WO2017041726A1 - 风量调节装置及方法和空调柜机 - Google Patents

风量调节装置及方法和空调柜机 Download PDF

Info

Publication number
WO2017041726A1
WO2017041726A1 PCT/CN2016/098407 CN2016098407W WO2017041726A1 WO 2017041726 A1 WO2017041726 A1 WO 2017041726A1 CN 2016098407 W CN2016098407 W CN 2016098407W WO 2017041726 A1 WO2017041726 A1 WO 2017041726A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fans
fan
air volume
air outlet
Prior art date
Application number
PCT/CN2016/098407
Other languages
English (en)
French (fr)
Inventor
吕飞虎
伍衍亮
吴淑明
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP16843664.0A priority Critical patent/EP3348917B1/en
Publication of WO2017041726A1 publication Critical patent/WO2017041726A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0033Indoor units, e.g. fan coil units characterised by fans having two or more fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/005Indoor units, e.g. fan coil units characterised by mounting arrangements mounted on the floor; standing on the floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/028Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by air supply means, e.g. fan casings, internal dampers or ducts
    • F24F1/0287Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by air supply means, e.g. fan casings, internal dampers or ducts with vertically arranged fan axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to air conditioning technology, in particular to an air volume adjusting device and method and an air conditioning cabinet machine.
  • the air conditioner cabinet mainly includes an evaporator and an internal fan.
  • the liquid refrigerant vaporizes after reaching the evaporator, thereby generating a low temperature gaseous refrigerant while absorbing a large amount of heat, so that the temperature of the evaporator is lowered.
  • the internal fan sends cold air around the evaporator into the room, changing the ambient temperature inside the room.
  • an internal fan such as an AC internal fan or a DC internal fan.
  • the internal fan of the AC is simple to control, and most of them use a tapping motor to adjust the speed by applying different voltages.
  • the control mode of the AC internal fan is mostly open-loop control, in which there is no corresponding detection and feedback signal such as the rotational speed. Therefore, the control method of the DC internal fan is complicated.
  • the built-in Hall sensor of the motor performs speed detection and feeds back to the host to achieve closed-loop control.
  • the motor control method for a single internal fan has been widely used, the amount of air that can be achieved with a single internal fan is limited.
  • the present invention provides an air volume adjusting device and method and an air conditioner cabinet.
  • an air volume adjusting device including: a fan system located inside an air conditioner cabinet, an upper air outlet located at an upper portion of the air conditioner cabinet, and a lower air outlet located at a lower portion of the air conditioner cabinet And a control system for controlling the fan; wherein the fan system includes a plurality of fans driven by respective motors, the ports of each fan being in communication with a main air duct formed by at least a portion of the air conditioning housing, respectively; A system controls each of the plurality of fans to perform at least one of starting, stopping, and regulating power to adjust an air volume.
  • the air volume adjusting device further comprises: a damper structure disposed near the lower air outlet of the air conditioner cabinet, for opening or closing the lower air outlet.
  • the damper structure comprises a baffle, a damper motor and a rack
  • the baffle is fixed at an end of the rack
  • a driving gear of the damper motor meshes with the rack
  • the rack is at the Driven by the damper motor, the baffle moves to the different positions following the rack.
  • the control system comprises: an input given device for acquiring a user instruction; a temperature sensor for acquiring a sensing signal for characterizing an ambient temperature; and a plurality of motor drivers respectively connected to the plurality of motors for corresponding correspondence a motor provides a supply voltage and a feedback signal from the motor; and a controller receives user commands and sense signals from the input given device and the temperature sensor, respectively, and generates a control signal according to the received user command and the sense signal, The control signal is provided to a plurality of motor drives to control the operation of the plurality of motors.
  • control system activates a corresponding number of fans according to the air volume requirements of the system and/or controls the speed of each of the fans.
  • the plurality of fans includes: a first group of fans located at an upper portion of the main air duct and having an upper port for providing airflow blown from the upper air outlet; and a second group of fans located at a lower portion of the main channel and having The lower port is used to provide airflow from the lower air outlet.
  • the plurality of fans further comprises: a third group of fans located in the middle of the main duct and having an upper port and a lower port for simultaneously providing airflow blown from the upper air outlet and the lower air outlet.
  • a method for adjusting an air volume for the air volume adjusting device described above comprising: starting all or part of a fan according to an ambient temperature; maintaining or reducing the number of fans that have been operated according to the rotational speed of each fan; Close or open the lower air outlet according to the operating phase of the air conditioning system.
  • starting all or part of the fan according to the ambient temperature comprises: detecting an ambient temperature; determining whether a temperature difference between the ambient temperature and the preset temperature is greater than a first threshold; if the temperature difference is greater than the first threshold, starting all fans; if the temperature difference is not Greater than the first threshold and the ambient temperature does not exceed the preset temperature, Then all fans are activated; and if the temperature difference is not greater than the first threshold and the ambient temperature exceeds the preset temperature, then some of the fans are activated.
  • the step of maintaining or reducing the number of fans that have been operated according to the rotation speed of each of the fans is performed when the temperature difference has decreased.
  • maintaining or reducing the number of fans that have been operated according to the rotation speed of each fan includes: detecting the rotation speed of each fan; determining whether the rotation speed difference between the rotation speed of each fan and the rated rotation speed is greater than a second threshold; if the rotation speed difference is greater than a second threshold , at least one fan is turned off, and the speed of the remaining fan is increased; if the difference in the speed is not greater than the second threshold, all or part of the fan is started according to the ambient temperature.
  • the rotational speed of each of the fans is obtained based on a feedback signal of the motor.
