WO2017029949A1 - Chromatographic separation method and chromatographic separation system - Google Patents

Chromatographic separation method and chromatographic separation system Download PDF

Info

Publication number
WO2017029949A1
WO2017029949A1 PCT/JP2016/071758 JP2016071758W WO2017029949A1 WO 2017029949 A1 WO2017029949 A1 WO 2017029949A1 JP 2016071758 W JP2016071758 W JP 2016071758W WO 2017029949 A1 WO2017029949 A1 WO 2017029949A1
Authority
WO
WIPO (PCT)
Prior art keywords
stock solution
fraction
eluent
supply port
outlet
Prior art date
Application number
PCT/JP2016/071758
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 鶴田
響介 山田
佐藤 康平
一夫 岡田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2017029949A1 publication Critical patent/WO2017029949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a chromatographic separation method and a chromatographic separation system. More specifically, the present invention relates to a chromatographic separation method and chromatographic separation system using a pseudo moving bed system.
  • the chromatographic separation method is roughly divided into a fixed bed method and a moving bed method.
  • a multi-component sample hereinafter also referred to as “stock solution”
  • stock solution a multi-component sample
  • the eluent is circulated in one direction in the column, thereby allowing the adsorbent to be adsorbed.
  • the target component in the stock solution is separated and purified from other components based on the difference in adsorption power.
  • the target component can be separated and purified simply by circulating the eluent while fixing the adsorbent.
  • the fixed layer method is good. Separation and purification cannot be realized. Furthermore, in the fixed layer method, the target component cannot be separated while continuously injecting the sample, and there are limitations in industrial application.
  • the adsorbent is moved in the opposite direction to the flow direction of the eluent while flowing the eluent in one direction in the column.
  • the component to be purified in the stock solution is moved in the direction opposite to the direction of other components, based on the stock solution inlet. Can be made. Therefore, for example, when the component to be purified in the stock solution is a strongly adsorbing component compared to other components, the component to be purified is upstream with respect to the inlet of the stock solution (the direction opposite to the fluid flow direction).
  • a chromatographic separation technique using a pseudo moving bed system has been proposed (for example, Patent Documents 1 and 2).
  • the chromatographic separation by the simulated moving bed system is performed using a circulation system in which a plurality of unit packed columns (columns) packed with an adsorbent are connected in series and endlessly through a pipe.
  • the pipe has a stock solution supply port for supplying a stock solution containing the component to be purified, a weak adsorbent component outlet, an eluent supply port, and a strong adsorbent component outlet for fluid flow.
  • At least one of the above unit packed towers is disposed between the outlet and between the strongly adsorbing component outlet and the stock solution supply port.
  • the stock solution supply port, the weakly adsorbent component outlet, the eluent supply port, and the strong adsorbent component outlet are intermittently directed toward the fluid flow direction while maintaining their relative positional relationship.
  • fraction to be purified In chromatographic separation, in addition to the stock solution containing the component to be purified, an eluent that pushes the stock solution is supplied. Therefore, the target fraction containing the component to be purified (hereinafter also referred to as “fraction to be purified”) is in a state in which the component to be purified is diluted to some extent with the eluent. Therefore, although the fraction to be purified obtained by chromatographic separation is usually shipped through a concentration operation, this concentration operation contributes to increase the purification cost. In order to reduce such costs, it is necessary to increase the concentration of the component to be purified in the fraction to be purified.
  • the separation performance generally decreases, and the purity of the purification target component in the resulting purification target fraction (in the purification target fraction, And the ratio of the component to be purified in the remainder excluding the solvent in the stock solution). Furthermore, when the amount of the eluent used is reduced, the recovery rate of the purification target component contained in the stock solution into the purification target fraction also tends to decrease.
  • the present invention is a chromatographic separation method using a simulated moving bed system, which can greatly reduce the amount of eluent used, and also provides the recovery rate of the purification target component in the obtained purification target fraction, and the purification target It is an object of the present invention to provide a chromatographic separation method capable of highly enhancing any of the purities of the components to be purified in the fraction. Moreover, this invention makes it a subject to provide the chromatographic separation system suitable for implementation of the said chromatographic separation method.
  • the circulation system has a stock solution supply port F, a weakly adsorptive fraction extraction outlet A, an eluent supply port D, and a strong adsorptive fraction extraction outlet C in this order in the fluid flow direction.
  • steps (a) and (b) are repeated in order: (A) performing the following substeps (i) to (iv) in this order; (I) a sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction extraction outlet C; (Ii) a sub-step of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A; (Iii) a sub-step of supplying an eluent from the eluent supply port D and extract
  • the step of moving toward the flow direction of the fluid while maintaining the positional relationship [2] The chromatographic separation method according to [1], wherein in the step (a), the total amount of the strongly adsorptive fraction extracted from the outlet C is smaller than the total amount of the stock solution supplied from the supply port F. . [3] The chromatographic separation method according to [1] or [2], wherein the stock solution contains glucose and fructose, and the fructose is separated and purified in the strong adsorptive fraction. [4] The chromatographic separation method according to any one of [1] to [3], wherein the circulation system has at least four unit packed columns.
  • the ratio of the total supply amount of the eluent to the total supply amount of the stock solution satisfies the ratio [total supply amount of eluent] / [total supply amount of stock solution] ⁇ 1.2 in volume ratio.
  • the chromatographic separation method according to any one of [4].
  • a chromatographic separation system that separates and purifies components in a stock solution by a simulated moving bed system using a circulation system in which a plurality of unit packed towers packed with an adsorbent are connected in series and endlessly via a pipe,
  • the circulation system has a stock solution supply port F, a weakly adsorptive fraction extraction outlet A, an eluent supply port D, and a strong adsorptive fraction extraction outlet C in this order in the fluid flow direction. And between the stock solution supply port F and the weakly adsorbable fraction outlet A, between the weakly adsorbable fraction outlet A and the eluent supply port D, and the eluent supply port D.
  • At least one unit packed tower is disposed, Repeat the following steps (a) and (b) in order, system: (A) performing the following substeps (i) to (iv) in this order; (I) a sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction extraction outlet C; (Ii) a sub-step of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A; (Iii) a sub-step of supplying an eluent from the eluent supply port D and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A; (Iv) a sub-step of circulating the fluid in the circulation system without supplying the stock solution and the elu
  • upstream and downstream are used with respect to the flow direction of the fluid in the circulation system. That is, the “upstream side” with respect to a certain part of the circulatory system means the side where the fluid flows toward the part, and the “downstream side” means the side where the fluid flows out from the part. means.
  • strongly adsorbing component means a component having a strong adsorptive power to the adsorbent among a plurality of components contained in the stock solution
  • weakly adsorbing component means the above strongly adsorbing component.
  • the terms “strongly adsorbing” and “weakly adsorbing” represent the degree of strength of the adsorbing force when the adsorbing force relative to the adsorbent is relatively compared for each component contained in the stock solution.
  • each of the “strongly adsorbing component” and the “weakly adsorbing component” may be composed of a single component or a plurality of components having different adsorptive powers. Since the component to be purified is often a single component, when the strongly adsorbing component is the component to be purified, the strongly adsorbing component is usually the component having the strongest adsorption power to the adsorbent in the stock solution.
  • the weakly adsorptive component is one or more components that are less adsorbable to the adsorbent than the strong adsorbent component.
  • the weakly adsorbable component is usually the component having the weakest adsorption power to the adsorbent in the stock solution, but the present invention is limited to this embodiment. It is not a thing.
  • the strong adsorptive component is one or more components having a higher adsorptivity to the adsorbent than the weak adsorptive component.
  • the components to be purified in the stock solution can be separated and purified at a high concentration, a high purity, and a high recovery rate.
  • the chromatographic separation system of the present invention can be used for carrying out the chromatographic separation method of the present invention.
  • FIG. 1 is a system diagram showing an embodiment of the chromatographic separation system of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the basic concept of chromatographic separation by the pseudo moving bed method.
  • the method of the present invention is carried out using a circulation system in which a plurality of unit packed towers filled with an adsorbent are connected in series and endlessly through a pipe.
  • the circulation system itself used in the simulated moving bed system is known, and for example, JP-A-2009-36536 and JP-B-7-46097 can be referred to.
  • the circulatory system will be described below with reference to the drawings, but the present invention is not limited to these embodiments.
  • the drawings referred to below are explanatory diagrams for facilitating the understanding of the present invention, and the size and relative size relationship of each component may be changed for convenience of explanation, and the actual relationship may be changed. It is not shown as it is. Further, the present invention is not limited to the shapes and relative positional relationships shown in these drawings except for the matters defined in the present invention.
  • the circulation system 100 shown in FIG. 1 includes four unit packed columns (unit packed columns 10a, 10b, 10c, and 10d) packed with an adsorbent Ab, and the outlet of each unit packed column is an adjacent unit packed column.
  • the unit packed towers are connected in series as a whole.
  • the outlet of the last unit packed column (for example, the unit packed column 10d) is connected to the inlet of the frontmost unit packed column (for example, the unit packed column 10a) via the pipe 1, and all the unit packed columns are endless.
  • Connected in a circular shape Connected in a circular shape. With this configuration, the fluid can be circulated in the circulation system 100.
  • the unit packed towers 10a to 10d have the same (preferably the same) internal shape, size, and packing amount of the adsorbent.
  • a circulation pump P1 for circulating a fluid in the direction of the arrow is disposed.
  • the circulation pump P1 is preferably a metering pump.
  • the piping 1 between two adjacent unit packed towers is provided with shutoff valves R1, R2, R3, and R4 that can block the flow of fluid to the downstream unit packed tower. It has been.
  • each of the shutoff valves R1 to R4 and the outlet of each of the unit packed towers 10a to 10d located on the upstream side thereof a fraction containing a large amount of weakly adsorptive components for the adsorbent Ab (in this specification, “The weakly adsorbable fraction extraction lines 2a, 2b, 2c, and 2d for extracting the “weakly adsorbable fraction with respect to the adsorbent Ab” or simply “the weakly adsorbable fraction”) are branched.
  • Each weakly adsorptive fraction extraction line 2a, 2b, 2c, 2d has a weakly adsorptive fraction extraction valve A1, A2, A3, A4 that can open and close each weakly adsorptive fraction extraction line. Is provided.
  • Each weakly adsorptive fraction extraction line 2a, 2b, 2c, 2d is merged and combined into one weakly adsorptive fraction confluence tube 3.
  • the strong adsorptive fraction extraction lines 4a, 4b, 4c, and 4d for extracting “the strongly adsorbable fraction with respect to the adsorbent Ab” or simply “the strong adsorptive fraction”) are branched.
  • the strong adsorptive fraction extraction lines 4a, 4b, 4c, and 4d have strong adsorptive fraction extraction valves C1, C2, C3, and C4 that can open and close the strong adsorptive fraction extraction lines, respectively. Is provided.
  • the strong adsorptive fraction extraction lines 4 a, 4 b, 4 c, and 4 d are joined together and combined into one strong adsorptive fraction confluence pipe 5.
  • step (a) one of the weakly adsorbing fraction extraction valves A1, A2, A3, A4 is opened.
  • a connection site between the weakly adsorptive fraction extraction line in which the opened extraction valve is installed and the pipe 1 serves as the weakly adsorptive fraction outlet A in the step (a).
  • step (a) one of the strong adsorptive fraction extraction valves C1, C2, C3, and C4 is opened.
  • the connection site between the strongly adsorbable fraction extraction line where the opened extraction valve is installed and the pipe 1 becomes the outlet C of the strong adsorptive fraction in step (a).
  • the circulation system 100 is preferably provided with a safety valve (or relief valve) (not shown) at an appropriate portion in order to prevent the pressure of the circulation system 100 from rising excessively. It is also preferable to provide check valves T1, T2, T3, and T4 for preventing backflow between two adjacent unit packed columns.
  • the circulation system 100 is configured to be able to supply the stock solution 7 stored in the stock solution tank 6 and the eluent 9 stored in the eluent tank 8.
  • the stock solution 7 is supplied via the stock solution supply line 11 by a stock solution supply pump P2 capable of controlling the supply flow rate.
  • the stock solution supply pump P2 is preferably a metering pump.
  • the stock solution supply line 11 preferably includes a relief valve U that returns the stock solution to the stock solution tank 6 when the supply pressure exceeds a set pressure during the supply of the stock solution. As shown in FIG.
  • the stock solution supply line 11 is branched into four stock solution supply branch lines 11a, 11b, 11c, and 11d, and the stock solution is supplied through each of the stock solution supply branch lines 11a, 11b, 11c, and 11d.
  • the unit can be supplied to the entrances of the unit packed towers 10a, 10b, 10c, and 10d.
  • Each stock solution supply branch line 11a, 11b, 11c, 11d is provided with an openable / closable stock solution supply valve F1, F2, F3, F4, through the stock solution supply branch line having the opened stock solution supply valve,
  • the stock solution is supplied to the unit packed tower connected downstream.
  • step (a) which will be described later, one of the stock solution supply valves F1, F2, F3, and F4 is opened.
  • the connection site between the undiluted solution supply branch line where the unfolded undiluted solution supply valve is installed and the pipe 1 becomes the undiluted solution supply port F in step (a).
  • the eluent 9 is supplied via an eluent supply line 12 by an eluent supply pump P3 capable of controlling the supply flow rate.
  • the eluent supply pump P3 is preferably a metering pump.
  • the eluent supply line 12 preferably includes a relief valve V that returns the eluent to the eluent tank 8 when the supply pressure exceeds a set pressure during the supply of the eluent. As shown in FIG. 1, the eluent supply line 12 is branched into four eluent supply branch lines 12a, 12b, 12c, and 12d, and the eluent supply line 12a, 12b, 12c, and 12d are eluted.
  • the liquid can be supplied to the entrances of the unit packed towers 10a, 10b, 10c, and 10d.
  • Each eluent supply branch line 12a, 12b, 12c, 12d is provided with an eluent supply valve D1, D2, D3, D4 that can be opened and closed, and an eluent supply branch line having an opened eluent supply valve. Then, the eluent is supplied to the unit packed column connected downstream thereof.
  • step (a) described later any one of the eluent supply valves D1, D2, D3, and D4 is opened.
  • a connecting portion between the eluent supply branch line where the opened eluent supply valve is installed and the pipe 1 becomes the eluent supply port D in step (a).
  • (A) A step of performing the following sub-steps (i) to (iv) in this order.
  • (I) A sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction outlet C.
  • (Ii) A sub-step of supplying the stock solution from the stock solution supply port F and extracting the weakly adsorbable fraction from the weakly adsorbable fraction outlet A.
  • (Iii) A sub-step of supplying the eluent from the eluent supply port D and extracting the weakly adsorbable fraction from the weakly adsorbable fraction outlet A.
  • (Iv) A sub-step of circulating the fluid in the circulation system without supplying the stock solution and the eluent and without extracting the strong and weakly adsorbable fractions.
  • (B) After completion of the step (a) (that is, after completion of the sub-step (iv)), the stock solution supply port F, the weakly adsorbable fraction extraction port A, the eluent supply port D, and the strong adsorption The step of moving the sex fraction extraction outlet C toward the fluid flow direction while maintaining the relative positional relationship thereof.
  • Step (a) is a step of sequentially executing the four sub-steps (i) to (iv). Each sub-step will be described with reference to the circulation system shown in FIG.
  • substep (i) the strong adsorptive fraction is extracted from the strong adsorptive fraction extraction outlet C while supplying the stock solution from the stock solution supply port F.
  • the extraction valve C3 is opened, A connecting portion between the strong adsorptive fraction extraction line 4c and the pipe 1 is defined as an outlet C.
  • the stock solution supply valves F2 to F4, the weakly adsorptive fraction extraction valves A1 to A4, the strong adsorptive fraction extraction valves C1, C2 and C4, and the shutoff valve R3 are all closed.
  • the eluent supply valves D1 to D4 may be opened as long as the eluent supply pump P3 is stopped.
  • the eluent supply valves The valves D1 to D4 are preferably closed.
  • the shutoff valves R1 and R2 are open, and the shutoff valve R4 may be open or closed.
  • the circulation pump P1 and the eluent supply pump P3 are normally stopped.
  • the amount of the stock solution supplied from the stock solution supply port F is not particularly limited, but is 0.032 per liter of the adsorbent Ab packed in the unit packed column 10a per hour. It is preferably 0.059 liters, more preferably 0.036-0.054 liters.
  • the total supply amount of the stock solution in the sub-step (i) is substantially the same as the total amount of the strong adsorptive fraction extracted from the strong adsorptive fraction extraction outlet C in the sub-step (i).
  • substep (ii) the weakly adsorptive fraction is extracted from the weakly adsorbable fraction outlet A while supplying the stock solution from the stock solution supply port F. That is, the strong adsorptive fraction extraction valve C3 that has been opened in the substep (i) is closed, and the weak adsorptive fraction extraction valve A1 is opened instead. That is, the connection part of the weakly adsorptive fraction extraction line 2a having the weakly adsorptive fraction extraction valve A1 and the pipe 1 is defined as the weakly adsorptive fraction extraction outlet A, and the weakly adsorptive fraction from the outlet A Extract.
  • the stock solution supply valves F2 to F4, the weakly adsorptive fraction extraction valves A2 to A4, the strong adsorptive fraction extraction valves C1 to C4, and the shutoff valve R1 are all closed.
  • the eluent supply valves D1 to D4 may be opened as long as the eluent supply pump P3 is stopped. However, in order to carry out the supply and extraction of the liquid with higher accuracy, the eluent supply valves D1 to D4 may be opened.
  • the valves D1 to D4 are preferably closed.
  • the shutoff valves R2-4 may be open or closed. Further, as in the substep (i), the circulation pump P1 and the eluent supply pump P3 are normally stopped.
  • the amount of the stock solution supplied from the stock solution supply port F is not particularly limited, but is 0.020 to 1 hour per liter of the adsorbent Ab packed in the unit packed column 10a per hour. It is preferably 0.036 liter, more preferably 0.022 to 0.034 liter.
  • the total supply amount of the stock solution in the sub-step (ii) is substantially the same as the total amount of the weakly adsorbable fraction extracted from the weakly adsorbable fraction outlet A in the substep (ii).
  • substep (iii) the eluent is supplied from the eluent supply port D and the weakly adsorbable fraction is extracted from the weakly adsorbable fraction outlet A. That is, the supply valve F1 opened in the substep (ii) is closed, the operation of the stock solution supply pump P2 is stopped, and the eluent supply valve D3 is opened instead, and the eluent supply pump P3 is operated.
  • connection part of the eluent supply branch line 12c having the supply valve D3 and the pipe 1 serves as the eluent supply port D, and the eluent is supplied from the eluent supply port D and the weakly adsorbing fraction.
  • a weakly adsorptive fraction is extracted from the outlet A.
  • all of the eluent supply valves D1, D2 and D4, the weakly adsorbing fraction extracting valves A2 to A4, the strong adsorbing fraction extracting valves C1 to C4 and the shutoff valve R1 are closed.
  • the stock solution supply valves F1 to F4 may be opened as long as the stock solution supply pump P2 is stopped. However, in order to carry out the supply and extraction of the solution with higher accuracy, It is preferably closed.
  • the shutoff valve R2 may be open or closed.
  • the shutoff valves R3 and R4 are both open. Further, the circulation pump P1 may be operated or stopped.
  • the amount of the eluent supplied from the eluent supply port D is not particularly limited, but is 0. 1 per liter of the adsorbent Ab packed in the unit packed column 10a per hour.
  • the amount is preferably from 051 to 0.095 liter, more preferably from 0.058 to 0.088 liter.
  • the total supply amount of the eluent in the sub-step (iii) is substantially the same as the total amount of the weakly adsorptive fraction extracted from the weakly adsorptive fraction outlet A in the substep (iii).
  • sub-step (iv) the supply of the stock solution and the eluent is not performed, and the fluid in the circulation system is operated by operating the circulation pump P1 without extracting the strong and weakly adsorbable fractions. Simply circulate. If the stock solution supply pump P2 and the eluent supply pump P3 are stopped, the stock solution supply valves F1 to F4 and the eluent supply valves D1 to D4 may be opened, but from the viewpoint of controlling the fluid with higher accuracy, The stock solution supply valves F1 to F4 and the eluent supply valves D1 to D4 are preferably closed.
  • the extraction valves A1 to A4 and the extraction valves C1 to C4 are all closed, and the shutoff valves R1 to R4 are all open.
  • the circulating flow rate of the fluid in the system is preferably 0.133 to 0.247 liters per liter of the adsorbent Ab packed in the unit packed column 10a per hour, More preferably, it is 0.152 to 0.228 liter.
  • the relationship between the supply amount of the liquid and the circulation flow rate in each sub-step is not particularly limited, and is appropriately adjusted according to the type of components in the stock solution.
  • the total amount (II) / total amount (I) is preferably 0.30 to 0.70, and more preferably 0.40 to 0.60 in terms of volume ratio.
  • the amount of adsorbent packed in one unit packed column is not particularly limited and may be appropriately selected according to the purpose, but is usually 10 mL to 150 m 3 , preferably Is 150 mL to 30 m 3 , more preferably 300 mL to 15 m 3 .
  • Ratio of the total supply amount of the eluent to the total supply amount of the stock solution in the above step (a) (ie in the above substeps (i) to (iv)) (corresponding to the above total amount (III) / total amount (I + II)) Is more preferable to satisfy [total supply amount of eluent] / [total supply amount of stock solution] ⁇ 1.2, and [total supply amount of eluent] / [total supply amount of stock solution] ⁇ 1.1. It is more preferable to satisfy.
  • the lower limit of the ratio is not particularly limited, and it is more practical to set [total amount of eluent supplied] / [total amount of stock solution] ⁇ 0.5.
  • the ratio is more preferably 0.5 ⁇ [total supply amount of eluent] / [total supply amount of stock solution] ⁇ 1.1, and 0.8 ⁇ [total supply amount of eluent] / [total amount of stock solution]. It is also preferable that the total supply amount] ⁇ 1.1.
  • the temperature for carrying out the method of the present invention is not particularly limited as long as the fluid in the circulation system is liquid, and is appropriately selected according to the purpose. Usually, it is carried out at 40 to 80 ° C.
  • the flow rate of the supplied liquid or the flow rate of the liquid circulating in the circulation system may be constant during each sub-step or may be varied, but is usually constant. . Further, between each sub-step, the flow rate of the supplied liquid or the flow rate of the liquid circulating in the circulation system may be constant or may be varied, but is usually constant. That is, in substeps (i) to (iii), the flow rate of the supplied liquid is preferably constant. In substep (iv), the flow rate of the liquid circulating in the circulation system is also the same as that in substeps (i) to (i). The flow rate of the liquid supplied in (iii) is preferably the same.
  • Step (b) After the step (a) is completed (after the completion of the sub-step (iv)), the step (b) is performed.
  • the stock solution supply port F, the weakly adsorptive fraction extraction outlet A, the eluent supply port D and the strong adsorptive fraction extraction port C are maintained in their relative positional relationship.
  • This is a step of moving the fluid in the direction of fluid flow.
  • “Migrate toward the end” means that the stock solution supply port F, the weakly adsorbable fraction extraction port A, the eluent supply port D, and the strong adsorptivity that were arranged in order in the fluid flow direction in the immediately preceding step (a).
  • the positions of the stock solution supply port F, the weakly adsorbable fraction extraction outlet A, the eluent supply port D, and the strong adsorptive fraction extraction outlet C are set.
  • a unit packed tower between the stock solution supply port F and the weakly adsorbable fraction extraction outlet A in the immediately preceding step (a) is placed between the strong adsorptive fraction extraction port C and the stock solution supply port F.
  • a unit packed tower between the weakly adsorbing fraction extraction outlet A and the eluent supply port D in the immediately preceding step (a) is placed between the stock solution supply port F and the weakly adsorbing fraction extraction outlet A.
  • the unit packed tower between the eluent supply port D and the strong adsorptive fraction extraction outlet C in the immediately preceding step (a) is placed between the weak adsorbent fraction extraction outlet A and the eluent supply port D.
  • step (b) is not a step for giving a physical change to the structure of the circulatory system, but a preparatory process for carrying out step (a) following this step (b). It is.
  • step (b) will be specifically described with reference to FIG.
  • the supply valve F1 is opened to supply the stock solution.
  • the stock solution supply port F is connected to the stock solution supply branch line 11a and the pipe 1
  • the weakly adsorptive fraction extraction outlet A is a connection site between the weakly adsorptive fraction extraction line 2a and the pipe 1
  • the eluent supply port D is connected to the eluent supply branch line 12c and the pipe 1;
  • the strong adsorptive fraction extraction outlet C is a connecting portion between the strong adsorptive fraction extraction line 4 c and the pipe 1.
  • the ports F, A, D, and C in step (a) are switched as follows by step (b).
  • the stock solution supply port F becomes a connection part between the stock solution supply branch line 11b and the pipe 1
  • the weakly adsorptive fraction extraction outlet A is a connection site between the weakly adsorptive fraction extraction line 2b and the pipe 1
  • the eluent supply port D becomes a connecting portion between the eluent supply branch line 12d and the pipe 1
  • the strong adsorptive fraction extraction outlet C serves as a connection site between the strong adsorptive fraction extraction line 4 d and the pipe 1. That is, in step (a) immediately after step (b), the supply of the stock solution in substeps (i) and (ii) is performed through the stock solution supply branch line 11b, and the eluent in substep (iii) is supplied.
  • the amount of the eluent used can be greatly reduced compared to the chromatographic separation by the normal simulated moving bed method, and in the strong adsorptive fraction and weakly adsorbed. It is possible to effectively reduce the ratio of the eluent in the soluble fraction (that is, the concentration of components other than the eluent in the strongly adsorbable fraction and the weakly adsorbable fraction can be increased).
  • the method of the present invention can also improve the separation performance between the component to be purified and other components.
  • the component to be purified is a strong adsorptive component
  • the strong adsorbent component can be obtained with high purity and a high recovery rate in the strong adsorptive fraction, and the component to be purified is weakly adsorbed.
  • a weakly adsorbable component can be obtained with high purity and a high recovery rate in the weakly adsorbable fraction. That is, according to the method of the present invention, the target component to be purified can be obtained in a high concentration, a high purity, and a high recovery rate in a fraction selected from a strong adsorptive fraction and a weakly adsorptive fraction.
  • the component to be purified is preferably a strongly adsorptive component.
  • FIG. 2 shows the section 1 between the eluent supply port D and the strong adsorbent component outlet C, the section 2 between the strong adsorbent component outlet C and the stock solution supply port F, and the stock solution supply port F and the weak adsorption.
  • Section 3 is shown as a section 3 between the active component outlet A and section 4 as a section between the weakly adsorbable component outlet A and the eluent supply port D.
  • V1 to V4 mean the flow rates of sections 1 to 4 per cycle (until each port D, C, F, A is moved once).
  • the arrows in FIG. 2 indicate the direction of fluid flow.
  • the weakly adsorbing component moves beyond the length of Section 2 at the flow rate V2, and the movement of the strongly adsorbing component is the distance of Section 2.
  • the weakly adsorbing component moves beyond the length of the section 3 at the flow rate V3, and the movement of the strong adsorbing component needs to be suppressed to less than the distance of the section 3. In this way, when these are moved downstream with respect to the positions of the respective ports D, C, F, A, the weakly adsorbing components are further moved downstream, and the strong adsorbing components are upstream. Can be moved relatively (pseudo).
  • the weakly adsorbable component can be extracted from the outlet A, and the strong adsorptive component can be extracted from the outlet C.
  • the strong adsorptive component can be extracted from the outlet C.
  • the moving distance of the strong adsorptive component is less than the length of section 1 at the flow rate V1
  • the strong adsorptive component passes upstream without being extracted from the outlet C.
  • the strongly adsorbing component that has been removed cannot be extracted from the outlet C. Therefore, in section 1, it is said that the moving distance of the strongly adsorbing component needs to move beyond the length of section 1 at flow rate V1.
  • section 4 when attention is paid to section 4, when the moving distance of the weakly adsorbing component exceeds the length of section 4 at the flow rate V4, the weakly adsorbing component (weakly adsorbing that has passed without being extracted from the outlet A). Sex component) cannot be extracted from the outlet A. Therefore, in section 4, it is said that the moving distance of the weakly adsorbing component needs to be less than the length of section 4 at flow rate V4.
  • V3 and the flow rate V1 need to satisfy V3 ⁇ V1 (in the case of section 1, the strongly adsorbent component is moved farther). Need to be).
  • V3 ⁇ V1 is V2 + [feed amount of stock solution] ⁇ V2 + [extraction amount of strong adsorptive fraction], that is, [feed amount of stock solution] ⁇ [extraction amount of strong adsorptive fraction]. Therefore, in the simulated moving bed type chromatographic separation, the supply amount of the stock solution is usually smaller than the extraction amount of the strong adsorptive fraction.
  • step (a) by carrying out each of the sub-steps so that the supply amount of the stock solution is larger than the extraction amount of the strong adsorptive fraction, the component to be purified can be further contained in the fraction to be purified. High concentrations, higher purity, and higher recovery can be obtained.
  • the method of the present invention includes various modifications in addition to the embodiments specifically described above.
  • One unit packed tower may be provided between C and the strongly adsorbing fraction outlet C and the stock solution supply port F, or two or more units may be provided. May be. That is, the circulation system preferably has at least 4 unit packed towers, and more preferably has 4 unit packed towers.
  • substeps other than the substeps (i) to (iv) may be inserted in the step (a) for a short time as long as the effects of the present invention are not substantially impaired.
  • Such forms are also encompassed by the method of the present invention.
  • the stock solution is supplied from the stock solution supply port F and the weakly adsorbable fraction is extracted from the weakly adsorbable fraction outlet A.
  • step (ii) In addition to the process (FA process), separation is improved by incorporating a process (DC process) for supplying the eluent from the eluent supply port D and extracting the strongly adsorbable fraction from the strong adsorbent fraction outlet C (DC process).
  • DC process a process for supplying the eluent from the eluent supply port D and extracting the strongly adsorbable fraction from the strong adsorbent fraction outlet C
  • DC process DC process
  • the adsorbent packed in the unit packed column is appropriately selected according to the component to be purified, and various adsorbents can be employed.
  • adsorb strong acid cation exchange resin, weak acid cation exchange resin, strong base anion exchange resin, weak base anion exchange resin, synthetic adsorbent, zeolite, and silica gel (preferably octadecylsilyl modified silica gel) It can be used as an agent.
  • the method of the present invention is a suitable method for separating and purifying a specific monosaccharide from a stock solution containing a plurality of monosaccharides using a strongly acidic cation exchange resin as an adsorbent.
  • the strongly acidic cation exchange resin is preferably in the calcium form, silver form, lead form, or strontium form, and more preferably in the calcium form in consideration of economy and safety.
  • Examples of the calcium-type strongly acidic cation exchange resin include Amberlite (registered trademark) CR-1310Ca, CR-1320Ca (both manufactured by Organo), DOWEX (registered trademark) Monosphere 99Ca / 310, Monosphere 99Ca / 320 ( Examples include all manufactured by Dow Chemical Co., Ltd., Diaion (registered trademark) UBK535, UBK555 (all manufactured by Mitsubishi Chemical), PCR642Ca (manufactured by Purolite), CS11GC, and CS16GC (all manufactured by Finex).
  • the chromatographic separation system of the present invention is a system for carrying out the method of the present invention. That is, the chromatographic separation system of the present invention is a system having the above-described circulation system configuration, in which the circulation system sequentially repeats the operation of step (a) and the operation of step (b).
  • Example 2 The above circulation system was operated according to the operation steps shown in Table 1-1 below, and chromatographic separation was performed using a simulated moving bed system.
  • the amount of is shown in Table 1-2 below.
  • the conditions shown in Table 1-2 are the conditions in which the operation process shown in Table 1-1 is adopted, and the supply amount of the eluent is minimized as long as the fructose purity is 90% or higher in the C fraction. It is.
  • fructose is used as a component to be purified (strongly adsorbing component), and glucose and oligosaccharide are combined to form a weakly adsorbing component.
  • fructose can be recovered to a purity as high as 91.2% in the C fraction, and the sugar concentration in the C fraction is The concentration was as high as 40.8%. That is, it was found that the fructose can be recovered with high purity and high concentration in the C fraction by the chromatographic separation of the example.
  • Comparative Example 2 In Comparative Example 1, the time taken for each sub-step and the amount of A fraction and C fraction extracted in each sub-step were changed as shown in Table 3-1 below. In the same manner as described above, chromatographic separation by a simulated moving bed method was performed. The conditions shown in Table 3-1 are that the total supply amount of the stock solution in the sub-steps (ic) to (iiic) is the same as the total supply amount of the stock solution in the sub-steps (i) to (iii) of the embodiment.
  • the total amount of eluent supplied in steps (ic) to (iiic) is the same as the total amount of eluent supplied in sub-steps (i) to (iii) of the examples, and the purity of fructose in the C fraction is as much as possible.
  • the conditions are set to increase.

