WO2017033975A1 - ホログラム記録構造,光学デバイス及び製造方法 - Google Patents

ホログラム記録構造,光学デバイス及び製造方法 Download PDF

Info

Publication number
WO2017033975A1
WO2017033975A1 PCT/JP2016/074681 JP2016074681W WO2017033975A1 WO 2017033975 A1 WO2017033975 A1 WO 2017033975A1 JP 2016074681 W JP2016074681 W JP 2016074681W WO 2017033975 A1 WO2017033975 A1 WO 2017033975A1
Authority
WO
WIPO (PCT)
Prior art keywords
hologram
prism
image
optical
optical element
Prior art date
Application number
PCT/JP2016/074681
Other languages
English (en)
French (fr)
Inventor
拓也 小倉
善行 小川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017033975A1 publication Critical patent/WO2017033975A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms

Definitions

  • the present invention relates to a hologram recording structure, an optical device, and a manufacturing method. More specifically, the present invention relates to a hologram recording structure having a hologram recording medium on a transparent substrate and a hologram optical element (HOE: holographic optical element) between cemented prisms. ), An image display device that projects and displays an image of the display element on the observer's eye using the hologram optical element, and an optical see-through display (for example, an HMD ( head mounted display), HUD (head-up display), etc.).
  • HOE holographic optical element
  • the hologram optical element is very useful as a combiner mounted on, for example, a head mounted display (HMD) or a head up display (HUD).
  • HMD head mounted display
  • HUD head up display
  • the optical device can constitute an optical system in which the image light provided from the image display element is totally reflected inside the prism and guided to the hologram optical element. Then, by optimizing the prism shape, hologram shape, etc., it is also possible to ensure the see-through property of the external image while maintaining the optical performance of the hologram optical element.
  • the optical device as described above after pasting a hologram photosensitive material (for example, photopolymer) on one prism, performing hologram exposure in an interference fringe formation process, and then passing through a hologram stabilization process (fixing / baking process) It can be manufactured by adhering to the other prism with an adhesive.
  • a hologram photosensitive material for example, photopolymer
  • the cover film provided on the hologram photosensitive material in order to enhance durability may shrink due to heat in the stabilization process, or the hologram photosensitive material may shrink due to heat or light in the interference fringe forming process. May end up.
  • the shrinkage of the hologram photosensitive material adversely affects the interference fringes, the optical characteristics of the hologram optical element are deteriorated.
  • the shrinkage of the hologram photosensitive material causes deformation of the prism, which causes a decrease in the optical performance of the optical device.
  • the present invention has been made in view of such a situation, and an object thereof is to suppress the hologram recording structure capable of preventing the shrinkage of the hologram photosensitive material and the occurrence of the shrinkage unevenness, and the deformation of the hologram optical element and the prism. It is an object to provide an optical device capable of stably obtaining good optical performance and a manufacturing method thereof, an image display device capable of see-through display with a high-quality image superimposed on an external image, and an optical see-through display. .
  • the hologram recording structure of the first invention is a hologram recording structure having a hologram recording medium on a transparent substrate,
  • the hologram recording medium has the stress buffer layer, the base film, the hologram photosensitive material, and the cover film in the state of being in contact with each other in order from the transparent substrate side,
  • the stress buffer layer has a Young's modulus smaller than that of the transparent substrate and the base film.
  • the hologram recording structure of the second invention is characterized in that, in the first invention, the hologram photosensitive material is made of a photopolymer.
  • An optical device of a third invention is an optical device having a structure in which a first prism and a second prism are joined so as to sandwich a hologram optical element,
  • the hologram optical element has, in order from the first prism side, a stress buffer layer, a base film, a hologram layer, and a cover film in contact with each other.
  • the stress buffer layer has a Young's modulus smaller than that of the first prism and the base film, and has substantially the same refractive index as that of the first and second prisms.
  • the optical device according to a fourth invention is characterized in that, in the third invention, the hologram layer is a volume phase reflection hologram.
  • An optical device is the optical device according to the third or fourth invention, wherein the first and second prisms are transparent, and the hologram optical element is attached to the first prism, The bonding of the first prism and the second prism is performed by an adhesive provided between the first prism and the hologram optical element and the second transparent prism. .
  • the optical device is the optical device according to any one of the third to fifth aspects, wherein an acute angle forming surface that forms an acute angle with respect to a bonding surface between the first prism and the second prism;
  • the first and second prisms each have an obtuse angle forming surface for forming an obtuse angle, and the hologram optical element is provided on the first prism in a state inclined with respect to the acute angle forming surface and the obtuse angle forming surface. It is characterized by being.
  • a method for manufacturing an optical device is a method for manufacturing an optical device having a structure in which a first prism and a second prism are joined so as to sandwich a hologram optical element.
  • By sticking the stress buffer layer to the first prism, the stress buffer layer, the base film, the hologram photosensitive material, and the cover film are adjacent to each other in order from the first prism side.
  • the stress buffer layer has a Young's modulus smaller than that of the first prism and the base film, and has substantially the same refractive index as that of the first and second prisms.
  • an image display apparatus comprising: the optical device according to any one of the third to sixth aspects of the present invention; and a display element that displays an image. It is characterized by diffracting light of a specific wavelength in the image light.
  • the video display device according to the eighth aspect, wherein the first prism totally reflects the image light from the display element and guides it to the hologram optical element.
  • the optical device constitutes an eyepiece optical system in which the optical device enlarges the image displayed on the display element and guides it to the observer's eye as a virtual image. It is characterized by that.
  • the hologram optical element is a combiner that simultaneously guides an image displayed on the display element and an external image to an observer's eye.
  • An optical see-through display is equipped with the image display device according to the tenth or eleventh aspect of the invention, thereby having a function of projecting and displaying the image on the observer's eye with the hologram optical element. It is characterized by that.
  • An optical see-through display is the head mounted display according to the twelfth aspect of the present invention, further comprising a support member that supports the video display device so that the hologram optical element is positioned in front of the observer's eye. It is characterized by.
  • a hologram recording structure that can prevent the occurrence of shrinkage and shrinkage unevenness of the hologram photosensitive material, an optical device that can stably obtain good optical performance by suppressing deformation of the hologram optical element and the prism, and the optical device
  • a manufacturing method, an image display device capable of see-through display in which a high-quality image is superimposed on an external image, and an optical see-through display can be realized.
  • the schematic sectional drawing which shows typically the manufacturing method of the optical device using one Embodiment of a hologram recording structure.
  • the schematic sectional drawing which shows typically one Embodiment of the video display apparatus which has an optical device obtained with the manufacturing method of FIG.
  • the optical block diagram which shows the optical path from the light source in the video display apparatus of FIG. 2 to the optical pupil.
  • the perspective view which shows the spectacles type head mounted display provided with the video display apparatus of FIG.
  • FIG. 5A to 5E show five types of hologram recording structures in cross-sectional structure.
  • the hologram recording structure of FIG. 5 (E) shows the hologram recording structure according to one embodiment of the present invention, and the hologram recording structures of FIGS. 5 (A) to (D) are forms for comparison with the hologram recording structure. Is shown.
  • Each of the hologram recording structures has a configuration in which a hologram recording medium is provided on a prism 11 that is a transparent substrate, and the hologram recording medium has a hologram photosensitive material (for example, photopolymer) Lp.
  • a hologram photosensitive material for example, photopolymer
  • the hologram photosensitive material Lp By hologram exposure of the interference fringes to the hologram photosensitive material Lp, the hologram photosensitive material Lp becomes a hologram layer Lh (for example, a volume phase type reflection hologram), and the hologram recording medium becomes a hologram optical element (HOE).
  • Lh for example, a volume phase type reflection hologram
  • HOE hologram optical element
  • a hologram photosensitive material Lp is directly provided on the prism 11, and a cover film Lc for improving durability is provided thereon.
  • the hologram photosensitive material Lp such as photopolymer shrinks itself by heat and light in the interference fringe forming process, and the amount of shrinkage becomes large. Since the shrinkage of the hologram photosensitive material Lp adversely affects the interference fringes, the optical characteristics of the hologram optical element are deteriorated. Further, the shrinkage of the hologram photosensitive material Lp causes deformation of the prism 11, which causes a decrease in the optical performance of an optical device on which the hologram optical element is mounted, such as instability in image plane.
  • the hologram recording structure in FIG. 5B has a configuration in which a stress buffer layer (buffer layer) La is provided between the prism 11 and the hologram photosensitive material Lp in the hologram recording structure in FIG.
  • a stress buffer layer (buffer layer) La is provided between the prism 11 and the hologram photosensitive material Lp in the hologram recording structure in FIG.
  • the hologram recording structure in FIG. 5C has a configuration in which a stress buffer layer (buffer layer) Laa is provided between the cover film Lc and the hologram photosensitive material Lp in the hologram recording structure in FIG. 5B. Yes.
  • the shrinkage of the hologram photosensitive material Lp itself causes the stability of the interference fringe spacing and local shrinkage unevenness, leading to deterioration of the optical characteristics of the hologram optical element.
  • a hologram photosensitive material Lp and a stress buffer layer La are provided between the prisms 11 and 12.
  • the internal stress due to the shrinkage of the hologram photosensitive material Lp with respect to the prism 12 can be relieved.
  • the hologram photosensitive material Lp is in direct contact with the stress buffer layer La, the hologram photosensitive material Lp easily contracts and wrinkles or the like are generated. As a result, a desired interference fringe cannot be formed, leading to a reduction in video quality.
  • the shrinkage of the hologram photosensitive material Lp causes the prism 11 to be deformed. This causes the optical performance of the optical device to deteriorate, for example, the image surface property is not stable.
  • the hologram recording medium provided on the prism 11 includes, in order from the prism 11, the stress buffer layer La, the base film Lb, the hologram photosensitive material Lp, and the cover film Lc.
  • the stress buffer layer La has a Young's modulus smaller than that of the prism 11 and the base film Lb.
  • the hologram photosensitive material Lp is sandwiched between the base film Lb and the cover film Lc and is in a contact state, and the Young's modulus of the stress buffer layer La is set to be small (that is, the stress absorption performance is high).
  • the Young's modulus of the stress buffer layer La is set to be small (that is, the stress absorption performance is high).
  • the photopolymer constituting the hologram photosensitive material Lp is greatly contracted by heat or light (that is, has heat shrinkability and light shrinkability).
  • it contracts due to optical load and thermal load.
  • the hologram photosensitive material Lp and the stress buffer layer La are in contact with each other (FIG. 5B, etc.)
  • the hologram The effect of limiting the shrinkage of the photosensitive material Lp is small. Therefore, the larger the shrinkage amount, the more difficult it is to control the lattice spacing of the interference fringes formed in the hologram photosensitive material Lp, and further local shrinkage unevenness occurs, leading to deterioration of the hologram optical characteristics.
