WO2017038329A1 - Active energy ray curable composition for photoresists - Google Patents

Active energy ray curable composition for photoresists Download PDF

Info

Publication number
WO2017038329A1
WO2017038329A1 PCT/JP2016/072180 JP2016072180W WO2017038329A1 WO 2017038329 A1 WO2017038329 A1 WO 2017038329A1 JP 2016072180 W JP2016072180 W JP 2016072180W WO 2017038329 A1 WO2017038329 A1 WO 2017038329A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic copolymer
copolymer resin
meth
resin
active energy
Prior art date
Application number
PCT/JP2016/072180
Other languages
French (fr)
Japanese (ja)
Inventor
相模貴雄
Original Assignee
ダイセル・オルネクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル・オルネクス株式会社 filed Critical ダイセル・オルネクス株式会社
Publication of WO2017038329A1 publication Critical patent/WO2017038329A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to an active energy ray-curable composition for photoresist.
  • This application claims the priority of Japanese Patent Application No. 2015-171029 for which it applied to Japan on August 31, 2015, and uses the content here.
  • compositions containing an ultraviolet curable resin obtained by reacting a novolak epoxy acrylate with a polybasic acid anhydride Patent Document 1, glycidyl (meth) acrylate
  • Patent Document 2 a composition containing the resin obtained from the other ethylenically unsaturated monomer which can superpose
  • these compositions usually contain an organic solvent.
  • a photoresist ink is applied on a substrate using a coating means such as spray, spin coating, roll coating, and screen printing, and then heated to volatilize an organic solvent. This process is generally called preheating.
  • a pattern is then formed by applying a photomask depicting the pattern onto the coating film, irradiating active energy rays using a high-pressure mercury lamp, xenon lamp, metal halide lamp, LED lamp, etc., and developing with an alkaline aqueous solution.
  • the And the coating film in which the resist pattern was formed can be obtained by thermosetting the reactive group which remain
  • the adhesiveness of the coating film before being cured by the active energy rays can be reduced, so that the photomask can be easily attached and peeled off.
  • the volatilization of the organic solvent due to preheating is insufficient, the adhesiveness of the coating film is high, so that it is difficult to attach or remove the photomask, and radicals in the resin generated during curing with active energy rays.
  • the curing reaction does not proceed sufficiently, which may cause a decrease in developability and a decrease in resolution. Therefore, at the time of preheating, a method of increasing the heating temperature and a method of extending the heating time are taken in order to avoid the remaining of the solvent.
  • the problem of the present invention is that the curing reaction does not proceed even under a wide range of heating and drying conditions, and the active energy beam for photoresists that has good curability in the subsequent curing reaction by irradiation with active energy rays and has excellent development sensitivity.
  • the object is to provide a curable composition.
  • the inventor of the present invention is an active energy ray curable resin for photoresist containing an acrylic copolymer resin (A) having a specific structure, an acrylic copolymer resin (B) having a specific structure, and a photopolymerization initiator (C).
  • the composition has excellent stability during preheating (during heat drying), and since the curing reaction does not proceed, the coating film can be sufficiently dried, so that the photomask can be easily peeled off, and further active In the curing reaction by irradiation of energy rays, it has been found that since it has good curability, it has excellent development sensitivity, and the present invention has been completed.
  • An active energy ray-curable composition for a photoresist containing an acrylic copolymer resin (A), an acrylic copolymer resin (B), and a photopolymerization initiator (C),
  • the acrylic copolymer resin (A) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain
  • the acrylic copolymer resin (B) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A).
  • An active energy ray-curable composition for resist [2] The active energy ray for a photoresist according to [1], wherein the acrylic copolymer resin (A) is an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain. Curable composition. [3] The content of monomer units having both (meth) acryloyl groups and carboxyl groups in the side chain with respect to the total amount of monomer units constituting the acrylic copolymer resin (A) is 15 to 70% by weight [2 ] The active energy ray-curable composition for photoresists described in the above.
  • the acrylic copolymer resin (B) has a monomer unit having a (meth) acryloyl group in the side chain and no carboxyl group, a carboxyl group in the side chain, and a (meth) acryloyl group.
  • the active energy ray-curable composition for photoresists according to any one of [1] to [3], which is an acrylic copolymer resin containing a monomer unit that does not contain.
  • the acrylic copolymer resin (A) is an acrylic copolymer resin having a carboxyl group derived from a polybasic acid anhydride at least in a side chain.
  • the active energy ray-curable composition for a photoresist as described.
  • Energy ray curable composition [7] The photoresist activity according to any one of [1] to [6], wherein the acrylic copolymer resin (B) has a resin acid value of 20 to 200 mg KOH / g and a weight average molecular weight of 5000 to 30000.
  • Energy ray curable composition is described.
  • An active energy ray-curable composition for a photoresist containing an acrylic copolymer resin (A), an acrylic copolymer resin (B), and a photopolymerization initiator (C),
  • the acrylic copolymer resin (A) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain
  • the acrylic copolymer resin (B) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A).
  • An active energy ray-curable composition for resist is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A).
  • the acrylic copolymer resin (A) further includes a monomer unit having both a (meth) acryloyl group and a hydroxyl group in the side chain, a monomer unit having a carboxyl group in the side chain, and a hydrocarbon group in the side chain.
  • [5 ′] The monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain is a monomer unit represented by the following formula (1): [2 ′] to [4 ′]
  • the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain is a monomer unit represented by the following formula (1-1) or formula (1-2): 5 '].
  • the active energy ray-curable composition for photoresists according to any one of 5'].
  • a monomer unit having both a (meth) acryloyl group and a hydroxyl group in the side chain is a monomer unit represented by the following formula (2), and a monomer unit having a carboxyl group in the side chain is represented by the following formula (3 Any one of [3 ′] to [6 ′], wherein the monomer unit having a hydrocarbon group in the side chain is a monomer unit represented by the following formula (4):
  • the active energy ray-curable composition for a photoresist as described.
  • Step A1 Step of producing an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group by radical polymerization reaction (acrylic polymerization reaction)
  • Step A2 Acrylic obtained in Step A1
  • A3 A step of producing an acrylic copolymer resin containing a monomer unit (UA1) described later by reacting the acrylic copolymer resin obtained in step A2 with a polybasic acid anhydride [10 ′] acrylic Both (meth) acryloyl group and carboxyl group are present in the side chain with respect to the total amount of monomer units constituting the copolymer resin (A).
  • the content of the monomer units is 15 to 70 wt% [2 '] - [9' Photoresist active energy ray curable composition according to any one of. [11 ′]
  • the acrylic copolymer resin (B) has a (meth) acryloyl group in the side chain and a monomer unit having no carboxyl group, a carboxyl group in the side chain, and (meth) acryloyl
  • the active energy ray-curable composition for photoresists according to any one of [1 ′] to [10 ′], which is an acrylic copolymer resin containing a monomer unit having no group.
  • the acrylic copolymer resin (B) further includes at least one monomer unit selected from the group consisting of a monomer unit having a hydrocarbon group in the side chain and other monomer units described later.
  • Active energy ray-curable composition for photoresists [13 ′]
  • the acrylic copolymer resin (B) is an acrylic copolymer resin obtained by a reaction between an acrylic copolymer having a carboxyl group in the side chain and a (meth) acrylic acid ester having an epoxy group.
  • the active energy ray-curable composition for photoresists according to any one of [1 ′] to [12 ′].
  • the content of the acrylic copolymer resin (B) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is 5 to 95% by weight. 17 ′].
  • the content of the photopolymerization initiator (C) with respect to the resin content (100 parts by weight) in the active energy ray-curable composition for photoresist is 0.01 to 10 parts by weight [1 ′] to The active energy ray-curable composition for photoresist according to any one of [18 ′].
  • the active energy ray-curable composition for photoresist of the present invention uses at least two kinds of acrylic copolymer resins having different resin skeletons and having (meth) acryloyl group and carboxyl group in the side chain, preheating ( In the case of heat drying), the curing reaction of the resin component by heating is difficult to proceed (high heat stability), and since it has good curability when cured by active energy rays, the development sensitivity is good. .
  • an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain, and an acrylic copolymer having a (meth) acryloyl group and a carboxyl group in the side chain of separate monomer units.
  • the present invention relates to an active energy ray curing for photoresist containing an acrylic copolymer resin (A) having a specific structure, an acrylic copolymer resin (B) having a specific structure, and a photopolymerization initiator (C).
  • the present invention relates to a sex composition.
  • the active energy ray-curable composition for a photoresist of the present invention may contain an organic solvent described later and other components (viscosity modifier and the like) in addition to the above components.
  • the acrylic copolymer resin in the present invention requires a (meth) acrylic monomer unit having a carboxyl group in the side chain (for example, a monomer unit derived from (meth) acrylic acid or (meth) acrylic acid ester). It is a copolymer that may contain as a monomer unit, and may further contain other radical polymerizable monomers as monomer units.
  • the main chain of the acrylic copolymer resin in the present specification refers to a carbon chain (carbon chain derived from a radical polymerizable group) generated by a radical polymerization reaction (for example, an acrylic polymerization reaction) when producing the resin.
  • the side chain (or side chain substituent) refers to a substituent bonded to the main chain.
  • the carbon chain represented by —CH 2 —C— in parentheses represents the main chain, and the same carbon atom as R 1 or R 1
  • the bonded substituent represents a side chain (or a side chain substituent).
  • the acrylic copolymer resin (A) in the present invention is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain.
  • the acrylic copolymer resin (A) is not particularly limited as long as it has the above-mentioned characteristics, but the acrylic copolymer resin containing at least a monomer unit (UA1) having both a (meth) acryloyl group and a carboxyl group in the side chain. It is preferable that
  • the acrylic copolymer resin (A) of the present invention is a monomer having both a (meth) acryloyl group and a hydroxyl group in the side chain in addition to the monomer unit (UA1) having both a (meth) acryloyl group and a carboxyl group in the side chain. It may contain at least one monomer unit selected from the group consisting of a unit (UA2), a monomer unit (UA3) having a carboxyl group in a side chain, and a monomer unit (UA4) having a hydrocarbon group in a side chain, Other monomer units (UA5) may be included.
  • the monomer units may be referred to as a monomer unit (UA1), a monomer unit (UA2), a monomer unit (UA3), a monomer unit (UA4), and a monomer unit (UA5), respectively.
  • monomer unit (UA1) will not be specifically limited if it is a monomer unit which has both a (meth) acryloyl group and a carboxyl group in a side chain,
  • monomer unit (UA1) is a monomer unit represented by following formula (1).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group.
  • a 1 is a trivalent hydrocarbon group (an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a group in which two or more of these are bonded), or two or more hydrocarbon groups are 1 Alternatively, it represents a trivalent group bonded through two or more ester structures (—CO—O—).
  • the total number of carbon atoms of A 1 is, for example, 2 to 20, preferably 2 to 15, and more preferably 2 to 10.
  • a 2 represents a divalent hydrocarbon group which may have a substituent.
  • Examples of the divalent hydrocarbon group include a divalent hydrocarbon group having 2 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, and a divalent aromatic group having 6 to 14 carbon atoms. Examples thereof include a hydrocarbon group or a group in which two or more of these are bonded. Examples of the substituent include a hydrocarbon group optionally having a carboxyl group or an acid anhydride structure (—CO—O—CO—); a carboxyl group or an acid anhydride structure (—CO—O—CO—).
  • a 2 may be bonded to the side chain of the same or different acrylic copolymer resin through an ester structure (—CO—O—).
  • the total number of carbon atoms of A 2 is, for example, 2 to 25, preferably 2 to 20.
  • the monomer unit (UA1) is more preferably a monomer unit represented by the following formula (1-1) or formula (1-2).
  • R 1 , R 2 , and A 2 are the same as those described above.
  • R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms).
  • R 4 represents a divalent hydrocarbon having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and n represents 0 or 1.
  • R 5 to R 7 are the same or different and each represents hydrogen or a hydrocarbon group having 1 to 15 carbon atoms.
  • R 5 and R 6 or R 7 may be bonded to each other to form a ring with two adjacent carbon atoms. Examples of the ring include alicyclic (monocyclic or polycyclic) hydrocarbons having 5 to 12 carbon atoms.
  • the monomer unit (UA2) is not particularly limited as long as it is a monomer unit having both a (meth) acryloyl group and a hydroxyl group in the side chain.
  • a monomer unit represented by the following formula (2) is preferable, and the following formula (2 It is more preferably a monomer unit represented by -1) or formula (2-2).
  • R 1 to R 7 , A 1 , and n in Formula (2), Formula (2-1), and Formula (2-2) are the same as those in Formula (1), Formula (1-1), and Formula The same as described in (1-2) can be mentioned.
  • the monomer unit (UA3) is not particularly limited as long as it is a monomer unit having a carboxyl group in the side chain and other than the monomer unit (UA1).
  • the monomer unit represented by the following formula (3) is Can be mentioned.
  • R 8 is the same or different and represents a hydrogen atom or a methyl group.
  • R 9 represents a divalent hydrocarbon having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and l represents 0 or 1.
  • a monomer unit (UA4) if it is a monomer unit which has a hydrocarbon group in a side chain,
  • the monomer unit represented by following formula (4) is mentioned.
  • R 10 is the same or different and represents a hydrogen atom or a methyl group.
  • R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms). Examples of the hydrocarbon group include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • the monomer unit (UA5) is not particularly limited as long as it is a monomer unit capable of forming a polymer with the monomer units (UA1) to (UA4).
  • An example of the monomer unit (UA5) includes a monomer unit having an epoxy group in a side chain represented by the following formula (5).
  • R 12 is the same or different and represents a hydrogen atom or a methyl group.
  • R 13 represents a divalent hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms).
  • R 14 to R 16 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms.
  • R 14 and R 15 or R 16 may be bonded to each other to form a ring with two adjacent carbon atoms. Examples of the ring include alicyclic (monocyclic or polycyclic) hydrocarbons having 5 to 12 carbon atoms.
  • the content of the monomer unit (UA1) having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer units constituting the acrylic copolymer resin (A) of the present invention is 15 to 70% by weight. It is preferably 17 to 60% by weight, more preferably 19 to 55% by weight.
  • the acrylic copolymer resin (A) is preferably an acrylic copolymer resin having a carboxyl group derived from a polybasic acid anhydride in at least a side chain, and is derived from a polybasic acid anhydride in a side chain. More preferably, it is an acrylic copolymer resin having a carboxyl group and a (meth) acryloyl group derived from (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group, and a polybasic side chain.
  • the resin acid value of the acrylic copolymer resin (A) is not particularly limited, but is preferably 30 to 200 mgKOH / g, more preferably 40 to 100 mgKOH / g, and still more preferably 50 to 80 mgKOH / g.
  • the resin acid value is within the above range, the heat stability is improved, and the resolution during alkali development is improved.
  • the weight average molecular weight of the acrylic copolymer resin (A) is not particularly limited, but is preferably 5000 to 100,000, more preferably 7000 to 80,000, and still more preferably 10,000 to 50,000. When the weight average molecular weight is within the above range, the heat stability is good, and the solubility in a solvent (such as an organic solvent) is good, so that the workability is excellent.
  • the weight average molecular weight of the acrylic copolymer resin of the present invention is calculated from the molecular weight in terms of standard polystyrene measured by gel permeation chromatography.
  • the content of the acrylic copolymer resin (A) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, More preferably, it is 15 to 85% by weight.
  • the resin component refers to, for example, a curable compound such as an acrylic copolymer resin (A), an acrylic copolymer resin (B), and an epoxy resin described later, and a photopolymerization initiator (C) or an organic solvent.
  • a curable compound such as an acrylic copolymer resin (A), an acrylic copolymer resin (B), and an epoxy resin described later
  • the acrylic copolymer resin (A) can be produced, for example, by the following steps.
  • Step A1 Step of producing an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group by radical polymerization reaction (acrylic polymerization reaction)
  • Step A2 Acrylic obtained in Step A1
  • Process A3 A step of producing an acrylic copolymer resin containing a monomer unit (UA1) by reacting the acrylic copolymer resin obtained in step A2 with a polybasic acid anhydride.
  • an acrylic copolymer resin containing at least the monomer unit represented by the formula (5) is reacted with a (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group, and the formula (2 -1) and / or an acrylic copolymer resin containing a monomer unit represented by the formula (2-2), and then reacting with a polybasic acid anhydride to obtain a formula (1-1) and / or Alternatively, it is explained that an acrylic copolymer resin containing a monomer unit represented by the formula (1-2) can be produced.
  • the acrylic copolymer resin (A) is an acrylic copolymer resin containing at least an epoxy group in the side chain (an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group). And (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group and an acrylic copolymer resin obtained by a reaction of a polybasic acid anhydride.
  • R 1 to R 7 , A 2 , and n in this model are as described above.
  • Step A1 is a step of preparing an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group by radical polymerization reaction (acrylic polymerization reaction).
  • a (meth) acrylic acid ester having an epoxy group for example, a (meth) acrylic acid ester having a (meth) acrylic acid and / or a carboxyl group, a (meth) acrylic acid ester having a hydrocarbon group
  • an acrylic copolymer resin may be produced by subjecting another radical polymerizable compound to a radical polymerization reaction.
  • the acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group is derived from, for example, a (meth) acrylic acid ester having (meth) acrylic acid and / or a carboxyl group. It may contain a monomer unit, a monomer unit derived from a (meth) acrylic acid ester having a hydrocarbon group, and a monomer unit derived from another radical polymerizable compound.
  • the monomer unit derived from (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group in step A1 corresponds to the monomer unit (UA3) and is represented by the formula (3).
  • the monomer unit derived from the other radical polymerizable compound corresponds to the monomer unit (UA5).
  • step A1 When (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group is used in step A1, the amount used is 5 to 400 per 100 parts by weight of the (meth) acrylic acid ester having an epoxy group. Part by weight is preferred, more preferably 10 to 350 parts by weight, and still more preferably 15 to 300 parts by weight.
  • the amount used is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the (meth) acrylic acid ester having an epoxy group.
  • the amount is more preferably 0.5 to 20 parts by weight, still more preferably 1 to 15 parts by weight.
  • a polymerization initiator can be used.
  • examples of such polymerization initiator include diisopropylbenzene hydroperoxide, cumene hydroperoxide of hydroperoxides, t-Butyl hydroperoxide and dicumyl peroxides of dialkyl peroxides, 2,5-dimethyl-2,5-di- (t-butylperoxy) -hexane, 1,3-bis- (t-butyl Peroxyisopropyl) -benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) -hexyne-3, and diacyl peroxide Isobutyryl peroxide, 2,4-dichlorobenzoyl -Methyl ethyl ketone peroxide, methyl isobutyryl peroxide, 2,4-dichlorobenzoy
  • the radical polymerization reaction (acrylic polymerization reaction) is usually performed in an organic solvent.
  • organic solvent used in the step A1 include hydrocarbon solvents such as toluene and xylene, ester solvents such as n-butyl acetate, methyl cellosolve acetate, propylene glycol monomethyl ether acetate, dimethyl glutarate, dimethyl succinate, and dimethyl adipate.
  • the solvent include ketone solvents such as methyl isobutyl ketone and diisobutyl ketone, ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and diethylene glycol monomethyl ether acetate.
  • a high-boiling solvent such as propylene glycol monomethyl ether, the same acetate, dimethyl glutarate, dimethyl succinate, and dimethyl adipate. If necessary, methyl ethyl ketone, ethyl acetate, and butyl acetate can also be used.
  • the said organic solvent can also be used in combination of 2 or more type.
  • Step A2 is a step of producing an acrylic copolymer resin by subjecting the acrylic copolymer resin obtained in Step A1 to (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group. It is.
  • an acrylic copolymer resin having a (meth) acryloyl group and a hydroxyl group in the side chain is formed.
  • the carboxyl group of (meth) acrylic acid ester having (meth) acrylic acid and / or carboxyl group reacts with the epoxy group of the acrylic copolymer resin obtained in step A1 to form an ester structure.
  • a hydroxyl group derived from an epoxy group is formed.
  • an acrylic copolymer resin containing a monomer unit having both a hydroxyl group and a (meth) acryloyl group in the side chain can be obtained.
  • the monomer unit having both a hydroxyl group and a (meth) acryloyl group in the side chain is the monomer unit (UA2), and is exemplified by the monomer unit represented by the formula (2).
  • process A1 can be used as an organic solvent in process A2.
  • the (meth) acrylic acid and / or the (meth) acrylic acid ester having a carboxyl group to be reacted with the acrylic copolymer resin obtained in the step A1 is a total of the epoxy groups in the side chain in the acrylic copolymer resin.
  • the total number of moles (total amount) of carboxyl groups in the (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups with respect to the number of moles is 0.7 to 1.3, for example. It is preferable to use in the range of 0.8 to 1.1, and it is more preferable to use in the range of 0.95 to 1.0.
  • the double bond equivalent (g / mol) calculated by the following formula in the acrylic copolymer resin obtained in the above step A2 is not particularly limited, but is preferably 100 to 1000 g / mol, and more preferably 150 It is -800 g / mol, More preferably, it is 200-600 g / mol.
  • Double bond equivalent (g / mol) weight-average molecular weight of acrylic copolymer resin / number of (meth) acryloyl groups contained in acrylic copolymer resin
  • the step A3 is a step of producing an acrylic copolymer resin by reacting the acrylic copolymer resin obtained in the step A2 with a polybasic acid anhydride.
  • step A3 the hydroxyl group of the acrylic copolymer resin obtained in step A2 reacts with the polybasic acid anhydride to form a carboxyl group derived from the polybasic acid anhydride in the acrylic copolymer resin.
  • the acrylic copolymer resin (A) becomes an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain.
  • the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain is the monomer unit (UA1) and is exemplified by the monomer unit represented by the formula (1).
  • the amount (total amount) of the polybasic acid anhydride used in Step A3 is preferably 1 to 80 parts by weight, more preferably 4 to 60 parts per 100 parts by weight of the acrylic copolymer resin obtained in Step A2. Part by weight, more preferably 6 to 40 parts by weight.
  • a reaction accelerator can be used.
  • a reaction accelerator is a compound having a function of accelerating the reaction rate when a compound having an epoxy group (oxiranyl group) reacts with a polybasic acid anhydride.
  • the reaction accelerator known or conventional ones can be used and are not particularly limited.
  • 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (for example, phenol salt, octyl) Acid salt, p-toluenesulfonate, formate, tetraphenylborate, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (eg, phenol salt, octylate)
  • DBU 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • a salt thereof eg, phenol
  • the (meth) acrylic acid ester having an epoxy group is not particularly limited as long as it is an acrylic acid ester having an epoxy group in the molecule.
  • the (meth) acrylic acid ester having a carboxyl group is not particularly limited as long as it is an acrylic acid ester having a carboxyl group in the molecule.
  • 2-acryloyloxyethyl-succinic acid, 2-acryloyloxyethylhexa Examples include hydrophthalic acid, 2-acryloyloxyethyl-phthalic acid, and the like.
  • the (meth) acrylic acid ester having a hydrocarbon group is not particularly limited as long as it is a (meth) acrylic acid ester having a hydrocarbon group in the molecule.
  • the other radical polymerizable compound is not particularly limited as long as it is a compound having radical polymerization properties.
  • (meth) acrylamide, N-methyl (meth) acrylamide, N-propyl (meth) acrylamide, N- Acrylamide compounds such as tert-butyl (meth) acrylamide, N-tert-octyl (meth) acrylamide and diacetone (meth) acrylamide
  • radical polymerizable groups such as vinyl group, vinyl ether group, vinylaryl group and vinyloxycarbonyl group A compound having one or more in a molecule
  • vinylpyrrolidone acrylonitrile and the like.
  • the polybasic acid anhydride is not particularly limited.
  • succinic anhydride methyl succinic anhydride, maleic anhydride, citraconic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, methyl Dibasic acid anhydrides such as tetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, methylcyclohexenetetracarboxylic
  • the acid anhydride include acid anhydrides, a mixture of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, and acid anhydrides such as ethylene glycol bistrimellitic anhydride (ethylene glycol bisanhydro trimellitate).
  • polybasic acid anhydrides include, for example, Ricacid MH-700F (4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride mixture: manufactured by Shin Nippon Rika Co., Ltd.), Ricacid TMEG-500 (ethylene glycol bis Anhydrotrimellitate, manufactured by Shin Nippon Rika Co., Ltd.), Ricacid TMEG-200 (ethylene glycol bisanhydro trimellitate: manufactured by Shin Nippon Rika Co., Ltd.), and trimellitic anhydride (trimellitic anhydride: Mitsubishi) Gas Chemical Co., Ltd.) can be used.
  • the acrylic copolymer resin (A) can be produced by appropriately utilizing a known reaction in addition to the above production method.
  • the acrylic copolymer resin (B) of the present invention is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A). It is characterized by that.
  • the difference in resin skeleton means that the monomer unit constituting the acrylic copolymer resin (A) and the monomer unit constituting the acrylic copolymer resin (B) do not completely match.
  • the monomer unit contained in the acrylic copolymer resin (B) is not particularly limited.
  • the monomer unit has a (meth) acryloyl group in the side chain and does not have a carboxyl group, or has a carboxyl group in the side chain.
  • the acrylic copolymer resin (B) is preferably an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chains of separate monomer units.
  • a monomer unit having a hydrocarbon group in the side chain and other monomer units may be included.
  • the monomer unit having a hydrocarbon group and other monomer units include those exemplified in the section of the acrylic copolymer resin (A).
  • One of the differences in the resin skeleton between the acrylic copolymer resin (A) and the acrylic copolymer resin (B) is, for example, the presence or absence of the monomer unit (UA1).
  • the acrylic copolymer resin (B) is not particularly limited as long as it has the above-mentioned characteristics.
  • it has a (meth) acryloyl group derived from a (meth) acrylic acid ester having an epoxy group in the side chain.
  • It is preferably an acrylic copolymer resin, and a (meth) acryloyl group and a hydroxyl group derived from a (meth) acrylic acid ester having an epoxy group, and a (meth) acrylic acid having a (meth) acrylic acid and / or carboxyl group
  • An acrylic copolymer resin having a carboxyl group derived from an ester in the side chain is more preferable.
  • the acrylic copolymer resin (B) may further have a side chain derived from a (meth) acrylic acid ester having a hydrocarbon group or a side chain derived from another radical polymerizable compound.
  • the (meth) acrylic acid ester having the epoxy group, the (meth) acrylic acid ester having a carboxyl group, the (meth) acrylic acid ester having a hydrocarbon group, and other radical polymerizable compounds may be acrylic. What was illustrated by the term of the copolymer resin (A) is mentioned.
  • the acrylic copolymer resin (B) of the present invention is an acrylic copolymer resin obtained by a reaction between an acrylic copolymer having a carboxyl group in a side chain and a (meth) acrylic ester having an epoxy group. Also good.
  • the resin acid value of the acrylic copolymer resin (B) is not particularly limited, but is preferably 20 to 200 mgKOH / g, more preferably 25 to 150 mgKOH / g, and still more preferably 30 to 120 mgKOH / g.
  • the resin acid value is in the above range, the heat stability is improved, and the resolution during alkali development is improved.
  • the weight average molecular weight of the acrylic copolymer resin (B) is not particularly limited, but is preferably 5000 to 30000, more preferably 5000 to 25000, and still more preferably 8000 to 15000.
  • the weight average molecular weight is within the above range, the heat resistance is good and the solubility in a solvent (such as an organic solvent) is good, so that the workability is excellent.
  • the content of the acrylic copolymer resin (B) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, More preferably, it is 15 to 85% by weight.
  • the resin content is as described above. When the content of the acrylic copolymer resin (B) is within the above range, the heat stability and curability are improved.
  • Cyclomer P (ACA200) manufactured by Daicel Ornex Co., Ltd., whose basic skeleton is composed of an acrylic copolymer [weight average molecular weight 15000 to 18000, resin acid value 105-125 mg KOH / g], cyclomer P (ACA230AA) [weight average molecular weight 10,000-16000, resin acid value 33-47 mg KOH / g], cyclomer P (ACA200M) [weight average molecular weight 10,000-13,000, resin acid value 105- 125 mgKOH / g], cyclomer P (ACAZ250) [weight average molecular weight 9000 to 12000, resin acid value 70 to 80 mgKOH / g], cyclomer P (ACA320) [weight average molecular weight 20000 to 27000, resin acid value 120 to 140 mgKOH / g It can be used.
  • ACA230AA weight average molecular weight 10,000-16000, resin acid value 33-47 mg KOH / g
  • Photopolymerization initiator (C) examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, and 1- (4-isopropylphenyl) -2.
  • the content of the photopolymerization initiator (C) relative to the resin content (100 parts by weight) in the active energy ray-curable composition for photoresist is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight. Part by weight, more preferably 0.5 to 3 parts by weight.
  • the resin content is as described above.
  • the content of the photopolymerization initiator (C) with respect to the active energy ray-curable composition for photoresist (100% by weight) is preferably 0.01 to 5% by weight, more preferably 0.1 to 3% by weight. .
  • the active energy ray-curable composition for a photoresist of the present invention can use an organic solvent for the purpose of obtaining a uniform film thickness when the composition is applied to a substrate and for the purpose of adjusting the viscosity.
  • organic solvent known or commonly used organic solvents can be used and are not particularly limited, and examples thereof include glycol solvents, ester solvents, ketone solvents, and mixed solvents containing these solvents.
  • propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, and a mixture thereof are preferable.
  • the organic solvent in the composition of this invention, can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the content (blending amount) of the organic solvent in the composition of the present invention is not particularly limited. For example, it is 10 to 10 parts by weight based on 100 parts by weight of the total content of acrylic copolymer resins (A) and (B). 5000 parts by weight, preferably 20 to 3000 parts by weight, more preferably 30 to 2000 parts by weight.
  • the active energy ray-curable composition for a photoresist of the present invention is a resin such as an epoxy resin or an acrylic copolymer resin other than the acrylic copolymer resins (A) and (B), a colorant (for example, Other components such as a dye may be further included.
  • the content (blending amount) of these other components is not particularly limited, and can be appropriately set from well-known and conventional amounts.
  • the active energy ray-curable composition for photoresists of the present invention can be blended with an epoxy resin for adjusting the hardness of the coating film.
  • an epoxy resin is not particularly limited.
  • aromatic epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and bisphenol A-novolak type epoxy resin are particularly preferable.
  • these content (blending amount) is not specifically limited, It can set suitably from well-known usual amount.
  • the active energy ray-curable composition for photoresist of the present invention can be obtained by blending and mixing the components constituting the composition by a known or conventional method.
  • an acrylic copolymer resin (A) and an acrylic copolymer resin (B) are dissolved in an organic solvent (resist solvent), and a photopolymerization initiator (C ) To obtain the composition of the present invention.
  • an acrylic copolymer resin (A) dissolved in an organic solvent (resist solvent) and an acrylic copolymer resin (B) dissolved in an organic solvent (resist solvent) are mixed at a certain ratio,
  • the composition of the present invention can be obtained by the method of adding the photopolymerization initiator (C) to the obtained solution.
  • the resin acid value (X) obtained by the following calculation formula is preferably 40 to 105 mgKOH / g, more preferably 42 to 104 mgKOH / g, Preferably, it is 44 to 103 mg KOH / g.
  • the resin acid value (X) is within the above range, the heat stability is improved, and the resolution during alkali development is improved.
  • the active energy ray-curable composition for photoresist of the present invention can be cured by using an active energy ray or the like to obtain a cured product.
  • the pattern can be formed by applying the composition onto a base material or a substrate, curing (drying), and developing the composition. More specifically, after applying the active energy ray-curable composition for photoresist of the present invention onto a base material or a substrate and drying to form a coating film (resist film), the above-mentioned composition is passed through a predetermined mask.
  • a fine pattern can be formed with high accuracy by curing (for example, exposing) the coating film to form a latent image pattern and then developing. By forming a pattern in such a process, a semiconductor can be manufactured with high accuracy and high efficiency.
  • a known or conventional base material or substrate can be used, and is not particularly limited.
  • a silicon wafer a metal base material (substrate), a plastic base material (substrate), a glass base material (substrate). ), Ceramic substrate (substrate), and the like.
  • the composition (photosensitive resin composition) of the present invention can be applied using a conventional application means such as a spin coater, a dip coater, or a roller coater.
  • the thickness of the coating film is not particularly limited, but is preferably 0.01 to 200 ⁇ m, more preferably 0.02 to 150 ⁇ m.
  • light having various wavelengths for example, ultraviolet rays, X-rays, etc.
  • light having various wavelengths for example, ultraviolet rays, X-rays, etc.
  • semiconductor resists g-line, i-line, excimer laser (for example, XeCl, KrF, KrCl, ArF, ArCl, etc.), extreme ultraviolet light (EUV), etc.
  • the composition (resist composition, lithography composition) of the present invention is particularly suitable for exposure with far ultraviolet light having a wavelength of 220 nm or less.
  • the exposure energy is not particularly limited, but is preferably 1 to 1000 mJ / cm 2 , more preferably 2 to 100 mJ / cm 2 .
  • the total number of moles (total amount) of carboxyl groups in (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups relative to the total number of moles of epoxy groups in the acrylic copolymer resin Is 1.
  • the property values of the solution containing the acrylic copolymer resin (P-1) are described below. Viscosity: 1877 mPa ⁇ s / 25 ° C., resin content: 50% by weight, hydroxyl value of resin content: 144 mg KOH / g, double bond equivalent: 270 g / mol
  • the mixture was aged for 2 hours, and 6 g of VAZO 67 was added 3 times every 1 hour. Furthermore, in order to make a polymerization initiator disappear, it heated up to 125 degreeC and heated for 5 hours. The temperature was lowered to 105 ° C. and 7 g of 4-methoxyphenol as a stabilizer and 7 g of benzyldimethylamine as a reaction catalyst were added. Thereafter, 436 g of acrylic acid was added dropwise over 1 hour. After confirming that the acid value was 2.0 mgKOH / g or less and the oxirane oxygen concentration was 0.1% or less, the temperature was lowered to 80 ° C.
  • an acrylic copolymer resin (A-1) having a (meth) acryloyl group and a carboxyl group in the side chain The property values of the solution containing the acrylic copolymer resin (A-1) are described below. Viscosity: 34500 mPa ⁇ s / 25 ° C., resin content: 62.6% by weight, resin acid value: 61 mg KOH / g, weight average molecular weight (resin content): 30000
  • the acrylic copolymer resin (A-1) the content of the monomer unit having both the (meth) acryloyl group and the carboxyl group in the side chain with respect to the total amount of the monomer unit was 50.8% by weight.
  • Viscosity 15600 mPa ⁇ s / 25 ° C., resin content: 54.2% by weight, resin acid value: 66 mgKOH / g, weight average molecular weight (resin content): 40000
  • the content of the monomer unit having both the (meth) acryloyl group and the carboxyl group in the side chain with respect to the total amount of the monomer unit was 19.4% by weight.
  • Viscosity 55000 mPa ⁇ s / 25 ° C., resin content: 66.9 wt%, resin acid value: 61 mg KOH / g, weight average molecular weight (resin content): 30000
  • the content of the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer unit was 33.6% by weight.
  • the property values of the solution containing the acrylic copolymer resin (A-4) are described below. Viscosity: 48000 mPa ⁇ s / 25 ° C., resin content: 65 wt%, resin acid value: 59 mg KOH / g, weight average molecular weight (resin content): 25000
  • the content of the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer unit was 34.2% by weight.
  • the property values of the solution containing the acrylic copolymer resin (A-5) are described below. Viscosity: 80700 mPa ⁇ s / 25 ° C., resin content: 58.3% by weight, resin acid value: 65 mgKOH / g, weight average molecular weight (resin content): 30000
  • the content of the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer unit was 37.5% by weight.
  • the weight average molecular weights of the acrylic copolymer resins (A-1) to (A-5) were obtained by GPC (gel permeation gas chromatography) method based on standard polystyrene under the following measurement conditions.
  • Solvent Tetrahydrofuran Phase flow rate: 1 mL / min
  • Sample injection volume 10 ⁇ L
  • Sample concentration 0.2 mg / mL
  • Cyclomer P ACA230AA weight average molecular weight 14,000, resin acid value 40 mgKOH / g, manufactured by Daicel Ornex Co., Ltd.
  • Cyclomer P ACA200M weight average molecular weight 12,000, resin acid value 110 mgKOH / g, Daicel Ornex (stock) )
  • Cyclomer P ACAZ250 weight average molecular weight 10,000, resin acid value 77 mgKOH / g, manufactured by Daicel Ornex Co., Ltd.
  • Irgacure 184 1-hydroxycyclohexyl phenyl ketone, manufactured by BASF Japan Ltd.
  • the curable composition containing both the acrylic copolymer resin (A) and the acrylic copolymer resin (B) has good heat stability and good curability. Became clear.
  • the acrylic copolymer resin (A) or the acrylic copolymer resin (B) when used alone, it becomes clear that the heat stability is remarkably deteriorated. It was. That is, in the evaluation of the heat stability, in the curable composition containing the acrylic copolymer resin (A) or the acrylic copolymer resin (B) alone, the resin reacts with the acrylic copolymer. It became clear that the curable composition containing the resin (A) and the acrylic copolymer resin (B) in a mixed manner can suppress the reaction between the resins.
  • the active energy ray-curable composition for photoresist of the present invention uses at least two kinds of acrylic copolymer resins having different resin skeletons and having (meth) acryloyl group and carboxyl group in the side chain, preheating ( In the case of heat drying), the curing reaction of the resin component by heating is difficult to proceed (high heat stability), and since it has good curability when cured by active energy rays, the development sensitivity is good. .
  • an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain, and an acrylic copolymer having a (meth) acryloyl group and a carboxyl group in the side chain of separate monomer units.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided is an active energy ray curable composition for photoresists, which has excellent heating stability and exhibits good curability when cured. An active energy ray curable composition for photoresists, which contains an acrylic copolymer resin (A), an acrylic copolymer resin (B) and a photopolymerization initiator (C), and wherein: the acrylic copolymer resin (A) has a (meth)acryloyl group and a carboxyl group in side chains; and the acrylic copolymer resin (B) has a (meth)acryloyl group and a carboxyl group in side chains, while having a resin skeleton which is different from that of the acrylic copolymer resin (A).

