WO2017039401A1 - 압력 센서 - Google Patents

압력 센서 Download PDF

Info

Publication number
WO2017039401A1
WO2017039401A1 PCT/KR2016/009876 KR2016009876W WO2017039401A1 WO 2017039401 A1 WO2017039401 A1 WO 2017039401A1 KR 2016009876 W KR2016009876 W KR 2016009876W WO 2017039401 A1 WO2017039401 A1 WO 2017039401A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
piezoresistive
conductive
electrode layer
pressure sensor
Prior art date
Application number
PCT/KR2016/009876
Other languages
English (en)
French (fr)
Inventor
김비이
김정한
박현규
조원근
조인희
조현진
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/756,821 priority Critical patent/US10641666B2/en
Publication of WO2017039401A1 publication Critical patent/WO2017039401A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/103Adjustable resistors adjustable by mechanical pressure or force by using means responding to magnetic or electric fields, e.g. by addition of magnetisable or piezoelectric particles to the resistive material, or by an electromagnetic actuator

Definitions

  • the present invention relates to a pressure sensor, and more particularly to a pressure sensor in the form of a sheet.
  • Typical pressure sensors include a lower electrode, an intermediate layer disposed on the lower electrode, and an upper electrode disposed on the intermediate layer.
  • the pressure sensor as described above reduces the thickness of the intermediate layer, which is a piezoresistive layer, by external pressure, the pressure applied through the thickness change of the intermediate layer may be sensed.
  • the FSR (Force Sensing Register) sensor which is a pressure sensor in the form of a thin film, is difficult to have a large area and is inflexible because the conductive wire is printed on the thin film. Accordingly, a pressure sensor in the form of a sheet has recently been developed.
  • FIG. 1 is a photograph of a pressure sensor in the form of a general sheet.
  • the pressure sensor in the form of a general sheet fabricates the first and second electrode layers 5a and 5c and the intermediate layer 5b separately, and the sensor is the first and second electrode layers 5a and 5c and the intermediate layer 5b. By attaching these to each other, manufacturing costs may increase and alignment problems may occur.
  • An object of the present invention is to provide an integrated pressure sensor in the form of a sheet.
  • the pressure sensor relates to a pressure sensor in a sheet form in which conductive fibers, non-conductive fibers, and piezoresistive fibers are woven together, comprising: a first electrode layer including the conductive fibers and the non-conductive fibers; A second electrode layer comprising the conductive fiber and the non-conductive fiber; And a piezoresistive layer disposed between the first electrode layer and the second electrode layer and including the piezoresistive fiber.
  • the pressure sensor according to another embodiment of the present invention relates to a pressure sensor in the form of a sheet in which conductive fibers and non-conductive fibers are woven together, comprising: a first electrode layer including the conductive fibers and the non-conductive fibers; A second electrode layer comprising the conductive fiber and the non-conductive fiber; A piezoresistive layer disposed between the first electrode layer and the second electrode layer and including the nonconductive fiber; And a piezoresistive material layer filled in the gap between the conductive fiber and the nonconductive fiber.
  • the first electrode layer further comprises the non-conductive fiber, the first electrode layer is arranged side by side in a first direction and comprises a plurality of first electrode patterns made of the conductive fiber, the second electrode layer is the first It is arranged side by side in a second direction crossing the one direction, and comprises a plurality of second electrode pattern made of the conductive fiber.
  • Pressure sensor according to an embodiment of the present invention has the following effects.
  • the conductive fiber, the non-conductive fiber and the piezoresistive fiber can be woven together to implement an integrated pressure sensor. Accordingly, the accuracy of the pressure sensor may be improved by securing flexibility of the pressure sensor and preventing occurrence of alignment errors between the conductive layer and the piezoresistive layer.
  • a sheet comprising a first conductive layer made of a conductive fiber and a nonconductive fiber, a piezoresistive layer made of only a nonconductive fiber, and a second conductive layer made of a conductive fiber and a nonconductive fiber by weaving the conductive fiber and the nonconductive fiber together.
  • the process of manufacturing the pressure sensor can be simplified by dipping the sheet in a solution containing the piezoresistive material and imparting the piezoresistive characteristics to the piezoresistive layer.
  • FIG. 1 is a photograph of a pressure sensor in the form of a general sheet.
  • FIG. 2A is a perspective view of a pressure sensor in an embodiment of the present invention.
  • FIG. 2B is an enlarged view of region A of FIG. 2A.
  • 3A is a plan view illustrating pressure sensing according to an embodiment of the present invention.
  • FIG. 3B is a cross-sectional view illustrating the pressure sensing of FIG. 3A.
  • FIG. 4 is an enlarged view of area A of FIG. 2A according to another embodiment of the present invention.
  • 5A and 5B are perspective views of a pressure sensor in another embodiment of the present invention.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 2A is a perspective view of a pressure sensor in an embodiment of the present invention
  • FIG. 2B is an enlarged view of area A of FIG. 2A.
  • the pressure sensor in one embodiment of the present invention includes a piezoresistive layer 12 disposed between the first electrode layer 11 and the second electrode layer 13, and the first electrode layer 11 and the second electrode layer 13. ), And the first and second electrode layers 11 and 13 are in the form of a sheet including conductive fibers and non-conductive fibers, and the piezoresistive layer 12 is in the form of a sheet including piezoresistive fibers.
  • the conductive fiber, the non-conductive fiber and the piezoresistive fiber are woven together in various ways such as plain weave, twill, satin weave, and the like.
  • the structure 11 and 13 and the piezoresistive layer 12 are integral.
  • the first electrode layer 11 is a structure in which the conductive fibers and the non-conductive fibers are woven together.
  • the first electrode layer 11 is woven so that the conductive fibers are arranged side by side in the first direction, and the four first conductive patterns 11a made of the conductive fibers are shown in the drawing.
  • a nonconductive pattern made of nonconductive fibers is exposed between the adjacent first conductive patterns 11a.
  • the conductive fiber may be a structure in which a conductive material such as a metal is coated on a core made of a common fiber such as polyester, nylon, acrylic, polypropylene, polyurethane, cotton, silk, acetate, or the like, or a yarn made of only a conductive material. have.
  • the non-conductive fiber may be the general fiber described above.
  • the piezoresistive layer 12 is a structure in which piezoresistive fibers are woven.
  • the piezoresistive fiber may be a yarn made only of the piezoresistive material.
  • the piezoresistive fiber may be formed of a conductive material containing carbon such as carbon nano tube (CNT), graphene, which is a thin film in which carbon atoms are entangled in a honeycomb shape, polypyrrole (Ppy), polyethylene, and the like.
  • Conductive polymers such as deoxy thiophene (PEDOT), semiconductive inorganic metal oxides such as zinc oxide (ZnO), and the like.
  • the piezoresistive fiber may have a structure in which a piezoresistive material is coated on a core made of the above-described general fiber.
