WO2017026409A1 - Wireless terminal - Google Patents

Wireless terminal Download PDF

Info

Publication number
WO2017026409A1
WO2017026409A1 PCT/JP2016/073175 JP2016073175W WO2017026409A1 WO 2017026409 A1 WO2017026409 A1 WO 2017026409A1 JP 2016073175 W JP2016073175 W JP 2016073175W WO 2017026409 A1 WO2017026409 A1 WO 2017026409A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resource
pool
controller
wireless terminal
resource pool
Prior art date
Application number
PCT/JP2016/073175
Other languages
French (fr)
Japanese (ja)
Inventor
剛洋 榮祝
真人 藤代
空悟 守田
裕之 安達
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2017026409A1 publication Critical patent/WO2017026409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to a wireless terminal used in a communication system.
  • D2D ProSe Device to Device Proximity Service
  • Direct communication is defined as one of D2D ProSe.
  • the wireless terminal can transmit data by direct communication using the wireless resource in the transmission resource pool.
  • the wireless terminal includes a controller that transmits a packet to another wireless terminal by direct communication in the proximity service.
  • the controller includes a transmission resource pool used for transmitting the packet based on the priority of the packet from a plurality of pool groups configured by the transmission resource pool for direct communication and having different priorities. select.
  • a wireless terminal includes a controller that selects a transmission resource pool for transmitting a packet by direct communication from a plurality of transmission resource pools for direct communication in a proximity service.
  • the controller is configured to transmit the transmission resource pool based on at least one of a transmission resource pool usage status, a transmission resource pool selection probability based on a weight associated with each of the plurality of transmission resource pools, and a radio signal reception status. Select a resource pool.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • FIG. 2 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 3 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 4 is a diagram for explaining UE / network relay according to the embodiment.
  • FIG. 5 is a block diagram of the UE 100.
  • FIG. 6 is a block diagram of the eNB 200.
  • FIG. 7 is a diagram for explaining the operating environment according to the first embodiment.
  • FIG. 8 is a diagram for explaining an operation according to the first embodiment.
  • FIG. 9 is a diagram for explaining an example of selection of a transmission resource pool.
  • FIG. 10 is a diagram for explaining an example of selection of a transmission resource pool.
  • FIG. 10 is a diagram for explaining an example of selection of a transmission resource pool.
  • FIG. 11 is a diagram for explaining an example of selection of a transmission resource pool.
  • FIG. 12 is a diagram for explaining an example of transmission resource pool selection timing.
  • FIG. 13 is a diagram illustrating an example of radio resource selection.
  • FIG. 14 is a diagram for explaining an example of selection of a transmission resource pool.
  • FIG. 15 is a diagram for describing an example of a selection timing of a plurality of transmission resource pools.
  • FIG. 16 is a diagram illustrating an example of radio resource selection.
  • selecting the same transmission resource pool may cause interference based on the use of the same wireless resource. There is a possibility that the receiving terminal cannot receive the packet due to the occurrence of interference.
  • an object of the present application is to suppress a decrease in packet reception based on a plurality of wireless terminals selecting the same wireless resource.
  • the wireless terminal includes a controller that transmits a packet to another wireless terminal by direct communication in the proximity service.
  • the controller includes a transmission resource pool used for transmitting the packet based on the priority of the packet from a plurality of pool groups configured by the transmission resource pool for direct communication and having different priorities. select.
  • the number of transmission resource pools included in each pool group constituting the plurality of pool groups is a value corresponding to the priority of each pool group.
  • the controller determines a candidate pool group from the plurality of pool groups.
  • the controller selects the transmission resource pool from the candidate pool group.
  • the controller determines the candidate pool group based on the priority of the packet from the plurality of pool groups.
  • the controller specifies a transmission resource pool that constitutes the candidate pool group based on information indicating a pool group associated with each transmission resource pool.
  • the controller determines the number of transmission resource pools included in each pool group constituting the plurality of pool groups.
  • the controller determines a transmission resource pool constituting the candidate pool group from a plurality of transmission resource pools according to the determined number of transmission resource pools.
  • the controller includes information indicating an association between the number of transmission resource pools constituting each pool group and a priority, or transmission resource pools constituting the pool groups for the plurality of transmission resource pools. Based on the information indicating the association between the ratio and the priority, the number of the transmission resource pools included in each pool group is determined.
  • the controller determines a candidate pool group from the plurality of pool groups based on an identifier of a transmission destination or a transmission source of the packet.
  • the controller selects the transmission resource pool from the candidate pool group.
  • the controller selects a new transmission resource pool based on the selection period notified from the base station.
  • the controller selects a new transmission resource pool based on a radio resource usage rate in the transmission resource pool.
  • the controller selects the new transmission resource pool when the usage rate of the radio resource is higher than a threshold value.
  • the controller receives information on the threshold from a base station.
