WO2017033638A1 - Information processing device, information processing method and program - Google Patents

Information processing device, information processing method and program Download PDF

Info

Publication number
WO2017033638A1
WO2017033638A1 PCT/JP2016/071547 JP2016071547W WO2017033638A1 WO 2017033638 A1 WO2017033638 A1 WO 2017033638A1 JP 2016071547 W JP2016071547 W JP 2016071547W WO 2017033638 A1 WO2017033638 A1 WO 2017033638A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
unit
dimensional shape
information processing
acoustic characteristic
Prior art date
Application number
PCT/JP2016/071547
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 宮本
尚子 菅野
基彦 渡部
紅蕾 孫
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017033638A1 publication Critical patent/WO2017033638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, and a program.
  • Patent Document 1 discloses a technique for measuring a cap material with a near-infrared sensor in order to select a cap for a PET bottle.
  • Patent Document 2 discloses a technique for measuring acoustic characteristics of a sound field such as a music hall, a theater, or a gymnasium.
  • the above-described technique only performs individual measurements from the viewpoints of three-dimensional shape, material, or acoustic characteristics. Therefore, when reproducing a real object based on a measurement result, for example, although it is possible to individually reproduce a three-dimensional shape or acoustic characteristics, it is difficult to reproduce both.
  • the present disclosure proposes a new and improved information processing apparatus, information processing method, and program capable of complementarily performing measurement of a three-dimensional shape and measurement of acoustic characteristics.
  • a three-dimensional shape measurement unit that measures a three-dimensional shape of an object
  • an acoustic characteristic measurement unit that measures an acoustic characteristic of the object
  • the three-dimensional shape measurement unit or the acoustic characteristic measurement unit includes a measurement control unit that controls measurement processing based on the other measurement result.
  • measuring the three-dimensional shape of the object measuring the acoustic characteristics of the object, and measuring the three-dimensional shape or the acoustic characteristics based on the measurement result of the other
  • an information processing method including controlling by a processor.
  • the computer includes a three-dimensional shape measurement unit that measures the three-dimensional shape of the object, an acoustic characteristic measurement unit that measures the acoustic characteristics of the object, and the three-dimensional shape measurement unit or the A program for causing a measurement process by the acoustic characteristic measurement unit to function as a measurement control unit that controls based on the other measurement result is provided.
  • the measurement system according to the present embodiment performs three-dimensional shape measurement and acoustic characteristic measurement in a complementary manner.
  • the measurement system according to the present embodiment can improve the measurement accuracy by controlling the measurement process of the three-dimensional shape or the measurement process of the acoustic characteristics based on the other measurement result.
  • the measurement system outputs information indicating acoustic characteristics and information indicating three-dimensional shapes in association with each other. This makes it possible to improve the reproduction accuracy of the object (particularly, the reproduction accuracy of the acoustic characteristics of the object) with respect to generation of a physical simulation model related to the acoustic characteristics at the time of CG creation or material selection at the time of 3D printing.
  • the object is a silent object.
  • FIG. 1 is an explanatory diagram for explaining an example of an external configuration of a measurement system 1 according to the present embodiment.
  • the measurement system 1 includes a sensor device 10 and a voice input / output device 20 (a voice output device 20A and a voice input device 20B).
  • the measurement system 1 measures the three-dimensional shape of the object 90 using the sensor device 10 formed by an active sensor or a passive sensor.
  • the measurement system 1 measures the acoustic characteristics of the object 90 by radiating sound (hereinafter also referred to as radiated sound) from the sound output device 20A and detecting the directly reflected sound by the sound input device 20B.
  • the object 90 includes a region 91 formed of a sound absorbing material such as cloth and a cushion, and a region 92 formed of a reflective material such as wood. Due to the difference in sound absorption, the acoustic characteristics are different between the region 91 and the region 92.
  • the measurement system 1 can measure the entire three-dimensional shape of the object 90, and can identify the region 91 and the region 92, which are difficult to identify from only the three-dimensional shape, by the difference in acoustic characteristics. is there. As described above, the measurement system 1 can perform the measurement of the three-dimensional shape and the measurement of the acoustic characteristics in a complementary manner by using the sensor device 10 and the voice input / output device 20.
  • FIG. 2 is an explanatory diagram for explaining an example of an external configuration of the measurement system 1 according to the present embodiment.
  • the measurement system 1 includes the sensor device 10 and the voice input / output device 20.
  • the example shown in FIG. 1 is also called a handy type, and the example shown in FIG. 2 is also called a sealed (omnidirectional) type.
  • the measurement is performed in a state where an object is placed inside the housing of the measurement system 1.
  • both the audio output device 20A and the audio input device 20B have directivity.
  • the inner wall be formed of a material having high sound absorption.
  • FIG. 3 is a block diagram illustrating an example of a logical configuration of the measurement system 1 according to the present embodiment.
  • the measurement system 1 includes a sensor device 10, a voice input / output device 20, a material DB (Data Base) 30, a preprocessing unit 40, a measurement processing unit 50, and a postprocessing unit 60.
  • a sensor device 10 As shown in FIG. 3, the measurement system 1 includes a sensor device 10, a voice input / output device 20, a material DB (Data Base) 30, a preprocessing unit 40, a measurement processing unit 50, and a postprocessing unit 60.
  • DB Data Base
  • the sensor device 10 has a function of detecting information for measuring the three-dimensional shape of the object.
  • the sensor device 10 is formed by an active sensor or a passive sensor.
  • the sensor device 10 may be a stereo camera that can capture a captured image while detecting depth information.
  • the sensor device 10 outputs the detection result to the three-dimensional shape measurement unit 212.
  • the voice input / output device 20 has a function of detecting reflected sound by emitting sound (hereinafter also referred to as radiated sound) to an object.
  • the audio output device 20A and the audio input device 20B may have directivity.
  • the audio output device 20A may include one or more speakers, and each speaker may have directivity, or directivity may be formed by signal processing on an audio signal output by the speaker array.
  • the audio input device 20B may include one or more microphones, and each microphone may have directivity, or directivity is formed by signal processing on the audio signal detected by the microphone array. May be.
  • the material DB 30 is a DB that stores information on materials that can form the object.
  • the material DB 30 stores a material and information indicating characteristics of the material (for example, information indicating acoustic characteristics and information indicating texture) in association with each other.
  • information indicating characteristics of the material for example, information indicating acoustic characteristics and information indicating texture
  • FIG. 4 is an explanatory diagram for explaining an example of information stored in the material DB 30 according to the present embodiment.
  • the material DB 30 stores reflected sound (reflected wave) when a predetermined sine wave is emitted as information indicating acoustic characteristics.
  • the material DB 30 may store a combination of a radiated sine wave and a reflected wave.
  • the material DB 30 stores the number and depth of irregularities as information indicating the texture.
  • the material DB 30 may store only one of these, or may store information other than these.
  • the energy of the reflected sound is larger as the material is heavier than iron and has less unevenness (that is, the surface area is smaller). On the other hand, the lighter the material with more unevenness, such as towels, the lower the energy of the reflected sound.
  • Pre-processing unit 40 performs preprocessing that is performed prior to measurement of the object. As shown in FIG. 3, the preprocessing unit 40 includes an acoustic noise measurement unit 100.
  • the acoustic noise measurement unit 100 has a function of measuring acoustic noise in the measurement environment.
  • the first sound is a sound obtained by reflecting the radiated sound generated by the sound input / output device 20 itself by the environment (an object other than the target object).
  • the second sound is an operating sound (such as a processor operating sound) of the measurement system 1.
  • the third sound is a sound for measuring a three-dimensional shape by the measurement system 1 (camera shutter sound or the like).
  • the acoustic noise measurement unit 100 measures these sounds as acoustic noise.
  • the measurement system 1 operates the sensor device 10 and the voice input / output device 20 in an environment where no object exists. And the acoustic noise measurement part 100 measures the sound detected by the audio
  • the acoustic noise measurement unit 100 may measure the frequency characteristics of the second sound and the third sound as acoustic noise.
  • Measurement processing unit 50 performs processing for measuring an object. As shown in FIG. 3, the measurement processing unit 50 includes an acoustic noise removal unit 200, a measurement unit 210, a measurement accuracy determination unit 220, a measurement control unit 230, a classification unit 240, and a material estimation unit 250.
  • the measurement processing unit 50 includes an acoustic noise removal unit 200, a measurement unit 210, a measurement accuracy determination unit 220, a measurement control unit 230, a classification unit 240, and a material estimation unit 250.
  • the acoustic noise removing unit 200 has a function of removing acoustic noise.
  • the acoustic noise removing unit 200 separates the reflected sound from the target object from other sounds in the time axis direction. In this way, acoustic noise is removed. Further, when the sound output device 20A has directivity and radiated sound is radiated toward the object, the reflected sound from the object reaches the sound input device 20B earlier than the other, so that the acoustic noise The removal unit 200 removes the acoustic noise by separating the reflected sound from other sounds in the time axis direction.
  • the acoustic noise removing unit 200 may remove the acoustic noise based on the frequency characteristics measured by the acoustic noise measuring unit 100.
  • the measurement unit 210 has a function of measuring the three-dimensional shape and acoustic characteristics of the object.
  • the measurement unit 210 starts measurement based on an instruction from the measurement control unit 230, or performs measurement independently without depending on the instruction.
  • the measurement unit 210 includes a three-dimensional shape measurement unit 212 and an acoustic characteristic measurement unit 214.
  • the three-dimensional shape measurement unit 212 has a function of measuring the three-dimensional shape of the object based on the detection result by the sensor device 10.
  • the three-dimensional shape measurement unit 212 may measure a color or texture in addition to the three-dimensional shape.
  • the measurement result may include, for example, depth information and texture information, or the coordinates of the three-dimensional point group recognized based on the depth information and texture information, the polygon mesh connecting these points, and the polygons
  • a normal vector or the like may be included.
  • a general-purpose technique such as an active measurement method or a passive measurement method can be adopted as the measurement technique by the three-dimensional shape measurement unit 212.
  • the acoustic characteristic measurement unit 214 has a function of measuring the acoustic characteristic of the object based on the detection result by the voice input / output device 20. For example, the acoustic characteristic measurement unit 214 measures the acoustic characteristic of the object based on the radiated sound radiated to the object and the reflected sound reflected by the object.
  • the radiated sound may be a sine wave, or a sine wave having a plurality of frequencies may be radiated.
  • the acoustic characteristic measurement unit 214 measures the acoustic characteristic by analyzing the frequency characteristic of the reflected sound or analyzing the relationship between the radiated sound and the reflected sound.
  • the acoustic characteristics of the measurement target may be the reflected sound for each radiated sound of each frequency, or may be a compressed sound of the reflected sound, or the reflectance for each radiated sound of each frequency. It may be the result of analysis such as frequency characteristics of reflected sound for each radiated sound of each frequency.
  • the acoustic characteristics may include information indicating unevenness, material, sound absorption characteristics, area, etc. on the surface of the object.
  • Measurement accuracy determination unit 220 has a function of determining measurement accuracy by the measurement unit 210. Specifically, the measurement accuracy determination unit 220 determines the measurement accuracy by the three-dimensional shape measurement unit 212.
  • the measurement accuracy determination unit 220 determines whether the region irradiated with the laser beam is sufficiently reflected by the laser beam. By determining whether or not, the measurement accuracy is determined. Further, when the three-dimensional shape measurement unit 212 is a type that measures by recognizing the line of the irradiation pattern, the measurement accuracy determination unit 220 determines whether the pattern light is buried in the texture of the object. Determine the measurement accuracy. In addition, the measurement accuracy determination unit 220 may determine the measurement accuracy by the acoustic characteristic measurement unit 214.
  • Measurement control unit 230 has a function of controlling the measurement process by the three-dimensional shape measurement unit 212 or the acoustic characteristic measurement unit 214 based on the other measurement result.
  • the measurement control unit 230 controls the measurement process by the acoustic characteristic measurement unit 214 based on the measurement result of the three-dimensional shape measurement unit 212.
  • the measurement control unit 230 controls the measurement process by the acoustic characteristic measurement unit 214 directly by controlling the processing content by the acoustic characteristic measurement unit 214 or indirectly by controlling the voice input / output device 20. To do.
  • By measuring the acoustic characteristics based on the three-dimensional shape it is possible to further improve the measurement accuracy of the acoustic characteristics.
  • the measurement control unit 230 has at least the frequency or directivity of the radiated sound radiated from the sound output device 20A, the directivity related to detection of reflected sound by the sound input device 20B, or the number of times or timing of measurement by the acoustic characteristic measurement unit 214. Control either one. More specifically, the measurement control unit 230 controls the directivity of the directional speaker (for example, the orientation of the directional speaker) or by controlling the content of the signal processing on the audio signal output by the speaker array. The directivity (for example, the radiation direction and the radiation range) of the radiated sound may be controlled.
  • the measurement control unit 230 controls the directivity of the directional microphone (for example, the attitude of the directional microphone), or controls the content of the signal processing on the audio signal detected by the microphone array, thereby reflecting the signal. Directivity (for example, detection direction and detection range) related to sound detection may be controlled. By such control, the measurement by the acoustic characteristic measurement unit 214 becomes more appropriate, and the measurement accuracy can be further improved.
  • the measurement control unit 230 may control the directivity of the radiated sound toward the surface of the object based on the normal of the surface of the object indicated by the measurement result by the three-dimensional shape measurement unit 212. Thereby, the acoustic characteristic measurement unit 214 can appropriately measure the acoustic characteristics. This point will be described with reference to FIG.
  • FIG. 5 is an explanatory diagram for explaining the directivity control of the voice input / output device 20 according to the present embodiment.
  • the incident angle 72 and the reflection angle 73 of the radiated sound radiated from the sound output device 20A to the object 90 are the same. Since the relationship between the incident angle 72 and the reflection angle 73 can be estimated based on the normal 71 that is known from the measurement result obtained by the three-dimensional shape measurement unit 212, the measurement control unit 230 calculates an appropriate measurement point. Thus, the directivity of the audio output device 20A can be controlled.
  • the reflected sound reaches the audio input device 20B.
  • the reflected sound arrives at a position shifted from the audio input device 20B. Yes.
  • the voice input device 20B may be non-directional, and in this case, the distribution of reflected sound is detected.
  • the measurement control unit 230 may cause the acoustic characteristic measurement unit 214 to intensively measure a region where the measurement accuracy by the three-dimensional shape measurement unit 212 is lower than a threshold value. Since the distance between the voice input / output device 20 and the surface of the object can be determined based on the delay amount of the arrival sound of the reflected sound, the measurement system 1 can change the three-dimensional shape based on the measurement result by the acoustic characteristic measurement unit 214. It is possible to correct. Conversely, the measurement control unit 230 may exclude a region having a shape that is difficult to measure, such as a sound that is easily diffusely reflected, from the measurement target by the acoustic characteristic measurement unit 214.
  • the measurement control unit 230 may control the measurement process for each segment classified by the classification unit 240 described later. Since the characteristics can be different for each segment, the measurement accuracy can be further improved by the measurement processing for each segment, and the measurement can be speeded up.
  • the measurement control unit 230 may perform measurement control based on the determination result by the measurement accuracy determination unit 220. For example, when the measurement accuracy is insufficient, the measurement control unit 230 may instruct additional measurement of the three-dimensional shape or measurement of acoustic characteristics. In addition, the measurement control unit 230 can match the measurement result of the three-dimensional shape and the measurement result of the acoustic characteristics based on the measurement accuracy (for example, the measurement accuracy is comparable), Additional measurements or measurements of acoustic properties may be indicated.
