WO2017042085A1 - Use of spacers in the coating method - Google Patents

Use of spacers in the coating method Download PDF

Info

Publication number
WO2017042085A1
WO2017042085A1 PCT/EP2016/070602 EP2016070602W WO2017042085A1 WO 2017042085 A1 WO2017042085 A1 WO 2017042085A1 EP 2016070602 W EP2016070602 W EP 2016070602W WO 2017042085 A1 WO2017042085 A1 WO 2017042085A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
spacers
spacer
diameter
support
Prior art date
Application number
PCT/EP2016/070602
Other languages
German (de)
French (fr)
Inventor
Wolfgang Hasselmann
Cedric Holzer
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to EP16769881.0A priority Critical patent/EP3356754A1/en
Priority to CN201680051946.8A priority patent/CN108027211A/en
Priority to BR112018004666A priority patent/BR112018004666A2/en
Priority to CA2996654A priority patent/CA2996654A1/en
Publication of WO2017042085A1 publication Critical patent/WO2017042085A1/en
Priority to ZA2018/01573A priority patent/ZA201801573B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to the use of spacers in a process for coating catalyst supports.
  • the purpose of the spacers is to prevent contact between the treadmills, on which the catalyst supports are normally placed directly, with the catalyst support.
  • the exhaust gas of internal combustion engines in motor vehicles typically contains the noxious gases carbon monoxide (CO) and hydrocarbons (HC), nitrogen oxides (NO x ) and possibly sulfur oxides (SO x ), as well as particles consisting predominantly of soot residues and optionally adhering organic agglomerates. These are called primary emissions.
  • CO, HC and particulates are products of incomplete combustion of the fuel in the combustion chamber of the engine.
  • Nitrogen oxides are formed in the cylinder from nitrogen and oxygen in the intake air when the combustion temperatures locally exceed 1400 ° C. Sulfur oxides result from the combustion of organic sulfur compounds, which are always present in small amounts in non-synthetic fuels.
  • a large number of catalytic exhaust gas purification technologies have been developed for removing these environmental and health-related emissions from the exhaust gases of motor vehicles, the basic principle of which is usually based on the exhaust gas to be purified via a flow-through or a wall-flow honeycomb body. Wall-flow) is passed with a catalytically active coating applied thereto.
  • the catalyst promotes the chemical reaction of various exhaust gas components to form innocuous products such as carbon dioxide and water.
  • the flow or wall flow honeycomb bodies just described are accordingly also referred to as catalyst supports, since they carry the catalytically active coating on their surface or in the pores forming this surface.
  • the catalytically active coating is often applied in a so-called coating process in the form of a suspension on the catalyst support. Many such processes are in the past for this purpose has been published by automotive catalytic converters (EP1064094B1, EP2521618B1, WO10015573A2, EP1136462B1).
  • the uncoated catalyst support for this purpose are first placed on a treadmill and thereby fed to the actual coating device. This receives the catalyst support in a primarily fully automatic process and accomplishes the contact of the carrier with the coating suspension.
  • conveyor belts and / or roller conveyors are used, as are customary in industry. These are plastic or metal conveyors in which endless belts run over these supporting longitudinal rollers (http://de.wi- kipedia.org/wiki/Finder-band). Frequently it happens that catalyst carriers have damage after passing through the entire coating station. Since the walls of the catalyst supports are sometimes very thin and the material from which the catalyst supports are made (eg SiC, aluminum titanate, corderite) is very brittle, it often happens that corners break out of the peripheral end regions of the support ( chipping).
  • material from which the catalyst supports are made eg SiC, aluminum titanate, corderite
  • the object of the present invention was therefore to specify a way to modify the coating process such that these edge breakouts possible no longer, but at least less frequently and less massive, since any outbreak of an edge may be a potential reason for complaint of the customer.
  • the presented object is achieved by the application according to the present claim 1.
  • Preferred embodiments of the use according to the invention are specified in the subclaims dependent on claim 1.
  • the spacers Preferably, the spacers have the same shape as the carriers.
  • the spacer can be made solid, that is, be a compact body, or, on the other hand, preferably have only the outer circumference in a fixed shape.
  • the spacer can only consist of a ring on which the catalyst body can be placed (FIG. 1).
