by electroforming or the like, thereby completing the replication of the mold.
 また図7に示す、複数の凸部32nと平坦面31との境界部33も所定の湾曲面により連結された金型30は、以下の方法で作製できる。 Further, the mold 30 shown in FIG. 7 in which the boundary portions 33 between the plurality of convex portions 32n and the flat surface 31 are also connected by a predetermined curved surface can be produced by the following method.
例えば一つ目の方法として、上述のエッチング工程と奇数回転写工程の間に、物理エッチングを施す方法がある。エッチング工程と奇数回転写工程の間に、物理エッチングを施すことで、円柱63の頂部がなだらかになり、転写体71nの凹部の形状がなだらかになる。 For example, as a first method, there is a method in which physical etching is performed between the above-described etching step and an odd number of times of transfer. By performing physical etching between the etching process and the odd number of times of the transfer process, the top of the cylinder 63 becomes gentle, and the shape of the recess of the transfer body 71n becomes gentle.
 また別の方法として、複製工程における転写の過程において、物理エッチングを施す方法がある。物理エッチングを行うことで、転写の後に凸部となった部分の形状をなだらかにできる。 As another method, there is a method of performing physical etching in the transfer process in the replication process. By performing physical etching, the shape of the convex portion after the transfer can be made smooth.
「有機発光ダイオード」
 図12は、本発明の一態様に係る有機発光ダイオード素子100の断面模式図である。有機発光ダイオード素子100は、基体110、第1電極120、発光層133を含む有機半導体層130、第2電極140を順に備える。
図12に示す有機半導体層130は、発光層133に加えて、第1電極120と発光層133の間にホール注入層131、ホール輸送層132を有し、発光層133と第2電極140の間に電子輸送層134、電子注入層135を備える。ホール注入層131、ホール輸送層132、電子輸送層134、電子注入層135のそれぞれは必ずしも備えている必要はなく、無くてもよい。本発明の有機発光ダイオード素子100は本発明の効果を損ねない範囲で、その他の層をさらに備えてもよい。
"Organic light emitting diode"
FIG. 12 is a schematic cross-sectional view of an organic light-emitting diode element 100 according to an aspect of the present invention. The organic light emitting diode element 100 includes a base 110, a first electrode 120, an organic semiconductor layer 130 including a light emitting layer 133, and a second electrode 140 in this order.
The organic semiconductor layer 130 shown in FIG. 12 includes a hole injection layer 131 and a hole transport layer 132 between the first electrode 120 and the light emitting layer 133 in addition to the light emitting layer 133, and the light emitting layer 133 and the second electrode 140 An electron transport layer 134 and an electron injection layer 135 are provided therebetween. Each of the hole injection layer 131, the hole transport layer 132, the electron transport layer 134, and the electron injection layer 135 is not necessarily provided, and may be omitted. The organic light-emitting diode element 100 of the present invention may further include other layers as long as the effects of the present invention are not impaired.
有機発光ダイオードは、第1電極120と第2電極140は、有機半導体層130に電圧を印加する。第1電極120と第2電極140との間に電圧を印加すると、発光層133に電子とホールが注入され、これらが結合して光が発生する。発生した光は、第1電極120を直接透過して素子外部に取り出されるか、第2電極140で一度反射して素子外部に取り出される。 In the organic light emitting diode, the first electrode 120 and the second electrode 140 apply a voltage to the organic semiconductor layer 130. When a voltage is applied between the first electrode 120 and the second electrode 140, electrons and holes are injected into the light emitting layer 133, and these combine to generate light. The generated light is directly transmitted through the first electrode 120 and taken out of the device, or once reflected by the second electrode 140 and taken out of the device.
第2電極140は、発光層133側の表面140Aに、複数の凸部142a~142nが二次元的に配置された二次元構造を有する。二次元構造は、上述の金型と同様に、周期的であっても、非周期的であってもよい。
複数の凸部142a~142nの平均ピッチは50nm~5μmであり、50nm~500nmであることが好ましい。平均ピッチは、金型における平均ピッチと同様の方法で求めることができる。凸部142a~142nの平均ピッチがこの範囲内であれば、金属電極である第2電極の表面140Aに表面プラズモンとして捕捉されたエネルギーを効率的に輻射し、光として取り出すことができる。
The second electrode 140 has a two-dimensional structure in which a plurality of convex portions 142a to 142n are two-dimensionally arranged on the surface 140A on the light emitting layer 133 side. The two-dimensional structure may be periodic or aperiodic, similar to the mold described above.
The average pitch of the plurality of convex portions 142a to 142n is 50 nm to 5 μm, and preferably 50 nm to 500 nm. The average pitch can be obtained by the same method as the average pitch in the mold. If the average pitch of the convex portions 142a to 142n is within this range, the energy captured as surface plasmons can be efficiently radiated to the surface 140A of the second electrode, which is a metal electrode, and extracted as light.