  • the measurement control unit 230 may control the measurement by the three-dimensional shape measurement unit 212 based on the measurement result by the acoustic characteristic measurement unit 214.
  • the measurement control unit 230 controls the measurement process by the three-dimensional shape measurement unit 212 directly by controlling the processing content by the three-dimensional shape measurement unit 212 or indirectly by controlling the sensor device 10. To do. By measuring the three-dimensional shape based on the acoustic characteristics, the measurement accuracy of the three-dimensional shape can be further improved.
  • the measurement control unit 230 may control the measurement by the measurement unit 210 based on the result of simple measurement by the measurement unit 210. That is, the measurement control unit 230 may calibrate the measurement unit 210 based on the previous measurement result. Further, the measurement control unit 230 determines which one of the three-dimensional shape measurement unit 212 and the acoustic characteristic measurement unit 214 measures first, that is, which is controlled based on the other measurement result, based on the previous measurement result. May be determined.
  • the classification unit 240 has a function of classifying an object into one or more segments based on at least one of the measurement results obtained by the three-dimensional shape measurement unit 212 or the acoustic characteristic measurement unit 214. For example, the classification unit 240 classifies regions having different colors, luminance, saturation, texture, etc. into different segments based on the measurement result by the three-dimensional shape measurement unit 212, or employs an edge as a segment boundary line. To do. For example, the classification unit 240 classifies regions having different sound pressures or frequency characteristics into different segments based on the measurement result by the acoustic characteristic measurement unit 214.
  • Classification based on three-dimensional shape and acoustic characteristics for example, segmenting regions with different shapes even if the acoustic characteristics are the same, or different acoustic characteristics (typically the same color) Can be segmented into regions of different materials or materials.
  • the material estimation unit 250 has a function of estimating the material of the object.
  • the material estimation unit 250 may further estimate the material of the object. By specifying the material or the material, it is possible to further improve the reproduction accuracy of the object.
  • the material estimation unit 250 estimates the material of the object based on the measurement result by the acoustic characteristic measurement unit 214. For example, the material estimation process is performed by collating the acoustic characteristics measured by the acoustic characteristic measurement unit 214 with the acoustic characteristics stored in the material DB 30. In addition, the material estimation unit 250 generates a discriminator by performing machine learning such as a neural network as preprocessing, and the measurement result by the three-dimensional shape measuring unit 212 or the acoustic characteristic measuring unit 214 is stored in the discriminator. The material may be estimated by inputting. By using the acoustic characteristics for the estimation of the material, for example, it is possible to estimate that the material is different even if the color is the same, and it is possible to further improve the estimation accuracy.
  • the material estimation process is performed by collating the acoustic characteristics measured by the acoustic characteristic measurement unit 214 with the acoustic characteristics stored in the material DB 30.
  • the material estimation unit 250 generates
  • the material estimation unit 250 may estimate the material for each segment of the object based on the classification result by the classification unit 240. Thereby, even if a different material is used for each segment, the material can be estimated appropriately, and the reproduction accuracy of the object can be further improved.
  • the material estimation unit 250 may estimate the material based on information other than sound, such as a detection result by an infrared sensor (not shown).
  • information other than sound such as a detection result by an infrared sensor (not shown).
  • the use of sound for the estimation of the material is useful in that the material can be estimated even for materials that transmit infrared rays, such as germanium and silicon.
  • Post-processing unit 60 performs post-processing for measuring the object. As shown in FIG. 3, the post-processing unit 60 includes an output control unit 300.
  • the output control unit 300 has a function of associating information indicating measurement results obtained by the three-dimensional shape measurement unit 212 and the acoustic characteristic measurement unit 214 with the output device. For example, the output control unit 300 outputs each vertex or each segment of the three-dimensional shape in association with the acoustic characteristics. Furthermore, the output control unit 300 may output the estimation results obtained by the material estimation unit 250 in association with each other. Further, the output control unit 300 may output the color or texture in association with each other. For example, these pieces of information may be added as parameters of the format of information indicating the three-dimensional shape (for example, CAD data). By such output, it is possible to further improve the reproduction accuracy of the object.
  • CAD data CAD data
  • the output control unit 300 may correct the measurement result obtained by the three-dimensional shape measurement unit 212 based on the measurement result obtained by the acoustic characteristic measurement unit 214.
  • the output control unit 300 may give the three-dimensional surface irregularities based on the material (material) specified by the acoustic characteristics. In that case, it is possible to improve the reproduction accuracy of the object until a fine three-dimensional shape that is difficult to measure by the three-dimensional shape measurement unit 212 is reached.
  • FIG. 6 is a flowchart showing an example of the flow of preprocessing executed in the measurement system 1 according to the present embodiment.
  • the acoustic noise measurement unit 100 determines whether or not a predetermined condition is satisfied (step S102).
  • a predetermined condition include the following.
  • the distance from the object other than the object is sufficiently large.
  • the object other than the object (for example, the inner wall of the sealed type measurement system 1) is a sound absorbing object.
  • the audio output device 20A has directivity.
  • the second and third sounds are stationary sounds and have known frequency characteristics
  • the acoustic noise measurement unit 100 measures the acoustic noise (step S104). On the other hand, when it is determined that the predetermined condition is satisfied (step S102 / YES), the acoustic noise measurement unit 100 skips the measurement of the acoustic noise.
  • FIG. 7 is a flowchart showing an example of the flow of measurement processing executed in the measurement system 1 according to the present embodiment.
  • the three-dimensional shape measuring unit 212 measures a three-dimensional shape (step S202).
  • the measurement accuracy determination unit 220 determines whether or not the measurement accuracy of the three-dimensional shape measurement unit 212 is known (step S204). If the measurement accuracy is unknown (step S204 / NO), the measurement accuracy determination unit 220 determines the measurement accuracy (step S206), and if it is known (step S204 / YES), skips the determination.
  • the classification unit 240 performs segment classification of the three-dimensional shape (step S208). Thereafter, the measurement system 1 repeatedly performs the processes according to steps S210 to S216 while changing the segment to be processed.
  • the measurement control unit 230 sets measurement parameters relating to the measurement of the acoustic characteristics of the segment to be processed (step S210).
  • the acoustic noise removing unit 200 removes the acoustic noise from the sound detected by the voice input / output device 20 regarding the segment to be processed, and outputs the acoustic noise to the acoustic characteristic measuring unit 214 (step S212).
  • the acoustic characteristic measurement unit 214 measures the acoustic characteristic of the processing target segment (step S214).
  • the material estimation unit 250 estimates the material of the segment to be processed based on the measurement result of the three-dimensional shape or acoustic characteristics. The measurement system 1 performs the processes related to steps S210 to S216 until there are no unprocessed segments.
  • the measurement system 1 performs the processing according to steps S202 to S216 described above until there is no unmeasured part in the object.
  • the output control unit 300 outputs data indicating the measurement result.
  • FIG. 8 is a block diagram illustrating an example of a hardware configuration of the information processing apparatus according to the present embodiment.
  • the information processing apparatus 900 illustrated in FIG. 8 can realize the measurement system 1 illustrated in FIG. 3, for example.
  • Information processing by the measurement system 1 according to the present embodiment is realized by cooperation between software and hardware described below.
  • the information processing apparatus 900 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, and a host bus 904a.
  • the information processing apparatus 900 includes a bridge 904, an external bus 904b, an interface 905, an input device 906, an output device 907, a storage device 908, a drive 909, a connection port 911, and a communication device 913.
  • the information processing apparatus 900 may include a processing circuit such as a DSP or an ASIC in place of or in addition to the CPU 901.
  • the CPU 901 functions as an arithmetic processing unit and a control unit, and controls the overall operation in the information processing apparatus 900 according to various programs. Further, the CPU 901 may be a microprocessor.
  • the ROM 902 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like.
  • the CPU 901 can form, for example, the preprocessing unit 40, the measurement processing unit 50, and the postprocessing unit 60 illustrated in FIG.
  • the CPU 901, ROM 902, and RAM 903 are connected to each other by a host bus 904a including a CPU bus.
  • the host bus 904 a is connected to an external bus 904 b such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 904.
  • an external bus 904 b such as a PCI (Peripheral Component Interconnect / Interface) bus
  • PCI Peripheral Component Interconnect / Interface
  • the host bus 904a, the bridge 904, and the external bus 904b do not necessarily have to be configured separately, and these functions may be mounted on one bus.
  • the input device 906 is realized by a device in which information is input by the user, such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever.
  • the input device 906 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA that supports the operation of the information processing device 900.
  • the input device 906 may include, for example, an input control circuit that generates an input signal based on information input by the user using the above-described input means and outputs the input signal to the CPU 901.
  • a user of the information processing apparatus 900 can input various data and instruct a processing operation to the information processing apparatus 900 by operating the input device 906.
  • the input device 906 can be formed by a device that detects information about the user.
  • the input device 906 includes various sensors such as an image sensor (for example, a camera), a depth sensor (for example, a stereo camera), an acceleration sensor, a gyro sensor, a geomagnetic sensor, an optical sensor, a sound sensor, a distance sensor, and a force sensor. Can be included.
  • the input device 906 includes information related to the information processing device 900 state, such as the posture and movement speed of the information processing device 900, and information related to the surrounding environment of the information processing device 900, such as brightness and noise around the information processing device 900. May be obtained.
  • the input device 906 receives a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) and receives position information including the latitude, longitude, and altitude of the device.
  • GNSS Global Navigation Satellite System
  • a GNSS module to measure may be included.
  • the input device 906 may detect the position by transmission / reception with Wi-Fi (registered trademark), a mobile phone / PHS / smartphone, or the like, or near field communication.
  • Wi-Fi registered trademark
  • a mobile phone / PHS / smartphone or the like, or near field communication.
  • the input device 906 may be formed by a device for detecting sound related to the measurement object.
  • the input device 906 may include a voice input device such as a microphone, an amplifier, and an ADC (Analog Digital Converter).
  • the input device 906 may include an audio output device that emits radiated sound in order to detect reflected sound.
  • the audio output device may include a speaker, an amplifier, a DAC (Digital Analog Converter), and the like.
  • the voice input device and the voice output device can form the voice input / output device 20 shown in FIG.
  • the input device 906 can be formed by various sensors for detecting the three-dimensional shape of the measurement object.
  • sensors include various sensors such as an image sensor, a depth sensor (for example, a stereo camera), an optical sensor, and a distance measuring sensor.
  • the various sensors can form the sensor device 10 shown in FIG.
  • the output device 907 is formed of a device that can notify the user of the acquired information visually or audibly.
  • Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as laser projectors, LED projectors and lamps, audio output devices such as speakers and headphones, printer devices, and the like.
  • the output device 907 outputs results obtained by various processes performed by the information processing device 900.
  • the display device visually displays results obtained by various processes performed by the information processing device 900 in various formats such as text, images, tables, and graphs.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs it aurally.
  • the display device and the audio output device output measurement results by the measurement unit 210, classification results by the classification unit 240, and / or estimation results by the material estimation unit 250 based on control by the output control unit 300. Can do.
  • the storage device 908 is a data storage device formed as an example of a storage unit of the information processing device 900.
  • the storage apparatus 908 is realized by, for example, a magnetic storage device such as an HDD, a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the storage device 908 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 908 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like.
  • the storage device 908 can form the material DB 30 shown in FIG.
  • the drive 909 is a storage medium reader / writer, and is built in or externally attached to the information processing apparatus 900.
  • the drive 909 reads information recorded on a removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 903.
  • the drive 909 can also write information to a removable storage medium.
  • connection port 911 is an interface connected to an external device, and is a connection port with an external device capable of transmitting data by USB (Universal Serial Bus), for example.
  • USB Universal Serial Bus
  • the communication device 913 is a communication interface formed by a communication device or the like for connecting to the network 920, for example.
  • the communication device 913 is, for example, a communication card for wired or wireless LAN (Local Area Network), LTE (Long Term Evolution), Bluetooth (registered trademark), or WUSB (Wireless USB).
  • the communication device 913 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like.
  • the communication device 913 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet and other communication devices.
  • the network 920 is a wired or wireless transmission path for information transmitted from a device connected to the network 920.
  • the network 920 may include a public line network such as the Internet, a telephone line network, and a satellite communication network, various LANs including the Ethernet (registered trademark), a wide area network (WAN), and the like.
  • the network 920 may include a dedicated line network such as an IP-VPN (Internet Protocol-Virtual Private Network).
  • IP-VPN Internet Protocol-Virtual Private Network
  • each of the above components may be realized using a general-purpose member, or may be realized by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.
  • a computer program for realizing each function of the information processing apparatus 900 according to the present embodiment as described above can be produced and mounted on a PC or the like.
  • a computer-readable recording medium storing such a computer program can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via a network, for example, without using a recording medium.
  • the measurement system 1 controls the measurement process of the three-dimensional shape of the object and the measurement process of the acoustic characteristics of the object based on the other measurement result.
  • the measurement system 1 can complementarily perform the measurement of the three-dimensional shape and the measurement of the acoustic characteristics, and can improve the measurement accuracy.
  • the measurement system 1 may be realized as a single device, or part or all may be realized as separate devices.
  • the material DB 30, the preprocessing unit 40, the measurement processing unit 50, and the postprocessing unit 60 are connected to the sensor device 10 and the voice input / output device 20 via a network or the like. It may be provided in a device such as a server.
  • a three-dimensional shape measuring unit for measuring the three-dimensional shape of the object;
  • An acoustic characteristic measuring unit for measuring acoustic characteristics of the object;
  • a measurement control unit for controlling measurement processing by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit based on the other measurement result;
  • An information processing apparatus comprising: (2) The information processing apparatus according to (1), wherein the acoustic characteristic measurement unit measures an acoustic characteristic of the object based on a radiated sound radiated to the object and a reflected sound reflected by the object.
  • the information processing apparatus controls at least one of a frequency or directivity of the radiated sound, directivity related to detection of the reflected sound, or the number of times or timing of measurement.
  • the measurement control unit controls measurement processing by the acoustic characteristic measurement unit based on a measurement result of the three-dimensional shape measurement unit. .
  • the measurement control unit controls the directivity of the radiated sound to the surface of the object based on the normal line of the surface of the object indicated by the measurement result by the three-dimensional shape measurement unit.
  • the material estimation unit estimates a material of the object based on a measurement result by the acoustic characteristic measurement unit.
  • Measurement System 10 Sensor Device 20 Audio Input / Output Device 30 Material DB 40 Pre-processing unit 50 Measurement processing unit 60 Post-processing unit 90 Object 100 Acoustic noise measurement unit 200 Acoustic noise removal unit 210 Measurement unit 212 Three-dimensional shape measurement unit 214 Acoustic characteristic measurement unit 220 Measurement accuracy determination unit 230 Measurement control unit 240 Classification Part 250 Material estimation part 300 Output control part