Abstract

Provided is a simulated moving-bed-type chromatographic separation method for repeating steps (a) and (b). Step (a) comprises the execution of the following sub-steps (i) to (iv): (i) feeding a stock solution from a stock solution feed port (F) and extracting a strong absorbent fraction from a strong absorbent fraction extraction port (C); (ii) feeding the stock solution from the stock solution feed port (F) and extracting a weak absorbent fraction from a weak absorbent fraction extraction port (A); (iii) feeding an eluent from an eluent feed port (D) and extracting the weak absorbent fraction from the weak absorbent fraction extraction port (A); and (iv) circulating fluid in the circulation system without feeding stock solution and eluent and without extracting the strong absorbent fraction and the weak absorbent fraction. Step (b) comprises moving the stock solution feed port (F), the weak absorbent fraction extraction port (A), the eluent feed port (D), and the strong absorbent fraction extraction port (C) in the fluid flow direction while the relative positional relationship of the ports is maintained.

Description

クロマト分離方法及びクロマト分離システムChromatographic separation method and chromatographic separation system
 本発明は、クロマト分離方法及びクロマト分離システムに関する。より詳細には、擬似移動層方式を用いたクロマト分離方法及びクロマト分離システムに関する。 The present invention relates to a chromatographic separation method and a chromatographic separation system. More specifically, the present invention relates to a chromatographic separation method and chromatographic separation system using a pseudo moving bed system.
 クロマト分離方法は、固定層方式と移動層方式に大別される。固定層方式では、多成分からなる試料(以下、「原液」ともいう。)を吸着剤が充填されたカラムに注入し、当該カラム中に溶離液を一方向に流通させることにより、吸着剤に対する吸着力の違いに基づき原液中の目的の成分を他の成分から分離精製する。この固定層方式は、吸着剤を固定したまま溶離液を流通させるだけで目的の成分を分離精製することができる。しかし、精製対象とする目的の成分(以下、単に「精製対象成分」ともいう。)とその他の成分との間に、吸着剤に対する吸着力においてある程度大きな差が無いと、固定層方式によって良好な分離精製を実現することができない。さらに、固定層方式では試料を連続的に注入しながら目的成分を分離することができず、工業的応用には制約がある。 The chromatographic separation method is roughly divided into a fixed bed method and a moving bed method. In the fixed bed system, a multi-component sample (hereinafter also referred to as “stock solution”) is injected into a column filled with an adsorbent, and the eluent is circulated in one direction in the column, thereby allowing the adsorbent to be adsorbed. The target component in the stock solution is separated and purified from other components based on the difference in adsorption power. In this fixed bed system, the target component can be separated and purified simply by circulating the eluent while fixing the adsorbent. However, if there is no significant difference in the adsorptive power with respect to the adsorbent between the target component to be purified (hereinafter, also simply referred to as “component to be purified”) and other components, the fixed layer method is good. Separation and purification cannot be realized. Furthermore, in the fixed layer method, the target component cannot be separated while continuously injecting the sample, and there are limitations in industrial application.
 一方、移動層方式では、カラム中に溶離液を一方向に流通させながら、吸着剤を、溶離液の流通方向に対して逆方向に移動させる。移動層方式では、溶離液の流通速度や吸着剤の移動速度を調節することにより、原液の注入口を基準として、原液中の精製対象成分を、その他の成分の移動方向とは逆方向に移動させることができる。そのため、例えば原液中の精製対象成分がその他の成分に比べて強吸着性成分である場合には、原液の注入口を基準として、精製対象成分が上流側(流体の流通方向とは逆方向)へ、その他の成分が下流側(流体の流通方向)へと移動する系を構築することが可能となる。当該上流側において精製対象成分を抜き出し、当該下流側においてその他の成分を抜き出すことにより、原液を連続的に注入しながら、精製対象成分を連続的に、且つ、より高い純度で分離精製できる。
 しかし、移動層方式の工業的応用は容易ではない。工業的に使用される大型のカラムを用いたクロマト分離システムにおいて、吸着剤を均一に移動させるのは技術的ハードルが高い。また、吸着剤を均一に移動させることができたとしても、この移動の際に吸着剤に大きな負荷がかかる。結果、吸着剤が破損(破砕)しやすくなり、構築したクロマト分離システムは耐久性等において実用性に劣るものとなりやすい。
On the other hand, in the moving bed method, the adsorbent is moved in the opposite direction to the flow direction of the eluent while flowing the eluent in one direction in the column. In the moving bed method, by adjusting the flow rate of the eluent and the moving speed of the adsorbent, the component to be purified in the stock solution is moved in the direction opposite to the direction of other components, based on the stock solution inlet. Can be made. Therefore, for example, when the component to be purified in the stock solution is a strongly adsorbing component compared to other components, the component to be purified is upstream with respect to the inlet of the stock solution (the direction opposite to the fluid flow direction). Therefore, it is possible to construct a system in which other components move downstream (fluid flow direction). By extracting the component to be purified on the upstream side and extracting other components on the downstream side, the component to be purified can be separated and purified continuously and with higher purity while continuously injecting the stock solution.
However, industrial application of the moving bed method is not easy. In a chromatographic separation system using a large column used industrially, it is technically difficult to move the adsorbent uniformly. Even if the adsorbent can be moved uniformly, a large load is applied to the adsorbent during this movement. As a result, the adsorbent easily breaks (crushes), and the constructed chromatographic separation system tends to be inferior in practicality in terms of durability.
 かかる移動層方式の問題点を解決すべく、擬似移動層方式によるクロマト分離技術が提案されている(例えば特許文献1、2)。この擬似移動層方式によるクロマト分離は、吸着剤が充填された複数の単位充填塔(カラム)を、配管を介して直列かつ無端状に連結してなる循環系を用いて実施される。この循環系において、上記配管には、精製対象成分を含む原液を供給するための原液供給口、弱吸着性成分の抜出口、溶離液供給口及び強吸着性成分の抜出口が、流体の流通方向に向けてこの順に設けられ、かつ、原液供給口と弱吸着性成分抜出口との間、弱吸着性成分抜出口と溶離液供給口との間、溶離液供給口と強吸着性成分抜出口との間、及び強吸着性成分抜出口と原液供給口との間には、それぞれに少なくとも1つの上記単位充填塔が配設される。そして、上記原液供給口、上記弱吸着性成分抜出口、上記溶離液供給口及び上記強吸着性成分抜出口を、これらの相対的な位置関係を維持した状態で流体の流通方向に向けて間欠的に移動させることにより、吸着剤を固定した状態であるにも関わらず、吸着剤を流体の流通方向に対して逆方向に移動させたのと同じような効果を得ることができる。 In order to solve such problems of the moving bed system, a chromatographic separation technique using a pseudo moving bed system has been proposed (for example, Patent Documents 1 and 2). The chromatographic separation by the simulated moving bed system is performed using a circulation system in which a plurality of unit packed columns (columns) packed with an adsorbent are connected in series and endlessly through a pipe. In this circulation system, the pipe has a stock solution supply port for supplying a stock solution containing the component to be purified, a weak adsorbent component outlet, an eluent supply port, and a strong adsorbent component outlet for fluid flow. And in this order, and between the stock solution supply port and the weak adsorbent component outlet, between the weak adsorbent component outlet and the eluent supply port, and between the eluent supply port and the strong adsorbent component. At least one of the above unit packed towers is disposed between the outlet and between the strongly adsorbing component outlet and the stock solution supply port. The stock solution supply port, the weakly adsorbent component outlet, the eluent supply port, and the strong adsorbent component outlet are intermittently directed toward the fluid flow direction while maintaining their relative positional relationship. By moving the adsorbent, it is possible to obtain the same effect as when the adsorbent is moved in the direction opposite to the fluid flow direction even though the adsorbent is fixed.
特公昭60-55162号公報Japanese Patent Publication No. 60-55162 特開2009-36536号公報JP 2009-36536 A
 クロマト分離においては、精製対象成分を含む原液に加えて、原液を押し流す溶離液が供給される。そのため、精製対象成分を含む目的の画分(以下、「精製対象画分」ともいう。)は、精製対象成分が溶離液により一定程度希釈された状態にある。したがって、クロマト分離によって得られた精製対象画分は、通常は濃縮操作を経て出荷等されるのであるが、この濃縮操作は精製コストを押し上げる一因となる。
 かかるコストを低減するためには、精製対象画分中の精製対象成分濃度を高めることが必要である。しかし、精製対象成分濃度を高めるべく、クロマト分離において溶離液の使用量を低減すると、一般に分離性能が低下し、得られる精製対象画分における精製対象成分の純度(精製対象画分中、溶離液と原液中の溶媒とを除いた残部に占める精製対象成分の割合)が低下してしまう。さらに、溶離液の使用量を低減すると、原液中に含まれる精製対象成分の、精製対象画分中への回収率も低下する傾向がある。
In chromatographic separation, in addition to the stock solution containing the component to be purified, an eluent that pushes the stock solution is supplied. Therefore, the target fraction containing the component to be purified (hereinafter also referred to as “fraction to be purified”) is in a state in which the component to be purified is diluted to some extent with the eluent. Therefore, although the fraction to be purified obtained by chromatographic separation is usually shipped through a concentration operation, this concentration operation contributes to increase the purification cost.
In order to reduce such costs, it is necessary to increase the concentration of the component to be purified in the fraction to be purified. However, if the amount of eluent used in chromatographic separation is reduced in order to increase the concentration of the purification target component, the separation performance generally decreases, and the purity of the purification target component in the resulting purification target fraction (in the purification target fraction, And the ratio of the component to be purified in the remainder excluding the solvent in the stock solution). Furthermore, when the amount of the eluent used is reduced, the recovery rate of the purification target component contained in the stock solution into the purification target fraction also tends to decrease.
 本発明は、擬似移動層方式を用いたクロマト分離方法であって、溶離液の使用量を大きく低減でき、且つ、得られる精製対象画分中への精製対象成分の回収率と、当該精製対象画分中における精製対象成分の純度のいずれも高度に高めることができるクロマト分離方法を提供することを課題とする。
 また、本発明は上記クロマト分離方法の実施に好適なクロマト分離システムを提供することを課題とする。
The present invention is a chromatographic separation method using a simulated moving bed system, which can greatly reduce the amount of eluent used, and also provides the recovery rate of the purification target component in the obtained purification target fraction, and the purification target It is an object of the present invention to provide a chromatographic separation method capable of highly enhancing any of the purities of the components to be purified in the fraction.
Moreover, this invention makes it a subject to provide the chromatographic separation system suitable for implementation of the said chromatographic separation method.
 本発明者らは上記課題に鑑み鋭意検討を重ねた結果、擬似移動層方式を用いたクロマト分離方法において、原液供給操作及び溶離液供給操作から選ばれる液供給操作と、強吸着性画分抜出操作及び弱吸着性画分抜出操作から選ばれる液抜出操作との特定の組み合わせを特定の順序で実施する工程と、液供給操作及び液抜出操作を一切行わずに系内に流体を流通させる循環工程とを組み合わせることにより、溶離液の使用量を大幅に低減しながらも、精製対象画分中における精製対象成分の純度及び精製対象画分中への精製対象成分の回収率のいずれも所望のレベルに高めることができることを見い出した。すなわち、精製対象画分中に、精製対象成分を、高濃度に、高純度に、且つ高い回収率で分離精製できることを見い出した。
 本発明は、これらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
As a result of intensive studies in view of the above problems, the inventors of the present invention have found that in a chromatographic separation method using a simulated moving bed system, a liquid supply operation selected from a stock solution supply operation and an eluent supply operation, and a strong adsorptive fraction extraction A process of performing a specific combination of a liquid extraction operation selected from a discharge operation and a weakly adsorptive fraction extraction operation in a specific order, and a fluid in the system without performing any liquid supply operation or liquid extraction operation. In combination with a circulation process that circulates, the amount of eluent used can be greatly reduced, while the purity of the purification target component in the purification target fraction and the recovery rate of the purification target component in the purification target fraction can be reduced. It has been found that both can be raised to a desired level. That is, it has been found that the components to be purified can be separated and purified at a high concentration, high purity, and high recovery rate in the fraction to be purified.
The present invention has been further studied based on these findings and has been completed.
 本発明の上記課題は下記手段により解決された。
〔1〕
 吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離方法であって、
 前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
 下記ステップ(a)及び(b)を順に繰り返す、方法:
(a)下記サブステップ(i)~(iv)をこの順に実施するステップ;
  (i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
  (ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
  (iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
  (iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
(b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
〔2〕
 前記ステップ(a)において、前記抜出口Cから抜き出される前記強吸着性画分の総量が、前記供給口Fから供給される前記原液の総量よりも少ない、〔1〕に記載のクロマト分離方法。
〔3〕
 前記原液がぶどう糖及び果糖を含有し、前記強吸着性画分中に該果糖を分離精製する、〔1〕又は〔2〕に記載のクロマト分離方法。
〔4〕
 前記循環系が前記単位充填塔を少なくとも4塔有する、〔1〕~〔3〕のいずれか1つに記載のクロマト分離方法。
〔5〕
 前記ステップ(a)において、原液の総供給量に対する溶離液の総供給量の比が、体積比で、[溶離液の総供給量]/[原液の総供給量]<1.2を満たす、〔1〕~〔4〕のいずれか1つに記載のクロマト分離方法。
〔6〕
 吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離システムであって、
 前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
 下記ステップ(a)及び(b)を順に繰り返す、システム:
(a)下記サブステップ(i)~(iv)をこの順に実施するステップ;
  (i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
  (ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
  (iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
  (iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
(b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
The above-described problems of the present invention have been solved by the following means.
[1]
A chromatographic separation method for separating and purifying components in a stock solution by a simulated moving bed method using a circulation system in which a plurality of unit packed towers packed with an adsorbent are connected in series and endlessly through a pipe,
The circulation system has a stock solution supply port F, a weakly adsorptive fraction extraction outlet A, an eluent supply port D, and a strong adsorptive fraction extraction outlet C in this order in the fluid flow direction. And between the stock solution supply port F and the weakly adsorbable fraction outlet A, between the weakly adsorbable fraction outlet A and the eluent supply port D, and the eluent supply port D. Between the strong adsorptive fraction extraction outlet C and between the strong adsorptive fraction extraction outlet C and the stock solution supply port F, at least one unit packed tower is disposed,
The following steps (a) and (b) are repeated in order:
(A) performing the following substeps (i) to (iv) in this order;
(I) a sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction extraction outlet C;
(Ii) a sub-step of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
(Iii) a sub-step of supplying an eluent from the eluent supply port D and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
(Iv) a sub-step of circulating the fluid in the circulation system without supplying the stock solution and the eluent and without extracting the strong and weakly adsorbable fractions;
(B) After the step (a) is completed, the stock solution supply port F, the weakly adsorptive fraction extraction outlet A, the eluent supply port D, and the strong adsorptive fraction extraction port C are set to their relative positions. The step of moving toward the flow direction of the fluid while maintaining the positional relationship.
[2]
The chromatographic separation method according to [1], wherein in the step (a), the total amount of the strongly adsorptive fraction extracted from the outlet C is smaller than the total amount of the stock solution supplied from the supply port F. .
[3]
The chromatographic separation method according to [1] or [2], wherein the stock solution contains glucose and fructose, and the fructose is separated and purified in the strong adsorptive fraction.
[4]
The chromatographic separation method according to any one of [1] to [3], wherein the circulation system has at least four unit packed columns.
[5]
In the step (a), the ratio of the total supply amount of the eluent to the total supply amount of the stock solution satisfies the ratio [total supply amount of eluent] / [total supply amount of stock solution] <1.2 in volume ratio. [1] The chromatographic separation method according to any one of [4].
[6]
A chromatographic separation system that separates and purifies components in a stock solution by a simulated moving bed system using a circulation system in which a plurality of unit packed towers packed with an adsorbent are connected in series and endlessly via a pipe,