  • the second electrode layer 13 has a structure in which conductive fibers and non-conductive fibers are woven together like the first electrode layer 11.
  • the second electrode pattern 13a may be formed of the same conductive fiber as the first electrode pattern 11a.
  • the second electrode layer 13 is arranged side by side in a second direction in which the conductive fibers intersect the first direction, and in the figure, four second conductive patterns 13a made of conductive fibers are shown. In addition, a nonconductive pattern made of nonconductive fibers is exposed between the adjacent second conductive patterns 13a.
  • the conductive fiber 10a, the nonconductive fiber 10b, and the piezoresistive fiber 10c are woven together.
  • the conductive fibers 10a, the nonconductive fibers 10b, and the piezoresistive fibers 10c may be woven together in various ways such as plain weave, twill, satin weave, and the like.
  • the conductive fibers 10a, the nonconductive fibers 10b and the piezoresistive fibers 10c are woven together so that the pressure sensor is between the first and second electrode layers 11 and 13 and the first and second electrode layers 11 and 13.
  • the piezoresistive layer 12 may be divided into.
  • warp of the first electrode layer 11 is warp.
  • the nonconductive fiber 10b and the weft are the conductive fibers 10a
  • the warp of the second electrode layer 13 is the conductive fiber 10a and the weft is the nonconductive fiber 10b. It may be, but is not limited thereto.
  • the conductive fiber 10a and the non-conductive fiber 10b of the first and second electrode layers 11 and 13 are regularly woven in the drawing, the conductive fiber 10a and the non-conductive fiber 10b are illustrated. Is irregularly woven so that the first and second electrode patterns 11a and 13a may be wavy rather than rod-shaped.
  • the piezoresistive layer 12 may be made of only the piezoresistive fibers 10c, and the piezoresistive fibers 10c may be formed of the conductive fibers 10a and the nonconductive fibers 10b of the adjacent first and second electrode layers 11 and 13.
  • the piezoresistive layer 12 may be interposed between the first and second electrode layers 11 and 13 to be woven with each other.
  • the pressure sensor of the present invention can implement a pressure sensor in the form of a sheet by weaving the conductive fiber 10a, the non-conductive fiber 10b, and the piezoresistive fiber 10c together. Accordingly, the accuracy of the pressure sensor can be improved by securing flexibility of the pressure sensor and preventing occurrence of alignment errors between the first and second electrode layers 11 and 13 and the piezoresistive layer 12.
  • FIG. 3A is a plan view illustrating pressure sensing according to an exemplary embodiment of the present invention
  • FIG. 3B is a cross-sectional view illustrating pressure sensing of FIG. 3A.
  • the piezoresistive layer 12 in the region to which pressure is applied is greater than the thickness a1 of the piezoresistive layer 12 in the region to which no pressure is applied.
  • the thickness a2 becomes thinner. Accordingly, the piezoresistor of the piezoresistive layer 12 is lowered in the region where the pressure is applied, so that the pressure can be sensed.
  • the piezoresistive layer 12 may be formed by coating the piezoresistive material on a region woven from a nonconductive material instead of the piezoresistive fiber.
  • FIG. 4 is an enlarged view of area A of FIG. 2A according to another embodiment of the present invention.
  • the pressure sensor is a piezoresistive layer 12 including a first conductive layer 11 and a nonconductive fiber 10b by weaving the conductive fiber 10a and the nonconductive fiber 10b. And a second conductive layer 13 made of a conductive fiber 10a and a non-conductive fiber 10b.
  • the sheet may be immersed in a solution containing a piezoresistive material to impart piezoresistive characteristics to the piezoresistive layer 12 and then dried to manufacture a pressure sensor.
  • the piezoresistive material When the sheet is immersed in the solution containing the piezoresistive material, the piezoresistive material may be coated on the surface of the sheet to form the piezoresistive coating layer 12a and fill the sheet to form the piezoresistive material layer 12b. That is, the piezoresistive material layer 12b is absorbed into the sheet and filled between the conductive fiber 10a and the nonconductive fiber 10b. In this case, the resistance between the first and second electrode layers 11 and 13 and the piezoresistive layer 12 may be reduced, and the uniformity of the sheet resistance may be improved, as compared with the pressure sensor of FIG. 2B. In particular, since only the conductive fibers 10a and the nonconductive fibers 10b are used, the manufacturing process is simpler than the processes using the conductive fibers 10a, the nonconductive fibers 10b, and the piezoresistive fibers.
  • the surface resistance of the piezoresistive coating layer 12a and the piezoresistive material layer 12b may be 100 ⁇ / square or more and 10 M ⁇ / square or less.
  • the vertical resistance of the piezoresistive coating layer 12a and the piezoresistive material layer 12b may also be 100 ⁇ / square or more and 10M ⁇ / square or less.
  • the piezoresistive coating film 12a and the piezoresistive material layer 12b function almost as insulators. Therefore, as described above, the surface resistance of the piezoresistive coating layer 12a and the piezoresistive material layer 12b may be 100 ⁇ / square or more and 10 M ⁇ / square or less.
  • 5A and 5B are perspective views of a pressure sensor in another embodiment of the present invention.
  • the first electrode layer 11 is formed in an integrated structure. That is, the first electrode layer 11 may be formed so as to overlap all of the piezoresistive layer 12 in one piece instead of the plurality of first electrode pattern structures arranged in the first direction.
  • the first electrode layer 11 is made of only conductive fibers
  • the second electrode layer 13 is made of conductive fibers and non-conductive fibers, and the plurality of second electrode patterns arranged in the first direction or the second direction of FIG. 2A. (13a). Accordingly, the piezoresistor of the piezoresistive layer 12 may be changed in an area where the first electrode layer 11 and the second electrode pattern 13a overlap by external pressure, thereby detecting the pressure.
  • the second electrode layer 13 may be formed in an integrated structure in which all of the piezoresistive layer 12 overlaps.
  • the second electrode layer 13 is made of only conductive fibers
  • the first electrode layer 11 is made of conductive fibers and non-conductive fibers so that the first electrode layer 11 is arranged in the first direction or the second direction of FIG. 2A.
  • the plurality of first electrode patterns 11a may be included.
  • the pressure sensor of the present invention can secure only the advantages of a Force Sensing Register (FSR) sensor and a pressure sensor in a general sheet form.
  • the Force Sensing Register (FSR) sensor is formed of a conductive pattern printed on the film, which makes it difficult to make a large area and weak in flexibility, but can prevent alignment problems.
  • the first electrode layer, the piezoresistive layer, and the second electrode layer are formed and adhered thereto, alignment problems may occur.
  • the present invention can implement a pressure sensor in the form of a sheet by weaving the conductive fiber (10a), non-conductive fiber (10b) and piezoresistive fiber (10c) together. Accordingly, the flexibility of the pressure sensor can be secured and a large area can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Sensors (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

