WO2017026783A1 - 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치 - Google Patents

무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치 Download PDF

Info

Publication number
WO2017026783A1
WO2017026783A1 PCT/KR2016/008766 KR2016008766W WO2017026783A1 WO 2017026783 A1 WO2017026783 A1 WO 2017026783A1 KR 2016008766 W KR2016008766 W KR 2016008766W WO 2017026783 A1 WO2017026783 A1 WO 2017026783A1
Authority
WO
WIPO (PCT)
Prior art keywords
ack
nack
transmission
coded bit
code rate
Prior art date
Application number
PCT/KR2016/008766
Other languages
English (en)
French (fr)
Inventor
안준기
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/751,746 priority Critical patent/US10491337B2/en
Publication of WO2017026783A1 publication Critical patent/WO2017026783A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/6306Error control coding in combination with Automatic Repeat reQuest [ARQ] and diversity transmission, e.g. coding schemes for the multiple transmission of the same information or the transmission of incremental redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for transmitting a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) for a hybrid automatic repeat request (HARQ) and a device using the same in a wireless communication system. .
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ hybrid automatic repeat request
  • 3rd Generation Partnership Project (3GPP) long term evolution-advanced (LTE-A) is a technology that satisfies a maximum bandwidth of 100 MHz and a maximum data rate of 1 Gbps.
  • Carrier aggregation (CA) is one of techniques for increasing the maximum bandwidth by using a plurality of component carriers.
  • One component carrier operates as one serving cell, resulting in a terminal receiving a service from a plurality of serving cells.
  • the feedback information includes channel state information (CSI), hybrid automatic repeat request (HARQ) ACK / NACK, and the like.
  • Physical uplink control channel is defined for transmission of feedback information.
  • 3GPP LTE-A provides various PUCCH formats such as PUCCH format 1 / 1a / 1b, PUCCH format 2 / 2a / 2b, PUCCH format 3, PUCCH format 4, and PUCCH format 5 according to the payload size:
  • a method of transmitting uplink control information is proposed as the number of serving cells supported in a CA environment increases.
  • the present invention provides an ACK / NACK transmission method and apparatus using the same in a wireless communication system.
  • an ACK / NACK transmission method in a wireless communication system generates an ACK / NACK payload according to the total number of cells configured by a wireless device, and the wireless device generates a channel for the ACK / NACK payload according to a basic code rate. Coding to generate a basic coded bit string, the wireless device generates a transmission coded bit string by rate matching the basic coded bit string according to a transmission code rate, and the wireless device uplinks the transmission coded bit string Transmitting over a channel.
  • the number of bits of the transmission coded bit string may be determined according to the transmission code rate and the number of scheduled cells.
  • an apparatus for transmitting ACK / NACK in a wireless communication system includes a transceiver for transmitting and receiving wireless signals and a processor coupled to the transceiver.
  • the processor generates an ACK / NACK payload according to the total number of cells set, performs channel coding on the ACK / NACK payload according to a basic code rate, and generates a basic coded bit string. Rate encoding is performed on the basic coded bit streams to generate a transport coded bit stream, and the transport coded bit stream is transmitted through an uplink channel.
  • uplink control information may be transmitted by using an existing uplink channel.
  • 1 shows a subframe structure in 3GPP LTE-A.
  • FIG. 5 shows an example of a channel structure for PUCCH format 5.
  • FIG. 6 shows ACK / NACK transmission according to an embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • Wireless devices may be fixed or mobile, and may include user equipment (UE), mobile station (MS), mobile terminal (MT), user terminal (UT), subscriber station (SS), and personal digital assistant (PDA). ), A wireless modem, a handheld device, or other terms.
  • the wireless device may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • a base station generally refers to a fixed station that communicates with a wireless device, and may be referred to by other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point. Can be.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the present invention is applied based on 3rd Generation Partnership Project (3GPP) long term evolution (LTE) / LTE-A (LTE-Avanced).
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • LTE-Avanced LTE-Avanced
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • the plurality of serving cells may be operated by one base station or may be operated by a plurality of base stations.
  • the plurality of serving cells may be divided into a plurality of cell groups.
  • the serving cell may be divided into a primary cell (PCell) and a secondary cell (SCell).
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • RRC Radio Resource Control
  • the cell index (CI) of the primary cell may be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • 1 shows a subframe structure in 3GPP LTE-A.
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • the subframe may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM symbol is only for representing one symbol period in the time domain because 3GPP LTE-A uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), and multiple access scheme It does not limit the name.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One subframe includes 14 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • one subframe includes 14 OFDM symbols in a normal cyclic prefix (CP) and one subframe includes 12 OFDM symbols in an extended CP.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block may include 7x12 resource elements (REs). Can be.
  • REs resource elements
  • the physical channel of 3GPP LTE-A may be divided into a downlink (DL) physical channel and an uplink (UL) physical channel.