The circulation system has a stock solution supply port F, a weakly adsorptive fraction extraction outlet A, an eluent supply port D, and a strong adsorptive fraction extraction outlet C in this order in the fluid flow direction. And between the stock solution supply port F and the weakly adsorbable fraction outlet A, between the weakly adsorbable fraction outlet A and the eluent supply port D, and the eluent supply port D. Between the strong adsorptive fraction extraction outlet C and between the strong adsorptive fraction extraction outlet C and the stock solution supply port F, at least one unit packed tower is disposed,
Repeat the following steps (a) and (b) in order, system:
(A) performing the following substeps (i) to (iv) in this order;
(I) a sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction extraction outlet C;
(Ii) a sub-step of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
(Iii) a sub-step of supplying an eluent from the eluent supply port D and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
(Iv) a sub-step of circulating the fluid in the circulation system without supplying the stock solution and the eluent and without extracting the strong and weakly adsorbable fractions;
(B) After the step (a) is completed, the stock solution supply port F, the weakly adsorptive fraction extraction outlet A, the eluent supply port D, and the strong adsorptive fraction extraction port C are set to their relative positions. The step of moving toward the flow direction of the fluid while maintaining the positional relationship.
 本明細書において、「上流」、「下流」との用語は、循環系内の流体の流通方向に対して用いられる。すなわち、循環系のある部位に対して「上流側」とは、当該部位に向けて流体が流通してくる側を意味し、「下流側」とは、当該部位から流体が流れ出ていく側を意味する。
 本明細書において、「強吸着性成分」とは、原液中に含まれる複数成分のうち、吸着剤に対する吸着力が強い成分を意味し、「弱吸着性成分」とは、上記強吸着性成分よりも吸着剤に対する吸着性の弱い成分を意味する。つまり「強吸着性」及び「弱吸着性」との用語は、原液中に含まれる各成分について、吸着剤に対する吸着力を相対的に比較した際の、当該吸着力の強さの度合を表すものである。
 また、「強吸着性成分」及び「弱吸着性成分」は、それぞれ、単一成分からなってもよく、吸着力の異なる複数の成分からなってもよい。精製対象成分は単一成分であることが多いため、強吸着性成分が精製対象成分である場合、当該強吸着性成分は通常は、原液中で、吸着剤に対する吸着力が最も強い成分となるが、本発明はこの態様に限定されるものではない。弱吸着性成分は、当該強吸着性成分よりも吸着剤に対する吸着性の弱い、1種又は2種以上の成分となる。同様に、弱吸着性成分が精製対象成分である場合、当該弱吸着性成分は通常は、原液中で、吸着剤に対する吸着力が最も弱い成分となるが、本発明はこの態様に限定されるものではない。強吸着性成分は、当該弱吸着性成分よりも吸着剤に対する吸着性の強い、1種又は2種以上の成分となる。
In this specification, the terms “upstream” and “downstream” are used with respect to the flow direction of the fluid in the circulation system. That is, the “upstream side” with respect to a certain part of the circulatory system means the side where the fluid flows toward the part, and the “downstream side” means the side where the fluid flows out from the part. means.
In the present specification, “strongly adsorbing component” means a component having a strong adsorptive power to the adsorbent among a plurality of components contained in the stock solution, and “weakly adsorbing component” means the above strongly adsorbing component. Means a component having a lower adsorptivity to the adsorbent. In other words, the terms “strongly adsorbing” and “weakly adsorbing” represent the degree of strength of the adsorbing force when the adsorbing force relative to the adsorbent is relatively compared for each component contained in the stock solution. Is.
Further, each of the “strongly adsorbing component” and the “weakly adsorbing component” may be composed of a single component or a plurality of components having different adsorptive powers. Since the component to be purified is often a single component, when the strongly adsorbing component is the component to be purified, the strongly adsorbing component is usually the component having the strongest adsorption power to the adsorbent in the stock solution. However, the present invention is not limited to this embodiment. The weakly adsorptive component is one or more components that are less adsorbable to the adsorbent than the strong adsorbent component. Similarly, when the weakly adsorptive component is a component to be purified, the weakly adsorbable component is usually the component having the weakest adsorption power to the adsorbent in the stock solution, but the present invention is limited to this embodiment. It is not a thing. The strong adsorptive component is one or more components having a higher adsorptivity to the adsorbent than the weak adsorptive component.
 本発明のクロマト分離方法によれば、原液中の精製対象成分を、高濃度に、高純度に、且つ高い回収率で分離精製することができる。また、本発明のクロマト分離システムは、上記本発明のクロマト分離方法の実施に用いることができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
According to the chromatographic separation method of the present invention, the components to be purified in the stock solution can be separated and purified at a high concentration, a high purity, and a high recovery rate. The chromatographic separation system of the present invention can be used for carrying out the chromatographic separation method of the present invention.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明のクロマト分離システムの一実施形態を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the chromatographic separation system of the present invention. 図2は、擬似移動層方式によるクロマト分離の基本概念を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the basic concept of chromatographic separation by the pseudo moving bed method.
 本発明のクロマト分離方法(以下、単に「本発明の方法」ともいう。)の好ましい実施形態について説明する。 A preferred embodiment of the chromatographic separation method of the present invention (hereinafter also simply referred to as “the method of the present invention”) will be described.
 本発明の方法は、吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて実施される。擬似移動層方式に用いられる循環系自体は公知であり、例えば、特開2009-36536号公報や、特公平7-46097号公報を参照することができる。
 当該循環系について図面を用いて以下に説明するが、本発明はこれらの態様に限定されるものではない。
 なお、以下で言及する図面は本発明の理解を容易にするための説明図であり、各構成のサイズや相対的な大小関係は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された形状、相対的な位置関係等に限定されるものでもない。
The method of the present invention is carried out using a circulation system in which a plurality of unit packed towers filled with an adsorbent are connected in series and endlessly through a pipe. The circulation system itself used in the simulated moving bed system is known, and for example, JP-A-2009-36536 and JP-B-7-46097 can be referred to.
The circulatory system will be described below with reference to the drawings, but the present invention is not limited to these embodiments.
The drawings referred to below are explanatory diagrams for facilitating the understanding of the present invention, and the size and relative size relationship of each component may be changed for convenience of explanation, and the actual relationship may be changed. It is not shown as it is. Further, the present invention is not limited to the shapes and relative positional relationships shown in these drawings except for the matters defined in the present invention.
 本発明の方法に用いる循環系の好ましい一実施形態を図1に示す。図1に示される循環系100は、吸着剤Abが充填された単位充填塔を4本(単位充填塔10a、10b、10c、10d)備え、各単位充填塔の出口は、隣接する単位充填塔の入口へと配管1を介して連結され、全体として各単位充填塔が直列に連結されている。
 そして、最後部の単位充填塔(例えば単位充填塔10d)の出口は、最前部の単位充填塔(例えば単位充填塔10a)の入口へと配管1を介して連結され、全単位充填塔は無端状に(円環状に)連結されている。かかる構成により、循環系100内に、流体を循環させることが可能となる。単位充填塔10a~10dは、内部の形、サイズ、吸着剤の充填量がいずれも等価なもの(好ましくは同じもの)を用いることが好ましい。
A preferred embodiment of the circulatory system used in the method of the present invention is shown in FIG. The circulation system 100 shown in FIG. 1 includes four unit packed columns (unit packed columns 10a, 10b, 10c, and 10d) packed with an adsorbent Ab, and the outlet of each unit packed column is an adjacent unit packed column. The unit packed towers are connected in series as a whole.
The outlet of the last unit packed column (for example, the unit packed column 10d) is connected to the inlet of the frontmost unit packed column (for example, the unit packed column 10a) via the pipe 1, and all the unit packed columns are endless. Connected in a circular shape. With this configuration, the fluid can be circulated in the circulation system 100. It is preferable that the unit packed towers 10a to 10d have the same (preferably the same) internal shape, size, and packing amount of the adsorbent.
 上記循環系100内には、流体を矢印方向に流通させるための循環ポンプP1が配設されている。循環ポンプP1は定量ポンプであることが好ましい。また、循環系100内において、隣接する2つの単位充填塔の間の配管1には、その下流側の単位充填塔への流体の流通を遮断可能な遮断弁R1、R2、R3、R4が設けられている。 In the circulation system 100, a circulation pump P1 for circulating a fluid in the direction of the arrow is disposed. The circulation pump P1 is preferably a metering pump. Further, in the circulation system 100, the piping 1 between two adjacent unit packed towers is provided with shutoff valves R1, R2, R3, and R4 that can block the flow of fluid to the downstream unit packed tower. It has been.
 各遮断弁R1~R4と、その上流側に位置する各単位充填塔10a~10dの出口との間には、それぞれ、吸着剤Abに対する弱吸着性成分を多く含む画分(本明細書において「吸着剤Abに対する弱吸着性画分」又は単に「弱吸着性画分」という。)を抜き出す弱吸着性画分抜出ライン2a、2b、2c、2dが分岐されている。各弱吸着性画分抜出ライン2a、2b、2c、2dには、それぞれ、各弱吸着性画分抜出ラインを開閉可能な弱吸着性画分抜出弁A1、A2、A3、A4が設けられている。各弱吸着性画分抜出ライン2a、2b、2c、2dは、合流されて一つの弱吸着性画分合流管3にまとめられる。 Between each of the shutoff valves R1 to R4 and the outlet of each of the unit packed towers 10a to 10d located on the upstream side thereof, a fraction containing a large amount of weakly adsorptive components for the adsorbent Ab (in this specification, “ The weakly adsorbable fraction extraction lines 2a, 2b, 2c, and 2d for extracting the “weakly adsorbable fraction with respect to the adsorbent Ab” or simply “the weakly adsorbable fraction”) are branched. Each weakly adsorptive fraction extraction line 2a, 2b, 2c, 2d has a weakly adsorptive fraction extraction valve A1, A2, A3, A4 that can open and close each weakly adsorptive fraction extraction line. Is provided. Each weakly adsorptive fraction extraction line 2a, 2b, 2c, 2d is merged and combined into one weakly adsorptive fraction confluence tube 3.
 また同様に、各遮断弁R1~R4と、その上流側に位置する各単位充填塔10a~10dの出口との間には、吸着剤Abに対する強吸着性成分を多く含む画分(本明細書において「吸着剤Abに対する強吸着性画分」又は単に「強吸着性画分」という。)を抜き出す強吸着性画分抜出ライン4a、4b、4c、4dが分岐されている。各強吸着性画分抜出ライン4a、4b、4c、4dには、それぞれ、各強吸着性画分抜出ラインを開閉可能な強吸着性画分抜出弁C1、C2、C3、C4が設けられている。各強吸着性画分抜出ライン4a、4b、4c、4dは、合流されて一つの強吸着性画分合流管5にまとめられる。 Similarly, a fraction containing a large amount of strongly adsorbing components for the adsorbent Ab between the shutoff valves R1 to R4 and the outlets of the unit packed towers 10a to 10d located on the upstream side thereof (this specification) In FIG. 4, the strong adsorptive fraction extraction lines 4a, 4b, 4c, and 4d for extracting “the strongly adsorbable fraction with respect to the adsorbent Ab” or simply “the strong adsorptive fraction”) are branched. The strong adsorptive fraction extraction lines 4a, 4b, 4c, and 4d have strong adsorptive fraction extraction valves C1, C2, C3, and C4 that can open and close the strong adsorptive fraction extraction lines, respectively. Is provided. The strong adsorptive fraction extraction lines 4 a, 4 b, 4 c, and 4 d are joined together and combined into one strong adsorptive fraction confluence pipe 5.
 後述するステップ(a)の中で、上記弱吸着性画分抜出弁A1、A2、A3、A4のいずれかが開弁された状態となる。当該開弁された抜出弁が設置された弱吸着性画分抜出ラインと、配管1との連結部位が、当該ステップ(a)における弱吸着性画分の抜出口Aとなる。また、ステップ(a)においては、上記強吸着性画分抜出弁C1、C2、C3、C4のいずれかが開弁された状態となる。当該開弁された抜出弁の設置された強吸着性画分抜出ラインと、配管1との連結部位が、ステップ(a)における強吸着性画分の抜出口Cとなる。 In step (a) to be described later, one of the weakly adsorbing fraction extraction valves A1, A2, A3, A4 is opened. A connection site between the weakly adsorptive fraction extraction line in which the opened extraction valve is installed and the pipe 1 serves as the weakly adsorptive fraction outlet A in the step (a). In step (a), one of the strong adsorptive fraction extraction valves C1, C2, C3, and C4 is opened. The connection site between the strongly adsorbable fraction extraction line where the opened extraction valve is installed and the pipe 1 becomes the outlet C of the strong adsorptive fraction in step (a).
 循環系100には、循環系100の圧力が上昇し過ぎるのを防ぐために、適当な部位に図示していない安全弁(又はリリーフ弁)を設けることが好ましい。また、隣接する2つの単位充填塔の間には、逆流防止用の逆止弁T1、T2、T3、T4を設けることも好ましい。 The circulation system 100 is preferably provided with a safety valve (or relief valve) (not shown) at an appropriate portion in order to prevent the pressure of the circulation system 100 from rising excessively. It is also preferable to provide check valves T1, T2, T3, and T4 for preventing backflow between two adjacent unit packed columns.
 循環系100内には、図1に示されるように、原液タンク6に収容された原液7と、溶離液タンク8に収容された溶離液9が供給可能な構成となっている。原液7は、供給流量を制御可能な原液供給ポンプP2により、原液供給ライン11を介して供給される。原液供給ポンプP2は定量ポンプであることが好ましい。原液供給ライン11は、原液の供給中、供給圧が設定圧を超えた場合に、原液を原液タンク6に戻すリリーフ弁Uを備えることが好ましい。原液供給ライン11は、図1に示すように4本の原液供給分岐ライン11a、11b、11c、11dに分岐され、各原液供給分岐ライン11a、11b、11c、11dを介して、原液を、それぞれ各単位充填塔10a、10b、10c、10dの入り口へと供給可能な構成となっている。各原液供給分岐ライン11a、11b、11c、11dには、開閉可能な原液供給弁F1、F2、F3、F4が設けられ、開弁された原液供給弁を有する原液供給分岐ラインを通って、その下流に連結する単位充填塔へと原液が供給される。
 後述するステップ(a)の中で、上記原液供給弁F1、F2、F3、F4のいずれかが開弁された状態となる。当該開弁された原液供給弁が設置された原液供給分岐ラインと、配管1との連結部位が、ステップ(a)における原液供給口Fとなる。
As shown in FIG. 1, the circulation system 100 is configured to be able to supply the stock solution 7 stored in the stock solution tank 6 and the eluent 9 stored in the eluent tank 8. The stock solution 7 is supplied via the stock solution supply line 11 by a stock solution supply pump P2 capable of controlling the supply flow rate. The stock solution supply pump P2 is preferably a metering pump. The stock solution supply line 11 preferably includes a relief valve U that returns the stock solution to the stock solution tank 6 when the supply pressure exceeds a set pressure during the supply of the stock solution. As shown in FIG. 1, the stock solution supply line 11 is branched into four stock solution supply branch lines 11a, 11b, 11c, and 11d, and the stock solution is supplied through each of the stock solution supply branch lines 11a, 11b, 11c, and 11d. The unit can be supplied to the entrances of the unit packed towers 10a, 10b, 10c, and 10d. Each stock solution supply branch line 11a, 11b, 11c, 11d is provided with an openable / closable stock solution supply valve F1, F2, F3, F4, through the stock solution supply branch line having the opened stock solution supply valve, The stock solution is supplied to the unit packed tower connected downstream.
In step (a), which will be described later, one of the stock solution supply valves F1, F2, F3, and F4 is opened. The connection site between the undiluted solution supply branch line where the unfolded undiluted solution supply valve is installed and the pipe 1 becomes the undiluted solution supply port F in step (a).
 溶離液9は、供給流量の制御が可能な溶離液供給ポンプP3により、溶離液供給ライン12を介して供給される。溶離液供給ポンプP3は定量ポンプであることが好ましい。溶離液供給ライン12は、溶離液の供給中、供給圧が設定圧を超えた場合に、溶離液を溶離液タンク8に戻すリリーフ弁Vを備えることが好ましい。溶離液供給ライン12は、図1に示すように4本の溶離液供給分岐ライン12a、12b、12c、12dに分岐され、各溶離液供給分岐ライン12a、12b、12c、12dを介して、溶離液を、各単位充填塔10a、10b、10c、10dの入り口へと供給可能な構成となっている。各溶離液供給分岐ライン12a、12b、12c、12dには、開閉可能な溶離液供給弁D1、D2、D3、D4が設けられ、開弁された溶離液供給弁を有する溶離液供給分岐ラインを通って、その下流に連結する単位充填塔へと溶離液が供給される。
 後述するステップ(a)の中で、上記溶離液供給弁D1、D2、D3、D4のいずれかが開弁された状態となる。当該開弁された溶離液供給弁が設置された溶離液供給分岐ラインと、配管1との連結部位が、ステップ(a)における溶離液供給口Dとなる。
The eluent 9 is supplied via an eluent supply line 12 by an eluent supply pump P3 capable of controlling the supply flow rate. The eluent supply pump P3 is preferably a metering pump. The eluent supply line 12 preferably includes a relief valve V that returns the eluent to the eluent tank 8 when the supply pressure exceeds a set pressure during the supply of the eluent. As shown in FIG. 1, the eluent supply line 12 is branched into four eluent supply branch lines 12a, 12b, 12c, and 12d, and the eluent supply line 12a, 12b, 12c, and 12d are eluted. The liquid can be supplied to the entrances of the unit packed towers 10a, 10b, 10c, and 10d. Each eluent supply branch line 12a, 12b, 12c, 12d is provided with an eluent supply valve D1, D2, D3, D4 that can be opened and closed, and an eluent supply branch line having an opened eluent supply valve. Then, the eluent is supplied to the unit packed column connected downstream thereof.
In step (a) described later, any one of the eluent supply valves D1, D2, D3, and D4 is opened. A connecting portion between the eluent supply branch line where the opened eluent supply valve is installed and the pipe 1 becomes the eluent supply port D in step (a).
 続いて、上記循環系により本発明の方法を実施する際の、当該循環系の作動について説明する。本発明の方法では、上記循環系を用いて、下記ステップ(a)及び(b)を順に繰り返す。 Subsequently, the operation of the circulatory system when the method of the present invention is performed by the circulatory system will be described. In the method of the present invention, the following steps (a) and (b) are repeated in order using the circulation system.
(a)下記サブステップ(i)~(iv)をこの順に実施するステップ。
  (i)原液供給口Fから原液を供給すると共に、強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ。
  (ii)原液供給口Fから原液を供給すると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ。