본 발명의 한 실시 예의 압력 센서는 전도성 섬유, 비전도성 섬유 및 압저항 섬유가 함께 직조된 시트 형태의 압력 센서에 관한 것으로, 상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 1 전극층; 상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 2 전극층; 및 상기 제 1 전극층과 제 2 전극층 사이에 배치되며 상기 압저항 섬유를 포함하는 압저항층을 포함한다.

Description

압력 센서
본 발명은 압력 센서에 관한 것으로, 상세하게는 시트 형태의 압력 센서에 관한 것이다.
가정용 안전 소자뿐만 아니라 체압 분포를 이용하는 다양한 응용 분야에서 압력을 감지하기 위한 소자가 요구된다. 일반적인 압력 센서는 하부 전극, 하부 전극 상에 배치된 중간층, 그리고 중간층 상에 배치된 상부 전극을 포함한다.
상기와 같은 압력 센서는 외부의 압력에 의해 압저항층인 중간층의 두께가 감소하므로, 중간층의 두께 변화를 통해 가해진 압력을 감지할 수 있다. 특히, 박막 형태의 압력 센서인 FSR(Force Sensing Register) 센서는 대면적화가 어렵고 박막에 전도성 배선이 인쇄된 형태로 이루어져 유연성이 떨어진다. 이에 따라, 최근 시트 형태의 압력 센서가 개발되었다.
도 1은 일반적인 시트 형태의 압력 센서의 사진이다.
도 1과 같이, 일반적인 시트 형태의 압력 센서는 제 1, 제 2 전극층(5a, 5c) 및 중간층(5b)을 별도로 제작하고 센서는 제 1, 제 2 전극층(5a, 5c) 및 중간층(5b)을 서로 부착시키므로 제조 비용이 증가하고 얼라인(Align) 문제가 발생할 수 있다.
본 발명이 이루고자 하는 기술적 과제는 시트 형태의 일체형 압력 센서를 제공하는 데 있다.
본 발명의 한 실시 예에 따른 압력 센서는 전도성 섬유, 비전도성 섬유 및 압저항 섬유가 함께 직조된 시트 형태의 압력 센서에 관한 것으로, 상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 1 전극층; 상기 전도성 섬유와 비전도성 섬유를 포함하는 제 2 전극층; 및 상기 제 1 전극층과 제 2 전극층 사이에 배치되며 상기 압저항 섬유를 포함하는 압저항층을 포함한다.
본 발명의 다른 실시 예의 압력 센서는 전도성 섬유와 비전도성 섬유가 함께 직조된 시트 형태의 압력 센서에 관한 것으로, 상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 1 전극층; 상기 전도성 섬유와 비전도성 섬유를 포함하는 제 2 전극층; 상기 제 1 전극층과 제 2 전극층 사이에 배치되며 상기 비전도성 섬유를 포함하는 압저항층; 및 상기 전도성 섬유와 상기 비전도성 섬유 사이의 간극에 채워진 압저항 물질층을 포함한다.
상기 제 1 전극층이 상기 비전도성 섬유를 더 포함하여 이루어져, 상기 제 1 전극층은 제 1 방향으로 나란하게 배열되며 상기 전도성 섬유로 이루어진 복수 개의 제 1 전극 패턴을 포함하며, 상기 제 2 전극층은 상기 제 1 방향과 교차하는 제 2 방향으로 나란하게 배열되며, 상기 전도성 섬유로 이루어진 복수 개의 제 2 전극 패턴을 포함한다.
본 발명의 실시 예에 따른 압력 센서는 다음과 같은 효과가 있다.
첫째, 전도성 섬유, 비전도성 섬유 및 압저항 섬유를 함께 직조하여 일체형의 압력 센서를 구현할 수 있다. 이에 따라, 압력 센서의 유연성을 확보하고 전도성층과 압저항층의 얼라인(Align) 오차가 발생하는 것을 방지함으로써 압력 센서의 정확도를 향상시킬 수 있다.
둘째, 전도성 섬유와 비전도성 섬유를 함께 직조하여 전도성 섬유와 비전도성 섬유로 이루어진 제 1 전도성층, 비전도성 섬유로만 이루어진 압저항층 및 전도성 섬유와 비전도성 섬유로 이루어진 제 2 전도성층을 포함하는 시트를 형성한 후, 시트를 압저항 물질을 포함하는 용액에 담가 압저항층에 압저항 특성을 부여함으로써, 압력 센서를 제조하는 공정을 간소화할 수 있다.
도 1은 일반적인 시트 형태의 압력 센서의 사진이다.
도 2a는 본 발명 실시 예의 압력 센서의 사시도이다.
도 2b는 도 2a의 A 영역의 확대도이다.
도 3a는 본 발명 실시 예의 압력 센싱을 나타낸 평면도이다.
도 3b는 도 3a의 압력 센싱을 나타낸 단면도이다.
도 4는 본 발명 다른 실시 예에 따른 도 2a의 A 영역의 확대도이다.
도 5a 및 도 5b는 본 발명의 또 다른 실시 예의 압력 센서의 사시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하, 첨부된 도면을 참조하여 실시 예의 압력 센서를 상세히 설명하면 다음과 같다.
도 2a는 본 발명 실시 예의 압력 센서의 사시도이며, 도 2b는 도 2a의 A 영역의 확대도이다.
