WO2017041380A1 - 一种涂层测厚仪探头 - Google Patents

一种涂层测厚仪探头 Download PDF

Info

Publication number
WO2017041380A1
WO2017041380A1 PCT/CN2015/097885 CN2015097885W WO2017041380A1 WO 2017041380 A1 WO2017041380 A1 WO 2017041380A1 CN 2015097885 W CN2015097885 W CN 2015097885W WO 2017041380 A1 WO2017041380 A1 WO 2017041380A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable arm
thickness gauge
coating thickness
measuring end
probe
Prior art date
Application number
PCT/CN2015/097885
Other languages
English (en)
French (fr)
Inventor
居晓丽
朱小龙
苏亚东
Original Assignee
海安迪斯凯瑞探测仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海安迪斯凯瑞探测仪器有限公司 filed Critical 海安迪斯凯瑞探测仪器有限公司
Publication of WO2017041380A1 publication Critical patent/WO2017041380A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness

Definitions

  • the invention relates to the technical field of a thickness measuring instrument probe structure, in particular to a coating thickness gauge probe.
  • the coating thickness gauge can non-destructively measure the thickness of the non-magnetic coating on the magnetic metal substrate and the thickness of the non-conductive coating on the non-magnetic metal substrate.
  • the coating thickness gauge has the characteristics of small measurement error, high reliability, good stability and easy operation. It is an indispensable instrument for controlling and ensuring product quality. It is widely used in manufacturing, metal processing, chemical industry, In the inspection field such as commodity inspection, the coating thickness gauge probe is the most important component, which affects measurement efficiency and measurement accuracy. According to the measurement principle, the coating thickness gauge probe is generally divided into a magnetic thickness measurement probe, an eddy current thickness measurement probe, and an ultrasonic thickness measurement probe. The most widely used are magnetic thickness probes and eddy current thickness probes.
  • the electromagnetic thickness measuring probe measures the thickness of the coating by using the size of the magnetic flux flowing from the probe through the non-ferromagnetic coating into the ferromagnetic substrate. It is also possible to measure the magnitude of the reluctance corresponding thereto to indicate the thickness of the coating. The thicker the coating, the larger the magnetic resistance and the smaller the magnetic flux. In the case of a thickness gauge using the principle of magnetic induction, in principle, the thickness of the non-magnetically permeable cladding on the magnetically permeable substrate can be obtained.
  • the substrate is generally required to have a magnetic permeability of 500 or more. If the cladding material is also magnetic, the difference in magnetic permeability from the substrate is required to be sufficiently large (eg nickel plating on steel).
  • the instrument When the probe around the coil on the soft core is placed on the sample to be tested, the instrument automatically outputs the test current or test signal.
  • Early products used a pointer-type meter to measure the magnitude of the induced electromotive force, which was amplified by the instrument to indicate the thickness of the coating.
  • circuit design has introduced new technologies such as frequency stabilization, phase lock, and temperature compensation, and uses magnetoresistance to modulate measurement signals. It also uses a patented integrated circuit to introduce a microcomputer, which greatly improves measurement accuracy and reproducibility (almost an order of magnitude).
  • Electromagnetic thickness measurement probes can be used to accurately measure paint layers on steel surfaces, porcelain, enamel protective layers, plastics, rubber coatings, various non-ferrous metal plating layers including nickel-chromium, and various anti-corrosion coatings for chemical petroleum unemployed. .
  • the eddy current measuring probe generates an electromagnetic field in the probe coil by using a high-frequency alternating current signal, and a eddy current is formed therein when the probe is close to the conductor.
  • This feedback action characterizes the distance between the probe and the conductive substrate, that is, the thickness of the non-conductive coating on the conductive substrate. Since such probes are specifically designed to measure the thickness of a coating on a non-ferromagnetic metal substrate, they are often referred to as non-magnetic probes.
  • Non-magnetic probes use high-frequency materials for coil cores, such as platinum-nickel alloys or other new materials.
  • the probes are different, the frequency of the signals is different, and the signal size and scale relationship are different.
  • eddy currents The thickness gauge also achieved a resolution of 0.1um, a tolerance of 1%, and a high level of 10mm.
  • non-conductor coatings on all conductors can be measured, such as aerospace aircraft surfaces, vehicles, home appliances, aluminum alloy doors and windows and other aluminum surface paints, plastic coatings and anodized films. .
  • the cladding material has a certain conductivity and can also be measured by calibration, but it is required that the ratio of the conductivity of the two is at least 3-5 times (such as chrome plating on copper). Although the steel matrix is also an electrical conductor, such tasks are more suitable for measurement using magnetic principles.
  • the existing coating thickness gauges use two independent sensor probes, one magnetic method probe, and one eddy current method probe. Before the measurement, the basic material needs to be determined, and the probe is installed and then measured, selected and loaded. It is inconvenient to remove.
  • a portable coating thickness gauge which comprises a host, a connecting line and a probe. One end of the connecting line is connected to the host, and the other end of the connecting line is fixed with a multi-function interface, and the multi-function interface is connected with the probe.
  • the probe includes a probe body and a loading sleeve, and the loading sleeve is disposed outside the probe body, and the V-shaped port is opened on the loading sleeve.
