WO2017039200A1 - Functionally graded composite for energy conversion, manufacturing method therefor, and sensor using same - Google Patents

Functionally graded composite for energy conversion, manufacturing method therefor, and sensor using same Download PDF

Info

Publication number
WO2017039200A1
WO2017039200A1 PCT/KR2016/009180 KR2016009180W WO2017039200A1 WO 2017039200 A1 WO2017039200 A1 WO 2017039200A1 KR 2016009180 W KR2016009180 W KR 2016009180W WO 2017039200 A1 WO2017039200 A1 WO 2017039200A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
current
powder
phosphor
Prior art date
Application number
PCT/KR2016/009180
Other languages
French (fr)
Korean (ko)
Inventor
권한상
박재홍
임석규
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150122003A external-priority patent/KR101782107B1/en
Priority claimed from KR1020160096082A external-priority patent/KR101782103B1/en
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Publication of WO2017039200A1 publication Critical patent/WO2017039200A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to an energy conversion metal-phosphor oblique functional composite and a method for manufacturing the same, and more particularly, to form a bonding layer composed of a mixed powder of a metal powder and a phosphor powder between a metal layer and a phosphor layer.
  • the present invention relates to an energy conversion warp functional composite having a superior thermal stability as well as a method of manufacturing the same, which not only suppresses the delamination phenomenon but also changes it gradually.
  • the present invention relates to a sensor using a metal-ceramic gradient functional composite, and more particularly, to continuously change the content of the metal and ceramic material between the current conversion layer and the current emitting layer of the current generating unit constituting the sensor.
  • a bonding layer in which the physical properties between the metal and the ceramic are gradually changed, the interlayer peeling phenomenon is not only suppressed due to the perfect bonding between the current converting layer made of a ceramic material and the dissimilar material of the current emitting layer made of a metal material.
  • Functionally Graded Materials refers to materials whose properties change continuously from one side to the other.
  • the inclined functional material can secure various properties of the material through the gradual change of the desired physical properties, and compared with the conventional two-layered material to reduce the concentration of residual stress between the layers due to the difference in thermal expansion coefficient, Since the thermal fatigue properties and the like can be improved, it is recognized as a very promising technology in applications requiring thermal and mechanical properties.
  • Phosphor emits light in the visible region by excitation of electrons inside the phosphor by external energy such as photon, electric field, accelerated electron and pressure. It is a kind of energy conversion material that emits light.
  • the phosphor exhibits a change in light emission characteristics due to external heat, and when the phosphor is applied to a field emission display (FED), electrons are charged on the surface of the phosphor to reduce the light emission efficiency. .
  • FED field emission display
  • ELD electroluminescent display
  • a coating of a metal electrode is required on top and bottom of the phosphor layer.
  • electrode materials are essential materials for electric and electronic devices, and in general, electrode materials are coated on the surface of functional materials such as ceramics by a method such as a vapor deposition method.
  • Korean Patent Laid-Open Publication No. 2015-0143278 discloses an inclined functional metal ceramic composite material and a method of manufacturing the same.
  • the inclined functional metal ceramic composite material is composed of a single layer in which only ceramic particles are dispersed on a metal matrix. There is no description of a technique capable of fully bonding.
  • a ceramic layer is formed between the current conversion layer and the current emitting layer constituting the sensor by continuously changing the content of the metal and the ceramic material so that the physical properties between the metal and the ceramic are gradually changed. Due to the perfect bonding between the current conversion layer and the current dissipating layer dissimilar material composed of a metal material, not only the interlayer peeling phenomenon can be suppressed, but also excellent thermal and mechanical durability can be exhibited.
  • the ceramic material constituting the current conversion layer and the external energy react with each other to be converted into current, thereby generating a current, and smoothly transporting the current through the bonding layer and the current emitting layer. To circulate the current inside the sensor The.
  • an object of the present invention to provide an energy conversion gradient functional composite having a superior thermal stability as well as suppressing the delamination phenomenon and a method of manufacturing the same.
  • a phosphor layer made of phosphor powder
  • a bonding layer composed of a plurality of mixed layers made of a mixed powder of metal powder and phosphor powder is formed between the metal layer and the phosphor layer,
  • Each layer of the plurality of mixed layers is made of a mixed powder of metal powder and phosphor powder of different composition ratios
  • the mixed layer adjacent to the metal layer has a higher content of metal powder
  • the mixed layer adjacent to the phosphor layer has a higher content of phosphor powder, so that the content of the metal powder and the phosphor powder of each layer of the mixed layer is continuous. It provides the energy conversion gradient functional complex to be changed.
  • a current generator configured of a metal-ceramic gradient functional composite to generate a current by external energy
  • a current measuring unit measuring the current generated by the current generating unit
  • connection terminal formed at one side of the upper end of the current generator to allow the current generated from the current generator to circulate through the current measurer to the current generator.
  • the current generating unit is a current conversion layer made of a ceramic material; A current emitting layer made of a metal material; And a current transfer layer including a plurality of mixed layers in which a metal material and a ceramic material are mixed between the current conversion layer and the current emission layer.
  • Each layer of the plurality of mixed layers is made of a mixture of metal and ceramic materials of different composition ratios
  • the mixed layer adjacent to the current emitting layer has a higher content of the metal material than the ceramic material.
  • the mixed layer adjacent the current converting layer has a higher content of the ceramic material than the content of the metal material. It provides a sensor using a metal-ceramic gradient functional composite characterized in that the content of the metal material and the ceramic material is continuously changed.
  • the energy conversion metal-phosphor gradient functional composite according to the present invention forms a bonding layer composed of a mixed powder of a metal powder and a phosphor powder between a metal layer and a phosphor layer to gradually change the physical properties between the metal and the phosphor, thereby achieving various characteristics. Not only can it be secured, but also the thermal stress characteristic and thermal fatigue characteristic can be improved because the residual stress concentration between layers due to the difference in thermal expansion coefficient is alleviated. Moreover, interlayer peeling phenomenon is suppressed by this and it is excellent in thermal stability. Therefore, it can be effectively used for the field emission display and the electroluminescent display using the inclined functional composite.
  • the senor using the metal-ceramic gradient functional composite according to the present invention is to change the content of the metal and ceramic material continuously between the current conversion layer and the current emitting layer of the current generating unit constituting the sensor physical properties between the metal and ceramic
  • the bonding layer By forming the bonding layer to be gradually changed, the perfect bonding between the current converting layer made of ceramic material and the dissimilar material of the current emitting layer made of metal material not only suppresses the delamination phenomenon but also excellent thermal and mechanical durability. And smoothly transports current through the junction layer and the current releasing layer to circulate the current inside the sensor.
  • the sensor can be applied as a variety of sensors, such as ultraviolet sensor, temperature sensor, pressure sensor.
  • FIG. 1 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a phosphor layer of a copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention emitting light under a 365 nm ultraviolet lamp.
  • FIG. 5 is a spectrum showing photoluminescence intensities of copper-ZnS: Cu, Cl gradient functional complexes and ZnS: Cu, Cl phosphor powders according to an embodiment of the present invention.
  • FIG. 7 is a spectrum illustrating photoluminescence intensity according to temperature change of a copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention.
  • FIG. 8 is a graph showing a current-voltage curve (I-V curve) when the UV-rays of 365 nm are irradiated on the copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a sensor using an inclined functional composite according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a metal-ceramic gradient functional composite according to one embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a metal-ceramic gradient functional composite according to an embodiment of the present invention.
  • I-V curve current-voltage curve
  • FIG. 13 is a photograph showing a metal-ceramic gradient functional composite according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention.
  • the energy conversion metal-phosphor gradient functional composite 500 according to an embodiment of the present invention
  • a bonding layer 520 is formed between the metal layer 510 and the phosphor layer 530, which is composed of a plurality of mixed layers 525 made of a mixed powder of metal powder and phosphor powder.
  • Each layer of the plurality of mixed layers 525 is made of a mixed powder of metal powder and phosphor powder of different composition ratios
  • a layer adjacent to the metal layer 510 has a higher content of metal powder
  • a mixed layer adjacent to the phosphor layer 530 has a higher content of phosphor powder, thereby increasing the amount of phosphor powder.
  • the content of the metal powder and the phosphor powder in each layer is changed continuously.
  • the thickness of the energy conversion gradient functional composite may be adjusted according to the number of mixed layers 525 stacked.
  • the composition ratio of each layer of the plurality of mixed layers may be changed from 95: 5 to 1:99 by volume ratio of the metal powder and the phosphor powder from the metal layer to the phosphor layer.
  • the composition ratio of the metal and the phosphor powder does not satisfy the above range, the bonding between the bonding layer and the metal layer and the phosphor layer may not be performed well, and interlayer peeling may occur.
  • the content and composition ratios of the metal powder and the phosphor powder included in the plurality of mixed layers 525 are different for each layer, and the composition ratio thereof is changed according to each mixed layer 525 in the thickness direction. Because of the continuous change to mitigate the rapid change in physical properties between the metal and the phosphor is not only resistant to mechanical or thermal shock, but also thermal shock characteristics and thermal fatigue characteristics can be improved.
  • a bonding layer is formed by stacking a plurality of mixed layers consisting of a mixed powder of a metal powder and a phosphor powder between a metal layer and a phosphor layer so that the composition ratio of each layer is continuously changed in the thickness direction. 1, or the region adjacent to the metal layer in the monolayer has a high content of metal powder and the region adjacent to the phosphor layer has a high content of phosphor powder, so that the contents of the metal powder and the phosphor powder change continuously. It is possible to form a bonding layer in which the content of the powders is inclined (see FIG. 2).
  • FIG. 2 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention.
  • the energy conversion gradient functional composite 500 according to an embodiment of the present invention
  • a monolayer bonding layer 520 made of a mixed powder of metal powder and phosphor powder is formed,
  • the region adjacent to the metal layer 510 in the bonding layer 520 has a high content of metal powder, and the region adjacent to the phosphor layer 530 has a high content of phosphor powder, thus the metal powder of the bonding layer 520. And the content of the phosphor powder changes continuously.
  • the bonding layer 520 is continuously changed from 95 to 1% by volume with respect to the total content of the mixed powder of the metal powder and the phosphor powder as the metal layer from the metal layer to the phosphor layer,
  • the content of the phosphor powder can vary continuously from 5 to 99% by volume.
  • the content of the metal powder and the phosphor powder in the region adjacent to the metal layer and the region adjacent to the phosphor layer in the bonding layer 520 is different from each other, and the content thereof continuously changes in the thickness direction.
  • the metal powder may be any one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni) and titanium (Ti).
  • the phosphor powder may be any one selected from the group consisting of compounds based on Group 2 to Group 6 semiconductor compounds including ZnS-based and ZnO-based.
  • the diameter of the metal powder and the phosphor powder may be 10 nm or more and 100 ⁇ m or less.
  • the diameter of the metal powder and the phosphor powder may be the same or may be different.
  • the phosphor particles may be aligned at the interface of the metal particles.
  • the metal particles may be aligned at the interface of the phosphor particles.
  • the energy conversion gradient functional composite of the present invention can be effectively used for photoelectric conversion devices, field emission displays, and electroluminescent displays using phosphors.
  • the electrons inside the phosphor are excited and excited by energy from the outside, that is, photons, electric fields, accelerated electrons, pressure, and the like. Since it has a property as an inorganic light emitting material that is transitioned to emit light, it is possible to convert high energy to low energy (Down Conversion), or to convert low energy to high energy (Up Conversion).
  • one embodiment of the present invention relates to a photoelectric conversion element in which an ultraviolet-A region (320-400 nm) light incident from one side is absorbed by the energy conversion gradient functional composite, causing a current change by the incident light. .
  • an embodiment of the present invention relates to an electroluminescent device in which a voltage applied from one side is applied to the energy conversion gradient functional composite, and the voltage is converted into light to form light.
  • One embodiment of the present invention relates to a method for producing an energy conversion gradient functional composite, the method of the present invention
  • composition ratio of the mixed powder on the metal layer is closer to the metal layer, the more the metal powder is contained, and the layer spaced apart from the metal layer increases the phosphor powder, and the composition ratio of the mixed powder is continuously changed. Stacking the mixed powders sequentially so as to form a bonding layer composed of a plurality of mixed layers;
  • the composition ratio of each layer of the plurality of mixed layers may be changed from 95: 5 to 1:99 by volume ratio of the metal powder and the phosphor powder from the metal layer to the phosphor layer.
  • the solid state sintering method may be used so that the composition ratio of each layer of the mixed layer does not change during sintering.
  • the mixed layer is a mixed layer adjacent to the metal layer has a higher content of the metal powder, and a mixed layer adjacent to the phosphor layer has a higher content of the phosphor powder, the metal of each layer of the mixed layer
  • the liquid phase sintering method can be used so that the contents of the powder and the phosphor powder change continuously.
  • One embodiment of the present invention relates to a method for producing an energy conversion gradient functional composite, the method of the present invention
  • the region adjacent to the metal layer on the metal layer has a high metal powder content, and the region spaced from the metal layer has a monolayer bonding layer made of a mixed powder of a metal powder and a phosphor powder, which is configured to have a high content of phosphor powder.
  • the bonding layer is continuously changed from 95 to 1% by volume relative to the total content of the mixed powder of the metal powder and the phosphor powder as the bonding layer from the metal layer to the phosphor layer,
  • the content can vary continuously from 5 to 99% by volume.
  • the solid state sintering method may be used so that the composition ratio of the bonding layer does not change during the sintering process.
  • the region adjacent to the metal layer has a high content of metal powder
  • the region adjacent to the phosphor layer has a high content of phosphor powder, so that the metal powder and the phosphor powder of the bonding layer have high content.
  • the liquid phase sintering method can be used to continuously change the content of.
  • the pressure is preferably 30 to 100 MPa, and the heating temperature is preferably 50 to 500 ° C. lower than the low melting temperature of the metal powder and the phosphor powder.
  • the sintering may use a discharge plasma sintering or pressure sintering apparatus, but is not limited thereto.
  • 9 is a block diagram showing a sensor using a metal-ceramic gradient functional composite according to an embodiment of the present invention. 9, the sensor 100 using a metal-ceramic gradient functional composite according to an embodiment of the present invention is
  • a current generator 200 composed of a metal-ceramic gradient functional composite to generate current by external energy 10;
  • a current measuring unit 300 measuring a current generated by the current generating unit 200.
  • connection terminal 250 is formed on one side of the upper end of the current generating unit 200 to allow the current generated from the current generating unit 200 to circulate through the current measuring unit 300 to the current generating unit 200.
  • the current generator 200 includes a current conversion layer 210 made of a ceramic material; A current emitting layer 230 made of a metal material; And a current transfer layer 220 including a plurality of mixed layers 225 mixed with a metal material and a ceramic material between the current conversion layer and the current emission layer.
  • Each layer of the plurality of mixed layers 225 is made of a mixture of metal and ceramic materials of different composition ratios
  • the mixed layer adjacent to the current emitting layer 230 has a greater content of the metal material than the ceramic material, and the more mixed layer adjacent the current converting layer 210 has a greater content of the ceramic material than the metal material.
  • the content of the metal material and the ceramic material of each layer of the mixed layer is varied continuously.
  • the external energy reaches the current converting layer, and a current is generated by the ceramic material constituting the current converting layer reacting with the external energy, and the generated current is applied to the current transfer layer. Can be transferred to the current emitting layer.
  • Ceramic materials used in the present invention are materials having a property of changing electrical conductivity or resistance by external energy, and may be applied as a sensor for detecting external energy (external environment) using such characteristics. Specifically, when the ceramic material receives external energy in a state where a voltage is applied, a large number of electrons are generated and a change in the flow of current appears, and thus it may be applied to a sensor using the same.
  • the metal material constituting the current carrying layer and the current emitting layer may be any one selected from the group consisting of copper (Cu), aluminum (Al), and titanium (Ti).
  • the ceramic material is ZnO, ZnS, ZrO 2 , CaO, Y 2 O 3 , MgO, Nd 2 O 3 , ThO 2 , NiO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , MnO, CaSiO 3 , It may be one or a complex thereof selected from the group consisting of BaO, SrO, TiO 2 , BaTiO 3 , BaBiO 3 , SrAl 2 O 4 and Pb (Zr, Ti) O 3 .
  • the external energy may be heat, ultraviolet light, gas, flame or pressure.
  • the controller 400 may further include a controller 400 that determines whether or not external energy is generated using the current value measured by the current measuring unit 300.
  • control unit it is possible to determine the type or size of the external energy reaching the current conversion layer of the current generating unit by using the current value measured by the current measuring unit, through which the metal-ceramic gradient functional composite sensor Can be utilized as
  • the metal-ceramic gradient functional composite as a sensor
  • the value of the work function according to the metal in the metal-ZnO gradient functional composite constituting the current generating unit is changed (Al: 3.74 eV, Cu: 4.47 eV, Ti: 4.09 eV)
  • different kinds of metals can be used to produce sensors with different sensitivity and current voltage characteristics.
  • the maximum temperature according to the metal in the metal-ZnO gradient functional composite is Al 500 ° C, Cu 900 ° C, and Ti. Is 1000 ° C., it is possible to manufacture a sensor having a different maximum temperature value by changing the type of metal.
  • connection terminal 250 formed on one side of the upper end of the current generating unit 200 is made of a metal material, the current formed in the current conversion layer 210 constituting the current generating unit emits current The current may be transferred to the layer 230, and the current may be circulated through the current measuring unit 300 to the current generating unit 200.
  • connection terminal 250 may be provided for applying electrical potential energy (potential difference) to circulate the current generated by the current generating unit in the sensor.
  • the metal material constituting the connection terminal may be the same as or different from the metal material constituting the current transfer layer and the current releasing layer.
  • the metal material constituting the connection terminal may be any one selected from the group consisting of copper (Cu), aluminum (Al), and titanium (Ti).
  • the thickness of the metal-ceramic gradient functional composite constituting the current generator 200 may be adjusted according to the number of mixed layers 225 stacked.
  • the composition ratio of each layer of the plurality of mixed layer 225 is a volume% ratio of the metal material and the ceramic material from the current emitting layer 230 to the current conversion layer 210 is 95: 5 to 1 Can be changed to: 99.
  • the composition ratio of the metal and the ceramic material does not satisfy the above range, the interlayer peeling may occur due to poor bonding between the current transfer layer, the current emission layer, and the current conversion layer.
  • the content and composition ratio of the metal material and the ceramic material included in the plurality of mixed layers 225 are different for each layer, and the composition ratio of the metal-ceramic gradient functional composite according to each mixed layer 225 in the thickness direction. Since is continuously changed to mitigate the rapid change in physical properties between the metal and the ceramic is not only resistant to mechanical or thermal shock, but also thermal shock characteristics and thermal fatigue characteristics can be improved.
  • FIGS. 10 and 11 are cross-sectional views showing a metal-ceramic gradient functional composite constituting the current generating unit 200 according to an embodiment of the present invention.
  • the composition ratio of each layer differs from each other in the mixed material consisting of a metal and ceramic mixture between the current conversion layer 210 and the current emission layer 230.
  • a plurality of layers are formed so as to continuously change in the thickness direction to form a current transfer layer 220 (see FIG. 10), or a region adjacent to the current emission layer 230 in the single layer has a high metal content and a current conversion layer 210.
  • the area adjacent to) increases the content of the ceramic material, so that the content of the metal material and the ceramic material may be continuously changed to form a single current transfer layer so that the content of the powders is inclined (see FIG. 11).
  • a current generator 200 composed of a metal-ceramic gradient functional composite to generate a current by external energy
  • a current measuring unit 300 measuring a current generated by the current generating unit 200.
  • connection terminal 250 is formed on one side of the upper end of the current generating unit 200 to allow the current generated from the current generating unit 200 to circulate through the current measuring unit 300 to the current generating unit 200.
  • the current generator 200 includes a current conversion layer 210 made of a ceramic material; A current emitting layer 230 made of a metal material; And a single current transfer layer 220 in which a metal material and a ceramic material are mixed between the current conversion layer and the current emission layer.
  • the content of the metal material is greater than that of the ceramic material, and in the region adjacent to the current conversion layer 210, the content of the ceramic material is the content of the metal material. More, the content of the metal material and the ceramic material of the current transfer layer 220 is characterized in that it is continuously changed.
  • the current transfer layer 220 from the current emission layer 230 to the current conversion layer 210, the content of the metal material is 95 to 1 with respect to the total mixed content of the metal material and the phosphor material It can be continuously changed in volume%, the content of the ceramic material can be continuously changed in 5 to 99 volume%.
  • the content of the metal and the ceramic material does not satisfy the above range, it may be difficult to bond between the current transfer layer, the current emission layer, and the current conversion layer, thereby causing interlayer separation.
  • Each powder material forming the current converting layer, the current transfer layer, and the current releasing layer of the metal-ceramic gradient functional composite according to the present invention may be sintered using a discharge plasma sintering method to form the layer.
  • the metal material and the ceramic material may form each layer having each function in one composite by stacking and sintering each metal powder and ceramic powder.
  • the diameter of the metal powder and ceramic powder may be 10 nm or more and 100 ⁇ m or less.
  • the diameters of the metal powder and the ceramic powder may be the same or may be different.
  • the ceramic particles may be aligned at the interface of the metal particles.
  • the metal particles may be aligned at the interface of the ceramic particles.
  • Example 1-1 lamination of metal layer, bonding layer and phosphor layer
  • a metal layer and a phosphor layer were prepared using copper powder (100 ⁇ m or less in diameter) and ZnS: Cu, Cl phosphor powder (10 ⁇ m or less in diameter), respectively. Then, the copper powder and the ZnS: Cu, Cl phosphor powder were mixed in the composition of Table 1 below, hand milled for 15 minutes, and then the metal layer was placed on the 15 mm diameter graphite die in the order shown in Table 1 below. 0.2g each was sequentially laminated.
  • Composition (% by volume) Weight (g) 100% ZnS: Cu, Cl 0.2 5% Cu / 95% ZnS: Cu, Cl 0.2 10% Cu / 90% ZnS: Cu, Cl 0.2 20% Cu / 80% ZnS: Cu, Cl 0.2 30% Cu / 70% ZnS: Cu, Cl 0.2 50% Cu / 50% ZnS: Cu, Cl 0.2 70% Cu / 30% ZnS: Cu, Cl 0.2 100% Cu 0.2
  • the metal layer, the bonding layer, and the phosphor layer laminated in Example 1-1 were sintered at 900 ° C. for 5 minutes under a pressure of 50 MPa to prepare a gradient functional composite. At this time, the temperature increase rate was 100 degreeC per minute.
  • the prepared warp functional composite had a diameter of 15 mm and a thickness of 20 mm.
  • Figure 3 shows the energy conversion gradient functional composite prepared in the above embodiment.
  • FIG. 4 is a view showing the phosphor layer of the copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention to emit light under a 365 nm ultraviolet lamp.
  • the ultraviolet ray 610 irradiated from the 365 nm ultraviolet ray lamp 600 reaches the phosphor layer 530 of the gradient functional complex, the phosphor layer emits light.
  • the peak of the copper-ZnS: Cu, Cl gradient functional complex did not occur in the red shift compared to the peak of the ZnS: Cu, Cl phosphor powder. This is because the heat transferred to the copper-ZnS: Cu, Cl gradient functional composite escapes through the copper (397 W / mK), which has excellent thermal conductivity, so that the formation of phonons due to residual heat in the phosphor is suppressed. I could see that.
  • the energy conversion gradient functional composite according to the present invention is excellent in thermal stability and can suppress the delamination between the metal layer and the phosphor layer.
  • the copper-ZnS: Cu, Cl gradient functional composite prepared in Example 1 shows a current-voltage curve (I-V curve) graph when the UV light of 365 nm and the non-lighting (Dark) are shown in FIG. 8.
  • the amount of current of the copper-ZnS: Cu, Cl gradient functional composite increases as the UV of 365 nm is irradiated, and it can be applied as a UV sensor.
  • Example 2-1 current Emission layer , Current Transport layer And current Conversion layer Lamination
  • a current emission layer and a current conversion layer were prepared, respectively. Then, the copper powder and the ZnS powder were mixed in the composition of Table 3 below, and after hand milling for 15 minutes, each 0.2 g of the 15 mm diameter graphite die was placed in the order shown in Table 3 below with the current emitting layer as the lowest layer. Laminated sequentially.
  • Composition (% by volume) Weight (g) 100% ZnS 0.2 5% Cu / 95% ZnS 0.2 10% Cu / 90% ZnS 0.2 20% Cu / 80% ZnS 0.2 30% Cu / 70% ZnS 0.2 50% Cu / 50% ZnS 0.2 70% Cu / 30% ZnS 0.2 100% Cu 0.2
  • the current discharge layer, the current transfer layer, and the current conversion layer stacked in Example 2-1 were sintered at 900 ° C. for 5 minutes at a pressure of 50 MPa using a spark plasma sintering method to prepare a gradient functional composite. At this time, the temperature increase rate was 100 degreeC per minute.
  • the prepared warp functional composite had a diameter of 15 mm and a thickness of 20 mm.
  • I-V curve a current-voltage curve
  • the current amount of the copper-ZnS gradient functional composite increases as UV is applied to the current conversion layer at 365 nm, thereby confirming that it can be applied as a UV sensor.
  • the current generating unit in the control unit through the current value measured by the current measuring unit 20 kW Since it can be determined that ultraviolet rays of 365 nm are irradiated, the application as a sensor is possible.
  • the metal-phosphor oblique functional composite according to the present invention can be effectively used for field emission displays and electroluminescent displays.
  • the metal-ceramic gradient functional composite according to the present invention can be applied as various sensors such as an ultraviolet sensor, a temperature sensor, and a pressure sensor.