  • the DL physical channel includes a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), a physical hybrid-ARQ indicator channel (PHICH), and a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid-ARQ indicator channel
  • PDSCH physical downlink shared channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the wireless device is transmitted on the PHICH.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the UL physical channel includes a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
  • PUCCH is allocated to an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the first slot and the second slot.
  • PUSCH is allocated by a UL grant on the PDCCH.
  • the fourth OFDM symbol of each slot is used for transmission of a demodulation reference signal (DMRS) for PUSCH.
  • DMRS demodulation reference signal
  • the uplink control information includes at least one of HARQ ACK / NACK, channel state information (CSI), and scheduling request (SR).
  • the CSI is an indicator indicating the state of the DL channel and may include at least one of a channel quality indicator (CQI) and a precoding matrix indicator (PMI).
  • a combination of UCI and PUCCH is defined in a PUCCH format as shown in the following table.
  • PUCCH format 1a / 1b is used to carry 1-bit or 2-bit HARQ ACK / NACK using Binary Phase Shift Keying (BPSK) modulation or Quadrature Phase Shift Keying (QPSK) modulation.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • PUCCH format 3 is used to carry 48 bits of encoded UCI.
  • PUCCH format 3 may carry HARQ ACK / NACK for a plurality of serving cells and CSI report for one serving cell.
  • the wireless device monitors the PDCCH and receives a DL grant including DL resource allocation on the PDCCH 201 (or EPDCCH) in DL subframe n.
  • the wireless device receives the DL transport block through the PDSCH 202 indicated by the DL resource allocation.
  • the wireless device transmits an ACK / NACK signal for the DL transport block on the PUCCH 210 in UL subframe n + 4.
  • the ACK / NACK signal becomes an ACK signal when the DL transport block is successfully decoded, and becomes an NACK signal when the decoding of the DL transport block fails.
  • the base station may perform retransmission of the DL transport block until the ACK signal is received or up to a maximum number of retransmissions.
  • PUCCH format 1 / 1a / 1b PUCCH format 2 / 2a / 2b, PUCCH format 3, PUCCH format 4, PUCCH format 5, etc., to carry an ACK / NACK signal that is a reception acknowledgment for HARQ in 3GPP LTE-A. This is provided. All PUCCH formats use different resource blocks in two slots.
  • One slot includes seven OFDM symbols, the second and sixth OFDM symbols become RS OFDM symbols for DMRS, and the remaining five OFDM symbols become data OFDM symbols for UCI.
  • PUCCH format 3 may carry 24 data symbols d (0) to d (23). If QPSK is used, PUCCH format 3 can carry 48 encoded bits.
  • Time-domain spreading includes w (i) corresponding to each OFDM symbol in a slot.
  • the second twelve data symbols d (12) to d (23) in the second slot are spread in the time domain using the orthogonal code W (j).
  • the time / frequency / code resource used for PUCCH transmission is called a PUCCH resource.
  • a PUCCH resource For example, an orthogonal code index, a cyclic shift index, and a resource block index are required for the PUCCH format 1 / 1a / 1b. Cyclic shift index and resource block index are needed for PUCCH format 2 / 2a / 2b. An orthogonal code index and a resource block index are required for the PUCCH format 2 / 2a / 2b.
  • the resource index is a parameter used to determine the corresponding PUCCH resource.
  • the resource index for PUCCH formats 1a / 1b for ACK / NACK is given by the corresponding DL grant.
  • the resource index for PUCCH format 3 for ACK / NACK is given by the corresponding DL grant, but it is specified within a predetermined set of resource indexes.
  • the base station pre-specifies four resource indexes for PUCCH format 3 through an RRC message.
  • one of four resource indexes may be designated through a resource indicator in the DL grant (this is called an 'ACK / NACK resource indicator').
  • One slot includes seven OFDM symbols, the middle OFDM symbol (the fourth OFDM symbol) becomes an RS OFDM symbol for DMRS, and the remaining six OFDM symbols become a data OFDM symbol for UCI. If one slot includes six OFDM symbols, the third OFDM symbol becomes an RS OFDM symbol, and the remaining five OFDM symbols become a data OFDM symbol.
  • the extended PUCCH format does not use frequency domain spreading and time domain spreading.
  • 12 data symbols may be transmitted for each OFDM symbol. Accordingly, 144 data symbols d (0) to d 143 may be transmitted in one subframe.
  • the extended PUCCH format may carry 288 encoded bits.
  • FIG. 5 shows an example of a channel structure for PUCCH format 5.
  • the channel structure of FIG. 3 can transmit 144 data symbols, this channel structure can transmit 72 data symbols d (0) to d71. If QPSK is used, the extended PUCCH format may carry 144 encoded bits.
  • CDM 0 is ⁇ + d (0), + d (1), + d (2), + d (3), + d (4), + d (5), + d (0), + d (1), + d (2), + d (3), + d (4), d (5) ⁇ are transmitted
  • CDM 1 is ⁇ + d (0), + d (1), + d (2), + d (3), + d (4), + d (5), -d (0), -d (1), -d (2), -d (3), -d ( 4), -d (5) ⁇ may be transmitted.
  • the cyclic shift value used for DMRS may also vary.
  • PUCCH format 4 may be allocated a plurality of resource blocks. That is, PUCCH 1/2/3 may be allocated only one resource block, but PUCCH format 4 may be allocated one or more resource blocks.
  • the resource configuration for the PUCCH format 4/5 may preset a plurality of candidate resources through an RRC message, and designate one of the plurality of candidate resources through a DL grant.
  • a plurality of cells are set in a wireless device.
  • the wireless device generates the ACK / NACK feedback based on the total number of cells set to it. For example, even if 10 cells are configured and 5 of them receive a PDSCH, the wireless device transmits ACK / NACK feedback for all 10 cells on the PUCCH or PUSCH. This is to prevent inconsistency of ACK / NACK feedback between the wireless device and the base station.