  • an air conditioning cabinet comprising: the air volume adjusting device; the outer casing, at least a portion of the outer casing forming a main air duct, and including an upper air outlet connected to the main air duct;
  • the outer casings are assembled together and include a lower air outlet that is connected to the main air duct.
  • the invention realizes the air volume adjustment control of the whole machine through a plurality of sets of separately controlled motors and a damper which can switch the lower air outlet.
  • the control system realizes the adjustment of the air volume by controlling the different input powers of the plurality of motors, changing the different rotational speeds and the air volume; and the damper structure of the lower air outlet, only opening the air outlet when closing, the air volume is reduced, or the upper and lower air outlets are all After closing for a while, close the damper to adjust the air volume.
  • the invention can realize the integrated air volume control of a plurality of wind turbines; the optimized real-time control can be realized according to the working phase of the air conditioning system to improve the comfort; and according to the current running speed of each wind turbine, it is judged whether some fans are turned off in the subsequent stage, In order to improve energy efficiency and achieve energy saving, it is avoided that multiple fans are turned on at the same time, but they all work at such low efficiency in lower speeds.
  • FIG. 1 is a schematic structural view of an air volume adjusting device in an air conditioner cabinet according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a fan system in an air volume adjusting device according to an embodiment of the present invention.
  • 3a and 3b are partial schematic views of a damper structure in an air volume adjusting device in accordance with an embodiment of the present invention.
  • FIG. 4 is a more detailed partial view of the damper structure of the air volume adjusting device according to an embodiment of the present invention. schematic diagram.
  • Fig. 5 is a schematic diagram of a control system in an air volume adjusting device according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of a method of adjusting air volume in accordance with an embodiment of the present invention.
  • the air volume adjusting device includes a fan system 1a located inside the air conditioner cabinet, and upper air outlets 1b and lower air outlets 1c respectively located at upper and lower portions of the air conditioner cabinet.
  • the air conditioning cabinet has a main air duct formed by at least a portion of the outer casing.
  • the air outlet 1b and the lower air outlet 1c are respectively located at the upper end and the lower end of the main air duct.
  • the air outlet area of the upper air outlet 1b and the lower air outlet 1c is different.
  • the lower air outlet 1c can be selectively opened or closed, so that the air conditioner can provide a plurality of air outlet modes, for example, only the wind is opened, or the wind is opened up and down, thereby improving comfort.
  • the air conditioner when the air conditioner is rapidly cooled, the upper air outlet and the lower air outlet are simultaneously opened; when the air conditioning cooling capacity is small, only the upper air outlet is opened; when the air conditioner is rapidly heating, the upper air outlet and the lower air outlet are simultaneously opened; When the heat of the air conditioner is small, only the lower air outlet is opened.
  • the fan system 1a includes a plurality of fans respectively driven by motors, arranged in order from top to bottom. The ports of the respective fans are respectively connected to the main air duct.
  • the fan system shown in Figures 1 and 2 includes three fans 2a-2c in the upper, middle and lower directions.
  • the upper fan 2a has only an upper port
  • the lower fan 2c has only a lower port
  • the intermediate fan 2b has an upper port and a lower port.
  • the upper fan 2a and the middle fan 2b together provide a flow of air blown from the upper air outlet
  • the lower fan 2c together with the intermediate fan 2b provides a flow of air blown from the lower air outlet.
  • the three fans in the fan system are respectively driven by three motors, namely an upper motor 2d, a middle motor 2e and a lower motor 2f.
  • the power of the motor By adjusting the power of the motor, the amount of air blown by the upper fan 2a, the middle fan 2b, and the lower fan 2c is separately controlled, thereby adjusting the amount of air discharged from the upper air outlet 1b and the lower air outlet 1c, respectively.
  • the input power of the motors 2d, 2e, 2f is the same, and the amount of hot air blown to the outlet is large. Because the hot air floats up, the interior comfort is better. In the case of cooling, such motor power combinations are flawed. There is less cold air above, more cold air below, cold air can not sink effectively, and indoor comfort is not good.
  • the input power of the motor 2d, 2e, 2f is adjusted, the input power of the upper motor 2d is increased, the input power of the middle motor 2e is unchanged, and the input power of the lower motor 2f is reduced, so that the air volume of the upper air outlet is larger than that of the lower air outlet.
  • the amount of wind which improves the comfort of the refrigeration.
  • the number of fans is not limited thereto, and two or more fans may be provided in the main duct.
  • multiple fans can be arranged vertically or horizontally in the main duct.
  • the upper fan is only provided with an upper port for providing upward flow of air
  • the lower fan is only provided with a lower port for providing downward flow of air.
  • the fan located in the middle is provided with an upper port and a lower port, and is used to provide an air flow flowing upward and downward.
  • the fan in the middle is only optional. Since the fan includes two ports, it can reduce the number of fans used in the main air duct, save costs and provide efficient air volume control methods.
  • FIG. 3a and 3b are partial schematic views of a damper structure in an air volume adjusting device according to an embodiment of the present invention
  • FIG. 4 is a more detailed partial schematic view of a damper structure of the air volume adjusting device according to an embodiment of the present invention.
  • the damper structure is disposed in the outer casing 3c of the air conditioner cabinet, and is located near the base 3d of the air conditioner cabinet.
  • the damper structure includes a baffle 3a, a damper motor 3b, and a rack 3e.
  • the shutter 3b is fixed to the end of the rack 3e, and the drive gear of the damper motor 3b meshes with the rack 3e, thereby driving the rack 3e to move up and down. Accordingly, the shutter 3e follows the rack 3e to move to a different position, so that the lower air outlet can be opened or closed.
  • the baffle 3a conforms to the shape of the lower air outlet so that the air flow between the main air duct and the lower air outlet can be better cut off in the closed state.
  • the baffle 3e is provided with a seal ring mounting portion. The seal ring mounting portion is used to mount a seal ring for sealing in a closed state to avoid air leakage.