  • the ring is the preferred embodiment since it allows the substrate to continue to be flowed through axially by the drying stream prevailing here. This also helps save material costs. For the other embodiments this applies mutatis mutandis.
  • the spacer should not be made too small, so that the arrangement is not altogether too unstable.
  • the difference between the outer dimensions of the catalyst support and the outer dimensions of the spacer should not exceed 40%, more preferably 30%, and most preferably 20% or even 10%.
  • a minimum size is also given by the band transitions, again the stability during transport is a criterion.
  • the difference between the diameter or the largest diagonal of the support surface of the catalyst support and the diameter of the spacer should at most be up to 40%. For substrates with a large diameter to small height, the rings may tend to be smaller in relation to the diameter or the largest diagonal of the support surface of the catalyst support.
  • the diameter or largest diagonal of the support surface of the catalyst support is smaller than the outer diameter of the spacer and the catalyst support rests on a structure located in the outer ring and projecting in the center of the ring, which is fixedly connected to the outer ring ,
  • the spacer has z. B. an inner ring and an outer ring to which the inner ring is firmly connected.
  • the inner ring is of diameter smaller than the diameter of the catalyst carrier.
  • the outer ring is larger than the diameter of the catalyst carrier.
  • the catalyst support is placed on the inner ring and is thus protected from the direct force of the treadmill - as described above.
  • the outer ring helps in the sense that such erected catalyst support on the treadmill can not collide against each other.
  • FIG. 3 A corresponding example of such a ring is shown in FIG. 3 shown.
  • FIG. 4 A similar result is achieved with the use of a ring as shown in FIG. 4 shown.
  • the outer ring is deliberately chosen to be larger than the diameter of the catalyst body in order to prevent them from abutting one another.
  • the catalyst support rests instead on the raised inner struts of the said ring.
  • the spacer represents its height. This should not be too large, since then again threatens instability of the arrangement of catalyst support and spacer. On the other hand, it should not be made too thin, so that the risk of shearing power transmission is not too large. Ideally, the spacer will have a height of 3 - 10, preferably 4 - 8 and more preferably 5 - 6 mm.
  • the material from which the spacer is made is at the discretion of the skilled person. In this regard, he will focus on the manufacturability, process suitability and cost of the material.
  • materials of metal such as stainless steel, e.g. 316. Preference is given in particular to a metal, since it can also be used as a spacer in the drying region, where temperatures of> 600 ° C. may prevail. If a process in the oven is not intended, plastic can be used, for. As plastics such as polyoxymethylene, HDPE, or the like.
  • the spacer is edged on the side facing the substrate. This ensures a slight sliding of the spacer on the belt, while the substrate secure one Stand and the spacer does not move seen to the substrate
  • the present invention demonstrates a straightforward way in which edge break-offs in the catalyst carrier coating process can be reduced. It has not been apparent to date for which proportion of the damage the carriage of catalyst supports on treadmills is actually responsible. The fact that a large part of the damage is caused by the shearing forces of the treadmill has emerged only from a detailed study, the so-called minimal edge projections (the catalyst supports are slightly raised at the edges compared to the center) of the substrates supplied by the manufacturers of these carriers. It can therefore be regarded as a surprise that such a simple solution to the task actually leads to the desired success.
  • Figure 1 The pictures represent preferred ring-shaped
  • FIG. 1 Schematic representation of the use of the spacers
  • Figure 3 Preferred annular spacer with inner and outer ring
  • Figure 4 Preferred annular spacer with outer ring and inner support structure
  • Figure 5 Shows the transport of catalyst bodies on spacers from a roller conveyor on a furnace belt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to the use of spacers in a process for coating catalyst supports. The spacers are used for preventing the conveyor belt, on which the catalyst supports are normally directly placed, from coming into contact with the catalyst supports. The spacers may be in the shape of a ring, the dimensions of the contact surface being smaller than those of the catalyst support.

