WO2017028045A1 - 一种确定信道质量的方法及装置 - Google Patents

一种确定信道质量的方法及装置 Download PDF

Info

Publication number
WO2017028045A1
WO2017028045A1 PCT/CN2015/087070 CN2015087070W WO2017028045A1 WO 2017028045 A1 WO2017028045 A1 WO 2017028045A1 CN 2015087070 W CN2015087070 W CN 2015087070W WO 2017028045 A1 WO2017028045 A1 WO 2017028045A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency band
target cell
user equipment
target
Prior art date
Application number
PCT/CN2015/087070
Other languages
English (en)
French (fr)
Inventor
马瑞泽大卫•简-玛丽
郑娟
夏媛
***
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/087070 priority Critical patent/WO2017028045A1/zh
Priority to CN201580071819.XA priority patent/CN107113636B/zh
Publication of WO2017028045A1 publication Critical patent/WO2017028045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for determining channel quality.
  • the spectrum is the basis of wireless communication.
  • FCC Federal Communications Commission
  • LTE long Term evolution, long-term evolution
  • LAA-LTE Long-Assisted Access Long Term Evolution
  • LBT Listen Before Talk, abbreviation: LBT
  • CCA Clear Channel Assessment
  • English Clear Channel Assessment
  • the communication device can transmit a signal; if it is detected that the channel is occupied, the communication device is currently unable to transmit a signal.
  • data transmission of LTE equipment in unlicensed frequency bands is opportunistic, that is, discontinuous, as shown in Figure 1.
  • an LTE device (assumed to be an LTE base station) can use an unlicensed band for data transmission only when it is determined that the channel of the unlicensed band is idle. Therefore, in the time range in which the LTE base station performs data transmission on the unlicensed frequency band and the time range in which the LTE base station does not perform data transmission, the measurement result obtained by the user equipment served by the LTE device (assumed to be an LTE base station) for the unlicensed frequency band is different.
  • the measurement result of the unlicensed frequency band by the user equipment served by the LTE base station can assist the LTE base station to perform carrier selection and discovery of the hidden node. Therefore, how to ensure that the user equipment served by the LTE base station accurately measures the channel quality in the time range in which the LTE base station does not perform data transmission on the unlicensed frequency band is a major problem to be solved by the present invention.
  • An embodiment of the present invention provides a method for determining channel quality, which improves the accuracy of channel quality measured by user equipment served by an LTE base station within a time range in which an LTE base station does not perform data transmission on an unlicensed frequency band.
  • a first aspect of the embodiments of the present invention provides a method for determining channel quality, including:
  • the user equipment determines a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, where the measurement time set is a time period before the target cell sends the data before the start time of the target frequency band and meets a predetermined condition. ;
  • the user equipment measures a wireless condition of the target frequency band within the measurement time set to obtain a measurement result.
  • the starting time is determined by the target cell after the LBT evaluation after the first listening.
  • the time period that satisfies the predetermined condition is adjacent to the start time.
  • the predetermined condition is met Time period, including:
  • M, N, S, and K are all positive integers.
  • the predetermined condition is met Time period, including:
  • the time period that meets the predetermined condition includes:
  • the first predetermined time interval includes a time occupied by a channel reservation signal transmitted by the target cell in the target frequency band during a time period before the first predetermined time interval.
  • the time period that meets the predetermined condition includes:
  • the second predetermined time interval is a time at which the target cell receives uplink data during a time period after the second predetermined time interval.
  • the user measures wireless conditions of the target frequency band within the set of measurement time, including:
  • the user equipment measures energy of the target frequency band within the set of measurement time.
  • the user The wireless condition that the device measures the target frequency band within the measurement time set includes at least one of the following:
  • the user equipment measures energy of the target frequency band in units of OFDM symbols
  • the user equipment measures energy of the target frequency band in units of listening time slots of the target cell;
  • the user equipment measures the energy of the target frequency band in units of listening time slots of the user equipment.
  • the method further includes:
  • the user equipment periodically reports the measurement result; and/or
  • the user equipment reports the measurement result before the start time; and/or
  • the user equipment reports the measurement result in a third predetermined time interval after the start time, where the third predetermined time interval is not greater than that required by the user equipment to report channel state information to the target cell. time.
  • a second aspect of the embodiments of the present invention provides a method for determining channel quality, including:
  • the target cell sends an indication message to the user equipment, where the indication message indicates a measurement time set of the target frequency band, the target frequency band is an operating frequency of the target cell, and the measurement time set is sent by the target cell in the target frequency band.
  • the method further includes:
  • the target cell performs an LBT evaluation after listening first, and obtains an evaluation result
  • the target cell determines the starting time according to the evaluation result.
  • the method further includes:
  • the target cell determines a random backoff number, where the random backoff number is determined before the target cell starts the idle channel assessment, and the time period that satisfies the predetermined condition is a time period that is located in the time corresponding to the random backoff number.
  • the method further includes:
  • the target cell sends a channel reservation signal to the user equipment before the start time, and the time period that satisfies the predetermined condition is a time period before the first predetermined time interval, where the first predetermined time interval is The time taken by the channel reservation signal.
  • the method further includes:
  • the target cell receives uplink data before the start time, the time period that satisfies a predetermined condition is a time period after a second predetermined time interval, and the second predetermined time interval is that the target cell receives the The time of the upstream data.
  • the method further includes:
  • the target cell determines a radio condition of the target frequency band according to the measurement result.
  • the method further includes:
  • the method when the target cell determines that the hidden node of the user equipment exists on the target frequency band, the method further includes: :
  • the target cell After the start time, the target cell shortens the data transmission time in the target frequency band.
  • a third aspect of the embodiments of the present invention provides an apparatus for determining channel quality, including:
  • a determining unit configured to determine a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, where the measurement time set is before the start time of the target cell sending data in the target frequency band and meets a predetermined condition Time period
  • a measuring unit configured to measure a wireless condition of the target frequency band within the measurement time set, and obtain a measurement result.
  • the starting moment It is determined by the target cell after the LBT evaluation.
  • the time period that satisfies the predetermined condition is adjacent to the starting time.
  • the predetermined condition is met Time period, including:
  • M, N, S, and K are all positive integers.
  • Time period including:
  • the time period that meets the predetermined condition includes:
  • the first predetermined time interval includes a time occupied by a channel reservation signal transmitted by the target cell in the target frequency band during a time period before the first predetermined time interval.
  • the time period that meets the predetermined condition includes:
  • the second predetermined time interval is a time at which the target cell receives uplink data during a time period after the second predetermined time interval.
  • the user measures wireless conditions of the target frequency band within the set of measurement time, including:
  • the user equipment measures energy of the target frequency band within the set of measurement time.
  • the measuring The unit is used for at least one of the following:
  • the energy of the target frequency band is measured in units of listening time slots of the user equipment.
  • the measurement result is reported in a third predetermined time interval after the start time, where the third predetermined time interval is not greater than a time required by the user equipment to report channel state information to the target cell.
  • a fourth aspect of the embodiments of the present invention provides an apparatus for determining channel quality, including:
  • a sending unit configured to send an indication message to the user equipment, where the indication message indicates a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, and the measurement time set is the target cell in the The time period before the start time of the data transmission of the target frequency band and the predetermined condition is met, so that the user equipment measures the wireless condition of the target frequency band within the measurement time set to obtain a measurement result.
  • the method further includes:
  • the evaluation unit is used to perform the LBT assessment after listening and obtaining the evaluation result
  • the first determining unit is configured to determine the starting moment according to the evaluation result.
  • the device further includes:
  • a second determining unit configured to determine a random backoff number, where the random backoff number is determined before the target cell starts the idle channel assessment, where the time period that satisfies the predetermined condition is within a time corresponding to the random backoff number period.
  • the sending unit is further configured to:
  • the time period satisfying the predetermined condition is a time period before the first predetermined time interval
  • the first predetermined time interval is the channel reservation signal Occupied time
  • the method further includes:
  • a first receiving unit configured to receive uplink data before the start time, where the time period that satisfies the predetermined condition is a time period after the second predetermined time interval, where the second predetermined time interval is the target cell The time at which the uplink data is received.
  • the method further includes:
  • a second receiving unit configured to receive a measurement result reported by the user equipment
  • a third determining unit configured to determine a radio condition of the target frequency band according to the measurement result.
  • the method further includes:
  • a fourth determining unit configured to determine whether the target frequency band exists according to the measurement result reported by the user equipment and the measurement result obtained by the target cell measuring the wireless condition of the target frequency band in the measurement time set A hidden node of the user equipment.
  • Data transfer unit for:
  • the target cell After the start time, the target cell shortens data transmission in the target frequency band between.
  • the measurement time set is a time period before the start time of the target cell transmitting data in the target frequency band and the predetermined condition is met. Therefore, the user equipment measures the wireless condition of the target frequency band in the measurement time set. And the channel state experienced by the user equipment after the data is sent to the user equipment by the target cell, thereby improving the accuracy of measuring the channel quality of the user equipment.
  • Figure 1 is a schematic diagram of LAA-LTE opportunistic data transmission in an unlicensed band
  • FIG. 2 is a schematic diagram of a hidden node around a user equipment
  • FIG. 3 is a flowchart of a method for determining channel quality according to an embodiment of the present invention
  • FIG. 4 is a first schematic diagram of a measurement time set in an embodiment of the present invention.
  • FIG. 5 is a second schematic diagram of a measurement time set according to an embodiment of the present invention.
  • FIG. 6 is a third schematic diagram of a measurement time set in an embodiment of the present invention.
  • FIG. 7 is a fourth schematic diagram of a measurement time set according to an embodiment of the present invention.
  • FIG. 8 is another flowchart of a method for determining channel quality according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a first module of an apparatus for determining channel quality according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a first structure of an apparatus for determining channel quality according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a second module of an apparatus for determining channel quality according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a second structure of an apparatus for determining channel quality according to an embodiment of the present invention.
  • the method for determining the channel quality provided by the embodiment of the present invention is applicable to a wireless communication system, and is particularly used for an LTE system that is authorized to access a frequency band, that is, an LAA-LTE system.
  • the LTE system in which the licensed band is assisted to access is an LTE system in which the licensed band and the unlicensed band are mixed by CA (Chinese: Carrier Aggregation) or non-CA mode.
  • CA Carrier Aggregation
  • non-CA mode One possible application scenario is:
  • a scenario in which a licensed band and an unlicensed band are jointly used by a CA that is, a carrier band to be licensed, or a carrier included in a licensed band, or a cell operating in a licensed band as a primary cell, and a carrier or a work included in an unlicensed band or an unlicensed band
  • the cell in the unlicensed frequency band is used as the secondary cell, where the primary cell and the secondary cell can be deployed in a common station or in a non-common station, and an ideal backhaul path exists between the two cells.
  • the embodiment of the present invention is not limited to the application scenario, and may be applicable to other application scenarios, for example, a scenario where there is no ideal backhaul path between two cells (the primary cell and the secondary cell), that is, the backhaul delay is large. This prevents the coordination information from being transmitted quickly between the two cells.
  • a cell operating in an unlicensed frequency band is independently deployed, that is, a cell operating in an unlicensed frequency band can directly provide an independent access function, and does not need to be assisted by a cell operating on a licensed frequency band.
  • the licensed frequency band or the unlicensed frequency band may include one or more carriers, and the carrier frequency band of the licensed frequency band and the unlicensed frequency band may be: one or more carriers and non-carriers included in the licensed frequency band. Carrier aggregation is performed by one or more carriers included in the licensed band.
  • the cell in the embodiment of the present invention may be a cell corresponding to the base station.
  • the cell may be a cell corresponding to the macro base station, and the cell may also be a small cell, where the small cell may be a packet.
  • these small cells Including: a metro cell, a micro cell, a pico cell, a femto cell, etc., these small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high Rate data transfer service.
  • the concept of a cell and a carrier is equivalent.
  • the carrier index of the secondary carrier and the cell identifier (Cell ID) of the secondary cell working in the secondary carrier are carried. Accessing one carrier and accessing one cell are equivalent.
  • the user equipment may also be referred to as a mobile terminal (Mobile Terminal), a mobile user equipment, or the like, and may be connected to one or more core networks (CN, Core Network) through a radio access network (RAN).
  • the user device can be, for example, a mobile phone or a computer with a mobile terminal, such as a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • a mobile terminal such as a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • Any device that can communicate with the base station can be used as a user equipment, and the user equipment can also include a relay.
  • the downlink data is sent to the user equipment by the cell as an example.
  • the CCA needs to determine whether the unlicensed frequency band has been occupied by other devices, and the CCA can pass the energy detection and/or Signal detection is implemented.
  • the method for determining whether the unlicensed frequency band is available through the LBT may bring a hidden node problem.
  • the node in FIG. 2 may be an eNB or a Wi-Fi connection. In Point (AP).
  • AP In Point
  • the CCA range of Node 1 indicates that other nodes within the CCA range will be detected by Node 1 if they send a signal. For example, if other nodes in the CCA range preemptively occupy the unlicensed frequency band, the node 1 will judge that the node has preempted the unlicensed frequency band through energy detection and/or signal detection when intercepting the unlicensed frequency band. Therefore, the unlicensed band will be considered occupied.
  • Node 1 For other nodes outside the CCA range of Node 1, such as Node 2 in Figure 2, even if Node 2 preempts the unlicensed band, although Node 1 is able to receive the signal sent by Node 2, However, the signal is attenuated such that the energy value of the signal reaching node 1 is lower than the energy threshold in CCA, or lower than the minimum signal to interference plus noise ratio (SINR) required for signal detection. That is, even if node 2 has preempted the unlicensed band and sent a signal, when node 1 performs CCA on the unlicensed band, it will consider that the unlicensed band is idle, or is not occupied by other devices. At this time, Node 1 also uses the unlicensed band for data transmission.
  • SINR minimum signal to interference plus noise ratio
  • the node 1 and the node 2 simultaneously use the same unlicensed frequency band for data transmission.
  • the interference from the node 2 is received, especially for the user equipment relatively close to the node 2, the interference of the received node 2 is more.
  • the quality of data communication between Node 1 and the user equipment is greatly affected.
  • the cell that provides the data service for the user equipment is called the serving cell of the user equipment.
  • the node 1 provides the data service for the user equipment, and the node 1 is the service node of the user equipment.
  • the user equipment can measure the channel quality of the unlicensed frequency band and send it to the serving cell.
  • the serving cell receives the measurement result sent by the user equipment, and according to the measurement result, determines the channel quality when the serving cell and the user equipment perform data transmission on the unlicensed frequency band.
  • the user equipment uses the Discovery Reference Signal (DRS) sent by the serving cell to measure the channel quality and measure the channel quality.
  • DRS Discovery Reference Signal
  • the result is reported to the serving cell or other cell that performs carrier aggregation with the serving cell.
  • the serving cell that sends the DRS is the secondary cell of the user equipment, and the other cells may be the primary cell or other secondary cells, where the measurement result may be Reference Signal Received Power (RSRP) and/or reference signal. Receive Signal Received Quality (RSRQ).
  • RSRP Reference Signal Received Power
  • RSRQ Receive Signal Received Quality
  • the transmission opportunity of the DRS cannot be always guaranteed, so detecting the hidden node by the DRS may make the measurement time longer.
  • CSI Channel State Information
  • the time interval from the CSI measurement to the CSI reporting is at least 4 ms.
  • the time for transmitting the downlink data is limited. Assuming that the serving cell uses the unlicensed frequency band to send downlink data to the user equipment for 10 ms, the serving cell cannot determine the hidden node problem within the first 4 ms of the 10 ms. Therefore, if the serving cell has a hidden node in the vicinity of the 4 ms scheduling, The user equipment, the reliability of data transmission will be affected, and will also affect the efficiency of the data transmission of the serving cell.
  • the embodiments of the present invention provide a method for determining channel quality, which realizes that hidden nodes of user equipments in the LAA-LTE system are discovered in advance, thereby improving data transmission efficiency and overcoming the opportunity of DRS.
  • the effect of transmission on hidden node discovery such as lengthening the measurement time.
  • FIG. 3 is a flowchart of a method for determining channel quality according to an embodiment of the present invention. The method includes the following steps:
  • Step 101 The user equipment determines a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, and the measurement time set is before the start time of the target cell sending data in the target frequency band and meets a predetermined condition. Time period.
  • Step 102 The user equipment measures a radio condition of the target frequency band in the measurement time set to obtain a measurement result.
  • the target cell may be a cell that provides data services to the user equipment, that is, the serving cell in the embodiment of the present invention.
  • the target cell may also be a neighboring cell that currently does not provide service for the user equipment but potentially can serve the user equipment in the future.
  • the concept of a serving cell and a neighboring cell is exemplified below.
  • the LTE base station can simultaneously transmit signals on multiple carrier frequencies, such as F1, F2, F3, and F4.
  • F1, F2, F3, and F4 the carrier frequencies
  • the LTE base station needs to determine whether the resources of the four carrier frequencies can be utilized by using the LBT before transmitting the signals on the four carrier frequencies (which may correspond to the target frequency band in the embodiment of the present invention).
  • Send data the signals on the four carrier frequencies (which may correspond to the target frequency band in the embodiment of the present invention).
  • the concept of a carrier and a cell in a LAA-LTE system may be considered to be equivalent, or more generally, in a CA scenario, a concept of a carrier and a cell may be considered to be equivalent, and thus, when LTE When the base station transmits signals by using the above four carrier frequencies (or carriers), it can be considered that four cells belonging to the LTE base station are transmitting signals, and the transmission signal may include a Discovery Reference Signal (DRS).
  • DRS Discovery Reference Signal
  • the carrier aggregation capability of the user equipment is generally smaller than the carrier aggregation capability of the base station, even if the LTE base station can simultaneously use four carrier frequencies for data transmission, the user equipment served by the LTE base station can only receive the carrier aggregation capability range at the same time.
  • the signal sent by the inner cell assumes that the user equipment can simultaneously receive data transmission of two carrier frequencies, for example, can simultaneously receive signals transmitted by cells operating in F1 and F2, in this case, working in the cells of F1 and F2. It can be regarded as the serving cell of the user equipment.
  • the measurement of the user equipment for F1 and F2 can be regarded as the same frequency measurement, and the cell working at F3 and F4 can be regarded as the cell belonging to the same serving base station as the serving cell of the user equipment. It belongs to the neighboring cell, and the measurement of the user equipment for F3 and F4 can be regarded as the inter-frequency measurement.
  • the cell operating in F1 and F2 is the serving cell of the user equipment, and the cells working in F3 and F4 are neighboring cells.
  • the data transmission assuming that the user equipment can simultaneously receive the signals transmitted by the cells operating in F1 and F3, may also be that the cells operating at F1 and F3 are serving cells, and the cells operating at F2 and F4 are neighboring cells.
  • a neighboring cell may be understood as a cell on another frequency different from the frequency of the serving cell of the user equipment, and may also be understood as another cell that is the same as the serving cell of the user equipment but different from the serving cell of the user equipment.
  • the neighboring cell and the serving cell may belong to one base station or belong to different base stations.
  • the target frequency band refers to a frequency band resource that is sent by a network side device, such as an LTE base station, and may be represented by a carrier frequency or a carrier frequency or a carrier frequency, which may include an unlicensed band or an unlicensed band.
  • a network side device such as an LTE base station
  • Any carrier included in the carrier may also include any carrier included in the licensed band or the licensed band.
  • Different carriers may be represented by different frequency ranges, or may be represented by different channel numbers, or may be represented by different carrier frequencies.
  • the present invention The example is not limited.
  • the target frequency band may be a frequency band in which the network device sends the DRS, and for the user equipment, the frequency band configured with the DRS may be configured, or the configuration reference signal measurement timing configuration is configured ( Discovery Reference Measurement Timing Configuration, DMTC).
  • DMTC Discovery Reference Measurement Timing Configuration
  • the target frequency band is used as an unlicensed frequency band for description.
  • the LTE base station can transmit signals by using multiple carrier frequencies. If multiple carrier frequencies belong to unlicensed frequency band resources, the LTE base station can determine by using Listening Before Talk (LBT) when transmitting signals on the multiple carrier frequencies. Whether it is possible to send a signal.
  • the target frequency band is the working frequency of the target cell.
  • the working frequency of the target cell can be determined by frequency information or by frequency information and bandwidth information.
  • the frequency is 2 GHz and the bandwidth is 20 MHz.
  • the user equipment the user equipment can determine which cell is the target cell, and can also know the working frequency of the target cell, and then use the working frequency of the target cell as the target unlicensed frequency band.
  • the network side device for example, the LTE base station
  • the network side device can directly notify the user equipment of the target frequency band.