  • an additional guiding structure such as a trough-like structure, is provided on the outer casing 3c.
  • the edge of the baffle 3a matches the groove-like structure and slides along the groove-like structure.
  • the guiding structure can also be provided as other structures capable of guiding, such as guiding blocks.
  • Fig. 5 is a schematic diagram of a control system in an air volume adjusting device according to an embodiment of the present invention.
  • the control system includes a controller 101, an input given device 102, a temperature sensor 103, and a plurality of motor drivers 201-20N. Also shown in Figure 5 are a plurality of motors M1-MN for driving a plurality of fans as shown in Figure 1, respectively.
  • the controller 101 includes a main control chip such as a single chip microcomputer, a DSP, and the like.
  • the controller 101 receives a user command from the input given device 102, receives an environmental sensing signal from the temperature sensor 103, and generates a control signal based on the received user command and the environmental sensing signal.
  • the controller 101 provides control signals to the motor drivers 201-20N for controlling the operation of the fans.
  • the input given device 102 can be any user input device, such as a remote control, a mobile phone, etc., for providing user commands to the air conditioning cabinet, such as starting, stopping, lowering, and air volume adjustment of the air conditioner.
  • the temperature sensor 103 is used to detect an ambient temperature, for example, a sensitive element such as a thermistor.
  • the motor drivers 201-20N are connected to the motors M1-MN, respectively.
  • the motor drive supplies a voltage to the motor so that the motor can operate.
  • the motor drive obtains a feedback signal from the motor so that the operating parameters of the motor can be adjusted.
  • the feedback signal of the motor is for example a speed signal.
  • a Hall sensor can be placed on the rotor of the motor to obtain a speed signal.
  • the speed signal can be a non-measured value, but a calculated value of the system algorithm.
  • the fan's air volume can be estimated based on the speed.
  • the corresponding relationship between the air volume and the speed of a single fan can be obtained through testing, and conversely, the speed signal can be used as a signal for feedback air volume.
  • the control system enables integrated air volume control of multiple fans.
  • the air volume of a single fan cannot meet the air volume required by the system, the collection of air volume is maximized by the combination of multiple fans.
  • the control system can achieve optimized real-time control for improved comfort. For example, when the air conditioner is turned on or cooled, the controller will start all the controlled fans to achieve the maximum air volume output and quickly reach the temperature set by the system. When the temperature reaches the value near the set temperature, the controller can switch to the energy-saving operation state, and appropriately close some of the fans to make a smooth transition.
  • each fan it is judged whether some fans are turned off in the subsequent stage to improve energy efficiency and achieve energy saving. For example, in an optimized control method, only one fan is left running, The fan speed is close to the rated value. This avoids the simultaneous opening of multiple fans, but all work at this low efficiency at lower speeds.
  • FIG. 6 is a flow chart of a method of adjusting air volume in accordance with an embodiment of the present invention.
  • the air volume adjustment method takes the refrigeration process as an example.
  • the air volume adjustment method described below is performed using the control system as shown in FIG. 5.
  • the controller 101 shown in FIG. 5 provides a control signal to a motor driver 201 such that the motor M1 operates while the other motors are stopped.
  • different numbers of fans are activated and the speed of each fan is controlled. The example flow is as follows.
  • step S01 the air conditioning system is turned on to perform cooling.
  • step S02 the temperature sensor using the detected ambient temperature T loop, it determines whether the temperature difference between the ambient temperature and the preset temperature T T ring is provided greater than the first threshold value ⁇ T1. If it is not greater than the first threshold ⁇ T1, then step S03 is performed, and if it is greater than the first threshold ⁇ T1, then step S05 is subsequently performed.
  • step S03 the ambient temperature T is determined whether the ring is less than T is provided. If T is less than T ring is provided, the fan is started in a step S04. If T is less than T ring is not provided, it is then performed in step S05.
  • step S05 all fans are activated.
  • step S06 after the fan is operated for a period of time, the temperature sensor is used to detect the ambient temperature T- ring , and it is determined whether the temperature difference between the ambient temperature T- ring and the T- set is greater than the second threshold ⁇ T2.
  • the second threshold ⁇ T2 is smaller than the first threshold ⁇ T1, that is, the temperature difference is decreased. If it is not greater than the second threshold ⁇ T2, the process returns to step S02, and if it is greater than the second threshold ⁇ T2, then step S07 is performed.
  • step S07 the current rotational speed of each fan is obtained according to the feedback signal of the motor, and it is determined whether the difference between the rated rotational speed of each fan and the current rotational speed is greater than a third threshold ⁇ n. If it is greater than the third threshold ⁇ n, then step S08 is performed. If it is not greater than the third threshold ⁇ n, the process returns to step S02.
  • step S08 a fan is turned off while increasing the speed of the remaining operating fan, thereby ensuring that the operating fan operates near the rated speed while all of the operating fans maintain the system's air volume.
  • first, second, third, etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be Terminology restrictions. These terms may be only used to distinguish one element, component, region, layer or section from another element, region, layer or section. Terms such as “first”, “second” and other numerical terms when used herein do not denote an order or order unless the context clearly dictates. Thus, a first element, component, region, layer or section discussed below may be referred to as a second element, component, region, layer or section without departing from the teachings of the example embodiments. Further, in the description of the present invention, the meaning of "a plurality" is two or more unless otherwise specified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种风量调节装置及方法和空调柜机,该风量调节装置包括:空调柜机内部的风机***(1a)、空调柜机上部的上出风口(1b)、空调柜机下部的下出风口(1c)以及用于控制风机(2a、2b、2c)的控制***,其中,风机***(1a)包括由各自的电机(2d、2e、2f)驱动的多个风机(2a、2b、2c),各个风机(2a、2b、2c)的端口分别与由空调外壳(3c)的至少一部分形成的主风道连通,控制***控制该多个风机(2a、2b、2c)的各个电机(2d、2e、2f),以执行启动、停止和调节功率中的至少一种操作,从而调节出风量。该风量调节方法包括根据环境温度控制多组单独控制的电机(2d、2e、2f)和一个可开关下出风口的风门。空调柜机包括该风量调节装置。该风量调节装置和方法实现了集成风量控制,提高舒适性和能效并实现节能。