Abstract

The present invention relates to a metal-phosphor or metal-ceramic functionally graded composite for energy conversion, a manufacturing method therefor, and a sensor using the same and, more particularly, to a functionally graded composite, a manufacturing method therefor, and an element or a sensor using the same, wherein the functionally graded composite forms a bonding layer in which the content of each material continuously changes such that physical properties gradually vary between metal and phosphor or between metal and ceramic. Therefore, the present invention can suppress delamination between metal and ceramic, and has excellent thermal and mechanical durability.

Description

에너지변환 경사기능복합체 및 그의 제조방법 및 이를 이용한 센서Energy conversion gradient functional composite, manufacturing method thereof and sensor using same
본 발명은 에너지변환 금속-형광체 경사기능복합체 및 그의 제조방법에 관한 것으로, 보다 상세하게는 금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 접합 층을 형성하여 금속과 형광체간의 물성이 점진적으로 변화하도록 함으로써, 층간 박리 현상을 억제할 뿐만 아니라 우수한 열안정성을 가지는 에너지변환 경사기능복합체 및 그의 제조방법에 관한 것이다.The present invention relates to an energy conversion metal-phosphor oblique functional composite and a method for manufacturing the same, and more particularly, to form a bonding layer composed of a mixed powder of a metal powder and a phosphor powder between a metal layer and a phosphor layer. The present invention relates to an energy conversion warp functional composite having a superior thermal stability as well as a method of manufacturing the same, which not only suppresses the delamination phenomenon but also changes it gradually.
또한, 본 발명은 금속-세라믹 경사기능복합체를 이용한 센서에 관한 것으로, 보다 상세하게는 센서를 구성하는 전류 생성부의 전류 변환층과 전류 방출층 사이에 금속 및 세라믹 소재의 함량이 연속적으로 변화하도록 하여 금속과 세라믹 간의 물성이 점진적으로 변화하도록 한 접합층을 형성함으로써, 세라믹 소재로 구성되는 상기 전류 변환층과 금속 소재로 구성되는 상기 전류 방출층 이종 재료 간 완벽한 접합으로 인하여 층간 박리 현상을 억제할 뿐만 아니라 우수한 열적, 기계적 내구성을 가지는 에너지변환 경사기능복합체를 이용한 센서에 관한 것이다.In addition, the present invention relates to a sensor using a metal-ceramic gradient functional composite, and more particularly, to continuously change the content of the metal and ceramic material between the current conversion layer and the current emitting layer of the current generating unit constituting the sensor. By forming a bonding layer in which the physical properties between the metal and the ceramic are gradually changed, the interlayer peeling phenomenon is not only suppressed due to the perfect bonding between the current converting layer made of a ceramic material and the dissimilar material of the current emitting layer made of a metal material. It also relates to a sensor using an energy conversion gradient functional composite having excellent thermal and mechanical durability.
경사기능재료(Functionally Graded Materials, FGM)는 어느 한 면에서 다른 면으로 구성재료의 성질이 연속적으로 변화하는 재료를 의미한다. 상기 경사기능재료는 원하는 물성의 점진적인 변화를 통해 재료의 다양한 특성을 확보할 수 있으며, 종래 2층 구조의 재료에 비하여 열팽창 계수의 차이에 의한 층간 잔류응력 집중을 완화시켜 접합 강도와 열 충격 특성 및 열 피로 특성 등의 향상을 가져올 수 있으므로, 열적 및 기계적 물성이 요구되는 응용분야에서 매우 유망한 기술로 인정받고 있다.Functionally Graded Materials (FGM) refers to materials whose properties change continuously from one side to the other. The inclined functional material can secure various properties of the material through the gradual change of the desired physical properties, and compared with the conventional two-layered material to reduce the concentration of residual stress between the layers due to the difference in thermal expansion coefficient, Since the thermal fatigue properties and the like can be improved, it is recognized as a very promising technology in applications requiring thermal and mechanical properties.
형광체(Phosphor)는 광자(Photon), 전계(Electric Field), 가속전자(Accelerated electron), 압력(Pressure) 등의 외부에너지에 의해 형광체 내부의 전자들이 여기(Excitation)되어 가시광 영역의 빛을 방출(발광, luminescence)하는 일종의 에너지변환 물질이다. 상기 형광체는 외부의 열에 의해 그 발광특성이 변화하고, 상기 형광체를 전계방출형 디스플레이(Field Emission Display, FED)에 적용 시 형광체 표면에서 전자가 충전(charging)되어 그 발광효율이 저하되는 양상을 보인다. 또한, 상기 형광체를 전자 발광식 디스플레이(Electoluminecent Display, ELD)에 적용 시 형광체 층 상하부에 필수적으로 금속 전극의 코팅이 요구된다.Phosphor emits light in the visible region by excitation of electrons inside the phosphor by external energy such as photon, electric field, accelerated electron and pressure. It is a kind of energy conversion material that emits light. The phosphor exhibits a change in light emission characteristics due to external heat, and when the phosphor is applied to a field emission display (FED), electrons are charged on the surface of the phosphor to reduce the light emission efficiency. . In addition, when the phosphor is applied to an electroluminescent display (ELD), a coating of a metal electrode is required on top and bottom of the phosphor layer.
상기 언급한 형광체에서 발생하는 문제점을 개선하기 위해 형광체 표면 및 형광체 층상에 기능성 재료를 코팅하는 등의 다양한 방법이 시도되고 있으나, 이러한 코팅 방법으로는 상기 언급한 전계방출형 디스플레이 및 전자 발광식 디스플레이에서 장시간 구동 시 발생하는 열 충격 및 열 피로에 기인하는 층간 박리 현상 등의 근본적인 문제점을 해결하기 어렵고, 종래의 기술 중 어떠한 것도 이러한 문제를 해결하기 위한 방안을 제시하고 있지 못하는 실정이다.Various methods such as coating functional materials on the surface of the phosphor and the phosphor layer have been attempted to improve the problems occurring in the above-mentioned phosphors. However, such coating methods are used in the above-mentioned field emission display and electroluminescent display. It is difficult to solve the fundamental problems such as the delamination caused by thermal shock and thermal fatigue generated during long time driving, and none of the prior arts proposes a solution for solving such problems.
한편, 전기, 전자 디바이스에 있어서 전극재료는 필수적인 재료이며, 일반적으로 전극재료는 증착법 등의 방법으로 세라믹 등의 기능성 재료 표면에 코팅된다. On the other hand, electrode materials are essential materials for electric and electronic devices, and in general, electrode materials are coated on the surface of functional materials such as ceramics by a method such as a vapor deposition method.
그러나, 이러한 코팅 방법을 이용한 경우, 기능성 재료와 전극간의 계면이 뚜렷하게 형성되며, 이와 같은 계면에서 발생하는 물리적 신호 손실이 유발된다. 또한, 장시간 구동 시 서로 상이한 재료의 층간 박리현상이 일어날 수 있고, 이에 따라 디바이스의 수명이 단축된다.However, when such a coating method is used, an interface between the functional material and the electrode is clearly formed, and physical signal loss occurring at such an interface is caused. In addition, delamination of different materials may occur when driving for a long time, thereby shortening the life of the device.
대한민국 공개특허 제2015-0143278호에는 경사기능 금속 세라믹 복합재료 및 그 제조방법이 개시되어 있으나, 상기 경사기능 금속 세라믹 복합재료는 금속 매트릭스 상에 세라믹 입자만을 분산시킨 단층으로 구성되어 있어, 이종의 재료를 완벽하게 접합할 수 있는 기술에 대해서는 기재되어 있지 않다. Korean Patent Laid-Open Publication No. 2015-0143278 discloses an inclined functional metal ceramic composite material and a method of manufacturing the same. However, the inclined functional metal ceramic composite material is composed of a single layer in which only ceramic particles are dispersed on a metal matrix. There is no description of a technique capable of fully bonding.
따라서, 전극재료와 기능성 세라믹 재료가 완벽하게 접합되어 디바이스의 내구성을 향상시키고, 이종 재료간의 계면에서 발생하는 물리적 특성을 개선할 수 있는 기술이 필요한 실정이다.Therefore, there is a need for a technology capable of fully bonding electrode materials and functional ceramic materials to improve the durability of the device and to improve physical properties occurring at the interface between dissimilar materials.
본 발명의 에너지변환 경사기능복합체 및 그의 제조방법 및 이를 이용한 센서에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, As a result of earnest research to solve the above problems in the energy conversion gradient functional composite of the present invention, a manufacturing method thereof and a sensor using the same,
금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 접합 층을 형성하여 금속과 형광체간의 물성이 점진적으로 변화하도록 함으로써, 형광체 및 형광체를 이용하는 전계방출형 디스플레이 및 전자 발광식 디스플레이에서 장시간 구동 시 발생하는 열 충격 및 열 피로에 기인하는 층간 박리 현상을 억제할 수 있을 뿐만 아니라, 형광체 표면에서의 전자 충전 현상을 개선하고, 열안정성이 우수한 경사기능복합체를 제조할 수 있음을 알아내고, 본 발명을 완성하게 되었다. By forming a bonding layer composed of a mixed powder of metal powder and phosphor powder between the metal layer and the phosphor layer to gradually change the physical properties between the metal and the phosphor, for a long time in the field emission type and electroluminescent display using the phosphor and the phosphor It was found that not only the delamination phenomenon caused by thermal shock and thermal fatigue generated during driving can be suppressed, but also the electronic charging phenomenon on the surface of the phosphor can be improved, and a gradient functional composite having excellent thermal stability can be manufactured. The present invention has been completed.
또한, 센서를 구성하는 전류 생성부의 전류 변환층과 전류 방출층 사이에 금속 및 세라믹 소재의 함량이 연속적으로 변화하도록 하여 금속과 세라믹 간의 물성이 점진적으로 변화하도록 한 접합층을 형성함으로써, 세라믹 소재로 구성되는 상기 전류 변환층과 금속 소재로 구성되는 상기 전류 방출층 이종 재료 간 완벽한 접합으로 인하여 층간 박리 현상을 억제할 뿐만 아니라 우수한 열적, 기계적 내구성을 나타낼 수 있으며, 상기 전류 생성부를 구성하는 금속-세라믹 경사기능복합체에 외부 에너지가 도달하면, 상기 전류 변환층을 구성하는 세라믹 소재와 상기 외부 에너지가 반응하여 전류로 변환됨으로써 전류를 생성하고, 상기 접합층 및 상기 전류 방출층을 통해 전류를 원활하게 수송하여 센서 내부에서 상기 전류를 순환시킬 수 있음을 알아내었다.In addition, a ceramic layer is formed between the current conversion layer and the current emitting layer constituting the sensor by continuously changing the content of the metal and the ceramic material so that the physical properties between the metal and the ceramic are gradually changed. Due to the perfect bonding between the current conversion layer and the current dissipating layer dissimilar material composed of a metal material, not only the interlayer peeling phenomenon can be suppressed, but also excellent thermal and mechanical durability can be exhibited. When the external energy reaches the gradient functional composite, the ceramic material constituting the current conversion layer and the external energy react with each other to be converted into current, thereby generating a current, and smoothly transporting the current through the bonding layer and the current emitting layer. To circulate the current inside the sensor The.
따라서, 본 발명의 목적은 층간 박리 현상을 억제할 뿐만 아니라 우수한 열안정성을 가지는 에너지변환 경사기능복합체 및 그의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide an energy conversion gradient functional composite having a superior thermal stability as well as suppressing the delamination phenomenon and a method of manufacturing the same.
또한, 본 발명의 목적은 층간 박리 현상이 억제되고, 우수한 열적, 기계적 내구성을 가지며, 전류 생성능이 우수한 경사기능복합체를 이용한 센서를 제공하는 것이다.It is also an object of the present invention to provide a sensor using an inclined functional composite having an interlayer peeling phenomenon suppressed, excellent thermal and mechanical durability, and excellent current generating capability.
한편으로, 본 발명은On the other hand, the present invention
금속 분말로 이루어진 금속 층;A metal layer made of a metal powder;
형광체 분말로 이루어진 형광체 층; 및A phosphor layer made of phosphor powder; And
상기 금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 복수개의 혼합 층들로 구성된 접합 층이 형성되고,A bonding layer composed of a plurality of mixed layers made of a mixed powder of metal powder and phosphor powder is formed between the metal layer and the phosphor layer,
상기 복수개의 혼합 층의 각 층은 서로 다른 조성비의 금속 분말 및 형광체 분말의 혼합 분말로 이루어지며,Each layer of the plurality of mixed layers is made of a mixed powder of metal powder and phosphor powder of different composition ratios,
상기 혼합 층들중 금속 층에 인접한 혼합 층일수록 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 혼합 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 층의 각 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하는 에너지변환 경사기능복합체를 제공한다.Among the mixed layers, the mixed layer adjacent to the metal layer has a higher content of metal powder, and the mixed layer adjacent to the phosphor layer has a higher content of phosphor powder, so that the content of the metal powder and the phosphor powder of each layer of the mixed layer is continuous. It provides the energy conversion gradient functional complex to be changed.
다른 한편으로, 본 발명은On the other hand, the present invention
금속-세라믹 경사기능복합체로 구성되어 외부 에너지에 의해 전류를 생성하는 전류 생성부; A current generator configured of a metal-ceramic gradient functional composite to generate a current by external energy;
상기 전류 생성부에서 생성된 전류를 측정하는 전류 측정부; 및A current measuring unit measuring the current generated by the current generating unit; And
상기 전류 생성부의 상단 일측에 형성되어 상기 전류 생성부로부터 생성된 전류가 상기 전류 측정부를 지나 상기 전류 생성부로 순환되도록 하는 연결 단자;를 포함하고,And a connection terminal formed at one side of the upper end of the current generator to allow the current generated from the current generator to circulate through the current measurer to the current generator.