Description

フォトレジスト用活性エネルギー線硬化性組成物Active energy ray-curable composition for photoresist
 本発明はフォトレジスト用活性エネルギー線硬化性組成物に関する。本願は、2015年8月31日に日本に出願した、特願2015-171029号の優先権を主張し、その内容をここに援用する。 The present invention relates to an active energy ray-curable composition for photoresist. This application claims the priority of Japanese Patent Application No. 2015-171029 for which it applied to Japan on August 31, 2015, and uses the content here.
 近年、各種プリント回路基板のレジストパターンの形成において、配線パターンの高密度化に伴い、より微細かつ緻密なパターン形成が必要とされると共に、その解像性と寸法精度の向上が求められてきている。この様なレジストパターンの形成において、ノボラック型エポキシアクリレートに多塩基酸無水物を反応させることで得られる紫外線硬化型樹脂を含む組成物(特許文献1)や、グリシジル(メタ)アクリレート、これと共重合可能な他のエチレン性不飽和単量体、(メタ)アクリル酸、及び飽和又は不飽和の多塩基酸無水物から得られる樹脂を含む組成物(特許文献2)が用いられている。なお、これらの組成物(フォトレジストインク)を基板へ塗工する際は均一な膜厚を得る必要があるため、通常、これらの組成物は有機溶剤を含む。 In recent years, in the formation of resist patterns on various printed circuit boards, finer and finer pattern formation has been required along with the increase in the density of wiring patterns, and improvements in resolution and dimensional accuracy have been demanded. Yes. In the formation of such a resist pattern, a composition containing an ultraviolet curable resin obtained by reacting a novolak epoxy acrylate with a polybasic acid anhydride (Patent Document 1), glycidyl (meth) acrylate, The composition (patent document 2) containing the resin obtained from the other ethylenically unsaturated monomer which can superpose | polymerize, (meth) acrylic acid, and a saturated or unsaturated polybasic acid anhydride is used. In addition, since it is necessary to obtain a uniform film thickness when applying these compositions (photoresist ink) to a substrate, these compositions usually contain an organic solvent.
 一般的に、フォトレジストインクは、スプレー、スピンコート、ロールコート、及びスクリーン印刷等の塗工手段を用いて基板上に塗布され、その後、有機溶剤を揮発させるために加熱される。なお、この工程は一般的に予備加熱と呼ばれる。その後、パターンを描いたフォトマスクを塗膜上に貼り付け、高圧水銀灯、キセノンランプ、メタルハライドランプ、LEDランプ等を用いて活性エネルギー線を照射し、アルカリ水溶液による現像を行うことによりパターンが形成される。そして、塗膜に残存する反応性基を熱硬化させることで、レジストパターンが形成された塗膜を得ることができる。 Generally, a photoresist ink is applied on a substrate using a coating means such as spray, spin coating, roll coating, and screen printing, and then heated to volatilize an organic solvent. This process is generally called preheating. A pattern is then formed by applying a photomask depicting the pattern onto the coating film, irradiating active energy rays using a high-pressure mercury lamp, xenon lamp, metal halide lamp, LED lamp, etc., and developing with an alkaline aqueous solution. The And the coating film in which the resist pattern was formed can be obtained by thermosetting the reactive group which remain | survives in a coating film.
 前記の予備加熱を行って有機溶剤を揮発させることにより、活性エネルギー線による硬化前の塗膜の粘着性を低下させることができるため、フォトマスクの貼り付けや引き剥がしが容易となる。しかし、予備加熱による有機溶剤の揮発が不十分な場合は塗膜の粘着性が高いためにフォトマスクの貼り付けや引き剥がしが困難であると共に、活性エネルギー線による硬化時に発生した樹脂中のラジカルが、残存した有機溶剤によってトラップされるため硬化反応が充分に進行せず、現像性の低下や解像度の低下を引き起こすことがある。そのため、予備加熱時には、溶剤の残存を避けるために加熱温度を高くする方法や、加熱時間を長くする方法が取られている。 Since the organic solvent is volatilized by performing the preheating as described above, the adhesiveness of the coating film before being cured by the active energy rays can be reduced, so that the photomask can be easily attached and peeled off. However, if the volatilization of the organic solvent due to preheating is insufficient, the adhesiveness of the coating film is high, so that it is difficult to attach or remove the photomask, and radicals in the resin generated during curing with active energy rays. However, since it is trapped by the remaining organic solvent, the curing reaction does not proceed sufficiently, which may cause a decrease in developability and a decrease in resolution. Therefore, at the time of preheating, a method of increasing the heating temperature and a method of extending the heating time are taken in order to avoid the remaining of the solvent.
特開昭61-243869号公報Japanese Patent Laid-Open No. 61-243869 特許第3580429号公報Japanese Patent No. 3580429
 しかしながら、予備加熱の段階で(メタ)アクリロイル基やカルボキシル基等の反応性基を有する樹脂を含む組成物を加熱すると、これらの反応性基が活性化して硬化反応を引き起こすため、アルカリ現像性の低下や解像度の低下に繋がることになる。また、組成物を塗布する基板の耐熱性を考慮する必要もあったため、予備加熱の温度や時間の条件を調整することは容易ではなかった。この様な問題を解決するために、予備加熱の条件(加熱乾燥条件)に関わらずに現像感度を高く保持することができる組成物が求められていた。 However, when a composition containing a resin having a reactive group such as a (meth) acryloyl group or a carboxyl group is heated in the preheating stage, these reactive groups are activated to cause a curing reaction. This will lead to a decrease in resolution and resolution. In addition, since it is necessary to consider the heat resistance of the substrate to which the composition is applied, it is not easy to adjust the preheating temperature and time conditions. In order to solve such problems, there has been a demand for a composition that can maintain high development sensitivity regardless of the preheating conditions (heating and drying conditions).
 したがって、本発明の課題は、幅広い加熱乾燥条件によっても硬化反応が進行せず、その後の活性エネルギー線の照射による硬化反応においては良好な硬化性を有する、現像感度に優れるフォトレジスト用活性エネルギー線硬化性組成物を提供することにある。 Therefore, the problem of the present invention is that the curing reaction does not proceed even under a wide range of heating and drying conditions, and the active energy beam for photoresists that has good curability in the subsequent curing reaction by irradiation with active energy rays and has excellent development sensitivity. The object is to provide a curable composition.
 本発明者は、特定構造を有するアクリル系共重合樹脂(A)、特定構造を有するアクリル系共重合樹脂(B)、及び光重合開始剤(C)を含有するフォトレジスト用活性エネルギー線硬化性組成物が予備加熱時(加熱乾燥時)の安定性に優れ、硬化反応が進行しないために塗膜を十分に乾燥することができるためにフォトマスクの引き剥がしが容易に行えること、さらに、活性エネルギー線の照射による硬化反応においては良好な硬化性を有するため現像感度に優れることを見出し、本発明を完成させた。 The inventor of the present invention is an active energy ray curable resin for photoresist containing an acrylic copolymer resin (A) having a specific structure, an acrylic copolymer resin (B) having a specific structure, and a photopolymerization initiator (C). The composition has excellent stability during preheating (during heat drying), and since the curing reaction does not proceed, the coating film can be sufficiently dried, so that the photomask can be easily peeled off, and further active In the curing reaction by irradiation of energy rays, it has been found that since it has good curability, it has excellent development sensitivity, and the present invention has been completed.
 すなわち、本発明は、以下のフォトレジスト用活性エネルギー線硬化性組成物及びその硬化物を提供する。
[1]アクリル系共重合樹脂(A)、アクリル系共重合樹脂(B)、及び光重合開始剤(C)を含有するフォトレジスト用活性エネルギー線硬化性組成物であって、
 アクリル系共重合樹脂(A)が、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂であり、
 アクリル系共重合樹脂(B)が、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有し、前記のアクリル系共重合樹脂(A)とは樹脂骨格が異なるアクリル系共重合樹脂であるフォトレジスト用活性エネルギー線硬化性組成物。
[2]アクリル系共重合樹脂(A)が、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位を含むアクリル系共重合樹脂である[1]に記載のフォトレジスト用活性エネルギー線硬化性組成物。
[3]アクリル系共重合樹脂(A)を構成するモノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量が、15~70重量%である[2]に記載のフォトレジスト用活性エネルギー線硬化性組成物。
[4]アクリル系共重合樹脂(B)が、側鎖に(メタ)アクリロイル基を有し、且つカルボキシル基を有しないモノマー単位と、側鎖にカルボキシル基を有し、且つ(メタ)アクリロイル基を有しないモノマー単位とを含むアクリル系共重合樹脂である[1]~[3]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[5]アクリル系共重合樹脂(A)が、少なくとも、側鎖に多塩基酸無水物に由来するカルボキシル基を有するアクリル系共重合樹脂である[1]~[4]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[6]アクリル系共重合樹脂(A)の樹脂酸価が30~200mgKOH/g、重量平均分子量が5000~100000である[1]~[5]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[7]アクリル系共重合樹脂(B)の樹脂酸価が20~200mgKOH/g、重量平均分子量が5000~30000である[1]~[6]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[8]下記の計算式によって得られる樹脂酸価(X)が40~105mgKOH/gである[1]~[7]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
 樹脂酸価(X)(mgKOH/g)=(アクリル系共重合樹脂(A)の樹脂酸価)×a+(アクリル系共重合樹脂(B)の樹脂酸価)×b
 a=アクリル系共重合樹脂(A)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
 b=アクリル系共重合樹脂(B)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
[9][1]~[8]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物の硬化物。
That is, the present invention provides the following active energy ray-curable composition for photoresist and a cured product thereof.
[1] An active energy ray-curable composition for a photoresist containing an acrylic copolymer resin (A), an acrylic copolymer resin (B), and a photopolymerization initiator (C),
The acrylic copolymer resin (A) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain,
The acrylic copolymer resin (B) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A). An active energy ray-curable composition for resist.
[2] The active energy ray for a photoresist according to [1], wherein the acrylic copolymer resin (A) is an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain. Curable composition.
[3] The content of monomer units having both (meth) acryloyl groups and carboxyl groups in the side chain with respect to the total amount of monomer units constituting the acrylic copolymer resin (A) is 15 to 70% by weight [2 ] The active energy ray-curable composition for photoresists described in the above.
[4] The acrylic copolymer resin (B) has a monomer unit having a (meth) acryloyl group in the side chain and no carboxyl group, a carboxyl group in the side chain, and a (meth) acryloyl group. The active energy ray-curable composition for photoresists according to any one of [1] to [3], which is an acrylic copolymer resin containing a monomer unit that does not contain.
[5] In any one of [1] to [4], the acrylic copolymer resin (A) is an acrylic copolymer resin having a carboxyl group derived from a polybasic acid anhydride at least in a side chain. The active energy ray-curable composition for a photoresist as described.
[6] The photoresist activity according to any one of [1] to [5], wherein the acrylic copolymer resin (A) has a resin acid value of 30 to 200 mg KOH / g and a weight average molecular weight of 5000 to 100,000. Energy ray curable composition.
[7] The photoresist activity according to any one of [1] to [6], wherein the acrylic copolymer resin (B) has a resin acid value of 20 to 200 mg KOH / g and a weight average molecular weight of 5000 to 30000. Energy ray curable composition.
[8] The active energy ray-curable composition for photoresists according to any one of [1] to [7], wherein the resin acid value (X) obtained by the following formula is 40 to 105 mg KOH / g.
Resin acid value (X) (mg KOH / g) = (resin acid value of acrylic copolymer resin (A)) × a + (resin acid value of acrylic copolymer resin (B)) × b
a = content of acrylic copolymer resin (A) (g) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
b = content (g) of acrylic copolymer resin (B) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
[9] A cured product of the active energy ray-curable composition for photoresists according to any one of [1] to [8].
 より具体的には、本発明は、以下に関するものである。
[1’]アクリル系共重合樹脂(A)、アクリル系共重合樹脂(B)、及び光重合開始剤(C)を含有するフォトレジスト用活性エネルギー線硬化性組成物であって、
 アクリル系共重合樹脂(A)が、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂であり、
 アクリル系共重合樹脂(B)が、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有し、前記のアクリル系共重合樹脂(A)とは樹脂骨格が異なるアクリル系共重合樹脂であるフォトレジスト用活性エネルギー線硬化性組成物。
[2’]アクリル系共重合樹脂(A)が、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位を含むアクリル系共重合樹脂である[1’]に記載のフォトレジスト用活性エネルギー線硬化性組成物。
[3’]アクリル系共重合樹脂(A)が、さらに、側鎖に(メタ)アクリロイル基及び水酸基を共に有するモノマー単位、側鎖にカルボキシル基を有するモノマー単位、及び側鎖に炭化水素基を有するモノマー単位からなる群より選ばれた少なくとも1つのモノマー単位を含む[2’]に記載のフォトレジスト用活性エネルギー線硬化性組成物。
[4’]アクリル系共重合樹脂(A)が、さらに、後述のその他のモノマー単位を含む[2’]又は[3’]に記載のフォトレジスト用活性エネルギー線硬化性組成物。
[5’]側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位が後述の式(1)で表されるモノマー単位である[2’]~[4’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[6’]側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位が後述の式(1-1)又は式(1-2)で表されるモノマー単位である[2’]~[5’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[7’]側鎖に(メタ)アクリロイル基及び水酸基を共に有するモノマー単位が後述の式(2)で表されるモノマー単位であり、側鎖にカルボキシル基を有するモノマー単位が後述の式(3)で表されるモノマー単位であり、側鎖に炭化水素基を有するモノマー単位が後述の式(4)で表されるモノマー単位である[3’]~[6’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[8’]その他のモノマー単位が後述の式(5)で表されるモノマー単位である[4’]~[7’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[9’]アクリル系共重合樹脂(A)が、下記の工程により製造されるアクリル系共重合樹脂である[1’]~[8’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
 工程A1:ラジカル重合反応(アクリル重合反応)により、エポキシ基を有する(メタ)アクリル酸エステルに由来するモノマー単位を少なくとも含むアクリル系共重合樹脂を作製する工程
 工程A2:工程A1で得られたアクリル系共重合樹脂と(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルとを反応に付すことで、後述のモノマー単位(UA2)を含むアクリル系共重合樹脂を作製する工程
 工程A3:工程A2で得られたアクリル系共重合樹脂と多塩基酸無水物とを反応させることで、後述のモノマー単位(UA1)を含むアクリル系共重合樹脂を作製する工程
[10’]アクリル系共重合樹脂(A)を構成するモノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量が、15~70重量%である[2’]~[9’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[11’]アクリル系共重合樹脂(B)が、側鎖に(メタ)アクリロイル基を有し、且つカルボキシル基を有しないモノマー単位と、側鎖にカルボキシル基を有し、且つ(メタ)アクリロイル基を有しないモノマー単位とを含むアクリル系共重合樹脂である[1’]~[10’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[12’]アクリル系共重合樹脂(B)が、さらに、側鎖に炭化水素基を有するモノマー単位、及び後述のその他のモノマー単位からなる群より選ばれた少なくとも1つのモノマー単位を含む[11’]に記載のフォトレジスト用活性エネルギー線硬化性組成物。
[13’]アクリル系共重合樹脂(B)が、側鎖にカルボキシル基を有するアクリル共重合体と、エポキシ基を有する(メタ)アクリル酸エステルとの反応により得られるアクリル系共重合樹脂である[1’]~[12’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[14’]アクリル系共重合樹脂(A)の樹脂酸価が30~200mgKOH/g、重量平均分子量が5000~100000である[1’]~[13’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[15’]アクリル系共重合樹脂(B)の樹脂酸価が20~200mgKOH/g、重量平均分子量が5000~30000である[1’]~[14’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[16’]下記の計算式によって得られる樹脂酸価(X)が40~105mgKOH/gである[1’]~[15’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
 樹脂酸価(X)(mgKOH/g)=(アクリル系共重合樹脂(A)の樹脂酸価)×a+(アクリル系共重合樹脂(B)の樹脂酸価)×b
 a=アクリル系共重合樹脂(A)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
 b=アクリル系共重合樹脂(B)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
[17’]フォトレジスト用活性エネルギー線硬化性組成物中の樹脂分(100重量%)に対するアクリル系共重合樹脂(A)の含有量が、5~95重量%である[1’]~[16’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[18’]フォトレジスト用活性エネルギー線硬化性組成物中の樹脂分(100重量%)に対するアクリル系共重合樹脂(B)の含有量が、5~95重量%である[1’]~[17’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[19’]フォトレジスト用活性エネルギー線硬化性組成物中の樹脂分(100重部)に対する光重合開始剤(C)の含有量が、0.01~10重量部である[1’]~[18’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物。
[20’][1’]~[19’]のいずれか1つに記載のフォトレジスト用活性エネルギー線硬化性組成物の硬化物。
More specifically, the present invention relates to the following.
[1 ′] An active energy ray-curable composition for a photoresist containing an acrylic copolymer resin (A), an acrylic copolymer resin (B), and a photopolymerization initiator (C),
The acrylic copolymer resin (A) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain,
The acrylic copolymer resin (B) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A). An active energy ray-curable composition for resist.
[2 ′] The photoresist activity according to [1 ′], wherein the acrylic copolymer resin (A) is an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain. Energy ray curable composition.
[3 ′] The acrylic copolymer resin (A) further includes a monomer unit having both a (meth) acryloyl group and a hydroxyl group in the side chain, a monomer unit having a carboxyl group in the side chain, and a hydrocarbon group in the side chain. The active energy ray-curable composition for photoresists according to [2 ′], which contains at least one monomer unit selected from the group consisting of monomer units.
[4 ′] The active energy ray-curable composition for photoresists according to [2 ′] or [3 ′], wherein the acrylic copolymer resin (A) further includes other monomer units described later.
[5 ′] The monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain is a monomer unit represented by the following formula (1): [2 ′] to [4 ′] The active energy ray-curable composition for a photoresist as described.
[6 ′] The monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain is a monomer unit represented by the following formula (1-1) or formula (1-2): 5 ']. The active energy ray-curable composition for photoresists according to any one of 5'].
[7 ′] A monomer unit having both a (meth) acryloyl group and a hydroxyl group in the side chain is a monomer unit represented by the following formula (2), and a monomer unit having a carboxyl group in the side chain is represented by the following formula (3 Any one of [3 ′] to [6 ′], wherein the monomer unit having a hydrocarbon group in the side chain is a monomer unit represented by the following formula (4): The active energy ray-curable composition for a photoresist as described.
[8 ′] The active energy ray-curable composition for photoresists according to any one of [4 ′] to [7 ′], wherein the other monomer unit is a monomer unit represented by the following formula (5): .
[9 ′] The active energy for photoresist according to any one of [1 ′] to [8 ′], wherein the acrylic copolymer resin (A) is an acrylic copolymer resin produced by the following process A linear curable composition.
Step A1: Step of producing an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group by radical polymerization reaction (acrylic polymerization reaction) Step A2: Acrylic obtained in Step A1 A step of producing an acrylic copolymer resin containing a monomer unit (UA2) to be described later by subjecting a copolymer copolymer resin and a (meth) acrylic acid ester having (meth) acrylic acid and / or a carboxyl group to the reaction A3: A step of producing an acrylic copolymer resin containing a monomer unit (UA1) described later by reacting the acrylic copolymer resin obtained in step A2 with a polybasic acid anhydride [10 ′] acrylic Both (meth) acryloyl group and carboxyl group are present in the side chain with respect to the total amount of monomer units constituting the copolymer resin (A). The content of the monomer units is 15 to 70 wt% [2 '] - [9' Photoresist active energy ray curable composition according to any one of.
[11 ′] The acrylic copolymer resin (B) has a (meth) acryloyl group in the side chain and a monomer unit having no carboxyl group, a carboxyl group in the side chain, and (meth) acryloyl The active energy ray-curable composition for photoresists according to any one of [1 ′] to [10 ′], which is an acrylic copolymer resin containing a monomer unit having no group.
[12 ′] The acrylic copolymer resin (B) further includes at least one monomer unit selected from the group consisting of a monomer unit having a hydrocarbon group in the side chain and other monomer units described later. '] Active energy ray-curable composition for photoresists.
[13 ′] The acrylic copolymer resin (B) is an acrylic copolymer resin obtained by a reaction between an acrylic copolymer having a carboxyl group in the side chain and a (meth) acrylic acid ester having an epoxy group. The active energy ray-curable composition for photoresists according to any one of [1 ′] to [12 ′].
[14 '] The photopolymer according to any one of [1'] to [13 '], wherein the acrylic acid copolymer resin (A) has a resin acid value of 30 to 200 mgKOH / g and a weight average molecular weight of 5000 to 100,000. An active energy ray-curable composition for resist.
[15 ′] The photopolymer according to any one of [1 ′] to [14 ′], wherein the acrylic copolymer resin (B) has a resin acid value of 20 to 200 mgKOH / g and a weight average molecular weight of 5000 to 30000. An active energy ray-curable composition for resist.
[16 ′] Active energy ray curability for photoresists according to any one of [1 ′] to [15 ′], wherein the resin acid value (X) obtained by the following formula is 40 to 105 mg KOH / g Composition.
Resin acid value (X) (mg KOH / g) = (resin acid value of acrylic copolymer resin (A)) × a + (resin acid value of acrylic copolymer resin (B)) × b
a = content of acrylic copolymer resin (A) (g) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
b = content (g) of acrylic copolymer resin (B) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
[17 ′] The content of the acrylic copolymer resin (A) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is 5 to 95% by weight. 16 ′]. The active energy ray-curable composition for photoresists according to any one of 16).
[18 ′] The content of the acrylic copolymer resin (B) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is 5 to 95% by weight. 17 ′]. The active energy ray-curable composition for photoresists according to any one of 17 ′].
[19 ′] The content of the photopolymerization initiator (C) with respect to the resin content (100 parts by weight) in the active energy ray-curable composition for photoresist is 0.01 to 10 parts by weight [1 ′] to The active energy ray-curable composition for photoresist according to any one of [18 ′].
[20 ′] A cured product of the active energy ray-curable composition for photoresists according to any one of [1 ′] to [19 ′].