Description

风量调节装置及方法和空调柜机
本申请要求于2015年9月11日提交中国专利局、申请号为201510578301.7、发明名称为“风量调节装置及方法和空调柜机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调技术,具体涉及一种风量调节装置及方法和空调柜机。
背景技术
空调柜机主要包括蒸发器和内风机。在空调柜机工作时,液态的制冷剂在到达蒸发器之后发生汽化,从而产生低温的气态制冷剂,同时吸收大量的热量,使得蒸发器的温度降低。内风机将蒸发器周围的冷空气送入室内,从而改变室内的环境温度。
现有的空调柜内机大多采用一个内风机,例如交流内风机或直流内风机。不同类型的内风机的控制方式不同。交流内风机控制简单,大多采用抽头电机,通过施加不同的电压来调速。交流内风机的控制方式大多为开环控制,其中无相应的转速等检测及反馈信号。因此,直流内风机的控制方式较为复杂。例如,通过电机内置的霍尔传感器进行转速检测并反馈给主机,实现闭环控制。尽管单个内风机的电机控制方法应用已很广泛,但单个内风机所能实现的风量是有限的。对于开发风量需求较大,制冷、制热速度更快的机型来讲,必须提高电机功率和/或提高电机转速才来实现。这导致单个内风机的控制复杂化、体积更大。为了实现风量的进一步增加,就需要采用多个风机并且进行协调控制。在设计中可使用多个内风机同时工作来达到***所需要的出风和制冷速度,即实现所谓的集成风量控制。
但是多个风机同时工作达到***所需要的出风和制冷速度时,多个风机同时开启,但又都工作在较低转速下,导致风机处于低效率状态。
发明内容
有鉴于此,本发明提供一种风量调节装置及方法和空调柜机。
为达此目的,本发明采用以下技术方案:
根据本发明的一方面,提供一种风量调节装置,包括:位于空调柜机内部的风机***、位于空调柜机上部的上出风口以及位于空调柜机下部的下出风 口、以及用于控制风机的控制***;其中,所述风机***包括由各自的电机驱动的多个风机,各个风机的端口分别与由空调外壳的至少一部分形成的主风道连通;所述控制***控制所述多个风机中的各个风机,以执行启动、停止和调节功率中的至少一种操作,从而调节出风量。
优选地,所述风量调节装置还包括:设置在空调柜机的下出风口附近的风门结构,用于开启或关闭下出风口。
优选地,所述风门结构包括挡板、风门电机和齿条,所述挡板固定在所述齿条的末端,所述风门电机的驱动齿轮与所述齿条啮合,所述齿条在所述风门电机的驱动下使挡板跟随齿条移动到不同的位置。
优选地,所述控制***包括:输入给定装置,用于获取用户指令;温度传感器,用于获取表征环境温度的感测信号;多个电机驱动器,分别与多个电机连接,用于向对应电机提供供电电压以及从电机获取反馈信号;以及控制器,分别从输入给定装置和温度传感器接收用户指令和感测信号,并根据所述接收的用户指令和感测信号生成控制信号,将所述控制信号提供至多个电机驱动器,控制多个电机的运行。
优选地,所述控制***根据***的风量需求启动相应数量的风机,和/或控制各个风机的转速。
优选地,所述多个风机包括:第一组风机,位于主风道的上部且具有上端口,用于提供从上出风口吹出的气流;以及第二组风机,位于主见道的下部且具有下端口,用于提供从下出风口吹出的气流。
优选地,所述多个风机还包括:第三组风机,位于主风道的中部且具有上端口和下端口,用于同时提供从上出风口和下出风口吹出的气流。
根据本发明的第二方面,提供一种用于上述的风量调节装置的风量调节方法,包括:根据环境温度启动全部风机或部分风机;根据各个风机的转速维持或减少已经运行的风机数量;以及根据空调***的运行阶段关闭或打开下出风口。
优选地,根据环境温度启动全部风机或部分风机包括:检测环境温度;判断环境温度与预设温度之间的温差是否大于第一阈值;如果温差大于第一阈值,则启动全部风机;如果温差不大于第一阈值且环境温度未超过预设温度, 则启动全部风机;以及如果温差不大于第一阈值且环境温度超过预设温度,则启动部分风机。
优选地,在启动全部风机之后,经过预定时间,判断温差是否减小,并且在温差已经减小时才执行根据各个风机的转速维持或减少已经运行的风机数量的步骤。
优选地,根据各个风机的转速维持或减少已经运行的风机数量包括:检测各个风机的转速;判断各个风机的转速与额定转速之间的转速差是否大于第二阈值;如果转速差大于第二阈值,则关闭至少一个风机,并且提高剩余风机的转速;如果转速差不大于第二阈值,则根据环境温度启动全部风机或部分风机。
优选地,根据电机的反馈信号获取各个风机的转速。
根据本发明的第三方面,提供一种空调柜机,包括:上述的风量调节装置;外壳,外壳的至少一部分形成主风道,并且包括与主风道相连接的上出风口;底座,与外壳组装在一起,并且包括与主风道相连接的下出风口。
本发明通过多组单独控制的电机和一个可以开关下出风口的风门实现整机的风量调节控制。该控制***通过控制多个电机不同输入功率,改变其不同的转速和风量,实现风量的调节;通过下出风口的风门结构,关闭时只开上出风口,风量减小,或上下出风口全开一段时间后再关闭风门,来调节风量。本发明可以实现多个风机的集成风量控制;可以根据空调***的工作阶段实现优化的实时控制,以提高舒适性;还可以根据各个风机当前运行的转速,判断在随后的阶段是否关闭部分风机,以提高能效和实现节能,避免多个风机同时开启,但又都工作在较低转速下的这种低效率状态。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚。
图1为根据本发明的实施例的空调柜机中的风量调节装置的结构示意图。
图2为根据本发明的实施例的风量调节装置中的风机***的结构示意图。
图3a和图3b为根据本发明的实施例的风量调节装置中的风门结构的局部示意图。
图4为根据本发明的实施例的风量调节装置的风门结构的更详细的局部 示意图。
图5为根据本发明的实施例的风量调节装置中的控制***的示意图。
图6为根据本发明的实施例的风量调节方法的流程图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件并没有详细叙述。
图1为根据本发明的实施例的空调柜机中的风量调节装置的结构示意图。如图1所示,该风量调节装置包括位于空调柜机内部的风机***1a、以及分别位于空调柜机上部和下部的上出风口1b和下出风口1c。
空调柜机具有由外壳的至少一部分形成的主风道。出风口1b和下出风口1c分别位于主风道的上端和下端。通常,上出风口1b和下出风口1c的出风面积不一样。可以选择性地打开或关闭下出风口1c,使得空调柜机可以提供多种出风模式,例如,只开上出风,或开上下出风,从而提高舒适性。如:当空调快速制冷时,将上出风口和下出风口同时打开;当空调制冷量较小时,只打开上出风口;当空调快速制热时,将上出风口和下出风口同时打开;当空调制热量较小时,只打开下出风口。