  • Nc Total number of cells configured for the wireless device
  • Ns Number of scheduled cells among configured cells.
  • a scheduled cell is a cell scheduled for DL transmission requiring ACK / NACK feedback.
  • Ns may be referred to as the number of subframes in which actual DL transmission is scheduled.
  • r Transmission code rate according to the scheduled cell.
  • FIG. 6 shows ACK / NACK transmission according to an embodiment of the present invention.
  • the payload size of ACK / NACK feedback is generated according to the number of configured cells.
  • the transmission code rate is determined according to the number of scheduled cells. The smaller the number of scheduled cells, the larger transmission code rate may be defined. This means that as the number of scheduled cells is smaller, ACK / NACK feedback with a smaller number of coding bits is transmitted.
  • the ACK / NACK bit corresponding to non-scheduled cells other than the scheduled cell may be defined as ACK or NACK or a predefined state.
  • the wireless device performs channel coding on the ACK / NACK payload according to the basic code rate to generate a basic coded bitstream.
  • Well-known schemes such as turbo codes can be used as the channel coding.
  • the basic code rate may also be referred to as a first code rate.
  • the wireless device rate-matches the basic coded bit stream according to the transmission code rate to generate the transport coded bit stream.
  • the transmission code rate may also be referred to as a second code rate.
  • the adjusted code rate of the ACK / NACK payload reference for the entire set cell becomes r * (P / P ').
  • the PUCCH format may be determined according to the number of bits of the ACK / NACK feedback. For example, if the ACK / NACK feedback is less than 48 bits, PUCCH format 3 may be used, and if more, PUCCH format 4 or PUCCH format 5 may be used.
  • a plurality of PDSCHs may be received in one cell and a plurality of ACK / NACK bits may be required.
  • the generation criterion of the basic coded bit string may be all of a plurality of ACK / NACK bits required in the entire set cell. Alternatively, the generation criterion of the basic coded bit string may be a set number of cells instead of all ACK / NACK bits.
  • the generation criterion of the transmission coded bit string may be all of the plurality of ACK / NACK bits required in the entire scheduled cell. Alternatively, the generation criterion of the transmission coded bit string may be the number of scheduled cells instead of all ACK / NACK bits.
  • the PUCCH transmit power may be adjusted according to the number of scheduled cells. If ACK / NACK feedback is transmitted on the PUSCH, the PUSCH transmission power may be adjusted without considering the number of scheduling cells.
  • the base station may perform decoding on the assumption that ACK / NACK feedback is received based on the scheduled cell. Regardless of the number of transmission coded bits, they may be mapped to PUCCH resources or PUSCH resources in the same order. Even if there is a mismatch in the number of ACK / NACK coded bits between the base station and the wireless device, it is possible to increase the probability that the base station succeeds in decoding the ACK / NACK feedback.
  • the wireless device may carry information on the transmission code rate in the ACK / NACK feedback.
  • the receiving base station incorrectly recognizes a transmission code rate (or a size of a transmission coded bit string), thereby preventing failure of reception of multiplexed UL traffic. Can be.
  • Information on the transmission code rate may be masked to the cyclic redundancy check (CRC) of the ACK / NACK feedback.
  • Information on the transmission code rate may be masked in the coded bits of the ACK / NACK feedback.
  • the information about the transmission code rate may include information about the number of bits of the transmission encoding bit string.
  • the decoding performance may be greatly reduced depending on the channel coding scheme, so that an upper limit value of the reference code rate may be determined and the reference code rate R may not exceed the upper limit. . If the transmission code rate r is too small, PUCCH / PUSCH resources can be wasted without being necessary, so that the lower limit of the transmission code rate can be determined, and the transmission code rate can not be smaller than the lower limit.
  • the DL DCI for scheduling each PDSCH may include a count value of the corresponding PDSCH.
  • the wireless device may estimate how many PDSCHs are scheduled based on the most recently received count value. P 'may be determined based on the most recently received count value. Alternatively, the basic code rate may be determined based on the most recently received count value.
  • the number Nc of all cells configured for the wireless device may be replaced with the number of activated cells.
  • the number Ns of scheduled cells may be replaced with the number of activated cells.
  • the above embodiment may be applied to coding of UCI transmitted by the wireless device in addition to the ACK / NACK feedback.
  • FIG. 7 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device 50 includes a processor 51, a memory 52, and a transceiver 53.
  • the memory 52 is connected to the processor 51 and stores various instructions executed by the processor 51.
  • the transceiver 53 is connected to the processor 51 to transmit and / or receive a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 51. When the above-described embodiment is implemented as software instructions, the instructions may be stored in the memory 52 and executed by the processor 51 to perform the above-described operations.
  • Base station 60 includes a processor 61, a memory 62, and a transceiver 63.
  • Base station 60 may operate in an unlicensed band.
  • the memory 62 is connected to the processor 61 and stores various instructions executed by the processor 61.
  • the transceiver 63 is connected to the processor 61 to transmit and / or receive a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 ACK/NACK 전송 방법 및 장치가 제공된다. 상기 장치는 설정된 셀의 전체 개수에 따라 ACK/NACK 페이로드를 생성하고, 기본 코드율에 따라 ACK/NACK 페이로드에 대해 채널 코딩을 수행하여 기본 부호화 비트열을 생성한다. 상기 장치가 전송 코드율에 따라 상기 기본 부호화 비트열을 레이트 매칭하여 전송 부호화 비트열을 생성하고, 전송한다.