  • the shrinkage of the hologram photosensitive material Lp is limited by the base film Lb in contact with one surface of the hologram photosensitive material Lp and the cover film Lc in contact with the other surface. The Therefore, since the robustness with respect to the heat shrinkability and light shrinkability of the hologram photosensitive material Lp is improved, the lattice spacing of the interference fringes formed in the hologram photosensitive material Lp can be easily controlled, and the local shrinkage unevenness is further reduced. Occurrence is also suppressed.
  • the shrinkage of the hologram photosensitive material Lp causes the prism 11 to be deformed, which causes the optical performance of the optical device to deteriorate, for example, the image surface property is not stable.
  • the stress buffer layer La is easily deformed because the Young's modulus of the stress buffer layer La is set small. That is, the base film Lb, the hologram photosensitive material Lp, and the cover film Lc are integrally mounted on the stress buffer layer La that is easily deformed. Therefore, the stress due to the shrinkage of the hologram photosensitive material Lp is absorbed and relaxed by the deformation of the stress buffer layer La, and is difficult to be transmitted to the prism 11, so that the deformation of the prism 11 is prevented.
  • FIG. 1 schematically shows a manufacturing method of the optical device 10 (FIG. 2) using the hologram recording structure 15, and FIG. 2 shows an image including the optical device 10 and the display element 20 obtained by the manufacturing method.
  • 1 shows a schematic longitudinal sectional structure of a display device 1.
  • the hologram recording structure 15 in FIG. 1 corresponds to the hologram recording structure in FIG. 5E, and the hologram recording medium 13P includes a stress buffer layer La, a base film Lb, and a hologram photosensitive material in order from the prism 11 side.
  • the material Lp and the cover film Lc are in contact with each other, and the stress buffer layer La has a Young's modulus smaller than that of the prism 11 and the base film Lb.
  • the second prism 12 has a structure in which the first prism 11 and the second prism 12 are joined so as to sandwich the hologram optical element 13, and the hologram optical element 13 is arranged from the prism 11 side.
  • the stress buffer layer La, the base film Lb, the hologram layer Lh, and the cover film Lc are adjacent to each other, and the stress buffer layer La is smaller in Young's modulus than the prism 11 and the base film Lb. And has substantially the same refractive index as the prisms 11 and 12.
  • the stress buffer layer La is made of a member having an adhesive force on both sides, such as a double-sided tape, and an example of the constituent material thereof is an adhesive. More specifically, an acrylic pressure-sensitive adhesive, MHM-FWD25 manufactured by Nichiei Kako, can be mentioned.
  • the thickness of the stress buffer layer La depends on the width of the joint ridge line between the first prism 11 and the second prism 12 and is preferably as thin as possible. However, if the thickness is too thin, the stress buffering action is reduced. Therefore, the thickness of the stress buffer layer is preferably 5 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 25 ⁇ m.
  • the film in contact with the surface of the hologram photosensitive material Lp on the prism 11 side is the base film Lb
  • the film in contact with the opposite surface is the cover film Lc.
  • the constituent material of the base film Lb and the cover film Lc include a PET (polyethylene terephthalate) film and a TAC (triacetylcellulose) film. Since the thickness of the base film Lb and the cover film Lc depends on the width of the joining ridge line between the first prism 11 and the second prism 12, the thinner the film, the better.
  • the thickness of the base film Lb and the cover film Lc is preferably 75 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 25 ⁇ m or less.
  • the base film Lb and the cover film Lc are preferably set to have the same thickness in order to avoid a difference in film shrinkage between the upper and lower sides of the hologram photosensitive material Lp due to baking or the like.
  • the refractive index difference at the constituent material interface of the hologram recording structure 15 is preferably 0.1 or less. 0.05 or less is still more preferable, and 0.02 or less is still more preferable.
  • the refractive indexes of the stress buffer layer La, the base film Lb, the hologram photosensitive material Lp, the cover film Lc, and the prism 11 are made close to each other, light refraction and scattering at the respective interfaces are reduced, and the hologram optics of the obtained optical device 10 is obtained. Through the element 13, the observer can visually recognize the external image without any problem.
  • FIG. 1 shows hologram exposure on the hologram recording medium 13P when the optical device 10 is manufactured
  • FIG. 2 shows hologram reproduction with the hologram optical element 13 when the optical device 10 is used.
  • hologram exposure is performed by irradiating the hologram recording medium 13P with laser light from two directions.
  • One of the laser beams from two directions is the object beam 31 and the other is the reference beam 32
  • hologram recording of interference fringes is performed by two-beam exposure of the object beam 31 and the reference beam 32.
  • the optical device 10 in a state where hologram reproduction (FIG. 2) is possible is obtained.
  • the image light (reproduction illumination light) 41 enters the hologram optical element 13
  • the reproduction image light 42 is diffracted and reflected.
  • the reproduced image light 42 enters the observer's eye EY together with the external image light 43 transmitted through the hologram optical element 13. Therefore, the observer can observe the external image together with the display image.
  • the manufacturing method of the optical device 10 includes the following steps: (# 1) A step of, for example, applying a liquid hologram photosensitive material (for example, photopolymer) Lp on the base film Lb and drying to form a film, (# 2) A step of attaching a cover film Lc to the surface opposite to the base film Lb in the film-like hologram photosensitive material Lp, (# 3) A step of applying a stress buffer layer La to the surface of the base film Lb opposite to the surface on which the hologram photosensitive material Lp is applied, (# 4) By attaching the stress buffer layer La to the first prism 11, the stress buffer layer La, the base film Lb, the hologram photosensitive material Lp, and the cover film Lc are sequentially formed from the first prism 11 side.
  • a liquid hologram photosensitive material for example, photopolymer
  • Hologram recording medium 13P is formed into a hologram by forming hologram layer Lh by hologram exposure of interference fringes on hologram photosensitive material Lp (for example, two-beam exposure of object beam 31 and reference beam 32 shown in FIG. 1).
  • Lp hologram photosensitive material
  • the first prism 11 and the second prism to which the hologram recording medium 13P is attached so that the hologram optical element 13 is sandwiched between the first and second prisms 11 and 12. 12 with an adhesive 14,
  • the manufacturing method which has this. If necessary, a fixing process by ultraviolet irradiation, a baking process, and the like may be included after the hologram exposure in the process (# 5).
  • the hologram photosensitive material Lp is most easily contracted in the step (# 5) of performing the hologram exposure of the interference fringes, but the hologram recording medium 13P is brought into contact with the hologram photosensitive material Lp sandwiched between the base film Lb and the cover film Lc.
  • the Young's modulus of the stress buffer layer La is set small, as described above (FIG. 5E)
  • local shrinkage unevenness due to shrinkage of the hologram photosensitive material Lp and deformation of the prism 11 are prevented. Can be prevented.
  • Examples of the deformation of the prism 11 that can be prevented include bending of an acute angle portion at the tip of the prism 11. When the acute angle portion at the tip of the prism 11 is bent, the second reflection of light (FIG. 2) is greatly affected.
  • the bending of the acute angle portion at the tip of the prism 11 acts so that the portion of the hologram optical element 13 closer to the tip of the prism 11 is closer to the image position of the image.
  • the optical device 10 (FIG. 2) is composed of transparent first and second prisms 11 and 12; a hologram optical element 13 and the like, and a hologram optical element is provided between the first prism 11 and the second prism 12.
  • the structure has the element 13.
  • the hologram optical element 13 is affixed to the first prism 11, and the first prism 11 and the second prism 12 are bonded by an adhesive 14 provided between the first and second prisms 11 and 12.
  • the hologram optical element 13 is bonded so as to sandwich it. That is, the first prism 11 and the second prism 12 are joined by the adhesive 14 provided between the first prism 11 and the hologram optical element 13 and the second prism 12. Yes.
  • the hologram optical element 13 is provided on the joint surface of the transparent prisms 11 and 12, the see-through property of the external image through the joint surface is ensured.
  • the relationship between the adhesive 14, the cover film Lc, and the prism 12 affects the function of the eyepiece optical system of the optical device 10. There is no.
  • the hologram layer Lh is sandwiched between the base film Lb and the cover film Lc, and the Young's modulus of the stress buffer layer La is set smaller than the Young's modulus of the prism 11 and the base film Lb. ing. For this reason, by suppressing the deformation of the hologram optical element 13 and the prisms 11 and 12, it is possible to achieve the optical device 10 that can stably obtain good optical performance such as image plane property.
  • the stress buffer layer La is optically transparent and has substantially the same refractive index as that of the prisms 11 and 12. Therefore, light refraction / scattering at the interface between the stress buffer layer La and the prisms 11 and 12 is reduced, and the observer can view the external image without any problem through the joint portion of the prisms 11 and 12 via the hologram optical element 13. Visual recognition is possible.
  • the difference in refractive index is preferably 0.1 or less, more preferably 0.05 or less, and even more preferably 0.02 or less. preferable.
  • the video display device 1 includes a display element 20 for displaying video in addition to the optical device 10.
  • the display element 20 include a reflective or transmissive liquid crystal display element (LCD), a digital micromirror device, and an organic EL (organic electro-luminescence) display. .
  • the illuminating device for illuminating the display element 20.
  • the illuminating device include a light source such as an LED (light emitting diode) or the like, and an illuminating device including a condensing optical element (lens, mirror, etc.).
  • FIG. 3 shows a more specific optical configuration of the video display device 1 (FIG. 2).
  • FIG. 3 shows an optical path from the light source 21 to the optical pupil EP in the video display device 1 having an illumination device or the like.
  • the video display device 1 includes a polarizing plate 24, a polarizing beam splitter 25, a display element 20, and an optical device 10 that functions as an eyepiece optical system.
  • the illumination device illuminates the display element 20 and includes a light source 21, an illumination mirror 22, and a diffusion plate 23.
  • the light source 21 is composed of an RGB integrated LED that emits light in three wavelength bands whose center wavelengths are, for example, 465 nm, 520 nm, and 635 nm.
  • the illumination mirror 22 reflects light (illumination light) emitted from the light source 21 toward the diffusion plate 23, and also optical elements (for example, for bending the illumination light so that the optical pupil EP and the light source 21 are substantially conjugate with each other) Free-form surface mirror).
  • the diffusing plate 23 diffuses illumination light from the light source 21, and the degree of diffusion varies depending on the direction (for example, a unidirectional diffusing plate having a diffusing action only in the lateral direction).
  • the polarizing plate 24 has a diffusion plate 23 bonded and held on the surface thereof, and transmits light having a predetermined polarization direction out of light incident through the diffusion plate 23 and guides it to the polarizing beam splitter 25.
  • the directions of the polarizing beam splitter 25 are aligned so that the polarized light transmitted through the polarizing plate 24 is reflected by the polarizing beam splitter 25.
  • the polarization beam splitter 25 reflects the light transmitted through the polarizing plate 24 in the direction of the reflective display element 20, while the light corresponding to the image signal ON (reflecting the polarizing plate 24) among the light reflected by the display element 20.
  • the transmitted light is a flat plate-shaped polarization separating element that transmits light having a polarization direction orthogonal to the light, and is attached to the prism surface 11 c of the prism 11.
  • the display element 20 is a display element that displays the image IM by modulating light from the illumination device (that is, light reflected by the polarization beam splitter 25).
  • a reflective liquid crystal display element is used in the image display device 1.