  • the controller selects a control resource for notifying a data resource for transmitting the packet from the transmission resource pool.
  • the controller determines a selection range of the control resource based on the priority of the packet.
  • the controller selects a data resource for transmitting the packet from the transmission resource pool.
  • the controller determines a selection range of the data resource based on the priority of the packet.
  • the controller determines the number of times to repeatedly transmit the packet based on the priority of the packet.
  • the controller determines the transmission probability of the packet based on the priority of the packet.
  • the controller selects a plurality of transmission resource pools used for transmission of the packet from the candidate pool group.
  • the controller receives information indicating the number of selectable transmission resource pools from the base station.
  • the controller selects a new transmission resource pool when at least some of the plurality of transmission resource pools satisfy a predetermined condition.
  • the controller selects a new transmission resource pool when all of the plurality of transmission resource pools satisfy a predetermined condition.
  • the controller receives, from a base station, information indicating the number of transmission resource pools used for repeated transmission of the packet among the plurality of transmission resource pools.
  • the wireless terminal includes a controller that selects a transmission resource pool for transmitting a packet by direct communication from among a plurality of transmission resource pools for direct communication in a proximity service.
  • the controller is configured to transmit the transmission resource pool based on at least one of a transmission resource pool usage status, a transmission resource pool selection probability based on a weight associated with each of the plurality of transmission resource pools, and a radio signal reception status. Select a resource pool.
  • the controller selects the transmission resource pool based on a usage rate of radio resources in one or more transmission resource pools of the plurality of transmission resource pools.
  • the controller selects a transmission resource pool having the lowest usage rate of the radio resource as the transmission resource pool.
  • the controller selects, as the transmission resource pool, a transmission resource pool having a radio resource usage rate lower than a threshold among the one or more transmission resource pools.
  • the controller determines a cycle for measuring the usage status of the transmission resource pool, a frequency for measuring the usage status of the transmission resource pool, and a usage status of the transmission resource pool among the plurality of transmission resource pools.
  • Information from at least one of the transmission resource pools to be measured is received from the base station.
  • the controller measures the usage status of one or more transmission resource pools among the plurality of transmission resource pools.
  • the controller transmits the measurement result of the usage status to the base station.
  • the controller calculates a selection probability of the transmission resource pool based on a weight associated with each of the plurality of transmission resource pools. The controller selects the transmission resource pool with the calculated probability.
  • the controller receives information indicating a weight associated with each of the plurality of transmission resource pools from a base station.
  • the weighting is a value corresponding to the radio resource amount of each of the plurality of transmission resource pools.
  • the controller measures the received signal strength of a radio signal from a base station or another radio terminal.
  • the controller selects the transmission resource pool based on the measurement result of the received signal strength.
  • the controller receives information indicating a range of the received signal strength associated with each of the plurality of transmission resource pools from a base station.
  • FIG. 1 is a diagram illustrating a configuration of an LTE system.
  • the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • a server 400 is provided in an external network that is not managed by an operator of the cellular network.
  • the UE 100 corresponds to a wireless terminal.
  • the UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the EPC 20 includes a MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and a P-GW (Packet Data Network Gateway) 350.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • P-GW Packet Data Network Gateway
  • MME performs various mobility control etc. with respect to UE100.
  • the S-GW performs data transfer control.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the P-GW 350 performs control for relaying user data from the external network (and to the external network).
  • Server 400 is a ProSe application server (ProSe Application Server).
  • the Server 400 manages an identifier used in ProSe.
  • the server 400 stores “EPC ProSe user ID” and “ProSe function ID”. Further, the server 400 maps “application layer user ID” and “EPC ProSe user ID”.
  • FIG. 2 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state (connected state), and otherwise, the UE 100 is in the RRC idle state (idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 3 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • One symbol and one subcarrier constitute one resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal. Details of the PDCCH will be described later.
  • the remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control signals.
  • the remaining part of each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink data.
  • PUSCH physical uplink shared channel
  • ProSe Proximity-based Services
  • a direct radio link that does not go through the eNB 200.
  • a direct radio link in ProSe is referred to as a “side link”.
  • “Sidelink” is a UE-UE interface for direct discovery and direct communication. “Sidelink” corresponds to the PC5 interface.
  • the PC 5 is a reference point between UEs that can use the proximity service used for direct discovery, direct communication and UE / network relay by proximity service, and for the user plane.
  • the PC5 interface is a UE-UE interface in ProSe.
  • Direct discovery is a mode in which a partner is searched by directly transmitting a discovery signal that does not designate a specific destination between UEs.
  • Direct discovery is a procedure for discovering another UE in the vicinity of the UE using a direct radio signal in E-UTRA (Evolved Universal Terrestrial Radio Access) via the PC 5.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the direct discovery is a procedure adopted by the UE 100 capable of executing the proximity service in order to discover other UEs 100 capable of executing the proximity service using only the capability of the two UEs 100 with the E-UTRA technology.