Description

무선 통신 시스템에서 ACK/NACK 전송 방법 및 이를 이용한 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement)을 전송하는 방법 및 이를 이용한 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) LTE-A(long term evolution-advanced)는 최대 100MHz 대역폭과 최대 1Gbps 데이터 레이트를 만족하는 기술이다. CA(carrier aggregation)은 복수의 요소 반송파(component carrier)를 이용하여 최대 대역폭을 증가시키기 위한 기술 중 하나이다. 하나의 요소 반송파는 하나의 서빙셀로 동작하여, 이에 따라 단말이 복수의 서빙셀로부터 서비스를 제공받는 결과가 된다.
지원되는 서빙셀의 개수가 증가함에 따라, 단말이 보고하는 피드백 정보의 양도 증가한다. 피드백 정보는 CSI(channel state information), HARQ(hybrid automatic repeat request) ACK/NACK 등을 포함한다.
피드백 정보의 전송을 위해 PUCCH(physical uplink control channel)가 정의된다. 3GPP LTE-A는 페이로드의 크기에 따라 PUCCH 포맷 1/1a/1b, PUCCH 포맷 2/2a/2b, PUCCH 포맷 3, PUCCH 포맷 4, PUCCH 포맷 5 등 다양한 PUCCH 포맷을 제공한다: .
CA 환경에서 지원되는 서빙셀의 갯수가 증가함에 따라 상향링크 제어 정보를 전송하는 방법이 제안된다.
본 발명은 무선 통신 시스템에서 ACK/NACK 전송 방법 및 이를 이용한 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 ACK/NACK 전송 방법은 무선기기가 설정된 셀의 전체 개수에 따라 ACK/NACK 페이로드를 생성하고, 상기 무선기기가 기본 코드율에 따라 ACK/NACK 페이로드에 대해 채널 코딩을 수행하여 기본 부호화 비트열을 생성하고, 상기 무선기기가 전송 코드율에 따라 상기 기본 부호화 비트열을 레이트 매칭하여 전송 부호화 비트열을 생성하고, 상기 무선기기가 상기 전송 부호화 비트열을 상향링크 채널을 통해 전송하는 것을 포함한다.
상기 전송 부호화 비트열의 비트 수는 상기 전송 코드율과 스케줄링된 셀의 개수에 따라 결정될 수 있다.
다른 양태에서, 무선 통신 시스템에서 ACK/NACK을 전송하는 장치는 무선 신호를 송신 및 수신하는 송수신기와 상기 송수신기에 연결되는 프로세서를 포함한다. 상기 프로세서는 설정된 셀의 전체 개수에 따라 ACK/NACK 페이로드를 생성하고, 기본 코드율에 따라 ACK/NACK 페이로드에 대해 채널 코딩을 수행하여 기본 부호화 비트열을 생성하고, 전송 코드율에 따라 상기 기본 부호화 비트열을 레이트 매칭하여 전송 부호화 비트열을 생성하고, 상기 전송 부호화 비트열을 상향링크 채널을 통해 전송한다.
무선기기에게 설정된 셀의 갯수가 증가하더라도 기존 상향링크 채널을 활용하여 상향링크 제어정보를 전송할 수 있다.
도 1은 3GPP LTE-A에서 서브프레임 구조를 보여준다.
도 2는 HARQ를 수행하는 일 예를 보여준다.
도 3은 PUCCH 포맷 3을 위한 채널 구조의 일 예를 보여준다.
도 4은 PUCCH 포맷 4을 위한 채널 구조의 일 예를 보여준다.
도 5는 PUCCH 포맷 5을 위한 채널 구조의 일 예를 보여준다.
도 6은 본 발명의 일 실시예에 따른 ACK/NACK 전송을 보여준다.
도 7은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(wireless device)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
기지국(base station, BS)은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) LTE(long term evolution)/LTE-A(LTE-advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다. 복수의 서빙셀은 하나의 기지국에 의해 운영될 수도 있고, 또는 복수의 기지국에 의해 운영될 수도 있다. 복수의 서빙셀은 복수의 셀그룹으로 나뉠 수 있다.
서빙셀은 1차 셀(primary cell,PCell)과 2차 셀(secondary cell, SCell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
도 1은 3GPP LTE-A에서 서브프레임 구조를 보여준다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE-A가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 서브프레임은 14 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP LTE-A에 의하면, 정규 CP(Cyclic Prefix)에서 1 서브프레임은 14 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 12 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7x12개의 자원요소(resource element, RE)를 포함할 수 있다.
3GPP LTE-A의 물리채널(physical channel)은 DL(downlink) 물리채널과 UL(uplink) 물리 채널로 구분될 수 있다. DL 물리채널은 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PDSCH(Physical Downlink Shared Channel)를 포함한다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
UL 물리채널은 PUCCH(Physical Uplink Control Channel)와 PUSCH(Physical Uplink Shared Channel)를 포함한다. PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당된다. RB 쌍에 속하는 RB들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUSCH는 PDCCH 상의 UL 그랜트에 의해 할당된다. 노멀 CP에서, 각 슬롯의 4번째 OFDM 심벌은 PUSCH를 위한 DMRS(Demodulation Reference Signal)의 전송에 사용된다.