複数の凸部142a~142nの平均アスペクト比は0.01~1であり、0.05~0.5であることが好ましい。平均アスペクト比は、金型における平均アスペクト比と同様の方法で求めることができる。第2電極140の発光層側の表面における凸部142a~142nの平均アスペクト比が、この範囲内であれば、金属電極である第2電極の表面面140Aに表面プラズモンとして捕捉されたエネルギーを効率的に輻射し、光として取り出すことができる。 The average aspect ratio of the plurality of convex portions 142a to 142n is 0.01 to 1, and preferably 0.05 to 0.5. The average aspect ratio can be obtained by the same method as the average aspect ratio in the mold. If the average aspect ratio of the projections 142a to 142n on the light emitting layer side surface of the second electrode 140 is within this range, the energy captured as surface plasmons on the surface 140A of the second electrode, which is a metal electrode, is efficiently used. Can be emitted as light.
 表面プラズモンの捕捉は、以下のような過程で生じる。発光層133で発光分子から発光する際に、発光点のごく近傍に近接場光が発生する。発光層133と第2電極140との距離は非常に近いため、近接場光は第2電極140の表面で伝播型の表面プラズモンのエネルギーに変換される。
 金属表面の伝播型表面プラズモンは、入射した電磁波(近接場光など)により生じる自由電子の疎密波が表面電磁場を伴うものである。平坦な金属表面に存在する表面プラズモンの場合、表面プラズモンの分散曲線と光(空間伝播光)の分散直線とは交差しない。そのため、表面プラズモンのエネルギーを光として取り出すことはできない。これに対し、金属表面に二次元周期構造があると、二次元周期構造によって回折された表面プラズモンの分散曲線が空間伝播光の分散曲線と交差するようになる。その結果、表面プラズモンのエネルギーを輻射光として素子の外部に取り出すことができる。
 このように、二次元周期構造が設けられていると、表面プラズモンとして失われていた光のエネルギーを取り出せる。取り出されたエネルギーは、空間伝播光として第2電極140の表面から輻射される。このとき第2電極140から輻射される光は指向性が高く、その大部分が取出し面に向かう。そのため、取出し面から高強度の光が出射し、取出し効率が向上する。
The capture of surface plasmons occurs in the following process. When the light emitting layer 133 emits light from the light emitting molecules, near-field light is generated in the immediate vicinity of the light emitting point. Since the distance between the light emitting layer 133 and the second electrode 140 is very short, the near-field light is converted into the energy of the propagation surface plasmon at the surface of the second electrode 140.
Propagation type surface plasmon on the surface of metal has a surface electromagnetic field caused by free electron density waves generated by incident electromagnetic waves (such as near-field light). In the case of surface plasmons existing on a flat metal surface, the dispersion curve of surface plasmons and the dispersion line of light (space propagation light) do not intersect. Therefore, the surface plasmon energy cannot be extracted as light. On the other hand, if the metal surface has a two-dimensional periodic structure, the dispersion curve of surface plasmons diffracted by the two-dimensional periodic structure intersects with the dispersion curve of spatially propagated light. As a result, the energy of the surface plasmon can be extracted outside the device as radiant light.
Thus, when the two-dimensional periodic structure is provided, the energy of light lost as surface plasmons can be extracted. The extracted energy is radiated from the surface of the second electrode 140 as space propagating light. At this time, the light radiated from the second electrode 140 has high directivity, and most of the light travels toward the extraction surface. Therefore, high intensity light is emitted from the extraction surface, and the extraction efficiency is improved.
複数の凸部142a~142nのうち80%以上は、所定の湾曲面を備える。所定の湾曲面は、金型における所定の湾曲面と同様に定義される。 Of the plurality of convex portions 142a to 142n, 80% or more have a predetermined curved surface. The predetermined curved surface is defined in the same manner as the predetermined curved surface in the mold.
第2電極の表面140Aにおいて、複数の凸部142a~142nの間に、平坦面141が形成されている。平坦面141の占める面積率は5~50%であることが好ましく、5%~30%であることがより好ましい。第2電極の表面140Aにおける平坦面141の面積率が5%以上であると、表面プラズモンを取り出すための凹凸のアスペクト比を小さくできる。一方、第2電極の表面140Aにおける平坦面141の面積率が50%以下であれば、第2電極の表面140Aに捕捉された表面プラズモンを光に効率的に変換することができる。 On the surface 140A of the second electrode, a flat surface 141 is formed between the plurality of convex portions 142a to 142n. The area ratio occupied by the flat surface 141 is preferably 5 to 50%, and more preferably 5 to 30%. When the area ratio of the flat surface 141 on the surface 140A of the second electrode is 5% or more, the aspect ratio of the unevenness for taking out surface plasmons can be reduced. On the other hand, if the area ratio of the flat surface 141 on the surface 140A of the second electrode is 50% or less, the surface plasmon captured on the surface 140A of the second electrode can be efficiently converted into light.