상기 전류 생성부는 세라믹 소재로 이루어진 전류 변환층; 금속 소재로 이루어진 전류 방출층; 및 상기 전류 변환층과 전류 방출층 사이에 금속 소재 및 세라믹 소재가 혼합된 복수개의 혼합층들로 구성된 전류 전달층이 형성되고,The current generating unit is a current conversion layer made of a ceramic material; A current emitting layer made of a metal material; And a current transfer layer including a plurality of mixed layers in which a metal material and a ceramic material are mixed between the current conversion layer and the current emission layer.
상기 복수개의 혼합층의 각 층은 서로 다른 조성비의 금속 및 세라믹 소재의 혼합으로 이루어지며,Each layer of the plurality of mixed layers is made of a mixture of metal and ceramic materials of different composition ratios,
상기 혼합층들중 전류 방출층에 인접한 혼합층일수록 금속 소재의 함량이 세라믹 소재의 함량보다 많고, 상기 전류 변환층에 인접한 혼합층일수록 세라믹 소재의 함량이 금속 소재의 함량보다 많아져, 상기 혼합층의 각 층의 금속 소재와 세라믹 소재의 함량이 연속적으로 변화하는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서를 제공한다.Among the mixed layers, the mixed layer adjacent to the current emitting layer has a higher content of the metal material than the ceramic material. The mixed layer adjacent the current converting layer has a higher content of the ceramic material than the content of the metal material. It provides a sensor using a metal-ceramic gradient functional composite characterized in that the content of the metal material and the ceramic material is continuously changed.
본 발명에 따른 에너지변환 금속-형광체 경사기능복합체는 금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 접합 층을 형성하여 금속과 형광체간의 물성이 점진적으로 변화하도록 함으로써, 다양한 특성을 확보할 수 있을 뿐만 아니라 열팽창 계수의 차이에 의한 층간 잔류응력 집중을 완화시키므로 열 충격 특성 및 열 피로 특성이 향상될 수 있다. 또한, 이로 인해 층간 박리 현상이 억제되고, 열 안정성이 우수하다. 따라서, 상기 경사기능복합체를 이용하는 전계방출형 디스플레이 및 전자 발광식 디스플레이 등에 효과적으로 사용될 수 있다.The energy conversion metal-phosphor gradient functional composite according to the present invention forms a bonding layer composed of a mixed powder of a metal powder and a phosphor powder between a metal layer and a phosphor layer to gradually change the physical properties between the metal and the phosphor, thereby achieving various characteristics. Not only can it be secured, but also the thermal stress characteristic and thermal fatigue characteristic can be improved because the residual stress concentration between layers due to the difference in thermal expansion coefficient is alleviated. Moreover, interlayer peeling phenomenon is suppressed by this and it is excellent in thermal stability. Therefore, it can be effectively used for the field emission display and the electroluminescent display using the inclined functional composite.
또한, 본 발명에 따른 금속-세라믹 경사기능복합체를 이용한 센서는 센서를 구성하는 전류 생성부의 전류 변환층과 전류 방출층 사이에 금속 및 세라믹 소재의 함량이 연속적으로 변화하도록 하여 금속과 세라믹 간의 물성이 점진적으로 변화하도록 한 접합층을 형성함으로써, 세라믹 소재로 구성되는 상기 전류 변환층과 금속 소재로 구성되는 상기 전류 방출층 이종 재료 간 완벽한 접합으로 인하여 층간 박리 현상을 억제할 뿐만 아니라 우수한 열적, 기계적 내구성을 가지며, 상기 접합층 및 상기 전류 방출층을 통해 전류를 원활하게 수송하여 센서 내부에서 상기 전류를 순환시킬 수 있다. 또한, 상기 센서는 자외선센서, 온도센서, 압력센서 등의 다양한 센서로서의 적용이 가능하다.In addition, the sensor using the metal-ceramic gradient functional composite according to the present invention is to change the content of the metal and ceramic material continuously between the current conversion layer and the current emitting layer of the current generating unit constituting the sensor physical properties between the metal and ceramic By forming the bonding layer to be gradually changed, the perfect bonding between the current converting layer made of ceramic material and the dissimilar material of the current emitting layer made of metal material not only suppresses the delamination phenomenon but also excellent thermal and mechanical durability. And smoothly transports current through the junction layer and the current releasing layer to circulate the current inside the sensor. In addition, the sensor can be applied as a variety of sensors, such as ultraviolet sensor, temperature sensor, pressure sensor.
도 1은 본 발명의 일 실시형태에 따른 에너지변환 경사기능복합체를 도시한 단면도이다. 1 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention.
도 2는 본 발명의 일 실시형태에 따른 에너지변환 경사기능복합체를 도시한 단면도이다. 2 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention.
도 3은 본 발명의 일 실시형태에 따른 구리-ZnS:Cu,Cl 경사기능복합체를 도시한 그림이다.3 is a diagram showing a copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention.
도 4는 본 발명의 일 실시형태에 따른 구리-ZnS:Cu,Cl 경사기능복합체의 형광체 층이 365nm 자외선 램프 아래에서 발광하는 모습을 도시한 그림이다.FIG. 4 is a diagram illustrating a phosphor layer of a copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention emitting light under a 365 nm ultraviolet lamp.
도 5는 본 발명의 일 실시형태에 따른 구리-ZnS:Cu,Cl 경사기능복합체와 ZnS:Cu,Cl 형광체 분말의 광발광 강도(photoluminescence intensity)를 비교하여 나타낸 스펙트럼이다. FIG. 5 is a spectrum showing photoluminescence intensities of copper-ZnS: Cu, Cl gradient functional complexes and ZnS: Cu, Cl phosphor powders according to an embodiment of the present invention.
도 6은 ZnS:Cu,Cl 형광체 분말의 온도 변화에 따른 광발광 강도(photoluminescence intensity)를 비교하여 나타낸 스펙트럼이다. 6 is a spectrum comparing photoluminescence intensity according to temperature change of ZnS: Cu, Cl phosphor powder.
도 7은 본 발명의 일 실시형태에 따른 구리-ZnS:Cu,Cl 경사기능복합체의 온도 변화에 따른 광발광 강도(photoluminescence intensity)를 비교하여 나타낸 스펙트럼이다. FIG. 7 is a spectrum illustrating photoluminescence intensity according to temperature change of a copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention.
도 8은 본 발명의 일 실시형태에 따른 구리-ZnS:Cu,Cl 경사기능복합체에 365nm의 UV를 비추었을 때와 비추지 않았을 때의 전류-전압 커브(I-V curve)를 나타낸 그래프이다.FIG. 8 is a graph showing a current-voltage curve (I-V curve) when the UV-rays of 365 nm are irradiated on the copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention.
도 9는 본 발명의 일 실시형태에 따른 경사기능복합체를 이용한 센서를 도시한 단면도이다. 9 is a cross-sectional view showing a sensor using an inclined functional composite according to an embodiment of the present invention.
도 10은 본 발명의 일 실시형태에 따른 금속-세라믹 경사기능복합체를 도시한 단면도이다. 10 is a cross-sectional view showing a metal-ceramic gradient functional composite according to one embodiment of the present invention.
도 11은 본 발명의 일 실시형태에 따른 금속-세라믹 경사기능복합체를 도시한 그림이다.11 is a diagram illustrating a metal-ceramic gradient functional composite according to an embodiment of the present invention.
도 12는 본 발명의 일 실시형태에 따른 구리-ZnS 경사기능복합체에 365nm의 UV를 비추었을 때와 비추지 않았을 때의 전류-전압 커브(I-V curve)를 나타낸 그래프이다. 12 is a graph showing a current-voltage curve (I-V curve) when the UV-rays of 365 nm are irradiated on the copper-ZnS gradient functional composite according to an embodiment of the present invention and not.
도 13은 본 발명의 일 실시형태에 따른 금속-세라믹 경사기능복합체를 나타낸 사진이다.13 is a photograph showing a metal-ceramic gradient functional composite according to an embodiment of the present invention.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
도 1은 본 발명의 일 실시형태에 따른 에너지변환 경사기능복합체를 도시한 단면도이다. 도 1을 참조로, 본 발명의 일 실시형태에 따른 에너지변환 금속-형광체 경사기능복합체(500)는 1 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention. Referring to Figure 1, the energy conversion metal-phosphor gradient functional composite 500 according to an embodiment of the present invention
금속 분말로 이루어진 금속 층(510);A metal layer 510 made of metal powder;
형광체 분말로 이루어진 형광체 층(530); 및A phosphor layer 530 made of phosphor powder; And
상기 금속 층(510)과 형광체 층(530) 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 복수개의 혼합 층(525)들로 구성된 접합 층(520)이 형성되고,A bonding layer 520 is formed between the metal layer 510 and the phosphor layer 530, which is composed of a plurality of mixed layers 525 made of a mixed powder of metal powder and phosphor powder.
상기 복수개의 혼합 층(525)의 각 층은 서로 다른 조성비의 금속 분말 및 형광체 분말의 혼합 분말로 이루어지며,Each layer of the plurality of mixed layers 525 is made of a mixed powder of metal powder and phosphor powder of different composition ratios,
상기 혼합 층(525)들중 금속 층(510)에 인접한 층일수록 금속 분말의 함량이 많고, 상기 형광체 층(530)에 인접한 혼합 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 층(525)의 각 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화한다.Among the mixed layers 525, a layer adjacent to the metal layer 510 has a higher content of metal powder, and a mixed layer adjacent to the phosphor layer 530 has a higher content of phosphor powder, thereby increasing the amount of phosphor powder. The content of the metal powder and the phosphor powder in each layer is changed continuously.
상기 에너지변환 경사기능복합체의 두께는 적층되는 혼합 층(525)의 수에 따라 조절될 수 있다.The thickness of the energy conversion gradient functional composite may be adjusted according to the number of mixed layers 525 stacked.
본 발명의 일 실시형태에서, 상기 복수개의 혼합 층의 각 층의 조성비는 금속 층으로부터 형광체 층으로 갈수록 금속 분말과 형광체 분말의 부피%비가 95:5 내지 1:99로 변화할 수 있다. 금속 및 형광체 분말의 조성비가 상기 범위를 만족하지 않는 경우, 상기 접합 층과 금속 층 및 형광체 층 간에 접합이 잘 되지 않아 층간 박리가 발생할 수 있다.In one embodiment of the present invention, the composition ratio of each layer of the plurality of mixed layers may be changed from 95: 5 to 1:99 by volume ratio of the metal powder and the phosphor powder from the metal layer to the phosphor layer. When the composition ratio of the metal and the phosphor powder does not satisfy the above range, the bonding between the bonding layer and the metal layer and the phosphor layer may not be performed well, and interlayer peeling may occur.
본 발명의 에너지변환 경사기능복합체는 상기 복수개의 혼합 층(525)에 포함된 금속 분말 및 형광체 분말의 함량 및 조성비가 각 층마다 상이하며, 두께 방향으로 각 혼합 층(525)에 따라 그 조성비가 연속적으로 변화하므로 금속과 형광체간의 급격한 물성 변화를 완화시켜 기계적 충격이나 열 충격에 강할 뿐만 아니라, 열 충격 특성 및 열 피로 특성이 향상될 수 있다. In the energy conversion gradient functional composite of the present invention, the content and composition ratios of the metal powder and the phosphor powder included in the plurality of mixed layers 525 are different for each layer, and the composition ratio thereof is changed according to each mixed layer 525 in the thickness direction. Because of the continuous change to mitigate the rapid change in physical properties between the metal and the phosphor is not only resistant to mechanical or thermal shock, but also thermal shock characteristics and thermal fatigue characteristics can be improved.
본 발명의 에너지변환 경사기능복합체는 금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 혼합 층을 각 층의 조성비가 서로 상이하여 두께방향으로 연속적으로 변화하도록 복수개 적층하여 접합 층을 형성하거나(도 1 참조), 단층 내에서 금속 층에 인접한 영역은 금속 분말의 함량이 많고 형광체 층에 인접한 영역은 형광체 분말의 함량이 많아져, 상기 금속 분말과 형광체 분말의 함량이 연속적으로 변화하여 상기 분말들의 함량이 경사를 이루는 접합 층을 형성할 수 있다(도 2 참조). In the energy conversion gradient functional composite of the present invention, a bonding layer is formed by stacking a plurality of mixed layers consisting of a mixed powder of a metal powder and a phosphor powder between a metal layer and a phosphor layer so that the composition ratio of each layer is continuously changed in the thickness direction. 1, or the region adjacent to the metal layer in the monolayer has a high content of metal powder and the region adjacent to the phosphor layer has a high content of phosphor powder, so that the contents of the metal powder and the phosphor powder change continuously. It is possible to form a bonding layer in which the content of the powders is inclined (see FIG. 2).
도 2는 본 발명의 일 실시형태에 따른 에너지변환 경사기능복합체를 도시한 단면도이다. 도 2를 참조로, 본 발명의 일 실시형태에 따른 에너지변환 경사기능복합체(500)는 2 is a cross-sectional view showing an energy conversion gradient functional composite according to an embodiment of the present invention. Referring to Figure 2, the energy conversion gradient functional composite 500 according to an embodiment of the present invention
금속 분말로 이루어진 금속 층(510);A metal layer 510 made of metal powder;
형광체 분말로 이루어진 형광체 층(530); 및A phosphor layer 530 made of phosphor powder; And
상기 금속 층(510)과 형광체 층(530) 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 단층의 접합 층(520)이 형성되고,Between the metal layer 510 and the phosphor layer 530, a monolayer bonding layer 520 made of a mixed powder of metal powder and phosphor powder is formed,
상기 접합 층(520)에서 상기 금속 층(510)에 인접한 영역은 금속 분말의 함량이 많고, 형광체 층(530)에 인접한 영역은 형광체 분말의 함량이 많아져, 상기 접합 층(520)의 금속 분말과 형광체 분말의 함량이 연속적으로 변화한다.The region adjacent to the metal layer 510 in the bonding layer 520 has a high content of metal powder, and the region adjacent to the phosphor layer 530 has a high content of phosphor powder, thus the metal powder of the bonding layer 520. And the content of the phosphor powder changes continuously.
본 발명의 일 실시형태에서, 상기 접합 층(520)은 금속 층으로부터 형광체 층으로 갈수록 금속 분말의 함량이 금속 분말 및 형광체 분말의 혼합 분말 총 함량에 대하여 95 내지 1 부피%로 연속적으로 변화하고, 형광체 분말의 함량이 5 내지 99 부피%로 연속적으로 변화할 수 있다. 금속 및 형광체 분말의 함량이 상기 범위를 만족하지 않는 경우, 상기 접합 층과 금속 층 및 형광체 층 간에 접합이 잘 되지 않아 층간 박리가 발생할 수 있다.In one embodiment of the present invention, the bonding layer 520 is continuously changed from 95 to 1% by volume with respect to the total content of the mixed powder of the metal powder and the phosphor powder as the metal layer from the metal layer to the phosphor layer, The content of the phosphor powder can vary continuously from 5 to 99% by volume. When the content of the metal and the phosphor powder does not satisfy the above range, the bonding between the bonding layer and the metal layer and the phosphor layer may not be performed well, and interlayer peeling may occur.