UCI(uplink control information)는 HARQ ACK/NACK, CSI(Channel State Information) 및 SR(Scheduling Request) 중 적어도 어느 하나를 포함한다. 이하에서, CSI는 DL 채널의 상태를 나타내는 지표로, CQI(Channel Quality Indicator) 및 PMI(Precoding Matrix Indicator) 중 적어도 어느 하나를 포함할 수 있다.
다양한 UCI를 PUCCH 상으로 전송하기 위해 UCI와 PUCCH 간의 조합을 다음 표와 같이 PUCCH 포맷으로 정의한다.
PUCCH 포맷 전송되는 UCI
PUCCH 포맷 1 긍정적(positive) SR
PUCCH 포맷 1a/1b 1 비트 또는 2 비트 HARQ ACK/NACK
PUCCH 포맷 2 CSI 보고
PUCCH 포맷 2a/2b CSI 보고 및 1 비트 또는 2 비트 HARQ ACK/NACK
PUCCH 포맷 3/4/5 HARQ ACK/NACK, SR, CSI
PUCCH 포맷 1a/1b는 BPSK(Binary Phase Shift Keying) 변조 또는 QPSK(Quadrature Phase Shift Keying) 변조를 이용하여 1 비트 또는 2 비트 HARQ ACK/NACK를 나르는데 사용된다.
PUCCH 포맷 3는 48 비트의 인코딩된 UCI를 나르는데 사용된다. PUCCH 포맷 3는 복수의 서빙셀에 대한 HARQ ACK/NACK 및 하나의 서빙셀에 대한 CSI 보고를 나를 수 있다.
도 2는 HARQ를 수행하는 일 예를 보여준다.
무선기기는 PDCCH를 모니터링하여, DL 서브프레임 n에서 PDCCH(201)(또는 EPDCCH) 상으로 DL 자원 할당을 포함하는 DL 그랜트를 수신한다. 무선기기는 DL 자원 할당에 의해 지시되는 PDSCH(202)를 통해 DL 전송 블록(transport block)을 수신한다.
무선기기는 UL 서브프레임 n+4에서 PUCCH(210) 상으로 상기 DL 전송 블록에 대한 ACK/NACK 신호를 전송한다. ACK/NACK 신호는 상기 DL 전송 블록이 성공적으로 디코딩되면 ACK 신호가 되고, 상기 DL 전송 블록의 디코딩에 실패하면 NACK 신호가 된다. 기지국은 NACK 신호가 수신되면, ACK 신호가 수신되거나 최대 재전송 횟수까지 상기 DL 전송 블록의 재전송를 수행할 수 있다.
3GPP LTE-A에서 HARQ를 위한 수신 확인(reception acknowledgement)인 ACK/NACK 신호를 나르기 위해 PUCCH 포맷 1/1a/1b, PUCCH 포맷 2/2a/2b, PUCCH 포맷 3, PUCCH 포맷 4, PUCCH 포맷 5 등이 제공된다. 모든 PUCCH 포맷은 2개의 슬롯에서 서로 다른 자원블록을 사용한다.
도 3은 PUCCH 포맷 3을 위한 채널 구조의 일 예를 보여준다.
하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 두번째와 여섯번째 OFDM 심벌은 DMRS를 위한 RS OFDM 심벌이 되고, 나머지 5개의 OFDM 심벌은 UCI를 위한 데이터 OFDM 심벌이 된다.
PUCCH 포맷 3는 24개의 데이터 심벌 d(0)~d(23)을 나를 수 있다. QPSK가 사용되면, PUCCH 포맷 3는 48의 인코딩된 비트를 나를 수 있다.
제1 슬롯에서 첫번째 12개의 데이터 심벌 d(0)~d(11)은 직교 코드 W(j)={w(0), w(1), w(2), w(3), w(4)}를 이용하여 시간 영역에서 확산된다. 시간 영역 확산은 슬롯 내 각 OFDM 심벌에 w(i)가 대응하는 것을 포함한다. 제2 슬롯에서 두번째 12개의 데이터 심벌 d(12)~d(23)은 직교 코드 W(j)를 이용하여 시간 영역에서 확산된다.
PUCCH 전송에 사용되는 시간/주파수/코드 자원을 PUCCH 자원이라 한다. 예를 들어, PUCCH 포맷 1/1a/1b를 위해 직교 코드 인덱스, 순환 쉬프트 인덱스 및 자원 블록 인덱스가 필요하다. PUCCH 포맷 2/2a/2b를 위해 순환 쉬프트 인덱스 및 자원 블록 인덱스가 필요하다. PUCCH 포맷 2/2a/2b를 위해 직교 코드 인덱스 및 자원 블록 인덱스가 필요하다. 자원 인덱스는 해당되는 PUCCH 자원을 결정하는데 사용되는 파라이터이다.
ACK/NACK을 위한 PUCCH 포맷 1a/1b을 위한 자원 인덱스는 해당 DL 그랜트에 의해 주어진다. ACK/NACK을 위한 PUCCH 포맷 3을 위한 자원 인덱스는 해당 DL 그랜트에 의해 주어지지만, 이는 미리 지정된 자원 인덱스 집합 내에서 지정된다. 예를 들어, 기지국은 RRC 메시지를 통해 PUCCH 포맷 3를 위한 4개의 자원 인덱스를 미리 지정한다. 그리고, DL 그랜트 내의 자원 지시자(이를 'ARI(ACK/NACK resource indicator)'라고 함)를 통해 4개의 자원 인덱스를 중 하나를 지정할 수 있다.
도 4은 PUCCH 포맷 4을 위한 채널 구조의 일 예를 보여준다.
하나의 슬롯은 7개의 OFDM 심벌을 포함하고, 가운데 OFDM 심벌(네번째 OFDM 심벌)은 DMRS를 위한 RS OFDM 심벌이 되고, 나머지 6개의 OFDM 심벌은 UCI를 위한 데이터 OFDM 심벌이 된다. 만약 하나의 슬롯이 6개의 OFDM 심벌을 포함하면, 세번째 OFDM 심벌이 RS OFDM 심벌이 되고, 나머지 5개의 OFDM 심벌이 데이터 OFDM 심벌이 된다.
확장 PUCCH 포맷은 주파수 영역 확산 및 시간 영역 확산을 사용하지 않는다. 하나의 자원블록이 확장 PUCCH 포맷에 할당된다고 할 때, 각 OFDM 심벌 마다 12 데이터 심벌이 전송될 수 있다. 따라서, 하나의 서브프레임에는 144개의 데이터 심벌 d(0)~d(143)이 전송될 수 있다. QPSK가 사용되면, 확장 PUCCH 포맷는 288의 인코딩된 비트를 나를 수 있다.
도 5는 PUCCH 포맷 5을 위한 채널 구조의 일 예를 보여준다.
도 3의 채널 구조와 비교하여, 각 OFDM 심벌 마다 하나의 자원 블록내에서 6개의 데이터 심벌이 반복된다. 예를 들어, 첫번째 OFDM 심벌에서는 {d(0), d(1), d(2), d(3), d(4), d(5), d(0), d(1), d(2), d(3), d(4), d(5)}가 전송된다. 따라서, 도 3의 채널 구조가 144개의 데이터 심벌을 전송할 수 있지만, 이 채널 구조는 72개의 데이터 심벌 d(0)~d(71)을 전송할 수 있다. QPSK가 사용되면, 확장 PUCCH 포맷는 144의 인코딩된 비트를 나를 수 있다.
다중 사용자의 멀티플렉싱을 지원하기 위해, 각 OFDM 심벌에서의 반복되는 데이터 심벌에 CDM(code division multiplexing)이 지원될 수 있다. 예를 들어, CDM 0은 {+d(0), +d(1), +d(2), +d(3), +d(4), +d(5), +d(0), +d(1), +d(2), +d(3), +d(4), d(5)}이 전송되고, CDM 1은 {+d(0), +d(1), +d(2), +d(3), +d(4), +d(5), -d(0), -d(1), -d(2), -d(3), -d(4), -d(5)}이 전송될 수 있다. CDM에 따라 DMRS에 사용되는 순환 쉬프트 값도 달라질 수 있다.