  • the display element 20 may have a configuration including a color filter, or may be configured to be driven in a time division manner for each RGB.
  • the display element 20 is arranged so that light incident from the polarizing beam splitter 25 substantially perpendicularly is reflected almost vertically and travels toward the polarizing beam splitter 25. This facilitates optical design that increases the resolution compared to a configuration in which light is incident on the reflective display element at a large incident angle.
  • the display element 20 is disposed on the same side as the light source 21 with respect to the optical path from the illumination mirror 22 toward the polarization beam splitter 25. Thereby, the whole optical system from an illuminating device to the display element 20 can be comprised compactly.
  • the display element 20 may be supported on the same substrate as the light source 21 or may be supported on a separate substrate.
  • the optical device 10 includes a prism 11, a prism 12, and a hologram optical element 13, and the prisms 11 and 12 are made of plastic (for example, acrylic resin, polycarbonate, cycloolefin resin, or the like).
  • the optical device 10 has non-axisymmetric (non-rotationally symmetric) positive optical power, and thereby functions as an eyepiece optical system for guiding the image light from the display element 20 to the optical pupil EP.
  • the prism 11 guides the image light incident from the display element 20 via the polarization beam splitter 25 inside, and transmits the light of the external image (external light).
  • the shape is thicker toward the upper end and thinner at the lower end toward the lower end.
  • the prism surface 11c to which the polarization beam splitter 25 is attached in the prism 11 is an optical surface on which the image light from the display element 20 first enters.
  • the two prism surfaces 11a and 11b that are positioned substantially parallel to the optical pupil EP and face each other are total reflection surfaces that guide the image light by total reflection.
  • the prism surface 11 a on the optical pupil EP side also serves as an exit surface for image light diffracted and reflected by the hologram optical element 13.
  • the prism 11 is joined to the prism 12 with an adhesive 14 so as to sandwich the hologram optical element 13 disposed at the lower end thereof, thereby forming a substantially parallel plate.
  • the hologram optical element 13 is provided in contact with the prism surface 11 d of the prism 11 and is a volume phase type reflection type hologram optical element that diffracts and reflects the image light guided inside the prism 11.
  • the RGB diffraction wavelength of the hologram optical element 13 substantially corresponds to the wavelength of RGB image light (the emission wavelength of the light source 21).
  • the light emitted from the light source 21 of the illumination device is reflected by the illumination mirror 22 and diffused only in one direction by the diffusion plate 23, and then only the light in a predetermined polarization direction passes through the polarizing plate 24.
  • the light transmitted through the polarizing plate 24 is reflected by the polarization beam splitter 25 and enters the display element 20.
  • incident light is modulated according to the image signal.
  • the image light corresponding to the image signal ON is converted by the display element 20 into light having a polarization direction orthogonal to that of the incident light, and is emitted, so that the image light is transmitted through the polarization beam splitter 25 and is transmitted from the prism surface 11c to the prism. 11 is incident on the inside.
  • the image light corresponding to the image signal OFF is emitted without being converted in the polarization direction by the display element 20, it is blocked by the polarization beam splitter 25 and does not enter the prism 11.
  • the incident video light is totally reflected once by the two prism surfaces 11 a and 11 b facing the prism 11 and then enters the hologram optical element 13.
  • the hologram optical element 13 only light of specific wavelengths (three wavelengths corresponding to RGB) is diffracted and reflected and emitted from the prism surface 11a to reach the optical pupil EP. Accordingly, the observer can observe the image IM displayed on the display element 20 at the position of the optical pupil EP as a virtual image.
  • the prism 11, the prism 12, and the hologram optical element 13 transmit almost all of the external light, the observer can observe the outside world image with see-through. Therefore, the virtual image of the video IM displayed on the display element 20 is observed while overlapping a part of the external image.
  • the optical device 10 displays the display image as a virtual image so that the image of the display element 20 overlaps the external image via the hologram optical element 13 between the joined first and second prisms 11 and 12. It functions as an eyepiece optical system for projecting and displaying on the observer eye EY (FIG. 2). Therefore, the hologram optical element 13 is desirably a volume phase type reflection hologram. Since the volume phase type reflection hologram has a high light transmittance of the external image, if the volume phase type reflection hologram is used as the hologram optical element 13, the observer can clearly observe the display image and the external image. It becomes possible.
  • the hologram optical element 13 is used in a state of being embedded in the prisms 11 and 12 (that is, in a state of being sandwiched between the two prisms 11 and 12). It is not affected by the external environment such as (preventing degradation due to the environment). Further, the optical device 10 is employed as an eyepiece optical system that guides the image light provided from the display element 20 to the hologram optical element 13 by totally reflecting the image light provided from the display element 20 by the configuration embedded in the prisms 11 and 12. Is possible. Then, by optimizing the shape of the prisms 11 and 12 and the shape of the hologram optical element 13, the see-through property (combiner function) of the external image can be ensured while maintaining the optical performance of the hologram optical element 13.
  • the video display apparatus 1 (FIGS. 2 and 3) includes the optical device 10 and the display element 20 that displays video, and the hologram optical element 13 is included in the video light from the display element 20. It is desirable to diffract light of a specific wavelength. If comprised in this way, the see-through display by which the high quality image
  • the first prism 11 constituting the optical device 10 desirably has a configuration in which the image light from the display element 20 is totally reflected and guided to the hologram optical element 13. With such a configuration, it is possible to provide a bright image to the observer by using the image light provided from the display element 20 without waste.
  • the display element 20 can be arranged at a position away from the optical device 10, and a wide field of view of the observer with respect to the outside world can be secured.
  • the optical device 10 constitutes an eyepiece optical system that enlarges an image displayed on the display element 20 and guides it to the observer eye EY (FIG. 2) as a virtual image.
  • the observer can fully visually recognize the image displayed on the display element 10 as a virtual image.
  • the eyepiece optical system provides the viewer with the display image of the display element 20 as an enlarged virtual image
  • the optical device 10 constituting the eyepiece optical system can be reduced in size and weight, and the video display device 1 can be reduced in size and weight.
  • the eyepiece optical system configured by the optical device 10 desirably has non-axisymmetric (positive) optical power. With such a configuration, it is possible to provide an observer with an image that is favorably corrected for aberrations even if the eyepiece optical system is downsized.
  • the hologram optical element 13 is inclined with respect to the surface of the first prism 11 facing the observer eye EY. Further, an acute angle forming surface (prism surfaces 11a and 12b) that forms an acute angle with respect to the joint surface between the first prism 11 and the second prism 12, and an obtuse angle forming surface (prism surfaces 11b and 12a) that forms an obtuse angle. And the first and second prisms 11 and 12, respectively, and the hologram optical element 13 is provided on the first prism 11 in a state inclined with respect to the acute angle forming surface and the obtuse angle forming surface. desirable.
  • the hologram optical element 13 When the hologram optical element 13 is tilted as described above, the degree of optical freedom is increased, and the reflection at the hologram optical element 13 can be set to an angle close to regular reflection. As a result, the observer can observe an image with high efficiency and optically good aberration correction.
  • the hologram optical element 13 is a combiner that simultaneously guides an image displayed on the display element 20 and an external image to the observer eye EY.
  • the observer can observe the image provided from the display element 10 and the external image simultaneously through the hologram optical element 13. Therefore, by mounting the above-described video display device 1 (FIGS. 2 and 3), an optical see-through display having a function of projecting and displaying the video IM on the observer eye EY with the optical device 10 can be configured. it can.
  • the image display device 1 is mounted on the optical see-through display so that the hologram optical element 13 has a function of projecting and displaying the image on the observer's eye EY.
  • the optical see-through display also includes a head-mounted display that includes a support member that supports the image display device 1 so that the hologram optical element 13 is positioned in front of the observer's eye EY (that is, supports in front of the observer's eyes).
  • Examples of the optical see-through display include a head-mounted display (HMD) and a head-up display (HUD).
  • HMD head-mounted display
  • HUD head-up display
  • a spectacle-type head-mounted display provided with the video display device 1 will be described as an example.
  • FIG. 4 shows a schematic configuration of a glasses-type head mounted display 2 provided with the video display device 1.
  • the head mounted display 2 includes the video display device 1 and the support member 3 described above.
  • the display element 20 and the lighting device of the video display device 1 are accommodated in the housing 7, and the upper end portion of the optical device 10 that is an eyepiece optical system is also located in the housing 7.
  • the optical device 10 is configured by bonding the two prisms 11 and 12 which are prisms, and has a shape like one lens of a pair of glasses (lens for right eye in FIG. 4) as a whole. ing.
  • the display element 20, the light source 21 and the like in the housing 7 are connected to a circuit board (not shown) through a cable 8 provided through the housing 7, and the display element 20, Driving power and video signals are supplied to the light source 21 and the like.
  • the video display device 1 further includes an imaging device that captures still images and moving images, a microphone, a speaker, an earphone, and the like, and information on the captured image and the display image via an external server or terminal and a communication line such as the Internet. Or a configuration for exchanging (transmitting / receiving) audio information.
  • the support member 3 is a support mechanism corresponding to a frame of glasses, and supports the image display device 1 in front of the observer's eyes (in front of the right eye in FIG. 4).
  • the support member 3 includes temples 4R and 4L that are in contact with the left and right temporal regions of the observer, and nose pads 5R and 5L that are in contact with the nose of the observer.
  • the support member 3 also supports the lens 6 in front of the left eye of the observer, but this lens 6 is a dummy lens.
  • the image light is guided to the optical pupil EP (FIG. 3) via the optical device 10. Accordingly, by aligning the observer's pupil (observer's eye EY) with the position of the optical pupil EP, the observer can observe an enlarged virtual image of the display image on the image display device 1. At the same time, the observer can observe an external image through the optical device 10 with see-through.
  • the observer can observe the display video and the external image provided from the video display device 1 at the same time in a hands-free and stable manner.
  • the desired work can be performed with open hands.
  • the observation direction of the observer is determined in one direction, there is an advantage that the observer can easily find the display image even in a dark environment.
  • Video display device Head mounted display (optical see-through display) 3 Support member 4R, 4L Temple 5R, 5L Nose pad 6 Lens 7 Housing 8 Cable 10
  • Optical device (eyepiece optical system) 11 Prism (first prism, transparent substrate) 11a, 11b, 11c, 11d Prism surface 12 Prism (second prism) 13 Hologram optical element 13P Hologram recording medium La Stress buffer layer Lb Base film Lc Cover film Lh Hologram layer Lp Hologram photosensitive material (photopolymer)
  • DESCRIPTION OF SYMBOLS 14 Adhesive 15 Hologram recording structure 20 Display element 21 Light source 22 Illumination mirror 23 Diffusion plate 24 Polarizing plate 25 Polarizing beam splitter 31 Object light 32 Reference light 41 Image light 42 Reproduction image light 43 External image light IM Image EY Observer eye EP Optical pupil