图2为根据本发明的实施例的风量调节装置中的风机***的结构示意图。风机***1a包括分别由电机驱动的多个风机,从上至下依次排列。各个风机的端口分别与主风道连通。在图1和2中示出的风机***包括上、中、下共三个风机2a-2c。上风机2a仅具有上端口,下风机2c仅具有下端口,中风机2b则具有上端口和下端口。上风机2a与中风机2b一起提供从上出风口吹出的气流,下风机2c与中风机2b一起提供从下出风口吹出的气流。
该风机***中的三个风机分别由三个电机驱动,分别为上电机2d、中电机2e和下电机2f。通过调节电机的功率,分别控制上风机2a、中风机2b和下风机2c的出风量,从而分别调节上出风口1b和下出风口1c的出风量。在制热时,电机2d、2e、2f的输入功率相同,下出风口的热风风量大。由于热空气上浮,室内舒适性较好。在制冷情况下,这样的电机功率组合则存在缺陷。 上面的冷空气少,下面的冷空气多,冷空气不能有效的下沉,室内舒适性不佳。因此,在制冷时,调节电机2d、2e、2f的输入功率,上电机2d输入功率提高,中电机2e输入功率不变,下电机2f输入功率减小,这样上出风口的风量大于下出风口的风量,从而提高了制冷的舒适性。
在该实施例中,描述了从上至下排列的三个风机。然而,风机的数量不限于此,在主风道中可以设置两个或更多个风机。根据主风道的形状和尺寸,多个风机可以在主风道中垂直排列或水平排列。为了避免风机之间的气流干扰,位于上部的风机仅设置有上端口,用于提供向上流动的气流,位于下部的风机仅设置有下端口,用于提供向下流动的气流。
应当注意,在该实施例中描述了位于中间的风机设置有上端口和下端口,同时用于提供向上和向下流动的气流。然而,位于中间的风机仅仅是可选的,由于该风机包括两个端口,因此可以减少主风道中使用风机的数量、节省成本以及提供高效的风量控制方法。
图3a和图3b为根据本发明的实施例的风量调节装置中的风门结构的局部示意图,图4为根据本发明的实施例的风量调节装置的风门结构的更详细的局部示意图。如图3a和图3b所示,风门结构设置在空调柜机的外壳3c内,位于空调柜机的底座3d附近。如图4所示,风门结构包括挡板3a、风门电机3b和齿条3e。挡板3b固定在齿条3e的末端,风门电机3b的驱动齿轮与齿条3e啮合,从而驱动齿条3e上下移动。相应地,挡板3e跟随齿条3e移动到不同的位置,从而可以打开或关闭下出风口。优选地,挡板3a与下出风口的形状一致,从而在关闭状态可以更好地切断主风道与下出风口之间的气流。优选地,所述挡板3e上设置有密封圈安装部。所述密封圈安装部用于安装密封圈,用于在关闭状态进行密封,从而避免漏风。
优选地,在外壳3c上设置附加的导向结构,例如槽状结构。挡板3a的边缘与槽状结构匹配且沿着槽状结构滑动。该导向结构还可设置成其他能够起导向作用的结构,如导向块。
采用上述的风门结构,可以实现多种出风模式,从而提高舒适性。例如,在制冷模式下,室内温度接近稳定前,为了不使接近地面的温度过低,让人觉得冻脚,需将下出风口的风门3a在风门电机3b带动下关闭,使下出风口处于 关闭状态,只开上出风口出风。
图5为根据本发明的实施例的风量调节装置中的控制***的示意图。该控制***包括控制器101、输入给定装置102、温度传感器103、多个电机驱动器201-20N。在图5中还示出多个电机M1-MN,分别用于驱动如图1所示的多个风机。
控制器101包括主控芯片,例如单片机、DSP等。控制器101从输入给定装置102接收用户指令,从温度传感器103接收环境感测信号,以及根据接收到的用户指令以及环境感测信号生成控制信号。
控制器101将控制信号提供至电机驱动器201-20N,用于控制风机的运行。
输入给定装置102可以是任何用户输入设备,例如遥控器、手机等,用于向空调柜机提供用户指令,例如空调的启动、停止、下出风、风量调节等。
温度传感器103用于检测环境温度,例如包括热敏电阻等敏感元件。
电机驱动器201-20N分别与电机M1-MN连接。一方面电机驱动器向电机提供供电压,使得电机可以运行。另一方面电机驱动器从电机获得反馈信号,使得可以调节电机的运行参数。电机的反馈信号例如是转速信号。在一个实例中,可以在电机的转子上设置霍尔传感器,以获得转速信号。在另一个实例中,如果采用无位置无刷电机控制,转速信号可以是非测量值,而是***算法的计算值。
由于风机风量的大小取决于风机的转速,因此可以根据转速估算风机的风量大小。可以通过测试得到单个风机风量与转速的对应关系,反过来推导,转速信号可以作为反馈风量大小的信号。
该控制***实现多个风机的集成风量控制。当单个风机的风量无法满足***需求风量时,通过多个风机组合的形式来实现风量的集合最大化。
根据空调***的工作阶段,该控制***可以实现优化的实时控制,以提高舒适性。例如,当空调开机制冷或制热时,控制器将所控制的风机全部启动,实现最大风量输出,迅速达到***设定的温度要求。当温度达到设定温度附近值时,控制器可切换到节能运行状态,适当关闭部分风机,进行平稳过渡。
根据各个风机当前运行的转速,判断在随后的阶段是否关闭部分风机,以提高能效和实现节能。例如,在优化的控制方法中,只留一个风机运行,使得 该风机转速接近额定值。这样可以避免多个风机同时开启,但又都工作在较低转速下的这种低效率状态。
图6为根据本发明的实施例的风量调节方法的流程图。该风量调节方法以制冷过程为例。例如,采用如图5所示的控制***执行如下所述的风量调节方法。
该风量控制方法根据***的风量需求启动相应数量的风机,并且控制各个风机的转速。假设单个风机的最大风量为W,相应的电机转速为n,则空调***的最大风量近似为Wmax=N*W,其中N为内风机的个数。如果***的风量需求小于W,则启动一个风机。例如,图5所示的控制器101向一个电机驱动器201提供控制信号,使得电机M1运行,同时其他电机停止工作。类似地,在空调***运行期间,根据空调***的工作阶段和风量需求,启动不同数量的风机,并且控制各个风机的转速。示例流程如下所述。
在步骤S01,空调***开机,进行制冷。
在步骤S02,采用温度传感器检测环境温度T,判断环境温度T与预设温度T之间的温差是否大于第一阈值ΔT1。如果不大于第一阈值ΔT1,则随后执行步骤S03,如果大于第一阈值ΔT1,则随后执行步骤S05。
在步骤S03,判断环境温度T是否小于T。如果T小于T,则在步骤S04中启动一个风机。如果T不小于T,则随后执行步骤S05中。
在步骤S05,启动所有风机。
在步骤S06,在风机运行一段时间之后,采用温度传感器检测环境温度T,判断环境温度T与T之间的温差是否大于第二阈值ΔT2。第二阈值ΔT2小于第一阈值ΔT1,即表示温差减小。如果不大于第二阈值ΔT2,则返回执行步骤S02,如果大于第二阈值ΔT2,则随后执行步骤S07。
在步骤S07,根据电机的反馈信号获得各个风机的当前转速,判断各个风机的额定转速与当前转速之间的差值是否大于第三阈值Δn。如果大于第三阈值Δn,则随后执行步骤S08。如果不大于第三阈值Δn,则返回执行步骤S02。
在步骤S08,关闭一个风机,同时提高剩余运行的风机的转速,从而确保运行的风机工作于额定转速附近,同时所有运行的风机一起维持***的风量。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目 的,并且附图不一定是按比例绘制的。