PUCCH 포맷 4에게는 복수의 자원블록이 할당될 수 있다. 즉, PUCCH 1/2/3은 단지 하나의 자원블록이 할당될 수 있었으나, PUCCH 포맷 4는 하나 또는 그 이상의 자원블록이 할당될 수 있다.
PUCCH 포맷 3의 설정과 유사하게, PUCCH 포맷 4/5에 관한 자원 설정은 RRC 메시지를 통해 복수의 후보 자원을 미리 설정하고, DL 그랜트를 통해 복수의 후보 자원 중 하나를 지정할 수 있다.
CA 환경에서 무선기기에게 복수의 셀이 설정된다. 기존 3GPP LTE에 의하면, 무선기기는 자신에게 설정된 셀 전체 갯수를 기반으로 ACK/NACK 피드백을 생성한다. 예를 들어, 10개의 셀이 설정되고, 이 중 5개의 셀에서 PDSCH를 수신하더라도, 무선기기는 10개의 셀 모두에 대한 ACK/NACK 피드백을 PUCCH 또는 PUSCH 상으로 전송한다. 이는 무선기기와 기지국 간 ACK/NACK 피드백의 불일치를 방지하기 위함이다.
하지만, 설정된 셀 개수가 증가되면, 설정된 셀 전체 개수에 대응하는 ACK/NACK 피드백을 UL 채널 상으로 전송하는 것은 UL 자원의 낭비를 초래할 수 있다. 또는, 설정된 셀 개수가 증가함에 따라 UL 채널을 통해 해당 ACK/NACK 피드백의 전송이 불가능할 수 있다.
이하에서는, ACK/NACK 피드백의 코드율(code rate)을 조정하는 것이 제안된다.
먼저 다음과 같은 파라미터를 정의한다.
Nc : 무선기기에게 설정된 전체 셀의 갯수
Ns : 설정된 셀들 중 스케줄링된 셀의 갯수. 스케줄링된 셀은 ACK/NACK 피드백이 요구되는 DL 전송이 스케줄링된 셀이다. 또는, Ns는 실제 DL 전송이 스케줄링된 서브프레임의 갯수라고 할 수도 있다.
P : 설정된 셀에 따른 ACK/NACK 페이로드의 크기. 예를 들어, Nc=10 이면, P=10 비트이다.
P' : 스케줄링된 셀에 따른 ACK/NACK 페이로드의 크기. 예를 들어, Ns=5 이면, P'=5 비트이다.
R : 기본 코드율(mother code rate).
r : 스케줄링된 셀에 따른 전송 코드율.
C : 전송될 ACK/NACK 피드백의 비트 수
도 6은 본 발명의 일 실시예에 따른 ACK/NACK 전송을 보여준다.
ACK/NACK 피드백의 페이로드 크기는 설정된 셀의 갯수에 따라 생성된다. 전송 코드율은 스케줄링된 셀의 갯수에 따라 결정된다. 스케줄링된 셀의 갯수가 작을 수록 더 큰 전송 코드율이 정의될 수 있다. 이는 스케줄링된 셀의 갯수가 작을 수록 더 작은 수의 부호화 비트를 갖는 ACK/NACK 피드백이 전송됨을 의미한다.
먼저, 무선기기는 Nc에 따라 P 비트의 ACK/NACK 페이로드를 생성한다. Nc=10이면, P=10이고, ACK/NACK 페이로드는 {x(1), ..., x(10)}가 된다. x(n)는 n번째 셀에 대한 ACK/NACK 비트를 의미한다.
스케줄링된 셀이 아닌 비-스케줄링된 셀들에 대응하는 ACK/NACK 비트는 ACK 또는 NACK 또는 미리 정의된 상태로 정의될 수 있다.
두번째로, 무선기기는 기본 코드율에 따라 ACK/NACK 페이로드에 대해 채널 코딩을 수행하여 기본 부호화 비트열(basic coded bitstream)을 생성한다. 채널 코딩으로 터보 코드 등 잘 알려진 방식이 사용될 수 있다. 기본 코드율은 제1 코드율이라고도 할 수 있다. 기본 부호화 비트 열의 비트 수는 P/R 가 된다. 예를 들어, R=1/3 이라면, P/R=30비트이고, 기본 부호화 비트 열은 {y(1), ..., y(30)}이 된다. y(n)는 n번째 비트를 의미한다.
세번째로, 무선기기는 전송 코드율에 따라 기본 부호화 비트열을 레이트 매칭하여 전송 부호화 비트열을 생성한다. 전송 코드율은 제2 코드율이라고도 할 수 있다. 레이트 매칭될 비트는 전송 코드율과 스케줄링된 셀의 수에 따라 결정된다. 따라서, 전송될 전송 부호화 비트열의 비트 수는 C=P'/r 이 된다. 설정된 셀 전체에 대한 ACK/NACK 페이로드 기준의 조정된 코드율은 r*(P/P')이 된다.
일 예로, P'=5, r=1/3 면, C=15이다. 따라서, {y(1), ..., y(15)}가 전송 부호화 비트열이 되고, ACK/NACK 피드백으로써 PUCCH 또는 PUSCH의 입력 비트열로 입력되고, 변조되고, 전송된다.
다른 예로, P'=5, r=1/2 면, C=10이다. 따라서, {y(1), ..., y(10)}가 전송 부호화 비트열이 된다.
ACK/NACK 피드백의 비트 수에 따라 PUCCH 포맷이 결정될 수 있다. 예를 들어, ACK/NACK 피드백이 48비트 보다 작으면 PUCCH 포맷 3이 사용되고, 그 이상이면 PUCCH 포맷 4 또는 PUCCH 포맷 5가 사용될 수 있다.
하나의 셀에 복수의 PDSCH가 수신되어 복수의 ACK/NACK 비트가 요구될 수 있다. 기본 부호화 비트열의 생성 기준은 전체 설정된 셀에서 요구되는 복수의 ACK/NACK 비트 전부일 수 있다. 또는, 기본 부호화 비트열의 생성 기준은 전체 ACK/NACK 비트가 아닌 설정된 셀의 개수일 수 있다. 전송 부호화 비트열의 생성 기준은 전체 스케줄링된 셀에서 요구되는 복수의 ACK/NACK 비트 전부일 수 있다. 또는, 전송 부호화 비트열의 생성 기준은 전체 ACK/NACK 비트가 아닌 스케줄링된 셀의 개수일 수 있다.
ACK/NACK 피드백이 PUCCH 상으로 전송되면, 스케줄링된 셀의 개수에 따라서 PUCCH 전송 전력이 조정될 수 있다. ACK/NACK 피드백이 PUSCH 상으로 전송되면, 스케줄링 셀의 개수를 고려하지 않고 PUSCH 전송 전력이 조정될 수 있다.
기지국은 스케줄링된 셀 기준으로 ACK/NACK 피드백이 수신된다고 가정하고 디코딩을 수행할 수 있다. 전송 부호화 비트의 개수에 관계 없이 동일한 순서로 PUCCH 자원이나 PUSCH 자원으로 매핑할 수 있다. 기지국과 무선기기 간에 ACK/NACK 부호화 비트 수의 이해가 불일치하더라도 기지국이 ACK/NACK 피드백 디코딩에 성공할 가능성을 높일 수 있다.
무선기기는 전송 코드율에 관한 정보를 ACK/NACK 피드백에 실을 수 있다. 특히, ACK/NACK 피드백이 UL 트래픽과 멀티플렉싱되어 전송되는 PUSCH 전송에서, 수신측 기지국이 전송 코드율(또는 전송 부호화 비트열의 크기)을 잘못 인식해서, 멀티플렉싱된 UL 트래픽의 수신에도 실패하는 것을 방지할 수 있다. 전송 코드율에 정보는 ACK/NACK 피드백의 CRC(cyclic redundancy check)에 마스킹될 수 있다. 전송 코드율에 정보는 ACK/NACK 피드백의 부호화 비트에 마스킹될 수 있다. 전송 코드율에 관한 정보는 전송 부호화 비트열의 비트 수에 관한 정보를 포함할 수 있다.