본 발명의 에너지변환 경사기능복합체는 상기 접합 층(520)에서 금속 층에 인접한 영역과 형광체 층에 인접한 영역의 금속 분말 및 형광체 분말의 함량이 서로 상이하고, 두께 방향으로 그 함량이 연속적으로 변화하므로 금속과 형광체간의 급격한 물성 변화를 완화시켜 기계적 충격이나 열 충격에 강할 뿐만 아니라, 열 충격 특성 및 열 피로 특성이 향상될 수 있다. In the energy conversion gradient functional composite of the present invention, the content of the metal powder and the phosphor powder in the region adjacent to the metal layer and the region adjacent to the phosphor layer in the bonding layer 520 is different from each other, and the content thereof continuously changes in the thickness direction. By reducing the sudden change in physical properties between the metal and the phosphor is not only resistant to mechanical or thermal shock, but also thermal shock characteristics and thermal fatigue characteristics can be improved.
본 발명의 일 실시형태에서, 상기 금속 분말은 구리(Cu), 알루미늄(Al), 니켈(Ni) 및 티타늄(Ti)으로 구성된 군으로부터 선택된 어느 하나일 수 있다. In one embodiment of the present invention, the metal powder may be any one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni) and titanium (Ti).
본 발명의 일 실시형태에서, 상기 형광체 분말은 ZnS계 및 ZnO계를 포함하는 2족 내지 6족 반도체 화합물을 모체로 하는 화합물로 구성된 군으로부터 선택된 어느 하나일 수 있다. In one embodiment of the present invention, the phosphor powder may be any one selected from the group consisting of compounds based on Group 2 to Group 6 semiconductor compounds including ZnS-based and ZnO-based.
상기 금속 분말 및 형광체 분말의 직경은 10 nm 이상 100㎛ 이하일 수 있다.The diameter of the metal powder and the phosphor powder may be 10 nm or more and 100 μm or less.
본 발명의 일 실시형태에서, 상기 금속 분말 및 형광체 분말의 직경은 동일할 수도 있고, 상이할 수도 있다.In one embodiment of the present invention, the diameter of the metal powder and the phosphor powder may be the same or may be different.
상기 금속 분말의 직경이 형광체 분말의 직경보다 큰 경우, 금속 입자의 계면에 형광체 입자가 정렬될 수 있다.When the diameter of the metal powder is larger than the diameter of the phosphor powder, the phosphor particles may be aligned at the interface of the metal particles.
이 때, 상기 금속 층(510)과 형광체 층(530) 사이의 전자 이동이 억제될 수 있다.In this case, electron transfer between the metal layer 510 and the phosphor layer 530 may be suppressed.
상기 금속 분말의 직경이 형광체 분말의 직경보다 작은 경우, 형광체 입자의 계면에 금속 입자가 정렬될 수 있다.When the diameter of the metal powder is smaller than the diameter of the phosphor powder, the metal particles may be aligned at the interface of the phosphor particles.
이 때, 상기 금속 층(510)과 형광체 층(530) 사이의 전자 이동이 용이할 수 있다.In this case, electron movement between the metal layer 510 and the phosphor layer 530 may be facilitated.
따라서, 상기 금속 분말과 형광체 분말의 직경을 조절함으로써, 전자의 이동을 조절할 수 있다.Therefore, by controlling the diameter of the metal powder and the phosphor powder, it is possible to control the movement of electrons.
본 발명의 에너지변환 경사기능복합체는 형광체를 이용하는 광전변환 소자, 전계방출형 디스플레이, 전자 발광식 디스플레이 등에 효과적으로 사용될 수 있다.The energy conversion gradient functional composite of the present invention can be effectively used for photoelectric conversion devices, field emission displays, and electroluminescent displays using phosphors.
본 발명에 따른 에너지변환 경사기능복합체는 외부의 에너지, 즉, 광자(photon), 전계(electric field), 가속전자 (accelerated electron), 압력 등의 에너지에 의해 형광체 내부의 전자들이 여기(excitation) 및 전이(transition)되어 빛을 방출하는 무기발광재료로서의 특성을 가지므로, 높은 에너지를 낮은 에너지로 변환(Down Conversion)하거나, 낮은 에너지를 높은 에너지로 변환(Up Conversion)할 수 있다.In the energy conversion gradient functional complex according to the present invention, the electrons inside the phosphor are excited and excited by energy from the outside, that is, photons, electric fields, accelerated electrons, pressure, and the like. Since it has a property as an inorganic light emitting material that is transitioned to emit light, it is possible to convert high energy to low energy (Down Conversion), or to convert low energy to high energy (Up Conversion).
따라서, 본 발명의 일 실시형태는 일측에서 입사하는 자외선-A 영역(320-400 nm) 광이 상기 에너지변환 경사기능복합체에 의해 흡수되면서, 상기 입사광에 의해 전류변화를 일으키는 광전변환 소자에 관한 것이다.Accordingly, one embodiment of the present invention relates to a photoelectric conversion element in which an ultraviolet-A region (320-400 nm) light incident from one side is absorbed by the energy conversion gradient functional composite, causing a current change by the incident light. .
또한, 본 발명의 일 실시형태는 일측에서 가해지는 전압이 상기 에너지변환 경사기능복합체에 가해지면서, 상기 전압이 광으로 변환되어 광을 형성하는 전계발광 소자에 관한 것이다.Further, an embodiment of the present invention relates to an electroluminescent device in which a voltage applied from one side is applied to the energy conversion gradient functional composite, and the voltage is converted into light to form light.
본 발명의 일 실시형태는 에너지변환 경사기능복합체의 제조방법에 관한 것으로, 본 발명의 제조방법은One embodiment of the present invention relates to a method for producing an energy conversion gradient functional composite, the method of the present invention
금속 분말로 이루어진 금속 층을 형성하는 단계;Forming a metal layer made of a metal powder;
금속 분말 및 형광체 분말을 각각 상이한 조성비로 균일하게 혼합하여 복수개의 혼합 분말을 제조하는 단계;Preparing a plurality of mixed powders by uniformly mixing the metal powder and the phosphor powder in different composition ratios, respectively;
상기 금속 층 상에 상기 혼합 분말의 조성비가 상기 금속 층에 인접한 층일수록 금속 분말의 함량이 많고, 상기 금속 층에 이격된 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 분말의 조성비가 연속적으로 변화하도록 상기 혼합 분말을 순차적으로 적층하여 복수개의 혼합 층들로 구성된 접합 층을 형성하는 단계;The composition ratio of the mixed powder on the metal layer is closer to the metal layer, the more the metal powder is contained, and the layer spaced apart from the metal layer increases the phosphor powder, and the composition ratio of the mixed powder is continuously changed. Stacking the mixed powders sequentially so as to form a bonding layer composed of a plurality of mixed layers;
상기 접합 층 상에 형광체 분말로 이루어진 형광체 층을 형성하는 단계; 및Forming a phosphor layer made of phosphor powder on the bonding layer; And
상기 금속 층, 접합 층 및 형광체 층을 소결하는 단계를 포함한다.Sintering the metal layer, the bonding layer and the phosphor layer.
본 발명의 일 실시형태에서, 상기 복수개의 혼합 층의 각 층의 조성비는 금속 층으로부터 형광체 층으로 갈수록 금속 분말과 형광체 분말의 부피%비가 95:5 내지 1:99로 변화할 수 있다.In one embodiment of the present invention, the composition ratio of each layer of the plurality of mixed layers may be changed from 95: 5 to 1:99 by volume ratio of the metal powder and the phosphor powder from the metal layer to the phosphor layer.
본 발명의 일 실시형태에서, 소결 진행 중 상기 혼합 층의 각 층의 조성비가 변화하지 않도록 고상 소결법을 이용할 수 있다.In one embodiment of the present invention, the solid state sintering method may be used so that the composition ratio of each layer of the mixed layer does not change during sintering.
본 발명의 일 실시형태에서, 상기 혼합 층들이 금속 층에 인접한 혼합 층일수록 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 혼합 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 층의 각 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하도록 액상 소결법을 이용할 수 있다.In one embodiment of the present invention, the mixed layer is a mixed layer adjacent to the metal layer has a higher content of the metal powder, and a mixed layer adjacent to the phosphor layer has a higher content of the phosphor powder, the metal of each layer of the mixed layer The liquid phase sintering method can be used so that the contents of the powder and the phosphor powder change continuously.
본 발명의 일 실시형태는 에너지변환 경사기능복합체의 제조방법에 관한 것으로, 본 발명의 제조방법은One embodiment of the present invention relates to a method for producing an energy conversion gradient functional composite, the method of the present invention
금속 분말로 이루어진 금속 층을 형성하는 단계;Forming a metal layer made of a metal powder;
상기 금속 층 상에 상기 금속 층에 인접한 영역은 금속 분말의 함량이 많고, 상기 금속 층으로부터 이격된 영역은 형광체 분말의 함량이 많도록 조성된 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 단층의 접합 층을 형성하는 단계; The region adjacent to the metal layer on the metal layer has a high metal powder content, and the region spaced from the metal layer has a monolayer bonding layer made of a mixed powder of a metal powder and a phosphor powder, which is configured to have a high content of phosphor powder. Forming a;
상기 접합 층 상에 형광체 분말로 이루어진 형광체 층을 형성하는 단계; 및Forming a phosphor layer made of phosphor powder on the bonding layer; And
상기 금속 층, 접합 층 및 형광체 층을 소결하는 단계를 포함한다.Sintering the metal layer, the bonding layer and the phosphor layer.
본 발명의 일 실시형태에서, 상기 접합 층은 금속 층으로부터 형광체 층으로 갈수록 금속 분말의 함량이 금속 분말 및 형광체 분말의 혼합 분말 총 함량에 대하여 95 내지 1 부피%로 연속적으로 변화하고, 형광체 분말의 함량이 5 내지 99 부피%로 연속적으로 변화할 수 있다.In one embodiment of the present invention, the bonding layer is continuously changed from 95 to 1% by volume relative to the total content of the mixed powder of the metal powder and the phosphor powder as the bonding layer from the metal layer to the phosphor layer, The content can vary continuously from 5 to 99% by volume.
본 발명의 일 실시형태에서, 상기 소결 진행 중 상기 접합 층의 조성비가 변화하지 않도록 고상 소결법을 이용할 수 있다.In one embodiment of the present invention, the solid state sintering method may be used so that the composition ratio of the bonding layer does not change during the sintering process.
본 발명의 일 실시형태에서, 상기 접합 층이 상기 금속 층에 인접한 영역은 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 영역은 형광체 분말의 함량이 많아져, 상기 접합 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하도록 액상 소결법을 이용할 수 있다.In one embodiment of the present invention, the region adjacent to the metal layer has a high content of metal powder, and the region adjacent to the phosphor layer has a high content of phosphor powder, so that the metal powder and the phosphor powder of the bonding layer have high content. The liquid phase sintering method can be used to continuously change the content of.
본 발명의 일 실시형태에서, 상기 소결하는 단계는In one embodiment of the invention, the step of sintering
상기 적층된 금속 층, 접합 층 및 형광체 층에 압력을 가하는 단계;Applying pressure to the laminated metal layer, the bonding layer and the phosphor layer;
상기 적층된 금속 층, 접합 층 및 형광체 층을 가열하는 단계; 및Heating the laminated metal layer, bonding layer and phosphor layer; And
상기 적층된 금속 층, 접합 층 및 형광체 층에 압력을 해제하고 냉각시키는 단계를 포함한다.Releasing and cooling the stacked metal layer, bonding layer and phosphor layer.
상기 압력은 30 내지 100 MPa가 바람직하고, 상기 가열 온도는 금속 분말 및 형광체 분말의 용융온도 중 낮은 용융온도보다 50 내지 500℃ 낮은 온도인 것이 바람직하다.The pressure is preferably 30 to 100 MPa, and the heating temperature is preferably 50 to 500 ° C. lower than the low melting temperature of the metal powder and the phosphor powder.
상기 소결은 방전 플라즈마 소결 또는 가압 소결장치를 사용할 수 있으나, 이에 제한되는 것은 아니다.The sintering may use a discharge plasma sintering or pressure sintering apparatus, but is not limited thereto.
도 9는 본 발명의 일 실시형태에 따른 금속-세라믹 경사기능복합체를 이용한 센서를 도시한 구성도이다. 도 9를 참조로, 본 발명의 일 실시형태에 따른 금속-세라믹 경사기능복합체를 이용한 센서(100)는 9 is a block diagram showing a sensor using a metal-ceramic gradient functional composite according to an embodiment of the present invention. 9, the sensor 100 using a metal-ceramic gradient functional composite according to an embodiment of the present invention is
금속-세라믹 경사기능복합체로 구성되어 외부 에너지(10)에 의해 전류를 생성하는 전류 생성부(200); A current generator 200 composed of a metal-ceramic gradient functional composite to generate current by external energy 10;
상기 전류 생성부(200)에서 생성된 전류를 측정하는 전류 측정부(300); 및A current measuring unit 300 measuring a current generated by the current generating unit 200; And
상기 전류 생성부(200)의 상단 일측에 형성되어 상기 전류 생성부(200)로부터 생성된 전류가 상기 전류 측정부(300)를 지나 상기 전류 생성부(200)로 순환되도록 하는 연결 단자(250);를 포함하고,The connection terminal 250 is formed on one side of the upper end of the current generating unit 200 to allow the current generated from the current generating unit 200 to circulate through the current measuring unit 300 to the current generating unit 200. Including;
상기 전류 생성부(200)는 세라믹 소재로 이루어진 전류 변환층(210); 금속 소재로 이루어진 전류 방출층(230); 및 상기 전류 변환층과 전류 방출층 사이에 금속 소재 및 세라믹 소재가 혼합된 복수개의 혼합층(225)들로 구성된 전류 전달층(220)이 형성되고,The current generator 200 includes a current conversion layer 210 made of a ceramic material; A current emitting layer 230 made of a metal material; And a current transfer layer 220 including a plurality of mixed layers 225 mixed with a metal material and a ceramic material between the current conversion layer and the current emission layer.
상기 복수개의 혼합층(225)의 각 층은 서로 다른 조성비의 금속 및 세라믹 소재의 혼합으로 이루어지며,Each layer of the plurality of mixed layers 225 is made of a mixture of metal and ceramic materials of different composition ratios,
상기 혼합층(225)들중 전류 방출층(230)에 인접한 혼합층일수록 금속 소재의 함량이 세라믹 소재의 함량보다 많고, 상기 전류 변환층(210)에 인접한 혼합층일수록 세라믹 소재의 함량이 금속 소재의 함량보다 많아져, 상기 혼합층의 각 층의 금속 소재와 세라믹 소재의 함량이 연속적으로 변화하는 것을 특징으로 한다.Among the mixed layers 225, the mixed layer adjacent to the current emitting layer 230 has a greater content of the metal material than the ceramic material, and the more mixed layer adjacent the current converting layer 210 has a greater content of the ceramic material than the metal material. The content of the metal material and the ceramic material of each layer of the mixed layer is varied continuously.