  • the cell that belongs to the network side device for example, the cell working in F1-F4 mentioned in the above example, may also notify the user equipment of the target frequency band.
  • the user equipment determines the starting time of the data sent by the target cell in the target unlicensed band, and may pass at least one of the following:
  • the preamble sequence herein may include a sequence with a good correlation, such as a sequence consisting of a Primary Synchronization Signal (PSS) and/or a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the start time may be a time when the target cell actually sends data in the target unlicensed band, and the start time may also be that the target cell is potentially sent in the target unlicensed band. The moment of sending data.
  • the target cell can determine the moment when the data is actually transmitted through the LBT evaluation. At this time, the starting time is determined by the target cell after the LBT evaluation after the first listening. At the moment when the data is potentially transmitted, the target cell may or may not transmit data. For example, if the target cell determines that the data can be transmitted at the time of potentially transmitting data through the LBT evaluation, the target cell may start at the moment when the potential data is sent.
  • the time at which the potential data is transmitted is the time when the target cell actually transmits data in the target unlicensed frequency band; on the other hand, if the target cell is determined by the LBT evaluation, the potential is When the data is transmitted, the data cannot be transmitted at the moment, and then the target cell does not transmit data at the time when the potential data is transmitted, and the target cell can continue to determine the time of the true data transmission through the LBT evaluation.
  • the target cell determines the potential data transmission time according to the complexity of the user equipment detection. For example, if the user equipment determines the data transmission time by blind detection, the selected potential data transmission time can reduce the number of blind detections of the user equipment. For example, in one subframe, the potential data transmission time may be located at a symbol boundary, or the potential data transmission time is a fixed OFDM symbol, because the user equipment generally detects the data in units of OFDM compliance, so the potential data is The transmission time is limited to the symbol boundary or the fixed OFDM symbol, which helps the user equipment to perform signal detection;
  • the target cell can also determine the moment of potential data transmission from the perspective of facilitating data communication with the user equipment. Assuming that the time of the potential data transmission is within one subframe, the data transmission length is less than the length of one subframe from the time of the potential data transmission to the end of the subframe, so how to effectively use the partial subframe for data transmission,
  • TBS Transmission Block Size
  • RS Reference Signal
  • the moment when the starting time is the potential transmission data is taken as an example for description.
  • the target cell when there are 4 potential transmission data in one subframe, if the target cell passes the LBT to determine the target unlicensed frequency band at the time of the second potential transmission data, Usage, then the target cell can send data from the moment when the second potential data is sent. At this time, the time at which the second potential data is transmitted becomes the time at which the target cell actually transmits data in the target unlicensed band. Since the target cell starts transmitting data from the time when the second potential data is transmitted, the time period between the time when the second potential data is transmitted and the time when the data is transmitted is the target cell actually transmitting data in the target unlicensed band. time.
  • the measurement time set is a time period before the start time of the target cell transmitting the data in the target unlicensed frequency band and the predetermined condition is met, and the measurement time set is different according to the predetermined condition.
  • the set of measurement times is adjacent to the start time. That is, the time period in which the predetermined condition is satisfied is adjacent to the start time.
  • the measurement time set is located in a listening unit that is before the start time of the target cell to transmit data in the target unlicensed band and is closest to the start time.
  • the listening unit in this document may be the minimum time unit that the target cell needs to listen before the data is sent. For example, it may be a listening time slot (which can be represented by CCA slot) or a listening time slot plus A delay time (Defer Time). It can also be M listening slots, or a time unit consisting of M listening slots and N defer times. M and N are both positive integers. Furthermore, if considering the data processing capabilities of the UE, the listening unit can also be K OFDM symbols, where K is a positive integer.
  • the listening unit here may also be the minimum detection unit required for the user equipment to detect the target unlicensed frequency band, for example, the listening time slot used by the user equipment, or other time unit, which is not limited in the embodiment of the present invention.
  • the following further description illustrates the concept of a listening time slot: taking a base station as an example (which may also be a target cell), and if the base station accesses a channel of an unlicensed frequency band, following a backoff procedure of Extended CCA (ECCA) detection, the base station Before each ECCA test is performed, a random backoff number N needs to be generated in the counter.
  • the base station determines whether the channel in a CCA slot is idle every time through the CCA detection. If the channel is idle, the value of N in the counter is decremented by 1. If the channel is detected to be busy, the value of N in the counter is unchanged, so the value of N is It varies with channel detection conditions. Therefore, for the target cell, one listening time slot of the target cell can be understood as a CCA slot.
  • ECCA Extended CCA
  • the time period in which the predetermined condition is met includes:
  • the time period that satisfies the predetermined condition is a listening time slot adjacent to the starting time, or the time period that satisfies the predetermined condition is composed of one listening time slot and one delay time.
  • the time period, the listening time slot is adjacent to the starting time, and the delay time is before the listening time slot and adjacent to the listening time slot.
  • the listening time slot, the delay time, and the OFDM mentioned above may also be replaced with other time units, which are the listening units known to the network side device and the user equipment.
  • the measurement time set is located in the last CCA slot of the target cell before the start time of the data transmission of the target unlicensed band and is closest to the start time, if the target cell starts transmitting data at the start time of the data transmission of the target unlicensed band Then, the interception result of the last CCA slot of the target cell before the start time can indicate that the resources of the target unlicensed band are not occupied by other devices.
  • the measurement time set is located before the start time of the target cell transmitting data in the target unlicensed band and the last CCA slot closest to the start time plus a defer time, if the target cell is in the target unlicensed band
  • the interception result of the target cell in the last CCA slot plus a defer time before the start time can indicate that the resources of the target unlicensed band are not occupied by other devices.
  • the listening result of the target cell to the target unlicensed band indicates that the resource of the target unlicensed band is not occupied by other devices.
  • other devices herein refer to the target cell listening range.
  • the device inside that is, if other devices here transmit data in the target unlicensed band, the target cell can determine that the target unlicensed band has been occupied by other devices by means of energy detection and/or signal detection. If the measurement time set of the user equipment is limited to the range, the measurement result of the measurement time set by the user equipment includes the background noise, and the data transmission has been performed in the target unlicensed frequency band but the target cell cannot detect the target cell.
  • the other device the hidden node.
  • the measurement result of the user equipment is used with the target cell. If the measurement result of the user equipment is different from the listening result of the target cell, it may indicate that there is a hidden node. Further, since the measurement time set is immediately adjacent to the start time of the transmitted data, the measurement result is relatively close to the channel state experienced by the user equipment after the target cell transmits the data.
  • FIG. 4 shows the first schematic diagram of the measurement time set.
  • FIG. 4 assuming that there are four times at which data is potentially transmitted within one subframe, there is a set of measurement times at the moment before each potential data transmission time, and immediately or not immediately adjacent to the potential transmission data.
  • the time of the first potential transmission data is not adjacent to the measurement time set, and the remaining potential transmission data is adjacent to the measurement time set.
  • the measurement time set is located before the start time of the target cell transmitting data in the target unlicensed band and the first predetermined time interval from the start time.
  • the description of the listening unit is as described above.
  • the predetermined time interval may be determined by the network side device and notified to the user equipment.
  • the predetermined time interval is a time occupied by the channel reservation signal sent by the target cell, and the measurement time set is determined according to a time occupied by the channel reservation signal. That is, the time period that satisfies the predetermined condition includes: a time period before the first predetermined time interval, the first predetermined time interval including a time occupied by the channel reservation signal sent by the target cell in the target frequency band.
  • the channel reservation signal is a signal that is sent before the target cell preempts the target unlicensed band but the time at which the data is actually sent has not yet arrived.
  • the main function of the channel reservation signal is to help the target cell occupy the channel first. As shown in FIG. 4, if the target cell determines that the target unlicensed band resource can be used by the LBT mechanism before the time when the data is potentially transmitted, but since the time at which the data is potentially transmitted has not arrived, in order to prevent waiting for the potential transmission in the target cell. Before the arrival of the data, other devices capable of operating in the target unlicensed band occupy the target unlicensed band, and the target cell may send the channel reservation signal after determining that the target unlicensed band resource is available and potentially transmitting data.
  • the channel reservation signal is different from the data sent by the target cell in this document.
  • the data sent by the target cell mainly refers to data that the user equipment needs to detect and/or demodulate, for example, PDCCH (Chinese: Physical downlink control channel; English: Physical Downlink Control Channel), data carried by EPDCCH (Chinese: Enhanced Physical Downlink Control Channel; English: Enhanced Physical Downlink Control Channel), PDSCH (Chinese: Physical Downlink Shared Channel; English: Physical Downlink Shared Channel) data, reference signals, etc.
  • the test time set is a time period from a predetermined time interval from the start time, wherein the predetermined time interval refers to the time occupied by the channel reservation signal
  • the test time set is not only before the start time but also before the time occupied by the channel reservation signal. Therefore, it can be considered that the test time set is the listening unit before the time occupied by the channel reservation signal.
  • FIG. 5 shows a second schematic diagram of the measurement time set.
  • the first predetermined time interval may be the time occupied by the channel reservation signal.
  • the user equipment since the test time set is the listening unit before the time occupied by the channel reservation signal, the user equipment can detect the energy of the signal sent from other devices in the target unlicensed band.
  • the target cell because the target cell must preempt the target unlicensed band before transmitting the channel reservation signal, the target cell can detect the idle channel in the listening unit before the channel reservation signal. In this way, by comparing the listening results of the user equipment and the target cell, it can be determined whether there is a hidden node.
  • the role of the target cell transmitting the channel reservation signal is to indicate that the target unlicensed band has been preempted by the target cell, but since the time at which the data is actually transmitted has not arrived, the target cell has not started transmitting data yet. Therefore, limiting the set of measurement time in the time domain to the time occupied by the channel reservation signal ensures that the user equipment and the target cell perform energy detection on the target unlicensed frequency band within the same time resource range, thereby ensuring the user equipment and the target. The comparability of the measurement results of the cell in the target unlicensed band.
  • the target cell sends a channel reservation signal, indicating that the target cell arrives at the time when the data is actually sent to implement data transmission, so limiting the measurement time set to the time occupied by the channel reservation signal, and also ensuring the measurement result and target of the user equipment.
  • Cell preemption to target is not authorized
  • the channel state experienced by the user equipment is similar, which is convenient for discovering hidden nodes.
  • a first predetermined time interval associated with the channel reservation signal length may be defined herein as the maximum length of the channel reservation signal. Further, the maximum length of the channel reservation signal is related to the time interval between two adjacent potential data transmission times.
  • the user equipment may determine the measurement time set by using the first implementation, in which case the user equipment sends the target unlicensed frequency band to the target cell.
  • the channel retains the influence of the signal, but since the target cell is sure to transmit the channel reservation signal on the target unlicensed frequency band, the target cell may process the measurement result after receiving the measurement result reported by the user equipment, so that the measurement result is obtained.
  • the influence of the channel reservation signal transmitted by the target cell on the measurement result is not included.
  • the set of measurement times is determined based on the number of random backoffs.
  • the measurement time set may be adjacent to the start time or may be a predetermined time interval from the start time. That is, the time period that satisfies the predetermined condition includes: a time period located in a time corresponding to the random backoff number, and the random backoff number is determined before the target cell initiates the idle channel assessment.
  • the random backoff number will be described. If the base station accesses the channel of the unlicensed band and follows the backoff procedure of the ECCA detection, the base station needs to generate a random backoff number N before each execution of the ECCA detection, and is stored in the counter. The base station determines whether the channel in a CCA slot is idle every time through the CCA detection. If the channel is idle, the value of N in the counter is decremented by 1. If the channel is detected to be busy, the value of N in the counter is unchanged, so the value of N is It varies with channel detection conditions.
  • the random backoff number may be an initial value of N used by the base station in the ECCA detection process.
  • the generated random backoff value N is 50, and the random backoff number is 50; the random backoff number may also be a value of N used by the base station in the ECCA detection process, for example, The base station generates a random backoff value N of 50 before performing ECCA detection. After a period of channel detection, it is determined that the N values in the counter are reduced from 50 to 45 after the five CCA slots are idle, that is, the random backoff number may be 45.
  • the user equipment first determines the random backoff number, and then uses the time resource included in the time corresponding to the start time of the target cell to transmit data in the target unlicensed frequency band and the random backoff number as the measurement time set.
  • the time corresponding to the random backoff number before the start time of the data transmitted by the target cell in the target unlicensed band may also be used as the measurement time set.
  • the user equipment can directly determine the time corresponding to the random backoff number.
  • the time corresponding to the random backoff number may be determined by the backoff number and the listening time slot, where the listening time slot may be a listening time unit used by the target cell to listen to the target unlicensed frequency band.
  • a CCA slot mentioned above may also be a listening unit or an energy detecting unit used when the user equipment listens to the target unlicensed frequency band.
  • the user equipment may set the 50 CCAs before the start time of the data sent by the target cell in the target unlicensed frequency band.
  • Any CCA slot within a slot is used as a set of measurement times. It is also possible to use a plurality of consecutive or discontinuous CCA slots in the 50 CCA slots located before the start time of the target cell to transmit data in the target unlicensed band as the measurement time set.
  • the time period corresponding to any one or more time units in the time period corresponding to the random backoff number may be used as the measurement time set, or the time period corresponding to the random backoff number may be used as the measurement time set, that is, the random backoff number All time resources included in the corresponding time period are used as a measurement time set.
  • the time unit may be a CCA slot (CCA slot), or may be an OFDM symbol, and may also include a minimum detection unit required by the user equipment to detect a target unlicensed band as described above.
  • FIG. 6 shows a third schematic diagram of the measurement time set.
  • the time of the first potential transmission data and the time of the fourth potential transmission data are adjacent to the measurement time set, the time of the second potential transmission data, and the time and measurement time set of the third potential transmission data.
  • the set of measurement time adjacent to the fourth potential transmission data is a time period corresponding to the random backoff number, and the other measurement time set is any one or more time units within the time period corresponding to the random backoff number.
  • the target cell For the target cell, the target cell needs to randomly select the random backoff number before starting the idle channel assessment (CCA) for the target unlicensed band, and then listen to the target unlicensed band within the time corresponding to the random backoff number. Determine the availability of the target unlicensed band. Therefore, limiting the set of measurement time in the time domain to the listening time corresponding to the random backoff number ensures that the user equipment and the target cell perform energy detection on the target unlicensed frequency band within the same time resource range, thereby ensuring the user equipment. Comparability with the measurement results of the target cell in the target unlicensed band.
  • CCA idle channel assessment
  • the target cell selects the random backoff number to listen to the target unlicensed frequency band, indicating that the target cell has data to be sent, so the measurement time set is limited to the listening time corresponding to the random backoff number, and the measurement result of the user equipment is also guaranteed.
  • the target cell preempts the target unlicensed band resource and performs data transmission, the channel state experienced by the user equipment is similar, which is convenient for discovering the hidden node.
  • the measurement time set is determined according to the time at which the target cell receives the uplink data.
  • the set of measurement times is usually not adjacent to the starting time. That is, the time period that satisfies the predetermined condition includes: a time period after the second predetermined time interval, and the second predetermined time interval is a time when the target cell receives the uplink data.
  • the data that the target cell can receive is the data sent by other devices on the target unlicensed band. Therefore, the listening unit after the time when the target cell receives the uplink data can be used as the measurement time set.
  • the user equipment measures the channel of the target unlicensed frequency band in the measurement time set
  • the target cell also measures the channel of the target unlicensed frequency band in the measurement time set, and the measurement results of both are on the target unlicensed frequency band.
  • the data sent by other devices compares the measurement results of the user equipment and the target cell to determine whether there is a hidden node.
  • FIG. 7 shows a fourth diagram of the measurement time set.
  • FIG. 7 assuming that there are four times when data is potentially transmitted in one subframe, there is a measurement time set before the time when each potential data is transmitted and after the time when the target cell receives the uplink data. Hehe.
  • Step 102 includes the user equipment measuring energy of the target frequency band within the set of measurement time. Specifically, it includes at least one of the following:
  • the user equipment measures energy of the target frequency band in units of OFDM symbols
  • the user equipment measures energy of the target frequency band in units of listening time slots of the target cell;
  • the user equipment measures the energy of the target frequency band in units of listening time slots of the user equipment.
  • the user equipment performs interference energy measurement within the measurement time set, and the interference energy measurement may include receiving energy on the target unlicensed frequency band within the measurement time set.
  • the user equipment may receive energy in the target unlicensed frequency band in a time granularity unit in the measurement time set.
  • the time granularity may be: an OFDM symbol, a listening time slot of the target cell, or a listening time slot of the user equipment.
  • the interference energy measurement result can be expressed by a Received Signal Strength Indicator (RSSI) class (ie, RSSI-like). It should be noted that although the RSSI-like is used, the measurement result is not for the target.
  • the reference signal sent by the cell is obtained.
  • the user equipment measures the energy of the target unlicensed frequency band in the measurement time set, and may further include: the user equipment is based on the physical measurement or spectrum of the target unlicensed frequency band.
  • Related measurements or detections such as analysis or spectrum sensing, such as energy sensing or energy detection, covariance matrix detection, matched filter detection, and cyclostationary feature detection (Cyclostationary Feature) Detection), eigenvalue based spectrum sensing, Received Signal Strength Indication (RSSI), Interference Measurement, and Rise Over Thermal (ROT) .
  • the user equipment After performing step 102 and obtaining the measurement result, the user equipment needs to send the measurement result to The target cell compares the measurement result in the measurement time set with the measurement result reported by the user equipment to determine whether there is a hidden node around the user equipment.
  • the user equipment sends the measurement result to the target cell, including:
  • the user equipment periodically reports the measurement result; and/or
  • the user equipment reports the measurement result before the start time; and/or
  • the user equipment reports the measurement result in a third predetermined time interval after the start time, where the third predetermined time interval is not greater than that required by the user equipment to report channel state information to the target cell. time.
  • the user equipment may periodically report to the target cell.
  • the target cell may also be reported to the target cell in an event-triggered manner.
  • the user equipment may determine the start time of the data sent by the target cell, and then send the measurement result to the target cell before the start time, so that the target cell can determine whether there is a hidden node around the user equipment before transmitting the data.
  • the user equipment may send the measurement result to the target cell after or before one or more potential data transmission moments, or may send the measurement result only after or before the time when the target cell actually transmits the data.
  • the user equipment may determine the time at which the target cell actually transmits data, and then send the measurement result to the target cell within a third predetermined time interval after the time when the target cell actually transmits the data.
  • the sending of the measurement result to the target cell is completed within 4 subframes after the time when the target cell actually sends the data.
  • the target cell can determine whether there is a hidden node around the user equipment within 4 subframes after the time when the data is actually transmitted.
  • the user equipment reports the measurement result to the target cell within 4 subframes, and reports the measurement result to the target cell in advance. So that the target cell judges earlier whether there is a hidden node around the user equipment.
  • the user equipment may report the measurement result to the target cell, or may be reported to the base station to which the target cell belongs, or belong to the same target cell as the target cell.
  • Other cells of the base station transmit.
  • the indication information may be a Pcell that belongs to the same base station as the target cell (Chinese: primary cell; English: Primary)
  • the transmission may be performed by the other Scells (Chinese: Secondary Cell; English: Secondary Cell) of the same base station.
  • the user equipment may report the measurement result to the network side device.
  • the network side device includes an LTE base station, and may also include a Pcell managed by the LTE base station in the CA scenario. And Scell. More generally, the network side device may further include: a device capable of providing data services for the user equipment, where the data includes data carried by the service data channel and/or data carried by the control data channel, and the network side device may further include A device that provides measurement configuration information to user devices.