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、互いに樹脂骨格が異なる、側鎖に(メタ)アクリロイル基及びカルボキシル基を有する少なくとも2種のアクリル系共重合樹脂を用いるため、予備加熱(加熱乾燥)の際に、加熱することによる樹脂成分の硬化反応が進行しにくく(加熱安定性が高く)、活性エネルギー線による硬化の際に良好な硬化性を有するため、現像感度が良好である。特に、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位を含むアクリル系共重合樹脂と、別々のモノマー単位の側鎖に(メタ)アクリロイル基とカルボキシル基とを有するアクリル系共重合樹脂を組み合わせることで、その理由は定かではないものの、樹脂同士の反応性の兼ね合いから、活性エネルギー線による硬化性を保持しつつ、加熱乾燥時の硬化を抑制することが可能である。 Since the active energy ray-curable composition for photoresist of the present invention uses at least two kinds of acrylic copolymer resins having different resin skeletons and having (meth) acryloyl group and carboxyl group in the side chain, preheating ( In the case of heat drying), the curing reaction of the resin component by heating is difficult to proceed (high heat stability), and since it has good curability when cured by active energy rays, the development sensitivity is good. . In particular, an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain, and an acrylic copolymer having a (meth) acryloyl group and a carboxyl group in the side chain of separate monomer units. Although the reason is not certain by combining the resins, it is possible to suppress the curing at the time of heating and drying while maintaining the curability by the active energy ray from the balance of the reactivity between the resins.
 本発明は、特定の構造を有するアクリル系共重合樹脂(A)、特定の構造を有するアクリル系共重合樹脂(B)、及び光重合開始剤(C)を含有するフォトレジスト用活性エネルギー線硬化性組成物に関するものである。なお、本発明のフォトレジスト用活性エネルギー線硬化性組成物は、前記の成分以外にも後述の有機溶剤、その他の成分(粘度調整剤等)を含んでいても良い。 The present invention relates to an active energy ray curing for photoresist containing an acrylic copolymer resin (A) having a specific structure, an acrylic copolymer resin (B) having a specific structure, and a photopolymerization initiator (C). The present invention relates to a sex composition. In addition, the active energy ray-curable composition for a photoresist of the present invention may contain an organic solvent described later and other components (viscosity modifier and the like) in addition to the above components.
 なお、本発明におけるアクリル系共重合樹脂とは、側鎖にカルボキシル基を有する(メタ)アクリル系モノマー単位(例えば、(メタ)アクリル酸や(メタ)アクリル酸エステルに由来するモノマー単位)を必須のモノマー単位として含み、さらに他のラジカル重合性モノマーをモノマー単位として含んでいても良い共重合体である。また、本明細書におけるアクリル系共重合樹脂の主鎖とは、当該樹脂を作製する際にラジカル重合反応(例えば、アクリル重合反応)により生じる炭素鎖(ラジカル重合性基に由来する炭素鎖)を指し、側鎖(又は側鎖の置換基)とは、主鎖に結合した置換基を指す。例えば、後述の式(1)で表されるモノマー単位において、括弧内の-CH2-C-で表される炭素鎖が主鎖を表しており、R1やR1と同一の炭素原子に結合する置換基が側鎖(又は側鎖の置換基)を表している。 In addition, the acrylic copolymer resin in the present invention requires a (meth) acrylic monomer unit having a carboxyl group in the side chain (for example, a monomer unit derived from (meth) acrylic acid or (meth) acrylic acid ester). It is a copolymer that may contain as a monomer unit, and may further contain other radical polymerizable monomers as monomer units. In addition, the main chain of the acrylic copolymer resin in the present specification refers to a carbon chain (carbon chain derived from a radical polymerizable group) generated by a radical polymerization reaction (for example, an acrylic polymerization reaction) when producing the resin. The side chain (or side chain substituent) refers to a substituent bonded to the main chain. For example, in the monomer unit represented by the following formula (1), the carbon chain represented by —CH 2 —C— in parentheses represents the main chain, and the same carbon atom as R 1 or R 1 The bonded substituent represents a side chain (or a side chain substituent).
<アクリル系共重合樹脂(A)>
 本発明におけるアクリル系共重合樹脂(A)は、側鎖に(メタ)アクリロイル基及びカルボキシル基を有するアクリル系共重合樹脂であることを特徴とする。アクリル系共重合樹脂(A)は前記の特徴を有していれば特に限定されないが、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位(UA1)を少なくとも含むアクリル系共重合樹脂であることが好ましい。
<Acrylic copolymer resin (A)>
The acrylic copolymer resin (A) in the present invention is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain. The acrylic copolymer resin (A) is not particularly limited as long as it has the above-mentioned characteristics, but the acrylic copolymer resin containing at least a monomer unit (UA1) having both a (meth) acryloyl group and a carboxyl group in the side chain. It is preferable that
 本発明のアクリル系共重合樹脂(A)は、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位(UA1)以外にも、側鎖に(メタ)アクリロイル基及び水酸基を共に有するモノマー単位(UA2)、側鎖にカルボキシル基を有するモノマー単位(UA3)、及び側鎖に炭化水素基を有するモノマー単位(UA4)からなる群より選ばれた少なくとも1つのモノマー単位を含んでもよく、さらに、その他のモノマー単位(UA5)を含んでもよい。なお、前記のモノマー単位を、それぞれ、モノマー単位(UA1)、モノマー単位(UA2)、モノマー単位(UA3)、モノマー単位(UA4)、モノマー単位(UA5)と称することがある。 The acrylic copolymer resin (A) of the present invention is a monomer having both a (meth) acryloyl group and a hydroxyl group in the side chain in addition to the monomer unit (UA1) having both a (meth) acryloyl group and a carboxyl group in the side chain. It may contain at least one monomer unit selected from the group consisting of a unit (UA2), a monomer unit (UA3) having a carboxyl group in a side chain, and a monomer unit (UA4) having a hydrocarbon group in a side chain, Other monomer units (UA5) may be included. The monomer units may be referred to as a monomer unit (UA1), a monomer unit (UA2), a monomer unit (UA3), a monomer unit (UA4), and a monomer unit (UA5), respectively.
 モノマー単位(UA1)は、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位であれば特に限定されないが、例えば下記式(1)で表されるモノマー単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
Although monomer unit (UA1) will not be specifically limited if it is a monomer unit which has both a (meth) acryloyl group and a carboxyl group in a side chain, For example, it is preferable that it is a monomer unit represented by following formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1及びR2はそれぞれ同一又は異なって水素原子又はメチル基を示す。A1は、三価の炭化水素基(脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、又はこれらが2以上結合した基)、又は、2以上の炭化水素基が1又は2以上のエステル構造(-CO-O-)を介して結合した三価の基を示す。A1の総炭素数は、例えば2~20、好ましくは2~15、より好ましくは2~10である。A2は置換基を有していても良い二価の炭化水素基を示す。前記の二価の炭化水素基としては、例えば、炭素数2~10の二価の炭化水素基、炭素数3~12の脂環式炭化水素基、炭素数6~14の二価の芳香族炭化水素基、又はこれらが2以上結合した基等が挙げられる。前記置換基としては、例えば、カルボキシル基又は酸無水物構造(-CO-O-CO-)を有していても良い炭化水素基;カルボキシル基又は酸無水物構造(-CO-O-CO-)を有していても良い炭化水素基の1又は2以上と、エステル構造(-CO-O-)の1又は2以上とが結合した基;カルボキシル基又は酸無水物構造(-CO-O-CO-)を有していても良い炭化水素基の1又は2以上と、カルボニル基(-CO-)の1又は2以上とが結合した基;又は、カルボキシル基又は酸無水物構造(-CO-O-CO-)を有していても良い炭化水素基の1又は2以上と、エステル構造(-CO-O-)の1又は2以上と、カルボニル基(-CO-)の1又は2以上とが結合した基等が挙げられる。A2は、エステル構造(-CO-O-)を介して同一又は異なるアクリル系共重合樹脂の側鎖と結合していてもよい。A2の総炭素数は、例えば2~25、好ましくは2~20である。 In formula (1), R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group. A 1 is a trivalent hydrocarbon group (an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a group in which two or more of these are bonded), or two or more hydrocarbon groups are 1 Alternatively, it represents a trivalent group bonded through two or more ester structures (—CO—O—). The total number of carbon atoms of A 1 is, for example, 2 to 20, preferably 2 to 15, and more preferably 2 to 10. A 2 represents a divalent hydrocarbon group which may have a substituent. Examples of the divalent hydrocarbon group include a divalent hydrocarbon group having 2 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, and a divalent aromatic group having 6 to 14 carbon atoms. Examples thereof include a hydrocarbon group or a group in which two or more of these are bonded. Examples of the substituent include a hydrocarbon group optionally having a carboxyl group or an acid anhydride structure (—CO—O—CO—); a carboxyl group or an acid anhydride structure (—CO—O—CO—). ) A group in which one or more of the hydrocarbon groups optionally having an ester group and one or more of the ester structure (—CO—O—) are bonded; a carboxyl group or an acid anhydride structure (—CO—O) A group in which one or more hydrocarbon groups optionally having —CO—) are bonded to one or more hydrocarbon groups (—CO—); or a carboxyl group or an acid anhydride structure (— CO—O—CO—) may have one or more hydrocarbon groups, one or more ester structures (—CO—O—), and one or more carbonyl groups (—CO—). And a group in which two or more are bonded. A 2 may be bonded to the side chain of the same or different acrylic copolymer resin through an ester structure (—CO—O—). The total number of carbon atoms of A 2 is, for example, 2 to 25, preferably 2 to 20.
 また、モノマー単位(UA1)は、下記式(1-1)又は式(1-2)で表されるモノマー単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000002
The monomer unit (UA1) is more preferably a monomer unit represented by the following formula (1-1) or formula (1-2).
Figure JPOXMLDOC01-appb-C000002
 式(1-1)及び式(1-2)中、R1、R2、及びA2は前記と同様のものが挙げられる。R3は炭素数1~10(好ましくは炭素数1~5)の二価の炭化水素基を示す。R4は炭素数1~10(好ましくは炭素数1~6、より好ましくは炭素数1~3)の二価の炭化水素を示し、nは0又は1を示す。R5~R7はそれぞれ同一又は異なって水素又は炭素数1~15の炭化水素基を示す。なお、R5と、R6又はR7とは互いに結合して隣接する2つの炭素原子とともに環を形成してもよい。前記の環としては炭素数5~12の脂環(単環又は多環)の炭化水素等が挙げられる。 In the formula (1-1) and the formula (1-2), examples of R 1 , R 2 , and A 2 are the same as those described above. R 3 represents a divalent hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms). R 4 represents a divalent hydrocarbon having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and n represents 0 or 1. R 5 to R 7 are the same or different and each represents hydrogen or a hydrocarbon group having 1 to 15 carbon atoms. R 5 and R 6 or R 7 may be bonded to each other to form a ring with two adjacent carbon atoms. Examples of the ring include alicyclic (monocyclic or polycyclic) hydrocarbons having 5 to 12 carbon atoms.
 モノマー単位(UA2)としては、側鎖に(メタ)アクリロイル基及び水酸基を共に有するモノマー単位であれば特に限定されないが、例えば下記式(2)で表されるモノマー単位が好ましく、下記式(2-1)又は式(2-2)で表されるモノマー単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000003
The monomer unit (UA2) is not particularly limited as long as it is a monomer unit having both a (meth) acryloyl group and a hydroxyl group in the side chain. For example, a monomer unit represented by the following formula (2) is preferable, and the following formula (2 It is more preferably a monomer unit represented by -1) or formula (2-2).
Figure JPOXMLDOC01-appb-C000003
 式(2)、式(2-1)、及び式(2-2)中のR1~R7、A1、及びnは、前記の式(1)、式(1-1)、及び式(1-2)で説明したものと同様のものが挙げられる。 R 1 to R 7 , A 1 , and n in Formula (2), Formula (2-1), and Formula (2-2) are the same as those in Formula (1), Formula (1-1), and Formula The same as described in (1-2) can be mentioned.
 モノマー単位(UA3)としては、側鎖にカルボキシル基を有するモノマー単位であってモノマー単位(UA1)以外のものであれば特に限定されないが、例えば、下記式(3)で表されるモノマー単位が挙げられる。
Figure JPOXMLDOC01-appb-C000004
The monomer unit (UA3) is not particularly limited as long as it is a monomer unit having a carboxyl group in the side chain and other than the monomer unit (UA1). For example, the monomer unit represented by the following formula (3) is Can be mentioned.
Figure JPOXMLDOC01-appb-C000004
 式(3)中、R8は同一又は異なって水素原子又はメチル基を示す。R9は炭素数1~10(好ましくは炭素数1~6、より好ましくは炭素数1~3)の二価の炭化水素を示し、lは0又は1を示す。 In formula (3), R 8 is the same or different and represents a hydrogen atom or a methyl group. R 9 represents a divalent hydrocarbon having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and l represents 0 or 1.
 モノマー単位(UA4)としては、側鎖に炭化水素基を有するモノマー単位であれば特に限定されないが、例えば下記式(4)で表されるモノマー単位が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Although it will not specifically limit as a monomer unit (UA4) if it is a monomer unit which has a hydrocarbon group in a side chain, For example, the monomer unit represented by following formula (4) is mentioned.
Figure JPOXMLDOC01-appb-C000005
 式(4)中、R10は同一又は異なって水素原子又はメチル基を示す。R11は炭素数1~20(好ましくは炭素数1~10、より好ましくは炭素数1~5)の一価の炭化水素基を示す。前記の炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらが2以上結合した基が挙げられる。 In formula (4), R 10 is the same or different and represents a hydrogen atom or a methyl group. R 11 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms). Examples of the hydrocarbon group include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
 モノマー単位(UA5)としては、モノマー単位(UA1)~(UA4)と重合体を形成し得るモノマー単位であれば特に限定されない。モノマー単位(UA5)の一例としては、下記式(5)で表される側鎖にエポキシ基を有するモノマー単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
The monomer unit (UA5) is not particularly limited as long as it is a monomer unit capable of forming a polymer with the monomer units (UA1) to (UA4). An example of the monomer unit (UA5) includes a monomer unit having an epoxy group in a side chain represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000006
 式(5)中、R12は同一又は異なって水素原子又はメチル基を示す。R13は炭素数1~10(好ましくは炭素数1~5)の二価の炭化水素基を示す。R14~R16はそれぞれ同一又は異なって水素原子又は炭素数1~15の炭化水素基を示す。なお、R14と、R15又はR16とは互いに結合して隣接する2つの炭素原子とともに環を形成してもよい。前記の環としては炭素数5~12の脂環(単環又は多環)の炭化水素等が挙げられる。 In formula (5), R 12 is the same or different and represents a hydrogen atom or a methyl group. R 13 represents a divalent hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms). R 14 to R 16 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms. R 14 and R 15 or R 16 may be bonded to each other to form a ring with two adjacent carbon atoms. Examples of the ring include alicyclic (monocyclic or polycyclic) hydrocarbons having 5 to 12 carbon atoms.
 本発明のアクリル系共重合樹脂(A)を構成するモノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位(UA1)の含有量は、15~70重量%であることが好ましく、より好ましくは17~60重量%であり、さらに好ましくは19~55重量%である。 The content of the monomer unit (UA1) having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer units constituting the acrylic copolymer resin (A) of the present invention is 15 to 70% by weight. It is preferably 17 to 60% by weight, more preferably 19 to 55% by weight.
 アクリル系共重合樹脂(A)は、例えば、少なくとも側鎖に多塩基酸無水物に由来するカルボキシル基を有するアクリル系共重合樹脂であることが好ましく、側鎖に多塩基酸無水物に由来するカルボキシル基と、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルに由来する(メタ)アクリロイル基とを有するアクリル系共重合樹脂であることがより好ましく、側鎖に多塩基酸無水物に由来するカルボキシル基と、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルに由来する(メタ)アクリロイル基と、エポキシ基を有する(メタ)アクリル酸エステルに由来する水酸基を有するアクリル系共重合樹脂であることがより好ましい。 The acrylic copolymer resin (A) is preferably an acrylic copolymer resin having a carboxyl group derived from a polybasic acid anhydride in at least a side chain, and is derived from a polybasic acid anhydride in a side chain. More preferably, it is an acrylic copolymer resin having a carboxyl group and a (meth) acryloyl group derived from (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group, and a polybasic side chain. Derived from a carboxyl group derived from an acid anhydride, a (meth) acryloyl group derived from a (meth) acrylic acid ester having (meth) acrylic acid and / or a carboxyl group, and a (meth) acrylic acid ester having an epoxy group An acrylic copolymer resin having a hydroxyl group is more preferable.
 アクリル系共重合樹脂(A)の樹脂酸価は特に限定されないが、30~200mgKOH/gであることが好ましく、より好ましくは40~100mgKOH/g、さらに好ましくは50~80mgKOH/gである。樹脂酸価が上記範囲内であることで加熱安定性が向上し、アルカリ現像時の解像度が良好となる。 The resin acid value of the acrylic copolymer resin (A) is not particularly limited, but is preferably 30 to 200 mgKOH / g, more preferably 40 to 100 mgKOH / g, and still more preferably 50 to 80 mgKOH / g. When the resin acid value is within the above range, the heat stability is improved, and the resolution during alkali development is improved.
 アクリル系共重合樹脂(A)の重量平均分子量は特に限定されないが、好ましくは5000~100000であり、より好ましくは7000~80000、さらに好ましくは10000~50000である。重量平均分子量が上記範囲内であることで、加熱安定性が良好であり、溶媒(有機溶媒等)への溶解性が良好であるため作業性に優れる。なお、本発明のアクリル系共重合樹脂の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィーにて測定される標準ポリスチレン換算の分子量より算出される。 The weight average molecular weight of the acrylic copolymer resin (A) is not particularly limited, but is preferably 5000 to 100,000, more preferably 7000 to 80,000, and still more preferably 10,000 to 50,000. When the weight average molecular weight is within the above range, the heat stability is good, and the solubility in a solvent (such as an organic solvent) is good, so that the workability is excellent. The weight average molecular weight of the acrylic copolymer resin of the present invention is calculated from the molecular weight in terms of standard polystyrene measured by gel permeation chromatography.
 フォトレジスト用活性エネルギー線硬化性組成物中の樹脂分(100重量%)に対するアクリル系共重合樹脂(A)の含有量は、5~95重量%が好ましく、より好ましくは10~90重量%、さらに好ましくは15~85重量%である。なお、樹脂分とは、例えば、アクリル系共重合樹脂(A)、アクリル系共重合樹脂(B)、及び後述のエポキシ樹脂等の硬化性化合物を指し、光重合開始剤(C)や有機溶剤等を除くものを指す。アクリル系共重合樹脂(A)の含有量が上記範囲内であることで加熱安定性、及び硬化性が良好となる。 The content of the acrylic copolymer resin (A) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, More preferably, it is 15 to 85% by weight. The resin component refers to, for example, a curable compound such as an acrylic copolymer resin (A), an acrylic copolymer resin (B), and an epoxy resin described later, and a photopolymerization initiator (C) or an organic solvent. Refers to things other than. Heat stability and sclerosis | hardenability become favorable because content of acrylic type copolymer resin (A) exists in the said range.
[アクリル系共重合樹脂(A)の製造方法]
 前記アクリル系共重合樹脂(A)は、例えば、下記の工程により製造することができる。
 工程A1:ラジカル重合反応(アクリル重合反応)により、エポキシ基を有する(メタ)アクリル酸エステルに由来するモノマー単位を少なくとも含むアクリル系共重合樹脂を作製する工程
 工程A2:工程A1で得られたアクリル系共重合樹脂と(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルとを反応に付すことで、モノマー単位(UA2)を含むアクリル系共重合樹脂を作製する工程
 工程A3:工程A2で得られたアクリル系共重合樹脂と多塩基酸無水物とを反応させることで、モノマー単位(UA1)を含むアクリル系共重合樹脂を作製する工程
[Method for producing acrylic copolymer resin (A)]
The acrylic copolymer resin (A) can be produced, for example, by the following steps.
Step A1: Step of producing an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group by radical polymerization reaction (acrylic polymerization reaction) Step A2: Acrylic obtained in Step A1 The process which produces acrylic copolymer resin containing a monomer unit (UA2) by attaching | subjecting a system copolymer resin and (meth) acrylic acid ester which has (meth) acrylic acid and / or a carboxyl group to reaction Process A3: A step of producing an acrylic copolymer resin containing a monomer unit (UA1) by reacting the acrylic copolymer resin obtained in step A2 with a polybasic acid anhydride.
 アクリル系共重合樹脂(A)の製造方法のモデルを以下に示すが、本発明は本モデルにより何ら限定されるものではない。下記のモデルでは、式(5)で表されるモノマー単位を少なくとも含むアクリル系共重合樹脂と(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルとを反応させ、式(2-1)及び/又は式(2-2)で表されるモノマー単位を含むアクリル系共重合樹脂を作製した後、さらに多塩基酸無水物と反応させることにより、式(1-1)及び/又は式(1-2)で表されるモノマー単位を含むアクリル系共重合樹脂を作製できることを説明している。つまり、アクリル系共重合樹脂(A)は、側鎖にエポキシ基を少なくとも含むアクリル系共重合樹脂(エポキシ基を有する(メタ)アクリル酸エステルに由来するモノマー単位を少なくとも含むアクリル系共重合樹脂)と、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルと、多塩基酸無水物の反応により得られるアクリル系共重合樹脂であってもよい。なお、本モデル中のR1~R7、A2、及びnは前述の通りである。 Although the model of the manufacturing method of acrylic copolymer resin (A) is shown below, this invention is not limited at all by this model. In the following model, an acrylic copolymer resin containing at least the monomer unit represented by the formula (5) is reacted with a (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group, and the formula (2 -1) and / or an acrylic copolymer resin containing a monomer unit represented by the formula (2-2), and then reacting with a polybasic acid anhydride to obtain a formula (1-1) and / or Alternatively, it is explained that an acrylic copolymer resin containing a monomer unit represented by the formula (1-2) can be produced. That is, the acrylic copolymer resin (A) is an acrylic copolymer resin containing at least an epoxy group in the side chain (an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group). And (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group and an acrylic copolymer resin obtained by a reaction of a polybasic acid anhydride. Note that R 1 to R 7 , A 2 , and n in this model are as described above.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(工程A1)
 工程A1は、ラジカル重合反応(アクリル重合反応)により、エポキシ基を有する(メタ)アクリル酸エステルに由来するモノマー単位を少なくとも含むアクリル系共重合樹脂を作製する工程である。なお、エポキシ基を有する(メタ)アクリル酸エステル以外にも、例えば、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルや、炭化水素基を有する(メタ)アクリル酸エステル、さらに必要に応じてその他のラジカル重合性化合物をラジカル重合反応に付すことによってアクリル系共重合樹脂を作製してもよい。つまり、エポキシ基を有する(メタ)アクリル酸エステルに由来するモノマー単位を少なくとも含むアクリル系共重合樹脂は、例えば、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルに由来するモノマー単位、炭化水素基を有する(メタ)アクリル酸エステルに由来するモノマー単位、さらにその他のラジカル重合性化合物に由来するモノマー単位を含んでいても良い。
(Process A1)
Step A1 is a step of preparing an acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group by radical polymerization reaction (acrylic polymerization reaction). In addition to the (meth) acrylic acid ester having an epoxy group, for example, a (meth) acrylic acid ester having a (meth) acrylic acid and / or a carboxyl group, a (meth) acrylic acid ester having a hydrocarbon group, Further, if necessary, an acrylic copolymer resin may be produced by subjecting another radical polymerizable compound to a radical polymerization reaction. That is, the acrylic copolymer resin containing at least a monomer unit derived from a (meth) acrylic acid ester having an epoxy group is derived from, for example, a (meth) acrylic acid ester having (meth) acrylic acid and / or a carboxyl group. It may contain a monomer unit, a monomer unit derived from a (meth) acrylic acid ester having a hydrocarbon group, and a monomer unit derived from another radical polymerizable compound.