Description

Verwendung von Abstandshaltern im Beschichtungsverfahren  Use of spacers in the coating process
Die vorliegende Erfindung betrifft die Verwendung von Abstandshaltern in einem Prozess zum Beschichten von Katalysatorträgern. Die Abstandshalter haben die Aufgabe, eine Berührung der Laufbänder, auf das die Katalysator- träger normalerweise direkt gestellt werden, mit dem Katalysatorträger zu verhindern. The present invention relates to the use of spacers in a process for coating catalyst supports. The purpose of the spacers is to prevent contact between the treadmills, on which the catalyst supports are normally placed directly, with the catalyst support.
Das Abgas von Verbrennungsmotoren in Kraftfahrzeugen enthält typischerweise die Schadgase Kohlenmonoxid (CO) und Kohlenwasserstoffe (HC), Stickoxide (NOx) und gegebenenfalls Schwefeloxide (SOx), sowie Partikel, die überwiegend aus Rußrückständen und gegebenenfalls anhaftenden organischen Agglomeraten bestehen. Diese werden als Primäremissionen bezeichnet. CO, HC und Partikel sind Produkte der unvollständigen Verbrennung des Kraftstoffs im Brennraum des Motors. Stickoxide entstehen im Zylinder aus Stickstoff und Sauerstoff der Ansaugluft, wenn die Verbrennungstemperatu- ren lokal 1400°C überschreiten. Schwefeloxide resultieren aus der Verbrennung organischer Schwefelverbindungen, die in nicht-synthetischen Kraftstoffen immer in geringen Mengen enthalten sind . Zur Entfernung dieser für Umwelt und Gesundheit schädlichen Emissionen aus den Abgasen von Kraftfahrzeugen sind eine Vielzahl katalytischer Abgasreinigungstechnologien ent- wickelt worden, deren Grundprinzip üblicherweise darauf beruht, dass das zu reinigende Abgas über einen Durchfluss- (flow-through) oder einen Wand- flusswabenkörper (wall-flow) mit einer darauf aufgebrachten katalytisch aktiven Beschichtung geleitet wird . Der Katalysator fördert die chemische Reaktion verschiedener Abgaskomponenten unter Bildung unschädlicher Pro- dukte wie beispielsweise Kohlendioxid und Wasser. The exhaust gas of internal combustion engines in motor vehicles typically contains the noxious gases carbon monoxide (CO) and hydrocarbons (HC), nitrogen oxides (NO x ) and possibly sulfur oxides (SO x ), as well as particles consisting predominantly of soot residues and optionally adhering organic agglomerates. These are called primary emissions. CO, HC and particulates are products of incomplete combustion of the fuel in the combustion chamber of the engine. Nitrogen oxides are formed in the cylinder from nitrogen and oxygen in the intake air when the combustion temperatures locally exceed 1400 ° C. Sulfur oxides result from the combustion of organic sulfur compounds, which are always present in small amounts in non-synthetic fuels. A large number of catalytic exhaust gas purification technologies have been developed for removing these environmental and health-related emissions from the exhaust gases of motor vehicles, the basic principle of which is usually based on the exhaust gas to be purified via a flow-through or a wall-flow honeycomb body. Wall-flow) is passed with a catalytically active coating applied thereto. The catalyst promotes the chemical reaction of various exhaust gas components to form innocuous products such as carbon dioxide and water.
Die eben beschriebenen Durchfluss- oder Wandflusswabenkörper werden demgemäß auch als Katalysatorträger bezeichnet, tragen sie doch die katalytisch aktive Beschichtung auf ihrer Oberfläche bzw. in den diese Oberfläche bildenden Poren. Die katalytisch aktive Beschichtung wird häufig in einem sogenannten Beschichtungsvorgang in Form einer Suspension auf dem Katalysatorträger aufgebracht. Viele derartige Prozesse sind in der Vergangenheit von Autoabgaskatalysatorherstellern hierzu veröffentlicht worden (EP1064094B1, EP2521618B1, WO10015573A2, EP1136462B1). The flow or wall flow honeycomb bodies just described are accordingly also referred to as catalyst supports, since they carry the catalytically active coating on their surface or in the pores forming this surface. The catalytically active coating is often applied in a so-called coating process in the form of a suspension on the catalyst support. Many such processes are in the past for this purpose has been published by automotive catalytic converters (EP1064094B1, EP2521618B1, WO10015573A2, EP1136462B1).
In den meisten Fällen werden die unbeschichteten Katalysatorträger hierzu zuerst auf ein Laufband gestellt und dadurch der eigentlichen Beschichtungs- Vorrichtung zugeführt. Diese nimmt den Katalysatorträger in einem vornehmlich vollautomatischen Verfahren in Empfang und bewerkstelligt den Kontakt des Trägers mit der Beschichtungssuspension. In most cases, the uncoated catalyst support for this purpose are first placed on a treadmill and thereby fed to the actual coating device. This receives the catalyst support in a primarily fully automatic process and accomplishes the contact of the carrier with the coating suspension.