  • the measurement result reported by the user equipment may be an average value of measurement results obtained in a plurality of measurement sets, or may be a measurement result obtained in a single time measurement set, also referred to as an instantaneous value (one-shot measurement).
  • the user equipment may directly report the average value or the instantaneous value of the multiple measurement results, or may also report the index value of the measurement result, and the different index values correspond to different measurement results or different measurements.
  • the result interval or may be reported in a manner that is higher or lower than a preset threshold, or may be reported in a percentage manner, for example, according to different preset thresholds, the statistics are within the measurement time set, and are higher than different preset thresholds. The proportion of energy test results in all results.
  • the base station can manage the mobility of the UE, for example, the cell handover of the secondary eNB, the cell selection, and the like.
  • the usage status of the target unlicensed frequency band in the target time set of the target cell is an unused state, and the unused state includes a target cell. Due to reasons such as LBT, there is no opportunity to preempt the data transmission to the first target frequency band, and thus the first target frequency band cannot be used to transmit data.
  • the data includes signals and/or data transmitted using a channel.
  • the target cell may also send only the channel occupation signal within the measurement time set without transmitting other signals and/or data transmitted by using the channel.
  • the resource used by the user equipment to obtain the measurement result may be referred to as a measurement resource, where the measurement resource includes a time resource and a frequency resource, where the time resource is in the Within the measurement time set, that is, the time time resource may be all or part of the time resource included in the measurement set, where the partial time resource may be continuous or So it is not continuous.
  • the embodiment of the present invention has no limitation on frequency resources, that is, all frequency resources of the target unlicensed frequency band included in the time resource, and may also be partial frequency resources.
  • the foregoing method for determining channel quality for a user equipment mainly describes how the measurement time set is determined, and then the user equipment measures the wireless condition of the target unlicensed frequency band in the measurement time set to obtain a measurement result.
  • One possible method for determining the measurement time set is: the target cell indicates which period of time the user equipment is a measurement time set. It should be noted that the target cell here may also be replaced by a network side device, that is, the network side device may indicate that the user equipment measures the time set. In the embodiment of the present invention, the target cell is taken as an example for description. Therefore, the embodiment of the present invention further provides a method for measuring channel quality, as shown in FIG. 8, including:
  • Step 201 The target cell sends an indication message to the user equipment, where the indication message indicates a measurement time set of the target frequency band, the target frequency band is an operating frequency of the target cell, and the measurement time set is the target cell in the The time period before the start time of the data transmission of the target frequency band and the predetermined condition is met, so that the user equipment measures the wireless condition of the target frequency band within the measurement time set to obtain a measurement result.
  • the target cell For the description of the target cell, the target frequency band, the starting time, and the measurement time set, please refer to the previous text, and will not be repeated here.
  • the indication information may also be sent by the base station to which the target cell belongs, or by other cells that belong to the same base station as the target cell.
  • the indication information may be sent by a Pcell that is the same base station as the target cell, or may be sent by other Scells that belong to the same base station.
  • the measurement time set may be determined by the target cell, and may also be a standard protocol specification.
  • the target cell may directly configure the measurement time set to the user equipment, and then the user equipment measures the wireless condition of the target unlicensed frequency band in the measurement time set, obtains and reports the measurement result to the target cell.
  • a manner in which the target cell configures the measurement time set to the user equipment is: sending an indication message to the user equipment, where the indication message carries a measurement time set, so that the user equipment measures the wireless condition of the target unlicensed frequency band in the measurement time set, and obtains And reporting the measurement result to the target cell, which In this case, the user equipment only needs to execute according to the instruction information. The user equipment does not need to determine the measurement time set by itself.
  • the starting time may be the time when the target cell actually sends data in the target unlicensed frequency band.
  • the target cell determines the starting time after the first listening and then the LBT evaluation. Therefore, the method further includes The target cell performs the LBT evaluation after the first listening, and obtains the evaluation result; the target cell determines the starting time according to the evaluation result.
  • the specific target cell determines the starting time according to the LBT evaluation, which has been explained in the foregoing, and will not be described here.
  • the method further includes: determining, by the target cell, a random backoff number, the random backoff number It is determined that the target cell starts the idle channel assessment, and the time period that satisfies the predetermined condition is a time period that is within a time corresponding to the random backoff number. How to determine the random backoff number for the specific target cell has been explained in the foregoing, and will not be described here.
  • the method further includes: the target cell sending a channel reservation signal to the user equipment before the start time,
  • the time period in which the predetermined condition is satisfied is a time period before the first predetermined time interval, and the first predetermined time interval is a time occupied by the channel reservation signal.
  • the measurement time set is determined according to the time when the target cell receives the uplink data, and therefore, the method further includes: the target cell receiving uplink data before the start time, the meeting is satisfied.
  • the time period of the condition is a time period after the second predetermined time interval, and the second predetermined time interval is a time at which the target cell receives the uplink data.
  • the measurement result of the user equipment can assist the target cell to determine whether there is a hidden node around the user equipment.
  • the reason is that the target cell also measures the wireless condition of the target unlicensed frequency band in the measurement time set. Obtain the measurement results. Comparing the measurement result measured by the target cell with the measurement result reported by the user equipment can determine whether there is a hidden node around the user equipment. Therefore, after the target cell sends the indication information to the user equipment, The indication information indicates that the user equipment reports the measurement result to the target cell, and therefore, the following steps can also be performed:
  • the radio condition may include performing, by the user equipment, physical measurement based on the target unlicensed frequency band or spectrum analysis or spectrum sensing. Or detecting the channel state of the target frequency band, where the measurement or detection may include, for example, energy sensing or energy detection, covariance matrix detection, and matched filter detection (Matched Filter Detection). ), Cyclostationary Feature Detection, eigenvalue based spectrum sensing, Received Signal Strength Indication (RSSI), Interference Measurement (Interference Measurement), Thermal Noise Climbing ( Rise Over Thermal (ROT), etc.
  • RSSI Received Signal Strength Indication
  • Interference Measurement Interference Measurement
  • ROT Rise Over Thermal
  • the measurement results reported by the user equipment may also be received by other network side devices.
  • the network side device is as described above, and will not be described here. That is to say, in addition to the measurement result reported by the user, the target cell may receive the measurement result from the base station to which the target cell belongs, or may receive the measurement result from other cells of the same base station as the target cell.
  • the indication information sent by the target cell to the user equipment indicates the measurement time set, so the user equipment may determine the measurement time set according to the indication information, and then measure the wireless condition of the target unlicensed frequency band in the measurement time set to obtain the measurement result.
  • the measurement result is reported to the target cell. Therefore, the target cell receives the measurement result reported by the user equipment.
  • the target cell may determine a radio condition of the target frequency band according to the measurement result reported by the user equipment, where the radio condition may include a physical measurement or spectrum analysis or spectrum sensing related measurement or the like by the user equipment based on the target unlicensed frequency band or Detecting the channel state of the target frequency band, where the measurement or detection may include, for example, energy sensing or energy detection, covariance matrix detection, and Matched filter detection. Cyclostationary Feature Detection Detection), eigenvalue based spectrum sensing, Received Signal Strength Indication (RSSI), Interference Measurement, and Rise Over Thermal (ROT) .
  • RSSI Received Signal Strength Indication
  • ROT Rise Over Thermal
  • the radio condition is an interference measurement as an example, that is, both the target cell and the user equipment measure the energy information on the target unlicensed frequency band in the measurement time set, which may also be referred to as RSSI-like. information.
  • the measurement result reported by the user equipment to the target cell may be used to assist the target cell to determine the hidden node of the user equipment.
  • the method for determining, by the target cell, the hidden node of the user equipment is: the target cell is obtained according to the measurement result reported by the user equipment, and the wireless condition that the target cell measures the target frequency band in the measurement time set. As a result of the measurement, it is determined whether a hidden node of the user equipment exists on the target frequency band.
  • the target cell receives the measurement result reported by the user equipment, and the target cell further measures the radio condition of the target unlicensed band within the measurement time set, and the target cell itself also obtains a measurement result. Then, the measurement result obtained by the target cell is compared with the measurement result reported by the user equipment, thereby determining the hidden node of the user equipment.
  • the target cell may determine that there is a hidden node around the user equipment. Otherwise, you can judge that there are no hidden nodes.
  • the target cell may also directly use the measurement result of the user equipment to compare with a specific energy threshold.
  • the specific energy threshold may be the target cell determination. Whether the target unlicensed band can use the energy detection threshold or signal detection threshold. For example, if the measurement result sent by the user equipment is higher than a specific energy threshold, and the serving cell is within the measurement time set, if it is determined that the target frequency band can be occupied in the measurement time set, the serving cell is detected in the measurement time set.
  • the energy threshold is lower than the specific energy threshold, so the network side device can measure according to the user equipment.
  • the specific energy threshold can be a CCA threshold.
  • the method when the target cell determines that the hidden node of the user equipment exists on the target frequency band, the method further includes: ending, by the target cell, data transmission with the user equipment; or After the start time, the target cell shortens the time of data transmission in the target frequency band.
  • the target cell determines that there is a hidden node around the user equipment, the signal sent by the hidden node to the user equipment may interfere with the signal sent by the target cell to the user equipment, so in order to improve the data communication quality between the target cell and the user equipment.
  • the target cell may end the data transmission with the user equipment, and then re-determine the time when the data is sent to the user equipment, and send the data to the user equipment at other times.
  • the target cell can shorten the time of data transmission with the user equipment, and minimize the interference time of the signal sent by the hidden node hidden node to the user equipment to the signal sent by the target cell to the user equipment.
  • the target cell can also shorten the data transmission time in the target unlicensed frequency band. In this way, the data transmission potentially transmitted by the hidden node can be protected, that is, the efficiency of the hidden node data transmission is protected.
  • the measurement result reported by the user equipment to the target cell may also assist the target cell to perform carrier selection.
  • the measurement time set is mainly located in a time interval in which the target cell does not send data
  • the obtained measurement result does not include the influence of the target cell transmission signal, and thus the measurement result It can reflect the load condition of the target frequency band. For example, if the energy value reflected by the energy result is relatively small, it indicates that the target frequency band is lightly loaded; otherwise, the target frequency band is heavier.
  • the load condition of the target frequency band reflected by the measurement result may be used to assist the target cell or the network side device to select a target frequency band with a light load as the working frequency, thereby improving data transmission efficiency.
  • the measurement time set is a time period before the start time of the target cell transmitting data in the target unlicensed frequency band and the predetermined condition is met. Therefore, the user equipment and the target cell measure the target unlicensed frequency band in the measurement time set. Measurement results obtained by wireless conditions, respectively The channel state that the user equipment experiences after transmitting the data to the user equipment is similar, thereby improving the accuracy of the target node to determine the hidden node, and overcoming the prior art that the target cell determines the hidden node for a long time, or the target cell is in the target cell. Defects in hidden nodes can only be determined after the moment the data is actually sent.
  • an embodiment of the present invention provides an apparatus for determining channel quality.
  • FIG. 9 is a schematic diagram of a first module of an apparatus for determining channel quality according to an embodiment of the present invention.
  • the meanings and specific implementations of the terms related to the apparatus for determining the channel quality shown in FIG. 9 can be referred to the aforementioned descriptions of FIGS. 1 to 8 and the embodiments.
  • the device may be a user equipment as described above, and the device comprises: a determining unit 301 and a measuring unit 302.
  • a determining unit 301 configured to determine a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, where the measurement time set is before the start time of the target cell sending data in the target frequency band and the predetermined time is met Time period of conditions;
  • the measuring unit 302 is configured to measure a wireless condition of the target frequency band within the measurement time set to obtain a measurement result.
  • the starting time is determined by the target cell after the LBT evaluation after the first listening.
  • the time period that satisfies the predetermined condition is adjacent to the starting time.
  • the time period that meets the predetermined condition includes:
  • M, N, S, and K are all positive integers.
  • the time period that meets the predetermined condition includes:
  • the time period that meets the predetermined condition includes:
  • the first predetermined time interval includes a time occupied by a channel reservation signal transmitted by the target cell in the target frequency band during a time period before the first predetermined time interval.
  • the time period that meets the predetermined condition includes:
  • the second predetermined time interval is a time at which the target cell receives uplink data during a time period after the second predetermined time interval.
  • the user equipment measures the radio condition of the target frequency band in the measurement time set, including:
  • the user equipment measures energy of the target frequency band within the set of measurement time.
  • the measuring unit is used for at least one of the following:
  • the energy of the target frequency band is measured in units of listening time slots of the user equipment.
  • reporting unit is further configured to:
  • the measurement result is reported in a third predetermined time interval after the start time, where the third predetermined time interval is not greater than a time required by the user equipment to report channel state information to the target cell.
  • FIG. 10 is a schematic diagram of a first structure of an apparatus for determining channel quality according to an embodiment of the present invention.
  • the means for determining channel quality may be a user equipment as described above, the apparatus comprising: a transmitter 1001, a processor 1002, and a memory 1003.
  • the processor 1002 is configured to determine a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, where the measurement time set is before the start time of the target cell sending data in the target frequency band and meets a predetermined schedule. a time period of the condition; and is further configured to measure a wireless condition of the target frequency band within the measurement time set to obtain a measurement result.
  • the starting time is determined by the target cell after the LBT evaluation after the first listening.
  • the time period that satisfies the predetermined condition is adjacent to the starting time.
  • the time period that meets the predetermined condition includes:
  • M, N, S, and K are all positive integers.
  • the time period that meets the predetermined condition includes:
  • the time period that meets the predetermined condition includes:
  • the first predetermined time interval includes a time occupied by a channel reservation signal transmitted by the target cell in the target frequency band during a time period before the first predetermined time interval.
  • the time period that meets the predetermined condition includes:
  • the second predetermined time interval is a time at which the target cell receives uplink data during a time period after the second predetermined time interval.
  • the processor 1002 is further configured to: measure energy of the target frequency band within the measurement time set.
  • the processor 1002 is configured to use at least one of the following:
  • Measuring the target in units of listening time slots of the user equipment within the measurement time set The energy of the standard frequency band.
  • the transmitter 1001 is configured to:
  • the measurement result is reported in a third predetermined time interval after the start time, where the third predetermined time interval is not greater than a time required by the user equipment to report channel state information to the target cell.
  • bus 1000 can include any number of interconnected buses and bridges, and bus 1000 will include one or more processors and memory 1003 represented by processor 1002. The various circuits of the memory are connected together.
  • the bus 1000 can also connect various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1004 provides an interface between bus 1000 and transmitter 1001.
  • Transmitter 1001 may be a transceiver that provides means for communicating with various other devices on a transmission medium.
  • the processor 1002 is responsible for managing the bus 1000 and the usual processing, and the memory 1003 can be used to store data used by the processor 1002 when performing operations.
  • FIG. 11 is a schematic diagram of a second module of an apparatus for determining channel quality according to an embodiment of the present invention.
  • the device may be a target cell as described above, and the device includes: a sending unit 401, an evaluating unit 402, a first determining unit 403, a second determining unit 404, a first receiving unit 405, a second receiving unit 406, and a third The determining unit 407, the fourth determining unit 408, and the data transmitting unit 409.
  • the sending unit 401 is configured to send an indication message to the user equipment, where the indication message indicates a target frequency a measurement time set of the segment, the target frequency band is an operating frequency of the target cell, and the measurement time set is a time period before the start time of the target cell sending data in the target frequency band and the predetermined condition is met, And causing the user equipment to measure a wireless condition of the target frequency band within the measurement time set, and obtain a measurement result;
  • the evaluating unit 402 is configured to perform the LBT evaluation after the first listening, and obtain the evaluation result.
  • the first determining unit 403 is configured to determine the starting time according to the evaluation result.
  • the second determining unit 404 is configured to determine a random backoff number, where the random backoff number is determined before the target cell starts the idle channel assessment, and the time period that satisfies the predetermined condition is located in the random backoff number. The time period corresponding to the time.
  • the sending unit 401 is further configured to:
  • the time period satisfying the predetermined condition is a time period before the first predetermined time interval
  • the first predetermined time interval is the channel reservation signal Occupied time
  • the first receiving unit 405 is configured to receive uplink data before the start time, where the time period that satisfies the predetermined condition is a time period after the second predetermined time interval, and the second predetermined time interval Time for receiving the uplink data for the target cell.
  • the second receiving unit 406 is configured to receive the measurement result reported by the user equipment
  • the third determining unit 407 is configured to determine a radio condition of the target frequency band according to the measurement result.
  • the fourth determining unit 408 is configured to determine, according to the measurement result reported by the user equipment, and the measurement result obtained by the target cell measuring the radio condition of the target frequency band in the measurement time set. Whether the hidden node of the user equipment exists on the target frequency band.
  • the data transmission unit 409 is further configured to:
  • the target cell After the start time, the target cell shortens the data transmission time in the target frequency band.
  • FIG. 12 is a schematic diagram of a second structure of an apparatus for determining channel quality according to an embodiment of the present invention.
  • the device for determining the channel quality may be the target cell as described above, and the device includes: a transmitter 1201, a processor 1202, a memory 1203, and a receiver 1204.
  • the transmitter 1201 is configured to send, to the user equipment, an indication message, where the indication message indicates a measurement time set of the target frequency band, where the target frequency band is an operating frequency of the target cell, and the measurement time set is the target cell in the And a time period before the start time of the data transmission of the target frequency band and the predetermined condition is met, so that the user equipment measures the wireless condition of the target frequency band within the measurement time set, and obtains a measurement result.
  • the processor 1202 is configured to perform an LBT evaluation after the first listening, and obtain an evaluation result; and configured to determine the starting time according to the evaluation result.
  • the processor 1202 is configured to determine a random backoff number, where the random backoff number is determined before the target cell initiates an idle channel assessment, where the time period that satisfies the predetermined condition is a time corresponding to the random backoff number. The time period inside.
  • the transmitter 1201 is further configured to:
  • the time period satisfying the predetermined condition is a time period before the first predetermined time interval
  • the first predetermined time interval is the channel reservation signal Occupied time
  • the receiver 1204 is configured to receive uplink data before the start time, where the time period that satisfies the predetermined condition is a time period after the second predetermined time interval, where the second predetermined time interval is The time at which the target cell receives the uplink data.
  • the receiver 1204 is further configured to receive the measurement result reported by the user equipment
  • the processor 1202 is configured to determine a wireless condition of the target frequency band according to the measurement result.
  • the processor 1202 is configured to determine the target according to the measurement result reported by the user equipment and the measurement result obtained by the target cell measuring the radio condition of the target frequency band in the measurement time set. Whether there is a hidden node of the user equipment on the frequency band.
  • the processor 1202 is configured to:
  • the target cell After the start time, the target cell shortens the data transmission time in the target frequency band.
  • bus 1200 can include any number of interconnected buses and bridges, and bus 1200 will include one or more processors and memory 1203 represented by processor 1202. The various circuits of the memory are connected together. Bus 1200 can also connect various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1204 provides an interface between bus 1000 and receiver 1204 and transmitter 1201. Receiver 1204 and transmitter 1201 may be the same component, i.e., a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1202 is responsible for managing the bus 1200 and the usual processing, while the memory 1203 can be used to store data used by the processor 1202 in performing the operations.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a ROM (Read-Only Memory), a RAM (Random Access Memory), a disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种确定信道质量的方法,以在非授权频段上LTE基站未进行数据传输的时间范围内,提高LTE基站服务的用户设备测量的信道质量的准确性。该方法包括:用户设备确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。