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

ホログラム記録構造は、透明基材上にホログラム記録媒体を有する。ホログラム記録媒体は、透明基材側から順に、応力緩衝層と、ベースフィルムと、ホログラム感光材料と、カバーフィルムと、を隣同士接した状態で有する。応力緩衝層は、透明基材及びベースフィルムよりも小さいヤング率を有する。

Description

ホログラム記録構造,光学デバイス及び製造方法
 本発明は、ホログラム記録構造,光学デバイス及び製造方法に関するものであり、更に詳しくは、透明基材上にホログラム記録媒体を有するホログラム記録構造と、接合プリズム間にホログラム光学素子(HOE:holographic optical element)を有する光学デバイス及びその製造方法と、表示素子の映像を上記ホログラム光学素子を用いて観察者眼に投影表示する映像表示装置と、その映像表示装置を備えた光学シースルーディスプレイ(例えば、HMD(head mounted display),HUD(head-up display)等)と、に関するものである。
 ホログラム光学素子は、例えばヘッドマウントディスプレイ(HMD)やヘッドアップディスプレイ(HUD)等に搭載されるコンバイナとして非常に有用である。例えば、ホログラム光学素子を2個のプリズムで挟み込むことによって、湿度や酸素等の外部環境の影響を受けにくい光学デバイスを得ることができる。さらにその光学デバイスで、映像表示素子から提供される映像光をプリズム内部で全反射させてホログラム光学素子に導く光学系を構成することが可能になる。そして、プリズム形状,ホログラム形状等を最適化すると、ホログラム光学素子の光学性能を維持しながら外界像のシースルー性を確保することも可能になる。
 上記のような光学デバイスは、一方のプリズム上にホログラム感光材料(例えばフォトポリマー)を貼付してから干渉縞形成工程でホログラム露光を行い、ホログラムの安定化工程(定着・ベイク工程)を経た後、接着剤で他方のプリズムと接着することにより製造可能である。しかし、耐久性を高めるためにホログラム感光材料上に設けられたカバーフィルムが上記安定化工程での熱で収縮したり、上記干渉縞形成工程での熱や光でホログラム感光材料が収縮したりしてしまうことがある。いずれの場合も、ホログラム感光材料の収縮が干渉縞に悪影響を及ぼすため、ホログラム光学素子の光学特性が低下することになる。また、ホログラム感光材料の収縮はプリズムの変形を招くため、光学デバイスの光学性能が低下する原因になる。このような問題点を解消するための方法が、特許文献1及び特許文献2で提案されている。
特開平8-137373号公報 特開2012ー88643号公報
 特許文献1に記載の多層ホログラム記録体では、膨張収縮応力に対する吸収層を設けることによって、カバー層(カバーフィルム)の収縮によるホログラム光学素子の光学特性の悪化を抑えようとしているが、ホログラム感光材料自身の収縮に関しては何も考慮されていない。特許文献2に記載のホログラム光学素子では、第1,第2基板間に感光性記録層(ホログラム感光材料)と緩衝層を設けることにより、ホログラム感光材料の収縮による内部応力を緩和しようとしている。しかし、緩衝層にホログラム感光材料が直接接触した状態では、容易にホログラム感光材料の収縮が起こり、しわ等が発生してしまう。その結果、所望の干渉縞が形成できなくなって、映像品位の低下を招くことになる。
 本発明はこのような状況に鑑みてなされたものであって、その目的は、ホログラム感光材料の収縮及び収縮ムラの発生を防止できるホログラム記録構造と、ホログラム光学素子及びプリズムの変形が抑えられることにより良好な光学性能が安定的に得られる光学デバイス及びその製造方法と、外界像に高品質の映像が重ねられたシースルー表示の可能な映像表示装置及び光学シースルーディスプレイと、を提供することにある。
 上記目的を達成するために、第1の発明のホログラム記録構造は、透明基材上にホログラム記録媒体を有するホログラム記録構造であって、
 前記ホログラム記録媒体が、前記透明基材側から順に、応力緩衝層と、ベースフィルムと、ホログラム感光材料と、カバーフィルムと、を隣同士接した状態で有し、
 前記応力緩衝層が、前記透明基材及びベースフィルムよりも小さいヤング率を有することを特徴とする。
 第2の発明のホログラム記録構造は、上記第1の発明において、前記ホログラム感光材料がフォトポリマーからなることを特徴とする。
 第3の発明の光学デバイスは、第1のプリズムと第2のプリズムとがホログラム光学素子を挟むようにして接合された構造を有する光学デバイスであって、
 前記ホログラム光学素子が、前記第1のプリズム側から順に、応力緩衝層と、ベースフィルムと、ホログラム層と、カバーフィルムと、を隣同士接した状態で有し、
 前記応力緩衝層が、前記第1のプリズム及びベースフィルムよりも小さいヤング率を有し、かつ、前記第1,第2のプリズムと略同じ屈折率を有することを特徴とする。
 第4の発明の光学デバイスは、上記第3の発明において、前記ホログラム層が体積位相型の反射型ホログラムであることを特徴とする。
 第5の発明の光学デバイスは、上記第3又は第4の発明において、前記第1,第2のプリズムが透明であり、前記第1のプリズムに前記ホログラム光学素子が貼り付けられており、前記第1のプリズムと前記第2のプリズムとの接合が、前記第1のプリズム及びホログラム光学素子と前記第2の透明プリズムとの間に設けられた接着剤で行われていることを特徴とする。
 第6の発明の光学デバイスは、上記第3~第5のいずれか1つの発明において、前記第1のプリズムと前記第2のプリズムとの接合面に対し、鋭角を形成する鋭角形成面と、鈍角を形成する鈍角形成面とを、前記第1,第2のプリズムがそれぞれ有し、前記ホログラム光学素子が前記鋭角形成面及び鈍角形成面に対し傾斜した状態で前記第1のプリズム上に設けられていることを特徴とする。
 第7の発明の光学デバイスの製造方法は、第1のプリズムと第2のプリズムとがホログラム光学素子を挟むようにして接合された構造を有する光学デバイスの製造方法であって、
 ホログラム感光材料をベースフィルム上に塗布し乾燥させてフィルム状にする工程と、
 前記フィルム状のホログラム感光材料において前記ベースフィルムとは反対側の面にカバーフィルムを貼り付ける工程と、
 前記ベースフィルムにおいて前記ホログラム感光材料の塗布された面とは反対側の面に応力緩衝層を貼り付ける工程と、
 前記応力緩衝層を前記第1のプリズムに貼り付けることによって、前記第1のプリズム側から順に、前記応力緩衝層と、前記ベースフィルムと、前記ホログラム感光材料と、前記カバーフィルムと、が隣同士接した状態のホログラム記録媒体を、前記第1のプリズム上に形成する工程と、
 前記ホログラム感光材料に対する干渉縞のホログラム露光によりホログラム層を形成することによって、前記ホログラム記録媒体を前記ホログラム光学素子とする工程と、
 前記ホログラム光学素子を前記第1,第2のプリズム間で挟むようにして、前記ホログラム記録媒体の貼り付いた第1のプリズムと前記第2のプリズムとを接着剤で接合する工程と、を有し、
 前記応力緩衝層が、前記第1のプリズム及びベースフィルムよりも小さいヤング率を有し、かつ、前記第1,第2のプリズムと略同じ屈折率を有することを特徴とする。
 第8の発明の映像表示装置は、上記第3~第6のいずれか1つの発明に係る光学デバイスと、映像を表示する表示素子と、を有し、前記ホログラム光学素子が前記表示素子からの映像光のうちの特定波長の光を回折させることを特徴とする。
 第9の発明の映像表示装置は、上記第8の発明において、前記第1のプリズムが、前記表示素子からの映像光を内部で全反射させて前記ホログラム光学素子に導くことを特徴とする。
 第10の発明の映像表示装置は、上記第8又は第9の発明において、前記光学デバイスが、前記表示素子に表示される映像を拡大して観察者眼に虚像として導く接眼光学系を構成することを特徴とする。
 第11の発明の映像表示装置は、上記第10の発明において、前記ホログラム光学素子が、前記表示素子に表示される映像と外界像とを同時に観察者眼に導くコンバイナであることを特徴とする。
 第12の発明の光学シースルーディスプレイは、上記第10又は第11の発明に係る映像表示装置を搭載することにより、前記ホログラム光学素子で前記映像を観察者眼にシースルーで投影表示する機能を備えたことを特徴とする。
 第13の発明の光学シースルーディスプレイは、上記第12の発明において、前記ホログラム光学素子が観察者眼の前方に位置するように前記映像表示装置を支持する支持部材を備えたヘッドマウントディスプレイであることを特徴とする。
 本発明によれば、ホログラム感光材料の収縮及び収縮ムラの発生を防止できるホログラム記録構造と、ホログラム光学素子及びプリズムの変形が抑えられることにより良好な光学性能が安定的に得られる光学デバイス及びその製造方法と、外界像に高品質の映像が重ねられたシースルー表示の可能な映像表示装置及び光学シースルーディスプレイと、を実現することができる。
ホログラム記録構造の一実施の形態を用いた光学デバイスの製造方法を模式的に示す概略断面図。 図1の製造方法で得られた光学デバイスを有する映像表示装置の一実施の形態を模式的に示す概略断面図。 図2の映像表示装置における光源から光学瞳までの光路を示す光学構成図。 図3の映像表示装置を備えた眼鏡型のヘッドマウントディスプレイを示す斜視図。 図1のホログラム記録構造を他のタイプのものと比較しながら説明するための模式図。
 以下、本発明に係るホログラム記録構造,光学デバイス,その製造方法,映像表示装置,光学シースルーディスプレイ等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。