第2電極140は、複素誘電率の実部の絶対値が大きな負の値を持つような材料が好ましく、かつ表面プラズモンの取り出しに有利なプラズマ周波数の高い金属材料を選択することが好ましい。かかる材料としては例えば、金、銀、銅、アルミニウム、マグネシウム等の単体や、金と銀との合金、銀と銅との合金が挙げられる。有機発光ダイオードの光取り出しを考えると、可視光域全体に関して共鳴周波数を有する金属材料が好ましく、特に銀またはアルミニウムの使用が好ましい。第2電極140は、2層以上の積層構造であってもよい。
第2電極140の厚さは特に限定はされない。例えば20~2000nmであり、好ましくは50~500nmである。20nmより薄いと反射率が低くなり正面輝度が低下し、500nmより厚いと成膜時の熱や放射線によるダメージ、膜応力による機械的ダメージが有機発光層133等の有機物からなる層に蓄積する。
The second electrode 140 is preferably a material having a large negative value of the real part of the complex dielectric constant, and is preferably selected from a metal material having a high plasma frequency that is advantageous for extracting surface plasmons. Examples of such materials include simple substances such as gold, silver, copper, aluminum, and magnesium, alloys of gold and silver, and alloys of silver and copper. Considering the light extraction of the organic light emitting diode, a metal material having a resonance frequency with respect to the entire visible light region is preferable, and the use of silver or aluminum is particularly preferable. The second electrode 140 may have a stacked structure of two or more layers.
The thickness of the second electrode 140 is not particularly limited. For example, it is 20 to 2000 nm, preferably 50 to 500 nm. If it is thinner than 20 nm, the reflectance is lowered and the front luminance is lowered. If it is thicker than 500 nm, damage due to heat and radiation during film formation and mechanical damage due to film stress accumulate in a layer made of an organic material such as the organic light emitting layer 133.
 有機半導体層130は、有機材料からなる。図12では、有機半導体層130の発光層133と電子輸送層134の界面及び電子輸送層134と電子注入層135の界面に凹凸形状が形成されている。この凹凸形状は、金型10の主面10Aの反対形状となっている。この凹凸形状は、必ずしも有機半導体層130の発光層133と電子輸送層134の界面及び電子輸送層134と電子注入層135の界面に形成されている必要はない。有機発光ダイオードを製造する方法において詳細を後述するが、凹凸形状は、有機半導体層を構成するいずれかの層の第2電極140側の面に形成されていればよい。凹凸形状が形成された層よりも、第2電極140側の層は、全て凹凸形状を反映した形状を有する。 The organic semiconductor layer 130 is made of an organic material. In FIG. 12, uneven shapes are formed at the interface between the light emitting layer 133 and the electron transport layer 134 of the organic semiconductor layer 130 and at the interface between the electron transport layer 134 and the electron injection layer 135. This uneven shape is opposite to the main surface 10 </ b> A of the mold 10. The uneven shape is not necessarily formed at the interface between the light emitting layer 133 and the electron transport layer 134 of the organic semiconductor layer 130 and the interface between the electron transport layer 134 and the electron injection layer 135. Although details will be described later in the method of manufacturing the organic light emitting diode, the uneven shape may be formed on the surface on the second electrode 140 side of any layer constituting the organic semiconductor layer. All the layers on the second electrode 140 side have a shape reflecting the uneven shape rather than the layer on which the uneven shape is formed.
発光層133は、有機発光材料から構成される。有機発光材料としては、たとえば、Tris[1-phenylisoquinoline-C2,N]iridium(III)(Ir(piq)3)、1,4-bis[4-(N,N-diphenylaminostyrylbenzene)](DPAVB)、Bis[2-(2-benzoxazolyl)phenolato]Zinc(II)(ZnPBO)等の色素化合物が挙げられる。また、蛍光性色素化合物やりん光発光性材料を他の物質(ホスト材料)にドープしたものを用いてもよい。この場合、ホスト材料としては、ホール輸送材料、電子輸送材料等が挙げられる。 The light emitting layer 133 is composed of an organic light emitting material. Examples of the organic light emitting material include Tris [1-phenylisoquinoline-C2, N] iridium (III) (Ir (piq) 3), 1,4-bis [4- (N, N-diphenylaminostyrylbenzene)] (DPAVB), Examples thereof include pigment compounds such as Bis [2- (2-benzoxazolyl) phenolato] Zinc (II) (ZnPBO). Moreover, you may use what doped the fluorescent pigment compound and the phosphorescence-emitting material to another substance (host material). In this case, examples of the host material include a hole transport material and an electron transport material.
 ホール注入層131、ホール輸送層132、電子輸送層134および電子注入層135を構成する材質としては、それぞれ、有機材料が一般的に用いられる。
 たとえばホール注入層131を構成する材質(ホール注入材料)としては、たとえば、4,4’,4”-tris(N,N-2-naphthylphenylamino)triphenylamine(2-TNATA)等の化合物などが挙げられる。