 なお、工程A1における、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルに由来するモノマー単位は、前記のモノマー単位(UA3)に相当し、前記の式(3)で表されるモノマー単位にて例示され、炭化水素基を有する(メタ)アクリル酸エステルに由来するモノマー単位は、前記のモノマー単位(UA4)に相当し、前記の式(4)で表されるモノマー単位にて例示され、その他のラジカル重合性化合物に由来するモノマー単位は、前記のモノマー単位(UA5)に相当する。この様な工程により、側鎖にエポキシ基を有するアクリル系共重合樹脂を得ることができる。 In addition, the monomer unit derived from (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group in step A1 corresponds to the monomer unit (UA3) and is represented by the formula (3). The monomer unit derived from the (meth) acrylic acid ester having a hydrocarbon group, which corresponds to the monomer unit (UA4), is represented by the formula (4). The monomer unit derived from the other radical polymerizable compound corresponds to the monomer unit (UA5). By such a process, an acrylic copolymer resin having an epoxy group in the side chain can be obtained.
 工程A1において(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルを用いる場合、その使用量は、エポキシ基を有する(メタ)アクリル酸エステル100重量部に対して、5~400重量部が好ましく、より好ましくは10~350重量部、さらに好ましくは15~300重量部である。 When (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group is used in step A1, the amount used is 5 to 400 per 100 parts by weight of the (meth) acrylic acid ester having an epoxy group. Part by weight is preferred, more preferably 10 to 350 parts by weight, and still more preferably 15 to 300 parts by weight.
 工程A1で炭化水素基を有する(メタ)アクリル酸エステルを用いる場合、その使用量は、エポキシ基を有する(メタ)アクリル酸エステル100重量部に対して、0.1~30重量部が好ましく、より好ましくは0.5~20重量部、さらに好ましくは1~15重量部である。 When the (meth) acrylic acid ester having a hydrocarbon group is used in Step A1, the amount used is preferably 0.1 to 30 parts by weight with respect to 100 parts by weight of the (meth) acrylic acid ester having an epoxy group. The amount is more preferably 0.5 to 20 parts by weight, still more preferably 1 to 15 parts by weight.
 工程A1におけるラジカル重合反応(アクリル重合反応)には重合開始剤を用いることもできるが、この様な重合開始剤としては、例えば、ハイドロパーオキサイド類のジイソプロピルベンゼンハイドロパーオキサイド、キュメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、及びジアルキルパーオキサイド類のジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-(t-ブチルパーオキシ)-ヘキサン、1,3-ビス-(t-ブチルパーオキシイソプロピル)-ベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(t-ブチルパーオキシ)-ヘキシン-3、及びジアシルパーオキサイド類のイソブチリルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、アセチルパーオキサイド、及びケトンパーオキサイド類のメチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、アセチルアセトンパーオキサイド、及びアルキルパーエステル類のt-ブチルパーオキシビバレート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、及びパーオキシジカーボネート類のジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、及びアゾ化合物類としてアゾビスイソブチロニトリル、2,2-アゾビスイソ酪酸メチル、アゾビスシアノバレロニトリル、1,1-アゾビス(シクロヘキセン-1-カルボニトリル)、2,2-アゾビス{2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド}等が挙げられる。 In the radical polymerization reaction (acrylic polymerization reaction) in step A1, a polymerization initiator can be used. Examples of such polymerization initiator include diisopropylbenzene hydroperoxide, cumene hydroperoxide of hydroperoxides, t-Butyl hydroperoxide and dicumyl peroxides of dialkyl peroxides, 2,5-dimethyl-2,5-di- (t-butylperoxy) -hexane, 1,3-bis- (t-butyl Peroxyisopropyl) -benzene, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) -hexyne-3, and diacyl peroxide Isobutyryl peroxide, 2,4-dichlorobenzoyl -Methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, acetylacetone peroxide, and t-butyl peroxybiva of alkyl peroxides , T-butylperoxy-2-ethylhexanoate, t-butylperoxy-3,5,5-trimethylhexaate, t-butylperoxyacetate, t-butylperoxybenzoate, and peroxydicarbonate Diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl -Oxydicarbonate and azo compounds such as azobisisobutyronitrile, methyl 2,2-azobisisobutyrate, azobiscyanovaleronitrile, 1,1-azobis (cyclohexene-1-carbonitrile), 2,2-azobis {2-methyl-N- (2-hydroxyethyl) -propionamide} and the like.
 ラジカル重合反応(アクリル重合反応)は、通常有機溶媒中で行われる。工程A1で用いられる有機溶媒としては、トルエン、キシレン等の炭化水素系溶媒、酢酸n-ブチル、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、グルタル酸ジメチル、コハク酸ジメチル、アジピン酸ジメチル等のエステル系溶媒、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート等のエーテル溶媒等がある。中でも、プロピレングリコールモノメチルエーテルや同アセテート、グルタル酸ジメチル、コハク酸ジメチル、アジピン酸ジメチルのような高沸点溶媒を用いることが好ましい。必要に応じてメチルエチルケトン、酢酸エチル、酢酸ブチルを用いることもできる。上記有機溶剤は、2種以上を組み合わせて使用することもできる。 The radical polymerization reaction (acrylic polymerization reaction) is usually performed in an organic solvent. Examples of the organic solvent used in the step A1 include hydrocarbon solvents such as toluene and xylene, ester solvents such as n-butyl acetate, methyl cellosolve acetate, propylene glycol monomethyl ether acetate, dimethyl glutarate, dimethyl succinate, and dimethyl adipate. Examples of the solvent include ketone solvents such as methyl isobutyl ketone and diisobutyl ketone, ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and diethylene glycol monomethyl ether acetate. Among them, it is preferable to use a high-boiling solvent such as propylene glycol monomethyl ether, the same acetate, dimethyl glutarate, dimethyl succinate, and dimethyl adipate. If necessary, methyl ethyl ketone, ethyl acetate, and butyl acetate can also be used. The said organic solvent can also be used in combination of 2 or more type.
(工程A2)
 工程A2は、工程A1で得られたアクリル系共重合樹脂と(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルとを反応に付すことでアクリル系共重合樹脂を作製する工程である。
(Process A2)
Step A2 is a step of producing an acrylic copolymer resin by subjecting the acrylic copolymer resin obtained in Step A1 to (meth) acrylic acid and / or a (meth) acrylic acid ester having a carboxyl group. It is.
 上記反応により、側鎖に(メタ)アクリロイル基と水酸基を有するアクリル系共重合樹脂が形成される。具体的には、工程A1で得られたアクリル系共重合樹脂のエポキシ基に、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルのカルボキシル基が反応してエステル構造を形成すると共に、エポキシ基に由来する水酸基が形成される。この様な反応により、側鎖に水酸基及び(メタ)アクリロイル基を共に有するモノマー単位を含むアクリル系共重合樹脂を得ることができる。なお、前記の側鎖に水酸基及び(メタ)アクリロイル基を共に有するモノマー単位は、前記のモノマー単位(UA2)であって、前記の式(2)で表されるモノマー単位で例示される。 By the above reaction, an acrylic copolymer resin having a (meth) acryloyl group and a hydroxyl group in the side chain is formed. Specifically, the carboxyl group of (meth) acrylic acid ester having (meth) acrylic acid and / or carboxyl group reacts with the epoxy group of the acrylic copolymer resin obtained in step A1 to form an ester structure. At the same time, a hydroxyl group derived from an epoxy group is formed. By such a reaction, an acrylic copolymer resin containing a monomer unit having both a hydroxyl group and a (meth) acryloyl group in the side chain can be obtained. The monomer unit having both a hydroxyl group and a (meth) acryloyl group in the side chain is the monomer unit (UA2), and is exemplified by the monomer unit represented by the formula (2).
 なお、工程A2における有機溶媒としては、工程A1にて説明したものを用いることができる。 In addition, what was demonstrated in process A1 can be used as an organic solvent in process A2.
 前記の工程A1で得られたアクリル系共重合樹脂と反応させる(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルは、アクリル系共重合樹脂中の側鎖のエポキシ基の総モル数に対して、(メタ)アクリル酸及びカルボキシル基を有する(メタ)アクリル酸エステル中のカルボキシル基の総モル数(総量)が、例えば、0.7~1.3となる範囲で使用することが好ましく、0.8~1.1となる範囲で使用することがより好ましく、0.95~1.0となる範囲で使用することがさらに好ましい。0.7未満である場合は、(メタ)アクリロイル基を有さない成分が混入する可能性があるため、活性エネルギー線硬化時に未硬化成分として存在し、塗膜の現像性を低下させる恐れがある。また、1.3よりも大きいと、遊離(メタ)アクリル酸が系中に存在することとなるため、基材の汚染性を引き起こす可能性がある。 The (meth) acrylic acid and / or the (meth) acrylic acid ester having a carboxyl group to be reacted with the acrylic copolymer resin obtained in the step A1 is a total of the epoxy groups in the side chain in the acrylic copolymer resin. For example, the total number of moles (total amount) of carboxyl groups in the (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups with respect to the number of moles is 0.7 to 1.3, for example. It is preferable to use in the range of 0.8 to 1.1, and it is more preferable to use in the range of 0.95 to 1.0. If it is less than 0.7, there is a possibility that a component not having a (meth) acryloyl group may be mixed, so that it exists as an uncured component at the time of active energy ray curing, which may reduce the developability of the coating film. is there. On the other hand, if it is larger than 1.3, free (meth) acrylic acid is present in the system, which may cause contamination of the substrate.
 前記の工程A2で得られたアクリル系共重合樹脂における、下記式で算出される二重結合当量(g/mol)は特に限定されないが、例えば、100~1000g/molが好ましく、より好ましくは150~800g/molであり、さらに好ましくは200~600g/molである。
 二重結合当量(g/mol)=アクリル系共重合樹脂の重量平均分子量/アクリル系共重合樹脂に含まれる(メタ)アクリロイル基の数
The double bond equivalent (g / mol) calculated by the following formula in the acrylic copolymer resin obtained in the above step A2 is not particularly limited, but is preferably 100 to 1000 g / mol, and more preferably 150 It is -800 g / mol, More preferably, it is 200-600 g / mol.
Double bond equivalent (g / mol) = weight-average molecular weight of acrylic copolymer resin / number of (meth) acryloyl groups contained in acrylic copolymer resin
(工程A3)
 前記の工程A3は、工程A2で得られたアクリル系共重合樹脂と多塩基酸無水物とを反応させることによってアクリル系共重合樹脂を作製する工程である。
(Process A3)
The step A3 is a step of producing an acrylic copolymer resin by reacting the acrylic copolymer resin obtained in the step A2 with a polybasic acid anhydride.
 工程A3では、工程A2で得られたアクリル系共重合樹脂の水酸基と、多塩基酸無水物とが反応することにより、アクリル系共重合樹脂に多塩基酸無水物に由来するカルボキシル基が形成される。この工程により、アクリル系共重合樹脂(A)は、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位を含むアクリル系共重合樹脂となる。なお、前記の側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位は、前記のモノマー単位(UA1)であって、前記の式(1)で表されるモノマー単位で例示される。 In step A3, the hydroxyl group of the acrylic copolymer resin obtained in step A2 reacts with the polybasic acid anhydride to form a carboxyl group derived from the polybasic acid anhydride in the acrylic copolymer resin. The By this step, the acrylic copolymer resin (A) becomes an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain. The monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain is the monomer unit (UA1) and is exemplified by the monomer unit represented by the formula (1).
 工程A3で用いられる多塩基酸無水物の使用量(総量)は、工程A2で得られたアクリル系共重合樹脂100重量部に対して、1~80重量部が好ましく、より好ましくは4~60重量部、さらに好ましくは6~40重量部である。 The amount (total amount) of the polybasic acid anhydride used in Step A3 is preferably 1 to 80 parts by weight, more preferably 4 to 60 parts per 100 parts by weight of the acrylic copolymer resin obtained in Step A2. Part by weight, more preferably 6 to 40 parts by weight.
 工程A3では反応促進剤を用いることができる。反応促進剤は、エポキシ基(オキシラニル基)を有する化合物が多塩基酸無水物と反応する際に、その反応速度を促進する機能を有する化合物である。反応促進剤としては、公知乃至慣用のものを使用でき、特に限定されないが、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩等);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミン等の第三級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール;リン酸エステル;トリフェニルホスフィン、トリス(ジメトキシ)ホスフィン等のホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレート等のホスホニウム化合物;オクチル酸亜鉛、オクチル酸スズ、ステアリン酸亜鉛等の有機金属塩;アルミニウムアセチルアセトン錯体等の金属キレート等が挙げられる。 In step A3, a reaction accelerator can be used. A reaction accelerator is a compound having a function of accelerating the reaction rate when a compound having an epoxy group (oxiranyl group) reacts with a polybasic acid anhydride. As the reaction accelerator, known or conventional ones can be used and are not particularly limited. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (for example, phenol salt, octyl) Acid salt, p-toluenesulfonate, formate, tetraphenylborate, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (eg, phenol salt, octylate) Tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; Imidazoles such as 2-ethyl-4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; Phosphines such as triphenylphosphine and tris (dimethoxy) phosphine; phosphonium compounds such as tetraphenylphosphonium tetra (p-tolyl) borate; organometallic salts such as zinc octylate, tin octylate and zinc stearate; aluminum acetylacetone And metal chelates such as complexes.
 なお、工程A3に使用できる有機溶媒としては、工程A1にて説明したものが挙げられる。 In addition, what was demonstrated in process A1 is mentioned as an organic solvent which can be used for process A3.
 前記のエポキシ基を有する(メタ)アクリル酸エステルとしては、分子内にエポキシ基を有するアクリル酸エステルであれば特に限定されないが、例えば、オキシラニル(メタ)アクリレート、グリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、2-エチルグリシジル(メタ)アクリレート、2-オキシラニルエチル(メタ)アクリレート、2-グリシジルオキシエチル(メタ)アクリレート、3-グリシジルオキシプロピル(メタ)アクリレート、グリシジルオキシフェニル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等の(メタ)アクリル酸エステル誘導体等が挙げられる。 The (meth) acrylic acid ester having an epoxy group is not particularly limited as long as it is an acrylic acid ester having an epoxy group in the molecule. For example, oxiranyl (meth) acrylate, glycidyl (meth) acrylate, 2-methyl Glycidyl (meth) acrylate, 2-ethylglycidyl (meth) acrylate, 2-oxiranylethyl (meth) acrylate, 2-glycidyloxyethyl (meth) acrylate, 3-glycidyloxypropyl (meth) acrylate, glycidyloxyphenyl ( And (meth) acrylic acid ester derivatives such as (meth) acrylate and 3,4-epoxycyclohexylmethyl (meth) acrylate.
 前記のカルボキシル基を有する(メタ)アクリル酸エステルとしては、分子内にカルボキシル基を有するアクリル酸エステルであれば特に限定されないが、例えば、2-アクリロイルオキシエチル-コハク酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、2-アクリロイルオキシエチル-フタル酸等が挙げられる。 The (meth) acrylic acid ester having a carboxyl group is not particularly limited as long as it is an acrylic acid ester having a carboxyl group in the molecule. For example, 2-acryloyloxyethyl-succinic acid, 2-acryloyloxyethylhexa Examples include hydrophthalic acid, 2-acryloyloxyethyl-phthalic acid, and the like.
 前記の炭化水素基を有する(メタ)アクリル酸エステルとしては、分子内に炭化水素基を有する(メタ)アクリル酸エステルであれば特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の直鎖状又は分岐鎖状炭化水素基を有する(メタ)アクリル酸エステル;シクロヘキシル(メタ)アクリレート等の脂環式炭化水素基を有する(メタ)アクリル酸エステル;及び、ベンジル(メタ)アクリレート等の芳香族炭化水素基を有する(メタ)アクリル酸エステル等が挙げられる。 The (meth) acrylic acid ester having a hydrocarbon group is not particularly limited as long as it is a (meth) acrylic acid ester having a hydrocarbon group in the molecule. For example, methyl (meth) acrylate, ethyl (meth) Acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, n-decyl (meth) Linear or branched hydrocarbon groups such as acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, etc. Have (Meth) acrylic acid ester; (meth) acrylic acid ester having an alicyclic hydrocarbon group such as cyclohexyl (meth) acrylate; and (meth) acrylic acid ester having an aromatic hydrocarbon group such as benzyl (meth) acrylate Etc.
 前記のその他のラジカル重合性化合物としては、ラジカル重合性を有する化合物であれば特に限定されないが、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-tert-ブチル(メタ)アクリルアミド、N-tert-オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド等のアクリルアミド系化合物;ビニル基、ビニルエーテル基、ビニルアリール基、及びビニルオキシカルボニル基等のラジカル重合性基を一分子内に1つ以上有する化合物等;及び、ビニルピロリドン、アクリロニトリル等が挙げられる。 The other radical polymerizable compound is not particularly limited as long as it is a compound having radical polymerization properties. For example, (meth) acrylamide, N-methyl (meth) acrylamide, N-propyl (meth) acrylamide, N- Acrylamide compounds such as tert-butyl (meth) acrylamide, N-tert-octyl (meth) acrylamide and diacetone (meth) acrylamide; radical polymerizable groups such as vinyl group, vinyl ether group, vinylaryl group and vinyloxycarbonyl group A compound having one or more in a molecule; and vinylpyrrolidone, acrylonitrile and the like.
 前記の多塩基酸無水物としては特に限定されないが、例えば、無水コハク酸、無水メチルコハク酸、無水マレイン酸、無水シトラコン酸、無水グルタル酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の2塩基酸無水物、及び無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、4-メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸の混合物、エチレングリコールビス無水トリメリット酸(エチレングリコールビスアンヒドロトリメリテート)等の酸無水物を挙げることができる。 The polybasic acid anhydride is not particularly limited. For example, succinic anhydride, methyl succinic anhydride, maleic anhydride, citraconic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, methyl Dibasic acid anhydrides such as tetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, methylcyclohexenetetracarboxylic Examples of the acid anhydride include acid anhydrides, a mixture of 4-methylhexahydrophthalic anhydride and hexahydrophthalic anhydride, and acid anhydrides such as ethylene glycol bistrimellitic anhydride (ethylene glycol bisanhydro trimellitate).
 多塩基酸無水物の市販品としては、例えば、リカシッドMH-700F(4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物:新日本理化(株)製)、リカシッドTMEG-500(エチレングリコールビスアンヒドロトリメリテート、新日本理化(株)製)、リカシッドTMEG-200(エチレングリコールビスアンヒドロトリメリテート:新日本理化(株)製)、及び無水トリメリット酸(無水トリメリット酸:三菱ガス化学(株)製)を用いることができる。 Commercially available polybasic acid anhydrides include, for example, Ricacid MH-700F (4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride mixture: manufactured by Shin Nippon Rika Co., Ltd.), Ricacid TMEG-500 (ethylene glycol bis Anhydrotrimellitate, manufactured by Shin Nippon Rika Co., Ltd.), Ricacid TMEG-200 (ethylene glycol bisanhydro trimellitate: manufactured by Shin Nippon Rika Co., Ltd.), and trimellitic anhydride (trimellitic anhydride: Mitsubishi) Gas Chemical Co., Ltd.) can be used.
 なお、アクリル系共重合樹脂(A)は、上記の製造方法のほか、公知の反応を適宜利用することにより製造することができる。 The acrylic copolymer resin (A) can be produced by appropriately utilizing a known reaction in addition to the above production method.
<アクリル系共重合樹脂(B)>
 本発明のアクリル系共重合樹脂(B)は、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有し、アクリル系共重合樹脂(A)とは樹脂骨格が異なるアクリル系共重合樹脂であることを特徴とする。樹脂骨格が異なるとは、アクリル系共重合樹脂(A)を構成するモノマー単位とアクリル系共重合樹脂(B)を構成するモノマー単位とが完全に一致していないことをいう。
<Acrylic copolymer resin (B)>
The acrylic copolymer resin (B) of the present invention is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A). It is characterized by that. The difference in resin skeleton means that the monomer unit constituting the acrylic copolymer resin (A) and the monomer unit constituting the acrylic copolymer resin (B) do not completely match.
 アクリル系共重合樹脂(B)に含まれるモノマー単位は特に限定されないが、例えば、側鎖に(メタ)アクリロイル基を有し、且つカルボキシル基を有しないモノマー単位や、側鎖にカルボキシル基を有し、且つ(メタ)アクリロイル基を有しないモノマー単位が挙げられ、これらのモノマー単位を同時に含むことが好ましい。つまり、アクリル系共重合樹脂(B)が、別々のモノマー単位の側鎖に(メタ)アクリロイル基と、カルボキシル基とを有するアクリル系共重合樹脂であることが好ましい。また、前記のモノマー単位以外にも、側鎖に炭化水素基を有するモノマー単位や、その他のモノマー単位を含んでいてもよい。なお、前記の炭化水素基を有するモノマー単位やその他のモノマー単位には、アクリル系共重合樹脂(A)の項で例示したものが挙げられる。アクリル系共重合樹脂(A)とアクリル系共重合樹脂(B)との樹脂骨格の相違点の一つとしては、例えば、上記のモノマー単位(UA1)の有無が挙げられる。 The monomer unit contained in the acrylic copolymer resin (B) is not particularly limited. For example, the monomer unit has a (meth) acryloyl group in the side chain and does not have a carboxyl group, or has a carboxyl group in the side chain. And a monomer unit having no (meth) acryloyl group, and it is preferable that these monomer units are included at the same time. That is, the acrylic copolymer resin (B) is preferably an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chains of separate monomer units. Moreover, in addition to the monomer unit, a monomer unit having a hydrocarbon group in the side chain and other monomer units may be included. Examples of the monomer unit having a hydrocarbon group and other monomer units include those exemplified in the section of the acrylic copolymer resin (A). One of the differences in the resin skeleton between the acrylic copolymer resin (A) and the acrylic copolymer resin (B) is, for example, the presence or absence of the monomer unit (UA1).
 また、アクリル系共重合樹脂(B)は前記の特徴を有していれば特に限定されないが、例えば、エポキシ基を有する(メタ)アクリル酸エステルに由来する(メタ)アクリロイル基を側鎖に有するアクリル系共重合樹脂であることが好ましく、エポキシ基を有する(メタ)アクリル酸エステルに由来する(メタ)アクリロイル基及び水酸基と、(メタ)アクリル酸及び/又はカルボキシル基を有する(メタ)アクリル酸エステルに由来するカルボキシル基とを側鎖に有するアクリル系共重合樹脂であることがより好ましい。また、アクリル系共重合樹脂(B)は、さらに、炭化水素基を有する(メタ)アクリル酸エステルに由来する側鎖やその他のラジカル重合性化合物に由来する側鎖を有していて良い。なお、前記のエポキシ基を有する(メタ)アクリル酸エステル、カルボキシル基を有する(メタ)アクリル酸エステル、炭化水素基を有する(メタ)アクリル酸エステル、及びその他のラジカル重合性化合物には、アクリル系共重合樹脂(A)の項で例示したものが挙げられる。 The acrylic copolymer resin (B) is not particularly limited as long as it has the above-mentioned characteristics. For example, it has a (meth) acryloyl group derived from a (meth) acrylic acid ester having an epoxy group in the side chain. It is preferably an acrylic copolymer resin, and a (meth) acryloyl group and a hydroxyl group derived from a (meth) acrylic acid ester having an epoxy group, and a (meth) acrylic acid having a (meth) acrylic acid and / or carboxyl group An acrylic copolymer resin having a carboxyl group derived from an ester in the side chain is more preferable. The acrylic copolymer resin (B) may further have a side chain derived from a (meth) acrylic acid ester having a hydrocarbon group or a side chain derived from another radical polymerizable compound. In addition, the (meth) acrylic acid ester having the epoxy group, the (meth) acrylic acid ester having a carboxyl group, the (meth) acrylic acid ester having a hydrocarbon group, and other radical polymerizable compounds may be acrylic. What was illustrated by the term of the copolymer resin (A) is mentioned.