  • Direct discovery is supported only when UE 100 is served by E-UTRAN (eNB 200 (cell)). When the UE 100 is connected to the cell (eNB 200) or located in the cell, the UE 100 can be provided with service by the E-UTRAN.
  • the “Sidelink Direct Discovery” protocol stack includes a physical (PHY) layer, a MAC layer, and a ProSe protocol.
  • a discovery signal is transmitted between a physical layer of UE (A) and a physical layer of UE (B) via a physical channel called a physical side link discovery channel (PSDCH).
  • a discovery signal is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link discovery channel (SL-DCH).
  • Direct communication is a mode in which data is directly transmitted between UEs by specifying a specific destination (destination group).
  • the direct communication is communication between two or more UEs that can execute a proximity service by user plane transmission using E-UTRA technology via a route that does not pass through any network node.
  • the direct communication resource allocation type includes “mode 1” in which the eNB 200 designates radio resources for direct communication and “mode 2” in which the UE 100 selects radio resources for direct communication.
  • the direct communication protocol stack includes a physical (PHY) layer, a MAC layer, an RLC layer, and a PDCP layer.
  • a control signal is transmitted via the physical side link control channel (PSCCH), and data is transmitted via the physical side link shared channel (PSSCH). Is transmitted.
  • a synchronization signal or the like may be transmitted via a physical side link broadcast channel (PSBCH).
  • PSBCH physical side link broadcast channel
  • Data is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link shared channel (SL-SCH).
  • SL-SCH side link shared channel
  • STCH side link traffic channel
  • FIG. 4 is a diagram for explaining UE / network relay according to the embodiment.
  • a remote UE (Remote UE) is located outside the network area (Out-of-Network) (out of cell coverage)
  • the UE 100 that is not directly served by the E-UTRAN 10 (served by the E-UTRAN 10 ( UE 100) that is not served).
  • the remote UE may be located within the coverage of the cell.
  • the remote UE 100 can communicate with a packet data network (PDN: Packet Data Network) via a relay UE described later.
  • PDN Packet Data Network
  • the remote UE may be a public safety (UE) for public safety (ProSe-enabled Public Safe UE).
  • the “ProSe-enabled Public Safety UE” is configured so that the HPLMN permits use for public safety.
  • “ProSe-enabled Public Safety UE” can use the neighborhood service and supports the procedure in the neighborhood service and specific capabilities for public safety.
  • “ProSe-enabled Public Safe UE” transmits information for public safety through a neighborhood service.
  • the information for public safety is, for example, information on disasters (earthquakes, fires, etc.), information used for fire fighting personnel or police personnel, and the like.
  • the remote UE is provided with a ProSe relay service from the relay UE, as will be described later.
  • the UE / network relay is executed between the remote UE provided with the ProSe relay service and the relay UE provided with the ProSe relay service.
  • Relay UE Provides ProSe relay service for remote UEs.
  • the relay UE provides service continuity of communication with the packet data network for the remote UE. Therefore, the relay UE relays data (unicast traffic) between the remote UE and the network.
  • the relay UE relays data (traffic) of the remote UE by a proximity service (direct communication).
  • the relay UE relays data (uplink traffic) received from the remote UE via the PC5 interface to the eNB 200 via the Uu interface (LTE-Uu) or the Un interface (LTE-Un).
  • the relay UE relays data (downlink traffic) received from the eNB 200 via the Uu interface or Un interface to the remote UE via the PC5 interface.
  • the relay UE is located only in the network (within the coverage of the cell).
  • the relay UE can provide a comprehensive function that can relay any type of traffic related to communication for public safety.
  • Relay UE and remote UE can transmit data and control signals between physical layers.
  • the relay UE and the remote UE can transmit data and control signals between the MAC layer, the RLC layer, and the PDCP layer.
  • the relay UE may have an IP relay (IP-Relay) layer as an upper layer of the PDCP layer.
  • the remote UE may have an IP layer as an upper layer of the PDCP layer.
  • the relay UE and the remote UE can transmit data and control signals between the IP relay layer and the IP layer. Further, the relay UE can transmit data between the IP relay layer and the IP layer of the P-GW 350.
  • the relay UE can transmit data (traffic) to the remote UE using broadcast in the AS layer (Access Stratum).
  • the relay UE may transmit data to the remote UE using unicast in the AS layer.
  • the UE / network relay is performed using broadcast, feedback in the AS layer is not performed between the relay UE and the remote UE, but feedback in the NAS layer may be performed.
  • feedback in the AS layer may be performed.
  • FIG. 5 is a block diagram of the UE 100. As illustrated in FIG. 5, the UE 100 includes a receiver (receiver) 110, a transmitter (transmitter) 120, and a controller (controller) 130. The receiver 110 and the transmitter 120 may be an integrated transceiver (transmission / reception unit).