본 발명의 일 실시형태에서, 상기 외부 에너지가 상기 전류 변환층에 도달하고, 상기 전류 변환층을 구성하는 세라믹 소재가 상기 외부 에너지와 반응함으로써 전류가 생성되며, 상기 생성된 전류는 전류 전달층을 통해 전류 방출층으로 전달될 수 있다.In one embodiment of the present invention, the external energy reaches the current converting layer, and a current is generated by the ceramic material constituting the current converting layer reacting with the external energy, and the generated current is applied to the current transfer layer. Can be transferred to the current emitting layer.
본 발명에서 사용되는 세라믹 소재들은 외부 에너지에 의해 전기 전도도 또는 저항이 변하는 특성을 가지는 소재들로서, 이와 같은 특성을 이용하여 외부 에너지(외부 환경)을 감지하는 센서로 적용할 수 있다. 구체적으로는, 전압이 인가된 상태에서 세라믹 소재가 외부 에너지를 받아들이면 다수의 전자가 발생하여 전류의 흐름에 변화가 나타나므로 이를 이용한 센서로 적용할 수 있다.Ceramic materials used in the present invention are materials having a property of changing electrical conductivity or resistance by external energy, and may be applied as a sensor for detecting external energy (external environment) using such characteristics. Specifically, when the ceramic material receives external energy in a state where a voltage is applied, a large number of electrons are generated and a change in the flow of current appears, and thus it may be applied to a sensor using the same.
상기 전류 전달층 및 전류 방출층을 구성하는 금속 소재는 구리(Cu), 알루미늄(Al) 및 티타늄(Ti)으로 구성된 군으로부터 선택된 어느 하나일 수 있다. The metal material constituting the current carrying layer and the current emitting layer may be any one selected from the group consisting of copper (Cu), aluminum (Al), and titanium (Ti).
상기 세라믹 소재는 ZnO, ZnS, ZrO2, CaO, Y2O3, MgO, Nd2O3, ThO2, NiO, Al2O3, Cr2O3, Fe2O3, MnO, CaSiO3, BaO, SrO, TiO2, BaTiO3, BaBiO3, SrAl2O4 및 Pb(Zr,Ti)O3로 구성된 군으로부터 선택된 하나 또는 이들의 복합체 일 수 있다.The ceramic material is ZnO, ZnS, ZrO 2 , CaO, Y 2 O 3 , MgO, Nd 2 O 3 , ThO 2 , NiO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , MnO, CaSiO 3 , It may be one or a complex thereof selected from the group consisting of BaO, SrO, TiO 2 , BaTiO 3 , BaBiO 3 , SrAl 2 O 4 and Pb (Zr, Ti) O 3 .
상기 외부 에너지는 열, 자외선, 가스, 불꽃 또는 압력일 수 있다.The external energy may be heat, ultraviolet light, gas, flame or pressure.
본 발명의 일 실시형태에서, 상기 전류 측정부(300)에서 측정된 전류값을 이용하여 외부 에너지 발생 여부 및 크기를 판단하는 제어부(400)를 더 포함할 수 있다.In an embodiment of the present disclosure, the controller 400 may further include a controller 400 that determines whether or not external energy is generated using the current value measured by the current measuring unit 300.
상기 제어부를 통해, 상기 전류 측정부에서 측정되는 전류값을 이용하여 상기 전류 생성부의 전류 전환층에 도달하는 외부 에너지의 종류 또는 크기를 판단할 수 있으며, 이를 통해 상기 금속-세라믹 경사기능복합체를 센서로 활용할 수 있다. Through the control unit, it is possible to determine the type or size of the external energy reaching the current conversion layer of the current generating unit by using the current value measured by the current measuring unit, through which the metal-ceramic gradient functional composite sensor Can be utilized as
상기 금속-세라믹 경사기능복합체의 센서로서의 활용 예를 들면, 구체적으로는, 상기 전류 생성부를 구성하는 금속- ZnO 경사기능복합체에서의 금속에 따른 일함수(Work Function)의 값이 달라지므로(Al: 3.74 eV, Cu: 4.47 eV, Ti: 4.09 eV), 금속의 종류를 다르게 함으로써 이에 따라 민감도 및 전류 전압 특성이 다른 센서를 제조할 수 있다. Application of the metal-ceramic gradient functional composite as a sensor For example, specifically, since the value of the work function according to the metal in the metal-ZnO gradient functional composite constituting the current generating unit is changed (Al: 3.74 eV, Cu: 4.47 eV, Ti: 4.09 eV), and different kinds of metals can be used to produce sensors with different sensitivity and current voltage characteristics.
또한, 상기 금속-세라믹 경사기능복합체의 온도 센서로서의 활용 예를 들면, 구체적으로는, 금속- ZnO 경사기능복합체에서의 금속에 따른 최대 온도는 각각 Al이 500℃이고, Cu이 900℃이며, Ti가 1000℃이므로, 금속의 종류를 다르게 함으로써 최대 온도 값이 다른 센서를 제조할 수 있다. In addition, as the temperature sensor of the metal-ceramic gradient functional composite, for example, specifically, the maximum temperature according to the metal in the metal-ZnO gradient functional composite is Al 500 ° C, Cu 900 ° C, and Ti. Is 1000 ° C., it is possible to manufacture a sensor having a different maximum temperature value by changing the type of metal.
본 발명의 일 실시형태에서, 상기 전류 생성부(200)의 상단 일측에 형성된 연결 단자(250)는 금속 소재로 이루어지며, 상기 전류 생성부를 구성하는 전류 변환층(210)에서 형성된 전류가 전류 방출층(230)으로 전달되고, 상기 전류가 상기 전류 측정부(300)를 지나 상기 전류 생성부(200)로 순환될 수 있다.In one embodiment of the present invention, the connection terminal 250 formed on one side of the upper end of the current generating unit 200 is made of a metal material, the current formed in the current conversion layer 210 constituting the current generating unit emits current The current may be transferred to the layer 230, and the current may be circulated through the current measuring unit 300 to the current generating unit 200.
상기 연결 단자(250)는 상기 센서에서 전류 생성부에서 발생한 전류를 순환시키기 위해서 전기적인 위치 에너지(전위차)를 인가하기 위한 용도로 구비될 수 있다.The connection terminal 250 may be provided for applying electrical potential energy (potential difference) to circulate the current generated by the current generating unit in the sensor.
상기 연결 단자를 구성하는 금속 소재는 상기 전류 전달층 및 전류 방출층을 구성하는 금속 소재와 동일하거나 다른 종류를 사용할 수 있다.The metal material constituting the connection terminal may be the same as or different from the metal material constituting the current transfer layer and the current releasing layer.
따라서, 상기 연결 단자를 구성하는 금속 소재는 구리(Cu), 알루미늄(Al) 및 티타늄(Ti)으로 구성된 군으로부터 선택된 어느 하나일 수 있다.Therefore, the metal material constituting the connection terminal may be any one selected from the group consisting of copper (Cu), aluminum (Al), and titanium (Ti).
상기 전류 생성부(200)를 구성하는 금속-세라믹 경사기능복합체의 두께는 적층되는 혼합층(225)의 수에 따라 조절될 수 있다.The thickness of the metal-ceramic gradient functional composite constituting the current generator 200 may be adjusted according to the number of mixed layers 225 stacked.
본 발명의 일 실시형태에서, 상기 복수개의 혼합층(225)의 각 층의 조성비는 전류 방출층(230)으로부터 전류 변환층(210)으로 갈수록 금속 소재와 세라믹 소재의 부피%비가 95:5 내지 1:99로 변화할 수 있다. 금속 및 세라믹 소재의 조성비가 상기 범위를 만족하지 않는 경우, 상기 전류 전달층과 전류 방출층 및 전류 변환층 간에 접합이 잘 되지 않아 층간 박리가 발생할 수 있다.In one embodiment of the present invention, the composition ratio of each layer of the plurality of mixed layer 225 is a volume% ratio of the metal material and the ceramic material from the current emitting layer 230 to the current conversion layer 210 is 95: 5 to 1 Can be changed to: 99. When the composition ratio of the metal and the ceramic material does not satisfy the above range, the interlayer peeling may occur due to poor bonding between the current transfer layer, the current emission layer, and the current conversion layer.
본 발명의 금속-세라믹 경사기능복합체는 상기 복수개의 혼합 층(225)에 포함된 금속 소재 및 세라믹 소재의 함량 및 조성비가 각 층마다 상이하며, 두께 방향으로 각 혼합 층(225)에 따라 그 조성비가 연속적으로 변화하므로 금속과 세라믹간의 급격한 물성 변화를 완화시켜 기계적 충격이나 열 충격에 강할 뿐만 아니라, 열 충격 특성 및 열 피로 특성이 향상될 수 있다. In the metal-ceramic gradient functional composite of the present invention, the content and composition ratio of the metal material and the ceramic material included in the plurality of mixed layers 225 are different for each layer, and the composition ratio of the metal-ceramic gradient functional composite according to each mixed layer 225 in the thickness direction. Since is continuously changed to mitigate the rapid change in physical properties between the metal and the ceramic is not only resistant to mechanical or thermal shock, but also thermal shock characteristics and thermal fatigue characteristics can be improved.
도 10 및 11은 본 발명의 일 실시형태에 따른 전류 생성부(200)를 구성하는 금속-세라믹 경사기능복합체를 도시한 단면도이다.10 and 11 are cross-sectional views showing a metal-ceramic gradient functional composite constituting the current generating unit 200 according to an embodiment of the present invention.
본 발명의 전류 생성부(200)를 구성하는 금속-세라믹 경사기능복합체는 전류 변환층(210)과 전류 방출층(230) 사이에 금속 및 세라믹 혼합으로 이루어진 혼합 소재를 각 층의 조성비가 서로 상이하여 두께방향으로 연속적으로 변화하도록 복수개 적층하여 전류 전달층(220)을 형성하거나(도 10 참조), 단층 내에서 전류 방출층(230)에 인접한 영역은 금속 소재의 함량이 많고 전류 변환층(210)에 인접한 영역은 세라믹 소재의 함량이 많아져, 상기 금속 소재와 세라믹 소재의 함량이 연속적으로 변화하여 상기 분말들의 함량이 경사를 이루도록 단층의 전류 전달층을 형성할 수 있다(도 11 참조). In the metal-ceramic gradient functional composite constituting the current generating unit 200 of the present invention, the composition ratio of each layer differs from each other in the mixed material consisting of a metal and ceramic mixture between the current conversion layer 210 and the current emission layer 230. A plurality of layers are formed so as to continuously change in the thickness direction to form a current transfer layer 220 (see FIG. 10), or a region adjacent to the current emission layer 230 in the single layer has a high metal content and a current conversion layer 210. The area adjacent to) increases the content of the ceramic material, so that the content of the metal material and the ceramic material may be continuously changed to form a single current transfer layer so that the content of the powders is inclined (see FIG. 11).
본 발명의 일 실시형태에 따른 금속-세라믹 경사기능복합체를 이용한 센서(100)는 Sensor 100 using a metal-ceramic gradient functional composite according to an embodiment of the present invention is
금속-세라믹 경사기능복합체로 구성되어 외부 에너지에 의해 전류를 생성하는 전류 생성부(200); A current generator 200 composed of a metal-ceramic gradient functional composite to generate a current by external energy;
상기 전류 생성부(200)에서 생성된 전류를 측정하는 전류 측정부(300); 및A current measuring unit 300 measuring a current generated by the current generating unit 200; And
상기 전류 생성부(200)의 상단 일측에 형성되어 상기 전류 생성부(200)로부터 생성된 전류가 상기 전류 측정부(300)를 지나 상기 전류 생성부(200)로 순환되도록 하는 연결 단자(250);를 포함하고,The connection terminal 250 is formed on one side of the upper end of the current generating unit 200 to allow the current generated from the current generating unit 200 to circulate through the current measuring unit 300 to the current generating unit 200. Including;
상기 전류 생성부(200)는 세라믹 소재로 이루어진 전류 변환층(210); 금속 소재로 이루어진 전류 방출층(230); 및 상기 전류 변환층과 전류 방출층 사이에 금속 소재 및 세라믹 소재가 혼합된 단층의 전류 전달층(220)이 형성되고,The current generator 200 includes a current conversion layer 210 made of a ceramic material; A current emitting layer 230 made of a metal material; And a single current transfer layer 220 in which a metal material and a ceramic material are mixed between the current conversion layer and the current emission layer.
상기 전류 전달층(220)에서 상기 전류 방출층(230)에 인접한 영역은 금속 소재의 함량이 세라믹 소재의 함량보다 많고, 전류 전환층(210)에 인접한 영역은 세라믹 소재의 함량이 금속 소재의 함량보다 많아져, 상기 전류 전달층(220)의 금속 소재와 세라믹 소재의 함량이 연속적으로 변화하는 것을 특징으로 한다.In the region of the current transfer layer 220 adjacent to the current emitting layer 230, the content of the metal material is greater than that of the ceramic material, and in the region adjacent to the current conversion layer 210, the content of the ceramic material is the content of the metal material. More, the content of the metal material and the ceramic material of the current transfer layer 220 is characterized in that it is continuously changed.
본 발명의 일 실시형태에서, 상기 전류 전달층(220)은 전류 방출층(230)으로부터 전류 변환층(210)으로 갈수록 금속 소재의 함량이 금속 소재 및 형광체 소재의 혼합 총 함량에 대하여 95 내지 1 부피%로 연속적으로 변화하고, 세라믹 소재의 함량이 5 내지 99 부피%로 연속적으로 변화할 수 있다. 금속 및 세라믹 소재의 함량이 상기 범위를 만족하지 않는 경우, 상기 전류 전달층과 전류 방출층 및 전류 변환층 간에 접합이 잘 되지 않아 층간 박리가 발생할 수 있다.In one embodiment of the present invention, the current transfer layer 220 from the current emission layer 230 to the current conversion layer 210, the content of the metal material is 95 to 1 with respect to the total mixed content of the metal material and the phosphor material It can be continuously changed in volume%, the content of the ceramic material can be continuously changed in 5 to 99 volume%. When the content of the metal and the ceramic material does not satisfy the above range, it may be difficult to bond between the current transfer layer, the current emission layer, and the current conversion layer, thereby causing interlayer separation.
본 발명에 따른 금속-세라믹 경사기능복합체에 구성되는 전류 변환층, 전류 전달층 및 전류 방출층을 형성하는 각 분말 소재는 방전 플라즈마 소결법을 이용하여 소결됨으로써 상기 층을 형성할 수 있다.Each powder material forming the current converting layer, the current transfer layer, and the current releasing layer of the metal-ceramic gradient functional composite according to the present invention may be sintered using a discharge plasma sintering method to form the layer.
구체적으로는, 상기 금속 소재 및 세라믹 소재는 각 금속 분말 및 세라믹 분말을 적층한 후 소결함으로써 하나의 복합체 내에 각 기능을 가지는 각 층을 구성할 수 있다.Specifically, the metal material and the ceramic material may form each layer having each function in one composite by stacking and sintering each metal powder and ceramic powder.