 図5(A)~(E)に、5つのタイプのホログラム記録構造を断面構造で示す。図5(E)のホログラム記録構造は、本発明の一実施の形態に係るホログラム記録構造を示しており、図5(A)~(D)のホログラム記録構造は、それとの比較のための形態を示している。いずれのホログラム記録構造も、透明基材であるプリズム11上にホログラム記録媒体を有する構成になっており、そのホログラム記録媒体がホログラム感光材料(例えば、フォトポリマー)Lpを有している。ホログラム感光材料Lpに対する干渉縞のホログラム露光により、ホログラム感光材料Lpはホログラム層Lh(例えば、体積位相型の反射型ホログラム)となって、ホログラム記録媒体はホログラム光学素子(HOE)となる。
 図5(A)のホログラム記録構造では、プリズム11上にホログラム感光材料Lpを直接設け、その上に耐久性を高めるためのカバーフィルムLcを設けた構成になっている。フォトポリマー等のホログラム感光材料Lpは、干渉縞形成工程での熱や光でそれ自身収縮してしまい、その収縮量は大きなものとなる。ホログラム感光材料Lpの収縮は干渉縞に悪影響を及ぼすため、ホログラム光学素子の光学特性が低下することになる。また、ホログラム感光材料Lpの収縮はプリズム11の変形を招くため、像面性が安定しない等、ホログラム光学素子を搭載した光学デバイスの光学性能が低下する原因になる。
 図5(B)のホログラム記録構造では、図5(A)のホログラム記録構造において、プリズム11とホログラム感光材料Lpとの間に応力緩衝層(バッファ層)Laを設けた構成になっている。このように応力緩衝層Laを設けると、ホログラム感光材料Lpの収縮によるプリズム11の変形は無くなるが、応力緩衝層Laと接した面でのホログラム感光材料Lpの収縮量が大きくなり、干渉縞の間隔の不安定性や局所的な収縮ムラが起こり、ホログラム光学素子の光学特性の劣化につながる。
 図5(C)のホログラム記録構造では、図5(B)のホログラム記録構造において、カバーフィルムLcとホログラム感光材料Lpとの間にも応力緩衝層(バッファ層)Laaを設けた構成になっている。しかし、図5(B)のホログラム記録構造と同様、ホログラム感光材料Lp自身の収縮により、干渉縞の間隔の安定性や局所的な収縮ムラが起こり、ホログラム光学素子の光学特性の劣化につながる。
 図5(D)のホログラム記録構造では、プリズム11,12間にホログラム感光材料Lpと応力緩衝層Laを設けた構成になっている。このようにホログラム感光材料Lpと応力緩衝層Laを設けると、プリズム12に対するホログラム感光材料Lpの収縮による内部応力を緩和することができる。しかし、応力緩衝層Laにホログラム感光材料Lpが直接接触した状態では、容易にホログラム感光材料Lpの収縮が起こり、しわ等が発生してしまう。その結果、所望の干渉縞が形成できなくなって、映像品位の低下を招くことになる。また、図5(A)のホログラム記録構造と同様、ホログラム感光材料Lpの収縮はプリズム11の変形を招くため、像面性が安定しない等、光学デバイスの光学性能が低下する原因になる。
 図5(E)のホログラム記録構造では、プリズム11上に設けられたホログラム記録媒体が、プリズム11側から順に、応力緩衝層Laと、ベースフィルムLbと、ホログラム感光材料Lpと、カバーフィルムLcと、を隣同士接した状態で有しており、応力緩衝層Laが、プリズム11及びベースフィルムLbよりも小さいヤング率を有している。ここで、ホログラム感光材料LpがベースフィルムLbとカバーフィルムLcとで挟まれて接触状態にある点と、応力緩衝層Laのヤング率が小さく(つまり、応力吸収性能が高く)設定されている点で、上記ホログラム感光材料Lpの収縮に起因する問題を解決することが可能となる。これらの特徴点を以下に詳述する。
 ホログラム感光材料Lpを構成するフォトポリマーは、前述したように、熱や光により大きく収縮すること(つまり、熱収縮性,光収縮性を有すること)が知られている。特に干渉縞形成工程では光的負荷や熱的負荷がかかるため収縮することになるが、そのときホログラム感光材料Lpと応力緩衝層Laとが接した状態では(図5(B)等)、ホログラム感光材料Lpの収縮を制限する作用は小さなものとなる。そのため、収縮量が大きいほどホログラム感光材料Lp中に形成する干渉縞の格子間隔の制御が難しくなり、さらに局所的な収縮ムラが発生してホログラム光学特性の劣化へとつながる。図5(E)のホログラム記録構造では、ホログラム感光材料Lpの一方の面に接しているベースフィルムLbと、他方の面に接しているカバーフィルムLcとで、ホログラム感光材料Lpの収縮が制限される。したがって、ホログラム感光材料Lpの熱収縮性や光収縮性に関するロバスト性が向上するため、ホログラム感光材料Lp中に形成する干渉縞の格子間隔の制御が容易に可能となり、さらに局所的な収縮ムラの発生も抑制される。
 前述したように、ホログラム感光材料Lpの収縮はプリズム11の変形を招くため、像面性が安定しない等、光学デバイスの光学性能が低下する原因になる。図5(E)のホログラム記録構造では、応力緩衝層Laのヤング率が小さく設定されているため、応力緩衝層Laの変形が起こり易い。つまり、変形しやすい応力緩衝層La上に、ベースフィルムLbとホログラム感光材料LpとカバーフィルムLcとが一体的に載った状態になっている。したがって、ホログラム感光材料Lpの収縮による応力は、応力緩衝層Laが変形することで吸収緩和され、プリズム11まで伝わりにくくなるため、プリズム11の変形が防止される。
 図1に、ホログラム記録構造15を用いた光学デバイス10(図2)の製造方法を模式的に示し、図2に、その製造方法で得られた光学デバイス10と表示素子20とを備えた映像表示装置1の概略縦断面構造を示す。図1のホログラム記録構造15は、図5(E)のホログラム記録構造に相当するものであり、ホログラム記録媒体13Pが、プリズム11側から順に、応力緩衝層Laと、ベースフィルムLbと、ホログラム感光材料Lpと、カバーフィルムLcと、を隣同士接した状態で有し、応力緩衝層Laが、プリズム11及びベースフィルムLbよりも小さいヤング率を有する構成になっている。また、図2の光学デバイス10は、第1のプリズム11と第2のプリズム12とがホログラム光学素子13を挟むようにして接合された構造を有しており、ホログラム光学素子13が、プリズム11側から順に、応力緩衝層Laと、ベースフィルムLbと、ホログラム層Lhと、カバーフィルムLcと、を隣同士接した状態で有し、応力緩衝層Laが、プリズム11及びベースフィルムLbよりも小さいヤング率を有し、かつ、プリズム11,12と略同じ屈折率を有する構成になっている。
 応力緩衝層Laは、例えば両面テープのように両面に接着力を有する部材からなっており、その構成材料としては、例えば粘着剤が挙げられる。より具体的には、アクリル系粘着剤である日栄化工製MHM-FWD25が挙げられる。応力緩衝層Laの厚みは、第1のプリズム11と第2のプリズム12との接合稜線の幅の広さによるため、薄いほど好ましいが、薄すぎると応力緩衝の作用が薄れることになる。そこで、応力緩衝層の厚みは、5μm~50μmが好ましく、5μm~25μmが更に好ましい。
 ホログラム記録媒体13Pでは、ホログラム感光材料Lpのプリズム11側の面に接しているフィルムをベースフィルムLbとし、その反対側の面に接しているフィルムをカバーフィルムLcとしているが、ベースフィルムLbとカバーフィルムLcとで性質・性能上の違いは無い。ベースフィルムLbやカバーフィルムLcの構成材料としては、例えば、PET(polyethylene terephthalate)フィルム,TAC(triacetylcellulose)フィルム等が挙げられる。ベースフィルムLbやカバーフィルムLcの厚みは、第1のプリズム11と第2のプリズム12との接合稜線の幅の広さによるため、薄いほど好ましい。そこで、ベースフィルムLbやカバーフィルムLcの厚みは、75μm以下が好ましく、50μm以下が更に好ましく、25μm以下がより一層好ましい。ベイク処理等によりホログラム感光材料Lpの上下でフィルムの収縮量に違いが生じるのを避けるため、ベースフィルムLbとカバーフィルムLcとは同じ厚さに設定するのが好ましい。
 ホログラム記録構造15の構成材料界面での屈折率差は、0.1以下であることが好ましい。0.05以下が更に好ましく、0.02以下がより一層好ましい。応力緩衝層La,ベースフィルムLb,ホログラム感光材料Lp,カバーフィルムLc,プリズム11の屈折率を近づけると、それぞれの界面での光の屈折・散乱が少なくなり、得られた光学デバイス10のホログラム光学素子13を通して、観察者は外界像を問題無く視認することが可能となる。
 図1では、光学デバイス10製造時のホログラム記録媒体13Pに対するホログラム露光を示しており、図2では、光学デバイス10使用時のホログラム光学素子13でのホログラム再生を示している。ホログラム露光は、図1に示すように、ホログラム記録媒体13Pに対する2方向からのレーザー光照射により行われる。2方向からのレーザー光のうち、一方が物体光31であり、他方が参照光32であり、物体光31と参照光32との2光束露光により干渉縞のホログラム記録が行われる。
 ホログラム露光(図1)により得られたホログラム光学素子13(図2)を2つのプリズム11,12間で挟むようにして、第1のプリズム11と第2のプリズム12とを接着剤14で接合すると、ホログラム再生(図2)の可能な状態の光学デバイス10が得られる。ホログラム再生では、図2に示すように、映像光(再生照明光)41がホログラム光学素子13に入射すると、再生像光42が回折反射される。その再生像光42は、ホログラム光学素子13を透過した外界像光43と共に、観察者眼EYに入射することになる。したがって、観察者は表示映像と共に外界像も観察することができる。