  • the receiver 110 performs various types of reception under the control of the controller 130.
  • the receiver 110 includes an antenna.
  • the receiver 110 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 130.
  • the receiver 110 can simultaneously receive radio signals at two different frequencies.
  • the UE 100 includes two receivers 110 (2 RX Chain).
  • the UE 100 can receive a radio signal for cellular by one receiver 110 and can receive a radio signal for ProSe by the other receiver 110.
  • the transmitter 120 performs various transmissions under the control of the controller 130.
  • the transmitter 120 includes an antenna.
  • the transmitter 120 converts the baseband signal (transmission signal) output from the controller 130 into a radio signal and transmits it from the antenna.
  • the controller 130 performs various controls in the UE 100.
  • the controller 130 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor may include a codec that performs encoding / decoding of an audio / video signal.
  • the processor executes various processes described later and various communication protocols described above.
  • the UE 100 may include a GNSS receiver.
  • the GNSS receiver receives a GNSS signal and outputs the received signal to the controller 130 in order to obtain position information indicating the geographical position of the UE 100.
  • UE100 may have a GPS function for acquiring position information on UE100.
  • FIG. 6 is a block diagram of the eNB 200.
  • the eNB 200 includes a receiver (reception unit) 210, a transmitter (transmission unit) 220, a controller (control unit) 230, and a network interface 240.
  • the transmitter 220 and the receiver 210 may be an integrated transceiver (transmission / reception unit).
  • the receiver 210 performs various types of reception under the control of the controller 230.
  • the receiver 210 includes an antenna.
  • the receiver 210 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 230.
  • the transmitter 220 performs various transmissions under the control of the controller 230.
  • the transmitter 220 includes an antenna.
  • the transmitter 220 converts the baseband signal (transmission signal) output from the controller 230 into a radio signal and transmits it from the antenna.
  • the controller 230 performs various controls in the eNB 200.
  • the controller 230 includes a processor and a memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory.
  • the processor executes various processes described later and various communication protocols described above.
  • the network interface 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 240 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • a plurality of resource pools for direct communication are provided in the same carrier.
  • FIG. 7 is a diagram for explaining the operating environment according to the first embodiment.
  • FIG. 8 is a diagram for explaining an operation according to the first embodiment.
  • the UE 100-1 and the UE 100-2 may perform direct communication.
  • the UE 100-1 and the UE 100-2 may be located in a cell managed by the eNB 200 or may be located outside the cell.
  • the UE 100-1 may be located in the cell and the UE 100-2 may be located outside the cell.
  • the UE 100-1 may be a relay UE, and the UE 100-2 may be a remote UE.
  • UE 100 (UE 100-1 and UE 100-2) may be in an RRC connected state or an RRC idle state.
  • the radio resource pool (transmission resource pool / reception resource pool) used for direct communication is repeatedly arranged in a predetermined period (SC period: SC Period) in the time direction.
  • a radio resource pool used for direct communication is composed of a control area (physical side link control channel (PSCCH)) and a data area (physical side link shared channel (PSSCH)).
  • the A plurality of radio resource pools composed of a control area and a data area are arranged in the time direction.
  • the length of one radio resource pool in the time direction coincides with an SC period (SC Period) that is a cycle of the radio resource pool.
  • the control area and the data area are alternately arranged in the time direction.
  • the data area follows the control area in the time direction.
  • the data area may overlap with the control area in the time direction.
  • the control area is an area where a PSCCH for transmitting side link control information (SCI: Sidelink Control Information) by direct communication is arranged. Therefore, the control area corresponds to a control resource pool in which radio resources (hereinafter referred to as control resources) for transmitting SCI by direct communication are arranged.
  • the SCI is information for notifying a radio resource (hereinafter referred to as data resource) allocated to transmit data by direct communication. Specifically, the SCI includes data resource allocation information.
  • the data area is an area where a PSSCH for transmitting data is arranged. Therefore, the data area corresponds to a data resource pool in which radio resources for transmitting data by direct communication are arranged.
  • UE 100-1 transmits a packet (data) to UE 100-2 by direct communication.
  • the UE 100-1 selects a transmission resource pool (for example, Pool 2) for transmitting a packet from among a plurality of transmission resource pools (Pool 1 and Pool 2) (see FIG. 8).
  • the UE 100-1 selects a control resource and a data resource from the selected Pool2.
  • UE 100-1 transmits SCI including allocation information of the selected data resource to UE 100-2 using the selected control resource. Further, the UE 100-1 transmits a packet (data) to the UE 100-2 using the selected data resource.
  • UE 100-3 that directly communicates with UE (not shown) different from UE 100-1 and UE 100-2 selects the same Pool 2 as UE 100-1 from a plurality of transmission resource pools.
  • the UE 100-1 and the UE 100-3 may select the same radio resource (at least one of a control resource and a data resource).