본 발명의 일 실시형태에서, 상기 금속 분말 및 세라믹 분말의 직경은 10 nm 이상 100㎛ 이하일 수 있다.In one embodiment of the present invention, the diameter of the metal powder and ceramic powder may be 10 nm or more and 100 μm or less.
본 발명의 일 실시형태에서, 상기 금속 분말 및 세라믹 분말의 직경은 동일할 수도 있고, 상이할 수도 있다.In one embodiment of the present invention, the diameters of the metal powder and the ceramic powder may be the same or may be different.
상기 금속 분말의 직경이 세라믹 분말의 직경보다 큰 경우, 금속 입자의 계면에 세라믹 입자가 정렬될 수 있다.When the diameter of the metal powder is larger than the diameter of the ceramic powder, the ceramic particles may be aligned at the interface of the metal particles.
이 때, 상기 전류 방출층(230)과 전류 변환층(210) 사이의 전자 이동이 억제될 수 있다.In this case, electron movement between the current emission layer 230 and the current conversion layer 210 may be suppressed.
상기 금속 분말의 직경이 세라믹 분말의 직경보다 작은 경우, 세라믹 입자의 계면에 금속 입자가 정렬될 수 있다.When the diameter of the metal powder is smaller than the diameter of the ceramic powder, the metal particles may be aligned at the interface of the ceramic particles.
이 때, 상기 전류 방출층(230)과 전류 변환층(210) 사이의 전자 이동이 용이할 수 있다.In this case, electron movement between the current emitting layer 230 and the current converting layer 210 may be facilitated.
따라서, 상기 금속 분말과 세라믹 분말의 직경을 조절함으로써, 전자의 이동을 조절할 수 있다.Therefore, by controlling the diameter of the metal powder and the ceramic powder, it is possible to control the movement of electrons.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it is apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
실시예Example 1: 에너지변환 경사기능복합체의 제조 1: Preparation of energy conversion gradient functional complex
실시예Example 1-1: 금속 층, 접합 층 및 형광체 층의 적층 1-1: lamination of metal layer, bonding layer and phosphor layer
구리 분말(직경 100㎛ 이하), ZnS:Cu,Cl 형광체 분말(직경 10㎛ 이하)을 사용하여 각각 금속 층과 형광체 층을 제조하였다. 그런 다음, 구리 분말과 ZnS:Cu,Cl 형광체 분말을 하기 표 1의 조성으로 혼합하고, 15분 동안 핸드밀한 후, 15mm 직경의 그라파이트 다이에 하기 표 1에 기재된 순서로 금속 층을 가장 하층으로 하여 각각 0.2g씩 순차적으로 적층하였다.A metal layer and a phosphor layer were prepared using copper powder (100 µm or less in diameter) and ZnS: Cu, Cl phosphor powder (10 µm or less in diameter), respectively. Then, the copper powder and the ZnS: Cu, Cl phosphor powder were mixed in the composition of Table 1 below, hand milled for 15 minutes, and then the metal layer was placed on the 15 mm diameter graphite die in the order shown in Table 1 below. 0.2g each was sequentially laminated.
조성(부피%)Composition (% by volume) 중량(g)Weight (g)
100 % ZnS:Cu,Cl100% ZnS: Cu, Cl 0.20.2
5 % Cu / 95 % ZnS:Cu,Cl5% Cu / 95% ZnS: Cu, Cl 0.20.2
10 % Cu / 90 % ZnS:Cu,Cl10% Cu / 90% ZnS: Cu, Cl 0.20.2
20 % Cu / 80 % ZnS:Cu,Cl20% Cu / 80% ZnS: Cu, Cl 0.20.2
30 % Cu / 70 % ZnS:Cu,Cl30% Cu / 70% ZnS: Cu, Cl 0.20.2
50 % Cu / 50 % ZnS:Cu,Cl50% Cu / 50% ZnS: Cu, Cl 0.20.2
70 % Cu / 30 % ZnS:Cu,Cl70% Cu / 30% ZnS: Cu, Cl 0.20.2
100% Cu100% Cu 0.20.2
실시예Example 1-2: 에너지변환 경사기능복합체의 제조 1-2: Preparation of energy conversion gradient functional complex
상기 실시예 1-1에서 적층된 금속 층, 접합 층 및 형광체 층을 50 MPa의 압력 하에서, 900℃에서 5분 동안 소결하여 경사기능복합체를 제조하였다. 이 때, 승온 속도는 분당 100℃였다. 제조된 경사기능복합체의 직경은 15mm이고, 두께는 20mm였다. The metal layer, the bonding layer, and the phosphor layer laminated in Example 1-1 were sintered at 900 ° C. for 5 minutes under a pressure of 50 MPa to prepare a gradient functional composite. At this time, the temperature increase rate was 100 degreeC per minute. The prepared warp functional composite had a diameter of 15 mm and a thickness of 20 mm.
도 3에 상기 실시예에서 제조된 에너지변환 경사기능복합체를 나타내었다. Figure 3 shows the energy conversion gradient functional composite prepared in the above embodiment.
또한, 도 4는 본 발명의 일 실시형태에 따른 구리-ZnS:Cu,Cl 경사기능복합체의 형광체 층이 365nm 자외선 램프 아래에서 발광하는 모습을 도시한 그림이다. 도 4를 참조로, 365nm 자외선 램프(600)로부터 조사되는 자외선(610)이 상기 경사기능복합체의 형광체 층(530)에 도달하는 경우, 상기 형광체 층이 발광하게 된다. 4 is a view showing the phosphor layer of the copper-ZnS: Cu, Cl gradient functional composite according to an embodiment of the present invention to emit light under a 365 nm ultraviolet lamp. Referring to FIG. 4, when the ultraviolet ray 610 irradiated from the 365 nm ultraviolet ray lamp 600 reaches the phosphor layer 530 of the gradient functional complex, the phosphor layer emits light.
실험예Experimental Example 1:  One: 광발광Photoluminescence (( PhotoluminescencePhotoluminescence ) 스펙트럼 분석Spectral analysis
상기 실시예 1에서 제조된 경사기능복합체의 광발광 스펙트럼 (λex = 365 nm)을 도 5에 나타내었다.The photoluminescence spectrum (λ ex = 365 nm) of the gradient functional composite prepared in Example 1 is shown in FIG. 5.
도 5를 참조로, 구리-ZnS:Cu,Cl 경사기능복합체의 피크(peak)가 ZnS:Cu,Cl 형광체 분말의 피크에 비해 레드 시프트(Red Shift)한 것을 볼 수 있는데, 이는 구리-ZnS:Cu,Cl 경사기능복합체의 제조 시 소결에 따른 ZnS 내 Zn의 승화(Sublimination)에 기인하는 ZnS 결정(crystal) 내의 결함 레벨의 형성 및 승화된 Zn 자리로의 구리 도핑에 의한 것이라고 예측할 수 있었다.Referring to FIG. 5, it can be seen that the peak of the copper-ZnS: Cu, Cl gradient functional complex is red shifted relative to the peak of the ZnS: Cu, Cl phosphor powder, which is copper-ZnS: In the preparation of the Cu and Cl gradient functional composites, it could be predicted that the formation of defect levels in the ZnS crystal due to the sublimination of Zn in ZnS due to sintering and the doping of copper into the sublimed Zn sites.
또한, 상기 실시예 1에서 제조된 경사기능복합체의 온도에 따른 광발광 스펙트럼 (λex = 365 nm) 피크의 변화를 하기 표 2 및 도 6, 7에 나타내었다.In addition, the change in the photoluminescence spectrum (λ ex = 365 nm) peak according to the temperature of the gradient functional composite prepared in Example 1 is shown in Table 2 and FIGS. 6 and 7.
온도(℃)Temperature (℃) 구리-ZnS:Cu,Cl 경사기능복합체Copper-ZnS: Cu, Cl gradient functional complex ZnS:Cu,Cl 형광체 분말ZnS: Cu, Cl phosphor powder
상온(room temp.)Room temp. 522 nm522 nm 497 nm497 nm
5050 522 nm522 nm 497 nm497 nm
7575 523 nm523 nm 501 nm501 nm
100100 528 nm528 nm 503 nm503 nm
125125 530 nm530 nm 505 nm505 nm
150150 528 nm528 nm 515 nm515 nm
표 2 및 도 6, 7을 참조로, 구리-ZnS:Cu,Cl 경사기능복합체의 피크(peak)는 ZnS:Cu,Cl 형광체 분말의 피크에 비해 레드 시프트가 발생하지 않는 것을 확인할 수 있었다. 이는 구리-ZnS:Cu,Cl 경사기능복합체에 전달된 열이 열전도도가 우수한 구리(397 W/mK)를 통로로 하여 빠져나가기 때문에 형광체 내 잔류열에 의한 포논(phonon)의 생성이 억제되기 때문이라는 것을 알 수 있었다.Referring to Table 2 and FIGS. 6 and 7, the peak of the copper-ZnS: Cu, Cl gradient functional complex did not occur in the red shift compared to the peak of the ZnS: Cu, Cl phosphor powder. This is because the heat transferred to the copper-ZnS: Cu, Cl gradient functional composite escapes through the copper (397 W / mK), which has excellent thermal conductivity, so that the formation of phonons due to residual heat in the phosphor is suppressed. I could see that.
따라서, 본 발명에 따른 에너지변환 경사기능복합체는 열 안정성이 우수하고, 금속 층과 형광체 층 간에 층간 박리 현상을 억제할 수 있는 것을 확인하였다.Therefore, it was confirmed that the energy conversion gradient functional composite according to the present invention is excellent in thermal stability and can suppress the delamination between the metal layer and the phosphor layer.
실험예Experimental Example 2: 전류-전압 커브(I-V  2: current-voltage curve (I-V) curvecurve ) 측정) Measure
상기 실시예 1에서 제조된 구리-ZnS:Cu,Cl 경사기능복합체에 365nm의 UV를 비추었을 때와 비추지 않았을 때(Dark)의 전류-전압 커브(I-V curve) 그래프를 도 8에 나타내었다. The copper-ZnS: Cu, Cl gradient functional composite prepared in Example 1 shows a current-voltage curve (I-V curve) graph when the UV light of 365 nm and the non-lighting (Dark) are shown in FIG. 8.
도 8을 참조로, 365nm의 UV를 조사함에 따라 구리-ZnS:Cu,Cl 경사기능복합체의 전류량이 증가하는 것을 알 수 있었고, UV 센서로 응용될 수 있는 것을 확인하였다.Referring to FIG. 8, it can be seen that the amount of current of the copper-ZnS: Cu, Cl gradient functional composite increases as the UV of 365 nm is irradiated, and it can be applied as a UV sensor.
실시예Example 2: 금속-세라믹 경사기능복합체의 제조 2: Preparation of Metal-Ceramic Gradient Functional Composites
실시예Example 2-1: 전류  2-1: current 방출층Emission layer , 전류 , Current 전달층Transport layer 및 전류  And current 변환층의Conversion layer 적층 Lamination
구리 분말(직경 100㎛ 이하), ZnS 분말(직경 10㎛ 이하)을 사용하여 각각 전류 방출층과 전류 변환층을 제조하였다. 그런 다음, 구리 분말과 ZnS 분말을 하기 표 3의 조성으로 혼합하고, 15분 동안 핸드밀한 후, 15mm 직경의 그라파이트 다이에 하기 표 3에 기재된 순서로 전류 방출층을 가장 하층으로 하여 각각 0.2g씩 순차적으로 적층하였다.Using a copper powder (100 µm or less in diameter) and a ZnS powder (10 µm or less in diameter), a current emission layer and a current conversion layer were prepared, respectively. Then, the copper powder and the ZnS powder were mixed in the composition of Table 3 below, and after hand milling for 15 minutes, each 0.2 g of the 15 mm diameter graphite die was placed in the order shown in Table 3 below with the current emitting layer as the lowest layer. Laminated sequentially.
조성(부피%)Composition (% by volume) 중량(g)Weight (g)
100 % ZnS100% ZnS 0.20.2
5 % Cu / 95 % ZnS5% Cu / 95% ZnS 0.20.2
10 % Cu / 90 % ZnS10% Cu / 90% ZnS 0.20.2
20 % Cu / 80 % ZnS20% Cu / 80% ZnS 0.20.2
30 % Cu / 70 % ZnS30% Cu / 70% ZnS 0.20.2
50 % Cu / 50 % ZnS50% Cu / 50% ZnS 0.20.2
70 % Cu / 30 % ZnS70% Cu / 30% ZnS 0.20.2
100% Cu100% Cu 0.20.2
실시예Example 2-2: 금속-세라믹 경사기능복합체의 제조 2-2: Preparation of Metal-Ceramic Gradient Functional Composites
상기 실시예 2-1에서 적층된 전류 방출층, 전류 전달층 및 전류 변환층을 스파크플라즈마 소결법을 이용하여 50 MPa의 압력 하에서, 900℃에서 5분 동안 소결하여 경사기능복합체를 제조하였다. 이 때, 승온 속도는 분당 100℃였다. 제조된 경사기능복합체의 직경은 15mm이고, 두께는 20mm였다. The current discharge layer, the current transfer layer, and the current conversion layer stacked in Example 2-1 were sintered at 900 ° C. for 5 minutes at a pressure of 50 MPa using a spark plasma sintering method to prepare a gradient functional composite. At this time, the temperature increase rate was 100 degreeC per minute. The prepared warp functional composite had a diameter of 15 mm and a thickness of 20 mm.
실험예Experimental Example 3: 전류-전압 커브(I-V  3: Current-Voltage Curve (I-V curvecurve ) 측정) Measure
상기 실시예 2에서 제조된 구리-ZnS 경사기능복합체에 365nm의 UV를 비추었을 때와 비추지 않았을 때(Dark)의 전류-전압 커브(I-V curve) 그래프를 도 12에 나타내었다. 12 shows a graph showing a current-voltage curve (I-V curve) between when the UV-rays of 365 nm are illuminated on the copper-ZnS gradient functional composite prepared in Example 2 and when they are not illuminated (Dark).
도 12를 참조로, 365nm의 UV를 전류 변환층에 조사함에 따라 구리-ZnS 경사기능복합체의 전류량이 증가하는 것을 알 수 있었고, 이에 따라 UV 센서로 응용될 수 있는 것을 확인하였다.Referring to FIG. 12, it can be seen that the current amount of the copper-ZnS gradient functional composite increases as UV is applied to the current conversion layer at 365 nm, thereby confirming that it can be applied as a UV sensor.
구체적으로는, 도 12 및 하기 표 4를 참조로, 인가전압이 0.5V인 경우 365nm의 UV를 비추지 않았을 때(Dark)의 전류 값은 10.34㎂인 반면, 365nm의 UV를 비추었을 때의 전류 값은 20.05㎂인 것을 확인하였다.Specifically, referring to FIG. 12 and Table 4 below, when the applied voltage is 0.5V, the current value when the UV of 365 nm is not illuminated (Dark) is 10.34 반면 while the current when the UV of 365 nm is illuminated. It confirmed that the value was 20.05 Hz.
인가전압 Applied voltage DarkDark 365 nm365 nm
0.5V0.5 V 10.34 ㎂10.34 ㎂ 20.02 ㎂20.02 ㎂
5V5 V 1.02 mA1.02 mA 1.40 mA1.40 mA
이를 통해, 본 발명의 금속-세라믹 경사기능복합체의 전류 변환층에 외부에너지인 자외선이 조사되면 전류 변환층을 구성하는 세라믹 소재와 반응하여 전류가 생성된다는 것을 알 수 있었다. Through this, it can be seen that when ultraviolet light, which is external energy, is irradiated to the current conversion layer of the metal-ceramic gradient functional composite of the present invention, current is generated by reacting with the ceramic material constituting the current conversion layer.
또한, 실시예 2에서 제조된 구리-ZnS 경사기능복합체를 전류 생성부로서 센서의 구성요소로 구비하여 사용하는 경우, 상기 전류 측정부에서 측정된 전류 값 20 ㎂를 통해 상기 제어부에서 상기 전류 생성부에 365nm의 자외선이 조사되었음을 판단할 수 있으므로, 센서로서의 응용이 가능하다. In addition, in the case of using the copper-ZnS gradient functional composite prepared in Example 2 as a current generating unit as a component of the sensor, the current generating unit in the control unit through the current value measured by the current measuring unit 20 kW Since it can be determined that ultraviolet rays of 365 nm are irradiated, the application as a sensor is possible.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that this specific technology is only a preferred embodiment, which is not intended to limit the scope of the present invention. Do. Those skilled in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.
따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
본 발명에 따른 금속-형광체 경사기능복합체는 전계방출형 디스플레이 및 전자 발광식 디스플레이 등에 효과적으로 사용될 수 있다. 또한, 본 발명에 따른 금속-세라믹 경사기능복합체는 자외선센서, 온도센서, 압력센서 등의 다양한 센서로서의 적용이 가능하다.The metal-phosphor oblique functional composite according to the present invention can be effectively used for field emission displays and electroluminescent displays. In addition, the metal-ceramic gradient functional composite according to the present invention can be applied as various sensors such as an ultraviolet sensor, a temperature sensor, and a pressure sensor.