  • a display screen and a keyboard are arranged on the host, a USB socket is arranged at the bottom of the host, and a battery compartment cover is arranged at the top of the host. Manual measurement of the probe is required for measurement, which affects measurement efficiency, and frequent probe replacement shortens probe life.
  • an integrally designed coating thickness gauge probe is disclosed.
  • the utility model authorized by the State Intellectual Property Office on December 12, 2012 is CN202599329U, and the utility model named "coating thickness gauge” patent.
  • a coating thickness gauge is disclosed, the probe comprising an outer protective sleeve provided with a first cavity, an inner protective sleeve provided with a second cavity and a return spring; the inner protective sleeve of the probe is in the second cavity from the rear a circuit board, a magnetic core, an electromagnetic measuring end, an eddy current measuring end, and a cover plate at the front end of the second cavity are sequentially arranged in front; the eddy current measuring end is composed of a first skeleton and a first winding on the first skeleton An induction coil is composed; the electromagnetic measuring end is composed of a second bobbin and a second inductive coil wound on the second bobbin; the first inductive coil and the second inductive coil are respectively electrically connected to the circuit board; the front end of the magnetic core
  • the present invention provides a coating thickness gauge probe.
  • a coating thickness gauge probe technical solution is that the probe comprises a movable arm and a symmetric housing fixing device, and the movable arm and the housing fixing device are movably connected, and the movable arm is respectively fixed at two ends thereof An electromagnetic measuring end and an eddy current measuring end, wherein the electromagnetic measuring end and the eddy current measuring end are respectively provided with a first pressure sensor and a second pressure sensor, wherein the movable arm is provided with a circuit board, and the circuit board is disposed on the movable arm The middle part.
  • the movable arm and the housing fixing device are connected by a shaft.
  • the first pressure sensor and the second pressure sensor are respectively located at two ends of the movable arm, and the first pressure sensor and the second pressure sensor are electrically connected to the circuit board.
  • a bounce self-locking device is installed between the movable arm and the housing fixing device, and the rebound self-locking device includes two protrusions and a U-shaped groove; the two protrusions and a U-shaped concave The groove is disposed at a position equidistant from the center of the movable arm; the two protrusions are symmetrical with each other with an axis on which the center of the movable arm is located.
  • the U-shaped groove includes a groove, a sliding groove and a return spring, and the return spring is installed in the housing fixing device, and the two ends of the return spring are respectively fixed at the bottom of the groove and the chute bottom.
  • the electromagnetic measuring end comprises a first skeleton, a first induction coil and a first magnetic core passing through the first skeleton center through hole, the first induction coil being wound on the first skeleton,
  • the first inductive coil is electrically connected to the circuit board.
  • the eddy current measuring end includes a second bobbin, a second induction coil, and a second magnetic core whose front end passes through the second bobbin center through hole, and the second induction coil is wound on the second bobbin, The second inductive coil is electrically connected to the circuit board.
  • the front end of the second core passes through a central through hole of the second bobbin.
  • the electromagnetic measuring end and the end of the eddy current measuring end are circumferentially covered with an elastic protective sleeve.
  • the beneficial effects of the present invention are: the electromagnetic measuring end and the eddy current measuring end are respectively located at the two ends of the movable arm, and the rotating movable arm can be switched when the measuring mode is switched, and the probe is continuously powered during the switching process, so that the use There is no need to change the probe during the process, and there is no need to frequently power off, reducing the loss on the board.
  • the pressure between the probe and the material plays an important role in the stability of the measurement result.
  • the pressure sensor can be adjusted and stabilized according to the measured pressure during the measurement process, so that the measurement process is more stable. The result is more accurate.
  • a rebound self-locking device is disposed between the movable arm and the housing fixing device, and includes a protrusion disposed on the movable arm and a U-shaped groove disposed on the housing fixing device, and one measuring end is used when the other measuring end passes the return spring Raised and U-shaped
  • the slot lock makes the movable arm fixed and not easy to fall off, and the measurement is more stable.
  • the first induction coil and the second induction coil are far apart and do not interfere with each other to affect the measurement result.
  • An elastic protective sleeve is provided on the electromagnetic measuring end and the eddy current measuring end to protect the probe and prolong the service life of the probe.
  • Figure 1 is a schematic cross-sectional view of a movable arm
  • Figure 2 is a schematic bottom view of the movable arm
  • Figure 3 is a schematic cross-sectional view of the housing fixing device
  • FIG. 1 is a schematic cross-sectional view of the movable arm
  • FIG. 2 is a schematic view of a bottom surface of the movable arm
  • FIG. 3 is a schematic cross-sectional view of the housing fixing device.