도 2a와 같이, 본 발명의 한 실시 예의 압력 센서는 제 1 전극층(11)과 제 2 전극층(13) 및 제 1 전극층(11)과 제 2 전극층(13) 사이에 배치된 압저항층(12)을 포함하며, 제 1, 제 2 전극층(11, 13)은 전도성 섬유와 비전도성 섬유를 포함하는 시트 형태이며, 압저항층(12)은 압저항 섬유를 포함하는 시트 형태이다. 이 때, 전도성 섬유, 비전도성 섬유 및 압저항 섬유는 평직(Plain weave), 능직(Twill), 주자직(Satin) 등 다양한 방법으로 함께 직조되어 본 발명 실시 예의 압력 센서는 제 1, 제 2 전극층(11, 13) 및 압저항층(12)이 일체형인 구조이다.
구체적으로, 제 1 전극층(11)은 전도성 섬유와 비전도성 섬유가 함께 직조된 구조이다. 특히, 제 1 전극층(11)은 전도성 섬유가 제 1 방향으로 나란하게 배열되도록 직조되며, 도면에서는 전도성 섬유로 이루어진 4 개의 제 1 전도성 패턴(11a)을 도시하였다. 그리고, 인접한 제 1 전도성 패턴(11a) 사이에서는 비전도성 섬유로 이루어진 비전도성 패턴이 노출된다.
전도성 섬유는 폴리에스터, 나일론, 아크릴, 폴리프로필렌, 폴리우레탄, 면, 실크, 아세테이트 등과 같은 일반 섬유로 이루어진 코어에 금속과 같은 전도성 물질이 코팅된 구조이거나, 전도성 물질로만 이루어진 실(yarn)일 수 있다. 그리고, 비전도성 섬유는 상술한 일반 섬유일 수 있다.
압저항층(12)은 압저항 섬유가 직조된 구조이다. 압저항 섬유는 압저항 물질로만 이루어진 실(yarn)일 수 있다. 이 때, 압저항 섬유는 탄소 나노 튜브(Carbon Nano Tube; CNT), 탄소 원자가 벌집 모양으로 얽혀있는 얇은 막인 그래핀(Graphene) 등과 같이 탄소를 포함하는 전도성 물질, 폴리파이롤(Ppy), 폴리 에틸렌 디옥시 티오펜(PEDOT) 등과 같은 전도성 고분자, 산화 아연(ZnO)과 같은 반도성 무기 금속 산화물 등에서 선택될 수 있다. 또한, 압저항 섬유는 상술한 일반 섬유로 이루어진 코어에 압저항 물질이 코팅된 구조일 수도 있다.
제 2 전극층(13)은 제 1 전극층(11)과 같이 전도성 섬유와 비전도성 섬유가 함께 직조된 구조이다. 이 때, 제 2 전극 패턴(13a)은 제 1 전극 패턴(11a)과 동일한 전도성 섬유로 형성될 수 있다. 제 2 전극층(13)은 전도성 섬유가 제 1 방향과 교차하는 제 2 방향으로 나란하게 배열되며, 도면에서는 전도성 섬유로 이루어진 4 개의 제 2 전도성 패턴(13a)을 도시하였다. 그리고, 인접한 제 2 전도성 패턴(13a) 사이에서는 비전도성 섬유로 이루어진 비전도성 패턴이 노출된다.
이하, 전도성 섬유, 비전도성 섬유 및 압저항 섬유의 직조를 구체적으로 설명하면 다음과 같다.
도 2b와 같이, 전도성 섬유(10a), 비전도성 섬유(10b) 및 압저항 섬유(10c)가 함께 직조된 형태이다. 이 때, 전도성 섬유(10a), 비전도성 섬유(10b) 및 압저항 섬유(10c)는 평직(Plain weave), 능직(Twill), 주자직(Satin) 등 다양한 방법으로 함께 직조될 수 있다.
전도성 섬유(10a), 비전도성 섬유(10b) 및 압저항 섬유(10c)는 함께 직조되어 압력 센서는 제 1, 제 2 전극층(11, 13) 및 제 1, 제 2 전극층(11, 13) 사이의 압저항층(12)으로 구분될 수 있다. 특히, 제 1 전극층(11)의 제 1 전극 패턴(11a)과 제 2 전극층(13)의 제 2 전극 패턴(13a)의 배열 방향이 서로 교차하므로, 제 1 전극층(11)의 날실(warp)이 비전도성 섬유(10b)이며 씨실(weft)이 전도성 섬유(10a)인 경우, 제 2 전극층(13)의 날실(warp)은 전도성 섬유(10a)이며 씨실(weft)이 비전도성 섬유(10b)일 수 있으며, 이에 한정하지 않는다.
또한, 도면에서는 제 1, 제 2 전극층(11, 13)의 전도성 섬유(10a)와 비전도성 섬유(10b)가 규칙적으로 직조된 구조를 도시하였으나, 전도성 섬유(10a)와 비전도성 섬유(10b)는 불규칙적으로 직조되어, 제 1, 제 2 전극 패턴(11a, 13a)이 막대 형상이 아닌 물결 형상일 수도 있다.
압저항층(12)은 압저항 섬유(10c)로만 이루어질 수 있으며, 압저항 섬유(10c)는 인접한 제 1, 제 2 전극층(11, 13)의 전도성 섬유(10a) 및 비전도성 섬유(10b)과 직조되어 압저항층(12)이 제 1, 제 2 전극층(11, 13) 사이에 배치될 수 있다.
즉, 상술한 바와 같이, 본원 발명의 압력 센서는 전도성 섬유(10a), 비전도성 섬유(10b) 및 압저항 섬유(10c)를 함께 직조하여 시트 형태의 압력 센서를 구현할 수 있다. 이에 따라, 압력 센서의 유연성을 확보하고 제 1, 2 전극층(11, 13)과 압저항층(12)의 얼라인(Align) 오차가 발생하는 것을 방지함으로써 압력 센서의 정확도를 향상시킬 수 있다.
도 3a는 본 발명 실시 예의 압력 센싱을 나타낸 평면도이며, 도 3b는 도 3a의 압력 센싱을 나타낸 단면도이다.
도 3a 및 도 3b와 같이, 본 발명 실시 예의 압력 센서에 압력이 가해지면, 압력이 가해지지 않은 영역의 압저항층(12)의 두께(a1)보다 압력이 가해진 영역의 압저항층(12)의 두께(a2)가 얇아진다. 이에 따라 압력이 가해진 영역에서 압저항층(12)의 압저항이 낮아져 압력을 감지할 수 있다.