 上記光学デバイス10の製造方法としては、以下の工程:
(#1)例えば液体状のホログラム感光材料(例えばフォトポリマー)LpをベースフィルムLb上に塗布し乾燥させてフィルム状にする工程、
(#2)フィルム状のホログラム感光材料LpにおいてベースフィルムLbとは反対側の面にカバーフィルムLcを貼り付ける工程、
(#3)ベースフィルムLbにおいてホログラム感光材料Lpの塗布された面とは反対側の面に応力緩衝層Laを貼り付ける工程、
(#4)応力緩衝層Laを第1のプリズム11に貼り付けることによって、第1のプリズム11側から順に、応力緩衝層Laと、ベースフィルムLbと、ホログラム感光材料Lpと、カバーフィルムLcと、が隣同士接した状態のホログラム記録媒体13Pを、第1のプリズム11上に形成する工程、
(#5)ホログラム感光材料Lpに対する干渉縞のホログラム露光(例えば、図1に示す物体光31と参照光32との2光束露光)によりホログラム層Lhを形成することによって、ホログラム記録媒体13Pをホログラム光学素子13とする工程、及び
(#6)ホログラム光学素子13を第1,第2のプリズム11,12間で挟むようにして、ホログラム記録媒体13Pの貼り付いた第1のプリズム11と第2のプリズム12とを接着剤14で接合する工程、
を有する製造方法が挙げられる。なお、必要に応じて、工程(#5)のホログラム露光の後に、紫外線照射による定着工程,ベイク処理工程等を含めてもよい。
 ホログラム感光材料Lpは干渉縞のホログラム露光を行う工程(#5)で最も収縮し易くなるが、ホログラム記録媒体13Pはホログラム感光材料LpがベースフィルムLbとカバーフィルムLcとで挟まれて接触状態にあるとともに、応力緩衝層Laのヤング率が小さく設定されているため、前述したように(図5(E))、ホログラム感光材料Lpの収縮による局所的な収縮ムラの発生とプリズム11の変形を防ぐことができる。その防止可能なプリズム11の変形としては、プリズム11先端の鋭角部分の曲がりが挙げられる。プリズム11先端の鋭角部分が曲がると、光線の2回目の反射(図2)が大きく影響を受けることになる。例えば、プリズム11先端の鋭角部分の曲がりは、ホログラム光学素子13においてプリズム11先端に近い部分ほど映像の像位置が近くなるように作用する。
 光学デバイス10(図2)は、透明な第1,第2のプリズム11,12;ホログラム光学素子13等で構成されており、第1のプリズム11と第2のプリズム12との間にホログラム光学素子13を有する構造になっている。ホログラム光学素子13は第1のプリズム11に貼り付けられており、第1,第2のプリズム11,12間に設けられた接着剤14で、第1のプリズム11と第2のプリズム12とがホログラム光学素子13を挟むようにして接合されている。つまり、第1のプリズム11及びホログラム光学素子13と第2のプリズム12との間に設けられた接着剤14で、第1のプリズム11と第2のプリズム12とが接合された構造になっている。透明なプリズム11,12の接合面上にホログラム光学素子13が設けられているため、接合面を介した外界像のシースルー性が確保される。なお、カバーフィルムLcと第2のプリズム11には回折反射に関係する光線が通らないため、接着剤14とカバーフィルムLc及びプリズム12との関係では、光学デバイス10の接眼光学系の機能に影響は無い。
 ホログラム光学素子13は、ホログラム層LhがベースフィルムLbとカバーフィルムLcとで挟まれて接触状態にあるとともに、応力緩衝層Laのヤング率がプリズム11及びベースフィルムLbのヤング率よりも小さく設定されている。このため、ホログラム光学素子13及びプリズム11,12の変形が抑えられることにより、像面性等の良好な光学性能が安定的に得られる光学デバイス10を達成することができる。
 応力緩衝層Laは、光学的に透明であり、プリズム11,12と略同じ屈折率を有する構成になっている。このため、応力緩衝層Laとプリズム11,12との界面での光の屈折・散乱が少なくなり、ホログラム光学素子13を介したプリズム11,12の接合部を通して、観察者は外界像を問題無く視認することが可能となる。応力緩衝層Laがプリズム11,12と略同じ屈折率を有する構成としては、その屈折率差が0.1以下であることが好ましく、0.05以下が更に好ましく、0.02以下がより一層好ましい。
 映像表示装置1は、図2に示すように、光学デバイス10の他に、映像を表示する表示素子20を備えている。表示素子20としては、例えば、反射型又は透過型の液晶表示素子(LCD:liquid crystal display),デジタル・マイクロミラー・デバイス(digital micromirror device),有機EL(organic electro-luminescence)ディスプレイ等が挙げられる。さらに、表示素子20を照明するための照明装置を配置してもよい。照明装置としては、LED(light emitting diode)等の光源,集光用光学素子(レンズ,ミラー等)で構成された照明装置等を備えたものが挙げられる。
 図3に、映像表示装置1(図2)の更に具体的な光学構成を示す。図3では、照明装置等を備えた映像表示装置1における光源21から光学瞳EPまでの光路を示している。この映像表示装置1は、照明装置の他に、偏光板24と、偏光ビームスプリッター25と、表示素子20と、接眼光学系として機能する光学デバイス10と、を有している。
 照明装置は、表示素子20を照明するものであり、光源21と、照明ミラー22と、拡散板23と、を有している。光源21は、中心波長が例えば465nm,520nm,635nmとなる3つの波長帯域の光を発するRGB一体型のLEDで構成されている。照明ミラー22は、光源21から出射した光(照明光)を拡散板23に向けて反射させるとともに、光学瞳EPと光源21とが略共役となるように、照明光を曲げる光学素子(例えば、自由曲面ミラー)である。拡散板23は、光源21からの照明光を拡散させるものであり、その拡散度は方向によって異なっている(例えば、横方向にのみ拡散作用を有する1方向拡散板である。)。
 偏光板24は、その表面に拡散板23が貼り合わせ保持されており、拡散板23を介して入射する光のうち、所定の偏光方向の光を透過させて偏光ビームスプリッター25に導く。偏光板24を透過した偏光が偏光ビームスプリッター25で反射されるように、偏光ビームスプリッター25の方向は揃えてある。偏光ビームスプリッター25は、偏光板24を透過した光を反射型の表示素子20の方向に反射させる一方、表示素子20で反射された光のうち、画像信号オンに対応する光(偏光板24を透過した光とは偏光方向が直交する光)を透過させる平板状の偏光分離素子であり、プリズム11のプリズム面11cに貼り付けられている。
 表示素子20は、照明装置からの光(つまり、偏光ビームスプリッター25で反射された光)を変調して映像IMを表示する表示素子であり、この映像表示装置1では反射型の液晶表示素子を想定している。なお、表示素子20はカラーフィルターを有する構成であってもよいし、RGBごとに時分割で駆動される構成であってもよい。
 表示素子20は、偏光ビームスプリッター25からほぼ垂直に入射する光がほぼ垂直に反射されて偏光ビームスプリッター25に向かうように配置されている。これにより、反射型の表示素子に対して大きな入射角で光を入射させる構成に比べて、解像度を増大させるような光学設計が容易になる。また、表示素子20は、照明ミラー22から偏光ビームスプリッター25に向かう光路に対して光源21と同じ側に配置されている。これにより、照明装置から表示素子20までの光学系全体をコンパクトに構成することができる。なお、表示素子20は、光源21と同一の基板で支持されていてもよいし、別々の基板で支持されていてもよい。
 光学デバイス10は、プリズム11,プリズム12及びホログラム光学素子13を有しており、プリズム11,12は、プラスチック(例えば、アクリル系樹脂,ポリカーボネート,シクロオレフィン樹脂等)で構成されている。光学デバイス10は、非軸対称(非回転対称)な正の光学的パワーを有しており、それにより表示素子20からの映像光を光学瞳EPに導くための接眼光学系として機能する。プリズム11は、表示素子20から偏光ビームスプリッター25を介して入射してくる映像光を内部で導光する一方、外界像の光(外光)を透過させるものであり、平行平板の上端部を上端に向かうほど厚くし、下端部を下端に向かうほど薄くした形状で構成されている。
 プリズム11において偏光ビームスプリッター25が貼り付けられているプリズム面11cは、表示素子20からの映像光が最初に入射する光学面である。また、光学瞳EPとほぼ平行に位置して互いに対向する2つのプリズム面11a,11bは、映像光を全反射によって導光する全反射面となっている。そのうち、光学瞳EP側のプリズム面11aは、ホログラム光学素子13で回折反射される映像光の出射面を兼ねている。
 プリズム11は、その下端部に配置されるホログラム光学素子13を挟むように、接着剤14でプリズム12と接合されて、略平行平板を形成している。プリズム12をプリズム11と貼り合わせることで、外光がプリズム11の楔状の下端部を透過するときの屈折をプリズム12でキャンセルすることができ、観察される外界像に歪みが生じるのを防止することができる。ホログラム光学素子13は、プリズム11のプリズム面11dに接して設けられており、プリズム11内部で導光された映像光を回折反射する体積位相型で反射型のホログラム光学素子である。そして、ホログラム光学素子13のRGBの回折波長は、RGBの映像光の波長(光源21の発光波長)とほぼ対応している。