 ホール輸送層132を構成する材質(ホール輸送材料)としては、たとえば、N,N’-ジフェニル-N,N’-ビス(1-ナフチル)-(1,1’-ビフェニル)-4,4’-ジアミン(NPD)、銅フタロシアニン(CuPc)、N,N’-Diphenyl-N,N’-di(m-tolyl)benzidine(TPD)等の芳香族アミン化合物などが挙げられる。
As the materials constituting the hole injection layer 131, the hole transport layer 132, the electron transport layer 134, and the electron injection layer 135, organic materials are generally used.
For example, examples of the material (hole injection material) constituting the hole injection layer 131 include compounds such as 4,4 ′, 4 ″ -tris (N, N-2-naphthylphenylamino) triphenylamine (2-TNATA). .
As a material (hole transport material) constituting the hole transport layer 132, for example, N, N′-diphenyl-N, N′-bis (1-naphthyl)-(1,1′-biphenyl) -4,4 ′ -Aromatic amine compounds such as diamine (NPD), copper phthalocyanine (CuPc), N, N'-Diphenyl-N, N'-di (m-tolyl) benzidine (TPD), and the like.
 電子輸送層134を構成する材質(電子輸送材料)及び電子注入層135を構成する材質(電子注入材料)としては、たとえば、2,5-Bis(1-naphthyl)-1,3,4-oxadiazole(BND)、2-(4-tert-Butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole(PBD)等のオキサジオール系化合物、Tris(8-quinolinolato)aluminium(Alq)等の金属錯体系化合物などが挙げられる。
発光層133を含めた有機半導体層の全体の厚さは、通常、30~500nmである。
As a material (electron transport material) constituting the electron transport layer 134 and a material (electron injection material) constituting the electron injection layer 135, for example, 2,5-Bis (1-naphthyl) -1,3,4-oxadiazole Oxadiol compounds such as (BND), 2- (4-tert-Butylphenyl) -5- (4-biphenylyl) -1,3,4-oxadiazole (PBD), Tris (8-quinolinolato) aluminum (Alq), etc. And metal complex compounds.
The total thickness of the organic semiconductor layer including the light emitting layer 133 is usually 30 to 500 nm.
 第1電極120には、可視光を透過する透明導電体が用いられる。
 第1電極120を構成する透明導電体は、特に限定されず、透明導電材料として公知のものが使用できる。たとえばインジウム-スズ酸化物(Indium Tin Oxide(ITO))、インジウム-亜鉛酸化物(Indium Zinc Oxide(IZO))、酸化亜鉛(Zinc Oxide(ZnO))、亜鉛-スズ酸化物(Zinc Tin Oxide(ZTO))等が挙げられる。第1電極120の厚さは、通常、50~500nmである。
A transparent conductor that transmits visible light is used for the first electrode 120.
The transparent conductor which comprises the 1st electrode 120 is not specifically limited, A well-known thing can be used as a transparent conductive material. For example, indium-tin oxide (ITO), indium-zinc oxide (IZO), zinc oxide (Zinc Oxide (ZnO)), zinc-tin oxide (ZTO) )) And the like. The thickness of the first electrode 120 is usually 50 to 500 nm.
基体110は、可視光を透過する透明体が用いられる。基体110を構成する材質としては、無機材料でも有機材料でもよく、それらの組み合わせでもよい。無機材料としては、たとえば、石英ガラス、無アルカリガラス、白板ガラス等の各種ガラス、マイカ等の透明無機鉱物などが挙げられる。有機材料としては、シクロオレフィン系フィルム、ポリエステル系フィルム等の樹脂フィルム、該樹脂フィルム中にセルロースナノファイバー等の微細繊維を混入した繊維強化プラスチック素材などが挙げられる。
 用途にもよるが、一般に、基体110は可視光透過率の高いものを使用する。透過率は可視光の範囲(波長380nm~800nm)でスペクトルに偏りを与えず、透過率70%以上、好ましくは80%以上、より好ましくは90%以上のものを用いる。
As the base 110, a transparent body that transmits visible light is used. The material constituting the substrate 110 may be an inorganic material, an organic material, or a combination thereof. Examples of the inorganic material include various glasses such as quartz glass, non-alkali glass, and white plate glass, and transparent inorganic minerals such as mica. Examples of the organic material include a resin film such as a cycloolefin film and a polyester film, and a fiber reinforced plastic material in which fine fibers such as cellulose nanofiber are mixed in the resin film.
Although it depends on the application, generally, the substrate 110 has a high visible light transmittance. The transmittance is in the range of visible light (wavelength 380 nm to 800 nm) without giving a bias to the spectrum, and the transmittance is 70% or more, preferably 80% or more, more preferably 90% or more.
有機発光ダイオード100を構成する各層の厚さは、分光エリプソメーター、接触式段差計、AFM等により測定できる。 The thickness of each layer constituting the organic light emitting diode 100 can be measured by a spectroscopic ellipsometer, a contact step meter, an AFM, or the like.
「有機発光ダイオードの製造方法」
本発明の一態様に係る有機発光ダイオードの製造方法は、基体上に透明な第1電極を有する電極付き基体の第1電極が形成された面に、発光層を含む有機半導体層と第2電極とを、塗布工程とその後の真空成膜工程とにより形成する有機発光ダイオードの製造方法である。塗布工程と真空成膜工程との間には、上述の金型を塗布工程で形成した塗布層の最外面に押し当て、金型の主面の形状の反転形状を塗布層の最外面に形成するスタンパ工程を有する。
"Method of manufacturing organic light-emitting diode"