 本発明のアクリル系共重合樹脂(B)は、側鎖にカルボキシル基を有するアクリル共重合体と、エポキシ基を有する(メタ)アクリル酸エステルとの反応により得られるアクリル系共重合樹脂であってもよい。 The acrylic copolymer resin (B) of the present invention is an acrylic copolymer resin obtained by a reaction between an acrylic copolymer having a carboxyl group in a side chain and a (meth) acrylic ester having an epoxy group. Also good.
 アクリル系共重合樹脂(B)の樹脂酸価は特に限定されないが、20~200mgKOH/gであることが好ましく、より好ましくは25~150mgKOH/g、さらに好ましくは30~120mgKOH/gである。樹脂酸価が上記範囲であることで加熱安定性が向上し、アルカリ現像時の解像度が良好となる。 The resin acid value of the acrylic copolymer resin (B) is not particularly limited, but is preferably 20 to 200 mgKOH / g, more preferably 25 to 150 mgKOH / g, and still more preferably 30 to 120 mgKOH / g. When the resin acid value is in the above range, the heat stability is improved, and the resolution during alkali development is improved.
 アクリル系共重合樹脂(B)の重量平均分子量は特に限定されないが、好ましくは5000~30000であり、より好ましくは5000~25000、さらに好ましくは8000~15000である。重量平均分子量が上記範囲内であることで、耐熱性が良好であり、溶媒(有機溶媒等)への溶解性が良好であるため作業性に優れる。 The weight average molecular weight of the acrylic copolymer resin (B) is not particularly limited, but is preferably 5000 to 30000, more preferably 5000 to 25000, and still more preferably 8000 to 15000. When the weight average molecular weight is within the above range, the heat resistance is good and the solubility in a solvent (such as an organic solvent) is good, so that the workability is excellent.
 フォトレジスト用活性エネルギー線硬化性組成物中の樹脂分(100重量%)に対するアクリル系共重合樹脂(B)の含有量は、5~95重量%が好ましく、より好ましくは10~90重量%、さらに好ましくは15~85重量%である。なお、樹脂分は上述の通りである。アクリル系共重合樹脂(B)の含有量が上記範囲内であることで加熱安定性、及び硬化性が良好となる。 The content of the acrylic copolymer resin (B) with respect to the resin content (100% by weight) in the active energy ray-curable composition for photoresist is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, More preferably, it is 15 to 85% by weight. The resin content is as described above. When the content of the acrylic copolymer resin (B) is within the above range, the heat stability and curability are improved.
 フォトレジスト用活性エネルギー線硬化性組成物に含まれるアクリル系共重合樹脂(A)とアクリル系共重合樹脂(B)との比率(重量部)は、前者:後者=5~95:95~5であることが好ましく、より好ましくは10~90:90~10である。 The ratio (parts by weight) of the acrylic copolymer resin (A) and the acrylic copolymer resin (B) contained in the active energy ray-curable composition for photoresist is the former: the latter = 5 to 95: 95 to 5 Preferably, it is 10 to 90:90 to 10.
 アクリル系共重合樹脂(B)の市販品としては、基本骨格がアクリル共重合体から構成されている株式会社ダイセル・オルネクス製のサイクロマーP(ACA200)[重量平均分子量15000~18000、樹脂酸価105~125mgKOH/g]、サイクロマーP(ACA230AA)[重量平均分子量10000~16000、樹脂酸価33~47mgKOH/g]、サイクロマーP(ACA200M)[重量平均分子量10000~13000、樹脂酸価105~125mgKOH/g]、サイクロマーP(ACAZ250)[重量平均分子量9000~12000、樹脂酸価70~80mgKOH/g]、サイクロマーP(ACA320)[重量平均分子量20000~27000、樹脂酸価120~140mgKOH/g]を用いることができる。 As a commercial product of the acrylic copolymer resin (B), Cyclomer P (ACA200) manufactured by Daicel Ornex Co., Ltd., whose basic skeleton is composed of an acrylic copolymer [weight average molecular weight 15000 to 18000, resin acid value 105-125 mg KOH / g], cyclomer P (ACA230AA) [weight average molecular weight 10,000-16000, resin acid value 33-47 mg KOH / g], cyclomer P (ACA200M) [weight average molecular weight 10,000-13,000, resin acid value 105- 125 mgKOH / g], cyclomer P (ACAZ250) [weight average molecular weight 9000 to 12000, resin acid value 70 to 80 mgKOH / g], cyclomer P (ACA320) [weight average molecular weight 20000 to 27000, resin acid value 120 to 140 mgKOH / g It can be used.
<光重合開始剤(C)>
 光重合開始剤(C)としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフインオキサイド、メチルフェニルグリオキシレート、ベンジル、カンファーキノン等が挙げられる。
<Photopolymerization initiator (C)>
Examples of the photopolymerization initiator (C) include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, and 1- (4-isopropylphenyl) -2. -Hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2 -Propyl) ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin phenyl ether, Benzyldimethyl ketal, benzof Non, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3'-dimethyl-4-methoxybenzophenone, thioxanthone, 2- Chlorthioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone Son, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, benzyl, camphorquinone and the like.
 フォトレジスト用活性エネルギー線硬化性組成物中の樹脂分(100重部)に対する光重合開始剤(C)の含有量は、0.01~10重量部が好ましく、より好ましくは0.1~5重量部、さらに好ましくは0.5~3重量部である。なお、樹脂分は上述の通りである。 The content of the photopolymerization initiator (C) relative to the resin content (100 parts by weight) in the active energy ray-curable composition for photoresist is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight. Part by weight, more preferably 0.5 to 3 parts by weight. The resin content is as described above.
 フォトレジスト用活性エネルギー線硬化性組成物(100重量%)に対する光重合開始剤(C)の含有量は、0.01~5重量%が好ましく、より好ましくは0.1~3重量%である。 The content of the photopolymerization initiator (C) with respect to the active energy ray-curable composition for photoresist (100% by weight) is preferably 0.01 to 5% by weight, more preferably 0.1 to 3% by weight. .
<有機溶剤>
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、当該組成物を基板へ塗工する際に均一な膜厚を得る目的や、粘度を調整する目的で、有機溶剤を用いることができる。有機溶剤としては、公知乃至慣用の有機溶剤を使用することができ、特に限定されないが、グリコール系溶剤、エステル系溶剤、ケトン系溶剤、これらを含む混合溶剤等が挙げられる。中でも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノン、これらの混合物が好ましい。なお、本発明の組成物において有機溶剤は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、本発明の組成物における有機溶剤の含有量(配合量)は、特に限定されないが、例えば、アクリル系共重合樹脂(A)と(B)の総含有量100重量部に対して10~5000重量部、好ましくは20~3000重量部、より好ましくは30~2000重量部である。
<Organic solvent>
The active energy ray-curable composition for a photoresist of the present invention can use an organic solvent for the purpose of obtaining a uniform film thickness when the composition is applied to a substrate and for the purpose of adjusting the viscosity. As the organic solvent, known or commonly used organic solvents can be used and are not particularly limited, and examples thereof include glycol solvents, ester solvents, ketone solvents, and mixed solvents containing these solvents. Among these, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, and a mixture thereof are preferable. In addition, in the composition of this invention, the organic solvent can also be used individually by 1 type, and can also be used in combination of 2 or more type. Further, the content (blending amount) of the organic solvent in the composition of the present invention is not particularly limited. For example, it is 10 to 10 parts by weight based on 100 parts by weight of the total content of acrylic copolymer resins (A) and (B). 5000 parts by weight, preferably 20 to 3000 parts by weight, more preferably 30 to 2000 parts by weight.
<その他の成分>
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、上述の成分以外にも、エポキシ樹脂やアクリル系共重合樹脂(A)及び(B)以外のアクリル樹脂等の樹脂、着色剤(例えば、染料等)等のその他の成分をさらに含んでいてもよい。これらその他の成分の含有量(配合量)は特に限定されず、周知慣用の量から適宜設定できる。
<Other ingredients>
In addition to the above-mentioned components, the active energy ray-curable composition for a photoresist of the present invention is a resin such as an epoxy resin or an acrylic copolymer resin other than the acrylic copolymer resins (A) and (B), a colorant (for example, Other components such as a dye may be further included. The content (blending amount) of these other components is not particularly limited, and can be appropriately set from well-known and conventional amounts.
 上述の通り、本発明のフォトレジスト用活性エネルギー線硬化性組成物には、塗膜の硬さ調整のためにエポキシ樹脂を配合することもできる。このようなエポキシ樹脂は特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA-ノボラック型エポキシ樹脂、ソルビトールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ネオペンチルグリコールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,6-ヘキサンジオールポリグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、レゾルシンジグリシジルエーテル等のポリオールポリグリシジルエーテル化合物、及びアジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル等のグリシジルエステル化合物、N-グリシジル型エポキシ樹脂、又は脂環式エポキシ樹脂(例えば(株)ダイセル製「EHPE-3150」)、水添ビスフェノールA型エポキシ樹脂、ジシクロペンタジエン-フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。これらの中でも、特にビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA-ノボラック型エポキシ樹脂等の芳香族エポキシ樹脂が好適である。なおこれらの含有量(配合量)は特に限定されず、周知慣用の量から適宜設定できる。 As described above, the active energy ray-curable composition for photoresists of the present invention can be blended with an epoxy resin for adjusting the hardness of the coating film. Such an epoxy resin is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A-novolak type epoxy resin, sorbitol polyglycidyl ether, Sorbitan polyglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, neopentyl glycol polyglycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,6-hexanediol polyglycidyl Ether, ethylene glycol diglycidyl ether, polyethylene glycol jig Polyol polyglycidyl ether compounds such as sidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, resorcin diglycidyl ether, and adipic acid diglycidyl ester, o -Glycidyl ester compounds such as diglycidyl phthalate, N-glycidyl type epoxy resin, or alicyclic epoxy resin (for example, "EHPE-3150" manufactured by Daicel Corporation), hydrogenated bisphenol A type epoxy resin, dicyclopentadiene -Phenol type epoxy resin, naphthalene type epoxy resin and the like. Among these, aromatic epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and bisphenol A-novolak type epoxy resin are particularly preferable. In addition, these content (blending amount) is not specifically limited, It can set suitably from well-known usual amount.
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、該組成物を構成する成分を公知乃至慣用の方法により配合し、混合することによって得ることができる。例えば、アクリル系共重合樹脂(A)、及びアクリル系共重合樹脂(B)を有機溶剤(レジスト用溶剤)に溶解させ、得られた溶液(フォトレジスト用ポリマー溶液)に光重合開始剤(C)を添加する方法により、本発明の組成物が得られる。また、有機溶剤(レジスト用溶剤)に溶解されたアクリル系共重合樹脂(A)、及び有機溶剤(レジスト用溶剤)に溶解されたアクリル系共重合樹脂(B)を一定の割合で混合し、得られた溶液に光重合開始剤(C)を添加する方法により、本発明の組成物が得られる。 The active energy ray-curable composition for photoresist of the present invention can be obtained by blending and mixing the components constituting the composition by a known or conventional method. For example, an acrylic copolymer resin (A) and an acrylic copolymer resin (B) are dissolved in an organic solvent (resist solvent), and a photopolymerization initiator (C ) To obtain the composition of the present invention. Also, an acrylic copolymer resin (A) dissolved in an organic solvent (resist solvent) and an acrylic copolymer resin (B) dissolved in an organic solvent (resist solvent) are mixed at a certain ratio, The composition of the present invention can be obtained by the method of adding the photopolymerization initiator (C) to the obtained solution.
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、下記の計算式によって得られる樹脂酸価(X)が40~105mgKOH/gであることが好ましく、より好ましくは42~104mgKOH/g、さらに好ましくは44~103mgKOH/gである。樹脂酸価(X)が上記範囲内であることで加熱安定性が向上し、アルカリ現像時の解像度が良好となる。
 樹脂酸価(X)(mgKOH/g)=(アクリル系共重合樹脂(A)の樹脂酸価)×a+(アクリル系共重合樹脂(B)の樹脂酸価)×b
 a=アクリル系共重合樹脂(A)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
 b=アクリル系共重合樹脂(B)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
In the active energy ray-curable composition for photoresist of the present invention, the resin acid value (X) obtained by the following calculation formula is preferably 40 to 105 mgKOH / g, more preferably 42 to 104 mgKOH / g, Preferably, it is 44 to 103 mg KOH / g. When the resin acid value (X) is within the above range, the heat stability is improved, and the resolution during alkali development is improved.
Resin acid value (X) (mg KOH / g) = (resin acid value of acrylic copolymer resin (A)) × a + (resin acid value of acrylic copolymer resin (B)) × b
a = content of acrylic copolymer resin (A) (g) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
b = content (g) of acrylic copolymer resin (B) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、活性エネルギー線等を用いて硬化することで硬化物を得ることができる。例えば、当該組成物を基材又は基板上に塗布した後に硬化(乾燥)し、次いで現像することによって、パターンを形成することができる。より具体的には、本発明のフォトレジスト用活性エネルギー線硬化性組成物を基材又は基板上に塗布し乾燥させて、塗膜(レジスト膜)を形成した後、所定のマスクを介して上記塗膜を硬化(例えば露光)して潜像パターンを形成し、次いで現像することによって、微細なパターンを高い精度で形成することができる。この様な工程でパターンを形成することにより、高精度かつ高効率で半導体の製造を行うことができる。 The active energy ray-curable composition for photoresist of the present invention can be cured by using an active energy ray or the like to obtain a cured product. For example, the pattern can be formed by applying the composition onto a base material or a substrate, curing (drying), and developing the composition. More specifically, after applying the active energy ray-curable composition for photoresist of the present invention onto a base material or a substrate and drying to form a coating film (resist film), the above-mentioned composition is passed through a predetermined mask. A fine pattern can be formed with high accuracy by curing (for example, exposing) the coating film to form a latent image pattern and then developing. By forming a pattern in such a process, a semiconductor can be manufactured with high accuracy and high efficiency.
 上記基材又は基板としては、公知乃至慣用の基材や基板を使用することができ、特に限定されないが、シリコンウエハ、金属基材(基板)、プラスチック基材(基板)、ガラス基材(基板)、セラミック基材(基板)等が挙げられる。また、本発明の組成物(感光性樹脂組成物)の塗布は、スピンコータ、ディップコータ、ローラコータ等の慣用の塗布手段を用いて行うことができる。上記塗膜の厚みは特に限定されないが、0.01~200μmが好ましく、より好ましくは0.02~150μmである。 As the base material or the substrate, a known or conventional base material or substrate can be used, and is not particularly limited. However, a silicon wafer, a metal base material (substrate), a plastic base material (substrate), a glass base material (substrate). ), Ceramic substrate (substrate), and the like. The composition (photosensitive resin composition) of the present invention can be applied using a conventional application means such as a spin coater, a dip coater, or a roller coater. The thickness of the coating film is not particularly limited, but is preferably 0.01 to 200 μm, more preferably 0.02 to 150 μm.
 上記塗膜の露光には、種々の波長の光線(例えば、紫外線、X線等)が使用でき、特に限定されないが、半導体レジスト用では通常、g線、i線、エキシマレーザー(例えば、XeCl、KrF、KrCl、ArF、ArCl等)、極端紫外光(EUV)等が使用できる。本発明の組成物(レジスト組成物、リソグラフィー用組成物)は、特に波長220nm以下の遠紫外光での露光に適している。露光エネルギーは、特に限定されないが、1~1000mJ/cm2が好ましく、より好ましくは2~100mJ/cm2である。 For the exposure of the coating film, light having various wavelengths (for example, ultraviolet rays, X-rays, etc.) can be used, and is not particularly limited. However, for semiconductor resists, g-line, i-line, excimer laser (for example, XeCl, KrF, KrCl, ArF, ArCl, etc.), extreme ultraviolet light (EUV), etc. can be used. The composition (resist composition, lithography composition) of the present invention is particularly suitable for exposure with far ultraviolet light having a wavelength of 220 nm or less. The exposure energy is not particularly limited, but is preferably 1 to 1000 mJ / cm 2 , more preferably 2 to 100 mJ / cm 2 .
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[合成例1~9(アクリル系共重合樹脂(A)の合成)]
(合成例1)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに2000gのジエチレングリコールモノメチルエーテルアセテートを投入し、内温を110℃に設定した。そこへ、1034gのメタクリル酸グリシジル、39gのメタクリル酸、359gのメタクリル酸ブチル、重合開始剤として27gの2,2-アゾビス(2-メチルブチロニトリル)[Dupont社製、商品名:VAZO67]を常温で混合した溶液を4時間かけて滴下した。次に、5gのVAZO67を1時間おきに3回投入した。さらに、重合開始剤を消失させるため、内温を120℃に昇温した後、3時間加熱した。その後、温度を105℃まで下げ、安定化剤として5gのトリフェニルホスフィン、2gのフェノチアジン、4gのジブチルヒドロキシトルエンを添加した。その後、5gのベンジルジメチルアミンを添加した。その後、アクリル酸の混合溶液525gを3時間かけて滴下した。酸価が2.0mgKOH/g以下、オキシラン酸素濃度が0.1%以下になったことを確認して加熱を停止し、アクリル系共重合樹脂(P-1)を含む溶液を得た。なお、本合成例における「アクリル系共重合樹脂中のエポキシ基の総モル数に対する、(メタ)アクリル酸及びカルボキシル基を有する(メタ)アクリル酸エステル中のカルボキシル基の総モル数(総量)」は、1である。前記のアクリル系共重合樹脂(P-1)を含む溶液の性状値を以下に記載する。
 粘度:1877mPa・s/25℃、樹脂分の含有量:50重量%、樹脂分の水酸基価:144mgKOH/g、二重結合当量:270g/mol
[Synthesis Examples 1 to 9 (Synthesis of acrylic copolymer resin (A))]
(Synthesis Example 1)
2000 g of diethylene glycol monomethyl ether acetate was put into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, and the internal temperature was set to 110 ° C. Thereto, 1034 g of glycidyl methacrylate, 39 g of methacrylic acid, 359 g of butyl methacrylate, and 27 g of 2,2-azobis (2-methylbutyronitrile) [manufactured by Dupont, trade name: VAZO67] as a polymerization initiator The solution mixed at room temperature was added dropwise over 4 hours. Next, 5 g of VAZO 67 was added three times every 1 hour. Further, in order to eliminate the polymerization initiator, the internal temperature was raised to 120 ° C. and then heated for 3 hours. Thereafter, the temperature was lowered to 105 ° C., and 5 g of triphenylphosphine, 2 g of phenothiazine, and 4 g of dibutylhydroxytoluene were added as a stabilizer. Thereafter 5 g of benzyldimethylamine was added. Thereafter, 525 g of a mixed solution of acrylic acid was dropped over 3 hours. After confirming that the acid value was 2.0 mgKOH / g or less and the oxirane oxygen concentration was 0.1% or less, the heating was stopped to obtain a solution containing the acrylic copolymer resin (P-1). In addition, in this synthesis example, “the total number of moles (total amount) of carboxyl groups in (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups relative to the total number of moles of epoxy groups in the acrylic copolymer resin” Is 1. The property values of the solution containing the acrylic copolymer resin (P-1) are described below.
Viscosity: 1877 mPa · s / 25 ° C., resin content: 50% by weight, hydroxyl value of resin content: 144 mg KOH / g, double bond equivalent: 270 g / mol
(合成例2)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに1800gの酢酸ブチルを投入し、内温を110℃に設定した。そこへ、742gのメタクリル酸グリシジル、47gのメタクリル酸、1210gのメタクリル酸メチル、重合開始剤として43gの(2-エチルヘキサノイル)(tert-ブチル)ペルオキシドを予め常温で混合した溶液を5時間かけて滴下した。次に、5時間熟成させ、8gの(2-エチルヘキサノイル)(tert-ブチル)ペルオキシドを1時間おきに2回投入した。さらに、重合開始剤を消失させるため、内温を120℃まで昇温した後、3時間加熱した。その後、温度を105℃まで下げ、安定化剤として7gの4-メトシキフェノールを、反応触媒として6gのベンジルジメチルアミンを添加した。その後、376gのアクリル酸を2時間かけて滴下した。酸価が2.0mgKOH/g以下、オキシラン酸素濃度が0.1%以下になったことを確認して、80℃まで温度を下げた。次に、安定化剤としてハイドロキノンを2g添加して、加温を停止し、アクリル系共重合樹脂(P-2)を含む溶液を得た。なお、本合成例における「アクリル系共重合樹脂中のエポキシ基の総モル数に対する、(メタ)アクリル酸及びカルボキシル基を有する(メタ)アクリル酸エステル中のカルボキシル基の総モル数(総量)」は、1である。前記のアクリル系共重合樹脂(P-2)を含む溶液の性状値を以下に記載する。
 粘度:10519mPa・s/25℃、樹脂分の含有量:54重量%、樹脂分の水酸基価:120mgKOH/g、二重結合当量は450g/mol
(Synthesis Example 2)
1800 g of butyl acetate was put into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, and the internal temperature was set to 110 ° C. A solution in which 742 g of glycidyl methacrylate, 47 g of methacrylic acid, 1210 g of methyl methacrylate, and 43 g of (2-ethylhexanoyl) (tert-butyl) peroxide as a polymerization initiator were mixed in advance at room temperature was taken for 5 hours. And dripped. Next, the mixture was aged for 5 hours, and 8 g of (2-ethylhexanoyl) (tert-butyl) peroxide was added twice every 1 hour. Furthermore, in order to make a polymerization initiator lose | disappear, after heating up internal temperature to 120 degreeC, it heated for 3 hours. Thereafter, the temperature was lowered to 105 ° C., 7 g of 4-methoxyphenol was added as a stabilizer, and 6 g of benzyldimethylamine was added as a reaction catalyst. Thereafter, 376 g of acrylic acid was added dropwise over 2 hours. After confirming that the acid value was 2.0 mgKOH / g or less and the oxirane oxygen concentration was 0.1% or less, the temperature was lowered to 80 ° C. Next, 2 g of hydroquinone was added as a stabilizer, the heating was stopped, and a solution containing an acrylic copolymer resin (P-2) was obtained. In addition, in this synthesis example, “the total number of moles (total amount) of carboxyl groups in (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups relative to the total number of moles of epoxy groups in the acrylic copolymer resin” Is 1. The property values of the solution containing the acrylic copolymer resin (P-2) are described below.
Viscosity: 10519 mPa · s / 25 ° C., resin content: 54 wt%, resin hydroxyl value: 120 mgKOH / g, double bond equivalent is 450 g / mol
(合成例3)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに1800gの酢酸ブチルを投入し、内温を110℃に設定した。そこへ622gのメタクリル酸グリシジル、47gのメタクリル酸、1330gのメタクリル酸メチル、重合開始剤として43gの(2-エチルヘキサノイル)(tert-ブチル)ペルオキシドを予め常温で混合した溶液を5時間かけて滴下した。その後、5時間熟成させ、8gの(2-エチルヘキサノイル)(tert-ブチル)ペルオキシドを、1時間おきに2回投入した。さらに重合開始剤を消失させるため、120℃まで昇温し、3時間加熱した。温度を105℃まで下げ、安定化剤として7gの4-メトシキフェノールを、反応触媒として4gのベンジルジメチルアミンを添加した。その後、315gのアクリル酸を2時間かけて滴下した。酸価が2.0mgKOH/g以下、オキシラン酸素濃度が0.1%以下になったことを確認して、80℃まで温度を下げた。安定化剤として2gのハイドロキノンを添加し、加温を停止し、アクリル系共重合樹脂(P-3)を含む溶液を得た。なお、本合成例における「アクリル系共重合樹脂中のエポキシ基の総モル数に対する、(メタ)アクリル酸及びカルボキシル基を有する(メタ)アクリル酸エステル中のカルボキシル基の総モル数(総量)」は、1である。前記のアクリル系共重合樹脂(P-3)を含む溶液の性状値を以下に記載する。
 粘度:12462mPa・s/25℃、樹脂分の含有量:53重量%、樹脂分の水酸基価:115mgKOH/g、二重結合当量は530g/mol
(Synthesis Example 3)