  • the probe of a coating thickness gauge comprises a movable arm 1 and a symmetric housing fixing device 14, the movable arm 1 and the housing fixing device 14 are movably connected, and the movable arm 1
  • the two ends are respectively fixed with an electromagnetic measuring end 2 and an eddy current measuring end 8.
  • the electromagnetic measuring end 2 and the eddy current measuring end 8 are respectively provided with a first pressure sensor 19 and a second pressure sensor 20, and the movable arm 1 is provided with a circuit board 6
  • the circuit board is disposed in the middle portion of the movable arm 1.
  • electromagnetic measurement function and eddy current measurement function are provided to meet different measurement needs, which can greatly improve measurement efficiency.
  • the movable arm 1 is connected to the housing fixture 14 by a shaft 7.
  • the movable arm can be rotated around the axis for easy measurement and switching.
  • the first pressure sensor 19 and the second pressure sensor 20 are respectively fixed at both ends of the movable arm 1, and the first pressure sensor 19 and the second pressure sensor 20 are electrically connected to the circuit board 6, respectively.
  • the pressure sensor can be adjusted and stabilized according to the measured pressure during the measurement process, so that the measurement process is more stable. The result is more accurate.
  • a rebound self-locking device 15 is mounted between the movable arm 1 and the housing fixing device 4.
  • the rebound self-locking device 15 includes two protrusions 13 and a U-shaped groove 15, two protrusions 13 and a U-shaped groove 16 are disposed at an equidistant position from the movable arm; and two protrusions 13 are located at the center of the movable arm 1
  • the axes are symmetric with each other about the axis of symmetry.
  • the U-shaped groove 16 includes a groove 17, a sliding groove and a return spring 18, and the return spring 18 is mounted in the casing fixing device 14, and the groove spring bottom and the chute are respectively fixed at both ends of the return spring 18. bottom. Setting the bounce self-locking device can make the probe more stable during the measurement process, and will not affect the accuracy of the measurement result due to shaking.
  • the electromagnetic measuring end 2 includes a first skeleton 3, a first magnetic core 5 and a first induction coil 4, the first induction coil 4 is wound on the first bobbin 3, and the first induction coil 4 is electrically connected to the circuit board 6;
  • the first core front end 5 passes through a center through hole of the first bobbin 3.
  • the eddy current measuring end 8 includes a second bobbin 10, a second core 9 and a second inductive coil 11, the second inductive coil 11 is wound on the second bobbin 10, and the second inductive coil 11 is electrically connected to the circuit board 6;
  • the front end of the two cores 9 passes through the center through hole of the second bobbin 10.
  • the ends of the electromagnetic measuring end 2 and the eddy current measuring end 8 are covered with an elastic protective cover 12.
  • the length of the probe's service life is directly related to the rigid contact during use. Setting the elastic protective cover to avoid elastic contact can effectively improve the life of the probe.
  • the electromagnetic measuring end and the eddy current measuring end are disposed at both ends of the distance, which solves the problem that the induction coil is too close to interfere with the measurement result, and the movable arm saves space.
  • the coating thickness gauge probe in the specific embodiment is a probe having both electromagnetic and eddy current measurement modes, and the electromagnetic measurement end and the eddy current measurement end are respectively located at two ends of the movable arm, and the movable arm can be switched when the measurement mode is switched.
  • the probe is continuously powered, so that the probe does not need to be replaced during use, and the power is not frequently turned off, thereby reducing the loss on the circuit board.
  • the pressure sensor can be set and stabilized according to the measured pressure during the measurement process, which makes the measurement process more stable and the result more accurate.
  • An automatic rebounding device is disposed between the movable arm and the housing fixing device, and includes a protrusion disposed on the movable arm and a U-shaped groove disposed on the housing fixing device. When one measuring end is used, the other measuring end passes through the return spring.
  • the convex and U-shaped groove lock makes the movable arm fixed and not easy to fall off, and the measurement is more stable.
  • the first induction coil and the second induction coil are far apart and do not interfere with each other to affect the measurement result.
  • An elastic protective sleeve is provided on the electromagnetic measuring end and the electromagnetic measuring end to protect the probe and prolong the service life of the probe.
  • the electromagnetic measuring end When electromagnetic measurement is required, the electromagnetic measuring end is rotated to the front end, and the eddy current measuring end is automatically locked by the rebound lock; when the eddy current measurement is required, the eddy current measuring end is rotated to the front end, and the electromagnetic measuring end is automatically locked by the lock;
  • the probe is continuously powered, the measurement work is convenient, and the probe loss is small; the electromagnetic measurement end and the eddy current measurement end are separated to avoid mutual interference and the measurement result is accurate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种涂层测厚仪探头,包括活动臂(1)和与之相对应的壳体固定装置(14),活动臂(1)两端分别设置有电磁测量端(2)和电涡流测量端(8),活动臂(1)和壳体固定装置(14)轴连接;电磁测量端(2)和电涡流测量端(8)分别设置有压力传感器(19,20)和电路板(6)连接。活动臂(1)和壳体固定装置(14)之间设置有反弹自锁装置(15),包括设置在活动臂(1)上的凸起(13)和壳体固定装置(14)上的凹槽(16),凹槽(16)可将凸起(13)锁住以固定活动臂(1)。探头可以满足电磁测量需要和电涡流测量需要,第一感应线圈(4)和第二感应线圈(11)分别处于活动臂(1)的两端互不干涉,从而使测量结果更为准确。测量过程中可根据压力传感器(19,20)测的数值调节探头与测量材料间压力使之稳定保证测量结果准确性。在活动臂(1)的两端还设置有弹性保护套(12)对探头起到保护作用。