Für den Transport zur Beschichtungsvorrichtung hin und von Beschichtungs- vorrichtung weg und durch den anschließenden Trocknungsofen werden För- derbänder und oder Rollenförderer verwendet, wie sie in der Industrie üblich sind . Diese sind aus Plastik oder Metall bestehende Fördereinrichtungen, bei denen Endlosgurte über diesen tragende Längsrollen laufen (http ://de.wi- kipedia.org/wiki/F%C3%B6rderband). Häufig geschieht es, dass Katalysatorträger nach dem Durchlaufen der gesamten Beschichtungsstation Beschädi- gungen aufweisen. Da die Wände der Katalysatorträger mitunter sehr dünn sind und das Material, aus dem die Katalysatorträger gefertigt sind (z. B. SiC, Aluminiumtitanat, Corderite), sehr spröde ist, kommt es häufig vor, dass Ecken aus den peripheren Endbereichen des Trägers ausbrechen (Kantenausbrüche). Die Aufgabe der vorliegenden Erfindung war daher die Angabe einer Möglichkeit, den Beschichtungsvorgang derart zu modifizieren, dass diese Kantenausbrüche möglichst gar nicht mehr, zumindest aber weniger häufig und weniger massiv auftreten, da jeder Ausbruch einer Kante ein potentieller Reklamationsgrund des Kunden sein kann. Die vorgestellte Aufgabe wird durch die Anwendung gemäß vorliegendem Anspruch 1 gelöst. Bevorzugte Ausgestaltungen der erfindungsgemäßen Verwendung werden in den von Anspruch 1 abhängigen Unteransprüchen angegeben. For transport to the coating apparatus and away from the coating apparatus and through the subsequent drying oven, conveyor belts and / or roller conveyors are used, as are customary in industry. These are plastic or metal conveyors in which endless belts run over these supporting longitudinal rollers (http://de.wi- kipedia.org/wiki/Finder-band). Frequently it happens that catalyst carriers have damage after passing through the entire coating station. Since the walls of the catalyst supports are sometimes very thin and the material from which the catalyst supports are made (eg SiC, aluminum titanate, corderite) is very brittle, it often happens that corners break out of the peripheral end regions of the support ( chipping). The object of the present invention was therefore to specify a way to modify the coating process such that these edge breakouts possible no longer, but at least less frequently and less massive, since any outbreak of an edge may be a potential reason for complaint of the customer. The presented object is achieved by the application according to the present claim 1. Preferred embodiments of the use according to the invention are specified in the subclaims dependent on claim 1.
Dadurch, dass man in einem Prozess zur Beschichtung von Katalysatorträ- gern für Autoabgaskatalysatoren Abstandshalter dergestalt verwendet, dass die auf ein Förderband zu stellenden und zu beschichtenden bzw. beschichteten Katalysatorträger die auf dem Förderbänder befindlichen Abstandshalter gestellt werden und die so positionierten Katalysatorträger im Beschich- tungsprozess transportiert werden, ggf. über mehrere Förderbänder hinweg, wobei ein direkter Kontakt der Katalysatorträger mit dem Förderband verhindert wird, gelangt äußerst einfach, jedoch nicht minder erfolgreich zur Lösung der gestellten Aufgabe. Durch Untersuchungen hat sich herausgestellt, dass u.a. offensichtlich Scherkräfte, beim Wechsel von einem Band auf ein anderes, welche beim Transport der Katalysatorträger von dem Laufband auf den Träger ausgeübt werden, Kantenausbrüche zu einem gewissen Anteil mitprovozieren. Überraschenderweise hilft die obige Maßnahme alleine schon aus, viele Kantenausbrüche zu verhindern. By using spacers in a process for coating catalyst carriers for autocatalysts such that the catalyst supports to be placed on a conveyor belt and coated or coated are placed on the spacers on the conveyor belt and the catalyst supports thus positioned are transported in the coating process, if necessary over a plurality of conveyor belts, whereby direct contact of the catalyst carriers with the conveyor belt is prevented is achieved very simply, but no less successfully to solve the task. It has been found through investigations that, inter alia, shearing forces, when changing from one band to another, which are exerted on the carrier during transport of the catalyst carriers from the treadmill, to a certain extent excite edge breakouts. Surprisingly, the above measure alone already helps to prevent many edge breakouts.
Durch das Übereinanderstellen von entsprechend dimensionierten, vom Förderband unabhängigen Abstandshaltern und Katalysatorträgern wird die direkte Krafteinwirkung des Laufbandes auf den Träger und die Kanten des Trägers, die ca. 0,1-0,3 mm über die Standfläche hinaus ragen, verhindert. Damit ist es ausgeschlossen, dass die Scherkräfte des Bandes, welche bei direktem Kontakt und bei Übergängen offensichtlich vorhanden sind, den Träger an den Kanten schädigen. Es versteht sich von selbst, dass diese erfindungsgemäße Form des Transports der Katalysatorträger bevorzugt immer dort durchgeführt wird, wo der Katalysatorträger mit dem Laufband bewegt werden soll, also z.B. zur Beschichtungsvorrichtung, von der Beschichtungs- station weg, durch den Trocknungsofen, durch Kontroll- und Markierungseinheiten bis hin zur Verpackstation. Überall dort, wo entsprechende, durch Förderbänder erzeugte Scherkräfte aufzutreten drohen, kann die erfindungsgemäße Verwendung der Abstandshalter bevorzugt sein. By stacking appropriately dimensioned, independent of the conveyor belt spacers and catalyst carriers, the direct force of the treadmill on the support and the edges of the support, which protrude about 0.1-0.3 mm beyond the standing area, prevented. Thus, it is ruled out that the shearing forces of the band, which are obviously present in direct contact and at transitions, damage the wearer at the edges. It goes without saying that this form of transport of the catalyst supports according to the invention is preferably always carried out where the catalyst support is to be moved by means of the treadmill, e.g. to the coating device, away from the coating station, through the drying oven, through control and marking units to the packaging station. Wherever corresponding shear forces produced by conveyor belts are likely to occur, the use of the spacers according to the invention may be preferred.