1800 g of butyl acetate was put into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, and the internal temperature was set to 110 ° C. A solution in which 622 g of glycidyl methacrylate, 47 g of methacrylic acid, 1330 g of methyl methacrylate, and 43 g of (2-ethylhexanoyl) (tert-butyl) peroxide as a polymerization initiator were previously mixed at room temperature was taken over 5 hours. It was dripped. Thereafter, the mixture was aged for 5 hours, and 8 g of (2-ethylhexanoyl) (tert-butyl) peroxide was added twice every 1 hour. Furthermore, in order to make a polymerization initiator disappear, it heated up to 120 degreeC and heated for 3 hours. The temperature was lowered to 105 ° C. and 7 g of 4-methoxyphenol as a stabilizer and 4 g of benzyldimethylamine as a reaction catalyst were added. Thereafter, 315 g of acrylic acid was added dropwise over 2 hours. After confirming that the acid value was 2.0 mgKOH / g or less and the oxirane oxygen concentration was 0.1% or less, the temperature was lowered to 80 ° C. 2 g of hydroquinone was added as a stabilizer, the heating was stopped, and a solution containing an acrylic copolymer resin (P-3) was obtained. In addition, in this synthesis example, “the total number of moles (total amount) of carboxyl groups in (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups relative to the total number of moles of epoxy groups in the acrylic copolymer resin” Is 1. The property values of the solution containing the acrylic copolymer resin (P-3) are described below.
Viscosity: 12462 mPa · s / 25 ° C., resin content: 53 wt%, resin hydroxyl value: 115 mgKOH / g, double bond equivalent is 530 g / mol
(合成例4)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに2300gのSantosol DME-1 ジメチルエステル(サーフェス・スペシャリティーズ・ジャパン(株)製)を投入し、内温を110℃に設定した。そこへ860gのメタクリル酸グリシジル、41gのメタクリル酸、662gのメタクリル酸メチル、及び重合開始剤として28gのVAZO67を予め常温で混合した溶液を5時間かけて滴下した。その後、2時間熟成させ、さらに6gのVAZO67を1時間おきに3回投入した。さらに重合開始剤を消失させるため、125℃まで昇温し、5時間加熱した。温度を105℃まで下げ、安定化剤として7gの4-メトシキフェノール、反応触媒として7gのベンジルジメチルアミンを添加した。その後、436gのアクリル酸を1時間かけて滴下した。酸価が2.0mgKOH/g以下、オキシラン酸素濃度が0.1%以下になったことを確認して、80℃まで温度を下げた。粘度を下げるため、Santosol DME-1 ジメチルエステルを260g添加した後に加温を停止し、アクリル系共重合樹脂(P-4)を含む溶液を得た。なお、本合成例における「アクリル系共重合樹脂中のエポキシ基の総モル数に対する、(メタ)アクリル酸及びカルボキシル基を有する(メタ)アクリル酸エステル中のカルボキシル基の総モル数(総量)」は、1である。前記のアクリル系共重合樹脂(P-4)を含む溶液の性状値を以下に記載する。
 粘度:5609mPa・s/25℃、樹脂分の含有量:47重量%、樹脂分の水酸基価:166mgKOH/g、二重結合当量は330g/mol
(Synthesis Example 4)
2300 g of Santosol DME-1 dimethyl ester (manufactured by Surface Specialties Japan Co., Ltd.) was charged into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, and the internal temperature was 110 Set to ° C. A solution prepared by mixing 860 g of glycidyl methacrylate, 41 g of methacrylic acid, 662 g of methyl methacrylate, and 28 g of VAZO 67 as a polymerization initiator at room temperature was dropped therein over 5 hours. Thereafter, the mixture was aged for 2 hours, and 6 g of VAZO 67 was added 3 times every 1 hour. Furthermore, in order to make a polymerization initiator disappear, it heated up to 125 degreeC and heated for 5 hours. The temperature was lowered to 105 ° C. and 7 g of 4-methoxyphenol as a stabilizer and 7 g of benzyldimethylamine as a reaction catalyst were added. Thereafter, 436 g of acrylic acid was added dropwise over 1 hour. After confirming that the acid value was 2.0 mgKOH / g or less and the oxirane oxygen concentration was 0.1% or less, the temperature was lowered to 80 ° C. In order to lower the viscosity, 260 g of Santosol DME-1 dimethyl ester was added and then the heating was stopped to obtain a solution containing an acrylic copolymer resin (P-4). In addition, in this synthesis example, “the total number of moles (total amount) of carboxyl groups in (meth) acrylic acid ester having (meth) acrylic acid and carboxyl groups relative to the total number of moles of epoxy groups in the acrylic copolymer resin” Is 1. The property values of the solution containing the acrylic copolymer resin (P-4) are described below.
Viscosity: 5609 mPa · s / 25 ° C., resin content: 47% by weight, hydroxyl value of resin content: 166 mgKOH / g, double bond equivalent is 330 g / mol
(合成例5)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに、合成例1で得られたアクリル系共重合樹脂(P-1)を含む溶液を100g投入し、内温を70℃に設定した。そこへ反応触媒としてアンカマインK54を0.02g(樹脂分に対して300ppm)添加した。溶液が均一化したことを確認した後、内温を80℃に設定し、19gのリカシッドMH-700Fを30分かけて滴下した。その後、80℃で15時間攪拌し、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂(A-1)を含む溶液を得た。前記アクリル系共重合樹脂(A-1)を含む溶液の性状値を以下に記載する。
 粘度:34500mPa・s/25℃、樹脂分の含有量:62.6重量%、樹脂酸価:61mgKOH/g、重量平均分子量(樹脂分):30000
 なお、アクリル系共重合樹脂(A-1)における、モノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量は50.8重量%であった。
(Synthesis Example 5)
100 g of the solution containing the acrylic copolymer resin (P-1) obtained in Synthesis Example 1 was added to a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, Was set to 70 ° C. Thereto was added 0.02 g (300 ppm based on the resin content) of Ankamaine K54 as a reaction catalyst. After confirming that the solution was homogenized, the internal temperature was set at 80 ° C., and 19 g of Ricacid MH-700F was added dropwise over 30 minutes. Thereafter, the mixture was stirred at 80 ° C. for 15 hours to obtain a solution containing an acrylic copolymer resin (A-1) having a (meth) acryloyl group and a carboxyl group in the side chain. The property values of the solution containing the acrylic copolymer resin (A-1) are described below.
Viscosity: 34500 mPa · s / 25 ° C., resin content: 62.6% by weight, resin acid value: 61 mg KOH / g, weight average molecular weight (resin content): 30000
In the acrylic copolymer resin (A-1), the content of the monomer unit having both the (meth) acryloyl group and the carboxyl group in the side chain with respect to the total amount of the monomer unit was 50.8% by weight.
(合成例6)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに、合成例1で得られたアクリル系共重合樹脂(P-1)を含む溶液を70g投入し、内温を80℃に設定した。そこへ、0.5gのリカシッドTMEG-200を添加した。その後、反応触媒としてベンジルジメチルアミンを0.02g(樹脂分に対して400ppm)添加し、3時間反応させた。酸価が変化しなくなったことを確認した後、4gの無水トリメリット酸を投入した。10時間反応させ、酸価が変化しなくなったことを確認した後に取りだした。このようにして、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂(A-2)を含む溶液を得た。前記アクリル系共重合樹脂(A-2)を含む溶液の性状値を以下に記載する。
 粘度:15600mPa・s/25℃、樹脂分の含有量:54.2重量%、樹脂酸価:66mgKOH/g、重量平均分子量(樹脂分):40000
 なお、アクリル系共重合樹脂(A-2)における、モノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量は19.4重量%であった。
(Synthesis Example 6)
70 g of the solution containing the acrylic copolymer resin (P-1) obtained in Synthesis Example 1 was put into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirrer. Was set to 80 ° C. Thereto was added 0.5 g of Ricacid TMEG-200. Thereafter, 0.02 g of benzyldimethylamine (400 ppm based on the resin content) was added as a reaction catalyst, and the reaction was allowed to proceed for 3 hours. After confirming that the acid value did not change, 4 g of trimellitic anhydride was added. The reaction was carried out for 10 hours, and after confirming that the acid value no longer changed, the sample was taken out. Thus, a solution containing an acrylic copolymer resin (A-2) having a (meth) acryloyl group and a carboxyl group in the side chain was obtained. The property values of the solution containing the acrylic copolymer resin (A-2) are described below.
Viscosity: 15600 mPa · s / 25 ° C., resin content: 54.2% by weight, resin acid value: 66 mgKOH / g, weight average molecular weight (resin content): 40000
In the acrylic copolymer resin (A-2), the content of the monomer unit having both the (meth) acryloyl group and the carboxyl group in the side chain with respect to the total amount of the monomer unit was 19.4% by weight.
(合成例7)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに合成例2で得られたアクリル系共重合樹脂(P-2)を含む溶液を1500g投入し、内温を70℃に設定した。酢酸ブチルを50g投入した。つづいて内温を80℃に設定し、180gのリカシッドMH-700Fを1時間かけて滴下した。その後、3時間反応させ、酸価が変化しなくなったことを確認した後に取りだした。このようにして、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂(A-3)を含む溶液を得た。前記アクリル系共重合樹脂(A-3)を含む溶液の性状値を以下に記載する。
 粘度:55000mPa・s/25℃、樹脂分の含有量:66.9重量%、樹脂酸価:61mgKOH/g、重量平均分子量(樹脂分):30000
 なお、アクリル系共重合樹脂(A-3)における、モノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量は33.6重量%であった。
(Synthesis Example 7)
1500 g of the solution containing the acrylic copolymer resin (P-2) obtained in Synthesis Example 2 was put into a four-necked flask equipped with a reflux condenser, thermometer, nitrogen displacement device, and stirring device, and the internal temperature was reduced. Set to 70 ° C. 50 g of butyl acetate was added. Subsequently, the internal temperature was set to 80 ° C., and 180 g of Ricacid MH-700F was added dropwise over 1 hour. Thereafter, the reaction was carried out for 3 hours, and it was taken out after confirming that the acid value was not changed. Thus, a solution containing an acrylic copolymer resin (A-3) having a (meth) acryloyl group and a carboxyl group in the side chain was obtained. The property values of the solution containing the acrylic copolymer resin (A-3) are described below.
Viscosity: 55000 mPa · s / 25 ° C., resin content: 66.9 wt%, resin acid value: 61 mg KOH / g, weight average molecular weight (resin content): 30000
In the acrylic copolymer resin (A-3), the content of the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer unit was 33.6% by weight.
(合成例8)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに合成例3で得られたアクリル系共重合樹脂(P-3)を含む溶液を100g投入し、内温を80℃に設定した。そこへ、13gの無水トリメリット酸を投入した。その後、3時間反応させ、酸価が変化しなくなったことを確認した後に取りだした。このようにして、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂(A-4)を含むを得た。前記アクリル系共重合樹脂(A-4)を含む溶液の性状値を以下に記載する。
 粘度:48000mPa・s/25℃、樹脂分の含有量:65重量%、樹脂酸価:59mgKOH/g、重量平均分子量(樹脂分):25000
 なお、アクリル系共重合樹脂(A-4)における、モノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量は34.2重量%であった。
(Synthesis Example 8)
100 g of the solution containing the acrylic copolymer resin (P-3) obtained in Synthesis Example 3 was put into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, and the internal temperature was adjusted. Set to 80 ° C. Thereto, 13 g of trimellitic anhydride was added. Thereafter, the reaction was carried out for 3 hours, and it was taken out after confirming that the acid value was not changed. Thus, an acrylic copolymer resin (A-4) having a (meth) acryloyl group and a carboxyl group in the side chain was obtained. The property values of the solution containing the acrylic copolymer resin (A-4) are described below.
Viscosity: 48000 mPa · s / 25 ° C., resin content: 65 wt%, resin acid value: 59 mg KOH / g, weight average molecular weight (resin content): 25000
In the acrylic copolymer resin (A-4), the content of the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer unit was 34.2% by weight.
(合成例9)
 還流用冷却管、温度計、窒素置換装置、攪拌装置を備えた四つ口フラスコに合成例4で得られたアクリル系共重合樹脂(P-4)を含む溶液を100g投入し、内温を80℃に設定した。そこへ、12gのリカシッドMH-700Fを30分かけて滴下した。その後、3時間反応させ、酸価が変化しなくなったことを確認した後に取りだした。このようにして、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂(A-5)を含む溶液を得た。前記アクリル系共重合樹脂(A-5)を含む溶液の性状値を以下に記載する。
 粘度:80700mPa・s/25℃、樹脂分の含有量:58.3重量%、樹脂酸価:65mgKOH/g、重量平均分子量(樹脂分):30000
 なお、アクリル系共重合樹脂(A-5)における、モノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量は37.5重量%であった。
(Synthesis Example 9)
100 g of the solution containing the acrylic copolymer resin (P-4) obtained in Synthesis Example 4 was put into a four-necked flask equipped with a reflux condenser, a thermometer, a nitrogen displacement device, and a stirring device, and the internal temperature was adjusted. Set to 80 ° C. Thereto, 12 g of Ricacid MH-700F was added dropwise over 30 minutes. Thereafter, the reaction was carried out for 3 hours, and it was taken out after confirming that the acid value was not changed. Thus, a solution containing an acrylic copolymer resin (A-5) having a (meth) acryloyl group and a carboxyl group in the side chain was obtained. The property values of the solution containing the acrylic copolymer resin (A-5) are described below.
Viscosity: 80700 mPa · s / 25 ° C., resin content: 58.3% by weight, resin acid value: 65 mgKOH / g, weight average molecular weight (resin content): 30000
In the acrylic copolymer resin (A-5), the content of the monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain with respect to the total amount of the monomer unit was 37.5% by weight.
 以下に、アクリル系共重合樹脂(A)の合成例で用いられた成分の詳細について説明する。
 リカシッドMH-700F:4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物、新日本理化(株)製、中和価 686mgKOH/g
 リカシッドTMEG-200:エチレングリコールビスアンヒドロトリメリテート、新日本理化(株)製、酸無水物当量 206
 無水トリメリット酸:無水トリメリット酸、三菱ガス化学(株)製、酸無水物量(純度)98.1重量%
 アンカマインK54:トリス-2,4,6-ジメチルアミノメチル-フェノール、エア・プロダクツ・アンド・ケミカルズ社製
 Santosol DME-1 ジメチルエステル:グルタル酸ジメチル、コハク酸ジメチル、及びアジピン酸ジメチルの混合物、サーフェス・スペシャリティーズ・ジャパン(株)製
 EDGAC:ジエチレングリコールモノメチルエーテルアセテート、(株)ダイセル製
Below, the detail of the component used by the synthesis example of acrylic type copolymer resin (A) is demonstrated.
Ricacid MH-700F: 4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride mixture, manufactured by Shin Nippon Rika Co., Ltd., neutralization value 686 mgKOH / g
Ricacid TMEG-200: Ethylene glycol bisanhydro trimellitate, manufactured by Shin Nippon Rika Co., Ltd., acid anhydride equivalent 206
Trimellitic anhydride: trimellitic anhydride, manufactured by Mitsubishi Gas Chemical Co., Ltd., amount of acid anhydride (purity) 98.1% by weight
Ancamine K54: Tris-2,4,6-dimethylaminomethyl-phenol, Santosol DME-1 dimethyl ester manufactured by Air Products and Chemicals, Inc .: Mixture of dimethyl glutarate, dimethyl succinate, and dimethyl adipate, surface Specialties Japan Co., Ltd. EDGAC: Diethylene glycol monomethyl ether acetate, Daicel Corporation
 なお、アクリル系共重合樹脂(A-1)~(A-5)の重量平均分子量はGPC(ゲルパーミエーション・ガスクロマトグラフィー)法により、下記の測定条件で、標準ポリスチレンを基準にして求めた。
 使用機器  :TOSO HLC-8220GPC
 ポンプ   :DP-8020
 検出器   :RI-8020
 カラムの種類:Super HZM-M,Super HZ4000,Super HZ3000,Super HZ2000
 溶剤    :テトラヒドロフラン
 相流量   :1mL/分
 カラム内圧力:5.0MPa
 カラム温度 :40℃
 試料注入量 :10μL
 試料濃度  :0.2mg/mL
The weight average molecular weights of the acrylic copolymer resins (A-1) to (A-5) were obtained by GPC (gel permeation gas chromatography) method based on standard polystyrene under the following measurement conditions. .
Equipment used: TOSO HLC-8220GPC
Pump: DP-8020
Detector: RI-8020
Column type: Super HZM-M, Super HZ4000, Super HZ3000, Super HZ2000
Solvent: Tetrahydrofuran Phase flow rate: 1 mL / min Column pressure: 5.0 MPa
Column temperature: 40 ° C
Sample injection volume: 10 μL
Sample concentration: 0.2 mg / mL
[アクリル系共重合樹脂(B)の説明]
 以下に、アクリル系共重合樹脂(B)について説明する。
[Description of Acrylic Copolymer Resin (B)]
Hereinafter, the acrylic copolymer resin (B) will be described.
 サイクロマーP ACA230AA:重量平均分子量14,000、樹脂酸価40mgKOH/g、ダイセル・オルネクス(株)製
 サイクロマーP ACA200M:重量平均分子量12,000、樹脂酸価110mgKOH/g、ダイセル・オルネクス(株)製
 サイクロマーP ACAZ250:重量平均分子量10,000、樹脂酸価77mgKOH/g、ダイセル・オルネクス(株)製
Cyclomer P ACA230AA: weight average molecular weight 14,000, resin acid value 40 mgKOH / g, manufactured by Daicel Ornex Co., Ltd. Cyclomer P ACA200M: weight average molecular weight 12,000, resin acid value 110 mgKOH / g, Daicel Ornex (stock) ) Cyclomer P ACAZ250: weight average molecular weight 10,000, resin acid value 77 mgKOH / g, manufactured by Daicel Ornex Co., Ltd.
[光重合開始剤(C)の説明]
 Irgacure184:1-ヒドロキシシクロヘキシルフェニルケトン、BASFジャパン(株)製
[Description of Photopolymerization Initiator (C)]
Irgacure 184: 1-hydroxycyclohexyl phenyl ketone, manufactured by BASF Japan Ltd.
[評価方法の説明]
 表1~3に示す成分を配合し、実施例及び比較例の配合液(硬化性組成物)を得た後、加熱安定性及び硬化性を評価した。これらの評価方法を以下に示す。
[Explanation of evaluation method]
The components shown in Tables 1 to 3 were blended to obtain blended liquids (curable compositions) of Examples and Comparative Examples, and then the heat stability and curability were evaluated. These evaluation methods are shown below.
(加熱安定性の評価)
 実施例で調製した80gの組成物を100mlの耐熱ビンへ充填し、蓋を閉め、漏れない様に密閉した。その後、耐熱ビンを80℃の湯浴に投入し、10日後に外観の観察、GPC測定を実施した。
(Evaluation of heat stability)
80 g of the composition prepared in the examples was filled into a 100 ml heat-resistant bottle, and the lid was closed and sealed so as not to leak. Thereafter, the heat-resistant bottle was put into an 80 ° C. hot water bath, and after 10 days, the appearance was observed and GPC measurement was performed.
 目視でゲル物などが見られる場合、又はGPC分析で固形部分(樹脂分)に相当するピークの重量平均分子量が試験前に比べて1.5倍以上である場合は加熱安定性が悪いと判断して、表1~3に「×」と記載した。一方、ゲル化もなく、重量平均分子量も試験前の数値と比較して、1.5倍未満である場合は加熱安定性が良好であると判断して、表1~3に「○」と記載した。 If the gel is visually observed, or if the weight average molecular weight of the peak corresponding to the solid part (resin content) is 1.5 times or more than before the test by GPC analysis, the heat stability is judged to be poor. In Tables 1 to 3, “x” is described. On the other hand, when there is no gelation and the weight average molecular weight is less than 1.5 times the value before the test, it is judged that the heat stability is good, and “◯” is shown in Tables 1 to 3. Described.
(硬化性の評価)
 実施例で調製した組成物100部をガラス板上にバーコーターを用いて塗工し、80℃の条件で10分加熱し、溶剤を除去した。その後、2kW,4m/min,1Pass、紫外線照射量:約400mJ/cm2の条件で紫外線照射した。
(Evaluation of curability)
100 parts of the composition prepared in the examples were coated on a glass plate using a bar coater and heated at 80 ° C. for 10 minutes to remove the solvent. Then, ultraviolet irradiation was performed under the conditions of 2 kW, 4 m / min, 1 Pass, and the amount of ultraviolet irradiation: about 400 mJ / cm 2 .
 作製した塗膜に対してMEKを染み込ませたキムワイプ(紙製のウエス、日本製紙クレシア製)を手で擦り付け、白化、膨潤、傷つきなど何らかの外観変化が認められた場合は硬化不良として、表1~3に「×」と記載した。外観変化が認められない場合は硬化が充分進んでいると判断して、表1~3に「○」と記載した。 If a Kimwipe (paper waste, made by Nippon Paper Crecia) impregnated with MEK is rubbed by hand with the prepared coating film, and some appearance changes such as whitening, swelling, and scratches are observed, it is considered as a curing failure. In “-3”, “x” is described. When no change in appearance was observed, it was judged that curing was sufficiently advanced, and “◯” was shown in Tables 1 to 3.
<試験結果>
 表1~3に記載した配合によるフォトレジスト用活性エネルギー線硬化性組成物について、前記の評価を行い、その評価結果を記載した。なお、アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)は樹脂分としての配合量を記載した。また、フォトレジスト用活性エネルギー線硬化性組成物を単に「硬化性組成物」と称する。加熱安定性の評価において、比較例2及び4の硬化性組成物はゲル化を起こした。
<Test results>
With respect to the active energy ray-curable composition for photoresists having the composition described in Tables 1 to 3, the above evaluation was performed, and the evaluation results were described. In addition, the acrylic copolymer resin (A) and the acrylic copolymer resin (B) described the compounding quantity as a resin part. The active energy ray-curable composition for photoresist is simply referred to as “curable composition”. In the evaluation of heat stability, the curable compositions of Comparative Examples 2 and 4 were gelled.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例に示したように、アクリル系共重合樹脂(A)、アクリル系共重合樹脂(B)、を共に含む硬化性組成物は、加熱安定性が良好であり、硬化性も良好であることが明らかとなった。その一方で、比較例で示される様に、アクリル系共重合樹脂(A)、又はアクリル系共重合樹脂(B)をそれぞれ単独で使用した場合は加熱安定性が著しく悪化することが明らかとなった。つまり、上記の加熱安定性の評価において、アクリル系共重合樹脂(A)又はアクリル系共重合樹脂(B)を単独で含む硬化性組成物においては当該樹脂が反応する一方で、アクリル系共重合樹脂(A)とアクリル系共重合樹脂(B)とを混合して含む硬化性組成物は、当該樹脂間の反応を抑えることが可能であることが明らかとなった。 As shown in the examples, the curable composition containing both the acrylic copolymer resin (A) and the acrylic copolymer resin (B) has good heat stability and good curability. Became clear. On the other hand, as shown in the comparative example, when the acrylic copolymer resin (A) or the acrylic copolymer resin (B) is used alone, it becomes clear that the heat stability is remarkably deteriorated. It was. That is, in the evaluation of the heat stability, in the curable composition containing the acrylic copolymer resin (A) or the acrylic copolymer resin (B) alone, the resin reacts with the acrylic copolymer. It became clear that the curable composition containing the resin (A) and the acrylic copolymer resin (B) in a mixed manner can suppress the reaction between the resins.
 本発明のフォトレジスト用活性エネルギー線硬化性組成物は、互いに樹脂骨格が異なる、側鎖に(メタ)アクリロイル基及びカルボキシル基を有する少なくとも2種のアクリル系共重合樹脂を用いるため、予備加熱(加熱乾燥)の際に、加熱することによる樹脂成分の硬化反応が進行しにくく(加熱安定性が高く)、活性エネルギー線による硬化の際に良好な硬化性を有するため、現像感度が良好である。特に、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位を含むアクリル系共重合樹脂と、別々のモノマー単位の側鎖に(メタ)アクリロイル基とカルボキシル基とを有するアクリル系共重合樹脂を組み合わせることで、その理由は定かではないものの、樹脂同士の反応性の兼ね合いから、活性エネルギー線による硬化性を保持しつつ、加熱乾燥時の硬化を抑制することが可能である。 Since the active energy ray-curable composition for photoresist of the present invention uses at least two kinds of acrylic copolymer resins having different resin skeletons and having (meth) acryloyl group and carboxyl group in the side chain, preheating ( In the case of heat drying), the curing reaction of the resin component by heating is difficult to proceed (high heat stability), and since it has good curability when cured by active energy rays, the development sensitivity is good. . In particular, an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain, and an acrylic copolymer having a (meth) acryloyl group and a carboxyl group in the side chain of separate monomer units. Although the reason is not certain by combining the resins, it is possible to suppress the curing at the time of heating and drying while maintaining the curability by the active energy ray from the balance of the reactivity between the resins.