  (iii)溶離液供給口Dから溶離液を供給すると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ。
  (iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ。
(b)上記ステップ(a)終了後(すなわち、上記サブステップ(iv)の終了後)、上記原液供給口F、上記弱吸着性画分抜出口A、上記溶離液供給口D及び上記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
(A) A step of performing the following sub-steps (i) to (iv) in this order.
(I) A sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction outlet C.
(Ii) A sub-step of supplying the stock solution from the stock solution supply port F and extracting the weakly adsorbable fraction from the weakly adsorbable fraction outlet A.
(Iii) A sub-step of supplying the eluent from the eluent supply port D and extracting the weakly adsorbable fraction from the weakly adsorbable fraction outlet A.
(Iv) A sub-step of circulating the fluid in the circulation system without supplying the stock solution and the eluent and without extracting the strong and weakly adsorbable fractions.
(B) After completion of the step (a) (that is, after completion of the sub-step (iv)), the stock solution supply port F, the weakly adsorbable fraction extraction port A, the eluent supply port D, and the strong adsorption The step of moving the sex fraction extraction outlet C toward the fluid flow direction while maintaining the relative positional relationship thereof.
[ステップ(a)]
 上記ステップ(a)は、4つのサブステップ(i)~(iv)を順次実行するステップである。各サブステップについて、図1に示す循環系を参照して説明する。
[Step (a)]
Step (a) is a step of sequentially executing the four sub-steps (i) to (iv). Each sub-step will be described with reference to the circulation system shown in FIG.
<サブステップ(i)>
 サブステップ(i)では、上記原液供給口Fから原液を供給しながら、上記強吸着性画分抜出口Cから強吸着性画分を抜き出す。例えば、原液供給弁F1を開弁し、原液供給ポンプP2を作動させて、原液供給分岐ライン11aと配管1との連結部位を原液供給口Fとする場合には、抜出弁C3を開き、強吸着性画分抜出ライン4cと配管1との連結部位を抜出口Cとする。
<Substep (i)>
In substep (i), the strong adsorptive fraction is extracted from the strong adsorptive fraction extraction outlet C while supplying the stock solution from the stock solution supply port F. For example, when the stock solution supply valve F1 is opened and the stock solution supply pump P2 is operated to connect the stock solution supply branch line 11a and the pipe 1 to the stock solution supply port F, the extraction valve C3 is opened, A connecting portion between the strong adsorptive fraction extraction line 4c and the pipe 1 is defined as an outlet C.
 サブステップ(i)では、原液供給弁F2~F4、弱吸着性画分抜出弁A1~A4、強吸着性画分抜出弁C1、C2及びC4、及び遮断弁R3はいずれも閉じられる。また、溶離液供給弁D1~D4は、溶離液供給ポンプP3が停止していれば開弁していてもよいが、液の供給と抜き出しをより高精度に実施するためには、溶離液供給弁D1~D4は閉じられていることが好ましい。遮断弁R1及びR2は開弁しており、遮断弁R4は開いていても閉じていてもよい。循環ポンプP1及び溶離液供給ポンプP3は通常は停止させる。 In sub-step (i), the stock solution supply valves F2 to F4, the weakly adsorptive fraction extraction valves A1 to A4, the strong adsorptive fraction extraction valves C1, C2 and C4, and the shutoff valve R3 are all closed. The eluent supply valves D1 to D4 may be opened as long as the eluent supply pump P3 is stopped. However, in order to perform the supply and extraction of the liquid with higher accuracy, the eluent supply valves The valves D1 to D4 are preferably closed. The shutoff valves R1 and R2 are open, and the shutoff valve R4 may be open or closed. The circulation pump P1 and the eluent supply pump P3 are normally stopped.
 サブステップ(i)において、上記原液供給口Fから供給される原液の量に特に制限はないが、1時間当たり、単位充填塔10aに充填されている吸着剤Abの1リットル当たり、0.032~0.059リットルとすることが好ましく、0.036~0.054リットルとすることがより好ましい。サブステップ(i)における原液の総供給量は、すなわち、サブステップ(i)において強吸着性画分抜出口Cから抜き出される強吸着性画分の総量と事実上同じ量となる。 In substep (i), the amount of the stock solution supplied from the stock solution supply port F is not particularly limited, but is 0.032 per liter of the adsorbent Ab packed in the unit packed column 10a per hour. It is preferably 0.059 liters, more preferably 0.036-0.054 liters. The total supply amount of the stock solution in the sub-step (i) is substantially the same as the total amount of the strong adsorptive fraction extracted from the strong adsorptive fraction extraction outlet C in the sub-step (i).
<サブステップ(ii)>
 サブステップ(ii)では、原液供給口Fから原液を供給しながら、弱吸着性画分抜出口Aから弱吸着性画分を抜き出す。すなわち、上記サブステップ(i)において開弁していた強吸着性画分抜出弁C3を閉じ、代わりに弱吸着性画分抜出弁A1を開く。つまり、弱吸着性画分抜出弁A1を有する弱吸着性画分抜出ライン2aと配管1との連結部位を弱吸着性画分抜出口Aとして、当該抜出口Aから弱吸着性画分を抜き出す。
<Sub-step (ii)>
In substep (ii), the weakly adsorptive fraction is extracted from the weakly adsorbable fraction outlet A while supplying the stock solution from the stock solution supply port F. That is, the strong adsorptive fraction extraction valve C3 that has been opened in the substep (i) is closed, and the weak adsorptive fraction extraction valve A1 is opened instead. That is, the connection part of the weakly adsorptive fraction extraction line 2a having the weakly adsorptive fraction extraction valve A1 and the pipe 1 is defined as the weakly adsorptive fraction extraction outlet A, and the weakly adsorptive fraction from the outlet A Extract.
 サブステップ(ii)では、原液供給弁F2~F4、弱吸着性画分抜出弁A2~A4、強吸着性画分抜出弁C1~C4、及び遮断弁R1はいずれも閉じられる。また、溶離液供給弁D1~D4は、溶離液供給ポンプP3が停止していれば開弁していてもよいが、液の供給と抜き出しをより高精度に実施するためには、溶離液供給弁D1~D4は閉じられていることが好ましい。遮断弁R2~4は開いていても閉じていてもよい。また、サブステップ(i)と同様に、循環ポンプP1及び溶離液供給ポンプP3は通常は停止させる。 In sub-step (ii), the stock solution supply valves F2 to F4, the weakly adsorptive fraction extraction valves A2 to A4, the strong adsorptive fraction extraction valves C1 to C4, and the shutoff valve R1 are all closed. The eluent supply valves D1 to D4 may be opened as long as the eluent supply pump P3 is stopped. However, in order to carry out the supply and extraction of the liquid with higher accuracy, the eluent supply valves D1 to D4 may be opened. The valves D1 to D4 are preferably closed. The shutoff valves R2-4 may be open or closed. Further, as in the substep (i), the circulation pump P1 and the eluent supply pump P3 are normally stopped.
 サブステップ(ii)において、上記原液供給口Fから供給される原液の量に特に制限はないが、1時間当たり、単位充填塔10aに充填された吸着剤Abの1リットル当たり、0.020~0.036リットルとすることが好ましく、0.022~0.034リットルとすることがより好ましい。サブステップ(ii)における原液の総供給量は、すなわち、サブステップ(ii)において弱吸着性画分抜出口Aから抜き出される弱吸着性画分の総量と事実上同じ量となる。 In the substep (ii), the amount of the stock solution supplied from the stock solution supply port F is not particularly limited, but is 0.020 to 1 hour per liter of the adsorbent Ab packed in the unit packed column 10a per hour. It is preferably 0.036 liter, more preferably 0.022 to 0.034 liter. The total supply amount of the stock solution in the sub-step (ii) is substantially the same as the total amount of the weakly adsorbable fraction extracted from the weakly adsorbable fraction outlet A in the substep (ii).
<サブステップ(iii)>
 サブステップ(iii)では、溶離液供給口Dから溶離液を供給すると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出す。すなわち、上記サブステップ(ii)において開弁していた供給弁F1を閉じ、原液供給ポンプP2の作動を停止し、代わりに溶離液供給弁D3を開き、溶離液供給ポンプP3を作動させる。つまり、供給弁D3を有する溶離液供給分岐ライン12cと、配管1との連結部位が、溶離液供給口Dとなり、この溶離液供給口Dから溶離液が供給されると共に、弱吸着性画分抜出口Aから弱吸着性画分を抜き出す。
<Sub-step (iii)>
In substep (iii), the eluent is supplied from the eluent supply port D and the weakly adsorbable fraction is extracted from the weakly adsorbable fraction outlet A. That is, the supply valve F1 opened in the substep (ii) is closed, the operation of the stock solution supply pump P2 is stopped, and the eluent supply valve D3 is opened instead, and the eluent supply pump P3 is operated. That is, the connection part of the eluent supply branch line 12c having the supply valve D3 and the pipe 1 serves as the eluent supply port D, and the eluent is supplied from the eluent supply port D and the weakly adsorbing fraction. A weakly adsorptive fraction is extracted from the outlet A.
 サブステップ(iii)では、溶離液供給弁D1、D2及びD4、弱吸着性画分抜出弁A2~A4、強吸着性画分抜出弁C1~C4、及び遮断弁R1はいずれも閉じられている。原液供給弁F1~F4は、原液供給ポンプP2が停止していれば開弁していてもよいが、液の供給と抜き出しをより高精度に実施するためには、原液供給弁F1~F4は閉じられていることが好ましい。遮断弁R2は開いていても閉じていてもよい。遮断弁R3及びR4はいずれも開かれている。また、循環ポンプP1は作動させてもよいし、停止してもよい。 In sub-step (iii), all of the eluent supply valves D1, D2 and D4, the weakly adsorbing fraction extracting valves A2 to A4, the strong adsorbing fraction extracting valves C1 to C4 and the shutoff valve R1 are closed. ing. The stock solution supply valves F1 to F4 may be opened as long as the stock solution supply pump P2 is stopped. However, in order to carry out the supply and extraction of the solution with higher accuracy, It is preferably closed. The shutoff valve R2 may be open or closed. The shutoff valves R3 and R4 are both open. Further, the circulation pump P1 may be operated or stopped.
 サブステップ(iii)において、上記溶離液供給口Dから供給される溶離液の量に特に制限はないが、1時間当たり、単位充填塔10aに充填された吸着剤Abの1リットル当たり、0.051~0.095リットルとすることが好ましく、0.058~0.088リットルとすることがより好ましい。サブステップ(iii)における溶離液の総供給量は、すなわち、サブステップ(iii)において弱吸着性画分抜出口Aから抜き出される弱吸着性画分の総量と事実上同じ量となる。 In the sub-step (iii), the amount of the eluent supplied from the eluent supply port D is not particularly limited, but is 0. 1 per liter of the adsorbent Ab packed in the unit packed column 10a per hour. The amount is preferably from 051 to 0.095 liter, more preferably from 0.058 to 0.088 liter. The total supply amount of the eluent in the sub-step (iii) is substantially the same as the total amount of the weakly adsorptive fraction extracted from the weakly adsorptive fraction outlet A in the substep (iii).
<サブステップ(iv)>
 サブステップ(iv)では、原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環ポンプP1を作動させて循環系内の流体を単に循環させる。原液供給ポンプP2と溶離液供給ポンプP3が停止していれば、原液供給弁F1~F4及び溶離液供給弁D1~D4は開いていてもよいが、より高精度に流体を制御する観点から、原液供給弁F1~F4及び溶離液供給弁D1~D4は閉じていることが好ましい。抜出弁A1~A4及び抜出弁C1~C4はいずれも閉じており、遮断弁R1~R4はいずれも開いている。
<Sub-step (iv)>
In sub-step (iv), the supply of the stock solution and the eluent is not performed, and the fluid in the circulation system is operated by operating the circulation pump P1 without extracting the strong and weakly adsorbable fractions. Simply circulate. If the stock solution supply pump P2 and the eluent supply pump P3 are stopped, the stock solution supply valves F1 to F4 and the eluent supply valves D1 to D4 may be opened, but from the viewpoint of controlling the fluid with higher accuracy, The stock solution supply valves F1 to F4 and the eluent supply valves D1 to D4 are preferably closed. The extraction valves A1 to A4 and the extraction valves C1 to C4 are all closed, and the shutoff valves R1 to R4 are all open.
 サブステップ(iv)において、系内の流体の循環流量は、1時間当たり、単位充填塔10aに充填された吸着剤Abの1リットル当たり、0.133~0.247リットルとすることが好ましく、0.152~0.228リットルとすることがより好ましい。 In substep (iv), the circulating flow rate of the fluid in the system is preferably 0.133 to 0.247 liters per liter of the adsorbent Ab packed in the unit packed column 10a per hour, More preferably, it is 0.152 to 0.228 liter.
 各サブステップにおける液の供給量ないし循環流量の関係は、特に制限されず、原液中の成分の種類等に応じて適宜に調節されるものである。通常は、上記サブステップ(i)において、原液供給口Fから供給される原液の総量(I)と、上記サブステップ(ii)において、上記原液供給口Fから供給される原液の総量(II)との関係は、体積比で、総量(II)/総量(I)=0.30~0.70とすることが好ましく、0.40~0.60とすることがより好ましい。 The relationship between the supply amount of the liquid and the circulation flow rate in each sub-step is not particularly limited, and is appropriately adjusted according to the type of components in the stock solution. Usually, the total amount (I) of the stock solution supplied from the stock solution supply port F in the substep (i) and the total amount (II) of the stock solution supplied from the stock solution supply port F in the substep (ii). The total amount (II) / total amount (I) is preferably 0.30 to 0.70, and more preferably 0.40 to 0.60 in terms of volume ratio.
 また、上記サブステップ(i)において、上記原液供給口Fから供給される原液の総量(I)と、上記サブステップ(iii)において、上記溶離液供給口Dから供給される溶離液の総量(III)との関係は、体積比で、総量(III)/総量(I)=1.14~2.11とすることが好ましく、1.30~1.95とすることがより好ましい。 Further, the total amount (I) of the stock solution supplied from the stock solution supply port F in the substep (i), and the total amount of the eluent supplied from the eluent supply port D (the substep (iii)) ( The relationship with III) is, by volume ratio, preferably the total amount (III) / total amount (I) = 1.14 to 2.11, and more preferably 1.30 to 1.95.
 また、上記サブステップ(i)において、上記原液供給口Fから供給される原液の総量(I)と、上記サブステップ(ii)において、上記原液供給口Fから供給される原液の総量(II)との合計量(I+II)と、上記サブステップ(iii)において、上記溶離液供給口Dから供給される溶離液の総量(III)との関係は、体積比で、総量(III)/合計量(I+II)=0.5~1.5とすることが好ましく、0.7~1.2とすることがより好ましい。 Further, the total amount (I) of the stock solution supplied from the stock solution supply port F in the substep (i), and the total amount (II) of the stock solution supplied from the stock solution supply port F in the substep (ii). And the total amount (III) of the eluent supplied from the eluent supply port D in the sub-step (iii) in the volume ratio, the total amount (III) / total amount (I + II) = 0.5 to 1.5 is preferable, and 0.7 to 1.2 is more preferable.
 また、上記サブステップ(i)において、上記原液供給口Fから供給される原液の総量(I)と、上記サブステップ(iv)における上記循環総流量との関係は、体積比で、循環総流量/総量(I)=3.0~5.0とすることが好ましく、3.5~4.5とすることがより好ましい。 Further, in the substep (i), the relationship between the total amount (I) of the stock solution supplied from the stock solution supply port F and the total circulation flow rate in the substep (iv) is the volume ratio, and the total circulation flow rate / Total amount (I) = 3.0 to 5.0 is preferable, and 3.5 to 4.5 is more preferable.
 本発明に用いる循環系において、単位充填塔1つに充填される吸着剤の充填量に特に制限はなく、目的に応じて適宜に選択すればよいが、通常は10mL~150mであり、好ましくは150mL~30mであり、より好ましくは300mL~15mである。
 また、循環系内のすべての単位充填塔に充填された吸着剤Abの総容量と、配管1の全容積(配管1の空洞内の全容積)との関係は、体積比で、[配管1の全容積]/[吸着剤Abの総容量]=0.01~0.2が好ましい。
In the circulation system used in the present invention, the amount of adsorbent packed in one unit packed column is not particularly limited and may be appropriately selected according to the purpose, but is usually 10 mL to 150 m 3 , preferably Is 150 mL to 30 m 3 , more preferably 300 mL to 15 m 3 .
In addition, the relationship between the total capacity of the adsorbent Ab filled in all the unit packed towers in the circulation system and the total volume of the pipe 1 (the total volume in the cavity of the pipe 1) is a volume ratio [pipe 1 The total volume] / [total volume of the adsorbent Ab] = 0.01 to 0.2 is preferable.
 上記ステップ(a)における(すなわち上記サブステップ(i)~(iv)における)原液の総供給量に対する溶離液の総供給量の比(上記の総量(III)/合計量(I+II)に相当)は、[溶離液の総供給量]/[原液の総供給量]<1.2を満たすことがより好ましく、[溶離液の総供給量]/[原液の総供給量]≦1.1を満たすことがさらに好ましい。また、当該比の下限値に特に制限はなく、[溶離液の総供給量]/[原液の総供給量]≧0.5とするのがより実際的である。当該比は、さらに好ましくは0.5≦[溶離液の総供給量]/[原液の総供給量]≦1.1であり、0.8≦[溶離液の総供給量]/[原液の総供給量]≦1.1とすることも好ましい。 Ratio of the total supply amount of the eluent to the total supply amount of the stock solution in the above step (a) (ie in the above substeps (i) to (iv)) (corresponding to the above total amount (III) / total amount (I + II)) Is more preferable to satisfy [total supply amount of eluent] / [total supply amount of stock solution] <1.2, and [total supply amount of eluent] / [total supply amount of stock solution] ≦ 1.1. It is more preferable to satisfy. The lower limit of the ratio is not particularly limited, and it is more practical to set [total amount of eluent supplied] / [total amount of stock solution] ≧ 0.5. The ratio is more preferably 0.5 ≦ [total supply amount of eluent] / [total supply amount of stock solution] ≦ 1.1, and 0.8 ≦ [total supply amount of eluent] / [total amount of stock solution]. It is also preferable that the total supply amount] ≦ 1.1.
 本発明の方法を実施する温度は、循環系内の流体が液状であれば特に制限はなく、目的に応じて適宜に選択される。通常は40~80℃で実施される。
 また、本発明の方法において、供給される液の流速ないし循環系内に循環する液の流速は、各サブステップ中において一定であってもよく、変動させてもよいが、通常は一定とする。また、各サブステップ間において、供給される液の流速ないし循環系内に循環する液の流速は一定であってもよく、変動させてもよいが、通常は一定とする。すなわち、サブステップ(i)~(iii)において、供給される液の流速は一定であることが好ましく、サブステップ(iv)において循環系内を循環する液の流速も、サブステップ(i)~(iii)において供給される液の流速と同一とすることが好ましい。
The temperature for carrying out the method of the present invention is not particularly limited as long as the fluid in the circulation system is liquid, and is appropriately selected according to the purpose. Usually, it is carried out at 40 to 80 ° C.
In the method of the present invention, the flow rate of the supplied liquid or the flow rate of the liquid circulating in the circulation system may be constant during each sub-step or may be varied, but is usually constant. . Further, between each sub-step, the flow rate of the supplied liquid or the flow rate of the liquid circulating in the circulation system may be constant or may be varied, but is usually constant. That is, in substeps (i) to (iii), the flow rate of the supplied liquid is preferably constant. In substep (iv), the flow rate of the liquid circulating in the circulation system is also the same as that in substeps (i) to (i). The flow rate of the liquid supplied in (iii) is preferably the same.
[ステップ(b)]
 上記ステップ(a)が完了後(サブステップ(iv)の完了後)、ステップ(b)を実施する。上記ステップ(b)は、上記原液供給口F、上記弱吸着性画分抜出口A、上記溶離液供給口D及び上記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップである。