Description

一种涂层测厚仪探头 技术领域
本发明涉及厚度测量仪器探头结构技术领域,尤其涉及一种涂层测厚仪探头。
背景技术
涂层测厚仪可无损地测量磁性金属基体上非磁性涂层的厚度及非磁性金属基体上非导电覆层的厚度。涂镀层测厚仪具有测量误差小、可靠性高、稳定性好、操作简便等特点,是控制和保证产品质量必不可少的检测仪器,广泛地应用在制造业、金属加工业、化工业、商检等检测领域,而涂层测厚仪探头则是其最为重要的部件,影响到测量效率及测量精度。根据测量原理,涂层测厚仪探头一般分为磁性测厚探头、涡流测厚探头、超声测厚探头。而应用最为广泛的则是磁性测厚探头和涡流测厚探头。
电磁测厚探头是利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用专利设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达磁感应测厚仪_电涡流测量原理_磁吸力测量原理及测厚仪_电涡流原理的测厚仪到0.1um,允许误差达1%,量程达10mm。电磁测厚探头可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。
电涡流测量探头是利用高频交流信号在测头线圈中产生电磁场,测头靠近导体时,就在其中形成涡流。探头离导电基体愈近,则涡流愈大,反射阻抗也愈大。这个反馈作用量表征了测头与导电基体之间距离的大小,也就是导电基体上非导电覆层厚度的大小。由于这类测头专门测量非铁磁金属基材上的覆层厚度,所以通常称之为非磁性测头。非磁性测头采用高频材料做线圈铁芯,例如铂镍合金或其它新材料。与磁感应原理比较,主要区别是测头不同,信号的频率不同,信号的大小、标度关系不同。与磁感应测厚仪一样,涡流 测厚仪也达到了分辨率0.1um,允许误差1%,量程10mm的高水平。采用电涡流测量探头,原则上对所有导电体上的非导电体覆层均可测量,如航天航空器表面、车辆、家电、铝合金门窗及其它铝制品表面的漆,塑料涂层及阳极氧化膜。覆层材料有一定的导电性,通过校准同样也可测量,但要求两者的导电率之比至少相差3-5倍(如铜上镀铬)。虽然钢铁基体亦为导电体,但这类任务还是采用磁性原理测量较为合适.
现有的涂层测厚仪都是使用两个独立的传感器探头,一个磁性方法的探头,一个电涡流方法的探头,测量前需要先确定基本材质,并安装好探头后进行测量,选择以及装拆不便。
如国家知识产权局于2013年06月19日授权公告的专利号为CN203011362U、名称为“便携式涂层测厚仪”的实用新型专利。公开了一种便携式涂层测厚仪,其包括主机,连接线和探头,连接线一端与主机连接,连接线另一端固定有多功能接口,多功能接口与探头连接。探头包括探头本体及加载套,加载套设在探头本体外,加载套上开设有V型口。主机上设置有显示屏及键盘,主机底部设置有USB插座,主机顶部设置有电池仓盖。测量时需要人工更换探头,影响测量效率,并且频繁更换探头缩短了探头的使用寿命。
现有技术中公开了一种一体设计的涂层测厚仪探头,如国家知识产权局于2012年12月12日授权公告的专利号为CN202599329U、名称为“涂层测厚仪”的实用新型专利。公开了一种涂层测厚仪,其探头包括设有第一空腔的外保护套、设有第二空腔的内保护套以及复位弹簧;探头的内保护套第二空腔中从后向前依次设有电路板、磁芯、电磁测量端、电涡流测量端以及位于第二空腔前端出口处的盖板;电涡流测量端由第一骨架和绕制在第一骨架上的第一感应线圈组成;电磁测量端由第二骨架和绕制在第二骨架上的第二感应线圈组成;第一感应线圈与第二感应线圈分别与电路板电连接;磁芯的前端依次穿过第二骨架和第一骨架的中心通孔以及盖板的穿孔伸出外保护套。由于第一感应线圈和第二感应线圈距离太近,在测量时易发生干涉现象,影响测量结果。测厚仪测量前需要判断材质,切换测量方式时需要断电,频繁切换会缩短探头使用寿命。为达到判断材质的目的还需设置判断芯片,增加了成本。
发明内容
为克服现有技术中存在的频繁更换探头以及感应线圈距离太近影响测量结果的问题,本发明提供了一种涂层测厚仪探头。
一种涂层测厚仪探头技术方案为:所述探头包括活动臂和与之对称壳体固定装置,所述活动臂和所述壳体固定装置活动连接,所述活动臂两端分别固定有电磁测量端和电涡流测量端,所述电磁测量端和电涡流测量端分别设置有第一压力传感器和第二压力传感器,所述活动臂中设有电路板,所述电路板设置在活动臂中间部分。
在此基础上,所述活动臂和所述壳体固定装置为轴连接。
在此基础上,所述第一压力传感器和第二压力传感器分别位于所述活动臂的两端,所述第一压力传感器和第二压力传感器与所述电路板电连接
进一步的,所述活动臂与所述壳体固定装置之间安装有反弹自锁装置,所述反弹自锁装置包括2个凸起和U型凹槽;所述2个凸起和U型凹槽设置在距所述活动臂中心等距的位置上;所述2个凸起以所述活动臂中心所在的轴为对称轴相互对称。
进一步的,所述U形凹槽包括凹槽、滑槽和回复弹簧,所述回复弹簧安装在壳体固定装置内,所述回复弹簧两端分别固定在所述凹槽底部和所述滑槽底部。
进一步的,所述电磁测量端包括第一骨架、第一感应线圈和穿前端穿过第一骨架中心通孔的第一磁芯,所述第一感应线圈绕制在第一骨架上,所述第一感应线圈与所述电路板电连接。