An organic light emitting diode manufacturing method according to an aspect of the present invention includes an organic semiconductor layer including a light emitting layer and a second electrode on a surface of a substrate with an electrode having a transparent first electrode on the substrate. Is a manufacturing method of an organic light emitting diode formed by a coating process and a subsequent vacuum film forming process. Between the coating process and the vacuum film-forming process, the above mold is pressed against the outermost surface of the coating layer formed in the coating process, and the inverted shape of the main surface of the mold is formed on the outermost surface of the coating layer A stamper process.
<電極付き基体の準備工程>
 電極付き基体は、透明な基体上に透明な第1電極を形成する。基体及び第1電極は、上述のものを用いることができる。
 基体上に第1電極を形成する方法は、公知の手法を用いることができる。例えば、ITO等の透明電極用材料をスパッタにより基体上に形成することができる。また市販の電極付き基体を購入してもよい。
<Preparation process of substrate with electrode>
The substrate with electrodes forms a transparent first electrode on a transparent substrate. As the substrate and the first electrode, those described above can be used.
As a method for forming the first electrode on the substrate, a known method can be used. For example, a transparent electrode material such as ITO can be formed on the substrate by sputtering. A commercially available substrate with electrodes may be purchased.
<塗布工程>
 塗布工程では、有機半導体層を構成する層のうち一部の層、または全ての層を塗布により形成する。一般に塗布工程においては前工程までで既に成膜されている各層を侵すことのないように塗布液の溶媒を選択する必要があるため、塗布によって成膜する層の数が増えるほど適切な溶媒の選択が難しくなる。したがって塗布工程では、有機半導体層を構成する層のうち、発光層まで形成することが好ましい。
<Application process>
In the coating step, a part or all of the layers constituting the organic semiconductor layer are formed by coating. In general, in the coating process, it is necessary to select a solvent for the coating solution so as not to attack each layer already formed up to the previous process. Selection becomes difficult. Therefore, in the coating process, it is preferable to form the light emitting layer among the layers constituting the organic semiconductor layer.
塗布法は、公知の手法を用いることができ、例えば、スピンコート、バーコート、スリットコート、ダイコート、スプレーコート、インクジェット法等を用いることができる。塗布法は、積層時の環境を真空にする必要が無く、大掛かりな設備が不要である。また真空引き等の時間が不要となるため、有機発光ダイオードを製造するスループットを向上させることができる。 As a coating method, a known method can be used. For example, spin coating, bar coating, slit coating, die coating, spray coating, an ink jet method, or the like can be used. The coating method does not require a vacuum environment when laminating, and does not require large-scale equipment. Further, since the time for vacuuming or the like is not required, the throughput for manufacturing the organic light emitting diode can be improved.
<スタンパ工程>
 スタンパ工程は、いわゆるインプリント法によって凹凸形状を形成する方法である。塗布工程で形成された塗布層に金型を押し付けると、金型の形状に沿って塗布層を構成する塗布液が追従する。塗布液は、形状を維持できる程度の粘度を有するため、金型を外した後もその形状は維持される。
また、塗布液が乾燥、蒸発した後であっても、成膜層をなす材料にガラス転移点が存在する場合は、成膜層をガラス転移点以上に加熱した状態で金型を押し付けることによって形状を賦与することが可能である。
<Stamper process>
The stamper process is a method of forming an uneven shape by a so-called imprint method. When the mold is pressed against the coating layer formed in the coating process, the coating liquid constituting the coating layer follows the shape of the mold. Since the coating liquid has a viscosity enough to maintain the shape, the shape is maintained even after the mold is removed.
In addition, even after the coating liquid has dried and evaporated, if the glass transition point exists in the material forming the film formation layer, press the mold while the film formation layer is heated above the glass transition point. It is possible to give a shape.
 スタンパ工程では、本発明の一態様に係る金型を塗布工程で形成した塗布層の最外層に押し当てる。最外層とは、塗布工程で形成した最後の層であり、塗布工程が終了した段階で基体から最も遠い層である。例えば、図12における発光層133まで塗布で形成した場合は、発光層133の第2電極140側の面に金型を押し付けて、金型の反転形状を転写する。
 上述のように、本発明の一態様に係る金型は、所定の湾曲面を有する複数の凸部と平坦面を有する。そのため、発光層133に金型を押し付けた際に、所定の湾曲面に沿って発光層133に加わる力が分散される。その結果、発光層133の層厚が極端に薄くなることや発光層133が切断されること等を避けることができる。
In the stamper process, the mold according to one embodiment of the present invention is pressed against the outermost layer of the coating layer formed in the coating process. The outermost layer is the last layer formed in the coating process, and is the layer farthest from the substrate when the coating process is completed. For example, when the light emitting layer 133 in FIG. 12 is formed by coating, a mold is pressed against the surface of the light emitting layer 133 on the second electrode 140 side to transfer the inverted shape of the mold.