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

[Problem] To provide an information processing device, an information processing method and a program with which it is possible for three-dimensional shape measurement and acoustic characteristic measurement to be performed in a complementary manner. [Solution] This information processing device is provided with: a three-dimensional shape measuring unit which measures the three-dimensional shape of a target object; an acoustic characteristic measuring unit which measures the acoustic characteristics of the target object; and a measurement control unit which controls a measuring process performed by either the three-dimensional shape measuring unit or the acoustic characteristic measuring unit using the measurement results from the other measuring process.

Description

情報処理装置、情報処理方法及びプログラムInformation processing apparatus, information processing method, and program
 本開示は、情報処理装置、情報処理方法及びプログラムに関する。 The present disclosure relates to an information processing apparatus, an information processing method, and a program.
 近年、様々な観点で実物体の測定を行う技術が開発されている。例えば、3Dスキャナは、実物体の三次元形状を測定する装置であり、近年では三次元形状の復元の精度も±20μm程度にまで到達している。他にも、例えば下記特許文献1では、ペットボトルのキャップの選別のために、キャップの材質を近赤外線センサで測定する技術が開示されている。また、下記特許文献2では、音楽ホール、劇場、体育館等の音場の音響特性を測定する技術が開示されている。 In recent years, techniques for measuring real objects from various viewpoints have been developed. For example, a 3D scanner is a device that measures the three-dimensional shape of a real object. In recent years, the accuracy of reconstruction of a three-dimensional shape has reached about ± 20 μm. In addition, for example, Patent Document 1 below discloses a technique for measuring a cap material with a near-infrared sensor in order to select a cap for a PET bottle. Patent Document 2 below discloses a technique for measuring acoustic characteristics of a sound field such as a music hall, a theater, or a gymnasium.
特開2012-139650号公報JP 2012-139650 A 特開平05-260590号公報JP 05-260590 A
 しかし、上述した技術は、三次元形状、材質、又は音響特性といった各観点での測定を個別に行うに過ぎなかった。そのため、測定結果に基づいて実物体を再現する際には、例えば三次元形状又は音響特性を個別に再現することはできても、両方を共に再現することは困難であった。 However, the above-described technique only performs individual measurements from the viewpoints of three-dimensional shape, material, or acoustic characteristics. Therefore, when reproducing a real object based on a measurement result, for example, although it is possible to individually reproduce a three-dimensional shape or acoustic characteristics, it is difficult to reproduce both.
 そこで、本開示では、三次元形状の測定と音響特性の測定とを相補的に行うことが可能な、新規且つ改良された情報処理装置、情報処理方法及びプログラムを提案する。 Therefore, the present disclosure proposes a new and improved information processing apparatus, information processing method, and program capable of complementarily performing measurement of a three-dimensional shape and measurement of acoustic characteristics.
 本開示によれば、対象物の三次元形状を測定する三次元形状測定部と、前記対象物の音響特性を測定する音響特性測定部と、前記三次元形状測定部又は前記音響特性測定部による測定処理を、他方の測定結果に基づいて制御する測定制御部と、を備える情報処理装置が提供される。 According to the present disclosure, a three-dimensional shape measurement unit that measures a three-dimensional shape of an object, an acoustic characteristic measurement unit that measures an acoustic characteristic of the object, and the three-dimensional shape measurement unit or the acoustic characteristic measurement unit. An information processing apparatus is provided that includes a measurement control unit that controls measurement processing based on the other measurement result.
 また、本開示によれば、対象物の三次元形状を測定することと、前記対象物の音響特性を測定することと、三次元形状又は音響特性の測定処理を、他方の測定結果に基づいてプロセッサにより制御することと、を含む情報処理方法が提供される。 Further, according to the present disclosure, measuring the three-dimensional shape of the object, measuring the acoustic characteristics of the object, and measuring the three-dimensional shape or the acoustic characteristics based on the measurement result of the other And an information processing method including controlling by a processor.
 また、本開示によれば、コンピュータを、対象物の三次元形状を測定する三次元形状測定部と、前記対象物の音響特性を測定する音響特性測定部と、前記三次元形状測定部又は前記音響特性測定部による測定処理を、他方の測定結果に基づいて制御する測定制御部と、として機能させるためのプログラムが提供される。 Further, according to the present disclosure, the computer includes a three-dimensional shape measurement unit that measures the three-dimensional shape of the object, an acoustic characteristic measurement unit that measures the acoustic characteristics of the object, and the three-dimensional shape measurement unit or the A program for causing a measurement process by the acoustic characteristic measurement unit to function as a measurement control unit that controls based on the other measurement result is provided.
 以上説明したように本開示によれば、三次元形状の測定と音響特性の測定とを相補的に行うことが可能である。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 As described above, according to the present disclosure, measurement of a three-dimensional shape and measurement of acoustic characteristics can be performed in a complementary manner. Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本実施形態に係る測定システムの外観構成の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the external appearance structure of the measurement system which concerns on this embodiment. 本実施形態に係る測定システムの外観構成の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the external appearance structure of the measurement system which concerns on this embodiment. 本実施形態に係る測定システムの論理的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a logical structure of the measurement system which concerns on this embodiment. 本実施形態に係る材質DBに記憶される情報の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the information memorize | stored in material DB which concerns on this embodiment. 本実施形態に係る音声入出力装置の指向性の制御を説明するための説明図である。It is explanatory drawing for demonstrating the directivity control of the audio | voice input / output apparatus which concerns on this embodiment. 本実施形態に係る測定システムにおいて実行される前処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the pre-processing performed in the measurement system which concerns on this embodiment. 本実施形態に係る測定システムにおいて実行される測定処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the measurement process performed in the measurement system which concerns on this embodiment. 本実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the information processing apparatus which concerns on this embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
  1.概要
  2.構成例
   2.1.外観構成例
   2.2.内部構成例
  3.処理の流れ
  4.ハードウェア構成例
  5.まとめ
The description will be made in the following order.
1. Overview 2. Configuration example 2.1. External configuration example 2.2. 2. Internal configuration example Flow of processing 4. Hardware configuration example Summary
 <<1.概要>>
 まず、本開示の一実施形態に係る測定システムの概要を説明する。
<< 1. Overview >>
First, an outline of a measurement system according to an embodiment of the present disclosure will be described.
 本実施形態に係る測定システムは、三次元形状の測定と音響特性の測定とを相補的に行う。本実施形態に係る測定システムは、三次元形状の測定処理又は音響特性の測定処理を、他方の測定結果に基づいて制御することで、測定精度を向上させることができる。 The measurement system according to the present embodiment performs three-dimensional shape measurement and acoustic characteristic measurement in a complementary manner. The measurement system according to the present embodiment can improve the measurement accuracy by controlling the measurement process of the three-dimensional shape or the measurement process of the acoustic characteristics based on the other measurement result.
 さらに、本実施形態に係る測定システムは、音響特性を示す情報と三次元形状を示す情報とを対応付けて出力する。これにより、CG作成時の音響特性に関する物理シミュレーションモデルの生成、又は3Dプリント時の素材選定に関し、対象物の再現精度(特に、対象物の音響特性の再現精度)を高めることが可能となる。 Furthermore, the measurement system according to the present embodiment outputs information indicating acoustic characteristics and information indicating three-dimensional shapes in association with each other. This makes it possible to improve the reproduction accuracy of the object (particularly, the reproduction accuracy of the acoustic characteristics of the object) with respect to generation of a physical simulation model related to the acoustic characteristics at the time of CG creation or material selection at the time of 3D printing.
 ここで、測定対象となる対象物は、人等の生物、椅子、車、ボール等の物体など、多様に考えられる。音響特性の測定のために音が利用されることを考慮すれば、対象物は無音の物体であることが望ましい。 Here, there are a variety of objects to be measured, such as living things such as humans, objects such as chairs, cars, and balls. Considering that sound is used for measurement of acoustic characteristics, it is desirable that the object is a silent object.
 以上、本実施形態に係る測定システムの概要を説明した。続いて、図1~図5を参照して、本実施形態に係る測定システムの構成例を説明する。 The outline of the measurement system according to this embodiment has been described above. Subsequently, a configuration example of the measurement system according to the present embodiment will be described with reference to FIGS. 1 to 5.
 <<2.構成例>>
 まず、図1及び図2を参照して、本開示の一実施形態に係る測定システム1の外観構成の一例を説明する。
<< 2. Configuration example >>
First, with reference to FIG.1 and FIG.2, an example of the external appearance structure of the measurement system 1 which concerns on one Embodiment of this indication is demonstrated.
  <2.1.外観構成例>
 図1は、本実施形態に係る測定システム1の外観構成の一例を説明するための説明図である。図1に示すように、測定システム1は、センサ装置10及び音声入出力装置20(音声出力装置20A及び音声入力装置20B)を含む。測定システム1は、アクティブセンサ又はパッシブセンサにより形成されるセンサ装置10を用いて対象物90の三次元形状を測定する。また、測定システム1は、音声出力装置20Aから音(以下、放射音とも称する)を放射させ、その直接反射音を音声入力装置20Bにより検出することで、対象物90の音響特性を測定する。ここで、対象物90は、布及びクッション等の吸音素材により形成される領域91と、木材等の反射素材により形成される領域92とを含む。その吸音性の違いから、領域91と領域92とで音響特性は異なる。測定システム1は、対象物90の全体の三次元形状を測定すると共に、三次元形状のみからでは識別が困難であった領域91と領域92とを、音響特性の違いにより識別することが可能である。このように、測定システム1は、センサ装置10と音声入出力装置20とを用いて、三次元形状の測定と音響特性の測定とを相補的に行うことが可能である。
<2.1. External configuration example>
FIG. 1 is an explanatory diagram for explaining an example of an external configuration of a measurement system 1 according to the present embodiment. As shown in FIG. 1, the measurement system 1 includes a sensor device 10 and a voice input / output device 20 (a voice output device 20A and a voice input device 20B). The measurement system 1 measures the three-dimensional shape of the object 90 using the sensor device 10 formed by an active sensor or a passive sensor. The measurement system 1 measures the acoustic characteristics of the object 90 by radiating sound (hereinafter also referred to as radiated sound) from the sound output device 20A and detecting the directly reflected sound by the sound input device 20B. Here, the object 90 includes a region 91 formed of a sound absorbing material such as cloth and a cushion, and a region 92 formed of a reflective material such as wood. Due to the difference in sound absorption, the acoustic characteristics are different between the region 91 and the region 92. The measurement system 1 can measure the entire three-dimensional shape of the object 90, and can identify the region 91 and the region 92, which are difficult to identify from only the three-dimensional shape, by the difference in acoustic characteristics. is there. As described above, the measurement system 1 can perform the measurement of the three-dimensional shape and the measurement of the acoustic characteristics in a complementary manner by using the sensor device 10 and the voice input / output device 20.
 図2は、本実施形態に係る測定システム1の外観構成の一例を説明するための説明図である。図2に示した例においても、測定システム1は、センサ装置10及び音声入出力装置20を含む。図1に示した例はハンディタイプとも称し、図2に示した例は密閉(全方位)タイプとも称する。図2に示した例においては、測定システム1の筐体内部に対象物が置かれた状態で測定が行われる。 FIG. 2 is an explanatory diagram for explaining an example of an external configuration of the measurement system 1 according to the present embodiment. Also in the example illustrated in FIG. 2, the measurement system 1 includes the sensor device 10 and the voice input / output device 20. The example shown in FIG. 1 is also called a handy type, and the example shown in FIG. 2 is also called a sealed (omnidirectional) type. In the example illustrated in FIG. 2, the measurement is performed in a state where an object is placed inside the housing of the measurement system 1.
 ここで、音響特性を精度よく測定するためには、残響や対象物以外からの反射音は出来る限り少ないことが望ましい。そのため、音声出力装置20A及び音声入力装置20Bは、いずれも指向性を有していることが望ましい。また、図2に示した密閉タイプの測定システム1に関しては、内壁が吸音性の高い素材で形成されることが望ましい。 Here, in order to accurately measure the acoustic characteristics, it is desirable that reverberation and reflected sound from other than the object are as small as possible. Therefore, it is desirable that both the audio output device 20A and the audio input device 20B have directivity. In addition, regarding the sealed type measurement system 1 shown in FIG. 2, it is desirable that the inner wall be formed of a material having high sound absorption.
 以上、測定システム1の外観構成の一例を説明した。続いて、図3を参照して、測定システム1の内部構成の一例を説明する。 The example of the external configuration of the measurement system 1 has been described above. Next, an example of the internal configuration of the measurement system 1 will be described with reference to FIG.
  <2.2.内部構成例>
 図3は、本実施形態に係る測定システム1の論理的な構成の一例を示すブロック図である。図3に示すように、測定システム1は、センサ装置10、音声入出力装置20、材質DB(Data Base)30、前処理部40、測定処理部50及び後処理部60を含む。以下、各構成要素について説明する。
<2.2. Internal configuration example>
FIG. 3 is a block diagram illustrating an example of a logical configuration of the measurement system 1 according to the present embodiment. As shown in FIG. 3, the measurement system 1 includes a sensor device 10, a voice input / output device 20, a material DB (Data Base) 30, a preprocessing unit 40, a measurement processing unit 50, and a postprocessing unit 60. Hereinafter, each component will be described.
 (1)センサ装置10
 センサ装置10は、対象物の三次元形状を測定するための情報を検出する機能を有する。例えば、センサ装置10は、アクティブセンサ又はパッシブセンサにより形成される。センサ装置10は、深度情報を検出しつつ撮像画像を撮像可能なステレオカメラであってもよい。センサ装置10は、検出結果を三次元形状測定部212へ出力する。
(1) Sensor device 10
The sensor device 10 has a function of detecting information for measuring the three-dimensional shape of the object. For example, the sensor device 10 is formed by an active sensor or a passive sensor. The sensor device 10 may be a stereo camera that can capture a captured image while detecting depth information. The sensor device 10 outputs the detection result to the three-dimensional shape measurement unit 212.
 (2)音声入出力装置20
 音声入出力装置20は、対象物へ音(以下、放射音とも称する)を放射して反射音を検出する機能を有する。音声出力装置20A及び音声入力装置20Bは、指向性を有していてもよい。音声出力装置20Aは、ひとつ以上のスピーカを有し、個々のスピーカが指向性を有していてもよいし、スピーカアレイにより出力させる音声信号への信号処理により指向性が形成されてもよい。同様に、音声入力装置20Bは、ひとつ以上のマイクを有し、個々のマイクが指向性を有していてもよいし、マイクアレイにより検出された音声信号への信号処理により指向性が形成されてもよい。
(2) Voice input / output device 20
The voice input / output device 20 has a function of detecting reflected sound by emitting sound (hereinafter also referred to as radiated sound) to an object. The audio output device 20A and the audio input device 20B may have directivity. The audio output device 20A may include one or more speakers, and each speaker may have directivity, or directivity may be formed by signal processing on an audio signal output by the speaker array. Similarly, the audio input device 20B may include one or more microphones, and each microphone may have directivity, or directivity is formed by signal processing on the audio signal detected by the microphone array. May be.
 (3)材質DB30
 材質DB30は、対象物を構成し得る材質に関する情報を記憶するDBである。材質DB30は、材質、その材質の特徴を示す情報(例えば、音響特性を示す情報、及びテクスチャを示す情報等)とを対応付けて記憶する。以下、図4を参照して、材質DB30に記憶される情報を具体的に説明する。
(3) Material DB30
The material DB 30 is a DB that stores information on materials that can form the object. The material DB 30 stores a material and information indicating characteristics of the material (for example, information indicating acoustic characteristics and information indicating texture) in association with each other. Hereinafter, the information stored in the material DB 30 will be described in detail with reference to FIG.
 図4は、本実施形態に係る材質DB30に記憶される情報の一例を説明するための説明図である。図4に示す例では、材質DB30は、音響特性を示す情報として、所定の正弦波を放射した場合の反射音(反射波)を記憶している。他の例として、材質DB30は、放射した正弦波と反射波との組み合わせを記憶していてもよい。また、材質DB30は、テクスチャを示す情報として、凹凸の数及び深さを記憶している。材質DB30は、これらのいずれかのみ記憶していてもよいし、これら以外の情報を記憶していてもよい。図4に示したように、鉄のように重く、凹凸が少ない(即ち、表面積が小さい)素材ほど、反射音のエネルギーは大きい。一方で、タオルなどのように凹凸が多く軽い素材ほど、反射音のエネルギーは小さい。 FIG. 4 is an explanatory diagram for explaining an example of information stored in the material DB 30 according to the present embodiment. In the example illustrated in FIG. 4, the material DB 30 stores reflected sound (reflected wave) when a predetermined sine wave is emitted as information indicating acoustic characteristics. As another example, the material DB 30 may store a combination of a radiated sine wave and a reflected wave. In addition, the material DB 30 stores the number and depth of irregularities as information indicating the texture. The material DB 30 may store only one of these, or may store information other than these. As shown in FIG. 4, the energy of the reflected sound is larger as the material is heavier than iron and has less unevenness (that is, the surface area is smaller). On the other hand, the lighter the material with more unevenness, such as towels, the lower the energy of the reflected sound.
 (4)前処理部40