进一步的,所述电涡流测量端包括第二骨架、第二感应线圈和前端穿过第二骨架中心通孔的第二磁芯,所述第二感应线圈绕制在所述第二骨架上,所述第二感应线圈与所述电路板电连接。所述第二磁芯前端穿过所述第二骨架的中心通孔。
在此基础上,所述电磁测量端和所述电涡流测量端的端部周向包覆有弹性保护套。
与现有技术相比,本发明的有益效果是:电磁测量端和电涡流测量端分别位于活动臂两端,切换测量方式时旋转活动臂即可实现切换,切换过程中探头不断电,这样使用过程中不需更换探头,不用频繁断电,减少了对电路板的损耗。
在涂层测量过程中探头和材料之间的压力大小对测量结果的稳定性起到重要作用,设置压力传感器,可以在测量过程中根据测得压力大小进行调节稳定,使得测量过程更为稳定,结果更为准确。
活动臂与壳体固定装置间设置有反弹自锁装置,包括设置在活动臂上的凸起和设置在壳体固定装置上的U型凹槽,一个测量端使用时另一测量端通过回复弹簧将凸起和U型凹 槽锁定使得活动臂固定不易脱落,测量时更加稳定。
第一感应线圈和第二感应线圈距离较远,不会互相干涉对测量结果产生影响。
电磁测量端和电涡流测量端外设有弹性保护套对探头起保护作用,延长探头的使用寿命。
附图说明
图1是活动臂的剖面示意图;
图2是活动臂的底面示意图;
图3是壳体固定装置的剖面示意图;
具体实施方式
以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1、图2、图3为本发明的一种具体实施方式。其中,图1为活动臂的一种剖面示意图,图2为活动臂的一种底面示意图,图3为壳体固定装置的一种剖面示意图。
如图1、图2和图3所示,一种涂层测厚仪的探头包括活动臂1和与之对称壳体固定装置14,活动臂1和壳体固定装置14活动连接,活动臂1两端分别固定有电磁测量端2和电涡流测量端8,电磁测量端2和电涡流测量端8分别设置有第一压力传感器19和第二压力传感器20,活动臂1中设有电路板6,电路板设置在活动臂1中间部分。同时设有电磁测量功能和电涡流测量功能,满足不同测量需要,可以大大提高测量效率。
活动臂1与壳体固定装置14以轴7连接。活动臂可绕轴旋转,测量切换方便。
第一压力传感器19和第二压力传感器20分别固定在活动臂1两端处,第一压力传感器19和第二压力传感器20分别与电路板6电连接。在涂层测量过程中探头和材料之间的压力大小对测量结果的稳定性起到重要作用,设置压力传感器,可以在测量过程中根据测得压力大小进行调节稳定,使得测量过程更为稳定,结果更为准确。
活动臂1与壳体固定装置4之间安装有反弹自锁装置15。反弹自锁装置15包括2个凸起13和U型凹槽15,2个凸起13和U型凹槽16设置在距活动臂等距位置;2个凸起13以活动臂1中心所在的轴为对称轴相互对称。U形凹槽16包括凹槽17、滑槽和回复弹簧18,回复弹簧18安装在壳体固定装置14内,回复弹簧18两端分别固定凹槽底部和滑槽 底部。设置反弹自锁装置可以使测量过程中探头更加稳定,不会因晃动而影响测量结果的准确性。
电磁测量端2包括第一骨架3、第一磁芯5和第一感应线圈4,第一感应线圈4绕制在第一骨架3上,第一感应线圈4与所述电路板6电连接;第一磁芯前端5穿过所述第一骨架3的中心通孔。
电涡流测量端8包括第二骨架10、第二磁芯9和第二感应线圈11,第二感应线圈11绕制在第二骨架10上,第二感应线圈11与电路板6电连接;第二磁芯9前端穿过第二骨架10的中心通孔。
电磁测量端2和电涡流测量端8的端部包覆有弹性保护套12。探头的使用寿命的长短跟使用过程中的刚性碰触有直接的关系,设置弹性保护套避免弹性碰触可有效提升探头的使用寿命。
本具体实施方式中将电磁测量端和电涡流测量端设置在距离较远的两端,解决了感应线圈距离太近产生干涉影响测量结果的问题,同时采用活动臂节省了空间。
本具体实施方式中的涂层测厚仪探头为兼具电磁和电涡流测量方式的探头,电磁测量端和电涡流测量端分别位于活动臂两端,切换测量方式时旋转活动臂即可实现切换,切换过程中探头不断电,这样使用过程中不需更换探头,不用频繁断电,减少了对电路板的损耗。设置压力传感器,可以在测量过程中根据测得压力大小进行调节稳定,使得测量过程更为稳定,结果更为准确。活动臂与壳体固定装置间设置有自动反弹装置,包括设置在活动臂上的凸起和设置在壳体固定装置上的U型凹槽,一个测量端使用时另一测量端通过回复弹簧将凸起和U型凹槽锁定使得活动臂固定不易脱落,测量时更加稳定。第一感应线圈和第二感应线圈距离较远,不会互相干涉对测量结果产生影响。电磁测量端和电磁测量端外设有弹性保护套对探头起保护作用,延长探头的使用寿命。当需要用电磁测量时将电磁测量端旋转至前端,电涡流测量端被自动反弹锁锁定;当需要电涡流测量时将电涡流测量端旋转至前端,电磁测量端被自动反弹锁锁定;切换测量方式过程中,探头不断电,测量工作方便,探头损耗少;电磁测量端和电涡流测量端分开,避免了互相干涉,测量结果准确。
上述说明示出并描述了本发明的优选实施例,如前所述,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环 境,并能够在本文所述发明构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