同时,应当理解,示例实施例被提供,以使本公开是全面的,并将其范围充分传达给本领域技术人员。很多特定细节(例如特定部件、设备和方法的示例)被给出以提供对本公开的全面理解。本领域技术人员将明白,不需要采用特定细节,示例实施例可以以很多不同的形式被实施,并且示例实施例不应被理解为限制本公开的范围。在一些示例实施例中,众所周知的设备结构以及众所周知的技术没有详细描述。
当一元件或层被提及为在另一元件或层“上”、“被接合到”、“被连接到”或“被联接到”另一元件或层时,其可直接在另一元件或层上、被直接接合、连接或联接到另一元件或层,或者可存在中间元件或层。相比之下,当一元件被提及为“直接”在另一元件或层“上”、“直接被接合到”、“直接被连接到”或“直接被联接到”另一元件或层时,可不存在中间元件或层。用于描述元件之间关系的其它词语应该以相似方式被解释(例如,“之间”与“直接在之间”,“邻近”与“直接邻近”等)。如在此使用的,术语“和/或”包括一个或更多关联的所列项目中的任一或全部组合。
虽然术语第一、第二、第三等在此可被用于描述各个元件、部件、区域、层和/或区段,但是这些元件、部件、区域、层和/或区段不应该被这些术语限制。这些术语可仅用于将一个元件、部件、区域、层或区段与另一元件、区域、层或区段区分开。诸如“第一”、“第二”的术语和其它数值术语当在此使用时不意味着次序或顺序,除非上下文明确指出。因而,下面讨论的第一元件、部件、区域、层或区段可被称为第二元件、部件、区域、层或区段,而不背离示例实施例的教导。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。外为易于说明,诸如“内”、“外”、“之下”、“下方”、“下部”、“上方”、“上部”等等的空间相关术语在此被用于描述图中例示的一个元件或特征与另一元件或特征的关系。将理解的是,空间相关术语可意欲包含设备在使用或操作中的除图中描绘的方位之外的不同的方位。例如,如果图中的设备被翻转,则被描述为在其它元件或特征“下方”或“之下”的元件于是将被定位为在该其它元件或特征“上方”。因而,示例术语“下方”能包含上方和下方的方位二者。设备可以以其它方式被定向(旋转90度或处于其它方位),并且在此使用 的空间相关描述词应该被相应地解释。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种风量调节装置,包括:位于空调柜机内部的风机***、位于空调柜机上部的上出风口以及位于空调柜机下部的下出风口、以及用于控制风机的控制***;
    其特征在于,所述风机***包括由各自的电机驱动的多个风机,各个风机的端口分别与由空调外壳的至少一部分形成的主风道连通;
    所述控制***控制所述多个风机中的各个风机,以执行启动、停止和调节功率中的至少一种操作,从而调节出风量。
  2. 根据权利要求1所述的风量调节装置,其特征在于,还包括:设置在空调柜机的下出风口附近的风门结构,用于开启或关闭下出风口。
  3. 根据权利要求2所述的风量调节装置,其特征在于,所述风门结构包括挡板、风门电机和齿条,所述挡板固定在所述齿条的末端,所述风门电机的驱动齿轮与所述齿条啮合,所述齿条在所述风门电机的驱动下使挡板跟随齿条移动到不同的位置。
  4. 根据权利要求1所述的风量调节装置,其特征在于,所述控制***包括:
    输入给定装置,用于获取用户指令;
    温度传感器,用于获取表征环境温度的感测信号;
    多个电机驱动器,分别与多个电机连接,用于向对应电机提供供电电压以及从电机获取反馈信号;以及
    控制器,分别从输入给定装置和温度传感器接收用户指令和感测信号,并根据所述接收的用户指令和感测信号生成控制信号,将所述控制信号提供至多个电机驱动器,控制多个电机的运行。
  5. 根据权利要求4所述的风量调节装置,其特征在于,所述控制***根据***的风量需求启动相应数量的风机,和/或控制各个风机的转速。
  6. 根据权利要求1所述的风量调节装置,其特征在于,所述多个风机包括:
    第一组风机,位于主风道的上部且具有上端口,用于提供从上出风口吹出 的气流;以及
    第二组风机,位于主见道的下部且具有下端口,用于提供从下出风口吹出的气流。
  7. 根据权利要求6所述的风量调节装置,其特征在于,所述多个风机还包括:
    第三组风机,位于主风道的中部且具有上端口和下端口,用于同时提供从上出风口和下出风口吹出的气流。
  8. 一种用于根据权利要求1至7中任一项所述的风量调节装置的风量调节方法,其特征在于,包括:
    根据环境温度启动全部风机或部分风机;
    根据各个风机的转速维持或减少已经运行的风机数量;以及
    根据空调***的运行阶段关闭或打开下出风口。
  9. 根据权利要求8所述的方法,其特征在于,根据环境温度启动全部风机或部分风机包括:
    检测环境温度;
    判断环境温度与预设温度之间的温差是否大于第一阈值;
    如果温差大于第一阈值,则启动全部风机;
    如果温差不大于第一阈值且环境温度未超过预设温度,则启动全部风机;以及
    如果温差不大于第一阈值且环境温度超过预设温度,则启动部分风机。
  10. 根据权利要求9所述的方法,其特征在于,在启动全部风机之后,经过预定时间,判断温差是否减小,并且在温差已经减小时才执行根据各个风机的转速维持或减少已经运行的风机数量的步骤。
  11. 根据权利要求10所述的方法,其特征在于,根据各个风机的转速维持或减少已经运行的风机数量包括:
    检测各个风机的转速;
    判断各个风机的转速与额定转速之间的转速差是否大于第二阈值;
    如果转速差大于第二阈值,则关闭至少一个风机,并且提高剩余风机的转速;
    如果转速差不大于第二阈值,则根据环境温度启动全部风机或部分风机。
  12. 根据权利要求11所述的方法,其特征在于,根据电机的反馈信号获取各个风机的转速。
  13. 一种空调柜机,其特征在于,包括:
    根据权利要求1-7中任一项所述的风量调节装置;
    外壳,外壳的至少一部分形成主风道,并且包括与主风道相连接的上出风口;
    底座,与外壳组装在一起,并且包括与主风道相连接的下出风口。
PCT/CN2016/098407 2015-09-11 2016-09-08 风量调节装置及方法和空调柜机 WO2017041726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16843664.0A EP3348917B1 (en) 2015-09-11 2016-09-08 Air volume regulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510578301.7 2015-09-11
CN201510578301.7A CN105240930B (zh) 2015-09-11 2015-09-11 风量调节装置的风量调节方法