Aus der Eignung heraus, dass die Katalysatorträger auf den Abstandshalter gestellt werden, ergibt sich eine bestimmte körperlich-räumliche Ausgestaltung, die die Abstandshalter aufweisen müssen. Vorzugsweise besitzen die Abstandshalter die gleiche Form wie die Träger. Es gibt z. B. Träger in rechteckiger, runder, ovaler, hexagonaler oder quadratischer Grundform. In den meisten Fällen wird der zu beschichtende Träger jedoch rund sein, weshalb die Ausführung des Abstandshalters in einer Ringform bevorzugt ist. From the suitability that the catalyst supports are placed on the spacer, there is a certain physical-spatial configuration, which must have the spacers. Preferably, the spacers have the same shape as the carriers. There are z. B. carrier in rectangular, round, oval, hexagonal or square basic shape. In the However, in most cases, the support to be coated will be round, so the design of the spacer in a ring shape is preferred.
Des Weiteren kann der Abstandshalter massiv ausgestaltet also ein kompakter Körper sein, oder andererseits bevorzugt lediglich den äußeren Umfang in einer festen Form aufweisen. Z.B. kann der Abstandshalter, sofern er in einer Kreisform ausgebildet ist, lediglich aus einem Ring bestehen, auf den der Katalysatorkörper gestellt werden kann (Fig . 1). Vor allem bei einem Transport durch einen Ofen ist der Ring die bevorzugte Ausführung, da dadurch das Substrat weiterhin von dem hier vorherrschenden Trocknungsstrom axial durchströmt werden kann. Dies hilft darüber hinaus Materialkosten sparen. Für die anderen Ausgestaltungsformen gilt dieses mutatis mutandis. Furthermore, the spacer can be made solid, that is, be a compact body, or, on the other hand, preferably have only the outer circumference in a fixed shape. For example, For example, if the spacer is formed in a circular shape, it can only consist of a ring on which the catalyst body can be placed (FIG. 1). Especially in the case of transport through an oven, the ring is the preferred embodiment since it allows the substrate to continue to be flowed through axially by the drying stream prevailing here. This also helps save material costs. For the other embodiments this applies mutatis mutandis.
Vorteilhafter Weise sollte der Abstandshalter nicht zu klein ausgeführt werden, damit das Arrangement nicht insgesamt zu instabil wird . Bevorzugt sollte der Unterschied zwischen den Außenmaßen des Katalysatorträgers und den Außenmaßen des Abstandshalters 40%, mehr vorteilhaft 30% und ganz besonders vorteilhaft 20 oder gar 10% nicht überschreiten. Eine Mindestgröße wird auch durch die Bandübergänge vorgegeben, wobei wiederum die Stabilität beim Transport ein Kriterium ist. In Bezug auf den bevorzugten ringförmigen Abstandshalter sollte der Unterschied zwischen dem Durchmesser oder der größten Diagonal der Auflagefläche des Katalysatorträgers und dem Durchmesser des Abstandshalters allenfalls bis zu 40% betragen. Bei Substraten mit großem Durchmesser zu kleiner Höhe können die Ringe im Verhältnis zum Durchmesser oder der größten Diagonal der Auflagefläche des Katalysatorträgers eher kleiner ausfallen. In einer anderen bevorzugten Ausführungsform ist der Durchmesser oder die größte Diagonal der Auflagefläche des Katalysatorträgers kleiner als der äußere Durchmesser des Abstandshalters und der Katalysatorträger ruht auf einer im äußeren Ring befindlichen und in die Mitte des Ringes ragenden Struktur, welche fest mit dem äußeren Ring verbunden ist. Vorzugsweise be- sitzt der Abstandshalter z. B. einen inneren Ring und einen äußeren Ring, mit dem der innere Ring fest verbunden ist. Der innere Ring ist vom Durchmesser kleiner als der Durchmesser des Katalysatorträgers. Der äußere Ring ist größer als der Durchmesser des Katalysatorträgers. Der Katalysatorträger wird auf den inneren Ring gestellt und ist so vor der direkten Krafteinwirkung des Laufbandes - wie oben beschrieben geschützt. Der äußere Ring hilft in der Hinsicht, dass dergestalt aufgestellte Katalysatorträger auf dem Laufband nicht gegeneinanderstoßen können. Ein entsprechendes Beispiel eines solchen Ringes ist in Fig . 3 dargestellt. Ein ähnliches Ergebnis erreicht man mit der Verwendung eines Ringes wie in Fig . 4 dargestellt. Hier wird der äußere Ring bewusst größer als der Durchmesser der Katalysatorkörper gewählt, um ein Aneinanderstoßen derselben zu unterbinden. Der Katalysatorträger ruht stattdessen auf den erhabenen Innenstreben des besagten Ringes. Weitere Ausführungsformen, die dem gleichen Prinzip folgen, sind für den Fachmann denkbar und vom Anspruchsumfang dieser Schrift mitumfasst. Advantageously, the spacer should not be made too small, so that the arrangement is not altogether too unstable. Preferably, the difference between the outer dimensions of the catalyst support and the outer dimensions of the spacer should not exceed 40%, more preferably 30%, and most preferably 20% or even 10%. A minimum size is also given by the band transitions, again the stability during transport is a criterion. With respect to the preferred annular spacer, the difference between the diameter or the largest diagonal of the support surface of the catalyst support and the diameter of the spacer should at most be up to 40%. For substrates with a large diameter to small height, the rings may tend to be smaller in relation to the diameter or the largest diagonal of the support surface of the catalyst support. In another preferred embodiment, the diameter or largest diagonal of the support surface of the catalyst support is smaller than the outer diameter of the spacer and the catalyst support rests on a structure located in the outer ring and projecting in the center of the ring, which is fixedly connected to the outer ring , Preferably, the spacer has z. B. an inner ring and an outer ring to which the inner ring is firmly connected. The inner ring is of diameter smaller than the diameter of the catalyst carrier. The outer ring is larger than the diameter of the catalyst carrier. The catalyst support is placed on the inner ring and is thus protected from the direct force of the treadmill - as described above. The outer ring helps in the sense that such erected catalyst support on the treadmill can not collide against each other. A corresponding example of such a ring is shown in FIG. 3 shown. A similar result is achieved with the use of a ring as shown in FIG. 4 shown. Here, the outer ring is deliberately chosen to be larger than the diameter of the catalyst body in order to prevent them from abutting one another. The catalyst support rests instead on the raised inner struts of the said ring. Further embodiments which follow the same principle are conceivable for the person skilled in the art and are included in the scope of claim of this document.