Description

一种确定信道质量的方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种确定信道质量的方法及装置。
背景技术
频谱是无线通信的基础,根据最新发布的FCC(中文:美国联邦通信委员会;英文:Federal Communications Commission)国际频谱***,非授权(unlicensed)频段资源要大于授权频段资源,因此,可以将LTE(long term evolution,长期演进)用户设备应用在非授权频段,例如,LAA-LTE(中文:许可辅助接入长期演进;英文:Licensed-Assisted Access Using Long Term Evolution)***,不仅可以有效利用非授权频段,还可以提供更为有效的无线接入、满足日益增长的移动宽带服务需求。
为了保证在非授权频段进行通信的***和设备的友好共存,在一些国家和地区,例如,欧洲和日本等,引入了先检测后发送(英文:Listen Before Talk,缩写:LBT)的信道接入机制。LBT的基本思想为:每个通信设备在某个信道上发送信号之前,需要先检测当前信道是否空闲,即是否可以检测到附近节点正在占用所述信道发送信号,这一检测过程被称为CCA(中文:空闲信道评测;英文:Clear Channel Assessment)。如果在一段时间内检测到信道空闲,那么该通信设备就可以发送信号;如果检测到信道被占用,那么该通信设备当前就无法发送信号。基于LBT的特点,LTE设备在非授权频段的数据传输是机会性的,也就是不连续的,如图1所示。
基于LBT的特点,LTE设备(假设为LTE基站)只有在确定非授权频段的信道是空闲的情况下,才可以使用非授权频段进行数据传输。因此,在非授权频段上LTE基站进行数据传输的时间范围内和LTE基站未进行数据传输的时间范围内,LTE设备(假设为LTE基站)服务的用户设备对非授权频段测量得到的测量结果是不同的。
在非授权频段上LTE基站未进行数据传输的时间范围内,LTE基站服务的用户设备对非授权频段的测量结果可以辅助LTE基站进行载波选择以及隐藏节点的发现。因此,如何保证LTE基站服务的用户设备准确测量在非授权频段上LTE基站未进行数据传输的时间范围内的信道质量,是本发明主要解决的问题。
发明内容
本发明实施例提供一种确定信道质量的方法,以在非授权频段上LTE基站未进行数据传输的时间范围内,提高LTE基站服务的用户设备测量的信道质量的准确性。
本发明实施例第一方面提供了一种确定信道质量的方法,包括:
用户设备确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;
所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
结合第一方面,在第一方面的第一种可能的实现方式中,所述起始时刻是所述目标小区经过先听后说LBT评估后确定的。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述满足预定条件的时间段与所述起始时刻相邻。
结合第一方面、或第一方面的第一种可能的实现方式、或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述满足预定条件的时间段,包括:
由M个侦听时隙和N个延迟时间组成的时间段;或
由S个侦听时隙组成的时间段;或
由K个正交频分复用OFDM符号组成的时间段;
其中,M、N、S、K均为正整数。
结合第一方面、或第一方面的第一种可能的实现方式、或第一方面的第二种可能的实现方式,在第一方面的第四种可能的实现方式中,所述满足预定条件的时间段,包括:
位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
结合第一方面、或第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述满足预定条件的时间段,包括:
在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
结合第一方面、或第一方面的第一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述满足预定条件的时间段,包括:
在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
结合第一方面、第一方面的第一种可能的实现方式至第一方面的第六种可能的实现方式中任一种,在第一方面的第七种可能的实现方式中,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,包括:
所述用户设备在所述测量时间集合内测量所述目标频段的能量。
结合第一方面、第一方面的第一种可能的实现方式至第一方面的第七种可能的实现方式中任一种,在第一方面的第八种可能的实现方式中,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件包括以下至少一项:
在所述测量时间集合内,所述用户设备以OFDM符号为单位测量所述目标频段的能量;
在所述测量时间集合内,所述用户设备以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
在所述测量时间集合内,所述用户设备以所述用户设备的侦听时隙为单位测量所述目标频段的能量。
结合第一方面、第一方面的第一种可能的实现方式至第一方面的第八种可能的实现方式中任一种,在第一方面的第九种可能的实现方式中,还包括:
所述用户设备周期性上报所述测量结果;和/或
所述用户设备在所述起始时刻之前,上报所述测量结果;和/或
所述用户设备在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
本发明实施例第二方面提供了一种确定信道质量的方法,包括:
目标小区向用户设备发送指示消息,所述指示消息指示目标频段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:
所述目标小区进行先听后说LBT评估,获得评估结果;
所述目标小区根据所述评估结果,确定所述起始时刻。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述方法还包括:
所述目标小区确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:
所述目标小区在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述方法还包括:
所述目标小区在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。
结合第二方面、第二方面的第一种可能的实现方式至第二方面的第四种可能的实现方式中任一种,在第二方面的第五种可能的实现方式中,还包括:
所述目标小区接收所述用户设备上报的测量结果;
所述目标小区根据所述测量结果,确定所述目标频段的无线条件。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,还包括:
所述目标小区根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,还包括:
所述目标小区结束与所述用户设备之间的数据传输;或
在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输时间。
本发明实施例第三方面提供了一种确定信道质量的装置,包括:
确定单元,用于确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;
测量单元,用于在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
结合第三方面,在第三方面的第一种可能的实现方式中,所述起始时刻 是所述目标小区经过先听后说LBT评估后确定的。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述满足预定条件的时间段与所述起始时刻相邻。
结合第三方面、或第三方面的第一种可能的实现方式、或第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述满足预定条件的时间段,包括:
由M个侦听时隙和N个延迟时间组成的时间段;或
由S个侦听时隙组成的时间段;或
由K个正交频分复用OFDM符号组成的时间段;
其中,M、N、S、K均为正整数。
结合第三方面、或第三方面的第一种可能的实现方式、或第三方面的第二种可能的实现方式,在第三方面的第四种可能的实现方式中,所述满足预定条件的时间段,包括:
位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
结合第三方面、或第三方面的第一种可能的实现方式,在第三方面的第五种可能的实现方式中,所述满足预定条件的时间段,包括:
在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
结合第三方面、或第三方面的第一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述满足预定条件的时间段,包括:
在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
结合第三方面、第三方面的第一种可能的实现方式至第三方面的第六种可能的实现方式中任一种,在第三方面的第七种可能的实现方式中,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,包括:
所述用户设备在所述测量时间集合内测量所述目标频段的能量。
结合第三方面、第三方面的第一种可能的实现方式至第三方面的第七种可能的实现方式中任一种,在第三方面的第八种可能的实现方式中,所述测量单元用于以下至少一项:
在所述测量时间集合内,以OFDM符号为单位测量所述目标频段的能量;
在所述测量时间集合内,以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
在所述测量时间集合内,以所述用户设备的侦听时隙为单位测量所述目标频段的能量。
结合第三方面、第三方面的第一种可能的实现方式至第三方面的第八种可能的实现方式中任一种,在第三方面的第九种可能的实现方式中,还包括上报单元,用于:
周期性上报所述测量结果;和/或
在所述起始时刻之前,上报所述测量结果;和/或
在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
本发明实施例第四方面提供了一种确定信道质量的装置,包括:
发送单元,用于向用户设备发送指示消息,所述指示消息指示目标频段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
结合第四方面,在第四方面的第一种可能的实现方式中,还包括:
评估单元,用于进行先听后说LBT评估,获得评估结果;
第一确定单元,用于根据所述评估结果,确定所述起始时刻。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述装置还包括:
第二确定单元,用于确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述发送单元还用于:
在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第四种可能的实现方式中,还包括:
第一接收单元,用于在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。
结合第四方面、第四方面的第一种可能的实现方式至第四方面的第四种可能的实现方式中任一种,在第四方面的第五种可能的实现方式中,还包括:
第二接收单元,用于接收所述用户设备上报的测量结果;
第三确定单元,用于根据所述测量结果,确定所述目标频段的无线条件。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,还包括:
第四确定单元,用于根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
结合第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,还包括数据传输单元,用于:
结束与所述用户设备之间的数据传输;或
在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输时 间。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本发明实施例中,测量时间集合是在目标小区在目标频段发送数据的起始时刻之前且满足预定条件的时间段,因此,用户设备在测量时间集合内测量目标频段的无线条件得到的测量结果,与目标小区在向用户设备发送数据后用户设备所经历的信道状态相似,进而能够提高用户设备测量信道质量的准确性。
附图说明
图1为LAA-LTE在非授权频段机会性数据传输示意图;
图2为用户设备周围存在隐藏节点的示意图;
图3为本发明实施例提供的确定信道质量的方法的流程图;
图4为本发明实施例中测量时间集合的第一种示意图;
图5为本发明实施例中测量时间集合的第二种示意图;
图6为本发明实施例中测量时间集合的第三种示意图;
图7为本发明实施例中测量时间集合的第四种示意图;
图8为本发明实施例提供的确定信道质量的方法的另一流程图;
图9为本发明实施例提供的确定信道质量的装置的第一种模块示意图;
图10为本发明实施例提供的确定信道质量的装置的第一种结构示意图;
图11为本发明实施例提供的确定信道质量的装置的第二种模块示意图;
图12为本发明实施例提供的确定信道质量的装置的第二种结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面首先对本发明实施例适用的***进行说明。
本发明实施例提供的确定信道质量的方法适用于无线通信***,尤其用于授权频段辅助接入的LTE***,即LAA-LTE***。授权频段辅助接入的LTE***是指将授权频段和非授权频段通过CA(中文:载波聚合;英文:Carrier Aggregation)方式或者非CA方式混合在一起使用的LTE***。一种可能的应用场景是:
将授权频段和非授权频段通过CA联合使用的场景,即将授权频段、或授权频段包括的载波、或工作在授权频段上的小区作为主小区,将非授权频段或非授权频段包括的载波或工作在非授权频段上的小区作为辅小区,其中主小区和辅小区可以共站部署,也可以非共站部署,两个小区之间有理想的回传路径。
本发明实施例也不限于适用上述应用场景,还可以适用于其他应用场景,例如:两个小区(主小区和辅小区)之间没有理想回传路径的场景,即:回传延迟较大,导致两个小区之间无法快速地传输协调信息。又例如:工作在非授权频段上的小区独立部署,即:工作在非授权频段上的小区直接可以提供独立接入功能,不需要通过工作在许可频段上的小区的辅助。
在本发明实施例中,无论是授权频段,还是非授权频段,都可以包括一个或多个载波,授权频段和非授权频段进行载波聚合,可以为:授权频段包括的一个或多个载波与非授权频段包括的一个或多个载波进行载波聚合。
本发明实施例中的小区可以是基站对应的小区,具体来讲,小区可以是宏基站对应的小区,小区也可以是小小区(small cell),其中,小小区可以包 括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
本发明实施例中,小区与载波的概念等同。例如:在CA场景下,当为用户设备配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Indentify,Cell ID),此时,可以认为UE接入一个载波和接入一个小区是等同的。
本发明实施例中,用户设备也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网(CN,Core Network)进行通信,用户设备可以是如移动电话或具有移动终端的计算机,例如,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如:手机,智能终端,多媒体设备,流媒体设备等。凡是可以与基站进行数据通信的设备都可以作为用户设备,用户设备还可以包括中继(Relay)。
在LAA-LTE***中,由于小区和用户设备的地理位置不同,所以小区和用户的侦听范围也不同,因而带来隐藏节点的问题。具体的,在LAA-LTE***中,以小区发送下行数据给用户设备为例,小区在进行数据发送之前,需要通过CCA判断非授权频段是否已经被其他设备占用,CCA可以通过能量检测和/或信号检测来实现。由于小区和用户设备的地理位置不同,使得通过LBT确定非授权频段是否可用的方法会带来隐藏节点问题,如图2所示,图2中的节点可以是eNB,也可以是Wi-Fi接入点(Access Point,AP)。
图2中,节点1的CCA范围表示在CCA范围内的其他节点如果发送信号,都会被节点1检测到。例如,假设CCA范围内的其他节点事先抢占到非授权频段,则节点1在对该非授权频段进行侦听时,通过能量检测和/或信号检测,都会判断有节点已经抢占到该非授权频段,因此会认为该非授权频段已经被占用。对于节点1的CCA范围之外的其他节点例如图2中的节点2,即使节点2抢占到非授权频段,尽管节点1能够接收到节点2发送的信号, 但是该信号发生了衰减,使得该信号到达节点1时的能量值低于CCA中的能量门限,或者低于进行信号检测需要的最低信号与干扰加噪声比率(Signal to Interference plus Noise Ratio,SINR),也就是说,即使节点2已经抢占到非授权频段并发送信号,节点1在对该非授权频段进行CCA时,也会认为该非授权频段是空闲的,或者说没有被其他设备占用的,此时,节点1同样也会使用该非授权频段进行数据发送。
由于节点1侦听范围受限,会使得节点1和节点2同时利用相同的非授权频段进行数据发送。此时对于节点1服务的用户设备,如图2所示,会收到来自节点2的干扰,特别是对于比较靠近节点2的用户设备而言,收到节点2的干扰更多。显然,在这种情况下,节点1和用户设备之间的数据通信质量会受到较大影响。
本文中,将为用户设备提供数据服务的小区称为用户设备的服务小区,如图2所示,节点1为用户设备提供数据服务,则节点1为用户设备的服务节点。为了保证服务小区和用户设备之间的数据通信质量,用户设备可以测量非授权频段的信道质量,并发送给服务小区。服务小区接收用户设备发送的测量结果,并根据该测量结果,判断服务小区和用户设备在非授权频段上进行数据传输时的信道质量。
针对用户设备如何测量非授权频段的信道质量,现有技术中有两种方法,一种方法为:用户设备利用服务小区发送的发现参考信号(Discovery Reference Signal,DRS),测量信道质量并将测量结果上报给服务小区或者与服务小区进行载波聚合的其他小区。例如:发送DRS的服务小区为用户设备的辅小区,那么其他小区可以是主小区或者是其他辅小区,其中,测量结果可以是参考信号接收功率(Reference Signal Received Power,RSRP)和/或参考信号接收质量(Reference Signal Received Quality,RSRQ)。
然而,由于DRS的发送也需要遵循LBT,因此,DRS的发送机会无法一直保证,因此通过DRS检测隐藏节点可能会使得测量时间变长。
现有技术中提供的另一种用户设备测量非授权频段的信道质量的方法 为:在服务小区的数据传输过程中,用户设备向服务小区上报信道状态信息(Channel State Information,CSI),进而辅助服务小区确定是否有隐藏节点。
然而,从CSI测量到CSI上报之间的时间间隔最小为4ms,一般而言,服务小区抢占到非授权频段的数据传输机会后,发送下行数据的时间是受限的。假设服务小区使用非授权频段向用户设备发送下行数据的时间是10ms,那么在该10ms的最初4ms之内,服务小区无法判断隐藏节点问题,因此,如果服务小区在该4ms内调度附近存在隐藏节点的用户设备,则数据传输的可靠性会受影响,同时也会影响服务小区传输数据的效率。
面对现有技术的上述缺陷,本发明实施例提供了一种确定信道质量的方法,实现了提前发现LAA-LTE***中用户设备的隐藏节点,从而提升数据传输效率,同时克服DRS的机会性传输对隐藏节点发现的影响,例如加长测量时间。
请参考图3,图3为本发明实施例提供的确定信道质量的方法的流程图。该方法包括以下步骤:
步骤101:用户设备确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段。
步骤102:所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
其中,目标小区可以为向用户设备提供数据服务的小区,即本发明实施例中的服务小区。此外,目标小区还可以是当前没有为用户设备提供服务但是潜在地在未来可以为用户设备提供服务的相邻小区。下面举例说明服务小区和相邻小区的概念。
以LTE基站为例,基于LTE基站的载波聚合能力,LTE基站可以在多个载频上例如F1、F2、F3、F4上同时发送信号,当然,如果这四个载频属于非授权频段资源,则LTE基站在这四个载频(可以对应本发明实施例中目标频段)上发送信号之前,需要先通过LBT确定是否可以利用这四个载频的资源 进行数据发送。如上所述,在本发明实施例中,可以认为LAA-LTE***中的载波与小区的概念等同,或者更为一般地,在CA场景下,可以认为载波和小区的概念等同,因此,当LTE基站利用上述四个载频(或载波)发送信号时,可以认为有四个同属于该LTE基站的小区在发送信号,这里,发送信号可以包括发送发现参考信号(Discovery Reference Signal,DRS)。
由于用户设备的载波聚合能力一般都小于基站的载波聚合能力,因此,即使LTE基站可以同时利用四个载频进行数据发送,该LTE基站服务的用户设备也只能同时接收其载波聚合能力范围之内的小区发送的信号,假设该用户设备可以同时接收两个载频的数据发送,例如可以同时接收工作在F1和F2的小区发送的信号,在这种情况下,工作在F1和F2的小区可以看为该用户设备的服务小区,该用户设备对于F1和F2的测量可以看为是同频测量,工作在F3和F4的小区可以看为与该用户设备的服务小区同属一个服务基站的小区,属于相邻小区,该用户设备对于F3和F4的测量可以看为是异频测量。
当然,在此仅是以工作在F1和F2的小区为该用户设备的服务小区,工作在F3和F4的小区为相邻小区举例说明,在实际应用中,根据用户设备可以接收到的载频的数据发送,假设用户设备能够同时接收工作在F1和F3的小区发送的信号,则也可以是工作在F1和F3的小区是服务小区,工作在F2和F4的小区是相邻小区。