 前処理部40は、対象物の測定に先だって行われる前処理を行う。図3に示すように、前処理部40は、音響ノイズ測定部100を含む。
(4) Pre-processing unit 40
The preprocessing unit 40 performs preprocessing that is performed prior to measurement of the object. As shown in FIG. 3, the preprocessing unit 40 includes an acoustic noise measurement unit 100.
 (4.1)音響ノイズ測定部100
 音響ノイズ測定部100は、測定環境の音響ノイズを測定する機能を有する。
(4.1) Acoustic noise measurement unit 100
The acoustic noise measurement unit 100 has a function of measuring acoustic noise in the measurement environment.
 音声入出力装置20が検出し得る音響ノイズは多様に考えられる。第1の音は、音声入出力装置20自身が発生させた放射音が環境(対象物以外の物体)により反射された音である。第2の音は、測定システム1の稼働音(プロセッサの動作音等)である。第3の音は、測定システム1による三次元形状の測定のための音(カメラのシャッター音等)である。音響ノイズ測定部100は、これらの音を音響ノイズとして測定する。 There are various acoustic noises that can be detected by the voice input / output device 20. The first sound is a sound obtained by reflecting the radiated sound generated by the sound input / output device 20 itself by the environment (an object other than the target object). The second sound is an operating sound (such as a processor operating sound) of the measurement system 1. The third sound is a sound for measuring a three-dimensional shape by the measurement system 1 (camera shutter sound or the like). The acoustic noise measurement unit 100 measures these sounds as acoustic noise.
 そのために、測定システム1は、例えば対象物が存在しない環境下でセンサ装置10及び音声入出力装置20を動作させる。そして、音響ノイズ測定部100は、その間に音声入出力装置20により検出された音を音響ノイズとして測定する。 Therefore, for example, the measurement system 1 operates the sensor device 10 and the voice input / output device 20 in an environment where no object exists. And the acoustic noise measurement part 100 measures the sound detected by the audio | voice input / output apparatus 20 in the meantime as acoustic noise.
 第2の音及び第3の音が定常音である場合、音響ノイズ測定部100は、第2の音及び第3の音の周波数特性を音響ノイズとして測定してもよい。 When the second sound and the third sound are stationary sounds, the acoustic noise measurement unit 100 may measure the frequency characteristics of the second sound and the third sound as acoustic noise.
 (5)測定処理部50
 測定処理部50は、対象物の測定のための処理を行う。図3に示すように、測定処理部50は、音響ノイズ除去部200、測定部210、測定精度判定部220、測定制御部230、分類部240及び材質推定部250を含む。
(5) Measurement processing unit 50
The measurement processing unit 50 performs processing for measuring an object. As shown in FIG. 3, the measurement processing unit 50 includes an acoustic noise removal unit 200, a measurement unit 210, a measurement accuracy determination unit 220, a measurement control unit 230, a classification unit 240, and a material estimation unit 250.
 (5.1)音響ノイズ除去部200
 音響ノイズ除去部200は、音響ノイズを除去する機能を有する。
(5.1) Acoustic noise removal unit 200
The acoustic noise removing unit 200 has a function of removing acoustic noise.
 対象物が、測定環境に存在する他の物体よりも音声入出力装置20の近くに位置する場合、音響ノイズ除去部200は、対象物からの反射音を時間軸方向で他の音から分離することで、音響ノイズを除去する。また、音声出力装置20Aに指向性があり対象物に向けて放射音が放射される場合、対象物からの反射音が他よりも早くに音声入力装置20Bに到達することとなるので、音響ノイズ除去部200は、反射音を時間軸方向で他の音から分離することで、音響ノイズを除去する。 When the target object is located closer to the voice input / output device 20 than other objects present in the measurement environment, the acoustic noise removing unit 200 separates the reflected sound from the target object from other sounds in the time axis direction. In this way, acoustic noise is removed. Further, when the sound output device 20A has directivity and radiated sound is radiated toward the object, the reflected sound from the object reaches the sound input device 20B earlier than the other, so that the acoustic noise The removal unit 200 removes the acoustic noise by separating the reflected sound from other sounds in the time axis direction.
 また、音響ノイズ除去部200は、音響ノイズ測定部100により測定された周波数特性に基づいて音響ノイズを除去してもよい。 Also, the acoustic noise removing unit 200 may remove the acoustic noise based on the frequency characteristics measured by the acoustic noise measuring unit 100.
 (5.2)測定部210
 測定部210は、対象物の三次元形状及び音響特性を測定する機能を有する。測定部210は、測定制御部230による指示に基づいて測定を開始する、又は指示に依らずに独立して測定を行う。図3に示すように、測定部210は、三次元形状測定部212及び音響特性測定部214を含む。
(5.2) Measuring unit 210
The measurement unit 210 has a function of measuring the three-dimensional shape and acoustic characteristics of the object. The measurement unit 210 starts measurement based on an instruction from the measurement control unit 230, or performs measurement independently without depending on the instruction. As shown in FIG. 3, the measurement unit 210 includes a three-dimensional shape measurement unit 212 and an acoustic characteristic measurement unit 214.
 (5.2.1)三次元形状測定部212
 三次元形状測定部212は、センサ装置10による検出結果に基づいて、対象物の三次元形状を測定する機能を有する。三次元形状測定部212は、三次元形状の他、色又はテクスチャ等を測定してもよい。測定結果は、例えば深度情報及びテクスチャ情報等を含んでいてもよいし、深度情報及びテクスチャ情報に基づいて認識された、三次元点群の座標、それら点を繋いだポリゴンメッシュ、及び各ポリゴンの法線ベクトル等を含んでいてもよい。三次元形状測定部212による測定技術には、アクティブ計測法又はパッシブ計測法などの汎用的な技術が採用され得る。
(5.2.1) Three-dimensional shape measuring unit 212
The three-dimensional shape measurement unit 212 has a function of measuring the three-dimensional shape of the object based on the detection result by the sensor device 10. The three-dimensional shape measurement unit 212 may measure a color or texture in addition to the three-dimensional shape. The measurement result may include, for example, depth information and texture information, or the coordinates of the three-dimensional point group recognized based on the depth information and texture information, the polygon mesh connecting these points, and the polygons A normal vector or the like may be included. A general-purpose technique such as an active measurement method or a passive measurement method can be adopted as the measurement technique by the three-dimensional shape measurement unit 212.
 (5.2.2)音響特性測定部214
 音響特性測定部214は、音声入出力装置20による検出結果に基づいて、対象物の音響特性を測定する機能を有する。例えば、音響特性測定部214は、対象物へ放射された放射音及び対象物により反射された反射音に基づいて対象物の音響特性を測定する。放射音は正弦波であってもよく、また複数通りの周波数の正弦波が放射されてもよい。音響特性測定部214は、反射音の周波数特性を解析したり、放射音と反射音との関係を解析したりすることで、音響特性を測定する。ここで、測定対象の音響特性は、各周波数の放射音毎の反射音そのものであってもよいし、反射音を圧縮したものであってもよいし、各周波数の放射音毎の反射率であってもよいし、各周波数の放射音毎の反射音の周波数特性等の解析結果であってもよい。また、音響特性には、対象物表面の凹凸、材質、吸音特性、面積等を示す情報が含まれていてもよい。
(5.2.2) Acoustic characteristic measurement unit 214
The acoustic characteristic measurement unit 214 has a function of measuring the acoustic characteristic of the object based on the detection result by the voice input / output device 20. For example, the acoustic characteristic measurement unit 214 measures the acoustic characteristic of the object based on the radiated sound radiated to the object and the reflected sound reflected by the object. The radiated sound may be a sine wave, or a sine wave having a plurality of frequencies may be radiated. The acoustic characteristic measurement unit 214 measures the acoustic characteristic by analyzing the frequency characteristic of the reflected sound or analyzing the relationship between the radiated sound and the reflected sound. Here, the acoustic characteristics of the measurement target may be the reflected sound for each radiated sound of each frequency, or may be a compressed sound of the reflected sound, or the reflectance for each radiated sound of each frequency. It may be the result of analysis such as frequency characteristics of reflected sound for each radiated sound of each frequency. In addition, the acoustic characteristics may include information indicating unevenness, material, sound absorption characteristics, area, etc. on the surface of the object.
 (5.3)測定精度判定部220
 測定精度判定部220は、測定部210による測定精度を判定する機能を有する。具体的には、測定精度判定部220は、三次元形状測定部212による測定精度を判定する。
(5.3) Measurement accuracy determination unit 220
The measurement accuracy determination unit 220 has a function of determining measurement accuracy by the measurement unit 210. Specifically, the measurement accuracy determination unit 220 determines the measurement accuracy by the three-dimensional shape measurement unit 212.
 例えば、三次元形状測定部212が対象物に照射されたレーザー光線に基づいて測定するタイプである場合、測定精度判定部220は、レーザー光線が照射された領域が、レーザー光線を十分に反射されているか否かを判定することで、測定精度を判定する。また、三次元形状測定部212が照射パターンのラインを認識することで測定するタイプである場合、測定精度判定部220は、パターン光が対象物のテクスチャに埋もれているか否かを判定することで、測定精度を判定する。他にも、測定精度判定部220は、音響特性測定部214による測定精度を判定してもよい。 For example, when the three-dimensional shape measurement unit 212 is of a type that measures based on the laser beam irradiated on the object, the measurement accuracy determination unit 220 determines whether the region irradiated with the laser beam is sufficiently reflected by the laser beam. By determining whether or not, the measurement accuracy is determined. Further, when the three-dimensional shape measurement unit 212 is a type that measures by recognizing the line of the irradiation pattern, the measurement accuracy determination unit 220 determines whether the pattern light is buried in the texture of the object. Determine the measurement accuracy. In addition, the measurement accuracy determination unit 220 may determine the measurement accuracy by the acoustic characteristic measurement unit 214.
 (5.4)測定制御部230
 測定制御部230は、三次元形状測定部212又は音響特性測定部214による測定処理を、他方の測定結果に基づいて制御する機能を有する。
(5.4) Measurement control unit 230
The measurement control unit 230 has a function of controlling the measurement process by the three-dimensional shape measurement unit 212 or the acoustic characteristic measurement unit 214 based on the other measurement result.
 典型的には、測定制御部230は、音響特性測定部214による測定処理を、三次元形状測定部212の測定結果に基づいて制御する。例えば、測定制御部230は、音響特性測定部214による処理内容を制御することで直接的に、又は音声入出力装置20を制御することで間接的に、音響特性測定部214による測定処理を制御する。音響特性の測定を三次元形状に基づいて行うことで、音響特性の測定精度をより向上させることが可能である。 Typically, the measurement control unit 230 controls the measurement process by the acoustic characteristic measurement unit 214 based on the measurement result of the three-dimensional shape measurement unit 212. For example, the measurement control unit 230 controls the measurement process by the acoustic characteristic measurement unit 214 directly by controlling the processing content by the acoustic characteristic measurement unit 214 or indirectly by controlling the voice input / output device 20. To do. By measuring the acoustic characteristics based on the three-dimensional shape, it is possible to further improve the measurement accuracy of the acoustic characteristics.
 測定制御部230は、音声出力装置20Aから放射される放射音の周波数若しくは指向性、音声入力装置20Bによる反射音の検出に係る指向性、又は音響特性測定部214による測定の回数若しくはタイミングの少なくともいずれかを制御する。より詳しくは、測定制御部230は、指向性スピーカの指向性(例えば、指向性スピーカの姿勢)を制御することで又はスピーカアレイにより出力させる音声信号への信号処理の内容を制御することで、放射音の指向性(例えば、放射方向及び放射範囲)を制御してもよい。また、測定制御部230は、指向性マイクの指向性(例えば、指向性マイクの姿勢)を制御することで又はマイクアレイにより検出された音声信号への信号処理の内容を制御することで、反射音の検出に係る指向性(例えば、検出方向及び検出範囲)を制御してもよい。このような制御により、音響特性測定部214による測定がより適切なものとなり、測定精度をより向上させることが可能である。 The measurement control unit 230 has at least the frequency or directivity of the radiated sound radiated from the sound output device 20A, the directivity related to detection of reflected sound by the sound input device 20B, or the number of times or timing of measurement by the acoustic characteristic measurement unit 214. Control either one. More specifically, the measurement control unit 230 controls the directivity of the directional speaker (for example, the orientation of the directional speaker) or by controlling the content of the signal processing on the audio signal output by the speaker array. The directivity (for example, the radiation direction and the radiation range) of the radiated sound may be controlled. In addition, the measurement control unit 230 controls the directivity of the directional microphone (for example, the attitude of the directional microphone), or controls the content of the signal processing on the audio signal detected by the microphone array, thereby reflecting the signal. Directivity (for example, detection direction and detection range) related to sound detection may be controlled. By such control, the measurement by the acoustic characteristic measurement unit 214 becomes more appropriate, and the measurement accuracy can be further improved.
 一例として、測定制御部230は、三次元形状測定部212による測定結果が示す対象物の表面の法線に基づいて、対象物の表面への放射音の指向性を制御してもよい。これにより、音響特性測定部214は、適切に音響特性を測定することが可能となる。この点について、図5を参照して説明する。 As an example, the measurement control unit 230 may control the directivity of the radiated sound toward the surface of the object based on the normal of the surface of the object indicated by the measurement result by the three-dimensional shape measurement unit 212. Thereby, the acoustic characteristic measurement unit 214 can appropriately measure the acoustic characteristics. This point will be described with reference to FIG.
 図5は、本実施形態に係る音声入出力装置20の指向性の制御を説明するための説明図である。図5に示すように、音声出力装置20Aから放射された放射音の対象物90への入射角72と反射角73は同一となる。三次元形状測定部212による測定結果により既知となった法線71に基づいて、入射角72と反射角73との関係が推定可能となるので、測定制御部230は、適切な測定ポイントを計算して、音声出力装置20Aの指向性を制御することが可能となる。図4の左図(符号70A)に示した例では、音声出力装置20Aの指向性が適切に設定されたことから、音声入力装置20Bに反射音が到達している。一方で、図4の右図(符号70B)に示した例では、音声出力装置20Aの指向性が適切に設定されていないことから、音声入力装置20Bからずれた位置に反射音が到達している。音声入力装置20Bは無指向性であってもよく、その場合は反射音の分布が検出される。 FIG. 5 is an explanatory diagram for explaining the directivity control of the voice input / output device 20 according to the present embodiment. As shown in FIG. 5, the incident angle 72 and the reflection angle 73 of the radiated sound radiated from the sound output device 20A to the object 90 are the same. Since the relationship between the incident angle 72 and the reflection angle 73 can be estimated based on the normal 71 that is known from the measurement result obtained by the three-dimensional shape measurement unit 212, the measurement control unit 230 calculates an appropriate measurement point. Thus, the directivity of the audio output device 20A can be controlled. In the example shown in the left diagram of FIG. 4 (reference numeral 70A), since the directivity of the audio output device 20A is appropriately set, the reflected sound reaches the audio input device 20B. On the other hand, in the example shown in the right diagram of FIG. 4 (reference numeral 70B), since the directivity of the audio output device 20A is not set appropriately, the reflected sound arrives at a position shifted from the audio input device 20B. Yes. The voice input device 20B may be non-directional, and in this case, the distribution of reflected sound is detected.
 他の一例として、測定制御部230は、三次元形状測定部212による測定精度が閾値よりも低い領域を音響特性測定部214により重点的に測定させてもよい。反射音の到着音の遅延量に基づき音声入出力装置20と対象物の表面との距離が判定可能であるので、測定システム1は、音響特性測定部214による測定結果に基づいて三次元形状を補正することが可能である。逆に、測定制御部230は、音が乱反射しやすい等の測定が困難な形状を有する領域を、音響特性測定部214による測定対象から外してもよい。 As another example, the measurement control unit 230 may cause the acoustic characteristic measurement unit 214 to intensively measure a region where the measurement accuracy by the three-dimensional shape measurement unit 212 is lower than a threshold value. Since the distance between the voice input / output device 20 and the surface of the object can be determined based on the delay amount of the arrival sound of the reflected sound, the measurement system 1 can change the three-dimensional shape based on the measurement result by the acoustic characteristic measurement unit 214. It is possible to correct. Conversely, the measurement control unit 230 may exclude a region having a shape that is difficult to measure, such as a sound that is easily diffusely reflected, from the measurement target by the acoustic characteristic measurement unit 214.
 測定制御部230は、後述する分類部240により分類されたセグメントごとに測定処理を制御してもよい。セグメントごとに特徴が異なり得るので、セグメントごとの測定処理により測定精度をより向上させることが可能となる上、測定を高速化させることが可能である。 The measurement control unit 230 may control the measurement process for each segment classified by the classification unit 240 described later. Since the characteristics can be different for each segment, the measurement accuracy can be further improved by the measurement processing for each segment, and the measurement can be speeded up.
 測定制御部230は、測定精度判定部220による判定結果に基づいて測定制御を行ってもよい。例えば、測定制御部230は、測定精度が不足する場合に、三次元形状の追加の測定、又は音響特性の測定を指示してもよい。また、測定制御部230は、測定精度に基づいて、三次元形状の測定結果と音響特性の測定結果との整合性が取れるよう(例えば、測定精度が同程度になるよう)、三次元形状の追加の測定、又は音響特性の測定を指示してもよい。 The measurement control unit 230 may perform measurement control based on the determination result by the measurement accuracy determination unit 220. For example, when the measurement accuracy is insufficient, the measurement control unit 230 may instruct additional measurement of the three-dimensional shape or measurement of acoustic characteristics. In addition, the measurement control unit 230 can match the measurement result of the three-dimensional shape and the measurement result of the acoustic characteristics based on the measurement accuracy (for example, the measurement accuracy is comparable), Additional measurements or measurements of acoustic properties may be indicated.