Publications (1)

Publication Number Publication Date
WO2017041726A1 true WO2017041726A1 (zh) 2017-03-16

Family

ID=55038673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098407 WO2017041726A1 (zh) 2015-09-11 2016-09-08 风量调节装置及方法和空调柜机

Country Status (3)

Country Link
EP (1) EP3348917B1 (zh)
CN (1) CN105240930B (zh)
WO (1) WO2017041726A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488087A (zh) * 2018-05-31 2018-09-04 王梓豫 一种节流式降温电风扇及其控制方法
CN108731102A (zh) * 2017-04-25 2018-11-02 青岛海尔空调器有限总公司 立式空调室内机
CN110131789A (zh) * 2019-06-25 2019-08-16 宁波奥克斯电气股份有限公司 出风组件及空调器
CN110160150A (zh) * 2019-06-25 2019-08-23 宁波奥克斯电气股份有限公司 一种风道壳体、上风道组件及空调器
EP3627063A4 (en) * 2017-05-19 2020-05-27 Gree Electric Appliances, Inc. of Zhuhai AIR CONDITIONER, ITS CONTROL METHOD AND ITS DEVICE, STORAGE MEDIUM AND PROCESSOR
CN111750425A (zh) * 2020-05-18 2020-10-09 海信(山东)空调有限公司 一种室内空调器
CN111902023A (zh) * 2020-07-28 2020-11-06 深圳市科信通信技术股份有限公司 一种机柜风量控制***及控制方法
CN113323903A (zh) * 2021-06-18 2021-08-31 广东湾区智能终端工业设计研究院有限公司 风扇热启动方法及装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240930B (zh) * 2015-09-11 2017-12-19 珠海格力电器股份有限公司 风量调节装置的风量调节方法
CN106052040B (zh) * 2016-07-04 2019-11-12 珠海格力电器股份有限公司 空调及其控制方法和装置
CN107120783A (zh) * 2017-03-22 2017-09-01 深圳市艾特网能技术有限公司 带有多风机空调***的风机控制方法
CN107084513A (zh) * 2017-06-21 2017-08-22 广东美的暖通设备有限公司 多风机空调的风机启动控制方法、装置及空调
CN107155287A (zh) * 2017-07-24 2017-09-12 郑州云海信息技术有限公司 一种服务器和服务器内风道的风量调节方法
CN108151139A (zh) * 2017-11-20 2018-06-12 珠海格力电器股份有限公司 柜式空调的控制方法、柜式空调、处理器、存储介质
CN111197584A (zh) * 2018-11-20 2020-05-26 珠海格力电器股份有限公司 一种离心风机、风道***及空调
CN109595691B (zh) * 2018-12-20 2020-05-01 珠海格力电器股份有限公司 一种双贯流空调器的控制方法
CN109539505B (zh) * 2018-12-29 2021-04-20 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN110260488A (zh) * 2019-06-25 2019-09-20 宁波奥克斯电气股份有限公司 电机功率控制方法、装置及空调器
CN110486802B (zh) * 2019-08-19 2021-02-19 南京晶华智能科技有限公司 空调器、其送风调节***和方法
CN114135971B (zh) * 2020-09-04 2023-04-07 宁波奥克斯电气股份有限公司 一种空调器的出风控制方法、装置、控制器及存储介质
CN112984725B (zh) * 2021-02-07 2022-04-19 青岛海尔空调器有限总公司 一种水洗下出风空调的控制方法和水洗下出风空调
CN112984729B (zh) * 2021-02-07 2022-04-19 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN112944627B (zh) * 2021-03-02 2022-04-19 青岛海尔空调器有限总公司 一种下出风空调的控制方法和下出风空调
CN113048563B (zh) * 2021-04-25 2022-07-12 宁波奥克斯电气股份有限公司 空调柜机控制方法、装置及空调柜机
CN115183439A (zh) * 2022-08-05 2022-10-14 宁波奥克斯电气股份有限公司 一种多风口空调控制方法、装置及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703217B1 (en) * 2005-03-16 2009-01-21 Mitsubishi Denki Kabushiki Kaisha Air conditioner
CN101650064A (zh) * 2008-08-14 2010-02-17 海尔集团公司 低温制冷空调及其风速控制方法
CN202792281U (zh) * 2012-07-30 2013-03-13 广东美的暖通设备有限公司 冷凝器及具有该冷凝器的空调室外机
CN103307713A (zh) * 2013-05-28 2013-09-18 广东美的制冷设备有限公司 多风挡转速控制方法及装置
CN103512155A (zh) * 2013-09-30 2014-01-15 美的集团股份有限公司 一种空调控制方法及控制***
CN103776094A (zh) * 2012-10-23 2014-05-07 珠海格力电器股份有限公司 空调器室内机及具有其的空调器
CN204006499U (zh) * 2014-04-03 2014-12-10 杭州先途电子有限公司 空调控制器及其安全控制电路
US20140360212A1 (en) * 2013-06-10 2014-12-11 Samsung Electronics Co., Ltd. Air conditioner and method of controlling the same
CN105240930A (zh) * 2015-09-11 2016-01-13 珠海格力电器股份有限公司 风量调节装置及方法和空调柜机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0154461A3 (en) * 1984-02-25 1987-07-15 Nishida Tekko Corporation Room air circulating apparatus
JPS63161343A (ja) * 1986-12-24 1988-07-05 Matsushita Electric Ind Co Ltd 空気調和機の風量制御装置
CN1010707B (zh) * 1987-07-02 1990-12-05 三菱电机株式会社 分离型空气调节器
US5810658A (en) * 1995-11-30 1998-09-22 Samsung Electronics Co., Ltd. Interlocking device for closing or opening the suction and exhaust ports in air conditioners
CN201166438Y (zh) * 2007-11-23 2008-12-17 艾斯比特制热电器(上海)有限公司 扇形产品面板
CN102466299A (zh) * 2010-11-16 2012-05-23 珠海格力电器股份有限公司 风管机***及其控制***
US9551498B2 (en) * 2012-06-28 2017-01-24 Samsung Electronics Co., Ltd. Indoor unit of air conditioner and method of controlling the air conditioner
CN202973363U (zh) * 2012-12-13 2013-06-05 珠海格力电器股份有限公司 空调器
CN104515287A (zh) * 2013-09-30 2015-04-15 海尔集团公司 空调及其控制方法
CN104748234B (zh) * 2015-03-30 2018-04-27 广东美的制冷设备有限公司 空调器
CN104776575B (zh) * 2015-03-31 2018-09-11 珠海格力电器股份有限公司 空调器室内机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1703217B1 (en) * 2005-03-16 2009-01-21 Mitsubishi Denki Kabushiki Kaisha Air conditioner
CN101650064A (zh) * 2008-08-14 2010-02-17 海尔集团公司 低温制冷空调及其风速控制方法
CN202792281U (zh) * 2012-07-30 2013-03-13 广东美的暖通设备有限公司 冷凝器及具有该冷凝器的空调室外机
CN103776094A (zh) * 2012-10-23 2014-05-07 珠海格力电器股份有限公司 空调器室内机及具有其的空调器
CN103307713A (zh) * 2013-05-28 2013-09-18 广东美的制冷设备有限公司 多风挡转速控制方法及装置
US20140360212A1 (en) * 2013-06-10 2014-12-11 Samsung Electronics Co., Ltd. Air conditioner and method of controlling the same
CN103512155A (zh) * 2013-09-30 2014-01-15 美的集团股份有限公司 一种空调控制方法及控制***
CN204006499U (zh) * 2014-04-03 2014-12-10 杭州先途电子有限公司 空调控制器及其安全控制电路
CN105240930A (zh) * 2015-09-11 2016-01-13 珠海格力电器股份有限公司 风量调节装置及方法和空调柜机