특히, 압저항층(12)은 압저항 섬유가 아니라 비전도성 물질로 직조된 영역에 압저항 물질이 코팅되어 형성될 수도 있다.
도 4는 본 발명 다른 실시 예에 따른 도 2a의 A 영역의 확대도이다.
도 4와 같이, 본 발명 다른 실시 예의 압력 센서는 전도성 섬유(10a)와 비전도성 섬유(10b)를 직조하여 제 1 전도성층(11), 비전도성 섬유(10b)로 이루어진 압저항층(12) 및 전도성 섬유(10a)와 비전도성 섬유(10b)로 이루어진 제 2 전도성층(13)을 포함하는 시트를 형성할 수 있다. 그리고, 시트를 압저항 물질을 포함하는 용액에 담가 압저항층(12)에 압저항 특성을 부여한 후 이를 건조시켜 압력 센서를 제조할 수 있다.
시트를 압저항 물질을 포함하는 용액에 담그면 압저항 물질이 시트 표면에 코팅되어 압저항 코팅막(12a)이 형성되고 시트 내에 채워져 압저항 물질층(12b)이 형성될 수 있다. 즉, 압저항 물질층(12b)은 시트 내부로 흡수되어 전도성 섬유(10a)와 비전도성 섬유(10b) 사이에 채워진 구조이다. 이 경우, 도 2b의 압력 센서에 비해 제 1, 제 2 전극층(11, 13)과 압저항층(12) 사이의 저항이 감소되고, 면저항의 균일도가 향상될 수 있다. 특히, 전도성 섬유(10a)와 비전도성 섬유(10b)만을 사용하므로 전도성 섬유(10a), 비전도성 섬유(10b) 및 압저항 섬유를 사용하는 공정에 비해 제조 공정이 간소하다.
특히, 도 4의 경우, 압저항 코팅막(12a) 및 압저항 물질층(12b)의 표면 저항(surface resistance)은 100Ω/square 이상이며 10MΩ/square 이하일 수 있다. 또한, 압저항 코팅막(12a) 및 압저항 물질층(12b)의 수직 저항 역시 100Ω/square 이상이며 10MΩ/square 이하일 수 있다. 압저항 코팅막(12a) 및 압저항 물질층(12b)의 표면 저항이 너무 낮은 경우에는 분리된 구조의 전극 패턴들이 압저항 코팅막(12a)을 통해 서로 전기적으로 연결될 수 있다. 또한, 압저항 코팅막(12a) 및 압저항 물질층(12b)의 표면 저항이 너무 높은 경우에는 압저항 코팅막(12a) 및 압저항 물질층(12b)이 거의 절연체로 기능한다. 따라서, 상술한 바와 같이, 압저항 코팅막(12a) 및 압저항 물질층(12b)의 표면 저항은 100Ω/square 이상이며 10MΩ/square 이하일 수 있다.
이하, 본 발명의 압력 센서의 또 다른 실시 예를 구체적으로 설명하면 다음과 같다.
도 5a 및 도 5b는 본 발명의 또 다른 실시 예의 압력 센서의 사시도이다.
도 5a와 같이, 본 발명의 또 다른 실시 예의 압력 센서는 제 1 전극층(11)이 일체형의 구조로 형성된다. 즉, 제 1 전극층(11)이 제 1 방향으로 배열된 복수 개의 제 1 전극 패턴 구조가 아닌 일체형으로 압저항층(12)과 모두 중첩되도록 형성될 수도 있다. 이 경우, 제 1 전극층(11)은 전도성 섬유만으로 이루어지고, 제 2 전극층(13)은 전도성 섬유와 비전도성 섬유로 이루어져 도 2a의 제 1 방향 또는 제 2 방향으로 배열된 복수 개의 제 2 전극 패턴(13a)을 포함한다. 따라서, 외부 압력에 의해 제 1 전극층(11)과 제 2 전극 패턴(13a)이 중첩되는 영역에서 압저항층(12)의 압저항이 변하여 압력을 감지할 수 있다.
또한, 도 5b와 같이, 제 2 전극층(13)이 압저항층(12)과 모두 중첩되는 일체형 구조로 형성될 수도 있다. 이 경우, 제 2 전극층(13)은 전도성 섬유만으로 이루어지고, 제 1 전극층(11)은 전도성 섬유와 비전도성 섬유로 이루어져 제 1 전극층(11)이 도 2a의 제 1 방향 또는 제 2 방향으로 배열된 복수 개의 제 1 전극 패턴(11a)을 포함할 수 있다.
상술한 바와 같이, 본 발명의 압력 센서는 FSR(Force Sensing Register) 센서 및 일반적인 시트 형태의 압력 센서의 장점만을 확보할 수 있다. 구체적으로, FSR(Force Sensing Register) 센서는 필름에 전도성 패턴이 인쇄된 구조로 형성되어 대면적화가 어렵고 유연성이 취약하나 얼라인(Align) 문제를 방지할 수 있으며, 일반적인 시트 형태의 압력 센서는 유연성을 가지나 제 1 전극층, 압저항층 및 제 2 전극층을 각각 형성하고 이를 접착시키므로 얼라인 문제가 발생할 수 있다.
반면, 본 발명은 전도성 섬유(10a), 비전도성 섬유(10b) 및 압저항 섬유(10c)를 함께 직조하여 시트 형태의 압력 센서를 구현할 수 있다. 이에 따라, 압력 센서의 유연성을 확보하고 대면적화가 가능하다.
상기에서는 본 발명의 바람직한 실시를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 전도성 섬유, 비전도성 섬유 및 압저항 섬유가 함께 직조된 시트 형태의 압력 센서에 관한 것으로,
    상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 1 전극층;