 また、測定制御部230は、三次元形状測定部212による測定を、音響特性測定部214による測定結果に基づいて制御してもよい。例えば、測定制御部230は、三次元形状測定部212による処理内容を制御することで直接的に、又はセンサ装置10を制御することで間接的に、三次元形状測定部212による測定処理を制御する。三次元形状の測定を音響特性に基づいて行うことで、三次元形状の測定精度をより向上させることが可能である。 Further, the measurement control unit 230 may control the measurement by the three-dimensional shape measurement unit 212 based on the measurement result by the acoustic characteristic measurement unit 214. For example, the measurement control unit 230 controls the measurement process by the three-dimensional shape measurement unit 212 directly by controlling the processing content by the three-dimensional shape measurement unit 212 or indirectly by controlling the sensor device 10. To do. By measuring the three-dimensional shape based on the acoustic characteristics, the measurement accuracy of the three-dimensional shape can be further improved.
 また、測定制御部230は、測定部210による簡易的な測定の結果に基づいて、測定部210による測定を制御してもよい。即ち、測定制御部230は、測定部210を事前の測定結果に基づいてキャリブレーションしてもよい。さらに、測定制御部230は、三次元形状測定部212又は音響特性測定部214のいずれが先に測定するか、即ちどちらが他方の測定結果に基づいて制御されるかを、事前の測定結果に基づいて判定してもよい。 Further, the measurement control unit 230 may control the measurement by the measurement unit 210 based on the result of simple measurement by the measurement unit 210. That is, the measurement control unit 230 may calibrate the measurement unit 210 based on the previous measurement result. Further, the measurement control unit 230 determines which one of the three-dimensional shape measurement unit 212 and the acoustic characteristic measurement unit 214 measures first, that is, which is controlled based on the other measurement result, based on the previous measurement result. May be determined.
 (5.5)分類部240
 分類部240は、三次元形状測定部212又は音響特性測定部214による測定結果の少なくともいずれかに基づいて、対象物を1以上のセグメントに分類する機能を有する。例えば、分類部240は、三次元形状測定部212による測定結果に基づいて、色、輝度、彩度又はテクスチャ等が異なる領域を異なるセグメントに分類したり、エッジをセグメントの境界線として採用したりする。また、例えば、分類部240は、音響特性測定部214による測定結果に基づいて、音圧又は周波数特性等が異なる領域を異なるセグメントに分類する。三次元形状と音響特性とに基づいて分類されることで、例えば音響特性が同一であっても異なる形状を有する領域をセグメント分けすることや、色が同一であっても異なる音響特性(典型的には、異なる材質又は素材)の領域をセグメント分けすることが可能となる。
(5.5) Classification unit 240
The classification unit 240 has a function of classifying an object into one or more segments based on at least one of the measurement results obtained by the three-dimensional shape measurement unit 212 or the acoustic characteristic measurement unit 214. For example, the classification unit 240 classifies regions having different colors, luminance, saturation, texture, etc. into different segments based on the measurement result by the three-dimensional shape measurement unit 212, or employs an edge as a segment boundary line. To do. For example, the classification unit 240 classifies regions having different sound pressures or frequency characteristics into different segments based on the measurement result by the acoustic characteristic measurement unit 214. Classification based on three-dimensional shape and acoustic characteristics, for example, segmenting regions with different shapes even if the acoustic characteristics are the same, or different acoustic characteristics (typically the same color) Can be segmented into regions of different materials or materials.
 (5.6)材質推定部250
 材質推定部250は、対象物の材質を推定する機能を有する。材質推定部250は、さらに対象物の素材を推定してもよい。素材又は材質を特定することで、対象物の再現精度をより高めることが可能である。
(5.6) Material estimation unit 250
The material estimation unit 250 has a function of estimating the material of the object. The material estimation unit 250 may further estimate the material of the object. By specifying the material or the material, it is possible to further improve the reproduction accuracy of the object.
 例えば、材質推定部250は、音響特性測定部214による測定結果に基づいて対象物の材質を推定する。例えば、材質推定処理は、音響特性測定部214により測定された音響特性と材質DB30に記憶された音響特性とを照合することにより行われる。他にも、材質推定部250は、前処理としてニューラルネットワーク等の機械学習を行って判別機を生成しておき、その判別機に三次元形状測定部212又は音響特性測定部214による測定結果を入力することで、材質を推定してもよい。材質の推定に音響特性を用いることで、例えば色が同一であっても異なる材質であることが推定可能となり、推定精度をより向上させることが可能である。 For example, the material estimation unit 250 estimates the material of the object based on the measurement result by the acoustic characteristic measurement unit 214. For example, the material estimation process is performed by collating the acoustic characteristics measured by the acoustic characteristic measurement unit 214 with the acoustic characteristics stored in the material DB 30. In addition, the material estimation unit 250 generates a discriminator by performing machine learning such as a neural network as preprocessing, and the measurement result by the three-dimensional shape measuring unit 212 or the acoustic characteristic measuring unit 214 is stored in the discriminator. The material may be estimated by inputting. By using the acoustic characteristics for the estimation of the material, for example, it is possible to estimate that the material is different even if the color is the same, and it is possible to further improve the estimation accuracy.
 材質推定部250は、分類部240による分類結果に基づいて、対象物のセグメントごとの材質を推定してもよい。これにより、セグメントごとに異なる材質が用いられている場合であっても適切に材質を推定することが可能となり、対象物の再現精度をより高めることができる。 The material estimation unit 250 may estimate the material for each segment of the object based on the classification result by the classification unit 240. Thereby, even if a different material is used for each segment, the material can be estimated appropriately, and the reproduction accuracy of the object can be further improved.
 なお、材質推定部250は、例えば図示しない赤外線センサによる検出結果等の音以外の情報に基づいて材質を推定してもよい。ただし、材質の推定に音を用いることは、例えばゲルマニウム及びシリコン等の赤外線が透過してしまう素材であっても材質を推定可能である点で有用である。 Note that the material estimation unit 250 may estimate the material based on information other than sound, such as a detection result by an infrared sensor (not shown). However, the use of sound for the estimation of the material is useful in that the material can be estimated even for materials that transmit infrared rays, such as germanium and silicon.
 (6)後処理部60
 後処理部60は、対象物の測定のための後処理を行う。図3に示すように、後処理部60は、出力制御部300を含む。
(6) Post-processing unit 60
The post-processing unit 60 performs post-processing for measuring the object. As shown in FIG. 3, the post-processing unit 60 includes an output control unit 300.
 (6.1)出力制御部300
 出力制御部300は、三次元形状測定部212及び音響特性測定部214による測定結果を示す情報を対応付けて出力装置に出力させる機能を有する。例えば、出力制御部300は、三次元形状の各頂点又は各セグメントと、音響特性とを対応付けて出力させる。さらに、出力制御部300は、材質推定部250による推定結果を対応付けて出力させてもよい。また、出力制御部300は、色又はテクスチャ等も対応付けて出力させてもよい。例えば、三次元形状を示す情報(例えばCADデータ)のフォーマットのパラメータとして、これらの情報が追加されてもよい。このような出力により、対象物の再現精度をより高めることが可能である。
(6.1) Output control unit 300
The output control unit 300 has a function of associating information indicating measurement results obtained by the three-dimensional shape measurement unit 212 and the acoustic characteristic measurement unit 214 with the output device. For example, the output control unit 300 outputs each vertex or each segment of the three-dimensional shape in association with the acoustic characteristics. Furthermore, the output control unit 300 may output the estimation results obtained by the material estimation unit 250 in association with each other. Further, the output control unit 300 may output the color or texture in association with each other. For example, these pieces of information may be added as parameters of the format of information indicating the three-dimensional shape (for example, CAD data). By such output, it is possible to further improve the reproduction accuracy of the object.
 また、出力制御部300は、音響特性測定部214による測定結果に基づいて三次元形状測定部212による測定結果を補正してもよい。例えば、出力制御部300は、三次元形状の表面の凹凸を、音響特性により特定された材質(素材)に基づいて付与してもよい。その場合、三次元形状測定部212では測定することが困難であった微細な三次元形状に至るまで、対象物の再現精度を高めることが可能である。 Further, the output control unit 300 may correct the measurement result obtained by the three-dimensional shape measurement unit 212 based on the measurement result obtained by the acoustic characteristic measurement unit 214. For example, the output control unit 300 may give the three-dimensional surface irregularities based on the material (material) specified by the acoustic characteristics. In that case, it is possible to improve the reproduction accuracy of the object until a fine three-dimensional shape that is difficult to measure by the three-dimensional shape measurement unit 212 is reached.
 以上、本実施形態に係る測定システム1の構成例を説明した。続いて、図6及び図7を参照して、本実施形態に係る測定システム1の処理の流れを説明する。 The configuration example of the measurement system 1 according to the present embodiment has been described above. Subsequently, a processing flow of the measurement system 1 according to the present embodiment will be described with reference to FIGS. 6 and 7.
 <<3.処理の流れ>>
 図6は、本実施形態に係る測定システム1において実行される前処理の流れの一例を示すフローチャートである。
<< 3. Process flow >>
FIG. 6 is a flowchart showing an example of the flow of preprocessing executed in the measurement system 1 according to the present embodiment.
 図6に示すように、まず、音響ノイズ測定部100は、所定の条件を満たしているか否かを判定する(ステップS102)。所定の条件としては、例えば下記が挙げられる。
・対象物以外の物体との距離が十分に離れている
・対象物以外の物体(例えば、密閉タイプの測定システム1の内壁)が吸音物体である
・音声出力装置20Aが指向性を有する
・上述した第2の音及び第3の音が、定常音であり且つ周波数特性が既知
As shown in FIG. 6, first, the acoustic noise measurement unit 100 determines whether or not a predetermined condition is satisfied (step S102). Examples of the predetermined condition include the following.
The distance from the object other than the object is sufficiently large. The object other than the object (for example, the inner wall of the sealed type measurement system 1) is a sound absorbing object. The audio output device 20A has directivity. The second and third sounds are stationary sounds and have known frequency characteristics
 所定の条件を満たしていないと判定された場合(ステップS102/NO)、音響ノイズ測定部100は、音響ノイズを測定する(ステップS104)。一方で、所定の条件を満たしていると判定された場合(ステップS102/YES)、音響ノイズ測定部100は、音響ノイズの測定をスキップする。 When it is determined that the predetermined condition is not satisfied (step S102 / NO), the acoustic noise measurement unit 100 measures the acoustic noise (step S104). On the other hand, when it is determined that the predetermined condition is satisfied (step S102 / YES), the acoustic noise measurement unit 100 skips the measurement of the acoustic noise.
 以上により、前処理は終了する。 This completes the preprocessing.
 図7は、本実施形態に係る測定システム1において実行される測定処理の流れの一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of the flow of measurement processing executed in the measurement system 1 according to the present embodiment.
 図7に示すように、まず、三次元形状測定部212は、三次元形状を測定する(ステップS202)。 As shown in FIG. 7, first, the three-dimensional shape measuring unit 212 measures a three-dimensional shape (step S202).
 次いで、測定精度判定部220は、三次元形状測定部212の測定精度が既知であるか否かを判定する(ステップS204)。測定精度判定部220は、測定精度が未知であれば(ステップS204/NO)測定精度を判定し(ステップS206)、既知であれば(ステップS204/YES)判定をスキップする。 Next, the measurement accuracy determination unit 220 determines whether or not the measurement accuracy of the three-dimensional shape measurement unit 212 is known (step S204). If the measurement accuracy is unknown (step S204 / NO), the measurement accuracy determination unit 220 determines the measurement accuracy (step S206), and if it is known (step S204 / YES), skips the determination.
 次に、分類部240は、三次元形状のセグメント分類を行う(ステップS208)。この後、測定システム1は、ステップS210~S216に係る処理を、処理対象のセグメントを変えながら繰り返し行う。まず、測定制御部230は、処理対象のセグメントの音響特性の測定に係る測定パラメータを設定する(ステップS210)。次に、音響ノイズ除去部200は、処理対象のセグメントに関し、音声入出力装置20により検出された音から音響ノイズを除去して、音響特性測定部214へ出力する(ステップS212)。そして、音響特性測定部214は、処理対象のセグメントの音響特性を測定する(ステップS214)。次いで、材質推定部250は、三次元形状又は音響特性の測定結果に基づいて処理対象のセグメントの材質を推定する。測定システム1は、ステップS210~S216に係る処理を、未処理のセグメントがなくなるまで行う。 Next, the classification unit 240 performs segment classification of the three-dimensional shape (step S208). Thereafter, the measurement system 1 repeatedly performs the processes according to steps S210 to S216 while changing the segment to be processed. First, the measurement control unit 230 sets measurement parameters relating to the measurement of the acoustic characteristics of the segment to be processed (step S210). Next, the acoustic noise removing unit 200 removes the acoustic noise from the sound detected by the voice input / output device 20 regarding the segment to be processed, and outputs the acoustic noise to the acoustic characteristic measuring unit 214 (step S212). Then, the acoustic characteristic measurement unit 214 measures the acoustic characteristic of the processing target segment (step S214). Next, the material estimation unit 250 estimates the material of the segment to be processed based on the measurement result of the three-dimensional shape or acoustic characteristics. The measurement system 1 performs the processes related to steps S210 to S216 until there are no unprocessed segments.
 測定システム1は、以上説明したステップS202~S216に係る処理を、対象物に未測定の部分がなくなるまで行う。 The measurement system 1 performs the processing according to steps S202 to S216 described above until there is no unmeasured part in the object.
 そして、出力制御部300は、測定結果を示すデータを出力する。 Then, the output control unit 300 outputs data indicating the measurement result.
 以上により、測定処理は終了する。 This completes the measurement process.
 <<4.ハードウェア構成例>>
 最後に、図8を参照して、本実施形態に係る情報処理装置のハードウェア構成について説明する。図8は、本実施形態に係る情報処理装置のハードウェア構成の一例を示すブロック図である。なお、図8に示す情報処理装置900は、例えば、図3に示した測定システム1を実現し得る。本実施形態に係る測定システム1による情報処理は、ソフトウェアと、以下に説明するハードウェアとの協働により実現される。
<< 4. Hardware configuration example >>
Finally, the hardware configuration of the information processing apparatus according to the present embodiment will be described with reference to FIG. FIG. 8 is a block diagram illustrating an example of a hardware configuration of the information processing apparatus according to the present embodiment. Note that the information processing apparatus 900 illustrated in FIG. 8 can realize the measurement system 1 illustrated in FIG. 3, for example. Information processing by the measurement system 1 according to the present embodiment is realized by cooperation between software and hardware described below.
 図8に示すように、情報処理装置900は、CPU(Central Processing Unit)901、ROM(Read Only Memory)902、RAM(Random Access Memory)903及びホストバス904aを備える。また、情報処理装置900は、ブリッジ904、外部バス904b、インタフェース905、入力装置906、出力装置907、ストレージ装置908、ドライブ909、接続ポート911及び通信装置913を備える。情報処理装置900は、CPU901に代えて、又はこれとともに、DSP若しくはASIC等の処理回路を有してもよい。 As shown in FIG. 8, the information processing apparatus 900 includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, and a host bus 904a. The information processing apparatus 900 includes a bridge 904, an external bus 904b, an interface 905, an input device 906, an output device 907, a storage device 908, a drive 909, a connection port 911, and a communication device 913. The information processing apparatus 900 may include a processing circuit such as a DSP or an ASIC in place of or in addition to the CPU 901.
 CPU901は、演算処理装置および制御装置として機能し、各種プログラムに従って情報処理装置900内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。CPU901は、例えば、図3に示す前処理部40、測定処理部50及び後処理部60を形成し得る。 The CPU 901 functions as an arithmetic processing unit and a control unit, and controls the overall operation in the information processing apparatus 900 according to various programs. Further, the CPU 901 may be a microprocessor. The ROM 902 stores programs used by the CPU 901, calculation parameters, and the like. The RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like. The CPU 901 can form, for example, the preprocessing unit 40, the measurement processing unit 50, and the postprocessing unit 60 illustrated in FIG.
 CPU901、ROM902及びRAM903は、CPUバスなどを含むホストバス904aにより相互に接続されている。ホストバス904aは、ブリッジ904を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス904bに接続されている。なお、必ずしもホストバス904a、ブリッジ904および外部バス904bを分離構成する必要はなく、1つのバスにこれらの機能を実装してもよい。 The CPU 901, ROM 902, and RAM 903 are connected to each other by a host bus 904a including a CPU bus. The host bus 904 a is connected to an external bus 904 b such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 904. Note that the host bus 904a, the bridge 904, and the external bus 904b do not necessarily have to be configured separately, and these functions may be mounted on one bus.
 入力装置906は、例えば、マウス、キーボード、タッチパネル、ボタン、マイクロフォン、スイッチ及びレバー等、ユーザによって情報が入力される装置によって実現される。また、入力装置906は、例えば、赤外線やその他の電波を利用したリモートコントロール装置であってもよいし、情報処理装置900の操作に対応した携帯電話やPDA等の外部接続機器であってもよい。さらに、入力装置906は、例えば、上記の入力手段を用いてユーザにより入力された情報に基づいて入力信号を生成し、CPU901に出力する入力制御回路などを含んでいてもよい。情報処理装置900のユーザは、この入力装置906を操作することにより、情報処理装置900に対して各種のデータを入力したり処理動作を指示したりすることができる。 The input device 906 is realized by a device in which information is input by the user, such as a mouse, a keyboard, a touch panel, a button, a microphone, a switch, and a lever. The input device 906 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA that supports the operation of the information processing device 900. . Furthermore, the input device 906 may include, for example, an input control circuit that generates an input signal based on information input by the user using the above-described input means and outputs the input signal to the CPU 901. A user of the information processing apparatus 900 can input various data and instruct a processing operation to the information processing apparatus 900 by operating the input device 906.