As described above, the mold according to one embodiment of the present invention includes a plurality of convex portions having a predetermined curved surface and a flat surface. Therefore, when a mold is pressed against the light emitting layer 133, the force applied to the light emitting layer 133 is dispersed along a predetermined curved surface. As a result, it can be avoided that the thickness of the light emitting layer 133 becomes extremely thin, the light emitting layer 133 is cut, or the like.
<真空成膜工程>
 真空成膜工程では、有機半導体層を構成する層のうち塗布工程で形成しなかった層と第2電極を真空成膜法により形成する。
 真空成膜法としては、真空蒸着法、スパッタリング法、CVD(化学気相成長法)等を用いることができる。有機層へのダメージを少なくするためには、真空成膜法として真空蒸着法を用いることが好ましい。
<Vacuum deposition process>
In the vacuum film formation step, the layer that is not formed in the coating step and the second electrode among the layers constituting the organic semiconductor layer are formed by a vacuum film formation method.
As the vacuum film forming method, a vacuum deposition method, a sputtering method, a CVD (chemical vapor deposition method), or the like can be used. In order to reduce damage to the organic layer, it is preferable to use a vacuum deposition method as a vacuum film formation method.
 真空成膜法は、下地の形状を反映する反映性が塗布法と比較して高い。そのため、スタンパ工程で塗布層の最外層に形成された凸部と平坦面の形状は、塗布層の最外層上部に積層される層にも反映される。 The vacuum film forming method has a higher reflectivity reflecting the shape of the substrate than the coating method. Therefore, the shape of the convex part and flat surface formed in the outermost layer of the coating layer in the stamper process is reflected in the layer laminated on the outermost layer of the coating layer.
金型を押し当てることにより塗布層の最外層に形成される凹部において、凹部と平坦面は所定の湾曲面で連結されていることが好ましい。すなわち、凹部と平坦面の境界がなだらかであることが好ましい。真空成膜により形成される層の層厚が不均一になることをより抑制することができる。 In the recess formed in the outermost layer of the coating layer by pressing the mold, the recess and the flat surface are preferably connected by a predetermined curved surface. That is, it is preferable that the boundary between the concave portion and the flat surface is gentle. The layer thickness of the layer formed by vacuum film formation can be further suppressed from becoming non-uniform.
塗布層の最外層に上述の凹部と平坦面を形成することにより、第2電極の発光層側の面には、図12に示すように塗布層の最外層と反転した形状が形成される。この形状は、スタンパ工程で押し付けた金型の形状を反映した形状である。 By forming the above-described concave portion and flat surface on the outermost layer of the coating layer, a shape reversed from the outermost layer of the coating layer is formed on the surface of the second electrode on the light emitting layer side as shown in FIG. This shape reflects the shape of the mold pressed in the stamper process.
本発明の一態様に係る有機発光ダイオードの製造方法では、所定の形状を有する金型を用いたスタンパ工程を有するため、第2電極の発光層側に所望の凹凸を簡便に形成することができる。この方法で製造された有機発光ダイオードは、表面プラズモンを取り出すことができ、高い発光特性を得ることができる。 In the method for manufacturing an organic light emitting diode according to one embodiment of the present invention, since the stamper process using a mold having a predetermined shape is included, desired unevenness can be easily formed on the light emitting layer side of the second electrode. . The organic light emitting diode manufactured by this method can extract surface plasmons and obtain high light emission characteristics.
 10,30,40,50:金型、10A:主面、1a~1n,41,51a~51n:平坦面、2a~2n,32n,42a~42n,52a~52n:凸部、2Aa~2An:中心点、1Aa~1An:中心点、2B:湾曲面、20:積層体、21:第1の層、22:第2の層、23:第3の層、26:層、26B:外表面、3,33:境界部、4:稜線部、100:有機発光ダイオード、110:基体、120:第1電極、130:有機半導体層、131:ホール注入層、132:ホール輸送層、133:発光層、134:電子輸送層、135:電子注入層、140:第2電極、142a~142n:凸部 10, 30, 40, 50: mold, 10A: main surface, 1a to 1n, 41, 51a to 51n: flat surface, 2a to 2n, 32n, 42a to 42n, 52a to 52n: convex portion, 2Aa to 2An: Center point, 1 Aa to 1 An: Center point, 2B: Curved surface, 20: Laminate, 21: First layer, 22: Second layer, 23: Third layer, 26: Layer, 26B: Outer surface, 3, 33: boundary part, 4: ridge line part, 100: organic light emitting diode, 110: substrate, 120: first electrode, 130: organic semiconductor layer, 131: hole injection layer, 132: hole transport layer, 133: light emitting layer 134: electron transport layer, 135: electron injection layer, 140: second electrode, 142a to 142n: convex portion