    상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 2 전극층; 및
    상기 제 1 전극층과 제 2 전극층 사이에 배치되며 상기 압저항 섬유를 포함하는 압저항층을 포함하는 압력 센서.
  2. 제 1 항에 있어서,
    상기 제 1 전극층이 제 1 방향으로 나란하게 배열되며 상기 전도성 섬유로 이루어진 복수 개의 제 1 전극 패턴을 포함하는 압력 센서.
  3. 제 1 항에 있어서,
    상기 제 1 전극층이 상기 비전도성 섬유를 더 포함하여 이루어져, 상기 제 1 전극층은 제 1 방향으로 나란하게 배열되며 상기 전도성 섬유로 이루어진 복수 개의 제 1 전극 패턴을 포함하며,
    상기 제 2 전극층은 상기 제 1 방향과 교차하는 제 2 방향으로 나란하게 배열되며, 상기 전도성 섬유로 이루어진 복수 개의 제 2 전극 패턴을 포함하는 압력 센서.
  4. 제 1 항에 있어서,
    상기 압저항 섬유는 압저항 물질로만 이루어진 압력 센서.
  5. 제 1 항에 있어서,
    상기 압저항 섬유는 코어 및 상기 코어의 외면에 코팅된 압저항 물질을 포함하는 압력 센서.
  6. 제 4 항 또는 제 5 항에 있어서,
    상기 압저항 물질은 탄소 물질, 전도성 고분자 및 반도체성 무기 금속 산화물 중 선택된 물질을 포함하는 압력 센서.
  7. 제 1 항에 있어서,
    상기 전도성 섬유는 전도성 물질로만 이루어진 압력 센서.
  8. 제 1 항에 있어서,
    상기 전도성 섬유는 코어 및 상기 코어의 외면에 코팅된 전도성 물질을 포함하는 압력 센서.
  9. 제 1 항에 있어서,
    상기 비전도성 섬유는 폴리에스터, 나일론, 아크릴, 폴리프로필렌, 폴리우레탄, 면, 실크, 아세테이트 중 선택된 물질을 포함하는 압력 센서.
  10. 전도성 섬유와 비전도성 섬유가 함께 직조된 시트 형태의 압력 센서에 관한 것으로,
    상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 1 전극층;
    상기 전도성 섬유와 상기 비전도성 섬유를 포함하는 제 2 전극층;
    상기 제 1 전극층과 제 2 전극층 사이에 배치되며 상기 비전도성 섬유를 포함하는 압저항층; 및
    상기 전도성 섬유와 상기 비전도성 섬유 사이의 간극에 채워진 압저항 물질층을 포함하는 압력 센서.
  11. 제 10 항에 있어서,
    상기 제 1 전극층과 상기 제 2 전극층의 외측면에 코팅된 압저항 코팅막을 더 포함하는 압력 센서.
  12. 제 10 항에 있어서,
    상기 제 1 전극층이 제 1 방향으로 나란하게 배열되며 상기 전도성 섬유로 이루어진 복수 개의 제 1 전극 패턴을 포함하는 압력 센서.
  13. 제 10 항에 있어서,
    상기 제 1 전극층이 상기 비전도성 섬유를 더 포함하여 이루어져, 상기 제 1 전극층은 제 1 방향으로 나란하게 배열되며 상기 전도성 섬유로 이루어진 복수 개의 제 1 전극 패턴을 포함하며,
    상기 제 2 전극층은 상기 제 1 방향과 교차하는 제 2 방향으로 나란하게 배열되며, 상기 전도성 섬유로 이루어진 복수 개의 제 2 전극 패턴을 포함하는 압력 센서.
  14. 제 10 항에 있어서,
    상기 압저항 섬유는 압저항 물질로만 이루어진 압력 센서.
  15. 제 10 항에 있어서,
    상기 압저항 섬유는 코어 및 상기 코어의 외면에 코팅된 압저항 물질을 포함하는 압력 센서.
  16. 제 14 항 또는 제 15 항에 있어서,
    상기 압저항 물질은 탄소 물질, 전도성 고분자 및 반도체성 무기 금속 산화물 중 선택된 물질을 포함하는 압력 센서.
  17. 제 10 항에 있어서,
    상기 전도성 섬유는 전도성 물질로만 이루어진 압력 센서.
  18. 제 10 항에 있어서,
    상기 전도성 섬유는 코어 및 상기 코어의 외면에 코팅된 전도성 물질을 포함하는 압력 센서.
  19. 제 10 항에 있어서,
    상기 비전도성 섬유는 폴리에스터, 나일론, 아크릴, 폴리프로필렌, 폴리우레탄, 면, 실크, 아세테이트 중 선택된 물질을 포함하는 압력 센서.
  20. 제 11 항에 있어서,
    상기 압저항 코팅막 및 상기 압저항 물질층의 표면 저항은 100Ω/square 이상이며 10MΩ/square 이하인 압력 센서.
PCT/KR2016/009876 2015-09-03 2016-09-02 압력 센서 WO2017039401A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/756,821 US10641666B2 (en) 2015-09-03 2016-09-02 Pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150125076A KR102432009B1 (ko) 2015-09-03 2015-09-03 압력 센서
KR10-2015-0125076 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017039401A1 true WO2017039401A1 (ko) 2017-03-09