 他にも、入力装置906は、ユーザに関する情報を検知する装置により形成され得る。例えば、入力装置906は、画像センサ(例えば、カメラ)、深度センサ(例えば、ステレオカメラ)、加速度センサ、ジャイロセンサ、地磁気センサ、光センサ、音センサ、測距センサ、力センサ等の各種のセンサを含み得る。また、入力装置906は、情報処理装置900の姿勢、移動速度等、情報処理装置900自身の状態に関する情報や、情報処理装置900の周辺の明るさや騒音等、情報処理装置900の周辺環境に関する情報を取得してもよい。また、入力装置906は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して装置の緯度、経度及び高度を含む位置情報を測定するGNSSモジュールを含んでもよい。また、位置情報に関しては、入力装置906は、Wi-Fi(登録商標)、携帯電話・PHS・スマートフォン等との送受信、または近距離通信等により位置を検知するものであってもよい。 Alternatively, the input device 906 can be formed by a device that detects information about the user. For example, the input device 906 includes various sensors such as an image sensor (for example, a camera), a depth sensor (for example, a stereo camera), an acceleration sensor, a gyro sensor, a geomagnetic sensor, an optical sensor, a sound sensor, a distance sensor, and a force sensor. Can be included. In addition, the input device 906 includes information related to the information processing device 900 state, such as the posture and movement speed of the information processing device 900, and information related to the surrounding environment of the information processing device 900, such as brightness and noise around the information processing device 900. May be obtained. Further, the input device 906 receives a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) and receives position information including the latitude, longitude, and altitude of the device. A GNSS module to measure may be included. As for the position information, the input device 906 may detect the position by transmission / reception with Wi-Fi (registered trademark), a mobile phone / PHS / smartphone, or the like, or near field communication.
 さらに、入力装置906は、測定対象物に関する音声を検出するための装置により形成されてもよい。例えば、入力装置906は、マイク、アンプ及びADC(Analog Digital Converter)等の音声入力装置を含み得る。また、入力装置906は、反射音を検出するために放射音を放射する音声出力装置を含んでいてもよい。音声出力装置は、スピーカ、アンプ及びDAC(Digital Analog Converter)等を含み得る。上記音声入力装置及び音声出力装置は、図3に示す音声入出力装置20を形成し得る。 Furthermore, the input device 906 may be formed by a device for detecting sound related to the measurement object. For example, the input device 906 may include a voice input device such as a microphone, an amplifier, and an ADC (Analog Digital Converter). The input device 906 may include an audio output device that emits radiated sound in order to detect reflected sound. The audio output device may include a speaker, an amplifier, a DAC (Digital Analog Converter), and the like. The voice input device and the voice output device can form the voice input / output device 20 shown in FIG.
 また、入力装置906は、測定対象物の三次元形状を検出するための各種センサにより形成され得る。そのようなセンサとしては、画像センサ、深度センサ(例えば、ステレオカメラ)、光センサ、測距センサ等の各種センサが挙げられる。上記各種センサは、図3に示すセンサ装置10を形成し得る。 Also, the input device 906 can be formed by various sensors for detecting the three-dimensional shape of the measurement object. Examples of such sensors include various sensors such as an image sensor, a depth sensor (for example, a stereo camera), an optical sensor, and a distance measuring sensor. The various sensors can form the sensor device 10 shown in FIG.
 出力装置907は、取得した情報をユーザに対して視覚的又は聴覚的に通知することが可能な装置で形成される。このような装置として、CRTディスプレイ装置、液晶ディスプレイ装置、プラズマディスプレイ装置、ELディスプレイ装置、レーザープロジェクタ、LEDプロジェクタ及びランプ等の表示装置や、スピーカ及びヘッドホン等の音声出力装置や、プリンタ装置等がある。出力装置907は、例えば、情報処理装置900が行った各種処理により得られた結果を出力する。具体的には、表示装置は、情報処理装置900が行った各種処理により得られた結果を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。他方、音声出力装置は、再生された音声データや音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。本実施形態では、上記表示装置及び上記音声出力装置は、出力制御部300による制御に基づき、測定部210による測定結果、分類部240による分類結果、及び/又は材質推定部250による推定結果を出力し得る。 The output device 907 is formed of a device that can notify the user of the acquired information visually or audibly. Examples of such devices include CRT display devices, liquid crystal display devices, plasma display devices, EL display devices, display devices such as laser projectors, LED projectors and lamps, audio output devices such as speakers and headphones, printer devices, and the like. . For example, the output device 907 outputs results obtained by various processes performed by the information processing device 900. Specifically, the display device visually displays results obtained by various processes performed by the information processing device 900 in various formats such as text, images, tables, and graphs. On the other hand, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, and the like into an analog signal and outputs it aurally. In the present embodiment, the display device and the audio output device output measurement results by the measurement unit 210, classification results by the classification unit 240, and / or estimation results by the material estimation unit 250 based on control by the output control unit 300. Can do.
 ストレージ装置908は、情報処理装置900の記憶部の一例として形成されたデータ格納用の装置である。ストレージ装置908は、例えば、HDD等の磁気記憶部デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等により実現される。ストレージ装置908は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。このストレージ装置908は、CPU901が実行するプログラムや各種データ及び外部から取得した各種のデータ等を格納する。ストレージ装置908は、例えば、図3に示す材質DB30を形成し得る。 The storage device 908 is a data storage device formed as an example of a storage unit of the information processing device 900. The storage apparatus 908 is realized by, for example, a magnetic storage device such as an HDD, a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like. The storage device 908 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like. The storage device 908 stores programs executed by the CPU 901, various data, various data acquired from the outside, and the like. For example, the storage device 908 can form the material DB 30 shown in FIG.
 ドライブ909は、記憶媒体用リーダライタであり、情報処理装置900に内蔵、あるいは外付けされる。ドライブ909は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記憶媒体に記録されている情報を読み出して、RAM903に出力する。また、ドライブ909は、リムーバブル記憶媒体に情報を書き込むこともできる。 The drive 909 is a storage medium reader / writer, and is built in or externally attached to the information processing apparatus 900. The drive 909 reads information recorded on a removable storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 903. The drive 909 can also write information to a removable storage medium.
 接続ポート911は、外部機器と接続されるインタフェースであって、例えばUSB(Universal Serial Bus)などによりデータ伝送可能な外部機器との接続口である。 The connection port 911 is an interface connected to an external device, and is a connection port with an external device capable of transmitting data by USB (Universal Serial Bus), for example.
 通信装置913は、例えば、ネットワーク920に接続するための通信デバイス等で形成された通信インタフェースである。通信装置913は、例えば、有線若しくは無線LAN(Local Area Network)、LTE(Long Term Evolution)、Bluetooth(登録商標)又はWUSB(Wireless USB)用の通信カード等である。また、通信装置913は、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ又は各種通信用のモデム等であってもよい。この通信装置913は、例えば、インターネットや他の通信機器との間で、例えばTCP/IP等の所定のプロトコルに則して信号等を送受信することができる。 The communication device 913 is a communication interface formed by a communication device or the like for connecting to the network 920, for example. The communication device 913 is, for example, a communication card for wired or wireless LAN (Local Area Network), LTE (Long Term Evolution), Bluetooth (registered trademark), or WUSB (Wireless USB). The communication device 913 may be a router for optical communication, a router for ADSL (Asymmetric Digital Subscriber Line), a modem for various communication, or the like. The communication device 913 can transmit and receive signals and the like according to a predetermined protocol such as TCP / IP, for example, with the Internet and other communication devices.
 なお、ネットワーク920は、ネットワーク920に接続されている装置から送信される情報の有線、または無線の伝送路である。例えば、ネットワーク920は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、ネットワーク920は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。 Note that the network 920 is a wired or wireless transmission path for information transmitted from a device connected to the network 920. For example, the network 920 may include a public line network such as the Internet, a telephone line network, and a satellite communication network, various LANs including the Ethernet (registered trademark), a wide area network (WAN), and the like. Further, the network 920 may include a dedicated line network such as an IP-VPN (Internet Protocol-Virtual Private Network).
 以上、本実施形態に係る情報処理装置900の機能を実現可能なハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて実現されていてもよいし、各構成要素の機能に特化したハードウェアにより実現されていてもよい。従って、本実施形態を実施する時々の技術レベルに応じて、適宜、利用するハードウェア構成を変更することが可能である。 Heretofore, an example of the hardware configuration capable of realizing the functions of the information processing apparatus 900 according to the present embodiment has been shown. Each of the above components may be realized using a general-purpose member, or may be realized by hardware specialized for the function of each component. Therefore, it is possible to change the hardware configuration to be used as appropriate according to the technical level at the time of carrying out this embodiment.
 なお、上述のような本実施形態に係る情報処理装置900の各機能を実現するためのコンピュータプログラムを作製し、PC等に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 It should be noted that a computer program for realizing each function of the information processing apparatus 900 according to the present embodiment as described above can be produced and mounted on a PC or the like. In addition, a computer-readable recording medium storing such a computer program can be provided. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium.
 <<5.まとめ>>
 以上、図1~図8を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る測定システム1は、対象物の三次元形状の測定処理、及び当該対象物の音響特性の測定処理を、他方の測定結果に基づいて制御する。これにより、測定システム1は、三次元形状の測定と音響特性の測定とを相補的に行うことが可能となり、測定精度を向上させることができる。
<< 5. Summary >>
The embodiment of the present disclosure has been described in detail above with reference to FIGS. As described above, the measurement system 1 according to the present embodiment controls the measurement process of the three-dimensional shape of the object and the measurement process of the acoustic characteristics of the object based on the other measurement result. As a result, the measurement system 1 can complementarily perform the measurement of the three-dimensional shape and the measurement of the acoustic characteristics, and can improve the measurement accuracy.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、測定システム1は、単独の装置として実現されてもよく、一部または全部が別々の装置として実現されても良い。例えば、図3に示した測定システム1の機能構成例のうち、材質DB30、前処理部40、測定処理部50及び後処理部60が、センサ装置10及び音声入出力装置20とネットワーク等で接続されたサーバ等の装置に備えられていても良い。 For example, the measurement system 1 may be realized as a single device, or part or all may be realized as separate devices. For example, in the functional configuration example of the measurement system 1 illustrated in FIG. 3, the material DB 30, the preprocessing unit 40, the measurement processing unit 50, and the postprocessing unit 60 are connected to the sensor device 10 and the voice input / output device 20 via a network or the like. It may be provided in a device such as a server.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 In addition, the processes described using the flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the order shown. Some processing steps may be performed in parallel. Further, additional processing steps may be employed, and some processing steps may be omitted.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 対象物の三次元形状を測定する三次元形状測定部と、
 前記対象物の音響特性を測定する音響特性測定部と、
 前記三次元形状測定部又は前記音響特性測定部による測定処理を、他方の測定結果に基づいて制御する測定制御部と、
を備える情報処理装置。
(2)
 前記音響特性測定部は、前記対象物へ放射された放射音及び前記対象物により反射された反射音に基づいて前記対象物の音響特性を測定する、前記(1)に記載の情報処理装置。
(3)
 前記測定制御部は、前記放射音の周波数若しくは指向性、前記反射音の検出に係る指向性、又は測定の回数若しくはタイミングの少なくともいずれかを制御する、前記(2)に記載の情報処理装置。
(4)
 前記測定制御部は、前記音響特性測定部による測定処理を、前記三次元形状測定部の測定結果に基づいて制御する、前記(1)~(3)のいずれか一項に記載の情報処理装置。
(5)
 前記測定制御部は、前記三次元形状測定部による測定結果が示す前記対象物の表面の法線に基づいて、前記対象物の表面への放射音の指向性を制御する、前記(4)に記載の情報処理装置。
(6)
 前記三次元形状測定部又は前記音響特性測定部による測定結果の少なくともいずれかに基づいて、前記対象物を1以上のセグメントに分類する分類部をさらに含む、前記(1)~(5)のいずれか一項に記載の情報処理装置。
(7)
 前記測定制御部は、前記分類部により分類されたセグメントごとに測定処理を制御する、前記(6)に記載の情報処理装置。
(8)
 前記対象物の材質を推定する材質推定部をさらに備える、前記(1)~(7)のいずれか一項に記載の情報処理装置。
(9)
 前記材質推定部は、前記音響特性測定部による測定結果に基づいて前記対象物の材質を推定する、前記(8)に記載の情報処理装置。
(10)
 前記材質推定部は、前記対象物のセグメントごとの材質を推定する、前記(8)又は(9)に記載の情報処理装置。
(11)
 前記三次元形状測定部及び前記音響特性測定部による測定結果を示す情報を対応付けて出力させる出力制御部をさらに備える、前記(1)~(10)のいずれか一項に記載の情報処理装置。
(12)
 前記出力制御部は、前記音響特性測定部による測定結果に基づいて前記三次元形状測定部による測定結果を補正する、前記(11)に記載の情報処理装置。
(13)
 対象物の三次元形状を測定することと、
 前記対象物の音響特性を測定することと、
 三次元形状又は音響特性の測定処理を、他方の測定結果に基づいてプロセッサにより制御することと、
を含む情報処理方法。
(14)
 コンピュータを、
 対象物の三次元形状を測定する三次元形状測定部と、
 前記対象物の音響特性を測定する音響特性測定部と、
 前記三次元形状測定部又は前記音響特性測定部による測定処理を、他方の測定結果に基づいて制御する測定制御部と、
として機能させるためのプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A three-dimensional shape measuring unit for measuring the three-dimensional shape of the object;
An acoustic characteristic measuring unit for measuring acoustic characteristics of the object;
A measurement control unit for controlling measurement processing by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit based on the other measurement result;
An information processing apparatus comprising:
(2)
The information processing apparatus according to (1), wherein the acoustic characteristic measurement unit measures an acoustic characteristic of the object based on a radiated sound radiated to the object and a reflected sound reflected by the object.
(3)
The information processing apparatus according to (2), wherein the measurement control unit controls at least one of a frequency or directivity of the radiated sound, directivity related to detection of the reflected sound, or the number of times or timing of measurement.
(4)
The information processing apparatus according to any one of (1) to (3), wherein the measurement control unit controls measurement processing by the acoustic characteristic measurement unit based on a measurement result of the three-dimensional shape measurement unit. .
(5)
The measurement control unit controls the directivity of the radiated sound to the surface of the object based on the normal line of the surface of the object indicated by the measurement result by the three-dimensional shape measurement unit. The information processing apparatus described.
(6)
Any of (1) to (5), further including a classification unit that classifies the object into one or more segments based on at least one of the measurement results by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit. The information processing apparatus according to claim 1.
(7)
The information processing apparatus according to (6), wherein the measurement control unit controls measurement processing for each segment classified by the classification unit.
(8)
The information processing apparatus according to any one of (1) to (7), further including a material estimation unit that estimates a material of the object.
(9)
The information processing apparatus according to (8), wherein the material estimation unit estimates a material of the object based on a measurement result by the acoustic characteristic measurement unit.
(10)
The information processing apparatus according to (8) or (9), wherein the material estimation unit estimates a material for each segment of the object.
(11)
The information processing apparatus according to any one of (1) to (10), further including an output control unit that outputs information indicating measurement results by the three-dimensional shape measurement unit and the acoustic characteristic measurement unit in association with each other. .
(12)
The information processing apparatus according to (11), wherein the output control unit corrects the measurement result by the three-dimensional shape measurement unit based on the measurement result by the acoustic characteristic measurement unit.
(13)
Measuring the three-dimensional shape of the object;
Measuring the acoustic properties of the object;
Controlling the measurement process of the three-dimensional shape or the acoustic characteristic by the processor based on the other measurement result;
An information processing method including:
(14)
Computer
A three-dimensional shape measuring unit for measuring the three-dimensional shape of the object;
An acoustic characteristic measuring unit for measuring acoustic characteristics of the object;
A measurement control unit for controlling measurement processing by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit based on the other measurement result;
Program to function as.
 1   測定システム
 10  センサ装置
 20  音声入出力装置
 30  材質DB
 40  前処理部
 50  測定処理部
 60  後処理部
 90  対象物
 100 音響ノイズ測定部
 200 音響ノイズ除去部
 210 測定部
 212 三次元形状測定部
 214 音響特性測定部
 220 測定精度判定部
 230 測定制御部
 240 分類部
 250 材質推定部
 300 出力制御部
1 Measurement System 10 Sensor Device 20 Audio Input / Output Device 30 Material DB
40 Pre-processing unit 50 Measurement processing unit 60 Post-processing unit 90 Object 100 Acoustic noise measurement unit 200 Acoustic noise removal unit 210 Measurement unit 212 Three-dimensional shape measurement unit 214 Acoustic characteristic measurement unit 220 Measurement accuracy determination unit 230 Measurement control unit 240 Classification Part 250 Material estimation part 300 Output control part