Claims (10)

  1. 主面に平坦面と、複数の凸部とを有し、
    前記複数の凸部の平均ピッチは50nm~5μmであり、前記複数の凸部の平均アスペクト比は0.01~1であり、
    前記複数の凸部のうち80%以上は、所定の湾曲面を有し、
    前記所定の湾曲面は、前記所定の湾曲面の任意の点を第1点とし、前記第1点から前記平均ピッチの1/10だけずれた点を第2点とした際に、
    前記第1点に接する第1接平面に対する前記第2点に接する第2接平面の傾き角が60°以内である金型。
    The main surface has a flat surface and a plurality of convex portions,
    The average pitch of the plurality of convex portions is 50 nm to 5 μm, the average aspect ratio of the plurality of convex portions is 0.01 to 1,
    80% or more of the plurality of convex portions has a predetermined curved surface,
    When the predetermined curved surface is a first point at an arbitrary point of the predetermined curved surface and a second point is a point shifted from the first point by 1/10 of the average pitch,
    The metal mold | die whose inclination | tilt angle of the 2nd tangent plane which touches the said 2nd point with respect to the 1st tangent plane which touches the said 1st point is less than 60 degrees.
  2. 前記主面における前記平坦面の占める面積率が5~50%である請求項1に記載の金型。 The mold according to claim 1, wherein an area ratio of the flat surface in the main surface is 5 to 50%.
  3. 前記平坦面と、前記所定の湾曲面を有する凸部とが、前記所定の湾曲面の条件を満たすように連結されている請求項1または2のいずれかに記載の金型。 The mold according to claim 1, wherein the flat surface and the convex portion having the predetermined curved surface are connected so as to satisfy the condition of the predetermined curved surface.
  4. 前記複数の凸部を構成する前記所定の湾曲面は少なくとも1つ以上の変曲部を有し、
    前記変曲部のうち最も前記平坦面に近い第1変曲部から前記平坦面までの最近接距離が、前記複数の凸部の平均ピッチの1/10以上である請求項3に記載の金型。
    The predetermined curved surface constituting the plurality of convex portions has at least one inflection portion;
    The gold | metal | money of Claim 3 whose closest distance from the 1st inflection part nearest to the said flat surface among the inflection parts to the said flat surface is 1/10 or more of the average pitch of these convex parts. Type.
  5. 前記複数の凸部はハニカム格子を形成し、
    前記複数の凸部の頂部は、前記平坦面に対して垂直な方向からの平面視で、前記ハニカム格子を構成する六角形の頂点に位置する請求項1~4のいずれか一項に記載の金型。
    The plurality of protrusions form a honeycomb lattice;
    The tops of the plurality of convex portions are located at the vertices of hexagons constituting the honeycomb lattice in a plan view from a direction perpendicular to the flat surface. Mold.
  6. 前記六角形の頂点に位置する凸部は、前記六角形の隣接する頂点に位置する凸部との間に稜線部を有し、
    前記稜線部の少なくとも一部は、前記稜線部を繋ぐ凸部より前記平坦面側に存在する請求項5に記載の金型。
    The convex portion located at the vertex of the hexagon has a ridge line portion between the convex portion located at the adjacent vertex of the hexagon,
    The mold according to claim 5, wherein at least a part of the ridge line portion is present on the flat surface side with respect to a convex portion connecting the ridge line portions.
  7. 前記稜線部の最も前記平坦面に近い部分の前記平坦面からの高さは、前記稜線部を繋ぐ凸部の前記平坦面からの高さに対して50%~90%である請求項6に記載の金型。 The height from the flat surface of the portion closest to the flat surface of the ridge line portion is 50% to 90% with respect to the height from the flat surface of the convex portion connecting the ridge line portions. The mold described.
  8. 基体上に透明な第1電極を有する電極付き基体の前記第1電極が形成された面に、発光層を含む有機半導体層と第2電極とを、塗布工程とその後の真空成膜工程とにより形成する有機発光ダイオードの製造方法であって、
    前記塗布工程と前記真空成膜工程との間に、請求項1~7のいずれか一項に記載の金型を前記塗布工程で形成した塗布層の最外面に押し当て、前記金型の主面の形状の反転形状を前記塗布層の最外面に形成するスタンパ工程を有することを特徴とする有機発光ダイオードの製造方法。
    An organic semiconductor layer including a light emitting layer and a second electrode are applied to the surface of the substrate with an electrode having a transparent first electrode on the substrate, on which the first electrode is formed, by a coating process and a subsequent vacuum film forming process. A method for manufacturing an organic light emitting diode to be formed, comprising:
    The mold according to any one of claims 1 to 7 is pressed against the outermost surface of the coating layer formed in the coating process between the coating process and the vacuum film forming process, and the main mold A method for manufacturing an organic light emitting diode, comprising: a stamper step of forming an inverted shape of a surface on the outermost surface of the coating layer.
  9. 基体と、透明な第1電極と、発光層を含む有機半導体層と、第2電極とを順に有し、
    前記第2電極の前記有機半導体層側の面は、平坦面と、前記平坦面から前記基体に向かって突出した複数の凸部とを有し、
    前記複数の凸部の平均ピッチは50nm~5μmであり、前記複数の凸部の平均アスペクト比は0.01~1であり、
    前記複数の凸部のうち80%以上は所定の湾曲面を有し、
    前記所定の湾曲面は、前記所定の湾曲面の任意の点を第1点とし、前記第1点から前記凸部の中心点に向かって前記平均ピッチの1/10だけずれた点を第2点とした際に、
    前記第1点に接する第1接平面に対する前記第2点に接する第2接平面の傾き角が60°以内であることを特徴とする有機発光ダイオード。
    A base, a transparent first electrode, an organic semiconductor layer including a light emitting layer, and a second electrode in order;
    The surface of the second electrode on the organic semiconductor layer side has a flat surface and a plurality of convex portions protruding from the flat surface toward the base body,
    The average pitch of the plurality of convex portions is 50 nm to 5 μm, the average aspect ratio of the plurality of convex portions is 0.01 to 1,
    80% or more of the plurality of convex portions has a predetermined curved surface,
    The predetermined curved surface has an arbitrary point on the predetermined curved surface as a first point, and a point shifted from the first point toward the center point of the convex portion by 1/10 of the average pitch is a second point. When you make a point
    An organic light emitting diode, wherein an inclination angle of a second tangential plane contacting the second point with respect to the first tangential plane contacting the first point is within 60 °.
  10. 前記第2電極の前記有機半導体層側の面における前記平坦面の占める面積率が5~50%である請求項9に記載の有機発光ダイオード。 The organic light emitting diode according to claim 9, wherein an area ratio of the flat surface in the surface of the second electrode on the organic semiconductor layer side is 5 to 50%.
PCT/JP2016/074002 2015-09-10 2016-08-17 Die, method for manufacturing organic light-emitting diode, and organic light-emitting diode WO2017043274A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680051921.8A CN108029174B (en) 2015-09-10 2016-08-17 Mold, method for manufacturing organic light emitting diode, and organic light emitting diode
JP2017539088A JP6642581B2 (en) 2015-09-10 2016-08-17 Method of manufacturing organic light emitting diode and organic light emitting diode
KR1020187006289A KR20180052619A (en) 2015-09-10 2016-08-17 METHOD, METHOD FOR MANUFACTURING ORGANIC LED, AND ORGANIC LED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-178324 2015-09-10
JP2015178324 2015-09-10