Family

ID=58188062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009876 WO2017039401A1 (ko) 2015-09-03 2016-09-02 압력 센서

Country Status (3)

Country Link
US (1) US10641666B2 (ko)
KR (1) KR102432009B1 (ko)
WO (1) WO2017039401A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447463A1 (de) * 2017-08-24 2019-02-27 Sefar AG Drucksensor und verfahren zu seiner herstellung
CN110129964A (zh) * 2019-04-26 2019-08-16 东华大学 一种三维角联锁发电织物及其制备方法
CN110411618A (zh) * 2018-04-28 2019-11-05 五邑大学 一种点触式柔性测力计
WO2019221536A1 (ko) * 2018-05-18 2019-11-21 동우화인켐 주식회사 압력 센서 및 이를 포함하는 화상 표시 장치

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156509B2 (en) 2016-02-29 2021-10-26 Liquid Wire Inc. Sensors with deformable conductors and selective deformation
US10672530B2 (en) 2016-02-29 2020-06-02 Liquid Wire Inc. Deformable conductors and related sensors, antennas and multiplexed systems
WO2018067626A1 (en) * 2016-10-04 2018-04-12 Arizona Board Of Regents On Behalf Of Arizona State University Flexible sensors incorporating piezoresistive composite materials and fabrication methods
KR102304602B1 (ko) * 2017-04-20 2021-09-24 엘지이노텍 주식회사 압력 감지 센서 및 이를 포함하는 압력 감지 장치
KR102093161B1 (ko) 2017-09-06 2020-03-25 한국기계연구원 지능형 자동 방역 장치 및 이를 이용한 자동 방역 방법
WO2019059468A1 (ko) * 2017-09-20 2019-03-28 숭실대학교 산학협력단 수직 방향의 압력을 센싱하는 압력 센서, 수평 방향의 인장력을 센싱하는 스트레인 센서 및 이들의 제조 방법
US20190391651A1 (en) * 2018-06-20 2019-12-26 Mayu, Inc. Flexible and tactile pressure sensitive switch sensors
KR102086417B1 (ko) * 2018-08-17 2020-03-09 포항공과대학교 산학협력단 픽셀형 압력센서 및 그의 제조방법
WO2020041605A1 (en) 2018-08-22 2020-02-27 Liquid Wire Inc. Structures with deformable conductors
KR102074081B1 (ko) 2018-11-05 2020-02-05 한국생산기술연구원 섬유사 압력센서 및 그 제조방법
DE102018128082A1 (de) * 2018-11-09 2020-05-14 Bayerische Motoren Werke Aktiengesellschaft Drucksensoreinrichtung für einen Montagehandschuh, Montagehandschuh mit einer Drucksensoreinrichtung sowie Verfahren zum Herstellen einer Drucksensoreinrichtung für einen Montagehandschuh
EP3980739A4 (en) 2019-06-05 2023-05-10 Liquid Wire Inc. DEFORMABLE SENSORS WITH SELECTIVE RETENTION
DE102019123664A1 (de) 2019-09-04 2021-03-04 Uvex Safety Gloves Gmbh & Co. Kg Oberflächenharmonisierung für eingebettete Funktionsschichten
KR102373990B1 (ko) * 2019-11-14 2022-03-17 삼덕통상 주식회사 족형 데이터를 이용한 맞춤형 신발의 제조시스템
CN210864642U (zh) * 2020-01-20 2020-06-26 湃瑞电子科技(苏州)有限公司 一种键盘及电子设备
US11740143B2 (en) * 2020-05-28 2023-08-29 Nano And Advanced Materials Institute Limited Flexible pressure sensor array and method for fabricating the same
CN113358249B (zh) * 2021-06-11 2022-09-30 中国科学技术大学 一种织物型压阻传感器阵列及智能物
KR102628197B1 (ko) * 2021-12-27 2024-01-23 한국생산기술연구원 섬유형 체압 센서를 이용한 욕창 방지 매트리스 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121146A1 (en) * 2000-11-28 2002-09-05 Stmicroelectronics S.R.L. Textile-like capacitive pressure sensor and method of mapping the pressure exerted at points of a surface of a flexible and pliable object, particularly of a sail
JP2008122215A (ja) * 2006-11-13 2008-05-29 Aisin Seiki Co Ltd 圧電センサ及びその製造方法
KR20130118751A (ko) * 2010-06-22 2013-10-30 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 물리량 센서 및 그 제조방법
US20140150573A1 (en) * 2011-01-13 2014-06-05 Francis Cannard Device for Measuring Pressure from a Flexible, Pliable, and/or Extensible Object Made from a Textile Material Comprising a Measurement Device
KR101455239B1 (ko) * 2013-04-17 2014-10-27 에스케이씨 주식회사 전극 기판, 이를 포함하는 입력 장치 및 표시 장치, 및 이의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216545B1 (en) * 1995-11-14 2001-04-17 Geoffrey L. Taylor Piezoresistive foot pressure measurement
US6852395B2 (en) * 2002-01-08 2005-02-08 North Carolina State University Methods and systems for selectively connecting and disconnecting conductors in a fabric
US20050146076A1 (en) * 2003-11-19 2005-07-07 Bogdanovich Alexander 3-D fabrics and fabric preforms for composites having integrated systems, devices, and/or networks
GB0407366D0 (en) * 2004-03-31 2004-05-05 Koninkl Philips Electronics Nv Textile form touch sensor
JP2008012215A (ja) 2006-07-10 2008-01-24 Daito Giken:Kk 遊技台
US8161826B1 (en) * 2009-03-05 2012-04-24 Stryker Corporation Elastically stretchable fabric force sensor arrays and methods of making
KR101217236B1 (ko) * 2010-10-15 2012-12-31 한국표준과학연구원 탄소나노튜브 시트를 이용한 수소센서 및 그 제조방법
FR2970779B1 (fr) * 2011-01-25 2013-02-15 Francis Cannard Dispositif de mesure de la pression a partir d'un objet souple, pliable et/ou extensible realise a partir de matiere textile comportant un dispositif de mesure
KR101248410B1 (ko) * 2011-04-28 2013-04-02 경희대학교 산학협력단 나노섬유 웹을 이용한 정전용량형 압력센서
WO2014058806A1 (en) * 2012-10-08 2014-04-17 Stc.Unm Improved pliable pressure-sensing fabric
US20150294756A1 (en) * 2012-10-22 2015-10-15 Enhanced Surface Dynamics, Inc. Flexible conducting materials and methods for the manufacture thereof
US10260968B2 (en) * 2013-03-15 2019-04-16 Nano Composite Products, Inc. Polymeric foam deformation gauge
US20150248159A1 (en) * 2013-06-19 2015-09-03 Florida State University Research Foundation, Inc. Piezoresistive sensors and methods
KR101544386B1 (ko) * 2013-11-22 2015-08-13 한국기계연구원 압력 센서 및 그 제조 방법
US10400364B1 (en) * 2016-09-20 2019-09-03 Apple Inc. Fabrics with conductive paths