  • the UE 100-1 and the UE 100-3 use the same radio resource, interference occurs, and the UE 100-2 may not be able to receive a packet (or SCI) from the UE 100-1.
  • the processing (operation) executed by the UE 100 (UE 100-1 and UE 100-2) described below is executed by at least one of the receiver 110, the transmitter 120, and the controller 130 included in the UE 100. This process will be described.
  • a process (operation) executed by the eNB 200 described below is executed by at least one of the receiver 210, the transmitter 220, the controller 230, and the network interface 240 included in the eNB 200. To do.
  • a packet is a packet for direct communication.
  • FIGS. 9-11 are diagrams for explaining an example of selection of a transmission resource pool.
  • the UE 100-1 selects a transmission resource pool to be used for packet transmission from a plurality of pool groups based on the priority of the packet.
  • Multiple pool groups are groups composed of transmission resource pools for direct communication.
  • the plurality of pool groups have different priorities.
  • a plurality of pool groups include a high priority pool group (hereinafter, high priority group) and a low priority (that is, lower priority than high priority) pool group (hereinafter, low priority group). Consists of.
  • the high priority group may be constituted by a transmission resource pool used for transmitting a high priority packet.
  • the low priority group may be configured by a transmission resource pool that is used to transmit packets with low priority (priority lower than high priority).
  • the plurality of pool groups include three or more pool groups (for example, a first priority (Low) pool group, a second priority (Middle) pool group, and a third priority (High) pool group). Group).
  • the number of transmission resource pools included in each pool group may be a value corresponding to the priority of each pool group.
  • the high priority group may have a large number of transmission resource pools
  • the low priority group may have a small number of transmission resource pools. That is, the number of transmission resource pools included in the high priority group may be larger than the number of transmission resource pools included in the low priority group.
  • a high priority group (High Priority Resource Pool Group) is configured by Pool 0, Pool 3, Pool 5, and Pool 6. Therefore, the high priority group includes four transmission resource pools.
  • the low priority group (Low Priority Resource Pool Group) is composed of Pool1 and Pool2. Therefore, the low priority group includes two transmission resource pools. Thereby, even if UE100 which transmits a high priority packet selects a transmission resource pool from the same high priority group, the probability of selecting the same transmission resource pool decreases. As a result, the occurrence of interference can be suppressed.
  • UE 100-1 determines a candidate pool group by one of the following methods.
  • the UE 100-1 determines a candidate pool group based on the priority of the packet from among a plurality of pool groups. Specifically, the UE 100-1 determines a pool group having a priority corresponding to the priority of the packet as a candidate pool group.
  • the UE 100-1 when transmitting a packet having a high priority (hereinafter referred to as a high priority packet), the UE 100-1 determines a high priority group as a candidate pool group from a plurality of pool groups. The UE 100-1 selects a transmission resource pool (for example, Pool 0) from the high priority group that is a candidate pool group. The UE 100-1 transmits a high priority packet to the UE 100-2 using the selected radio resource in Pool0.
  • a transmission resource pool for example, Pool 0
  • the UE 100-1 determines a low priority group as a candidate pool group from among a plurality of pool groups.
  • the UE 100-1 selects a transmission resource pool (for example, Pool 2) from the low priority groups that are candidate pool groups.
  • the UE 100-1 transmits a low priority packet to the UE 100-2 using the radio resource in the selected Pool2.
  • the UE 100-1 grasps the priority of the pool group based on the information indicating the association between the priority and the pool group.
  • the information may be information in which the pool group index and the priority are associated with each other, or may be information in which the pool group index is associated with the identification information on the logical channel.
  • the identification information regarding the logical channel is a logical channel identifier (LCID) or a logical channel group identifier (LCGID).
  • LCID logical channel identifier
  • LCGID logical channel group identifier
  • the UE 100-1 may receive information indicating the association between the priority level and the pool group from the eNB 200 by broadcast (for example, SIB (System Information Block)) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 receives information indicating the association between the priority and the pool group and the information indicating the association between the priority from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). May be.
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 uses the transmission resource pools that configure the candidate pool group based on information indicating the pool group associated with each transmission resource pool (that is, information indicating the association between the pool group and the transmission resource pool). Is identified. For example, Pool 0, Pool 3, Pool 5 and Pool 6 are associated with the pool group index 1, and Pool 1 and Pool 2 are associated with the pool group index 2. For example, pool group index 1 is associated with priority 2 (high priority), and pool group index 2 is associated with priority 1 (low priority).
  • the UE 100-1 determines a candidate pool group from a plurality of pool groups based on the priority of the packet, as in the first method described above. However, unlike the first method, the UE 100-1 itself determines each transmission resource pool constituting a plurality of pool groups.