 本明細書において「原液供給口F、弱吸着性画分抜出口A、溶離液供給口D及び強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させる」とは、直前のステップ(a)において流体の流通方向に向けて順に並んでいた原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、強吸着性画分抜出口Cの並びを、それぞれ強吸着性画分抜出口C、原液供給口F、弱吸着性画分抜出口A、溶離液供給口Dの並びに切り替えることを意味する。
 換言すれば、すべての単位充填塔の位置を固定したままの状態で、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D及び強吸着性画分抜出口Cの位置を切り替えることにより、
1)直前のステップ(a)における原液供給口Fと弱吸着性画分抜出口Aとの間の単位充填塔を、強吸着性画分抜出口Cと原液供給口Fとの間に、
2)直前のステップ(a)における弱吸着性画分抜出口Aと溶離液供給口Dとの間の単位充填塔を、原液供給口Fと弱吸着性画分抜出口Aとの間に、
3)直前のステップ(a)における溶離液供給口Dと強吸着性画分抜出口Cとの間の単位充填塔を、弱吸着性画分抜出口Aと溶離液供給口Dとの間に、
4)直前のステップ(a)における強吸着性画分抜出口Cと原液供給口Fとの間の単位充填塔を、溶離液供給口Dと強吸着性画分抜出口Cとの間に
それぞれ配置された状態になるようにすることを意味する。
 図1の循環系の形態においては、このステップ(b)は、循環系の構造に物理的な変化を与えるステップではなく、このステップ(b)に続くステップ(a)を実施するための準備工程である。
[Step (b)]
After the step (a) is completed (after the completion of the sub-step (iv)), the step (b) is performed. In the step (b), the stock solution supply port F, the weakly adsorptive fraction extraction outlet A, the eluent supply port D and the strong adsorptive fraction extraction port C are maintained in their relative positional relationship. This is a step of moving the fluid in the direction of fluid flow.
In this specification, “the flow direction of the fluid while maintaining the relative positional relationship between the stock solution supply port F, the weakly adsorbable fraction outlet A, the eluent supply port D, and the strong adsorptive fraction outlet C”. "Migrate toward the end" means that the stock solution supply port F, the weakly adsorbable fraction extraction port A, the eluent supply port D, and the strong adsorptivity that were arranged in order in the fluid flow direction in the immediately preceding step (a). This means that the order of the fraction extraction outlets C is switched between the strong adsorptive fraction extraction outlet C, the stock solution supply port F, the weak adsorptive fraction extraction port A, and the eluent supply port D, respectively.
In other words, with the positions of all the unit packed columns fixed, the positions of the stock solution supply port F, the weakly adsorbable fraction extraction outlet A, the eluent supply port D, and the strong adsorptive fraction extraction outlet C are set. By switching
1) A unit packed tower between the stock solution supply port F and the weakly adsorbable fraction extraction outlet A in the immediately preceding step (a) is placed between the strong adsorptive fraction extraction port C and the stock solution supply port F.
2) A unit packed tower between the weakly adsorbing fraction extraction outlet A and the eluent supply port D in the immediately preceding step (a) is placed between the stock solution supply port F and the weakly adsorbing fraction extraction outlet A.
3) The unit packed tower between the eluent supply port D and the strong adsorptive fraction extraction outlet C in the immediately preceding step (a) is placed between the weak adsorbent fraction extraction outlet A and the eluent supply port D. ,
4) The unit packed tower between the strong adsorptive fraction extraction outlet C and the stock solution supply port F in the immediately preceding step (a) is arranged between the eluent supply port D and the strong adsorptive fraction extraction port C, respectively. It means to be placed.
In the form of the circulatory system in FIG. 1, this step (b) is not a step for giving a physical change to the structure of the circulatory system, but a preparatory process for carrying out step (a) following this step (b). It is.
 上記ステップ(b)について、図1を参照して具体的に説明する。
 ステップ(b)の直前のステップ(a)において、供給弁F1を開いて原液を供給していた場合を想定する。この場合、当該ステップ(a)において
原液供給口Fは、原液供給分岐ライン11aと配管1との連結部位、
弱吸着性画分抜出口Aは、弱吸着性画分抜出ライン2aと配管1との連結部位、
溶離液供給口Dは、溶離液供給分岐ライン12cと配管1との連結部位、
強吸着性画分抜出口Cは、強吸着性画分抜出ライン4cと配管1との連結部位
となる。
 ステップ(a)における上記各口F、A,D、Cは、ステップ(b)によって以下のように切り替わる。すなわち、
原液供給口Fが、原液供給分岐ライン11bと配管1との連結部位となり、
弱吸着性画分抜出口Aが、弱吸着性画分抜出ライン2bと配管1との連結部位となり、
溶離液供給口Dが、溶離液供給分岐ライン12dと配管1との連結部位となり、
強吸着性画分抜出口Cが、強吸着性画分抜出ライン4dと配管1との連結部位となる。
 つまり、当該ステップ(b)の直後に続くステップ(a)においては、サブステップ(i)及び(ii)における原液の供給が原液供給分岐ライン11bを通して行われ、サブステップ(iii)における溶離液の供給が溶離液供給分岐ライン12dを通して行われ、サブステップ(i)における強吸着性画分の抜き出しが強吸着性画分抜出ライン4dを通して行われ、サブステップ(ii)及び(iii)における弱吸着性画分の抜き出しが弱吸着性画分抜出ライン2bを通して行われることになる。
The step (b) will be specifically described with reference to FIG.
Assume that in step (a) immediately before step (b), the supply valve F1 is opened to supply the stock solution. In this case, in step (a), the stock solution supply port F is connected to the stock solution supply branch line 11a and the pipe 1,
The weakly adsorptive fraction extraction outlet A is a connection site between the weakly adsorptive fraction extraction line 2a and the pipe 1,
The eluent supply port D is connected to the eluent supply branch line 12c and the pipe 1;
The strong adsorptive fraction extraction outlet C is a connecting portion between the strong adsorptive fraction extraction line 4 c and the pipe 1.
The ports F, A, D, and C in step (a) are switched as follows by step (b). That is,
The stock solution supply port F becomes a connection part between the stock solution supply branch line 11b and the pipe 1,
The weakly adsorptive fraction extraction outlet A is a connection site between the weakly adsorptive fraction extraction line 2b and the pipe 1,
The eluent supply port D becomes a connecting portion between the eluent supply branch line 12d and the pipe 1,
The strong adsorptive fraction extraction outlet C serves as a connection site between the strong adsorptive fraction extraction line 4 d and the pipe 1.
That is, in step (a) immediately after step (b), the supply of the stock solution in substeps (i) and (ii) is performed through the stock solution supply branch line 11b, and the eluent in substep (iii) is supplied. Supply is performed through the eluent supply branch line 12d, extraction of the strong adsorptive fraction in sub-step (i) is performed through the strongly adsorbent fraction extraction line 4d, and weak in sub-steps (ii) and (iii). Extraction of the adsorptive fraction is performed through the weakly adsorptive fraction extraction line 2b.
 上記ステップ(a)と(b)を順に繰り返すことにより、擬似移動方式による本発明の方法が実施される。 The above-described steps (a) and (b) are repeated in order to implement the method of the present invention by the pseudo movement method.
 上記ステップ(a)及び(b)を順に繰り返すことにより、通常の擬似移動層方式によるクロマト分離に比べて、溶離液の使用量を大きく低減することができ、強吸着性画分中及び弱吸着性画分中における溶離液の割合を効果的に低減することができる(すなわち、強吸着性画分中及び弱吸着性画分中における溶離液以外の成分濃度を高めることができる)。しかも、本発明の方法は精製対象成分とその他の成分との分離性能も高めることができる。したがって、精製対象成分が強吸着性成分である場合には、強吸着性画分中に強吸着性成分を高純度に、且つ高い回収率で得ることができ、また、精製対象成分が弱吸着性成分である場合には、弱吸着性画分中に弱吸着性成分を高純度に、且つ高い回収率で得ることができる。つまり、本発明の方法により、強吸着性画分及び弱吸着性画分から選ばれる画分中に、目的の精製対象成分を、高濃度に、高純度に、且つ高い回収率で得ることができる。
 本発明の方法において、精製対象成分は強吸着性成分であることが好ましい。
By repeating the above steps (a) and (b) in sequence, the amount of the eluent used can be greatly reduced compared to the chromatographic separation by the normal simulated moving bed method, and in the strong adsorptive fraction and weakly adsorbed. It is possible to effectively reduce the ratio of the eluent in the soluble fraction (that is, the concentration of components other than the eluent in the strongly adsorbable fraction and the weakly adsorbable fraction can be increased). In addition, the method of the present invention can also improve the separation performance between the component to be purified and other components. Therefore, when the component to be purified is a strong adsorptive component, the strong adsorbent component can be obtained with high purity and a high recovery rate in the strong adsorptive fraction, and the component to be purified is weakly adsorbed. In the case of an absorptive component, a weakly adsorbable component can be obtained with high purity and a high recovery rate in the weakly adsorbable fraction. That is, according to the method of the present invention, the target component to be purified can be obtained in a high concentration, a high purity, and a high recovery rate in a fraction selected from a strong adsorptive fraction and a weakly adsorptive fraction. .
In the method of the present invention, the component to be purified is preferably a strongly adsorptive component.
 ここで、擬似移動層方式によるクロマト分離において、良好な分離精製を実現するために満たすべきとされる、液の供給、抜出の一般的な条件について、図2に示す擬似移動層方式の概念図を参照して説明する。図2は、溶離液供給口Dと強吸着性成分抜出口Cとの間をセクション1、強吸着性成分抜出口Cと原液供給口Fとの間をセクション2、原液供給口Fと弱吸着性成分抜出口Aとの間をセクション3、弱吸着性成分抜出口Aと溶離液供給口Dとの間をセクション4として表している。また、V1~V4はそれぞれ、1サイクル(各口D,C,F、Aを一回移動させるまでの間)当たりの、セクション1~4の流量を意味する。図2中の矢印は流体の流れる方向を示す Here, in the chromatographic separation by the simulated moving bed system, the general conditions of the supply and extraction of the liquid that should be satisfied in order to realize good separation and purification are shown in FIG. This will be described with reference to the drawings. FIG. 2 shows the section 1 between the eluent supply port D and the strong adsorbent component outlet C, the section 2 between the strong adsorbent component outlet C and the stock solution supply port F, and the stock solution supply port F and the weak adsorption. Section 3 is shown as a section 3 between the active component outlet A and section 4 as a section between the weakly adsorbable component outlet A and the eluent supply port D. V1 to V4 mean the flow rates of sections 1 to 4 per cycle (until each port D, C, F, A is moved once). The arrows in FIG. 2 indicate the direction of fluid flow.
 セクション2及び3に着目すると、擬似移動層方式を実現するには、流量V2で、弱吸着性成分がセクション2の長さを超えて移動し、強吸着性成分の移動は、セクション2の距離未満に抑える必要があり、また、流量V3で、弱吸着性成分がセクション3の長さを超えて移動し、強吸着性成分の移動は、セクション3の距離未満に抑える必要がある。こうすることで、各口D、C,F、Aの位置を基準として、これらを下流側へと移動させた際に、弱吸着性成分はさらに下流側へ、強吸着性成分については上流側へと、相対的に(擬似的に)移動させることができる。すなわち、弱吸着性成分を抜出口Aから、強吸着性成分を抜出口Cから、それぞれ抜き出すことができる。
 一方、セクション1に着目すると、流量V1で、強吸着性成分の移動距離がセクション1の長さ未満であると、強吸着性成分(抜出口Cから抜き出されずに上流側へと通過してしまった強吸着性成分)を抜出口Cから抜き出すことができない。したがって、セクション1においては、流量V1で、強吸着性成分の移動距離がセクション1の長さを超えて移動する必要があるとされる。
 また、セクション4に着目すると、流量V4で、弱吸着性成分の移動距離がセクション4の長さを超えると、弱吸着性成分(抜出口Aから抜き出されずに通過してしまった弱吸着性成分)を抜出口Aから抜き出すことができない。したがって、セクション4においては、流量V4で、弱吸着性成分の移動距離がセクション4の長さ未満とする必要があるとされる。
Focusing on Sections 2 and 3, in order to realize the pseudo moving bed system, the weakly adsorbing component moves beyond the length of Section 2 at the flow rate V2, and the movement of the strongly adsorbing component is the distance of Section 2. The weakly adsorbing component moves beyond the length of the section 3 at the flow rate V3, and the movement of the strong adsorbing component needs to be suppressed to less than the distance of the section 3. In this way, when these are moved downstream with respect to the positions of the respective ports D, C, F, A, the weakly adsorbing components are further moved downstream, and the strong adsorbing components are upstream. Can be moved relatively (pseudo). That is, the weakly adsorbable component can be extracted from the outlet A, and the strong adsorptive component can be extracted from the outlet C.
On the other hand, paying attention to section 1, if the moving distance of the strong adsorptive component is less than the length of section 1 at the flow rate V1, the strong adsorptive component (passes upstream without being extracted from the outlet C). The strongly adsorbing component that has been removed cannot be extracted from the outlet C. Therefore, in section 1, it is said that the moving distance of the strongly adsorbing component needs to move beyond the length of section 1 at flow rate V1.
Further, when attention is paid to section 4, when the moving distance of the weakly adsorbing component exceeds the length of section 4 at the flow rate V4, the weakly adsorbing component (weakly adsorbing that has passed without being extracted from the outlet A). Sex component) cannot be extracted from the outlet A. Therefore, in section 4, it is said that the moving distance of the weakly adsorbing component needs to be less than the length of section 4 at flow rate V4.
 上記セクション3とセクション1との関係に着目すると、流量V3と流量V1を、V3<V1とすることが必要であることが理解できる(セクション1の方が、強吸着性成分をより遠くまで移動させる必要がある)。
 ここで、V3=V2+[原液の供給量]であり、V1=V2+[強吸着性画分の抜出量]であるから、
 V3<V1は、V2+[原液の供給量]<V2+[強吸着性画分の抜出量]であり、すなわち[原液の供給量]<[強吸着性画分の抜出量]となる。
 したがって、擬似移動層方式のクロマト分離においては、原液の供給量を、強吸着性画分の抜出量よりも少なくするのが通常である。
Focusing on the relationship between section 3 and section 1 above, it can be understood that the flow rate V3 and the flow rate V1 need to satisfy V3 <V1 (in the case of section 1, the strongly adsorbent component is moved farther). Need to be).
Here, since V3 = V2 + [feed amount of stock solution] and V1 = V2 + [extraction amount of strong adsorptive fraction],
V3 <V1 is V2 + [feed amount of stock solution] <V2 + [extraction amount of strong adsorptive fraction], that is, [feed amount of stock solution] <[extraction amount of strong adsorptive fraction].
Therefore, in the simulated moving bed type chromatographic separation, the supply amount of the stock solution is usually smaller than the extraction amount of the strong adsorptive fraction.
 これに対し、本発明の方法では、原液の供給量を強吸着性画分の抜出量よりも多くすることが好ましい。ステップ(a)において、原液の供給量を強吸着性画分の抜出量よりも多くなるように、上記各サブステップを実施することにより、精製対象画分中に、精製対象成分を、より高濃度に、より高純度に、且つより高い回収率で得ることができる。
 本発明の方法において、ステップ(a)における強吸着性画分の抜出量(総抜出量)に対する、ステップ(a)における原液の供給量(総供給量)の比は、体積比で、[原液の供給量]/[強吸着性画分の抜出量]=1.0~2.0が好ましく、[原液の供給量]/[強吸着性画分の抜出量]=1.2~1.8がより好ましい。
On the other hand, in the method of the present invention, it is preferable to make the supply amount of the stock solution larger than the extraction amount of the strongly adsorbing fraction. In step (a), by carrying out each of the sub-steps so that the supply amount of the stock solution is larger than the extraction amount of the strong adsorptive fraction, the component to be purified can be further contained in the fraction to be purified. High concentrations, higher purity, and higher recovery can be obtained.
In the method of the present invention, the ratio of the supply amount (total supply amount) of the stock solution in step (a) to the extraction amount (total extraction amount) of the strong adsorptive fraction in step (a) is a volume ratio, [Stock solution supply amount] / [Strongly adsorptive fraction withdrawal amount] = 1.0 to 2.0 is preferred, [Stock solution feed amount] / [Strongly adsorptive fraction withdrawal amount] = 1. 2 to 1.8 is more preferable.
 本発明の方法には、上記で具体的に説明した形態の他、種々の変形例も包含される。例えば、原液供給口Fと弱吸着性画分抜出口Aとの間、弱吸着性画分抜出口Aと溶離液供給口Dとの間、溶離液供給口Dと強吸着性画分抜出口Cとの間、強吸着性画分抜出口Cと原液供給口Fとの間には、単位充填塔が1本ずつ配設された態様であってもよいし、2本以上配設されていてもよい。すなわち、上記循環系は単位充填塔を少なくとも4塔有することが好ましく、単位充填塔を4塔有することがより好ましい。
 また、本発明の効果を実質的に損なわない範囲で、上記ステップ(a)中に、上記サブステップ(i)~(iv)以外のサブステップを短時間挿入してもよい。かかる形態も本発明の方法に包含される。例えば、長期使用等により吸着剤が劣化してきた場合には、サブステップ(ii)において、原液供給口Fから原液を供給すると共に前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出す工程(FA工程)に加えて、溶離液供給口Dから溶離液を供給すると共に強吸着性画分抜出口Cから強吸着性画分を抜き出す工程(DC工程)を組み込むことにより、分離が改善しうる。ステップ(ii)にDC工程を組み込む場合、ステップ(ii)におけるFA工程と同時にDC工程を実施することが好ましい。但し、溶離液を効果的に削減する観点からは、サブステップ(ii)においてFA工程のみを実施することが好ましい。
The method of the present invention includes various modifications in addition to the embodiments specifically described above. For example, between the stock solution supply port F and the weakly adsorbable fraction outlet A, between the weakly adsorptive fraction outlet A and the eluent supply port D, eluent supply port D and the strong adsorptive fraction outlet One unit packed tower may be provided between C and the strongly adsorbing fraction outlet C and the stock solution supply port F, or two or more units may be provided. May be. That is, the circulation system preferably has at least 4 unit packed towers, and more preferably has 4 unit packed towers.
In addition, substeps other than the substeps (i) to (iv) may be inserted in the step (a) for a short time as long as the effects of the present invention are not substantially impaired. Such forms are also encompassed by the method of the present invention. For example, when the adsorbent has deteriorated due to long-term use or the like, in substep (ii), the stock solution is supplied from the stock solution supply port F and the weakly adsorbable fraction is extracted from the weakly adsorbable fraction outlet A. In addition to the process (FA process), separation is improved by incorporating a process (DC process) for supplying the eluent from the eluent supply port D and extracting the strongly adsorbable fraction from the strong adsorbent fraction outlet C (DC process). Yes. When a DC process is incorporated in step (ii), it is preferable to perform the DC process simultaneously with the FA process in step (ii). However, from the viewpoint of effectively reducing the eluent, it is preferable to perform only the FA step in substep (ii).