Claims (27)

  1. 금속 분말로 이루어진 금속 층;A metal layer made of a metal powder;
    형광체 분말로 이루어진 형광체 층; 및A phosphor layer made of phosphor powder; And
    상기 금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 복수개의 혼합 층들로 구성된 접합 층이 형성되고,A bonding layer composed of a plurality of mixed layers made of a mixed powder of metal powder and phosphor powder is formed between the metal layer and the phosphor layer,
    상기 복수개의 혼합 층의 각 층은 서로 다른 조성비의 금속 분말 및 형광체 분말의 혼합 분말로 이루어지며,Each layer of the plurality of mixed layers is made of a mixed powder of metal powder and phosphor powder of different composition ratios,
    상기 혼합 층들중 금속 층에 인접한 혼합 층일수록 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 혼합 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 층의 각 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하는 것을 특징으로 하는 에너지변환 경사기능복합체.Among the mixed layers, the mixed layer adjacent to the metal layer has a higher content of metal powder, and the mixed layer adjacent to the phosphor layer has a higher content of phosphor powder, so that the content of the metal powder and the phosphor powder of each layer of the mixed layer is continuous. Energy conversion gradient functional complex, characterized in that for changing.
  2. 금속 분말로 이루어진 금속 층;A metal layer made of a metal powder;
    형광체 분말로 이루어진 형광체 층; 및A phosphor layer made of phosphor powder; And
    상기 금속 층과 형광체 층 사이에 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 단층의 접합 층이 형성되고,Between the metal layer and the phosphor layer is formed a bonding layer of a single layer consisting of a mixed powder of metal powder and phosphor powder,
    상기 접합 층에서 상기 금속 층에 인접한 영역은 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 영역은 형광체 분말의 함량이 많아져, 상기 접합 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하는 것을 특징으로 하는 에너지변환 경사기능복합체.The region adjacent to the metal layer in the bonding layer has a high content of metal powder, and the region adjacent to the phosphor layer has a high content of phosphor powder, so that the contents of the metal powder and the phosphor powder of the bonding layer continuously change. An energy conversion gradient functional complex.
  3. 제1항 또는 제2항에 있어서, 상기 금속 분말은 구리, 알루미늄, 니켈 및 티타늄으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 에너지변환 경사기능복합체. The energy conversion gradient functional composite according to claim 1 or 2, wherein the metal powder is any one selected from the group consisting of copper, aluminum, nickel and titanium.
  4. 제1항 또는 제2항에 있어서, 상기 형광체 분말은 ZnS계 및 ZnO계를 포함하는 2족 내지 6족 반도체 화합물을 모체로 하는 화합물로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 에너지변환 경사기능복합체. The energy conversion gradient function according to claim 1 or 2, wherein the phosphor powder is any one selected from the group consisting of compounds having a group 2 to 6 semiconductor compound including ZnS-based and ZnO-based matrixes. Complex.
  5. 제1항에 있어서, 상기 복수개의 혼합 층들의 각 층의 조성비는 금속 층으로부터 형광체 층으로 갈수록 금속 분말과 형광체 분말의 부피%비가 95:5 내지 1:99로 변화하는 것을 특징으로 하는 에너지변환 경사기능복합체.The energy conversion gradient of claim 1, wherein the composition ratio of each layer of the plurality of mixed layers is changed from 95: 5 to 1:99 by volume ratio of the metal powder and the phosphor powder from the metal layer to the phosphor layer. Functional Complex.
  6. 제2항에 있어서, 상기 접합 층은 금속 층으로부터 형광체 층으로 갈수록 금속 분말의 함량이 금속 분말 및 형광체 분말의 혼합 분말 총 함량에 대하여 95 내지 1 부피%로 연속적으로 변화하고, 형광체 분말의 함량이 5 내지 99 부피%로 연속적으로 변화하는 것을 특징으로 하는 에너지변환 경사기능복합체.The method of claim 2, wherein the bonding layer of the metal layer from the metal layer to the phosphor layer is continuously changed to 95 to 1% by volume relative to the total content of the mixed powder of the metal powder and the phosphor powder, the content of the phosphor powder Energy conversion gradient functional complex, characterized in that continuously varying from 5 to 99% by volume.
  7. 일측에서 입사하는 자외선-A 영역(320-400 nm) 광이 제1항 내지 제6항 중 어느 한 항에 따른 에너지변환 경사기능복합체에 의해 흡수되면서, 상기 입사광에 의해 전류변화를 일으키는 것을 특징으로 하는 광전변환 소자.Ultraviolet-A region (320-400 nm) light incident from one side is absorbed by the energy conversion gradient functional complex according to any one of claims 1 to 6, characterized in that for causing a current change by the incident light Photoelectric conversion element.
  8. 일측에서 가해지는 전압이 제1항 내지 제6항 중 어느 한 항에 따른 에너지변환 경사기능복합체에 가해지면서, 상기 전압이 광으로 변환되어 광을 형성하는 것을 특징으로 하는 전계발광 소자.An electroluminescent device according to claim 1, wherein the voltage applied from one side is applied to the energy conversion gradient functional complex according to any one of claims 1 to 6, and the voltage is converted into light to form light.
  9. 금속 분말로 이루어진 금속 층을 형성하는 단계;Forming a metal layer made of a metal powder;
    금속 분말 및 형광체 분말을 각각 상이한 조성비로 균일하게 혼합하여 복수개의 혼합 분말을 제조하는 단계;Preparing a plurality of mixed powders by uniformly mixing the metal powder and the phosphor powder in different composition ratios, respectively;
    상기 금속 층 상에 상기 혼합 분말의 조성비가 상기 금속 층에 인접한 층일수록 금속 분말의 함량이 많고, 상기 금속 층에 이격된 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 분말의 조성비가 연속적으로 변화하도록 상기 혼합 분말을 순차적으로 적층하여 복수개의 혼합 층들로 구성된 접합 층을 형성하는 단계;The composition ratio of the mixed powder on the metal layer is closer to the metal layer, the more the metal powder is contained, and the layer spaced apart from the metal layer increases the phosphor powder, and the composition ratio of the mixed powder is continuously changed. Stacking the mixed powders sequentially so as to form a bonding layer composed of a plurality of mixed layers;
    상기 접합 층 상에 형광체 분말로 이루어진 형광체 층을 형성하는 단계; 및Forming a phosphor layer made of phosphor powder on the bonding layer; And
    상기 금속 층, 접합 층 및 형광체 층을 소결하는 단계를 포함하는 것을 특징으로 하는 에너지변환 경사기능복합체의 제조방법.And a step of sintering the metal layer, the bonding layer and the phosphor layer.
  10. 금속 분말로 이루어진 금속 층을 형성하는 단계;Forming a metal layer made of a metal powder;
    상기 금속 층 상에 상기 금속 층에 인접한 영역은 금속 분말의 함량이 많고, 상기 금속 층으로부터 이격된 영역은 형광체 분말의 함량이 많도록 조성된 금속 분말 및 형광체 분말의 혼합 분말로 이루어진 단층의 접합 층을 형성하는 단계; The region adjacent to the metal layer on the metal layer has a high metal powder content, and the region spaced from the metal layer has a monolayer bonding layer made of a mixed powder of a metal powder and a phosphor powder, which is configured to have a high content of phosphor powder. Forming a;
    상기 접합 층 상에 형광체 분말로 이루어진 형광체 층을 형성하는 단계; 및Forming a phosphor layer made of phosphor powder on the bonding layer; And
    상기 금속 층, 접합 층 및 형광체 층을 소결하는 단계를 포함하는 것을 특징으로 하는 에너지변환 경사기능복합체의 제조방법.And a step of sintering the metal layer, the bonding layer and the phosphor layer.
  11. 제9항 또는 제10항에 있어서, 상기 금속 분말은 구리, 알루미늄, 니켈 및 티타늄으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 제조방법. The method of claim 9 or 10, wherein the metal powder is any one selected from the group consisting of copper, aluminum, nickel and titanium.
  12. 제9항 또는 제10항에 있어서, 상기 형광체 분말은 ZnS계 및 ZnO계를 포함하는 2족 내지 6족 반도체 화합물을 모체로 하는 화합물로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 제조방법. The production method according to claim 9 or 10, wherein the phosphor powder is any one selected from the group consisting of compounds having a group 2 to group 6 semiconductor compound containing a ZnS-based and ZnO-based matrix.
  13. 제9항에 있어서, 상기 복수개의 혼합 층의 각 층의 조성비는 금속 층으로부터 형광체 층으로 갈수록 금속 분말과 형광체 분말의 부피%비가 95:5 내지 1:99로 변화하는 것을 특징으로 하는 제조방법.The method of claim 9, wherein the composition ratio of each layer of the plurality of mixed layers is changed from 95: 5 to 1:99 by volume ratio of the metal powder and the phosphor powder from the metal layer to the phosphor layer.
  14. 제10항에 있어서, 상기 접합 층은 금속 층으로부터 형광체 층으로 갈수록 금속 분말의 함량이 금속 분말 및 형광체 분말의 혼합 분말 총 함량에 대하여 95 내지 1 부피%로 연속적으로 변화하고, 형광체 분말의 함량이 5 내지 99 부피%로 연속적으로 변화하는 것을 특징으로 하는 제조방법.The method of claim 10, wherein the bonding layer of the metal layer from the metal layer to the phosphor layer is continuously changed to 95 to 1% by volume relative to the total powder content of the metal powder and the phosphor powder, the content of the phosphor powder Process for the production, characterized in that continuously varying from 5 to 99% by volume.
  15. 제9항에 있어서, 소결 진행 중 상기 혼합 층의 각 층의 조성비가 변화하지 않도록 고상 소결법을 이용하는 것을 특징으로 하는 제조방법.The method according to claim 9, wherein the solid state sintering method is used so that the composition ratio of each layer of the mixed layer does not change during sintering.
  16. 제10항에 있어서, 소결 진행 중 상기 접합 층의 조성비가 변화하지 않도록 고상 소결법을 이용하는 것을 특징으로 하는 제조방법.The method according to claim 10, wherein the solid state sintering method is used so that the composition ratio of the bonding layer does not change during sintering.
  17. 제9항에 있어서, 상기 혼합 층들이 금속 층에 인접한 혼합 층일수록 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 혼합 층일수록 형광체 분말의 함량이 많아져, 상기 혼합 층의 각 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하도록 액상 소결법을 이용하는 것을 특징으로 하는 제조방법. 10. The method of claim 9, wherein the mixed layer is a mixed layer adjacent to the metal layer has a higher metal powder content, and the mixed layer adjacent to the phosphor layer has a higher content of the phosphor powder, A liquid crystal sintering method is used to continuously change the content of the phosphor powder.
  18. 제10항에 있어서, 상기 접합 층이 상기 금속 층에 인접한 영역은 금속 분말의 함량이 많고, 상기 형광체 층에 인접한 영역은 형광체 분말의 함량이 많아져, 상기 접합 층의 금속 분말과 형광체 분말의 함량이 연속적으로 변화하도록 액상 소결법을 이용하는 것을 특징으로 하는 제조방법.The method of claim 10, wherein the region adjacent to the metal layer has a high content of metal powder, and the region adjacent to the phosphor layer has a high content of phosphor powder, thereby increasing the amount of metal powder and phosphor powder of the bonding layer. The liquid phase sintering method is used so that this continuously changes.
  19. 금속-세라믹 경사기능복합체로 구성되어 외부 에너지에 의해 전류를 생성하는 전류 생성부; A current generator configured of a metal-ceramic gradient functional composite to generate a current by external energy;
    상기 전류 생성부에서 생성된 전류를 측정하는 전류 측정부; 및A current measuring unit measuring the current generated by the current generating unit; And
    상기 전류 생성부의 상단 일측에 형성되어 상기 전류 생성부로부터 생성된 전류가 상기 전류 측정부를 지나 상기 전류 생성부로 순환되도록 하는 연결 단자;를 포함하고,And a connection terminal formed at one side of the upper end of the current generator to allow the current generated from the current generator to circulate through the current measurer to the current generator.
    상기 전류 생성부는 세라믹 소재로 이루어진 전류 변환층; 금속 소재로 이루어진 전류 방출층; 및 상기 전류 변환층과 전류 방출층 사이에 금속 소재 및 세라믹 소재가 혼합된 복수개의 혼합층들로 구성된 전류 전달층이 형성되고,The current generating unit is a current conversion layer made of a ceramic material; A current emitting layer made of a metal material; And a current transfer layer including a plurality of mixed layers in which a metal material and a ceramic material are mixed between the current conversion layer and the current emission layer.
    상기 복수개의 혼합층의 각 층은 서로 다른 조성비의 금속 및 세라믹 소재의 혼합으로 이루어지며,Each layer of the plurality of mixed layers is made of a mixture of metal and ceramic materials of different composition ratios,
    상기 혼합층들중 전류 방출층에 인접한 혼합층일수록 금속 소재의 함량이 세라믹 소재의 함량보다 많고, 상기 전류 변환층에 인접한 혼합층일수록 세라믹 소재의 함량이 금속 소재의 함량보다 많아져, 상기 혼합층의 각 층의 금속 소재와 세라믹 소재의 함량이 연속적으로 변화하는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.Among the mixed layers, the mixed layer adjacent to the current emitting layer has a higher content of the metal material than the ceramic material. The mixed layer adjacent the current converting layer has a higher content of the ceramic material than the content of the metal material. Sensor using a metal-ceramic gradient functional composite, characterized in that the content of the metal material and the ceramic material is continuously changed.
  20. 금속-세라믹 경사기능복합체로 구성되어 외부 에너지에 의해 전류를 생성하는 전류 생성부; A current generator configured of a metal-ceramic gradient functional composite to generate a current by external energy;
    상기 전류 생성부에서 생성된 전류를 측정하는 전류 측정부; 및A current measuring unit measuring the current generated by the current generating unit; And
    상기 전류 생성부의 상단 일측에 형성되어 상기 전류 생성부로부터 생성된 전류가 상기 전류 측정부를 지나 상기 전류 생성부로 순환되도록 하는 연결 단자;를 포함하고,And a connection terminal formed at one side of the upper end of the current generator to allow the current generated from the current generator to circulate through the current measurer to the current generator.
    상기 전류 생성부는 세라믹 소재로 이루어진 전류 변환층; 금속 소재로 이루어진 전류 방출층; 및 상기 전류 변환층과 전류 방출층 사이에 금속 소재 및 세라믹 소재의 혼합으로 이루어진 단층의 전류 전달층이 형성되고,The current generating unit is a current conversion layer made of a ceramic material; A current emitting layer made of a metal material; And a single current transfer layer formed of a mixture of a metal material and a ceramic material between the current conversion layer and the current emission layer.
    상기 전류 전달층에서 상기 전류 방출층에 인접한 영역은 금속 소재의 함량이 세라믹 소재의 함량보다 많고, 상기 전류 변환층에 인접한 영역은 세라믹 소재의 함량이 금속 소재의 함량보다 많아져, 상기 전류 전달층의 금속 소재와 세라믹 소재의 함량이 연속적으로 변화하는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.In the current transfer layer, the area adjacent to the current emitting layer has a content of a metal material greater than that of a ceramic material, and a region adjacent to the current conversion layer has a content of a ceramic material greater than a content of a metal material. Sensor using a metal-ceramic gradient functional composite characterized in that the content of the metal material and the ceramic material of the continuous change.
  21. 제19항 또는 제20항에 있어서, 상기 외부 에너지가 상기 전류 변환층에 도달하고, 전기 전도도 또는 저항을 변화시키는 상기 세라믹 소재가 상기 외부 에너지와 반응함으로써 다수의 전자가 발생하여 전류가 생성되며, 상기 생성된 전류는 전류 전달층을 통해 전류 방출층으로 전달되는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.21. The method of claim 19 or 20, wherein the external energy reaches the current conversion layer, the ceramic material that changes the electrical conductivity or resistance reacts with the external energy to generate a large number of electrons to generate a current, The generated current is a sensor using a metal-ceramic gradient functional composite, characterized in that the transfer through the current transfer layer to the current discharge layer.
  22. 제19항 또는 제20항에 있어서, 상기 외부 에너지는 열, 자외선, 가스, 불꽃 또는 압력인 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.21. The sensor according to claim 19 or 20, wherein the external energy is heat, ultraviolet light, gas, flame or pressure.
  23. 제19항 또는 제20항에 있어서, 상기 전류 측정부에서 측정된 전류값을 이용하여 외부 에너지 발생 여부 및 크기를 판단하는 제어부를 더 포함하는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.21. The sensor using a metal-ceramic gradient functional composite according to claim 19 or 20, further comprising a control unit which determines whether an external energy is generated and a size by using a current value measured by the current measuring unit.
  24. 제19항 또는 제20항에 있어서, 상기 전류 전달층, 전류 방출층 및 연결 단자를 구성하는 금속 소재는 구리, 알루미늄 및 티타늄으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.21. The metal-ceramic gradient functional composite according to claim 19 or 20, wherein the metal material constituting the current transfer layer, the current releasing layer and the connection terminal is any one selected from the group consisting of copper, aluminum and titanium. Sensor using.
  25. 제19항 또는 제20항에 있어서, 상기 세라믹 소재는 ZnO, ZnS, ZrO2, CaO, Y2O3, MgO, Nd2O3, ThO2, NiO, Al2O3, Cr2O3, Fe2O3, MnO, CaSiO3, BaO, SrO, TiO2, BaTiO3, BaBiO3, SrAl2O4 및 Pb(Zr,Ti)O3로 구성된 군으로부터 선택된 하나 또는 이들의 복합체인 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.The method of claim 19 or 20, wherein the ceramic material is ZnO, ZnS, ZrO 2 , CaO, Y 2 O 3 , MgO, Nd 2 O 3 , ThO 2 , NiO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , MnO, CaSiO 3 , BaO, SrO, TiO 2 , BaTiO 3 , BaBiO 3 , SrAl 2 O 4 and Pb (Zr, Ti) O 3 characterized in that one or a complex thereof selected from the group consisting of Sensor using a metal-ceramic gradient functional composite.
  26. 제19항에 있어서, 상기 복수개의 혼합층들의 각 층의 조성비는 전류 방출층으로부터 전류 변환층으로 갈수록 금속 소재와 세라믹 소재의 부피%비가 95:5 내지 1:99로 변화하는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.20. The method of claim 19, wherein the composition ratio of each layer of the plurality of mixed layers is a volume percent ratio of the metal material and the ceramic material changes from 95: 5 to 1:99 from the current emitting layer to the current conversion layer. Sensor using ceramic gradient functional composite.
  27. 제20항에 있어서, 상기 전류 전달층은 전류 방출층으로부터 전류 변환층으로 갈수록 금속 재료의 함량이 금속 재료 및 세라믹 재료의 혼합 총 함량에 대하여 95 내지 1 부피%로 연속적으로 변화하고, 세라믹 재료의 함량이 5 내지 99 부피%로 연속적으로 변화하는 것을 특징으로 하는 금속-세라믹 경사기능복합체를 이용한 센서.21. The method of claim 20, wherein the current carrying layer is continuously changed from 95 to 1% by volume with respect to the total mixed content of the metal material and the ceramic material as the content of the metal material from the current discharge layer to the current conversion layer, A sensor using a metal-ceramic gradient functional complex, characterized in that the content is continuously changed to 5 to 99% by volume.
PCT/KR2016/009180 2015-08-28 2016-08-19 Functionally graded composite for energy conversion, manufacturing method therefor, and sensor using same WO2017039200A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150122003A KR101782107B1 (en) 2015-08-28 2015-08-28 Functionally Graded Composites for Energy Conversion and Process for Preparing the Same
KR10-2015-0122003 2015-08-28
KR10-2016-0096082 2016-07-28
KR1020160096082A KR101782103B1 (en) 2016-07-28 2016-07-28 Sensor using Metal-Ceramic Functionally Graded Composites