Ein weiteres Ausgestaltungselement des Abstandshalters stellt dessen Höhe dar. Diese sollte nicht zu groß sein, da dann wieder eine Instabilität des Arrangements aus Katalysatorträger und Abstandshalter droht. Auf der anderen Seite sollte er auch nicht zu dünn ausgestaltet werden, damit die Gefahr der Scherkraftübertragung nicht zu groß wird. Idealerweise wird der Abstandshalter eine Höhe von 3 - 10, vorzugsweise 4 - 8 und besonders bevorzugt 5 - 6 mm aufweisen. Another design element of the spacer represents its height. This should not be too large, since then again threatens instability of the arrangement of catalyst support and spacer. On the other hand, it should not be made too thin, so that the risk of shearing power transmission is not too large. Ideally, the spacer will have a height of 3 - 10, preferably 4 - 8 and more preferably 5 - 6 mm.
Das Material, aus dem der Abstandshalter gemacht wird, steht im Ermessen des Fachmannes. Er wird sich diesbezüglich an Herstellbarkeit, Prozesseignung und Kosten des Materials orientieren. Bevorzugt sind etwa Materialien aus Metall, wie Edelstahl, z.B. 316. Bevorzugt ist insbesondere ein Metall, da dieses auch im Trocknungsbereich, wo Temperaturen von >600°C vorherrschen können, als Abstandshalter herangezogen werden kann. Ist ein Prozess im Ofen nicht vorgesehen, kann auch Plastik verwendet werden, z. B. Kunststoffe wie Polyoxymethylen, HDPE, oder ähnliches. The material from which the spacer is made is at the discretion of the skilled person. In this regard, he will focus on the manufacturability, process suitability and cost of the material. For example, preferred are materials of metal such as stainless steel, e.g. 316. Preference is given in particular to a metal, since it can also be used as a spacer in the drying region, where temperatures of> 600 ° C. may prevail. If a process in the oven is not intended, plastic can be used, for. As plastics such as polyoxymethylene, HDPE, or the like.
Weiterhin bevorzugt ist, dass der Abstandhalter auf der zum Substrat hin gewandten Seite gerändert ist. Damit ist ein leichtes Gleiten des Abstandhalters auf dem Band gewährleistet, während das Substrat einen sichern Stand hat und sich der Abstandhalter zum Substrat gesehen nicht verschiebt It is further preferred that the spacer is edged on the side facing the substrate. This ensures a slight sliding of the spacer on the belt, while the substrate secure one Stand and the spacer does not move seen to the substrate
Die vorliegende Erfindung zeigt eine einfache Möglichkeit auf, wie sich Kantenausbrüche im Beschichtungsprozess von Katalysatorträgern verringern lassen. Es war bis dato nicht ersichtlich, für welchen Anteil der Schäden die Beförderung der Katalysatorträger auf Laufbändern tatsächlich verantwortlich ist. Dass ein Großteil der Schäden durch die Scherkräfte des Laufbandes hervorgerufen wird, ist erst aus einer detaillierten Studie ersichtlich hervorgegangen, die sogenannte minimale Randüberstände (die Katalysatorträger sind an den Rändern gegenüber der Mitte etwas erhöht) der von den Herstellern dieser Träger gelieferten Substrate mitberücksichtigt hat. Es kann daher als Überraschung gelten, dass eine derart einfache Lösung der gestellten Aufgabe tatsächlich zum gewünschten Erfolg verhilft. The present invention demonstrates a straightforward way in which edge break-offs in the catalyst carrier coating process can be reduced. It has not been apparent to date for which proportion of the damage the carriage of catalyst supports on treadmills is actually responsible. The fact that a large part of the damage is caused by the shearing forces of the treadmill has emerged only from a detailed study, the so-called minimal edge projections (the catalyst supports are slightly raised at the edges compared to the center) of the substrates supplied by the manufacturers of these carriers. It can therefore be regarded as a surprise that such a simple solution to the task actually leads to the desired success.
Figur 1 : Die Bilder stellen bevorzugte ringförmig ausgestaltete Figure 1: The pictures represent preferred ring-shaped
Abstandshalter vor.  Spacer before.
Figur 2 : Schematische Darstellung der Verwendung der Abstandshalter; Figure 2: Schematic representation of the use of the spacers;
1 Förderband  1 conveyor belt
2 Katalysatorträger  2 catalyst carrier
3 Abstandshalter in der Sammelbox  3 spacers in the collection box
4 Abstandshalter  4 spacers
Figur 3 : Bevorzugter ringförmiger Abstandshalter mit innerem und äußerem Ring Figure 3: Preferred annular spacer with inner and outer ring
Figur 4: Bevorzugter ringförmiger Abstandshalter mit äußerem Ring und innerer Auflagestruktur Figur 5 : Zeigt den Transport von Katalysatorkörpern auf Abstandshaltern von einem Rollenförderer auf einem Ofenband Figure 4: Preferred annular spacer with outer ring and inner support structure Figure 5: Shows the transport of catalyst bodies on spacers from a roller conveyor on a furnace belt