Publications (1)

Publication Number Publication Date
WO2017043274A1 true WO2017043274A1 (en) 2017-03-16

Family

ID=58239406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074002 WO2017043274A1 (en) 2015-09-10 2016-08-17 Die, method for manufacturing organic light-emitting diode, and organic light-emitting diode

Country Status (5)

Country Link
JP (2) JP6642581B2 (en)
KR (1) KR20180052619A (en)
CN (2) CN111438860A (en)
TW (2) TWI692896B (en)
WO (1) WO2017043274A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054713A (en) * 2015-09-10 2017-03-16 王子ホールディングス株式会社 Metal mold, manufacturing method of organic light-emitting diode, and organic light-emitting diode
CN110476276A (en) * 2017-03-29 2019-11-19 株式会社安永 Mold

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230045A (en) * 2008-03-25 2009-10-08 Dainippon Printing Co Ltd Anti-reflection layered body
WO2010058589A1 (en) * 2008-11-19 2010-05-27 凸版印刷株式会社 Light reusing sheet and solar battery module
WO2010113737A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 El element, and illuminating device and display device using el element
JP2012028067A (en) * 2010-07-21 2012-02-09 Oji Paper Co Ltd Organic light emitting diode element, image display device, and illumination device
JP2013152488A (en) * 2009-06-12 2013-08-08 Sharp Corp Antireflection film, display device, light transmissive member, and evaluation method for antireflection film
JP2014087985A (en) * 2012-10-30 2014-05-15 Awa Paper Mfg Co Ltd Honeycomb structure laminate
JP2015046375A (en) * 2013-07-31 2015-03-12 ミネベア株式会社 Planar lighting device and manufacturing method of light guide plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030823A1 (en) * 2004-09-15 2006-03-23 Dai Nippon Printing Co., Ltd. Viewing angle control sheet and display unit
GB2464111B (en) * 2008-10-02 2011-06-15 Cambridge Display Tech Ltd Organic electroluminescent device
CN102042554A (en) * 2009-10-09 2011-05-04 颖台科技股份有限公司 Composite type diffusion film structure and backlight module thereof
JP2014170920A (en) * 2013-02-08 2014-09-18 Oji Holdings Corp Process of manufacturing uneven substrate and light-emitting diode, uneven substrate, light-emitting diode, and organic thin-film solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230045A (en) * 2008-03-25 2009-10-08 Dainippon Printing Co Ltd Anti-reflection layered body
WO2010058589A1 (en) * 2008-11-19 2010-05-27 凸版印刷株式会社 Light reusing sheet and solar battery module
WO2010113737A1 (en) * 2009-03-31 2010-10-07 凸版印刷株式会社 El element, and illuminating device and display device using el element
JP2013152488A (en) * 2009-06-12 2013-08-08 Sharp Corp Antireflection film, display device, light transmissive member, and evaluation method for antireflection film
JP2012028067A (en) * 2010-07-21 2012-02-09 Oji Paper Co Ltd Organic light emitting diode element, image display device, and illumination device
JP2014087985A (en) * 2012-10-30 2014-05-15 Awa Paper Mfg Co Ltd Honeycomb structure laminate
JP2015046375A (en) * 2013-07-31 2015-03-12 ミネベア株式会社 Planar lighting device and manufacturing method of light guide plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054713A (en) * 2015-09-10 2017-03-16 王子ホールディングス株式会社 Metal mold, manufacturing method of organic light-emitting diode, and organic light-emitting diode
CN110476276A (en) * 2017-03-29 2019-11-19 株式会社安永 Mold

Also Published As

Publication number Publication date
KR20180052619A (en) 2018-05-18
CN108029174A (en) 2018-05-11
TWI700847B (en) 2020-08-01
JP2020017545A (en) 2020-01-30
TW201714334A (en) 2017-04-16
JP6642581B2 (en) 2020-02-05
CN111438860A (en) 2020-07-24
TWI692896B (en) 2020-05-01
TW202015273A (en) 2020-04-16
JPWO2017043274A1 (en) 2018-06-28
CN108029174B (en) 2020-05-26

Similar Documents

Publication Publication Date Title
EP2800456B1 (en) Organic light emitting diode, manufacturing method for organic light emitting diode
US20200168841A1 (en) Organic light emitting diode, image display device and illuminating device
US9692015B2 (en) Organic light emitting device and manufacturing method thereof
JP2008080461A (en) Particle arraying method and manufacturing method of light emitting element
JP2010533932A (en) Light extraction film for organic light emitting diode display device
US10446773B2 (en) Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate
JP2020017545A (en) Mold for manufacturing organic light emitting diode
JP6561706B2 (en) Mold, organic light emitting diode manufacturing method, and organic light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539088

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187006289

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844137

Country of ref document: EP

Kind code of ref document: A1