  • the UE 100-1 uses number information indicating an association between the number of transmission resource pools constituting each pool group and priority, or a transmission resource pool constituting each pool group for a plurality of transmission resource pools (all transmission resource pools).
  • the number of transmission resource pools included in each pool group is determined based on the ratio information indicating the association between the ratio and the priority.
  • the UE 100-1 may receive the number information and / or the ratio information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the number information and / or the ratio information may be preset (Pre-config.) In the UE 100-1.
  • the number information includes information indicating the number of transmission resource pools that can be selected as transmission resource pools constituting the pool group (candidate pool group).
  • the number information indicates the association between the priority and the selectable number (for example, 1, 2, 3,).
  • the ratio information includes information indicating a ratio of transmission resource pools that can be selected as transmission resource pools that constitute a pool group (candidate pool group).
  • the ratio information includes information indicating a ratio expressed by the number of selectable transmission resource pools / the total number of transmission resource pools (set transmission resource pools).
  • the ratio information indicates the association between the priority and the ratio (for example, 25%, 50%, 75%, 100%) of the selectable transmission resource pool.
  • the UE 100-1 determines the number of transmission resource pools included in each pool group constituting a plurality of pool groups. Specifically, the UE 100-1 determines the number of transmission resource pools based on the number information or the ratio information, for example. The UE 100-1 determines a transmission resource pool constituting the candidate pool group from among a plurality of pool groups according to the determined number of transmission resource pools.
  • the number information indicates that the high priority group is configured by six transmission resource pools, and the low priority group is configured by two transmission resource pools.
  • the UE 100-1 determines six transmission resource pools (for example, Pool1-Pool3, Pool5, Pool6) as transmission resource pools constituting the high priority group from the set Pool (Pool1-Pool7) ( select.
  • the UE 100-1 determines (selects) two transmission resource pools (for example, Pool 1 and Pool 2) as the transmission resource pools constituting the low priority group.
  • the UE 100-1 may determine the number of candidate pool groups based on the ratio information. For example, when the ratio information indicates that the high priority is associated with “6/7” and the low priority is associated with “2/7”, the UE 100-1 transmits the same as described above. Resource pool can be determined.
  • the UE 100-1 determines a candidate pool group based on the priority of the packet.
  • the UE 100-1 selects a transmission resource pool from among the high priority groups (Pool1-Pool3, Pool5, Pool6).
  • the UE 100-2 selects a transmission resource pool from the low priority group (Pool1, Pool2).
  • the UE 100-1 determines a candidate pool group based on a packet transmission destination (destination identifier) or a transmission source identifier from among a plurality of pool groups. These identifiers indicate, for example, the destination (source) of the MAC PDU.
  • the UE 100-1 grasps the association between the destination identifier and the transmission resource pool based on the transmission destination information indicating the association between the packet transmission destination identifier and the transmission resource pool (or pool group). Note that the UE 100-1 may grasp the association between the destination identifier and the transmission resource pool using information indicating the pool group associated with each transmission resource pool described above. Further, the UE 100-1 may grasp the association between the transmission source identifier and the transmission resource pool based on the transmission source information indicating the association between the packet transmission source identifier and the transmission resource pool (or pool group). . The UE 100-1 may receive the transmission destination information or the transmission source information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The destination information or the source information may be preset (Pre-config.) In the UE 100-1.
  • SIB for example, SIB
  • unicast for example, RRC reconfiguration message
  • the destination identifier 1-9 is associated with the first resource pool configured by Pool0, Pool3, Pool5, and Pool6, and the destination identifier 10-99 is the second resource pool configured by Pool1 and Pool2. Associated with.
  • the UE 100-1 determines the first resource pool as a candidate resource group.
  • the UE 100-1 selects a transmission resource pool (for example, Pool 0) from the first resource pool.
  • the first resource pool may be a high priority group.
  • the destination identifier and the priority may be independently associated with a resource group (transmission resource pool). In this case, for example, when transmitting a high priority packet, the UE 100-1 selects a transmission resource pool belonging to the high priority group from the first resource pool.
  • the UE 100-1 determines the second resource pool as a candidate resource group.
  • the UE 100-1 selects a transmission resource pool (for example, Pool 2) from the second resource pool.
  • a transmission resource pool for example, Pool 2
  • the UE 100-1 selects a transmission resource pool belonging to the low priority group from the second resource pool.
  • the second resource pool is a low priority group, the UE 100-1 can freely select from the second resource pool.
  • the UE 100-1 may similarly determine a candidate resource group based on a transmission destination identifier (an identifier of the UE 100-1).
  • FIG. 12 is a diagram for explaining an example of transmission resource pool selection timing.
  • the UE 100-1 may not always use the same transmission resource pool after once selecting a transmission resource pool from candidate resource groups (or a plurality of pool groups).
  • the UE 100-1 can (re-) select a new transmission resource pool as shown below.
  • the UE 100-1 may select a transmission resource pool after the SC period ends.