  1. 一种涂层测厚仪探头,其特征在于:所述涂层测厚仪探头包括活动臂(1)和与之对称的壳体固定装置(14),所述活动臂(1)和壳体固定装置(14)活动连接,所述活动臂(1)两端分别固定有电磁测量端(2)和电涡流测量端(8),所述电磁测量端(2)和所述电涡流测量端(8)分别设置有第一压力传感器(19)和第二压力传感器(20);所述活动臂(1)中设有电路板(6),所述电路板(6)设置在所述活动臂(1)中间部分。
  2. 根据权利要求1所述的一种涂层测厚仪探头,其特征在于:所述活动臂(1)与所述壳体固定装置(14)为轴连接。
  3. 根据权利要求1所述的一种涂层测厚仪探头,其特征在于:所述第一压力传感器(19)和第二压力传感器(20)分别固定在所述活动臂(1)两端处,所述第一压力传感器(19)和第二压力传感器(20)分别与所述电路板(6)电连接。
  4. 根据权利要求1所述的一种涂层测厚仪探头,其特征在于:所述活动臂(1)与壳体固定装置(14)之间安装有反弹自锁装置(15)。
  5. 根据权利要求4所述的一种涂层测厚仪探头,其特征在于:所述反弹自锁装置(15)包括2个凸起(13)和U型凹槽(16),所述2个凸起(13)和U型凹槽(16)设置在距所述活动臂(1)中心等距离的位置上;所述2个凸起(13)以所述活动臂(1)中心所在的轴为对称轴相互对称。
  6. 根据权利要求4所述的一种涂层测厚仪探头,其特征在于:所述U形凹槽(16)包括凹槽(17)、滑槽和回复弹簧(18),所述回复弹簧(18)安装在所述壳体固定装置(14)内,所述回复弹簧(18)两端分别固定所述凹槽底部(17)和所述滑槽底部。
  7. 根据权利要求1所述的一种涂层测厚仪探头,其特征在于:所述电磁测量端(2)包括第一骨架(3)、第一感应线圈(4)和前端穿过所述第一骨架(3)中心通孔的第一磁芯(5),所述第一感应线圈(4)绕制在所述第一骨架(3)上,所述第一感应线圈(4)与所述电路板(6)电连接。
  8. 根据权利要求1所述的一种涂层测厚仪探头,其特征在于:所述电涡流测量端(8)包括第二骨架(10)、第二感应线圈(11)和前端穿过所述第二骨架(10)中心通孔的第二磁芯(9),所述第二感应线圈(11)绕制在所述第二骨架(10) 上,所述第二感应线圈(11)与所述电路板(6)电连接。
  9. 根据权利要求1所述的一种涂层测厚仪探头,其特征在于:所述电磁测量端(2)和所述电涡流测量端(8)的端部包覆有弹性保护套(12)。
  10. 根据权利要求8所述的一种涂层测厚仪探头,其特征在于:所述弹性保护套(12)包覆在所述电磁测量端(2)和所述电涡流测量端(8)的周向。
PCT/CN2015/097885 2015-09-09 2015-12-18 一种涂层测厚仪探头 WO2017041380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510572304.XA CN105115411B (zh) 2015-09-09 2015-09-09 一种涂层测厚仪探头
CN201510572304.X 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017041380A1 true WO2017041380A1 (zh) 2017-03-16