Claims (14)

  1.  対象物の三次元形状を測定する三次元形状測定部と、
     前記対象物の音響特性を測定する音響特性測定部と、
     前記三次元形状測定部又は前記音響特性測定部による測定処理を、他方の測定結果に基づいて制御する測定制御部と、
    を備える情報処理装置。
    A three-dimensional shape measuring unit for measuring the three-dimensional shape of the object;
    An acoustic characteristic measuring unit for measuring acoustic characteristics of the object;
    A measurement control unit for controlling measurement processing by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit based on the other measurement result;
    An information processing apparatus comprising:
  2.  前記音響特性測定部は、前記対象物へ放射された放射音及び前記対象物により反射された反射音に基づいて前記対象物の音響特性を測定する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the acoustic characteristic measurement unit measures an acoustic characteristic of the object based on a radiated sound radiated to the object and a reflected sound reflected by the object.
  3.  前記測定制御部は、前記放射音の周波数若しくは指向性、前記反射音の検出に係る指向性、又は測定の回数若しくはタイミングの少なくともいずれかを制御する、請求項2に記載の情報処理装置。 The information processing apparatus according to claim 2, wherein the measurement control unit controls at least one of a frequency or directivity of the radiated sound, directivity related to detection of the reflected sound, or the number of times or timing of measurement.
  4.  前記測定制御部は、前記音響特性測定部による測定処理を、前記三次元形状測定部の測定結果に基づいて制御する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the measurement control unit controls measurement processing by the acoustic characteristic measurement unit based on a measurement result of the three-dimensional shape measurement unit.
  5.  前記測定制御部は、前記三次元形状測定部による測定結果が示す前記対象物の表面の法線に基づいて、前記対象物の表面への放射音の指向性を制御する、請求項4に記載の情報処理装置。 The said measurement control part controls the directivity of the radiation sound to the surface of the said target object based on the normal line of the surface of the said target object which the measurement result by the said three-dimensional shape measurement part shows. Information processing device.
  6.  前記三次元形状測定部又は前記音響特性測定部による測定結果の少なくともいずれかに基づいて、前記対象物を1以上のセグメントに分類する分類部をさらに含む、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising a classification unit that classifies the object into one or more segments based on at least one of measurement results obtained by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit.
  7.  前記測定制御部は、前記分類部により分類されたセグメントごとに測定処理を制御する、請求項6に記載の情報処理装置。 The information processing apparatus according to claim 6, wherein the measurement control unit controls measurement processing for each segment classified by the classification unit.
  8.  前記対象物の材質を推定する材質推定部をさらに備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising a material estimation unit that estimates a material of the object.
  9.  前記材質推定部は、前記音響特性測定部による測定結果に基づいて前記対象物の材質を推定する、請求項8に記載の情報処理装置。 The information processing apparatus according to claim 8, wherein the material estimation unit estimates a material of the object based on a measurement result by the acoustic characteristic measurement unit.
  10.  前記材質推定部は、前記対象物のセグメントごとの材質を推定する、請求項8に記載の情報処理装置。 The information processing apparatus according to claim 8, wherein the material estimation unit estimates a material for each segment of the object.
  11.  前記三次元形状測定部及び前記音響特性測定部による測定結果を示す情報を対応付けて出力させる出力制御部をさらに備える、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, further comprising an output control unit that outputs information indicating measurement results by the three-dimensional shape measurement unit and the acoustic characteristic measurement unit in association with each other.
  12.  前記出力制御部は、前記音響特性測定部による測定結果に基づいて前記三次元形状測定部による測定結果を補正する、請求項11に記載の情報処理装置。 The information processing apparatus according to claim 11, wherein the output control unit corrects a measurement result by the three-dimensional shape measurement unit based on a measurement result by the acoustic characteristic measurement unit.
  13.  対象物の三次元形状を測定することと、
     前記対象物の音響特性を測定することと、
     三次元形状又は音響特性の測定処理を、他方の測定結果に基づいてプロセッサにより制御することと、
    を含む情報処理方法。
    Measuring the three-dimensional shape of the object;
    Measuring the acoustic properties of the object;
    Controlling the measurement process of the three-dimensional shape or the acoustic characteristic by the processor based on the other measurement result;
    An information processing method including:
  14.  コンピュータを、
     対象物の三次元形状を測定する三次元形状測定部と、
     前記対象物の音響特性を測定する音響特性測定部と、
     前記三次元形状測定部又は前記音響特性測定部による測定処理を、他方の測定結果に基づいて制御する測定制御部と、
    として機能させるためのプログラム。
    Computer
    A three-dimensional shape measuring unit for measuring the three-dimensional shape of the object;
    An acoustic characteristic measuring unit for measuring acoustic characteristics of the object;
    A measurement control unit for controlling measurement processing by the three-dimensional shape measurement unit or the acoustic characteristic measurement unit based on the other measurement result;
    Program to function as.
PCT/JP2016/071547 2015-08-25 2016-07-22 Information processing device, information processing method and program WO2017033638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015165853 2015-08-25
JP2015-165853 2015-08-25