 上記の構成において、照明装置の光源21から出射された光は、照明ミラー22で反射され、拡散板23にて一方向にのみ拡散された後、所定の偏光方向の光のみが偏光板24を透過する。そして、偏光板24を透過した光は、偏光ビームスプリッター25で反射され、表示素子20に入射する。表示素子20では、入射光が画像信号に応じて変調される。このとき、画像信号オンに対応する映像光は、表示素子20にて入射光とは偏光方向が直交する光に変換されて出射されるため、偏光ビームスプリッター25を透過してプリズム面11cからプリズム11の内部に入射する。一方、画像信号オフに対応する映像光は、表示素子20にて偏光方向が変換されずに出射されるため、偏光ビームスプリッター25で遮断されて、プリズム11の内部に入射しない。
 プリズム11では、入射した映像光がプリズム11の対向する2つのプリズム面11a,11bでそれぞれ1回ずつ全反射された後、ホログラム光学素子13に入射する。ホログラム光学素子13では、特定の波長(RGBに対応する3つの波長)の光のみが回折反射されてプリズム面11aから出射し、光学瞳EPに達する。したがって、観察者は光学瞳EPの位置で表示素子20に表示された映像IMを虚像として観察することができる。一方、プリズム11,プリズム12及びホログラム光学素子13は、外光をほとんど全て透過させるので、観察者は外界像をシースルーで観察することができる。したがって、表示素子20に表示された映像IMの虚像は、外界像の一部に重なって観察されることになる。
 光学デバイス10は、上記のように、接合された第1,第2のプリズム11,12間のホログラム光学素子13を介して表示素子20の映像が外界像に重なるように、その表示映像を虚像として観察者眼EY(図2)にシースルーで投影表示する接眼光学系として機能する。そのため、ホログラム光学素子13は体積位相型の反射型ホログラムであることが望ましい。体積位相型の反射型ホログラムは外界像の光の透過率が高いので、ホログラム光学素子13として体積位相型の反射型ホログラムを用いれば、観察者は表示映像と共に外界像も明瞭に観察することが可能になる。
 図2,図3に示すように、ホログラム光学素子13はプリズム11,12内に埋め込まれた状態(つまり、2個のプリズム11,12で挟み込まれた状態)で使用されるので、湿度や酸素等の外部環境の影響を受けることがない(環境による劣化の防止)。また、プリズム11,12内に埋め込まれた構成により、表示素子20から提供される映像光をプリズム11内部で全反射させてホログラム光学素子13に導く接眼光学系として、光学デバイス10を採用することが可能になる。そして、プリズム11,12の形状とホログラム光学素子13の形状とを最適化することにより、ホログラム光学素子13の光学性能を維持しながら外界像のシースルー性(コンバイナ機能)を確保することができる。
 映像表示装置1(図2,図3)は、前述したように、光学デバイス10と、映像を表示する表示素子20と、を有し、ホログラム光学素子13が表示素子20からの映像光のうちの特定波長の光を回折させるものであることが望ましい。このように構成すれば、外界像に高品質の映像が重ねられたシースルー表示が可能になる。したがって、表示素子10から提供される高品質の映像を光学デバイス10を介して観察することが可能になると同時に、光学デバイス10を介してシースルーで外界像を観察することも可能になる。
 光学デバイス10を構成する第1のプリズム11は、図2,図3に示すように、表示素子20からの映像光を内部で全反射させてホログラム光学素子13に導く構成を有することが望ましい。そのような構成にすれば、表示素子20から提供される映像光を無駄なく利用して、観察者に明るい映像を提供することができる。また、表示素子20を光学デバイス10から離れた位置に配置することも可能となり、観察者の外界に対する視野を広く確保することができる。
 光学デバイス10は、前述したように、表示素子20に表示される映像を拡大して観察者眼EY(図2)に虚像として導く接眼光学系を構成することが望ましい。この構成によれば、観察者は表示素子10に表示される映像を虚像として十分に視認することができる。接眼光学系は表示素子20の表示映像を拡大虚像として観察者に提供するので、接眼光学系を構成する光学デバイス10の小型化・軽量化が可能となり、映像表示装置1の小型化・軽量化が可能となる。また、光学デバイス10で構成される接眼光学系は、非軸対称な(正の)光学パワーを有することが望ましい。そのように構成すれば、接眼光学系を小型化しても良好に収差補正された映像を観察者に提供することが可能となる。
 第1のプリズム11が観察者眼EYに対向する面に対して、ホログラム光学素子13が傾斜していることが望ましい。また、第1のプリズム11と第2のプリズム12との接合面に対し、鋭角を形成する鋭角形成面(プリズム面11a,12b)と、鈍角を形成する鈍角形成面(プリズム面11b,12a)とを、第1,第2のプリズム11,12がそれぞれ有し、ホログラム光学素子13が上記鋭角形成面及び鈍角形成面に対し傾斜した状態で第1のプリズム11上に設けられていることが望ましい。これらのようにホログラム光学素子13を傾斜させると、光学的な自由度が大きくなり、ホログラム光学素子13での反射を正反射に近い角度とすることができる。その結果、観察者は高効率で光学的に良く収差補正された映像を観察することができる。
 ホログラム光学素子13が、表示素子20に表示される映像と外界像とを同時に観察者眼EYに導くコンバイナであることが望ましい。その場合、観察者は、ホログラム光学素子13を介して、表示素子10から提供される映像と外界像とを同時に観察することができる。したがって、上述した映像表示装置1(図2,図3)を搭載することにより、光学デバイス10で映像IMを観察者眼EYにシースルーで投影表示する機能を備えた光学シースルーディスプレイを構成することができる。
 上記のように、光学シースルーディスプレイにおいて映像表示装置1を搭載することにより、ホログラム光学素子13で映像を観察者眼EYにシースルーで投影表示する機能を備えることが望ましい。また、その光学シースルーディスプレイは、ホログラム光学素子13が観察者眼EYの前方に位置するように映像表示装置1を支持する(つまり、観察者の眼前で支持する)支持部材を備えたヘッドマウントディスプレイであることが望ましい。光学シースルーディスプレイとしては、ヘッドマウントディスプレイ(HMD),ヘッドアップディスプレイ(HUD)等が挙げられるが、ここでは映像表示装置1を備えた眼鏡型のヘッドマウントディスプレイを例示して以下に説明する。
 図4に、映像表示装置1を備えた眼鏡型のヘッドマウントディスプレイ2の概略構成を示す。ヘッドマウントディスプレイ2は、上述した映像表示装置1と、支持部材3とで構成されている。映像表示装置1の表示素子20や照明装置等は、筐体7内に収容されており、接眼光学系である光学デバイス10の上端部も筐体7内に位置している。光学デバイス10は、上述したようにプリズムである2枚のプリズム11,12の貼り合わせによって構成されており、全体として眼鏡の一方のレンズ(図4では右眼用レンズ)のような形状をしている。
 また、筐体7内の表示素子20,光源21等は、筐体7を貫通して設けられるケーブル8を介して、回路基板(不図示)と接続されており、回路基板から表示素子20,光源21等に駆動電力や映像信号が供給される。なお、映像表示装置1は、静止画や動画を撮影する撮像装置,マイク,スピーカー,イヤホン等をさらに備え、外部のサーバーや端末とインターネット等の通信回線を介して、撮像画像及び表示画像の情報や音声情報をやりとり(送受信)する構成であってもよい。
 支持部材3は、眼鏡のフレームに相当する支持機構であり、映像表示装置1を観察者の眼前(図4では右眼の前)で支持している。この支持部材3は、観察者の左右の側頭部にそれぞれ当接するテンプル4R,4Lと、観察者の鼻と当接する鼻当て5R,5Lと、を含んでいる。なお、支持部材3は、観察者の左眼の前でレンズ6も支持しているが、このレンズ6はダミーレンズである。
 ヘッドマウントディスプレイ2を観察者の頭部に装着し、表示素子20に映像を表示すると、その映像光が光学デバイス10を介して光学瞳EP(図3)に導かれる。したがって、光学瞳EPの位置に観察者の瞳(観察者眼EY)を合わせることにより、観察者は、映像表示装置1の表示映像の拡大虚像を観察することができる。また、これと同時に、観察者は光学デバイス10を介して、外界像をシースルーで観察することができる。
 上記のように、映像表示装置1が支持部材3で支持されることにより、観察者は映像表示装置1から提供される表示映像と外界像とを同時にハンズフリーで長時間安定して観察することができ、空いた手で所望の作業を行うことができる。また、観察者の観察方向が一方向に定まるので、観察者は暗環境でも表示映像を探しやすいという利点もある。なお、映像表示装置1を2つ用いて両眼で映像を観察できるようにしてもよい。
 1  映像表示装置
 2  ヘッドマウントディスプレイ(光学シースルーディスプレイ)
 3  支持部材
 4R,4L  テンプル
 5R,5L  鼻当て
 6  レンズ
 7  筐体
 8  ケーブル
 10  光学デバイス(接眼光学系)
 11  プリズム(第1のプリズム,透明基材)
 11a,11b,11c,11d プリズム面
 12  プリズム(第2のプリズム)
 13  ホログラム光学素子
 13P  ホログラム記録媒体
 La  応力緩衝層
 Lb  ベースフィルム
 Lc  カバーフィルム
 Lh  ホログラム層
 Lp  ホログラム感光材料(フォトポリマー)
 14  接着剤
 15  ホログラム記録構造
 20  表示素子
 21 光源
 22 照明ミラー
 23 拡散板
 24 偏光板
 25 偏光ビームスプリッター
 31  物体光
 32  参照光
 41  映像光
 42  再生像光
 43  外界像光
 IM  映像
 EY  観察者眼
 EP  光学瞳