Family

ID=54663456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097885 WO2017041380A1 (zh) 2015-09-09 2015-12-18 一种涂层测厚仪探头

Country Status (2)

Country Link
CN (1) CN105115411B (zh)
WO (1) WO2017041380A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830124A (zh) * 2020-07-02 2020-10-27 乐清市万正消防设备有限公司 一种针对密集型楼道消防安全用消防钢瓶检测装置
CN113175863A (zh) * 2021-04-20 2021-07-27 深圳市林上科技有限公司 一种掺杂铁粉腻子层识别方法及漆膜仪

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115411B (zh) * 2015-09-09 2018-03-02 海安迪斯凯瑞探测仪器有限公司 一种涂层测厚仪探头
CN106289140A (zh) * 2016-10-20 2017-01-04 天津科技大学 非金属基体表面涂层厚度检测装置及检测方法
CN107328380B (zh) * 2017-08-11 2023-03-21 马鞍山恒瑞测量设备有限公司 一种涂层测厚仪探头
CN108226950A (zh) * 2018-01-12 2018-06-29 刘轩与 机动车鉴定评估***及鉴定评估方法
CN109900197B (zh) * 2019-03-14 2021-09-17 王宏英 一种可调节的辊间距电磁测量仪
CN113109424B (zh) * 2021-04-13 2023-06-02 广州市果欧电子科技有限公司 一种钢结构焊缝检测方法及检测***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576714A1 (de) * 1992-07-03 1994-01-05 Norbert Dr. Nix Magnetinduktive und Wirbelstrommesssonde zur Messung einer Schichtdicke
US5886522A (en) * 1995-10-05 1999-03-23 Elcometer Instruments Limited Dual mode coating thickness measuring probe for determining the thickness of a coating on ferrous and non-ferrous substrates
CN202281591U (zh) * 2011-09-22 2012-06-20 杨立峰 一种电磁和压电超声合成的孔铜测厚探头
CN202599329U (zh) * 2012-06-21 2012-12-12 温州市海宝仪器有限公司 涂层测厚仪
US20130328555A1 (en) * 2012-06-07 2013-12-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Pulsed eddy current sensor for precision lift-off measurement
CN105115411A (zh) * 2015-09-09 2015-12-02 海安迪斯凯瑞探测仪器有限公司 一种涂层测厚仪探头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022882B4 (de) * 2006-05-15 2016-04-14 Immobiliengesellschaft Helmut Fischer Gmbh & Co. Kg Vorrichtung zum Messen der Dicke dünner Schichten mit einer Messsonde
ES2365291B1 (es) * 2006-09-29 2012-08-08 Airbus España, S.L. Método para la determinación del espesor de un recubrimiento sobre un material compuesto.
CN201527259U (zh) * 2009-07-06 2010-07-14 李长青 面接触式涡流测厚探头
DE202010006062U1 (de) * 2010-04-23 2010-07-22 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Messsonde zur zerstörungsfreien Messung der Dicke dünner Schichten
DE202010006061U1 (de) * 2010-04-23 2010-07-22 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Messsonde zur zerstörungsfreien Messung der Dicke dünner Schichten
CN104567647A (zh) * 2013-10-23 2015-04-29 上海航天设备制造总厂 采用电涡流法对泡沫塑料板进行测厚的方法
CN205079731U (zh) * 2015-09-09 2016-03-09 海安迪斯凯瑞探测仪器有限公司 一种涂层测厚仪探头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576714A1 (de) * 1992-07-03 1994-01-05 Norbert Dr. Nix Magnetinduktive und Wirbelstrommesssonde zur Messung einer Schichtdicke