Claims (9)

  1.  アクリル系共重合樹脂(A)、アクリル系共重合樹脂(B)、及び光重合開始剤(C)を含有するフォトレジスト用活性エネルギー線硬化性組成物であって、
     アクリル系共重合樹脂(A)が、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有するアクリル系共重合樹脂であり、
     アクリル系共重合樹脂(B)が、側鎖に(メタ)アクリロイル基、及びカルボキシル基を有し、前記のアクリル系共重合樹脂(A)とは樹脂骨格が異なるアクリル系共重合樹脂であるフォトレジスト用活性エネルギー線硬化性組成物。
    An active energy ray-curable composition for a photoresist containing an acrylic copolymer resin (A), an acrylic copolymer resin (B), and a photopolymerization initiator (C),
    The acrylic copolymer resin (A) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain,
    The acrylic copolymer resin (B) is an acrylic copolymer resin having a (meth) acryloyl group and a carboxyl group in the side chain and having a resin skeleton different from that of the acrylic copolymer resin (A). An active energy ray-curable composition for resist.
  2.  アクリル系共重合樹脂(A)が、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位を含むアクリル系共重合樹脂である請求項1に記載のフォトレジスト用活性エネルギー線硬化性組成物。 The active energy ray-curable composition for a photoresist according to claim 1, wherein the acrylic copolymer resin (A) is an acrylic copolymer resin containing a monomer unit having both a (meth) acryloyl group and a carboxyl group in the side chain. object.
  3.  アクリル系共重合樹脂(A)を構成するモノマー単位の全量に対する、側鎖に(メタ)アクリロイル基及びカルボキシル基を共に有するモノマー単位の含有量が、15~70重量%である請求項2に記載のフォトレジスト用活性エネルギー線硬化性組成物。 The content of monomer units having both (meth) acryloyl groups and carboxyl groups in the side chain with respect to the total amount of monomer units constituting the acrylic copolymer resin (A) is 15 to 70% by weight. An active energy ray-curable composition for photoresist.
  4.  アクリル系共重合樹脂(B)が、側鎖に(メタ)アクリロイル基を有し、且つカルボキシル基を有しないモノマー単位と、側鎖にカルボキシル基を有し、且つ(メタ)アクリロイル基を有しないモノマー単位とを含むアクリル系共重合樹脂である請求項1~3のいずれか1項に記載のフォトレジスト用活性エネルギー線硬化性組成物。 The acrylic copolymer resin (B) has a monomer unit having a (meth) acryloyl group in the side chain and no carboxyl group, a carboxyl unit in the side chain, and no (meth) acryloyl group. The active energy ray-curable composition for a photoresist according to any one of claims 1 to 3, which is an acrylic copolymer resin containing a monomer unit.
  5.  アクリル系共重合樹脂(A)が、少なくとも、側鎖に多塩基酸無水物に由来するカルボキシル基を有するアクリル系共重合樹脂である請求項1~4のいずれか1項に記載のフォトレジスト用活性エネルギー線硬化性組成物。 The photoresist for a photoresist according to any one of claims 1 to 4, wherein the acrylic copolymer resin (A) is an acrylic copolymer resin having at least a carboxyl group derived from a polybasic acid anhydride in a side chain. An active energy ray-curable composition.
  6.  アクリル系共重合樹脂(A)の樹脂酸価が30~200mgKOH/g、重量平均分子量が5000~100000である請求項1~5のいずれか1項に記載のフォトレジスト用活性エネルギー線硬化性組成物。 6. The active energy ray-curable composition for a photoresist according to claim 1, wherein the acrylic copolymer resin (A) has a resin acid value of 30 to 200 mg KOH / g and a weight average molecular weight of 5000 to 100,000. object.
  7.  アクリル系共重合樹脂(B)の樹脂酸価が20~200mgKOH/g、重量平均分子量が5000~30000である請求項1~6のいずれか1項に記載のフォトレジスト用活性エネルギー線硬化性組成物。 The active energy ray-curable composition for a photoresist according to any one of claims 1 to 6, wherein the acrylic copolymer resin (B) has a resin acid value of 20 to 200 mgKOH / g and a weight average molecular weight of 5000 to 30000. object.
  8.  下記の計算式によって得られる樹脂酸価(X)が40~105mgKOH/gである請求項1~7のいずれか1項に記載のフォトレジスト用活性エネルギー線硬化性組成物。
     樹脂酸価(X)(mgKOH/g)=(アクリル系共重合樹脂(A)の樹脂酸価)×a+(アクリル系共重合樹脂(B)の樹脂酸価)×b
     a=アクリル系共重合樹脂(A)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
     b=アクリル系共重合樹脂(B)の含有量(g)/アクリル系共重合樹脂(A)及びアクリル系共重合樹脂(B)の含有量の合計(g)
    The active energy ray-curable composition for a photoresist according to any one of claims 1 to 7, wherein the resin acid value (X) obtained by the following formula is 40 to 105 mgKOH / g.
    Resin acid value (X) (mg KOH / g) = (resin acid value of acrylic copolymer resin (A)) × a + (resin acid value of acrylic copolymer resin (B)) × b
    a = content of acrylic copolymer resin (A) (g) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
    b = content (g) of acrylic copolymer resin (B) / total content of acrylic copolymer resin (A) and acrylic copolymer resin (B) (g)
  9.  請求項1~8のいずれか1項に記載のフォトレジスト用活性エネルギー線硬化性組成物の硬化物。 A cured product of the active energy ray-curable composition for photoresist according to any one of claims 1 to 8.
PCT/JP2016/072180 2015-08-31 2016-07-28 Active energy ray curable composition for photoresists WO2017038329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171029 2015-08-31
JP2015171029A JP6530281B2 (en) 2015-08-31 2015-08-31 Active energy ray curable composition for photoresist