Claims

Patentansprüche:  claims:
Verwendung von Abstandshaltern in einem Prozess zur Beschichtung von Katalysatorträgern für Autoabgaskatalysatoren dergestalt, dass die auf ein Förderband zu stellenden und zu beschichtenden bzw. beschichteten Katalysatorträger auf die auf dem Laufband befindlichen Abstandshalter gestellt werden und die so positionierten Katalysatorträger im Beschichtungsprozess transportiert werden, wobei ein direkter Kontakt der Katalysatorträger mit dem Förderband verhindert wird. Use of spacers in a process for coating catalyst carriers for autocatalysts such that the catalyst carriers to be placed on a conveyor belt and coated or coated on the treadmill spacers are placed and the catalyst supports thus positioned are transported in the coating process, wherein a direct Contact the catalyst carrier with the conveyor belt is prevented.
Verwendung nach Anspruch 1, Use according to claim 1,
dadurch gekennzeichnet, dass  characterized in that
die Abstandshalter eine Ringform aufweisen.  the spacers have a ring shape.
Verwendung nach Anspruch 2, Use according to claim 2,
dadurch gekennzeichnet, dass  characterized in that
der Unterschied zwischen dem Durchmesser oder der größten Diagonal der Auflagefläche des Katalysatorträgers und dem Durchmesser des Abstandshalters allenfalls bis zu 40% beträgt.  the difference between the diameter or the largest diagonal of the support surface of the catalyst support and the diameter of the spacer is at most up to 40%.
Verwendung nach Anspruch 2, Use according to claim 2,
dadurch gekennzeichnet, dass  characterized in that
der Durchmesser oder die größte Diagonal der Auflagefläche des Katalysatorträgers kleiner als der äußere Durchmesser des Abstandshalters ist und der Katalysatorträger auf einer im äußeren Ring befindlichen und in die Mitte des Ringes ragenden Struktur ruht, welche fest mit dem äußeren Ring verbunden ist.  the diameter or largest diagonal of the support surface of the catalyst support is smaller than the outer diameter of the spacer and the catalyst support rests on a structure located in the outer ring and protruding into the center of the ring, which is fixedly connected to the outer ring.
Verwendung nach Anspruch 2 und/oder 3, Use according to claim 2 and / or 3,
dadurch gekennzeichnet, dass  characterized in that
der Abstandshalter eine Höhe von 3 - 10 mm aufweist.  the spacer has a height of 3 - 10 mm.
6. Verwendung nach einem der vorhergehenden Ansprüche, 6. Use according to one of the preceding claims,
dadurch gekennzeichnet, dass der Abstandshalter aus einem Material ausgewählt aus der Gruppe bestehend aus Kunststoff wie Polyoxymethylen, HDPE, Metall, wie Edelstahl besteht. characterized in that the spacer is made of a material selected from the group consisting of plastic such as polyoxymethylene, HDPE, metal, such as stainless steel.
PCT/EP2016/070602 2015-09-09 2016-09-01 Use of spacers in the coating method WO2017042085A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16769881.0A EP3356754A1 (en) 2015-09-09 2016-09-01 Use of spacers in the coating method
CN201680051946.8A CN108027211A (en) 2015-09-09 2016-09-01 Purposes of the spacer in painting method
BR112018004666A BR112018004666A2 (en) 2015-09-09 2016-09-01 use of conveyor independent spacers in a process for coating catalyst supports
CA2996654A CA2996654A1 (en) 2015-09-09 2016-09-01 Use of spacers in the coating method
ZA2018/01573A ZA201801573B (en) 2015-09-09 2018-03-07 Use of spacers in the coating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015115124.3A DE102015115124A1 (en) 2015-09-09 2015-09-09 Use of spacers in the coating process
DE102015115124.3 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017042085A1 true WO2017042085A1 (en) 2017-03-16

Family

ID=56979520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/070602 WO2017042085A1 (en) 2015-09-09 2016-09-01 Use of spacers in the coating method

Country Status (7)