US5886522A (en) * 1995-10-05 1999-03-23 Elcometer Instruments Limited Dual mode coating thickness measuring probe for determining the thickness of a coating on ferrous and non-ferrous substrates
CN202281591U (zh) * 2011-09-22 2012-06-20 杨立峰 一种电磁和压电超声合成的孔铜测厚探头
US20130328555A1 (en) * 2012-06-07 2013-12-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of National Defence Pulsed eddy current sensor for precision lift-off measurement
CN202599329U (zh) * 2012-06-21 2012-12-12 温州市海宝仪器有限公司 涂层测厚仪
CN105115411A (zh) * 2015-09-09 2015-12-02 海安迪斯凯瑞探测仪器有限公司 一种涂层测厚仪探头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111830124A (zh) * 2020-07-02 2020-10-27 乐清市万正消防设备有限公司 一种针对密集型楼道消防安全用消防钢瓶检测装置
CN113175863A (zh) * 2021-04-20 2021-07-27 深圳市林上科技有限公司 一种掺杂铁粉腻子层识别方法及漆膜仪
CN113175863B (zh) * 2021-04-20 2023-03-14 深圳市林上科技有限公司 一种掺杂铁粉腻子层识别方法及漆膜仪

Also Published As

Publication number Publication date
CN105115411A (zh) 2015-12-02
CN105115411B (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
WO2017041380A1 (zh) 一种涂层测厚仪探头
JP2698749B2 (ja) 鉄基板上の非鉄塗装および導電性基板上の非導電性塗装のための併用塗装厚さゲージ
US9103857B2 (en) Gradiometer for determining the electrical conductivity of a medium contained in a containment
Wang et al. A compact and high-performance eddy-current sensor based on meander-spiral coil
Yang et al. Improved measurement of the low-frequency complex permeability of ferrite annulus for low-noise magnetic shielding
US3440527A (en) Magnetic thickness gauge having shielded magnet
Abdallh et al. A Rogowski–Chattock coil for local magnetic field measurements: sources of error
CN205079731U (zh) 一种涂层测厚仪探头
CN202915881U (zh) 一种金属基体上非金属覆层测厚仪
CN108592776A (zh) 利用霍尔效应测量铁基表面上非磁性涂层的探头
CN105974349A (zh) 一种电流互感器跟踪精度的测量方法
CN110609163A (zh) 一种非侵入式计量电流和电压的设备
JP5691653B2 (ja) 電気伝導率計
CN201527259U (zh) 面接触式涡流测厚探头
Cheng et al. Absorbing coating thickness measurement based on lift-off effect of eddy current testing
CN208091969U (zh) 一种用于检测水冷壁疲劳裂纹的涡流探头
RU2456589C1 (ru) Способ вихретокового измерения толщины металлических покрытий
CN219811394U (zh) 一种基于tmr微弱电流传感器的磁芯及线圈组件
CN102235851A (zh) 涂镀层厚度测量探头
Li et al. Mechanism of temperature influence in thickness measurement using eddy current sensors
CN221173257U (zh) 含有磁感应和涡流效应传感器且装有红宝石的测厚探头
CN109855524B (zh) 一种覆层测厚仪传感器
CN117554676B (zh) 一种电流测量装置及方法
CN217484251U (zh) 电磁超声与涡流复合传感器及带有其的测厚仪
CN116519747B (zh) 一种漆面厚度计算和基材材质识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903483

Country of ref document: EP

Kind code of ref document: A1