Claims (13)

  1.  透明基材上にホログラム記録媒体を有するホログラム記録構造であって、
     前記ホログラム記録媒体が、前記透明基材側から順に、応力緩衝層と、ベースフィルムと、ホログラム感光材料と、カバーフィルムと、を隣同士接した状態で有し、
     前記応力緩衝層が、前記透明基材及びベースフィルムよりも小さいヤング率を有することを特徴とするホログラム記録構造。
  2.  前記ホログラム感光材料がフォトポリマーからなることを特徴とする請求項1記載のホログラム記録構造。
  3.  第1のプリズムと第2のプリズムとがホログラム光学素子を挟むようにして接合された構造を有する光学デバイスであって、
     前記ホログラム光学素子が、前記第1のプリズム側から順に、応力緩衝層と、ベースフィルムと、ホログラム層と、カバーフィルムと、を隣同士接した状態で有し、
     前記応力緩衝層が、前記第1のプリズム及びベースフィルムよりも小さいヤング率を有し、かつ、前記第1,第2のプリズムと略同じ屈折率を有することを特徴とする光学デバイス。
  4.  前記ホログラム層が体積位相型の反射型ホログラムであることを特徴とする請求項3記載の光学デバイス。
  5.  前記第1,第2のプリズムが透明であり、前記第1のプリズムに前記ホログラム光学素子が貼り付けられており、前記第1のプリズムと前記第2のプリズムとの接合が、前記第1のプリズム及びホログラム光学素子と前記第2の透明プリズムとの間に設けられた接着剤で行われていることを特徴とする請求項3又は4記載の光学デバイス。
  6.  前記第1のプリズムと前記第2のプリズムとの接合面に対し、鋭角を形成する鋭角形成面と、鈍角を形成する鈍角形成面とを、前記第1,第2のプリズムがそれぞれ有し、前記ホログラム光学素子が前記鋭角形成面及び鈍角形成面に対し傾斜した状態で前記第1のプリズム上に設けられていることを特徴とする請求項3~5のいずれか1項に記載の光学デバイス。
  7.  第1のプリズムと第2のプリズムとがホログラム光学素子を挟むようにして接合された構造を有する光学デバイスの製造方法であって、
     ホログラム感光材料をベースフィルム上に塗布し乾燥させてフィルム状にする工程と、
     前記フィルム状のホログラム感光材料において前記ベースフィルムとは反対側の面にカバーフィルムを貼り付ける工程と、
     前記ベースフィルムにおいて前記ホログラム感光材料の塗布された面とは反対側の面に応力緩衝層を貼り付ける工程と、
     前記応力緩衝層を前記第1のプリズムに貼り付けることによって、前記第1のプリズム側から順に、前記応力緩衝層と、前記ベースフィルムと、前記ホログラム感光材料と、前記カバーフィルムと、が隣同士接した状態のホログラム記録媒体を、前記第1のプリズム上に形成する工程と、
     前記ホログラム感光材料に対する干渉縞のホログラム露光によりホログラム層を形成することによって、前記ホログラム記録媒体を前記ホログラム光学素子とする工程と、
     前記ホログラム光学素子を前記第1,第2のプリズム間で挟むようにして、前記ホログラム記録媒体の貼り付いた第1のプリズムと前記第2のプリズムとを接着剤で接合する工程と、を有し、
     前記応力緩衝層が、前記第1のプリズム及びベースフィルムよりも小さいヤング率を有し、かつ、前記第1,第2のプリズムと略同じ屈折率を有することを特徴とする製造方法。
  8.  請求項3~6のいずれか1項に記載の光学デバイスと、映像を表示する表示素子と、を有し、前記ホログラム光学素子が前記表示素子からの映像光のうちの特定波長の光を回折させることを特徴とする映像表示装置。
  9.  前記第1のプリズムが、前記表示素子からの映像光を内部で全反射させて前記ホログラム光学素子に導くことを特徴とする請求項8記載の映像表示装置。
  10.  前記光学デバイスが、前記表示素子に表示される映像を拡大して観察者眼に虚像として導く接眼光学系を構成することを特徴とする請求項8又は9記載の映像表示装置。
  11.  前記ホログラム光学素子が、前記表示素子に表示される映像と外界像とを同時に観察者眼に導くコンバイナであることを特徴とする請求項10記載の映像表示装置。
  12.  請求項10又は11記載の映像表示装置を搭載することにより、前記ホログラム光学素子で前記映像を観察者眼にシースルーで投影表示する機能を備えたことを特徴とする光学シースルーディスプレイ。
  13.  前記ホログラム光学素子が観察者眼の前方に位置するように前記映像表示装置を支持する支持部材を備えたヘッドマウントディスプレイであることを特徴とする請求項12記載の光学シースルーディスプレイ。
PCT/JP2016/074681 2015-08-27 2016-08-24 ホログラム記録構造,光学デバイス及び製造方法 WO2017033975A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015167597 2015-08-27
JP2015-167597 2015-08-27

Publications (1)

Publication Number Publication Date
WO2017033975A1 true WO2017033975A1 (ja) 2017-03-02

Family

ID=58100343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074681 WO2017033975A1 (ja) 2015-08-27 2016-08-24 ホログラム記録構造,光学デバイス及び製造方法

Country Status (1)

Country Link
WO (1) WO2017033975A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895389A (zh) * 2018-09-10 2020-03-20 英属开曼群岛商音飞光电科技股份有限公司 全像影像片体、全像影像记录方法与重建方法
EP3660551A4 (en) * 2017-10-24 2020-09-02 LG Chem, Ltd. DIFFACTIVE LIGHT GUIDING PLATE AND METHOD OF MANUFACTURING A DIFFACTIVE LIGHT GUIDE PLATE
WO2023032271A1 (ja) * 2021-09-06 2023-03-09 ソニーセミコンダクタソリューションズ株式会社 導光板、画像表示装置、及び導光板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137373A (ja) * 1994-11-07 1996-05-31 Dainippon Printing Co Ltd 多層ホログラム記録体
JPH095526A (ja) * 1995-06-14 1997-01-10 Asahi Glass Co Ltd 重畳型ホログラム
JP2007206257A (ja) * 2006-01-31 2007-08-16 Dainippon Printing Co Ltd 真正性表示体
JP2008096704A (ja) * 2006-10-12 2008-04-24 Sony Corp 体積ホログラム積層体
WO2011155357A1 (ja) * 2010-06-07 2011-12-15 コニカミノルタオプト株式会社 映像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137373A (ja) * 1994-11-07 1996-05-31 Dainippon Printing Co Ltd 多層ホログラム記録体
JPH095526A (ja) * 1995-06-14 1997-01-10 Asahi Glass Co Ltd 重畳型ホログラム
JP2007206257A (ja) * 2006-01-31 2007-08-16 Dainippon Printing Co Ltd 真正性表示体
JP2008096704A (ja) * 2006-10-12 2008-04-24 Sony Corp 体積ホログラム積層体
WO2011155357A1 (ja) * 2010-06-07 2011-12-15 コニカミノルタオプト株式会社 映像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660551A4 (en) * 2017-10-24 2020-09-02 LG Chem, Ltd. DIFFACTIVE LIGHT GUIDING PLATE AND METHOD OF MANUFACTURING A DIFFACTIVE LIGHT GUIDE PLATE
US11892662B2 (en) 2017-10-24 2024-02-06 Lg Chem Ltd. Diffraction light guide plate and method of manufacturing diffraction light guide plate
CN110895389A (zh) * 2018-09-10 2020-03-20 英属开曼群岛商音飞光电科技股份有限公司 全像影像片体、全像影像记录方法与重建方法
TWI747032B (zh) * 2018-09-10 2021-11-21 英屬開曼群島商音飛光電科技股份有限公司 全像影像片體、全像影像記錄方法與重建方法
US11226589B2 (en) 2018-09-10 2022-01-18 Infilm Optoelectronic Inc. Holographic image film, and holographic image recording method and reconstruction method
WO2023032271A1 (ja) * 2021-09-06 2023-03-09 ソニーセミコンダクタソリューションズ株式会社 導光板、画像表示装置、及び導光板の製造方法

Similar Documents

Publication Publication Date Title
CN215982382U (zh) 用于将图像显示到观察者的眼睛中的显示器
JP6740366B2 (ja) ヘッドマウント結像装置
US8848289B2 (en) Near-to-eye display with diffractive lens
KR102578625B1 (ko) 기판 유도식 광학 장치
CN110068927B (zh) 光学装置
US9335549B2 (en) Imaging lightguide with holographic boundaries
WO2010061835A1 (ja) 映像表示装置およびヘッドマウントディスプレイ
US20130016292A1 (en) Eyepiece for near-to-eye display with multi-reflectors
US20070133076A1 (en) Image display apparatus
JP2010122478A (ja) 映像表示装置およびヘッドマウントディスプレイ
WO2022032985A1 (zh) 光学器件、***及光学设备
WO2017033975A1 (ja) ホログラム記録構造,光学デバイス及び製造方法
WO2021158566A2 (en) Optical systems having angle-selective transmission filters
JP2009145620A (ja) 接合光学素子、接合光学素子の製造方法、映像表示装置およびヘッドマウントディスプレイ
WO2011001787A1 (ja) 映像表示装置、hmdおよびhud
JP4491609B2 (ja) 光学デバイス、映像表示装置およびヘッドマウントディスプレイ
JP2010145561A (ja) ヘッドマウントディスプレイ
JP2010243786A (ja) 映像表示装置、およびヘッドマウントディスプレイ
JP2009134089A (ja) 映像表示装置およびヘッドマウントディスプレイ
JP6610675B2 (ja) 導光素子、接合光学素子、画像表示装置およびヘッドマウントディスプレイ
JP2006162792A (ja) 光学デバイス、映像表示装置およびヘッドマウントディスプレイ
WO2016170928A1 (ja) 光学デバイス,その製造方法及び映像表示装置
JP6566025B2 (ja) 映像表示装置およびヘッドマウントディスプレイ
US20230333302A1 (en) Optical Systems for Providing Polarized Light to a Waveguide
JP2006162793A (ja) 光学デバイス、映像表示装置およびヘッドマウントディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16839322

Country of ref document: EP

Kind code of ref document: A1