在本发明实施例中,相邻小区可以理解为与用户设备服务小区所在频率不同的其他频率上的小区,也可以理解为与用户设备服务小区所在频率相同但不同于用户设备服务小区的其他小区;相邻小区与服务小区可以同属于一个基站,也可以属于不同的基站。
在本发明实施例中,目标频段是指网络侧设备例如LTE基站发送信号的频段资源,可以用载波频点或载波频率或者载频(Carrier Frequency)表示,其可以包括非授权频段或非授权频段中包括的任何一个载波,也可以包括授权频段或授权频段中包括的任何一个载波,不同的载波可以用不同的频率范围表示,也可以用不同的信道号表示,也可以用不同的载频表示,本发明实 施例不做限定。
在本发明实施例中,对于网络侧设备而言,目标频段可以是网络设备发送DRS的频段,对于用户设备而言,可以是配置了DRS的频段,或者是配置了发现参考信号测量定时配置(Discovery Reference Measurement Timing Configuration,DMTC)的频段。
在本发明实施例中,以目标频段为非授权频段进行说明。LTE基站可以利用多个载频发送信号,如果多个载频都属于非授权频段资源,那么LTE基站在这多个载频发送信号时可以通过先听后说(Listening Before Talk,LBT)来确定是否可以发送信号。目标频段是目标小区的工作频率,例如:目标小区的工作频率一般可以通过频点信息确定,或者通过频点信息和带宽信息共同确定,例如频点为2GHz,带宽为20MHz。对于用户设备来说,用户设备能够确定哪个小区为目标小区,也能够获知目标小区的工作频率,然后将目标小区的工作频率作为目标非授权频段。或者,网络侧设备例如LTE基站可以直接将目标频段通知给用户设备。在本发明实施例中,从属于网络侧设备的小区例如上述例子中提到的工作在F1-F4的小区,也可以将所述目标频段通知给用户设备。
在本发明实施例中,用户设备确定目标小区在目标非授权频段发送数据的起始时刻,可以通过以下至少一项:
(1)通过信号检测的方法,确定目标小区是否在目标非授权频段发送数据。例如通过盲检测前导序列的存在性,确定目标小区是否在目标非授权频段发送数据,如果确定目标小区在目标非授权频段发送数据,则可以进一步确定目标非授权频段数据发送的起始时刻。这里的前导序列,可以包括相关特性好的序列,例如由主同步信号(Primary Synchronization Signal,PSS)和/或辅同步信号(Secondary Synchronization Signal,SSS)构成的序列。
(2)通过信令指示确定目标非授权频段发送数据的起始时刻。
本发明实施例中,所述起始时刻可以是目标小区在目标非授权频段真正发送数据的时刻,所述起始时刻也可以是目标小区在目标非授权频段潜在发 送数据的时刻。
目标小区通过LBT评估可以确定真正发送数据的时刻。此时,所述起始时刻是所述目标小区经过先听后说LBT评估后确定的。在潜在发送数据的时刻,目标小区可能发送数据,也可能不发送数据,例如,如果目标小区经过LBT评估确定在潜在发送数据的时刻可以发送数据,那么目标小区在该潜在发送数据的时刻开始可以在所述目标非授权频段上发送数据,此时该潜在发送数据的时刻就是所述目标小区在所述目标非授权频段真正发送数据的时刻;另一方面,如果目标小区经过LBT评估确定在潜在发送数据时刻不可以发送数据,那么目标小区在该潜在发送数据的时刻不发送数据,目标小区可以继续通过LBT评估确定真正数据发送的时刻。
目标小区根据用户设备检测的复杂度,确定潜在数据发送时刻。例如如果用户设备通过盲检测确定数据发送时刻,那么选择的潜在数据发送时刻可以减少用户设备的盲检测次数。例如在1个子帧内,潜在数据发送时刻可以位于符号边界,或者说潜在数据发送时刻为固定的OFDM符号,因为用户设备一般而言都是以OFDM符合为单位对数据进行检测,因此将潜在数据发送时刻限制在符号边界或在固定的OFDM符号,有助于用户设备进行信号检测;
目标小区还可以从便于和用户设备进行数据通信的角度确定潜在数据发送的时刻。假设潜在数据发送的时刻在一个子帧内,那么从该潜在数据发送的时刻开始到这个子帧结束,数据传输长度小于1个子帧的长度,因此如何有效利用这部分子帧进行数据传输,以使得对用户设备确定传输块大小(Transmission Block Size,TBS)以及参考信号(Reference Signal,RS)的映射的影响尽可能地小,也可以是目标小区确定潜在数据发送的时刻的准则之一。
在本发明实施例中,以所述起始时刻为潜在发送数据的时刻为例进行说明。
请参考图4,如图4在一个子帧内共有4个潜在发送数据的时刻,如果在第2个潜在发送数据的时刻,目标小区通过LBT确定目标非授权频段的可使 用性,那么目标小区从第2个潜在发送数据的时刻开始,可以发送数据。此时,第2个潜在发送数据的时刻成为目标小区在目标非授权频段真正发送数据的时刻。由于目标小区从第2个潜在发送数据的时刻开始发送数据,所以第2个潜在发送数据的时刻至发送数据完成的时刻之间的时间段,均为目标小区在目标非授权频段真正发送数据的时刻。
本发明实施例中,测量时间集合为目标小区在目标非授权频段发送数据的起始时刻之前且满足预定条件的时间段,根据预定条件的不同,测量时间集合不同。
在第一种实现中,测量时间集合与起始时刻相邻。即:所述满足预定条件的时间段与所述起始时刻相邻。
具体来讲,测量时间集合位于目标小区在目标非授权频段发送数据的起始时刻之前且距离该起始时刻最近的侦听单元。本文中的侦听单元可以是目标小区在数据发送之前所需侦听的最小时间单位,例如可以是一个侦听时隙(可以用CCA slot表示),也可以是一个侦听时隙再加上一个延迟时间(Defer Time)。还可以是M个侦听时隙,或者是,M个侦听时隙和N个defer time组成的时间单元。M、N均为正整数。此外,如果考虑UE的数据处理能力,侦听单元还可以是K个OFDM符号,其中K为正整数。这里的侦听单元还可以是用户设备检测目标非授权频段所需的最小检测单位,例如可以是用户设备采用的侦听时隙,或者是其他时间单元,在本发明实施例中不做限定。
下面进一步距离说明侦听时隙的概念:以基站为例(也可以是目标小区),如果基站接入非授权频段的信道时遵循扩展CCA(Extended CCA,ECCA)检测的退避过程,所述基站在每次执行ECCA检测前,需要生成一个随机退避数N存在计数器里。所述基站每次通过CCA检测判断一个CCA时隙内信道是否空闲,若信道空闲,则计数器里的N值减1,若信道检测为忙,则计数器里的N值不变,因此N值是随着信道检测状况而变化的。因此,对于目标小区而言,目标小区的一个侦听时隙可以理解为一个CCA slot。
即:所述满足预定条件的时间段,包括:
由M个侦听时隙和N个延迟时间组成的时间段;或由S个侦听时隙组成的时间段;或由K个正交频分复用OFDM符号组成的时间段,其中,M、N、S、K均为正整数。
可选的,所述满足预定条件的时间段为与所述起始时刻相邻的一个侦听时隙,或者所述满足预定条件的时间段为由一个侦听时隙和一个延迟时间组成的时间段,所述侦听时隙与所述起始时刻相邻,且所述延迟时间在所述侦听时隙之前且与所述侦听时隙相邻。
需要说明的是,上述提到的侦听时隙、延迟时间、OFDM也可以替换为其他时间单位,所述时间单位为网络侧设备与用户设备共知的侦听单位。
当测量时间集合位于目标小区在目标非授权频段发送数据的起始时刻之前且距离该起始时刻最近的最后一个CCA slot时,如果目标小区在目标非授权频段发送数据的起始时刻开始发送数据,那么说明目标小区在该起始时刻之前最后一个CCA slot的侦听结果能够表示目标非授权频段的资源没有被其他设备占用。
同理,当测量时间集合位于目标小区在目标非授权频段发送数据的起始时刻之前且距离该起始时刻最近的最后一个CCA slot再加上一个defer time时,如果目标小区在目标非授权频段发送数据的起始时刻开始发送数据,那么说明目标小区在该起始时刻之前最后一个CCA slot再加上一个defer time的侦听结果能够表示目标非授权频段的资源没有被其他设备占用。
这样,在此测量时间集合内,目标小区对目标非授权频段的侦听结果表明目标非授权频段的资源没有被其他设备占用,如上所述,这里的其他设备,是指在目标小区侦听范围内的设备,也就是说,如果这里的其他设备在目标非授权频段进行数据发送,则目标小区可以通过能量检测和/或信号检测的方式确定目标非授权频段已被其他设备占用。如果将用户设备的测量时间集合限制在该范围内,则用户设备在此测量时间集合测量得到结果包括背景噪声的影响,还包括已经在目标非授权频段进行数据发送但所述目标小区检测不到的其他设备,即隐藏节点。因此,利用用户设备的测量结果与目标小区在 此测量时间集合范围内的侦听结果比较,如果用户设备的测量结果与目标小区的侦听结果不相同,则可以说明存在隐藏节点。进一步的,由于测量时间集合紧邻发送数据的起始时刻,因此测量结果会比较接近目标小区发送数据之后用户设备经历的信道状态。
请参考图4,图4给出了测量时间集合的第一种示意图。图4中,假设在一个子帧内潜在发送数据的时刻有4个,那么在每个潜在发送数据的时刻之前,且紧邻或者不紧邻潜在发送数据的时刻,都存在测量时间集合。图4中,第1个潜在发送数据的时刻与测量时间集合不相邻,其余潜在发送数据的时刻与测量时间集合相邻。
在第二种实现中,测量时间集合与起始时刻之间有第一预定时间间隔。
具体来讲,测量时间集合位于目标小区在目标非授权频段发送数据的起始时刻之前且距离该起始时刻第一预定时间间隔。对侦听单元的说明如前文所述。预定时间间隔可以由网络侧设备确定并通知给用户设备。可选的,预定时间间隔为所述目标小区发送的信道保留信号占用的时间,根据信道保留信号占用的时间确定测量时间集合。即:所述满足预定条件的时间段,包括:在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
具体来讲,信道保留信号是在目标小区抢占到目标非授权频段但真正发送数据的时刻还未到达之前发送的信号,信道保留信号的主要作用是帮助目标小区先占用信道。如图4所示,如果目标小区在潜在发送数据的时刻之前,通过LBT机制,确定目标非授权频段资源可以使用,但由于潜在发送数据的时刻还没有到达,因此为了防止在目标小区等待潜在发送数据的时刻到来之前,能够工作在该目标非授权频段的其他设备占用该目标非授权频段,目标小区可以在确定目标非授权频段资源可用之后且潜在发送数据的时刻之前,发送信道保留信号。
信道保留信号与本文中目标小区发送的数据不同,本文中,目标小区发送的数据主要是指用户设备需要检测和/或解调的数据,例如:PDCCH(中文: 物理下行控制信道;英文:Physical Downlink Control Channel)承载的数据、EPDCCH(中文:增强物理下行控制信道;英文:Enhanced Physical Downlink Control Channel)承载的数据、PDSCH(中文:物理下行共享信道;英文:Physical Downlink Shared Channel)承载的数据、以及参考信号等。
由于测试时间集合是距离起始时刻预定时间间隔的时间段,其中,预定时间间隔是指信道保留信号占用的时间,所以测试时间集合不仅在起始时刻之前,还在信道保留信号占用的时间之前,所以可以认为测试时间集合是信道保留信号占用的时间之前的侦听单元。
请参考图5,图5给出了测量时间集合的第二种示意图。图5中,假设在一个子帧内潜在发送数据的时刻有4个,那么在每个潜在发送数据的时刻之前,且距离潜在发送数据的时刻第一预定时间间隔,都存在测量时间集合,其中第一预定时间间隔可以是信道保留信号占用的时间。
对用户设备来说,由于测试时间集合是信道保留信号占用的时间之前的侦听单元,所以用户设备可以侦听到来自该目标非授权频段其他设备发送信号的能量。对目标小区来说,因为目标小区在发送信道保留信号之前,必然抢占到了目标非授权频段,因此,在信道保留信号之前的侦听单元内,目标小区能够侦听到空闲的信道。这样,将用户设备和目标小区的侦听结果的比较,就可以判断是否存在隐藏节点。
对目标小区来说,目标小区发送信道保留信号的作用是表明目标非授权频段已经被目标小区抢占,但是由于真正发送数据的时刻还未到来,所以目标小区还未开始发送数据。因此,将测量时间集合在时间域上限制在信道保留信号占用的时间之前,可以确保用户设备和目标小区在相同的时间资源范围内对目标非授权频段进行能量检测,从而保证了用户设备和目标小区在目标非授权频段测量结果的可比性。
并且,目标小区发送信道保留信号,说明目标小区在等待真正发送数据的时刻到来以实现数据发送,因此将测量时间集合限制在信道保留信号占用的时间之前,还可以保证用户设备的测量结果与目标小区抢占到目标未授权 频段资源并进行数据发送时用户设备经历的信道状态相近,便于发现隐藏节点。
进一步地,尽管目标小区在目标非授权频段上的潜在发送数据的时刻可以预配置,但是目标小区在目标非授权频段上通过LBT确定该频段可用的时刻是不确定的,因此信道保留信号的长度可能是不固定的。为了方便用户设备确定测量时间集合,在这里可以将与信道保留信号长度相关的第一预定时间间隔定义为信道保留信号的最大长度。进一步地,信道保留信号的最大长度与相邻的两个潜在的数据发送时刻之间的时间间隔有关。
需要说明的是,即使目标小区发送了信道保留信号,用户设备也可以通过第一种实现确定测量时间集合,在这种情况下,尽管用户设备对目标非授权频段的侦听结果包括目标小区发送的信道保留信号的影响,但是由于目标小区确知在该目标非授权频段上发送了信道保留信号,因此目标小区可以在接收到用户设备上报的测量结果之后,对测量结果进行处理,使得测量结果不包括目标小区发送的信道保留信号对测量结果的影响。
在第三种实现中,测量时间集合是根据随机退避数确定的。测量时间集合可以与起始时刻相邻,也可以距离起始时刻预定时间间隔。即:所述满足预定条件的时间段,包括:位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
首先对随机退避数进行说明。如果基站接入非授权频段的信道时遵循ECCA检测的退避过程,则所述基站在每次执行ECCA检测前,需要生成一个随机退避数N,并存在计数器里。所述基站每次通过CCA检测判断一个CCA时隙内信道是否空闲,若信道空闲,则计数器里的N值减1,若信道检测为忙,则计数器里的N值不变,因此N值是随着信道检测状况而变化的。所述随机退避数可以是所述基站在ECCA检测过程中使用的N的初始值。例如,基站在执行ECCA检测前,生成的随机退避数值N为50,则所述随机退避数为50;所述随机退避数也可以是所述基站在ECCA检测过程中使用的N的数值,例如,基站在执行ECCA检测前,生成的随机退避数值N为50,通 过一段时间的信道检测,判断5个CCA时隙空闲后,计数器里的N值由50减为45,即所述随机退避数可以为45。
用户设备首先确定随机退避数,然后将位于目标小区在目标非授权频段发送数据的起始时刻之前且随机退避数对应的时间内包括的时间资源作为测量时间集合。当然,也可以将位于目标小区在目标非授权频段发送数据的起始时刻之前的随机退避数对应的时间作为测量时间集合。或者,用户设备可以直接确定随机退避数对应的时间。这里,随机退避数对应的时间可以通过随时退避数和侦听时隙确定,这里的侦听时隙可以是所述目标小区对所述目标非授权频段进行侦听时采用的侦听时间单元,例如上述提到的一个CCA slot,也可以是用户设备对所述目标非授权频段进行侦听时采用的侦听单元,或能量检测单位。
举例来讲,假设随机退避数是50,则随机退避数对应的时间段是50个CCA时隙,则用户设备可以将位于目标小区在目标非授权频段发送数据的起始时刻之前的50个CCA时隙内的任一CCA时隙作为测量时间集合。还可以将位于目标小区在目标非授权频段发送数据的起始时刻之前的50个CCA时隙内的多个连续的或不连续的CCA时隙作为测量时间集合。
进一步地,还可以将随机退避数对应的时间段内的任意一个或多个时间单元对应的时间段作为测量时间集合,也可以将随机退避数对应的时间段作为测量时间集合,即将随机退避数对应的时间段内包括的所有时间资源都作为测量时间集合。所述时间单元可以是CCA时隙(CCA slot),也可以是OFDM符号,也可以包括如上所述的用户设备检测目标非授权频段所需的最小检测单位。
请参考图6,图6给出了测量时间集合的第三种的示意图。图6中,假设在一个子帧内潜在发送数据的时刻有4个,那么在每个潜在发送数据的时刻之前,且在随机退避数对应的时间内,都存在测量时间集合。图6中,第1个潜在发送数据的时刻以及第4个潜在发送数据的时刻与测量时间集合相邻,第2个潜在发送数据的时刻以及第3个潜在发送数据的时刻与测量时间集合 不相邻。第4个潜在发送数据的时刻相邻的测量时间集合是随机退避数对应的时间段,而其他测量时间集合是随机退避数对应的时间段内的任意一个或多个时间单元。
对目标小区来说,目标小区在对目标非授权频段启动空闲信道评估(CCA)之前,需要随机选择随机退避数,然后在此随机退避数对应的时间内,对目标非授权频段进行侦听,判断目标非授权频段的可用性。因此,将测量时间集合在时间域上限制在随机退避数对应的侦听时间内,可以确保用户设备和目标小区在相同的时间资源范围内对目标非授权频段进行能量检测,从而保证了用户设备和目标小区在目标非授权频段测量结果的可比性。
并且,目标小区选择随机退避数对目标非授权频段进行侦听,说明目标小区有数据需要发送,因此将测量时间集合限制在随机退避数对应的侦听时间内,还可以保证用户设备的测量结果与目标小区抢占到目标未授权频段资源并进行数据发送时用户设备经历的信道状态相近,便于发现隐藏节点。
在第四种实现中,根据目标小区接收上行数据的时间确定测量时间集合。测量时间集合通常不与起始时刻相邻。即:所述满足预定条件的时间段,包括:在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
具体来讲,在目标小区接收上行数据的时间之后,且在目标小区发送数据之前,目标小区能够接收到的数据都是目标非授权频段上其他设备发送的数据。因此,可以将目标小区接收上行数据的时间之后的侦听单元作为测量时间集合。这样,用户设备在测量时间集合内对目标非授权频段的信道进行测量,同时目标小区也在测量时间集合内对目标非授权频段的信道进行测量,两者的测量结果均是目标非授权频段上其他设备发送的数据,将用户设备和目标小区的测量结果的比较,就可以判断是否存在隐藏节点。
请参考图7,图7给出了测量时间集合的第四种的示意图。图7中,假设在一个子帧内潜在发送数据的时刻有4个,那么在每个潜在发送数据的时刻之前,且在目标小区接收上行数据的时间之后的时间段,都存在测量时间集 合。
在用户设备确定测量时间集合后,可以执行步骤102。步骤102包括:所述用户设备在所述测量时间集合内测量所述目标频段的能量。具体包括以下至少一项:
在所述测量时间集合内,所述用户设备以OFDM符号为单位测量所述目标频段的能量;
在所述测量时间集合内,所述用户设备以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
在所述测量时间集合内,所述用户设备以所述用户设备的侦听时隙为单位测量所述目标频段的能量。
具体来讲,用户设备在测量时间集合内,进行干扰能量测量,干扰能量测量可以包括接收测量时间集合内目标非授权频段上的能量。用户设备在测量时间集合内,可以以时间粒度为单位接收目标非授权频段上的能量,时间粒度可以是:OFDM符号、目标小区的侦听时隙或用户设备的侦听时隙。这里,干扰能量测量结果可以用接收信号强度指示(Received Signal Strength Indicator,RSSI)类来表示(即RSSI-like),需要说明的是,虽然采用RSSI-like来表示,但是该测量结果不是针对目标小区发送的参考信号得到的。
更为一般地,步骤102中,所述用户设备在所述测量时间集合内测量所述目标非授权频段的能量,还可以包括:所述用户设备基于所述目标非授权频段的物理测量或频谱分析或频谱感知等相关的测量或检测,例如物理层能量检测(energy sensing或energy detection)、协方差矩阵检测(covariance matrix detection)、匹配滤波检测(Matched Filter Detection)、循环平稳特征检测(Cyclostationary Feature Detection)、基于特征值的频谱感知(eigenvalue based spectrum sensing)、接收信号强度指示(Received Signal Strength Indication,简称RSSI)、干扰测量(Interference Measurement)、热噪声攀升(Rise Over Thermal,简称ROT)等测量。
在执行完步骤102,获得测量结果之后,用户设备需要将测量结果发送给 目标小区,目标小区将自身在测量时间集合内的测量结果与用户设备上报的测量结果比较,进而确定用户设备周围是否存在隐藏节点。用户设备将测量结果发送给目标小区,包括:
所述用户设备周期性上报所述测量结果;和/或
所述用户设备在所述起始时刻之前,上报所述测量结果;和/或
所述用户设备在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
具体来讲,对于测量结果,用户设备可以周期性上报给目标小区。当然也可以以事件触发的方式上报给目标小区。例如:用户设备可以确定目标小区发送数据的起始时刻,然后在起始时刻之前向目标小区发送测量结果,这样,目标小区在发送数据之前,就能够确定用户设备周围是否存在隐藏节点。这里,用户设备可以在一个或者多个潜在数据发送时刻之后或之前向目标小区发送测量结果,也可以只在目标小区真正发送数据的时刻之后或之前,发送测量结果。
又例如:用户设备可以确定目标小区真正发送数据的时刻,然后在目标小区真正发送数据的时刻之后的第三预定时间间隔内,向目标小区发送测量结果。可选的,在目标小区真正发送数据的时刻之后的4个子帧之内完成向目标小区发送测量结果。这样,目标小区能够在真正发送数据的时刻之后的4个子帧内判断用户设备周围是否存在隐藏节点。相比于现有技术中用户设备向目标小区上报信道状态信息需要4个子帧,本发明实施例中用户设备在4个子帧之内即将测量结果上报至目标小区,提前将测量结果上报给目标小区,以便于目标小区更早判断用户设备周围是否存在隐藏节点。
需要说明的是,在本发明实施例中,所述用户设备可以将测量结果上报给所述目标小区,也可以上报给所述目标小区所属的基站发送,或者是由与所述目标小区同属一个基站的其他小区发送。例如在CA场景下,所述指示信息可以由与所述目标小区同属相同基站的Pcell(中文:主小区;英文:Primary  Cell)发送,也可以由于所述目标小区同属相同基站的其他Scell(中文:辅小区;英文:Secondary Cell)发送。
或者,在本发明实施例中,所述用户设备可以将测量结果上报给网络侧设备,在本发明实施例中,网络侧设备包括LTE基站,在CA场景下,还可以包括LTE基站管理的Pcell和Scell。更为一般地,网络侧设备还可以包括,能够为用户设备提供数据服务的设备,这里的数据包括业务数据信道承载的数据和/或控制数据信道承载的数据,网络侧设备还可以包括,能够为用户设备提供测量配置信息的设备。