조정된 코드율(r*P/P')이 너무 클 경우, 채널 코딩 방식에 따라 디코딩 성능이 크게 떨어질 수 있으므로, 기준 코드율의 상한값을 정하고, 기준 코드율 R이 상한값을 넘지 않도록 할 수 있다. 전송 코드율 r이 너무 작을 경우 PUCCH/PUSCH 자원을 필요없이 낭비할 수 있으므로, 전송 코드율의 하한값을 정하고, 전송 코드율이 하한값보다 작지 작지 않도록 할 수 있다.
각 PDSCH를 스케줄하는 DL DCI는 해당 PDSCH의 카운트 값을 포함할 수 있다. 무선기기는 가장 최근에 수신된 카운트 값을 기준으로 스케줄링된 PDSCH가 몇개인지를 추정할 수 있다. P'은 가장 최근에 수신된 카운트 값을 기반으로 결정될 수 있다. 또는, 기본 코드율은 가장 최근에 수신된 카운트 값을 기반으로 결정될 수 있다.
상기 실시예에서, 무선기기에게 설정된 전체 셀의 갯수 Nc는 활성화된 셀(activated cell)의 개수로 대체될 수 있다. 또는, 스케줄링된 셀의 갯수 Ns가 활성화된 셀의 개수로 대체될 수 있다.
상기 실시예는 ACK/NACK 피드백 이외에 무선기기에 의해 전송되는 UCI의 코딩에 적용될 수 있다.
도 7은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(50)는 프로세서(processor, 51), 메모리(memory, 52) 및 송수신기(transceiver, 53)를 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)에 의해 실행되는 다양한 명령어(instructions)를 저장한다. 송수신기(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(51)에 의해 구현될 수 있다. 전술한 실시예가 소프트웨어 명령어로 구현될 때, 명령어는 메모리(52)에 저장되고, 프로세서(51)에 의해 실행되어 전술한 동작이 수행될 수 있다.
기지국(60)는 프로세서(61), 메모리(62) 및 송수신기(63)를 포함한다. 기지국(60)은 비면허 대역에서 운용될 수 있다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)에 의해 실행되는 다양한 명령어를 저장한다. 송수신기(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 무선 통신 시스템에서 ACK/NACK 전송 방법에 있어서,
    무선기기가 설정된 셀의 전체 개수에 따라 ACK/NACK 페이로드를 생성하고;
    상기 무선기기가 기본 코드율에 따라 ACK/NACK 페이로드에 대해 채널 코딩을 수행하여 기본 부호화 비트열을 생성하고;
    상기 무선기기가 전송 코드율에 따라 상기 기본 부호화 비트열을 레이트 매칭하여 전송 부호화 비트열을 생성하고;
    상기 무선기기가 상기 전송 부호화 비트열을 상향링크 채널을 통해 전송하는 것을 포함하는 것을 특징으로 하는 ACK/NACK 전송 방법.
  2. 제 1 항에 있어서,
    상기 전송 부호화 비트열의 비트 수는 상기 전송 코드율과 스케줄링된 셀의 개수에 따라 결정되는 것을 특징으로 하는 ACK/NACK 전송 방법.
  3. 제 2 항에 있어서,
    상기 ACK/NACK 페이로드는 상기 적어도 하나의 스케줄링된 셀의 ACK/NACK 비트와 영 또는 그 이상의 비-스케줄링된 셀의 ACK/NACK 비트를 포함하는 것을 특징으로 하는 ACK/NACK 전송 방법.
  4. 제 2 항에 있어서,
    상기 ACK/NACK 페이로드는 상기 설정된 셀의 전체 개수에 대응하는 비트 수를 갖는 것을 특징으로 하는 ACK/NACK 전송 방법.
  5. 제 1 항에 있어서,
    상기 전송 부호화 비트열의 CRC(cyclic redundancy check)에는 상기 전송 코드율에 관한 정보가 마스킹되는 것을 특징으로 하는 ACK/NACK 전송 방법.
  6. 제 1 항에 있어서,
    상기 상향링크 채널은 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel) 인 것을 특징으로 하는 ACK/NACK 전송 방법.
  7. 무선 통신 시스템에서 ACK/NACK을 전송하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 송수신기;와
    상기 송수신기에 연결되는 프로세서를 포함하되, 상기 프로세서는,
    설정된 셀의 전체 개수에 따라 ACK/NACK 페이로드를 생성하고;
    기본 코드율에 따라 ACK/NACK 페이로드에 대해 채널 코딩을 수행하여 기본 부호화 비트열을 생성하고;
    전송 코드율에 따라 상기 기본 부호화 비트열을 레이트 매칭하여 전송 부호화 비트열을 생성하고;
    상기 전송 부호화 비트열을 상향링크 채널을 통해 전송하는 것을 특징으로 하는 장치.
  8. 제 7 항에 있어서,
    상기 전송 부호화 비트열의 비트 수는 상기 전송 코드율과 스케줄링된 셀의 개수에 따라 결정되는 것을 특징으로 하는 장치.
  9. 제 8 항에 있어서,
    상기 ACK/NACK 페이로드는 상기 적어도 하나의 스케줄링된 셀의 ACK/NACK 비트와 영 또는 그 이상의 비-스케줄링된 셀의 ACK/NACK 비트를 포함하는 것을 특징으로 하는 장치.
  10. 제 8 항에 있어서,
    상기 ACK/NACK 페이로드는 상기 설정된 셀의 전체 개수에 대응하는 비트 수를 갖는 것을 특징으로 하는 장치.
  11. 제 7 항에 있어서,
    상기 전송 부호화 비트열의 CRC(cyclic redundancy check)에는 상기 전송 코드율에 관한 정보가 마스킹되는 것을 특징으로 하는 장치.
  12. 제 7 항에 있어서,
    상기 상향링크 채널은 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel) 인 것을 특징으로 하는 장치.
PCT/KR2016/008766 2015-08-12 2016-08-10 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치 WO2017026783A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,746 US10491337B2 (en) 2015-08-12 2016-08-10 Method for transmitting ACK/NACK in wireless communication system and apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562203914P 2015-08-12 2015-08-12
US62/203,914 2015-08-12