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020121146A1 (en) * 2000-11-28 2002-09-05 Stmicroelectronics S.R.L. Textile-like capacitive pressure sensor and method of mapping the pressure exerted at points of a surface of a flexible and pliable object, particularly of a sail
JP2008122215A (ja) * 2006-11-13 2008-05-29 Aisin Seiki Co Ltd 圧電センサ及びその製造方法
KR20130118751A (ko) * 2010-06-22 2013-10-30 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 물리량 센서 및 그 제조방법
US20140150573A1 (en) * 2011-01-13 2014-06-05 Francis Cannard Device for Measuring Pressure from a Flexible, Pliable, and/or Extensible Object Made from a Textile Material Comprising a Measurement Device
KR101455239B1 (ko) * 2013-04-17 2014-10-27 에스케이씨 주식회사 전극 기판, 이를 포함하는 입력 장치 및 표시 장치, 및 이의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447463A1 (de) * 2017-08-24 2019-02-27 Sefar AG Drucksensor und verfahren zu seiner herstellung
CN110411618A (zh) * 2018-04-28 2019-11-05 五邑大学 一种点触式柔性测力计
WO2019221536A1 (ko) * 2018-05-18 2019-11-21 동우화인켐 주식회사 압력 센서 및 이를 포함하는 화상 표시 장치
CN110129964A (zh) * 2019-04-26 2019-08-16 东华大学 一种三维角联锁发电织物及其制备方法

Also Published As

Publication number Publication date
KR20170028171A (ko) 2017-03-13
KR102432009B1 (ko) 2022-08-12
US10641666B2 (en) 2020-05-05
US20180266900A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2017039401A1 (ko) 압력 센서
Takamatsu et al. Flexible fabric keyboard with conductive polymer-coated fibers
Yokus et al. Printed stretchable interconnects for smart garments: design, fabrication, and characterization
Li et al. Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards
CN109781315B (zh) 一种触觉传感器
RU2449069C2 (ru) Гибкая печатная проводящая ткань и способ ее изготовления
WO2014208883A1 (ko) 변형 센서 제조 방법, 변형 센서 및 변형 센서를 이용한 움직임 감지 장치
WO2010095844A2 (ko) 탄소나노튜브 발열시트
WO2017099508A1 (ko) 압력 감지 센서 장치
Deng et al. A tactile sensing textile with bending-independent pressure perception and spatial acuity
WO2013085227A1 (en) Electrode pattern of touch panel and method of manufacturing the same
Kapoor et al. Toward fully manufacturable, fiber assembly–based concurrent multimodal and multifunctional sensors for e‐textiles
WO2014014290A1 (ko) 신축성을 갖는 도전성 합연사 및 그 제조방법
US20220221351A1 (en) Load sensor
Shahariar et al. Direct-write printing process of conductive paste on fiber bulks for wearable textile heaters
EP3755832B1 (en) Conductive textile assembly with electrical shielding structure
WO2017082613A1 (ko) 압력 감지 인솔
WO2021141395A1 (ko) 전도사 압력센서
JP5465126B2 (ja) 面圧分布センサ
WO2022181254A1 (ja) 荷重センサ
WO2019059468A1 (ko) 수직 방향의 압력을 센싱하는 압력 센서, 수평 방향의 인장력을 센싱하는 스트레인 센서 및 이들의 제조 방법
KR102172021B1 (ko) 센서용 직물
WO2020080581A1 (ko) 웨어러블 디바이스용 신축성 전도체, 그 신축성 전도체를 이용한 연결장치, 유연전극, 전자소자 및 그 제조방법
Maity et al. Advanced applications of green materials in wearable e-textiles
WO2023106502A1 (ko) 면상발열체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756821

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842367

Country of ref document: EP

Kind code of ref document: A1