 本発明の方法において、単位充填塔に充填される吸着剤は、精製対象成分に応じて適宜に選択されるものであり、種々の吸着剤を採用することができる。例えば、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、合成吸着剤、ゼオライト、及びシリカゲル(好ましくはオクタデシルシリル修飾シリカゲル)を吸着剤として用いることができる。
 なかでも、本発明の方法は、吸着剤として強酸性陽イオン交換樹脂を用いて、複数の単糖を含む原液から、特定の単糖を分離精製するために好適な方法である。特に、ぶどう糖と果糖を含有する原液から、果糖を分離精製する方法として好適な方法である。上記強酸性陽イオン交換樹脂はカルシウム形、銀形、鉛形、ストロンチウム形であることが好ましく、また、経済性や安全性を考慮するとカルシウム形であることがより好ましい。このカルシウム形強酸性陽イオン交換樹脂としては、例えば、アンバーライト(登録商標)CR-1310Ca、CR-1320Ca(いずれもオルガノ社製)、DOWEX(登録商標)Monosphere 99Ca/310、Monosphere 99Ca/320(いずれもダウ・ケミカル社製)、ダイヤイオン(登録商標)UBK535、UBK555(いずれも三菱化学社製)、PCR642Ca(ピュロライト社製)、CS11GC、CS16GC(いずれもFinex社製)を挙げることができる。
In the method of the present invention, the adsorbent packed in the unit packed column is appropriately selected according to the component to be purified, and various adsorbents can be employed. For example, adsorb strong acid cation exchange resin, weak acid cation exchange resin, strong base anion exchange resin, weak base anion exchange resin, synthetic adsorbent, zeolite, and silica gel (preferably octadecylsilyl modified silica gel) It can be used as an agent.
Among these, the method of the present invention is a suitable method for separating and purifying a specific monosaccharide from a stock solution containing a plurality of monosaccharides using a strongly acidic cation exchange resin as an adsorbent. In particular, it is a suitable method for separating and purifying fructose from a stock solution containing glucose and fructose. The strongly acidic cation exchange resin is preferably in the calcium form, silver form, lead form, or strontium form, and more preferably in the calcium form in consideration of economy and safety. Examples of the calcium-type strongly acidic cation exchange resin include Amberlite (registered trademark) CR-1310Ca, CR-1320Ca (both manufactured by Organo), DOWEX (registered trademark) Monosphere 99Ca / 310, Monosphere 99Ca / 320 ( Examples include all manufactured by Dow Chemical Co., Ltd., Diaion (registered trademark) UBK535, UBK555 (all manufactured by Mitsubishi Chemical), PCR642Ca (manufactured by Purolite), CS11GC, and CS16GC (all manufactured by Finex).
 本発明のクロマト分離システムは、本発明の方法を実施するためのシステムである。すなわち、本発明のクロマト分離システムは、上述した循環系の構成を有し、当該循環系が、上述したステップ(a)の作動とステップ(b)の作動を順に繰り返すシステムである。 The chromatographic separation system of the present invention is a system for carrying out the method of the present invention. That is, the chromatographic separation system of the present invention is a system having the above-described circulation system configuration, in which the circulation system sequentially repeats the operation of step (a) and the operation of step (b).
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。また、下記実施例において、成分組成を表す「%」は、特に断りの無い限り質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples. In the following examples, “%” representing the component composition is based on mass unless otherwise specified.
[原液の調製]
 ぶどう糖53.49質量部、果糖41.81質量部、及びオリゴ糖4.70質量部を脱イオン水に溶解し、全糖濃度60%の水溶液を調製し、原液とした。
[Preparation of stock solution]
53.49 parts by mass of glucose, 41.81 parts by mass of fructose and 4.70 parts by mass of oligosaccharide were dissolved in deionized water to prepare an aqueous solution having a total sugar concentration of 60%, which was used as a stock solution.
[溶離液の調製]
 イオン交換水を溶離液とした。
[Preparation of eluent]
Ion exchange water was used as an eluent.
[クロマト分離システム]
 図1に示す循環系を用いて、上記原液から果糖の分離精製を行った。単位充填塔10a~10dとして、内径:22mm、高さ1.5mの円筒型の充填塔を用いた。また、単位充填塔10a~10d内には、吸着剤として、カルシウム形の強酸性陽イオン交換樹脂(商品名:Monoshere99Ca/320、ダウ・ケミカル社製)0.57Lを充填した。各単位充填塔内は60℃に調節した。
[Chromatograph separation system]
By using the circulation system shown in FIG. 1, the fructose was separated and purified from the stock solution. As the unit packed towers 10a to 10d, cylindrical packed towers having an inner diameter of 22 mm and a height of 1.5 m were used. The unit packed towers 10a to 10d were filled with 0.57 L of calcium-type strongly acidic cation exchange resin (trade name: Monosphere 99Ca / 320, manufactured by Dow Chemical Company) as an adsorbent. The inside of each unit packed column was adjusted to 60 ° C.
[実施例]
 上記循環系を下記表1-1に示す運転工程にしたがって作動させ、擬似移動層方式のよるクロマト分離を実施した。各サブステップにかけた時間、並びに、各サブステップにおいて抜き出した弱吸着性画分(以下、「A画分」という。)の量及び強吸着性画分(以下、「C画分」という。)の量を下記表1-2に示す。
 表1-2に示される条件は、表1-1に示す運転工程を採用し、C画分において果糖の純度が90%以上となるような条件で、溶離液の供給量を極力少なくした条件である。
 下記表1-1に示されるように、ステップ(a)とそれに続くステップ(b)の組み合わせからなるサイクルが1サイクル~4サイクルまで4回繰り返されると、各供給弁及び抜出弁の位置は、1サイクル目のステップ(a)の位置に戻る。
 また、表1-1の弁開閉表のカラムに記載の数字は、図1に対応している。例えば、Fのカラムに1、2、3、4と記載されているのは、それぞれ、原液供給弁F1、F2、F3、F4が開弁していることを意味し、数字が記載されていないとき(空欄のとき)は、原液供給弁が閉じていることを意味する。このことは、溶離液供給弁D、弱吸着性画分抜出弁A、強吸着性画分抜出弁C及び遮断弁Rのカラムについても同様である。
 また、表1-1の循環ポンプのカラムの「○」は、循環ポンプを作動させていることを意味し、空欄のときは、循環ポンプが作動していないことを意味する。
[Example]
The above circulation system was operated according to the operation steps shown in Table 1-1 below, and chromatographic separation was performed using a simulated moving bed system. The time taken for each sub-step, the amount of weakly adsorbable fraction (hereinafter referred to as “A fraction”) extracted in each sub-step, and the strongly adsorbable fraction (hereinafter referred to as “C fraction”). The amount of is shown in Table 1-2 below.
The conditions shown in Table 1-2 are the conditions in which the operation process shown in Table 1-1 is adopted, and the supply amount of the eluent is minimized as long as the fructose purity is 90% or higher in the C fraction. It is.
As shown in Table 1-1 below, when a cycle consisting of a combination of step (a) and subsequent step (b) is repeated four times from 1 cycle to 4 cycles, the position of each supply valve and extraction valve is Return to the position of step (a) in the first cycle.
The numbers in the column of the valve opening / closing table in Table 1-1 correspond to FIG. For example, “1, 2, 3, 4” written in the column F means that the stock solution supply valves F1, F2, F3, F4 are opened, and numbers are not described. When (when blank), it means that the stock solution supply valve is closed. The same applies to the columns of the eluent supply valve D, the weakly adsorptive fraction extraction valve A, the strong adsorptive fraction extraction valve C, and the shutoff valve R.
Further, “◯” in the column of the circulation pump in Table 1-1 means that the circulation pump is operated, and when the column is blank, it means that the circulation pump is not operated.
 このクロマト分離においては、果糖を精製対象成分(強吸着性成分)とし、ぶどう糖とオリゴ糖とを合わせて弱吸着性成分としている。 In this chromatographic separation, fructose is used as a component to be purified (strongly adsorbing component), and glucose and oligosaccharide are combined to form a weakly adsorbing component.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記A画分及びC画分の糖組成を、東ソー製HPLC8020シリーズを用いて分析した。分析条件は下記の通りとした。結果を下記表1-3に示す。
<分析条件>
 デュアルポンプDP-8020
 示差屈折系RI-8020
 オートサンプラAS-8020
 カラム:東ソー製 SCX-Ca 7.8mmφ×300mm
 溶離液:脱イオン水
 流速:0.8ml/min
 カラム温度:70℃
 サンプル注入量:10μL
The sugar composition of the A and C fractions was analyzed using a Tosoh HPLC 8020 series. The analysis conditions were as follows. The results are shown in Table 1-3 below.
<Analysis conditions>
Dual pump DP-8020
Differential Refraction System RI-8020
Autosampler AS-8020
Column: Tosoh SCX-Ca 7.8 mmφ × 300 mm
Eluent: Deionized water Flow rate: 0.8 ml / min
Column temperature: 70 ° C
Sample injection volume: 10 μL
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1-3に示されるように、実施例のクロマト分離では、C画分中に、果糖を91.2%もの高純度に回収することができ、しかも、C画分中の糖濃度は40.8%と高濃度であった。つまり、実施例のクロマト分離により、C画分中に果糖を高純度且つ高濃度に回収できることがわかった。 As shown in Table 1-3 above, in the chromatographic separation of the examples, fructose can be recovered to a purity as high as 91.2% in the C fraction, and the sugar concentration in the C fraction is The concentration was as high as 40.8%. That is, it was found that the fructose can be recovered with high purity and high concentration in the C fraction by the chromatographic separation of the example.
 続いて、上記A画分中に回収されたオリゴ糖の回収率(原液中のオリゴ糖のうち、A画分中に回収されたオリゴ糖の割合、以下同様。)、上記A画分中に回収されたぶどう糖の回収率(原液中のぶどう糖のうち、A画分中に回収されたぶどう糖の割合、以下同様。)、及び上記C画分中に回収された果糖の回収率(原液中の果糖のうち、C画分中に回収された果糖の割合、以下同様。)を下記表1-4に示す。 Subsequently, the recovery rate of the oligosaccharide recovered in the A fraction (the ratio of the oligosaccharide recovered in the A fraction out of the oligosaccharides in the stock solution, the same shall apply hereinafter), Recovery rate of recovered glucose (ratio of glucose recovered in fraction A out of glucose in stock solution, the same shall apply hereinafter) and recovery rate of fructose recovered in fraction C (in the stock solution) The ratio of fructose recovered in the C fraction of fructose, the same applies hereinafter) is shown in Table 1-4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1-4に示される通り、実施例のクロマト分離では、原液中に含まれていた果糖の92.7%をC画分中に回収できた。 As shown in Table 1-4, 92.7% of the fructose contained in the stock solution could be recovered in the C fraction in the chromatographic separation of the example.
[比較例1]
 実施例において、循環系を下記表2-1及び表2-2に示す運転工程にしたがって作動させたこと以外は、実施例と同様にして、擬似移動層方式によるクロマト分離を実施した。この比較例は、特公昭60-55162号公報の実施例3記載の方法に相当する。
 表2-2に示される条件は、表2-1に示す運転工程を採用し、C画分において果糖の純度が90%以上となるような条件で、溶離液の供給を極力少なくした条件である。
[Comparative Example 1]
In the examples, chromatographic separation by the simulated moving bed system was performed in the same manner as in the examples except that the circulation system was operated according to the operation steps shown in Table 2-1 and Table 2-2 below. This comparative example corresponds to the method described in Example 3 of JP-B-60-55162.
The conditions shown in Table 2-2 are the conditions in which the operation process shown in Table 2-1 is adopted, the fructose purity is 90% or more in the C fraction, and the eluent supply is minimized. is there.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記A画分及びC画分の糖組成を、上記実施例1における分析と同様にして分析した。結果を下記表2-3に示す。 The sugar composition of the A fraction and the C fraction was analyzed in the same manner as the analysis in Example 1 above. The results are shown in Table 2-3 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表2-3に示されるように、比較例1のクロマト分離では、C画分中に果糖を純度90.2%で回収した場合、C画分中の糖濃度は38.1%となった。すなわち、実施例に比べて、C画分中の果糖が低純度であり、且つ、C画分中の果糖濃度も大きく低下することがわかった。 As shown in Table 2-3 above, in the chromatographic separation of Comparative Example 1, when fructose was recovered in the C fraction with a purity of 90.2%, the sugar concentration in the C fraction was 38.1%. It was. That is, it was found that the fructose in the C fraction had a low purity and the fructose concentration in the C fraction was greatly reduced as compared with the Examples.
 次に、上記A画分中に回収されたオリゴ糖の回収率、上記A画分中に回収されたぶどう糖の回収率、及び上記C画分中に回収された果糖の回収率を下記表2-4に示す。 Next, the recovery rate of the oligosaccharide recovered in the A fraction, the recovery rate of the glucose recovered in the A fraction, and the recovery rate of the fructose recovered in the C fraction are shown in Table 2 below. -4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2-4に示される通り、比較例1のクロマト分離では、原液中に含まれていた果糖の92.3%をC画分中に回収できた。この回収率は、実施例をわずかながら下回る。
 また、比較例1では、実施例に比べて溶離液をより多く使用しないと、果糖の純度を90%以上とすることができなかった(表1-2と表2-2の「Dv/Fv」のカラム参照)。
As shown in Table 2-4, in the chromatographic separation of Comparative Example 1, 92.3% of the fructose contained in the stock solution could be recovered in the C fraction. This recovery rate is slightly lower than in the examples.
Further, in Comparative Example 1, the fructose purity could not be increased to 90% or more unless more eluent was used than in the Examples (see “Dv / Fv” in Tables 1-2 and 2-2). ”Column).
[比較例2]
 比較例1において、各サブステップにかけた時間、並びに、各サブステップにおいて抜き出したA画分の量及びC画分の量を下記表3-1に示す通りに変更したこと以外は、比較例1と同様にして、擬似移動層方式によるクロマト分離を実施した。
 表3-1に示される条件は、サブステップ(ic)~(iiic)における原液総供給量を実施例のサブステップ(i)~(iii)における原液総供給量と同じ量とし、且つ、サブステップ(ic)~(iiic)における溶離液総供給量を実施例のサブステップ(i)~(iii)における溶離液総供給量と同じ量とした上で、C画分における果糖の純度が極力高まるように設定した条件である。
[Comparative Example 2]
In Comparative Example 1, the time taken for each sub-step and the amount of A fraction and C fraction extracted in each sub-step were changed as shown in Table 3-1 below. In the same manner as described above, chromatographic separation by a simulated moving bed method was performed.
The conditions shown in Table 3-1 are that the total supply amount of the stock solution in the sub-steps (ic) to (iiic) is the same as the total supply amount of the stock solution in the sub-steps (i) to (iii) of the embodiment. The total amount of eluent supplied in steps (ic) to (iiic) is the same as the total amount of eluent supplied in sub-steps (i) to (iii) of the examples, and the purity of fructose in the C fraction is as much as possible. The conditions are set to increase.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記A画分及びC画分の糖組成を上記実施例1における分析と同様にして分析した。結果を下記表3-2に示す。 The sugar composition of the A fraction and the C fraction was analyzed in the same manner as the analysis in Example 1 above. The results are shown in Table 3-2 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記表3-2に示されるように、比較例2のクロマト分離では、C画分中の果糖の純度を90%以上とすることができなかった。また、C画分中の糖濃度は39.5%となった。すなわち、実施例に比べて、C画分中の果糖の純度が大きく低減し、且つ、C画分中の果糖濃度も低下することがわかった。 As shown in Table 3-2 above, in the chromatographic separation of Comparative Example 2, the purity of fructose in the C fraction could not be increased to 90% or more. Further, the sugar concentration in the C fraction was 39.5%. That is, it was found that the fructose purity in the C fraction was greatly reduced and the fructose concentration in the C fraction was also reduced as compared with the Examples.
 次に、上記A画分中に回収されたオリゴ糖の回収率、上記A画分中に回収されたぶどう糖の回収率、及び上記C画分中に回収された果糖の回収率を下記表3-3に示す。 Next, the recovery rate of the oligosaccharide recovered in the A fraction, the recovery rate of the glucose recovered in the A fraction, and the recovery rate of the fructose recovered in the C fraction are shown in Table 3 below. -3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3-3に示される通り、比較例2のクロマト分離では、原液中に含まれていた果糖の85.7%しかC画分中に回収できなかった。 As shown in Table 3-3, in the chromatographic separation of Comparative Example 2, only 85.7% of the fructose contained in the stock solution could be recovered in the C fraction.
 本発明をその実施形態および実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While the invention has been described in conjunction with embodiments and examples thereof, it is not intended that the invention be limited in any detail to the description, unless otherwise specified, and that the spirit and nature of the invention as set forth in the appended claims be considered as such. I think it should be interpreted broadly without violating the scope.
 本願は、2015年8月14日に日本国で特許出願された特願2015-160105に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2015-160105 filed in Japan on August 14, 2015, the contents of which are incorporated herein by reference. Capture as part.
100 循環系
  10a、10b、10c、10d 単位充填塔
  Ab 吸着剤
  R1、R2、R3、R4 遮断弁
  2a、2b、2c、2d 弱吸着性画分抜出ライン
  A1、A2、A3、A4 弱吸着性画分抜出弁
  4a、4b、4c、4d 強吸着性画分抜出ライン
  C1、C2、C3、C4 強吸着性画分抜出弁
  T1、T2、T3、T4 逆止弁
  1 配管
  3 弱吸着性画分合流管
  5 強吸着性画分合流管
  6 原液タンク
  7 原液
  8 溶離液タンク
  9 溶離液
  11 原液供給ライン
  11a、11b、11c、11d 原液供給分岐ライン
  F1、F2、F3、F4 原液供給弁
  12 溶離液供給ライン
  12a、12b、12c、12d 溶離液供給分岐ライン
  D1、D2、D3、D4 溶離液供給弁
  P1 循環ポンプ
  P2 原液供給ポンプ
  P3 溶離液供給ポンプ
  U、V リリーフ弁
100 Circulating system 10a, 10b, 10c, 10d Unit packed tower Ab Adsorbent R1, R2, R3, R4 Shut-off valve 2a, 2b, 2c, 2d Weakly adsorbing fraction extraction line A1, A2, A3, A4 Weakly adsorbing Fraction extraction valve 4a, 4b, 4c, 4d Strong adsorption fraction extraction line C1, C2, C3, C4 Strong adsorption fraction extraction valve T1, T2, T3, T4 Check valve 1 Piping 3 Weak adsorption 5: Strongly adsorptive fraction merging pipe 6: Stock solution tank 7: Stock solution 8: Eluent tank 9: Eluent 11: Stock solution supply line 11a, 11b, 11c, 11d Stock solution supply branch line F1, F2, F3, F4 Stock solution supply valve 12 Eluent supply line 12a, 12b, 12c, 12d Eluent supply branch line D1, D2, D3, D4 Eluent supply valve P1 Circulation pump P2 Stock solution supply pump P3 Eluent supply Feed pump U, V relief valve