Publications (1)

Publication Number Publication Date
WO2017039200A1 true WO2017039200A1 (en) 2017-03-09

Family

ID=58187915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009180 WO2017039200A1 (en) 2015-08-28 2016-08-19 Functionally graded composite for energy conversion, manufacturing method therefor, and sensor using same

Country Status (1)

Country Link
WO (1) WO2017039200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063810A (en) * 2018-10-16 2020-04-24 深圳光峰科技股份有限公司 Light emitting device and method for manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219923A (en) * 1999-01-29 2000-08-08 Louis Renner Gmbh Composite material produced by powder metallurgy, its production and electric contact material
JP2006114521A (en) * 2003-09-26 2006-04-27 Semiconductor Energy Lab Co Ltd Light-emitting device and electronic equipment using the same
JP2008270674A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Organic light emitting device
KR20100133146A (en) * 2009-06-11 2010-12-21 주식회사 신한세라믹 Optical sensor for control unit of exterior illumination
KR20100138939A (en) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 Substrate for electronic device, layered body for organic led element, method for manufacturing the same, organic led element, and method for manufacturing the same
KR20110004915A (en) * 2008-08-26 2011-01-14 강릉원주대학교산학협력단 Red phosphor and its forming method for use in solid state lighting
JP2011119683A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
KR20140029602A (en) * 2012-08-28 2014-03-11 한양대학교 에리카산학협력단 Coating method using functionally gradient material composition and functionally gradient material composition
KR20150021625A (en) * 2013-08-20 2015-03-03 한국원자력연구원 Vessel for producing radioisotope and the method for manufacturing thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219923A (en) * 1999-01-29 2000-08-08 Louis Renner Gmbh Composite material produced by powder metallurgy, its production and electric contact material
JP2006114521A (en) * 2003-09-26 2006-04-27 Semiconductor Energy Lab Co Ltd Light-emitting device and electronic equipment using the same
JP2008270674A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Organic light emitting device
KR20100138939A (en) * 2008-03-18 2010-12-31 아사히 가라스 가부시키가이샤 Substrate for electronic device, layered body for organic led element, method for manufacturing the same, organic led element, and method for manufacturing the same
KR20110004915A (en) * 2008-08-26 2011-01-14 강릉원주대학교산학협력단 Red phosphor and its forming method for use in solid state lighting
KR20100133146A (en) * 2009-06-11 2010-12-21 주식회사 신한세라믹 Optical sensor for control unit of exterior illumination
JP2011119683A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
KR20140029602A (en) * 2012-08-28 2014-03-11 한양대학교 에리카산학협력단 Coating method using functionally gradient material composition and functionally gradient material composition
KR20150021625A (en) * 2013-08-20 2015-03-03 한국원자력연구원 Vessel for producing radioisotope and the method for manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063810A (en) * 2018-10-16 2020-04-24 深圳光峰科技股份有限公司 Light emitting device and method for manufacturing the same
CN111063810B (en) * 2018-10-16 2021-11-12 深圳光峰科技股份有限公司 Light emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2014077627A1 (en) Organic light-emitting element, and method for manufacturing same
WO2009139607A2 (en) Stacked organic light-emitting diode
WO2013154342A1 (en) Organic light-emitting diode containing co-hosts forming exciplex, and lighting device and display apparatus including same
WO2013051875A2 (en) Organic light-emitting device and method for manufacturing same
WO2015093903A1 (en) Metal packaging material having good heat resistance, method of manufacturing same, and flexible electronic device packaged in said metal packaging material
WO2016072806A2 (en) Perovskite nanocrystal particle light emitting body with core-shell structure, method for fabricating same, and light emitting element using same
WO2016056837A1 (en) Light emitting device
WO2011099800A2 (en) Fluorescent substance, light emitting device, surface light source device, display device and illuminating device
WO2014178547A1 (en) Organic light emitting device and method for fabricating same
WO2009091231A2 (en) Organic luminescent device and a production method for the same
WO2016072804A1 (en) Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
WO2015099481A1 (en) Organic electroluminescent device
WO2015174669A1 (en) Organic light-emitting element
WO2014185736A1 (en) Organic light-emitting device and method of manufacturing same
WO2016099067A1 (en) Organic light-emitting device
WO2015050420A1 (en) Novel compound semiconductor and use thereof
WO2017052225A1 (en) Organic light emitting diode
WO2014123369A1 (en) Novel compound and organic electronic element using same
WO2014163369A1 (en) Organic light emitting element and manufacturing method therefor
WO2019045252A1 (en) Organic electroluminescent device
WO2010018999A2 (en) Method for producing a β-sialon phosphor
WO2015174797A1 (en) Organic light emitting device
WO2016148382A1 (en) Organic light emitting device
WO2020009492A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2020060283A1 (en) Organic light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842166

Country of ref document: EP

Kind code of ref document: A1