Publications (1)

Publication Number Publication Date
WO2017038329A1 true WO2017038329A1 (en) 2017-03-09

Family

ID=58187202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072180 WO2017038329A1 (en) 2015-08-31 2016-07-28 Active energy ray curable composition for photoresists

Country Status (2)

Country Link
JP (1) JP6530281B2 (en)
WO (1) WO2017038329A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270345A (en) * 1991-02-26 1992-09-25 Nippon Kayaku Co Ltd Resin composition and solder resist resin composition and their hardened product
JP2003207890A (en) * 2002-01-10 2003-07-25 Goo Chemical Co Ltd Photosensitive resin composition, photo-soldering resist ink, printed wiring board and dry film
JP2010250127A (en) * 2009-04-16 2010-11-04 Goo Chemical Co Ltd Alkali-developing curable composition and cured product thereof
JP2011138037A (en) * 2009-12-28 2011-07-14 Tamura Seisakusho Co Ltd Curable resin composition and printed wiring board using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04270345A (en) * 1991-02-26 1992-09-25 Nippon Kayaku Co Ltd Resin composition and solder resist resin composition and their hardened product
JP2003207890A (en) * 2002-01-10 2003-07-25 Goo Chemical Co Ltd Photosensitive resin composition, photo-soldering resist ink, printed wiring board and dry film
JP2010250127A (en) * 2009-04-16 2010-11-04 Goo Chemical Co Ltd Alkali-developing curable composition and cured product thereof
JP2011138037A (en) * 2009-12-28 2011-07-14 Tamura Seisakusho Co Ltd Curable resin composition and printed wiring board using the same

Also Published As

Publication number Publication date
JP2017049348A (en) 2017-03-09
JP6530281B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP5043516B2 (en) Photocurable / thermosetting resin composition and printed wiring obtained using the same
JPWO2015190210A1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP6118426B2 (en) Alkali-developable photosensitive resin composition, dry film and cured product thereof, and printed wiring board formed using them
KR20140048250A (en) Resin composition for resists
TWI574105B (en) An alkali developing type photosensitive resin composition, a dry film and a cured product, and a printed circuit board
EP1923741A2 (en) Photosensitive composition
EP2308905A1 (en) Curable copolymer and curable resin composition
JP4865911B2 (en) Curable composition containing carboxyl group-containing resin, cured product thereof, and method for obtaining carboxyl group-containing resin
TWI620012B (en) Photo-sensitive resin composition, dry film, and printed wiring board
WO2013140638A1 (en) Photosensitive resin composition, cured product thereof, and printed wiring board
WO2009119821A1 (en) Curable resin composition, cured article thereof, and printed circuit board
JP4840865B2 (en) Photosensitive resin composition capable of alkali development and printed wiring board using the same
JP4328593B2 (en) Composition containing a carboxyl group-containing photosensitive resin
JP4933093B2 (en) Curable composition capable of alkali development and cured product thereof
JP2010066444A (en) Alkali-developable curable composition and cured product thereof
JP4960135B2 (en) Sulfur-containing hyperbranched compound and unsaturated group-containing hyperbranched compound
WO2001053375A1 (en) Polynuclear epoxy compound, resin obtained therefrom curable with actinic energy ray, and photocurable/thermosetting resin composition containing the same
WO2017038329A1 (en) Active energy ray curable composition for photoresists
JP4814134B2 (en) Curable composition and cured product thereof
JP2003167331A (en) Resin composition and cured body thereof
JP2002284842A (en) Epoxy acrylate compound, curable resin composition containing the same and its cured product
JP5430884B2 (en) Curable composition capable of alkali development and cured product thereof
JP4202171B2 (en) Low dielectric photocurable resin composition
JPWO2003070800A1 (en) Curable resin and curable resin composition containing the same
JP2005105006A (en) Photo-curing and heat-curing composition and its cured product and printed wiring board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841361

Country of ref document: EP

Kind code of ref document: A1