Claims (6)

  1.  吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離方法であって、
     前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
     下記ステップ(a)及び(b)を順に繰り返す、方法:
    (a)下記サブステップ(i)~(iv)をこの順に実施するステップ;
      (i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
      (ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
      (iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
      (iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
    (b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
    A chromatographic separation method for separating and purifying components in a stock solution by a simulated moving bed method using a circulation system in which a plurality of unit packed towers packed with an adsorbent are connected in series and endlessly through a pipe,
    The circulation system has a stock solution supply port F, a weakly adsorptive fraction extraction outlet A, an eluent supply port D, and a strong adsorptive fraction extraction outlet C in this order in the fluid flow direction. And between the stock solution supply port F and the weakly adsorbable fraction outlet A, between the weakly adsorbable fraction outlet A and the eluent supply port D, and the eluent supply port D. Between the strong adsorptive fraction extraction outlet C and between the strong adsorptive fraction extraction outlet C and the stock solution supply port F, at least one unit packed tower is disposed,
    The following steps (a) and (b) are repeated in order:
    (A) performing the following substeps (i) to (iv) in this order;
    (I) a sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction extraction outlet C;
    (Ii) a sub-step of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
    (Iii) a sub-step of supplying an eluent from the eluent supply port D and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
    (Iv) a sub-step of circulating the fluid in the circulation system without supplying the stock solution and the eluent and without extracting the strong and weakly adsorbable fractions;
    (B) After the step (a) is completed, the stock solution supply port F, the weakly adsorptive fraction extraction outlet A, the eluent supply port D, and the strong adsorptive fraction extraction port C are set to their relative positions. The step of moving toward the flow direction of the fluid while maintaining the positional relationship.
  2.  前記ステップ(a)において、前記抜出口Cから抜き出される前記強吸着性画分の総量が、前記供給口Fから供給される前記原液の総量よりも少ない、請求項1に記載のクロマト分離方法。 The chromatographic separation method according to claim 1, wherein a total amount of the strongly adsorptive fraction extracted from the outlet C in the step (a) is smaller than a total amount of the stock solution supplied from the supply port F. .
  3.  前記原液がぶどう糖及び果糖を含有し、前記強吸着性画分中に該果糖を分離精製する、請求項1又は2に記載のクロマト分離方法。 The chromatographic separation method according to claim 1 or 2, wherein the stock solution contains glucose and fructose, and the fructose is separated and purified in the strong adsorptive fraction.
  4.  前記循環系が前記単位充填塔を少なくとも4塔有する、請求項1~3のいずれか1項に記載のクロマト分離方法。 The chromatographic separation method according to any one of claims 1 to 3, wherein the circulation system has at least four unit packed columns.
  5.  前記ステップ(a)において、原液の総供給量に対する溶離液の総供給量の比が、体積比で、[溶離液の総供給量]/[原液の総供給量]<1.2を満たす、請求項1~4のいずれか1項に記載のクロマト分離方法。 In the step (a), the ratio of the total supply amount of the eluent to the total supply amount of the stock solution satisfies the ratio [total supply amount of eluent] / [total supply amount of stock solution] <1.2 in volume ratio. The chromatographic separation method according to any one of claims 1 to 4.
  6.  吸着剤が充填された複数の単位充填塔が配管を介して直列かつ無端状に連結された循環系を用いて、擬似移動層方式により原液中の成分を分離精製するクロマト分離システムであって、
     前記循環系は、前記配管に、原液供給口F、弱吸着性画分抜出口A、溶離液供給口D、及び強吸着性画分抜出口Cを、流体の流通方向に向けてこの順に有し、かつ、前記原液供給口Fと前記弱吸着性画分抜出口Aとの間、前記弱吸着性画分抜出口Aと前記溶離液供給口Dとの間、前記溶離液供給口Dと前記強吸着性画分抜出口Cとの間、及び前記強吸着性画分抜出口Cと前記原液供給口Fとの間には、少なくとも1つの前記単位充填塔が配設され、
     下記ステップ(a)及び(b)を順に繰り返す、システム:
    (a)下記サブステップ(i)~(iv)をこの順に実施するステップ;
      (i)前記原液供給口Fから原液を供給すると共に、前記強吸着性画分抜出口Cから強吸着性画分を抜き出すサブステップ、
      (ii)前記原液供給口Fから原液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
      (iii)前記溶離液供給口Dから溶離液を供給すると共に、前記弱吸着性画分抜出口Aから弱吸着性画分を抜き出すサブステップ、
      (iv)原液及び溶離液の供給を行わず、かつ、強吸着性画分及び弱吸着性画分の抜き出しを行わずに、循環系内の流体を循環させるサブステップ、
    (b)前記ステップ(a)終了後、前記原液供給口F、前記弱吸着性画分抜出口A、前記溶離液供給口D及び前記強吸着性画分抜出口Cを、これらの相対的な位置関係を保ったまま流体の流通方向に向けて移行させるステップ。
    A chromatographic separation system that separates and purifies components in a stock solution by a simulated moving bed system using a circulation system in which a plurality of unit packed towers packed with an adsorbent are connected in series and endlessly via a pipe,
    The circulation system has a stock solution supply port F, a weakly adsorptive fraction extraction outlet A, an eluent supply port D, and a strong adsorptive fraction extraction outlet C in this order in the fluid flow direction. And between the stock solution supply port F and the weakly adsorbable fraction outlet A, between the weakly adsorbable fraction outlet A and the eluent supply port D, and the eluent supply port D. Between the strong adsorptive fraction extraction outlet C and between the strong adsorptive fraction extraction outlet C and the stock solution supply port F, at least one unit packed tower is disposed,
    Repeat the following steps (a) and (b) in order, system:
    (A) performing the following substeps (i) to (iv) in this order;
    (I) a sub-step of supplying the stock solution from the stock solution supply port F and extracting the strong adsorptive fraction from the strong adsorptive fraction extraction outlet C;
    (Ii) a sub-step of supplying a stock solution from the stock solution supply port F and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
    (Iii) a sub-step of supplying an eluent from the eluent supply port D and extracting a weakly adsorbable fraction from the weakly adsorbable fraction outlet A;
    (Iv) a sub-step of circulating the fluid in the circulation system without supplying the stock solution and the eluent and without extracting the strong and weakly adsorbable fractions;
    (B) After the step (a) is completed, the stock solution supply port F, the weakly adsorptive fraction extraction outlet A, the eluent supply port D, and the strong adsorptive fraction extraction port C are set to their relative positions. The step of moving toward the flow direction of the fluid while maintaining the positional relationship.
PCT/JP2016/071758 2015-08-14 2016-07-25 Chromatographic separation method and chromatographic separation system WO2017029949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-160105 2015-08-14
JP2015160105A JP6546808B2 (en) 2015-08-14 2015-08-14 Chromatographic separation method and chromatographic separation system