Country Link
EP (1) EP3356754A1 (en)
CN (1) CN108027211A (en)
BR (1) BR112018004666A2 (en)
CA (1) CA2996654A1 (en)
DE (1) DE102015115124A1 (en)
WO (1) WO2017042085A1 (en)
ZA (1) ZA201801573B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3834936B1 (en) 2019-12-10 2022-06-29 Johnson Matthey Public Limited Company Apparatus and method for coating substrates with washcoats
US20210220813A1 (en) * 2020-01-16 2021-07-22 Johnson Matthey Public Limited Company Pallet for supporting a catalyst monolith during coating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0234887A1 (en) * 1986-02-20 1987-09-02 Ngk Insulators, Ltd. Setters and firing of ceramic honeycomb structural bodies by using the same
DE9116767U1 (en) * 1991-06-18 1993-09-23 Norton Gmbh SUPPORT PLATE MADE OF CERAMIC MATERIAL FOR TRANSPORTING CERAMIC SINTERGUT
DE69204877T2 (en) * 1991-03-26 1996-05-30 Ngk Insulators Ltd Carrier for drying honeycomb structures.
EP1064094B1 (en) 1998-03-19 2002-09-25 Johnson Matthey Public Limited Company Monolith coating apparatus and method therefor
DE10244617A1 (en) * 2001-09-26 2003-06-05 Micro Denshi Co Ltd Microwave continuous heating device
DE10353784A1 (en) * 2002-11-19 2004-06-24 Micro Denshi Co. Ltd., Kawagoe Method and apparatus for drying ceramic shaped articles
EP1136462B1 (en) 2000-03-23 2004-08-04 Umicore AG & Co. KG Process for partially coating of a carrier body
US20060283039A1 (en) * 2003-09-04 2006-12-21 Ngk Insulators, Ltd Method for drying honeycomb formed structure
WO2010015573A2 (en) 2008-08-06 2010-02-11 Basf Se Positioning device and method with rotary indexing table for monolith-based automobile and chemical catalysts
EP2521618B1 (en) 2010-01-04 2013-08-28 Johnson Matthey PLC Method of coating a monolith substrate with catalyst component
EP2894140A1 (en) * 2012-09-05 2015-07-15 Sumitomo Chemical Company Limited Honeycomb structure production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1129964B (en) * 1960-07-19 1962-05-24 Louis Gilbert Dubuit Device for introducing and removing bottles or similar cylindrical bodies on screen printing machines
CN2694202Y (en) * 2004-02-17 2005-04-20 攀枝花钢铁(集团)公司 Belt type hopper carrier plate for high temperature reaction furnace
CN103157521B (en) * 2013-03-08 2015-02-18 无锡威孚环保催化剂有限公司 Full-automatic quantitative honeycomb carrier catalyst coating device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0234887A1 (en) * 1986-02-20 1987-09-02 Ngk Insulators, Ltd. Setters and firing of ceramic honeycomb structural bodies by using the same
DE69204877T2 (en) * 1991-03-26 1996-05-30 Ngk Insulators Ltd Carrier for drying honeycomb structures.
DE9116767U1 (en) * 1991-06-18 1993-09-23 Norton Gmbh SUPPORT PLATE MADE OF CERAMIC MATERIAL FOR TRANSPORTING CERAMIC SINTERGUT
EP1064094B1 (en) 1998-03-19 2002-09-25 Johnson Matthey Public Limited Company Monolith coating apparatus and method therefor
EP1136462B1 (en) 2000-03-23 2004-08-04 Umicore AG & Co. KG Process for partially coating of a carrier body
DE10244617A1 (en) * 2001-09-26 2003-06-05 Micro Denshi Co Ltd Microwave continuous heating device
DE10353784A1 (en) * 2002-11-19 2004-06-24 Micro Denshi Co. Ltd., Kawagoe Method and apparatus for drying ceramic shaped articles
US20060283039A1 (en) * 2003-09-04 2006-12-21 Ngk Insulators, Ltd Method for drying honeycomb formed structure
WO2010015573A2 (en) 2008-08-06 2010-02-11 Basf Se Positioning device and method with rotary indexing table for monolith-based automobile and chemical catalysts
EP2521618B1 (en) 2010-01-04 2013-08-28 Johnson Matthey PLC Method of coating a monolith substrate with catalyst component
EP2894140A1 (en) * 2012-09-05 2015-07-15 Sumitomo Chemical Company Limited Honeycomb structure production method

Also Published As

Publication number Publication date
EP3356754A1 (en) 2018-08-08
ZA201801573B (en) 2019-01-30
DE102015115124A1 (en) 2017-03-09
CN108027211A (en) 2018-05-11
CA2996654A1 (en) 2017-03-16
BR112018004666A2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
EP2568137B1 (en) Heated injection system for exhaust gas systems of Diesel engines
WO2017042085A1 (en) Use of spacers in the coating method
WO2000070202A1 (en) Method for reducing harmful components in the exhaust gas of an internal combustion engine, especially a diesel-internal combustion engine
DE102015203281A1 (en) Apparatus and method for the regeneration of residue filters
DE102007011569A1 (en) Diesel particulate filter with a ceramic filter body
DE112013005778T5 (en) Exhaust gas component mounting structure
EP3018309B1 (en) Waste gas treatment system for combustion engines
WO2015071058A1 (en) Dryer and method for drying flat materials
DE102016106408A1 (en) Method for separating a plate-shaped material in a machine as well as a machine for separating processing of the plate-shaped material, in particular for carrying out the method
DE102015110488B4 (en) Bi-cell electrochemical panel and apparatus for removing airborne pollutants from vehicle combustion exhaust gases rich in oxygen
DE102015221495A1 (en) Method and apparatus for regeneration of a particulate filter
DE112011104746T5 (en) A method of incorporating a multilayer fiberboard, casing or mat into an exhaust aftertreatment or acoustic device
DE102014016447B4 (en) Method and control device for operating an internal combustion engine
DE112006001650T5 (en) Honeycomb-shaped metal catalyst carrier
EP2194251B1 (en) Self-supporting holder for catalytic converter support
DE102013204401A1 (en) Exhaust gas aftertreatment system, method and internal combustion engine
DE102015004732A1 (en) Method and apparatus for drying a film
EP1721694B1 (en) Method for producing at least one metal sheet element, method for producing at least one catalyst body, produced metal sheet element and catalyst body
EP3686407B1 (en) Motor vehicle and arrangement of at least two motor-adjacent waste gas system components for a combustion engine of a motor vehicle
DE102015219477A1 (en) DEVICE FOR CONTROLLING AN ENGINE FOR A VEHICLE AND METHOD THEREFOR
DE202023103234U1 (en) coating device
WO2015120957A1 (en) Controlling no2 visibility for passive regeneration dpf systems
DE102021104261A1 (en) Device for transporting components, coating system and method for coating or painting components
DE202008010121U1 (en) Device for carrying out the exhaust gas purification method (diesel engine)
DE102012014056A1 (en) Laser processing of fiber materials, preferably e.g. carbon fiber- and/or glass fiber material, comprises processing fiber material using laser beam, and providing fluid layer on fiber material in region of interaction zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2996654

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018004666

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018004666

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180308