Publications (1)

Publication Number Publication Date
WO2017026783A1 true WO2017026783A1 (ko) 2017-02-16

Family

ID=57983274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008766 WO2017026783A1 (ko) 2015-08-12 2016-08-10 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치

Country Status (2)

Country Link
US (1) US10491337B2 (ko)
WO (1) WO2017026783A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091251A1 (ko) * 2019-11-06 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116318577A (zh) * 2017-06-14 2023-06-23 Idac控股公司 用于经由上行链路共享数据信道的uci传输的方法、装置
WO2021107555A1 (en) * 2019-11-25 2021-06-03 Samsung Electronics Co., Ltd. Method and device for transmitting/receiving uplink control information in wireless communication system
WO2022051738A1 (en) * 2020-09-01 2022-03-10 Intel Corporation Harq feedback for downlink data transmissions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156184A1 (en) * 2004-12-01 2006-07-13 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data with high reliability in a mobile communication system supporting packet data transmission
WO2014022861A1 (en) * 2012-08-03 2014-02-06 Intel Corporation Multiplexing of channel state information and hybrid automatic repeat request - acknowledgement information

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958380B2 (en) * 2010-03-22 2015-02-17 Lg Electronics Inc. Method and device for transmitting control information
KR101779427B1 (ko) * 2010-04-01 2017-09-18 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
KR101813031B1 (ko) * 2010-04-13 2017-12-28 엘지전자 주식회사 상향링크 신호를 전송하는 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156184A1 (en) * 2004-12-01 2006-07-13 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data with high reliability in a mobile communication system supporting packet data transmission
WO2014022861A1 (en) * 2012-08-03 2014-02-06 Intel Corporation Multiplexing of channel state information and hybrid automatic repeat request - acknowledgement information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "HARQ-ACK Feedback for CA with up to 32 CCs", R1-152625, 3GPP TSG-RAN WG1 #81, 16 May 2015 (2015-05-16), Fukuoka, Japan, XP050973842 *
LG ELECTRONICS.: "HARQ-ACK Payload Adaptation for Rel-13 CA", R1-152718, 3GPP TSG RAN WG1 MEETING #81, 16 May 2015 (2015-05-16), Fukuoka, Japan, XP050972539 *
LG ELECTRONICS: "HARQ-ACK PUCCH Transmission for Rel-13 CA", R1-151502, 3GPP TSG RAN WG1 MEETING #80BIS, 11 April 2015 (2015-04-11), Belgrade, Serbia, XP050950033 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021091251A1 (ko) * 2019-11-06 2021-05-14 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치
US20220303064A1 (en) * 2019-11-06 2022-09-22 Lg Electronics Inc. Method and device for transmitting or receiving signal in wireless communication system
US11611413B2 (en) 2019-11-06 2023-03-21 Lg Electronics Inc. Method and device for transmitting or receiving signal in wireless communication system
US11777666B2 (en) 2019-11-06 2023-10-03 Lg Electronics Inc. Method and device for transmitting or receiving signal in wireless communication system

Also Published As

Publication number Publication date
US10491337B2 (en) 2019-11-26
US20180241513A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017052251A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
WO2017078465A1 (en) Method and apparatus for handling overlap of different channels in wireless communication system
WO2017099556A1 (ko) 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2010114233A2 (en) Method for allocating resource to uplink control signal in wireless communication system and apparatus therefor
WO2010123267A2 (ko) 무선 통신 시스템에서 제어 신호 송신 방법 및 이를 위한 장치
WO2010110598A2 (en) Method and apparatus of transmitting ack/nack
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2011021878A2 (en) Method and system for assigning physical uplink control channel (pucch) resources
WO2011013968A2 (ko) 무선 통신 시스템에서 수신 확인 수신 방법 및 장치
WO2013015637A2 (ko) 상향링크 신호 전송방법 및 사용자기기, 상향링크 신호 수신방법 및 기지국
WO2015105291A1 (ko) 무선통신 시스템에서 수신확인 전송 방법 및 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2010110561A2 (en) Method and apparatus for transmitting ack/nack
WO2010044564A2 (ko) 다중 반송파 시스템에서 harq 수행 방법
WO2010128817A2 (en) Method and apparatus for transmitting ack/nack
WO2012108688A2 (ko) 스케줄링 정보 모니터링 방법 및 장치
WO2010131897A2 (ko) 다중 반송파 시스템에서 통신 방법 및 장치
KR20130051479A (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2016171457A1 (ko) 무선 통신 시스템에서 ack/nack 응답을 다중화하는 방법 및 이를 위한 장치
WO2013133607A1 (ko) 신호 전송 방법 및 사용자기기와, 신호 수신 방법 및 기지국
WO2013048079A1 (en) Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
WO2013015590A2 (ko) 무선통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 장치
WO2017155332A2 (ko) 무선 통신 시스템에서 멀티캐스트 신호를 수신하는 방법 및 이를 위한 장치
WO2017026783A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치
WO2016182242A1 (ko) 채널 상태 정보 보고 방법 및 이를 이용한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835423

Country of ref document: EP

Kind code of ref document: A1