  • the UE 100-1 may select a transmission resource pool based on a predetermined selection cycle. For example, the UE 100-1 selects a new transmission resource pool based on the selection period notified from the eNB 200.
  • the UE 100-1 may receive information indicating a predetermined selection cycle from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 selects a transmission resource pool when the transmission resource pool in use is congested. Specifically, the UE 100-1 selects a new transmission resource pool based on the usage rate of radio resources in the transmission resource pool in use.
  • the UE 100-1 considers, as a measurement target resource, a radio resource in a period different from a period in which control information (SCI) is transmitted in the control area.
  • the UE 100-1 monitors (measures) the measurement target resource.
  • the UE 100-1 determines the presence / absence of control information from the other UE 100-1, and measures the usage rate (occupancy rate) of the radio resource.
  • the UE 100-1 may monitor the entire period of the control region. For example, the UE 100-1 calculates the usage rate (occupation rate) of the radio resource by the following equation.
  • Wireless resource usage rate (control resource that received control information) / (measured control resource)
  • the UE 100-1 may measure not only the control area but also the data area and calculate the usage rate of the radio resource. Further, the UE 100-1 may calculate the number of UEs using the transmission resource pool instead of the radio resource usage rate based on the measurement result. For example, the transmitting UE may calculate the approximate number of UEs based on being able to transmit SCI using 2 RB radio resources in the time direction.
  • the UE 100-1 can select a new transmission resource pool when the usage rate of the radio resource is higher than the threshold.
  • the threshold may be an absolute value (for example, 0.5 (50%)) of the usage rate of the radio resource.
  • the threshold value is, for example, a value obtained by adding a correction value (for example, 0.1 / 0.3 / 0.5) to the radio resource usage rate when the UE 100-1 starts using the transmission resource pool. May be.
  • the UE 100-1 may receive information on the threshold (threshold and / or correction value) from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 selects a transmission resource pool while a packet is generated. When transmitting all packets, the UE 100-1 omits selection of a transmission resource pool. The UE 100-1 may delete the related information. Alternatively, the UE 100-1 may hold related information. The related information is, for example, information (parameters) related to the selected transmission resource pool.
  • the UE 100-1 starts (resumes) transmission resource pool selection when a new packet occurs.
  • the UE 100-1 may start control for selecting a transmission resource pool at a timing when a new packet is generated, or start selection of a transmission resource pool after a predetermined period (predetermined period) has elapsed. May be. Further, the UE 100-1 may refer to the parameter of the transmission resource pool used last. For example, the UE 100-1 may select a transmission resource pool with a usage rate lower than the usage rate of the transmission resource pool used last.
  • FIG. 13 is a diagram illustrating an example of radio resource selection.
  • the UE 100-1 may select a radio resource (control resource and / or data resource) from the selected transmission resource pool by the following method. Further, the UE 100-1 may transmit a packet by the following method. In order to increase the reception probability of the high priority packet, the UE 100-1 can perform the following method.
  • the UE 100-1 determines the selection range of the control resource based on the priority of the packet.
  • the selection range of the control resource is, for example, the number of candidate resources that can be selected as the control resource.
  • the UE 100-1 performs control based on the selection range information in which the priority of the packet (for example, the identifier (LCID / LCGID) relating to the logical channel used for packet transmission) and the maximum value of the selection range of the control resource are associated with each other. Select a resource.
  • the selection range information indicates that, for example, a low priority LCID and a selection range (maximum value) m are associated, and a high priority LCID and a selection range (maximum value) n (> m) are associated.
  • Information The UE 100-1 selects a control resource based on the packet priority (LCID or the like).
  • the UE 100-1 may receive the first selection range information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 determines the number of candidate resources based on the selection range information. After determining the number of candidate resources, the UE 100-1 selects a control resource to be used for packet transmission from the determined number of candidate resources. Note that the amount of candidate resources (control resources) is 2 RBs.
  • the UE 100-1 determines the selection range of the data resource based on the priority of the packet.
  • the data resource selection range is, for example, the number of subframes in which the data resource can be selected.
  • the UE 100-1 determines a data resource selection range (number of subframes to be used) based on resource selection information in which a time resource pattern selection parameter (mode2TRPSsubset) is associated with a priority.
  • the UE 100-1 may receive the resource selection information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • mode2TRPSsubset ⁇ k 0 , k 1 , k 2 ⁇
  • k 0 1
  • k 1 1
  • k 2 1
  • the subframe pattern is repeatedly used until the data resource is completed.
  • the UE 100-1 selects one of the subframe patterns in which two subframes can be used (see the hatched portion in FIG. 13).
  • the UE 100-1 can transmit a packet to the UE 100-2 using the data resource in the selected subframe pattern.
  • the data resource selection range may be the amount of data resources (or the number of data resources).