所述用户设备上报的测量结果可以是在多个测量集合内获得的测量结果的平均值,也可以是在单个时间测量集合内获得的测量结果,也称瞬时值(one-shot测量)。此外,用户设备在向基站上报测量结果时,可以是直接上报上述多个测量结果的平均值或者瞬时值,或者也可以上报测量结果的索引值,不同索引值对应不同的测量结果或不同的测量结果区间,或者也可以用高于或低于预设阈值的方式进行上报,或者也可以通过百分比的方式上报,例如根据不同的预设阈值,统计在测量时间集合内,高于不同预设阈值的能量检测结果在所有结果中所占的比例情况。基站在接收到测量结果之后,就可以对UE的移动性进行管理,例如辅助eNB的小区切换、小区选择等操作。
需要说明的是,在本发明实施例中,可选地,所述目标小区在所述测量时间集合对内所述目标非授权频段的使用状态为未使用状态,所述未使用状态包括目标小区由于LBT等原因,没有抢占到第一目标频段的数据发送机会,进而不能利用第一目标频段发送数据。所述数据的包括信号和/或利用信道发送的数据。可选地,所述目标小区在所述测量时间集合内也可以只发送信道占用信号而不发送其他信号和/或利用信道发送的数据。
需要说明的是,在本发明实施例中,可以将所述用户设备获得所述测量结果所利用的资源称为测量资源,所述测量资源包括时间资源和频率资源,其中所述时间资源在所述测量时间集合内,即所述时间时间资源可以是所述测量集合包括的所有或部分时间资源,这里部分时间资源可以是连续的也可 以是不连续的。本发明实施例对频率资源没有限制,即可以是所述时间资源内包括的所述目标非授权频段的所有频率资源,也可以是部分频率资源。
上述为用户设备确定信道质量的方法,主要说明了测量时间集合是怎样确定的,然后用户设备对测量时间集合内目标非授权频段的无线条件进行测量,获得测量结果。对于怎样确定测量时间集合,一种可能的方法是:目标小区指示用户设备哪一段时间段为测量时间集合。需要说明的是,这里的目标小区也可以替换为网络侧设备,即网络侧设备可以指示用户设备测量时间集合。在本发明实施例中,以目标小区为例进行说明。因此,本发明实施例还提供一种测量信道质量的方法,如图8所示,包括:
步骤201:目标小区向用户设备发送指示消息,所述指示消息指示目标频段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
对于目标小区、目标频段、起始时刻、测量时间集合的说明请参考前文,在此就不再赘述。
这里需要说明的是,所述指示信息也可以是由所述目标小区所属的基站发送,或者是由与所述目标小区同属一个基站的其他小区发送。例如在CA场景下,所述指示信息可以由与所述目标小区同属相同基站的Pcell发送,也可以由于所述目标小区同属相同基站的其他Scell发送。
测量时间集合可以是目标小区确定的,还可以是标准协议规范好的。对于目标小区来说,目标小区可以将测量时间集合直接配置给用户设备,然后用户设备在测量时间集合内测量目标非授权频段的无线条件,获得并向目标小区上报测量结果即可。
目标小区将测量时间集合配置给用户设备的一种方式是:向用户设备发送指示消息,该指示消息携带测量时间集合,以使得用户设备在测量时间集合内测量目标非授权频段的无线条件,获得并向目标小区上报测量结果,这 样,用户设备只需根据指示信息执行即可。用户设备无需自己确定测量时间集合。
在前文中讲到,起始时刻可以是目标小区在目标非授权频段真正发送数据的时刻,此时,目标小区经过先听后说LBT评估确定所述起始时刻,因此,所述方法还包括:所述目标小区进行先听后说LBT评估,获得评估结果;所述目标小区根据所述评估结果,确定所述起始时刻。具体目标小区如何根据进行LBT评估确定起始时刻,已经在前文说明,在此就不再赘述。
在前文中还讲到,测量时间集合是根据随机退避数确定的,而随机退避数是目标小区生成的,因此,所述方法还包括:所述目标小区确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。具体目标小区如何确定随机退避数,已经在前文说明,在此就不再赘述。
此外,在前文还讲到,测量时间集合是根据信道保留信号确定的,因此,所述方法还包括:所述目标小区在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。对于目标小区发送信道保留信号的说明,可以参考前文,在此就不再赘述。
此外,在前文还讲到,测量时间集合是根据目标小区接收上行数据的时间确定的,因此,所述方法还包括:所述目标小区在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。对于目标小区接收上行数据的说明,请参考前文,在此就不再赘述。
在前文中已经说明,用户设备的测量结果可以辅助目标小区判断用户设备周围是否存在隐藏节点,之所以说辅助,是因为目标小区也要对测量时间集合内目标非授权频段的无线条件进行测量,获得测量结果。将目标小区自己测量的测量结果与用户设备上报的测量结果比较,才能够确定用户设备周围是否存在隐藏节点。因此,在目标小区向用户设备发送指示信息后,由于 指示信息指示用户设备向目标小区上报测量结果,因此,还可以执行以下步骤:
所述目标小区接收所述用户设备上报的测量结果;
所述目标小区根据所述测量结果,确定所述目标频段的无线条件,所述无线条件可以包括通过所述用户设备基于所述目标非授权频段的物理测量或频谱分析或频谱感知等相关的测量或检测得到的所述目标频段的信道状态,这里的测量或检测可以包括:例如物理层能量检测(energy sensing或energy detection)、协方差矩阵检测(covariance matrix detection)、匹配滤波检测(Matched Filter Detection)、循环平稳特征检测(Cyclostationary Feature Detection)、基于特征值的频谱感知(eigenvalue based spectrum sensing)、接收信号强度指示(Received Signal Strength Indication,简称RSSI)、干扰测量(Interference Measurement)、热噪声攀升(Rise Over Thermal,简称ROT)等。
需要说明的是,这里,也可以由其他网络侧设备来接收用户设备上报的测量结果。网络侧设备如上所述,在此不做赘述。也就是说,这里除了目标小区可以接收用户上报的测量结果,还可以是目标小区从属的基站接收所述测量结果,还可以是与目标小区从属相同基站的其他小区接收所述测量结果。
具体来讲,由于目标小区向用户设备发送的指示信息指示测量时间集合,所以用户设备可以根据指示信息确定测量时间集合,然后在测量时间集合内测量目标非授权频段的无线条件,获得测量结果,并向目标小区上报测量结果,因此,目标小区会接收到用户设备上报的测量结果。
目标小区根据用户设备上报的测量结果,可以确定目标频段的无线条件,所述无线条件可以包括通过所述用户设备基于所述目标非授权频段的物理测量或频谱分析或频谱感知等相关的测量或检测得到的所述目标频段的信道状态,这里的测量或检测可以包括:例如物理层能量检测(energy sensing或energy detection)、协方差矩阵检测(covariance matrix detection)、匹配滤波检测(Matched Filter Detection)、循环平稳特征检测(Cyclostationary Feature  Detection)、基于特征值的频谱感知(eigenvalue based spectrum sensing)、接收信号强度指示(Received Signal Strength Indication,简称RSSI)、干扰测量(Interference Measurement)、热噪声攀升(Rise Over Thermal,简称ROT)等测量。
在本发明实施例中,以无线条件是干扰测量为例进行说明,即目标小区和用户设备都在所述测量时间集合内测量获得目标非授权频段上的能量信息,又可以称为RSSI-like信息。
本发明实施例中,用户设备向目标小区上报的测量结果可以辅助目标小区确定用户设备的隐藏节点。
目标小区确定用户设备的隐藏节点的一种方法为:所述目标小区根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
目标小区接收用户设备上报的测量结果,并且目标小区还要在测量时间集合内测量目标非授权频段的无线条件,目标小区本身也要获得一个测量结果。然后将目标小区获得的测量结果与用户设备上报的测量结果比较,进而确定用户设备的隐藏节点。
如果二者之间的测量结果相差比较大,则说明目标小区和用户设备的侦听范围不同,因此目标小区可以确定在所述用户设备周围存在隐藏节点。否则,则可以判断没有隐藏节点。
目标小区确定用户设备的隐藏节点的另一种方法为:所述目标小区也可以直接利用所述用户设备的测量结果,与特定能量门限进行比较,例如特定能量门限可以是所述目标小区判断所述目标非授权频段是否可以使用采用的能量检测门限或者信号检测门限。例如,如果用户设备发送的测量结果高于特定能量门限,同时,服务小区在测量时间集合内,如果判断在测量时间集合内可以占用目标频段,则说明服务小区在此测量时间集合内检测到的能量门限低于特定能量门限,因此,网络侧设备就可以根据用户设备发送的测量 结果与特定能量门限的比较结果,确定是否对于用户设备在该目标频段上对于所述服务小区是否存在隐藏节点。特定能量门限可以是CCA门限。
本发明实施例中,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,还包括:所述目标小区结束与所述用户设备之间的数据传输;或在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输的时间。
具体来讲,如果目标小区确定用户设备周围存在隐藏节点,而隐藏节点向用户设备发送的信号会干扰目标小区向用户设备发送的信号,因此,为了提高目标小区与用户设备之间的数据通信质量,可以目标小区可以结束与用户设备之间的数据传输,然后重新确定向用户设备发送数据的时刻,在其他时刻向用户设备发送数据。或者目标小区可以缩短与用户设备之间的数据传输的时间,尽可能减少隐藏节点隐藏节点向用户设备发送的信号对目标小区向用户设备发送的信号的干扰时间。此外,目标小区还可以缩短在所述目标非授权频段的数据传输时间,这样做,可以对隐藏节点潜在可能发送的数据传输进行保护,即保护隐藏节点数据传输的效率。
本发明实施例中,用户设备向目标小区上报的测量结果还可以辅助目标小区进行载波选择。
由于测量时间集合主要位于目标小区没有发送数据的时间间隔内,所以当用户设备对所述目标频段进行能量测量时,获得的测量结果不包括所述目标小区发送信号的影响,因此所述测量结果可以反映所述目标频段的负载情况。例如如果所述能量结果结果反映的能量值比较小,那么说明该目标频段负载较轻;否则,说明该目标频段负载较重。通过所述测量结果反映的目标频段的负载情况,可以辅助目标小区或者网络侧设备选择负载较轻的目标频段作为工作频率,从而提升数据传输效率。
本发明实施例中,测量时间集合是在目标小区在目标非授权频段发送数据的起始时刻之前且满足预定条件的时间段,因此,用户设备和目标小区在测量时间集合内测量目标非授权频段的无线条件分别得到的测量结果,与目 标小区在向用户设备发送数据后用户设备所经历的信道状态相似,进而能够提高目标小区确定隐藏节点的准确度,克服了现有技术中目标小区确定隐藏节点的时间较长,或者目标小区在真正发送数据的时刻之后才能确定隐藏节点的缺陷。
基于同一发明构思,本发明实施例提供一种确定信道质量的装置。
请参考图9,图9为本发明实施例提供的确定信道质量的装置的第一种模块示意图。图9所示的确定信道质量的装置涉及到的术语的含义以及具体实现,可以参考前述图1至图8以及实施例的相关描述。该装置可以是如前所述的用户设备,该装置包括:确定单元301、测量单元302。
确定单元301,用于确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;
测量单元302,用于在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
可选的,所述起始时刻是所述目标小区经过先听后说LBT评估后确定的。
可选的,所述满足预定条件的时间段与所述起始时刻相邻。
可选的,所述满足预定条件的时间段,包括:
由M个侦听时隙和N个延迟时间组成的时间段;或
由S个侦听时隙组成的时间段;或
由K个正交频分复用OFDM符号组成的时间段;
其中,M、N、S、K均为正整数。
可选的,所述满足预定条件的时间段,包括:
位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
可选的,所述满足预定条件的时间段,包括:
在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
可选的,所述满足预定条件的时间段,包括:
在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
可选的,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,包括:
所述用户设备在所述测量时间集合内测量所述目标频段的能量。
可选的,所述测量单元用于以下至少一项:
在所述测量时间集合内,以OFDM符号为单位测量所述目标频段的能量;
在所述测量时间集合内,以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
在所述测量时间集合内,以所述用户设备的侦听时隙为单位测量所述目标频段的能量。
可选的,还包括上报单元,用于:
周期性上报所述测量结果;和/或
在所述起始时刻之前,上报所述测量结果;和/或
在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
前述图3实施例中的确定信道质量的方法中的各种变化方式和具体实例同样适用于本实施例的确定信道质量的装置,通过前述对确定信道质量的方法的详细描述,本领域技术人员可以清楚的知道本实施例中确定信道质量的装置的实施方法,所以为了说明书的简洁,在此不再详述。
请参考图10,图10为本发明实施例提供的一种确定信道质量的装置的第一种结构示意图。图10所示的确定信道质量的装置涉及到的术语的含义以及具体实现,可以参考前述图1至图8以及实施例的相关描述。该确定信道质量的装置可以是如前所述的用户设备,该装置包括:发送器1001、处理器1002、存储器1003。
处理器1002,用于确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;还用于在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
可选的,所述起始时刻是所述目标小区经过先听后说LBT评估后确定的。
可选的,所述满足预定条件的时间段与所述起始时刻相邻。
可选的,所述满足预定条件的时间段,包括:
由M个侦听时隙和N个延迟时间组成的时间段;或
由S个侦听时隙组成的时间段;或
由K个正交频分复用OFDM符号组成的时间段;
其中,M、N、S、K均为正整数。
可选的,所述满足预定条件的时间段,包括:
位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
可选的,所述满足预定条件的时间段,包括:
在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
可选的,所述满足预定条件的时间段,包括:
在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
可选的,处理器1002还用于:在所述测量时间集合内测量所述目标频段的能量。
可选的,处理器1002用于以下至少一项:
在所述测量时间集合内,以OFDM符号为单位测量所述目标频段的能量;
在所述测量时间集合内,以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
在所述测量时间集合内,以所述用户设备的侦听时隙为单位测量所述目 标频段的能量。
可选的,发送器1001用于:
周期性上报所述测量结果;和/或
在所述起始时刻之前,上报所述测量结果;和/或
在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
其中,在图10中,总线架构(用总线1000来代表),总线1000可以包括任意数量的互联的总线和桥,总线1000将包括由处理器1002代表的一个或多个处理器和存储器1003代表的存储器的各种电路连接在一起。总线1000还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1004在总线1000和发送器1001之间提供接口。发送器1001可以是收发机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1002负责管理总线1000和通常的处理,而存储器1003可以被用于存储处理器1002在执行操作时所使用的数据。
前述图3实施例中的确定信道质量的方法中的各种变化方式和具体实例同样适用于本实施例的确定信道质量的装置,通过前述对确定信道质量的方法的详细描述,本领域技术人员可以清楚的知道本实施例中确定信道质量的装置的实施方法,所以为了说明书的简洁,在此不再详述。
请参考图11,图11为本发明为本发明实施例提供的确定信道质量的装置的第二种模块示意图。图11所示的确定信道质量的装置涉及到的术语的含义以及具体实现,可以参考前述图1至图8以及实施例的相关描述。该装置可以是如前所述的目标小区,该装置包括:发送单元401、评估单元402、第一确定单元403、第二确定单元404、第一接收单元405、第二接收单元406、第三确定单元407、第四确定单元408、数据传输单元409。
发送单元401,用于向用户设备发送指示消息,所述指示消息指示目标频 段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果;
可选的,评估单元402,用于进行先听后说LBT评估,获得评估结果;第一确定单元403,用于根据所述评估结果,确定所述起始时刻。
可选的,第二确定单元404,用于确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。
可选的,所述发送单元401还用于:
在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。
可选的,第一接收单元405,用于在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。
可选的,第二接收单元406,用于接收所述用户设备上报的测量结果;
第三确定单元407,用于根据所述测量结果,确定所述目标频段的无线条件。
可选的,第四确定单元408,用于根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
可选的,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,还包括数据传输单元409,用于:
结束与所述用户设备之间的数据传输;或
在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输时间。
前述图8实施例中的确定信道质量的方法中的各种变化方式和具体实例同样适用于本实施例的确定信道质量的装置,通过前述对确定信道质量的方法的详细描述,本领域技术人员可以清楚的知道本实施例中确定信道质量的装置的实施方法,所以为了说明书的简洁,在此不再详述。
请参考图12,图12为本发明实施例提供的一种确定信道质量的装置的第二种结构示意图。图12所示的确定信道质量的装置涉及到的术语的含义以及具体实现,可以参考前述图1至图8以及实施例的相关描述。该确定信道质量的装置可以是如前所述的目标小区,该装置包括:发送器1201、处理器1202、存储器1203、接收器1204。
发送器1201,用于向用户设备发送指示消息,所述指示消息指示目标频段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
可选的,处理器1202用于进行先听后说LBT评估,获得评估结果;用于根据所述评估结果,确定所述起始时刻。
可选的,处理器1202用于确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。
可选的,所述发送器1201还用于:
在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。
可选的,所述接收器1204用于在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。
可选的,所述接收器1204还用于接收所述用户设备上报的测量结果;
所述处理器1202用于根据所述测量结果,确定所述目标频段的无线条件。
可选的,所述处理器1202用于根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
可选的,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,所述处理器1202用于:
结束与所述用户设备之间的数据传输;或
在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输时间。
其中,在图12中,总线架构(用总线1200来代表),总线1200可以包括任意数量的互联的总线和桥,总线1200将包括由处理器1202代表的一个或多个处理器和存储器1203代表的存储器的各种电路连接在一起。总线1200还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1204在总线1000和接收器1204和发送器1201之间提供接口。接收器1204和发送器1201可以是同一个元件,即收发机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1202负责管理总线1200和通常的处理,而存储器1203可以被用于存储处理器1202在执行操作时所使用的数据。
前述图8实施例中的确定信道质量的方法中的各种变化方式和具体实例同样适用于本实施例的确定信道质量的装置,通过前述对确定信道质量的方法的详细描述,本领域技术人员可以清楚的知道本实施例中确定信道质量的装置的实施方法,所以为了说明书的简洁,在此不再详述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将装置的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。上述描述的***,装置和单元的具体 工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM(Read-Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解 为对本发明的限制。本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (36)