Publications (1)

Publication Number Publication Date
WO2017033638A1 true WO2017033638A1 (en) 2017-03-02

Family

ID=58100069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071547 WO2017033638A1 (en) 2015-08-25 2016-07-22 Information processing device, information processing method and program

Country Status (2)

Country Link
TW (1) TW201709201A (en)
WO (1) WO2017033638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532363A (en) * 2021-08-24 2021-10-22 惠州市兴利嘉科技有限公司 Earphone head-mounted steel belt bending degree detection device accurate in positioning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291509A (en) * 1990-04-10 1991-12-20 Nippon Steel Corp Shape measuring method for ultrasonic flaw detection
JPH07286845A (en) * 1991-12-26 1995-10-31 I N R Kenkyusho:Kk Method and instrument for measuring three-dimensional shape
JPH10117341A (en) * 1996-10-11 1998-05-06 Yazaki Corp Vehicle periphery monitoring device, obstacle detecting method to be used for the same and medium storing obstacle detection program to be used for the same
JP2005098744A (en) * 2003-09-22 2005-04-14 Seiko Epson Corp Material quality detection method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291509A (en) * 1990-04-10 1991-12-20 Nippon Steel Corp Shape measuring method for ultrasonic flaw detection
JPH07286845A (en) * 1991-12-26 1995-10-31 I N R Kenkyusho:Kk Method and instrument for measuring three-dimensional shape
JPH10117341A (en) * 1996-10-11 1998-05-06 Yazaki Corp Vehicle periphery monitoring device, obstacle detecting method to be used for the same and medium storing obstacle detection program to be used for the same
JP2005098744A (en) * 2003-09-22 2005-04-14 Seiko Epson Corp Material quality detection method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532363A (en) * 2021-08-24 2021-10-22 惠州市兴利嘉科技有限公司 Earphone head-mounted steel belt bending degree detection device accurate in positioning

Also Published As

Publication number Publication date
TW201709201A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US9749738B1 (en) Synthesizing audio corresponding to a virtual microphone location
US11528576B2 (en) Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems
US9451379B2 (en) Sound field analysis system
WO2020108614A1 (en) Audio recognition method, and target audio positioning method, apparatus and device
US8620009B2 (en) Virtual sound source positioning
US8660362B2 (en) Combined depth filtering and super resolution
US9275302B1 (en) Object detection and identification
TWI556654B (en) Apparatus and method for deriving a directional information and systems
US20170366896A1 (en) Associating Audio with Three-Dimensional Objects in Videos
CN110858488A (en) Voice activity detection method, device, equipment and storage medium
US11410326B2 (en) System for determining anatomical feature orientation
CN112513983A (en) Wearable system speech processing
WO2019105238A1 (en) Method and terminal for speech signal reconstruction and computer storage medium
JP2014528135A (en) Human head detection in depth images
US10753906B2 (en) System and method using sound signal for material and texture identification for augmented reality
CN110010152A (en) For the reliable reverberation estimation of the improved automatic speech recognition in more device systems
KR102475989B1 (en) Apparatus and method for generating audio signal in which noise is attenuated based on phase change in accordance with a frequency change of audio signal
WO2021249157A1 (en) Sound emission apparatus, display apparatus, and sound emission control method and apparatus
US20220345813A1 (en) Spatial audio capture and analysis with depth
CN107450882B (en) Method and device for adjusting sound loudness and storage medium
KR102115222B1 (en) Electronic device for controlling sound and method for operating thereof
WO2017033638A1 (en) Information processing device, information processing method and program
KR20200058354A (en) Electronic device for controlling sound and method for operating thereof
JP2021124439A (en) Collected sound data display program
Luo et al. Indoor Smartphone SLAM With Acoustic Echoes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16838985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16838985

Country of ref document: EP

Kind code of ref document: A1