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731102A (zh) * 2017-04-25 2018-11-02 青岛海尔空调器有限总公司 立式空调室内机
EP3627063A4 (en) * 2017-05-19 2020-05-27 Gree Electric Appliances, Inc. of Zhuhai AIR CONDITIONER, ITS CONTROL METHOD AND ITS DEVICE, STORAGE MEDIUM AND PROCESSOR
CN108488087A (zh) * 2018-05-31 2018-09-04 王梓豫 一种节流式降温电风扇及其控制方法
CN110131789A (zh) * 2019-06-25 2019-08-16 宁波奥克斯电气股份有限公司 出风组件及空调器
CN110160150A (zh) * 2019-06-25 2019-08-23 宁波奥克斯电气股份有限公司 一种风道壳体、上风道组件及空调器
CN110160150B (zh) * 2019-06-25 2024-05-10 宁波奥克斯电气股份有限公司 一种风道壳体、上风道组件及空调器
CN111750425A (zh) * 2020-05-18 2020-10-09 海信(山东)空调有限公司 一种室内空调器
CN111902023A (zh) * 2020-07-28 2020-11-06 深圳市科信通信技术股份有限公司 一种机柜风量控制***及控制方法
CN111902023B (zh) * 2020-07-28 2023-06-30 深圳市科信通信技术股份有限公司 一种机柜风量控制***及控制方法
CN113323903A (zh) * 2021-06-18 2021-08-31 广东湾区智能终端工业设计研究院有限公司 风扇热启动方法及装置
CN113323903B (zh) * 2021-06-18 2023-08-08 广东湾区智能终端工业设计研究院有限公司 风扇热启动方法及装置

Also Published As

Publication number Publication date
EP3348917A1 (en) 2018-07-18
EP3348917A4 (en) 2019-04-24
EP3348917B1 (en) 2022-11-23
CN105240930B (zh) 2017-12-19
CN105240930A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2017041726A1 (zh) 风量调节装置及方法和空调柜机
CN107255307B (zh) 空调
EP2581675B1 (en) Ventilation and air-conditioning apparatus and method for controlling same
CN107255337B (zh) 空调的送风方法
CN108151150B (zh) 一种嵌入式空调、***及其控制方法
CN109489217B (zh) 一种防止变频空调器达温停机的控制方法
AU2016297238A1 (en) Air conditioner and control method thereof
CN110887181A (zh) 一种空调的控制方法、装置、计算机可读存储介质及空调
JP6065959B1 (ja) 空調機
CN111288558A (zh) 室内机、空调器及空调器的控制方法
CN109595691B (zh) 一种双贯流空调器的控制方法
KR101919775B1 (ko) 공기조화기 및 공기조화기의 제어방법
CN113203171B (zh) 一种空调控制方法、装置、空调及计算机可读存储介质
JPH10141741A (ja) 空気調和機
WO2022237193A1 (zh) 空调器的送风控制方法、装置及空调器
CN104566782A (zh) 空调器的控制方法、空调器的控制装置和空调器
CN112880148B (zh) 用于空调的控制方法、装置、电子设备及存储介质
CN114046564A (zh) 空调室内机、空调器及空调室内机的送风控制方法
CN211822749U (zh) 室内机、空调器
JP2015068563A (ja) 空気調和機
CN211781466U (zh) 一种可上下送风的旋转式空调器
CN115095919B (zh) 定频移动空调及其节能方法、节能装置
CN104791922A (zh) 一体式空调器和高温制冷控制方法
JP3785866B2 (ja) 空気調和装置
CN107525233A (zh) 空调外风机的控制方法及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016843664

Country of ref document: EP