  1. 一种确定信道质量的方法,其特征在于,包括:
    用户设备确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;
    所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
  2. 如权利要求1所述的方法,其特征在于,所述起始时刻是所述目标小区经过先听后说LBT评估后确定的。
  3. 如权利要求1或2所述的方法,其特征在于,所述满足预定条件的时间段与所述起始时刻相邻。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述满足预定条件的时间段,包括:
    由M个侦听时隙和N个延迟时间组成的时间段;或
    由S个侦听时隙组成的时间段;或
    由K个正交频分复用OFDM符号组成的时间段;
    其中,M、N、S、K均为正整数。
  5. 如权利要求1-3任一所述的方法,其特征在于,所述满足预定条件的时间段,包括:
    位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
  6. 如权利要求1或2所述的方法,其特征在于,所述满足预定条件的时间段,包括:
    在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
  7. 如权利要求1或2所述的方法,其特征在于,所述满足预定条件的时 间段,包括:
    在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,包括:
    所述用户设备在所述测量时间集合内测量所述目标频段的能量。
  9. 如权利要求1-8任一所述的方法,其特征在于,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件包括以下至少一项:
    在所述测量时间集合内,所述用户设备以OFDM符号为单位测量所述目标频段的能量;
    在所述测量时间集合内,所述用户设备以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
    在所述测量时间集合内,所述用户设备以所述用户设备的侦听时隙为单位测量所述目标频段的能量。
  10. 如权利要求1-9任一所述的方法,其特征在于,还包括:
    所述用户设备周期性上报所述测量结果;和/或
    所述用户设备在所述起始时刻之前,上报所述测量结果;和/或
    所述用户设备在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
  11. 一种确定信道质量的方法,其特征在于,包括:
    目标小区向用户设备发送指示消息,所述指示消息指示目标频段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述目标小区进行先听后说LBT评估,获得评估结果;
    所述目标小区根据所述评估结果,确定所述起始时刻。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述目标小区确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。
  14. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述目标小区在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。
  15. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述目标小区在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。
  16. 如权利要求11-15任一所述的方法,其特征在于,还包括:
    所述目标小区接收所述用户设备上报的测量结果;
    所述目标小区根据所述测量结果,确定所述目标频段的无线条件。
  17. 如权利要求16所述的方法,其特征在于,还包括:
    所述目标小区根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
  18. 如权利要求17所述的方法,其特征在于,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,还包括:
    所述目标小区结束与所述用户设备之间的数据传输;或
    在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输时间。
  19. 一种确定信道质量的装置,其特征在于,包括:
    确定单元,用于确定目标频段的测量时间集合,所述目标频段为目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段;
    测量单元,用于在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
  20. 如权利要求19所述的装置,其特征在于,所述起始时刻是所述目标小区经过先听后说LBT评估后确定的。
  21. 如权利要求19或20所述的装置,其特征在于,所述满足预定条件的时间段与所述起始时刻相邻。
  22. 如权利要求19-21任一所述的装置,其特征在于,所述满足预定条件的时间段,包括:
    由M个侦听时隙和N个延迟时间组成的时间段;或
    由S个侦听时隙组成的时间段;或
    由K个正交频分复用OFDM符号组成的时间段;
    其中,M、N、S、K均为正整数。
  23. 如权利要求19-21任一所述的装置,其特征在于,所述满足预定条件的时间段,包括:
    位于随机退避数对应的时间内的时间段,所述随机退避数是所述目标小区启动空闲信道评估之前确定的。
  24. 如权利要求19或20所述的装置,其特征在于,所述满足预定条件的时间段,包括:
    在第一预定时间间隔之前的时间段,所述第一预定时间间隔包括所述目标小区在所述目标频段发送的信道保留信号占用的时间。
  25. 如权利要求19或20所述的装置,其特征在于,所述满足预定条件的时间段,包括:
    在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收上行数据的时间。
  26. 如权利要求19-25任一所述的装置,其特征在于,所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,包括:
    所述用户设备在所述测量时间集合内测量所述目标频段的能量。
  27. 如权利要求19-26任一所述的装置,其特征在于,所述测量单元用于以下至少一项:
    在所述测量时间集合内,以OFDM符号为单位测量所述目标频段的能量;
    在所述测量时间集合内,以所述目标小区的侦听时隙为单位测量所述目标频段的能量;
    在所述测量时间集合内,以所述用户设备的侦听时隙为单位测量所述目标频段的能量。
  28. 如权利要求19-27任一所述的装置,其特征在于,还包括上报单元,用于:
    周期性上报所述测量结果;和/或
    在所述起始时刻之前,上报所述测量结果;和/或
    在所述起始时刻之后的第三预定时间间隔内,上报所述测量结果,所述第三预定时间间隔不大于所述用户设备向所述目标小区上报信道状态信息所需要的时间。
  29. 一种确定信道质量的装置,其特征在于,包括:
    发送单元,用于向用户设备发送指示消息,所述指示消息指示目标频段的测量时间集合,所述目标频段为所述目标小区的工作频率,所述测量时间集合为所述目标小区在所述目标频段发送数据的起始时刻之前且满足预定条件的时间段,以使得所述用户设备在所述测量时间集合内测量所述目标频段的无线条件,获得测量结果。
  30. 如权利要求29所述的装置,其特征在于,还包括:
    评估单元,用于进行先听后说LBT评估,获得评估结果;
    第一确定单元,用于根据所述评估结果,确定所述起始时刻。
  31. 如权利要求29或30所述的装置,其特征在于,所述装置还包括:
    第二确定单元,用于确定随机退避数,所述随机退避数是所述目标小区启动空闲信道评估之前确定的,所述满足预定条件的时间段为位于所述随机退避数对应的时间内的时间段。
  32. 如权利要求29或30所述的装置,其特征在于,所述发送单元还用于:
    在所述起始时刻之前向所述用户设备发送信道保留信号,所述满足预定条件的时间段为在第一预定时间间隔之前的时间段,所述第一预定时间间隔为所述信道保留信号占用的时间。
  33. 如权利要求29或30所述的装置,其特征在于,还包括:
    第一接收单元,用于在所述起始时刻之前接收上行数据,所述满足预定条件的时间段为在第二预定时间间隔之后的时间段,所述第二预定时间间隔为所述目标小区接收所述上行数据的时间。
  34. 如权利要求29-33任一所述的装置,其特征在于,还包括:
    第二接收单元,用于接收所述用户设备上报的测量结果;
    第三确定单元,用于根据所述测量结果,确定所述目标频段的无线条件。
  35. 如权利要求34所述的装置,其特征在于,还包括:
    第四确定单元,用于根据所述用户设备上报的测量结果和所述目标小区在所述测量时间集合内测量所述目标频段的无线条件所得到的测量结果,确定所述目标频段上是否存在所述用户设备的隐藏节点。
  36. 如权利要求35所述的装置,其特征在于,当所述目标小区确定所述目标频段上存在所述用户设备的隐藏节点时,还包括数据传输单元,用于:
    结束与所述用户设备之间的数据传输;或
    在所述起始时刻之后,所述目标小区缩短在所述目标频段的数据传输时间。
PCT/CN2015/087070 2015-08-14 2015-08-14 一种确定信道质量的方法及装置 WO2017028045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/087070 WO2017028045A1 (zh) 2015-08-14 2015-08-14 一种确定信道质量的方法及装置
CN201580071819.XA CN107113636B (zh) 2015-08-14 2015-08-14 一种确定信道质量的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/087070 WO2017028045A1 (zh) 2015-08-14 2015-08-14 一种确定信道质量的方法及装置