Publications (1)

Publication Number Publication Date
WO2017029949A1 true WO2017029949A1 (en) 2017-02-23

Family

ID=58048542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071758 WO2017029949A1 (en) 2015-08-14 2016-07-25 Chromatographic separation method and chromatographic separation system

Country Status (2)

Country Link
JP (1) JP6546808B2 (en)
WO (1) WO2017029949A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3761023A4 (en) * 2018-03-01 2021-04-21 Mitsubishi Chemical Aqua Solutions Co., Ltd. Chromatographic separation method and chromatographic separation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3839497B1 (en) 2018-11-16 2023-03-29 Organo Corporation Chromatographic separation method using simulated moving-bed technique, and chromatographic separation system using simulated moving-bed technique
JP7225024B2 (en) * 2018-11-16 2023-02-20 オルガノ株式会社 Simulated moving bed chromatographic separation method and simulated moving bed chromatographic separation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190106A (en) * 1997-09-26 1999-04-06 Daicel Chem Ind Ltd Pseudo moving bed type chromatographic separating device
JP2007064944A (en) * 2005-09-02 2007-03-15 Japan Organo Co Ltd Chromatography
US20070199873A1 (en) * 2004-04-05 2007-08-30 Kyosuke Yamada Chromatographic Separation Equipment
JP2012098052A (en) * 2010-10-29 2012-05-24 Japan Organo Co Ltd Method and apparatus for chromatographic separation
US20140224742A1 (en) * 2011-07-28 2014-08-14 China Petroleum & Chemical Corporation Process and device for simulated moving bed adsorption and separation with a reduced number of control valves
JP2014224063A (en) * 2013-05-16 2014-12-04 オルガノ株式会社 Method for producing of high purity cerebroside

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190106A (en) * 1997-09-26 1999-04-06 Daicel Chem Ind Ltd Pseudo moving bed type chromatographic separating device
US20070199873A1 (en) * 2004-04-05 2007-08-30 Kyosuke Yamada Chromatographic Separation Equipment
JP2007064944A (en) * 2005-09-02 2007-03-15 Japan Organo Co Ltd Chromatography
JP2012098052A (en) * 2010-10-29 2012-05-24 Japan Organo Co Ltd Method and apparatus for chromatographic separation
US20140224742A1 (en) * 2011-07-28 2014-08-14 China Petroleum & Chemical Corporation Process and device for simulated moving bed adsorption and separation with a reduced number of control valves
JP2014224063A (en) * 2013-05-16 2014-12-04 オルガノ株式会社 Method for producing of high purity cerebroside

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3761023A4 (en) * 2018-03-01 2021-04-21 Mitsubishi Chemical Aqua Solutions Co., Ltd. Chromatographic separation method and chromatographic separation device
US11819779B2 (en) 2018-03-01 2023-11-21 Mitsubishi Chemical Aqua Solutions Co., Ltd. Chromatographic separation method and chromatographic separation device

Also Published As

Publication number Publication date
JP2017037048A (en) 2017-02-16
JP6546808B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP4627841B2 (en) Psicose separation method
WO2017029949A1 (en) Chromatographic separation method and chromatographic separation system
JP2007064944A (en) Chromatography
WO2005097286A1 (en) Chromatographic separation equipment
JP7225024B2 (en) Simulated moving bed chromatographic separation method and simulated moving bed chromatographic separation system
JP6013639B1 (en) Chromatographic separation method and apparatus for separating multiple components into three or more fractions
JP4945364B2 (en) Separation method of sugar alcohol
JP3453516B2 (en) Chromatographic separation method
US6331250B1 (en) Method and equipment for chromatographic separation
JPH11183459A (en) Method and apparatus for chromatographic separation
JP6732575B2 (en) Chromatographic separation method and chromatographic separation system
JP2740780B2 (en) Simulated moving bed equipment
JP6912320B2 (en) Chromatographic separation method and chromatographic separation system
WO2020100471A1 (en) Chromatographic separation method using simulated moving-bed technique, and chromatographic separation system using simulated moving-bed technique
JP4606092B2 (en) Pseudo moving bed type chromatographic separation method and apparatus
JP2012098052A (en) Method and apparatus for chromatographic separation
JP5060400B2 (en) Chromatographic separation device
WO2023181655A1 (en) Simulated moving-bed chromatographic separation method and simulated moving-bed chromatographic separation system
JP7367206B2 (en) Simulated moving bed chromatographic separation method and simulated moving bed chromatographic separation system
JP2001334103A (en) Chromatograph type separation device
CN213853215U (en) Multi-column continuous sample loading and purifying device
JPH04334503A (en) Dummy moving bed type chromatographic separator
JP2001070704A (en) Method and apparatus for separating a plurality of components contained in liquid
JP2962590B2 (en) Simulated moving bed chromatographic separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836940

Country of ref document: EP

Kind code of ref document: A1