Publications (1)

Publication Number Publication Date
WO2017028045A1 true WO2017028045A1 (zh) 2017-02-23

Family

ID=58050435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087070 WO2017028045A1 (zh) 2015-08-14 2015-08-14 一种确定信道质量的方法及装置

Country Status (2)

Country Link
CN (1) CN107113636B (zh)
WO (1) WO2017028045A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测***、基站和终端
WO2015057654A2 (en) * 2013-10-14 2015-04-23 Qualcomm Incorporated Techniques for enabling asynchronous communications using unlicensed radio frequency spectrum
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752786B (zh) * 2011-04-18 2016-05-25 ***通信集团公司 一种确定通信***信道质量的方法、***及装置
US10098095B2 (en) * 2012-05-25 2018-10-09 Qualcomm Incorporated Feedback to enhance rate prediction with bursty interference
JP2016541170A (ja) * 2013-10-31 2016-12-28 華為技術有限公司Huawei Technologies Co.,Ltd. 移動性管理方法、装置及びシステム
EP3075187B1 (en) * 2013-11-27 2022-11-02 Apple Inc. Mechanisms for co-existence of lte-u network with itself and with other technologies
CN104363657B (zh) * 2014-11-06 2019-10-11 东莞宇龙通信科技有限公司 数据传输方法、***和具有基站功能的设备
CN104333873A (zh) * 2014-11-28 2015-02-04 东莞宇龙通信科技有限公司 信道检测方法及***、具有基站功能的设备和终端
CN104507108B (zh) * 2014-12-19 2019-03-08 宇龙计算机通信科技(深圳)有限公司 信道空闲状态的指示或资源预留方法、***、终端和基站
CN104540164A (zh) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 数据传输方法、数据传输装置和数据传输***
CN104579518B (zh) * 2015-01-30 2017-01-11 深圳酷派技术有限公司 Csi测量及反馈方法、csi测量及反馈***和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057654A2 (en) * 2013-10-14 2015-04-23 Qualcomm Incorporated Techniques for enabling asynchronous communications using unlicensed radio frequency spectrum
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站
CN104539405A (zh) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 信道检测方法、信道检测***、基站和终端
CN104717686A (zh) * 2015-03-31 2015-06-17 深圳酷派技术有限公司 一种未授权频段的信道检测方法及网元设备
CN104812032A (zh) * 2015-04-10 2015-07-29 宇龙计算机通信科技(深圳)有限公司 一种在非授权频段应用drx的方法及装置

Also Published As

Publication number Publication date
CN107113636B (zh) 2020-12-15
CN107113636A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
US11516845B2 (en) Method and equipment for channel sensing and signal transmission
US10491263B2 (en) Data transmission method and data transmission device
CN107113867B (zh) 机会频谱存取中的测量的信标传输方法
WO2016161710A1 (zh) 信道占用概率的调整方法、调整***和设备
WO2018127001A1 (zh) 干扰消除方法及装置
US20170238320A1 (en) Radio base station and user terminal
US10873940B2 (en) Data transmission method, terminal, and base station in LAA-LTE system
US10772126B2 (en) Communication method on unlicensed frequency band, terminal device, and network device
US10728787B2 (en) Devices and method for measurement of wireless conditions of frequency bands
KR20160045827A (ko) 비허가 스펙트럼에 있어서 lte/lte-a 통신들에서의 버스티 wifi 간섭의 검출
WO2016106662A1 (zh) 在使用非授权频段的小区中传输参考信号的方法及设备
EP3941141A1 (en) User terminal and wireless communication method
JP2017536045A (ja) 共有通信媒体に対する部分的チャネル予約
JP7407805B2 (ja) 端末、無線通信方法、基地局及びシステム
KR20220006635A (ko) 업링크 전송을 위한 방법, 단말 장치 및 네트워크 노드
CA3129392A1 (en) Ue, network node and methods for handling 2-step and 4-step random access procedures
US20220394757A1 (en) Two-step rach transmissions using guard band in unlicensed spectrum
EP3915310A1 (en) Cooperative inter-network channel selection
WO2017166249A1 (zh) 信息传输方法及装置
WO2017028045A1 (zh) 一种确定信道质量的方法及装置
CN114026940A (zh) 用于上行链路传输的方法、终端设备和网络节点
TWI552637B (zh) 基地台及其通訊方法
US20230232399A1 (en) Method for transmitting information, and communication device
WO2024103843A1 (en) Systems and methods for device-to-device communications
WO2017153630A1 (en) Protecting transmissions in wireless network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901250

Country of ref document: EP

Kind code of ref document: A1