  • the UE 100-1 may determine the number of times to repeatedly transmit a packet based on the priority of the packet.
  • the UE 100-1 selects a data resource based on the number of times the packet is repeatedly transmitted.
  • the UE 100-1 determines the number of times to repeatedly transmit a packet based on repetition information indicating the association between the number of repeated transmissions and a priority (for example, an identifier (LCID / LCGID) related to a logical channel).
  • the information is information indicating that the high priority is associated with 8 (the number of repeated transmissions) and the low priority is associated with 4 (the number of repeated transmissions).
  • the number of repeated transmissions is associated with the priority, and the repetition information does not include the number of low-priority repeated transmissions, Information indicating the number of times may be included, and the low-priority packet may be transmitted with a predetermined fixed value (for example, four times).
  • the UE 100-1 may receive the repetition information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 can transmit, for example, a high priority packet 8 times and a low priority packet 4 times.
  • the UE 100-1 may determine the packet transmission probability based on the packet priority.
  • UE 100-1 determines whether or not to transmit a packet (MAC PDU) based on the transmission probability (txProbability). Specifically, the UE 100-1 determines whether or not to transmit a packet (MAC PDU) based on transmission probability information indicating an association between a transmission probability and a priority (for example, an identifier (LCID / LCGID) relating to a logical channel). Note that the UE 100-1 may determine whether to transmit a packet in one SC period, or may determine whether to transmit the packet for each packet.
  • MAC PDU transmission probability information indicating an association between a transmission probability and a priority
  • LCID / LCGID for example, an identifier (LCID / LCGID) relating to a logical channel.
  • the transmission probability information is information indicating that a high priority is associated with 100% (transmission probability) and a low priority is associated with 50% (transmission probability).
  • the priority and the transmission probability are associated so that the higher the priority is, the higher the transmission probability is.
  • the UE 100-1 may receive the transmission probability information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 determines whether to transmit a packet based on the transmission probability before transmitting the control information (SCI). When the UE 100-1 determines to transmit a packet, the UE 100-1 transmits control information. If it is determined not to transmit a packet, transmission of control information is omitted. The UE 100-1 may determine whether to transmit a packet before selecting a radio resource (control resource / data resource).
  • SCI control information
  • FIG. 14 is a diagram for explaining an example of selection of a transmission resource pool. Note that description of parts similar to those of the first embodiment is omitted as appropriate.
  • the UE 100-1 selects a candidate resource group from a plurality of pool groups, and selects a transmission resource pool from the candidate resource groups. In the second embodiment, the UE 100-1 selects a transmission resource pool from all transmission resource pools (configured transmission resource pools).
  • the UE 100-1 selects a transmission resource pool based on at least one of the usage status of the transmission resource pool, the selection probability of the transmission resource pool, and the reception status of the radio signal. Details will be described below.
  • the UE 100-1 selects a transmission resource pool based on the usage status of the transmission resource pool.
  • the UE 100-1 monitors (measures) the transmission resource pool in the same manner as in the first embodiment in order to grasp the usage status of the transmission resource pool.
  • the UE 100-1 monitors one or more transmission resource pools (measurement target resources) among a plurality of transmission resource pools (configured transmission resource pools).
  • the UE 100-1 monitors all of the control area during a period (n period) when packet transmission has not started.
  • the UE 100-1 can measure the transmission resource pool based on the measurement information.
  • the measurement information includes a cycle for measuring the usage status of the transmission resource pool (for example, X period), a frequency for measuring the usage status of the transmission resource pool (for example, once every 3 periods), and a usage status of the transmission resource pool.
  • the UE 100-1 may receive measurement information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 can perform measurement based on the measurement information.
  • the UE 100-1 calculates the usage rate of the radio resource based on the measurement result.
  • the UE 100-1 selects a transmission resource pool based on the calculated radio resource usage rate.
  • the UE 100-1 selects a transmission resource pool with the lowest radio resource usage rate as a transmission resource pool for transmitting packets.
  • the UE 100-1 selects a transmission resource pool lower than the threshold as a transmission resource pool for transmitting a packet.
  • a transmission resource pool lower than the threshold When there are a plurality of transmission resource pools lower than the threshold, an arbitrary transmission resource pool may be selected, or a transmission resource pool with the lowest radio resource usage rate may be selected. Even when only one transmission resource pool is measured, the UE 100-1 may omit measurement of other transmission resource pools when a transmission resource pool having a usage rate lower than the threshold is found. .
  • the threshold is an absolute value (for example, 0.1 / 0.3 / 0.5) of the radio resource usage rate.
  • the UE 100-1 may receive information on the threshold from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 may select a transmission resource pool based on the number of UEs instead of the usage rate of radio resources.
  • the UE 100-1 may transmit the measurement result of the usage status of the transmission resource pool to the eNB 200.
  • the UE 100-1 can transmit a measurer result including information associating an index of the transmission resource pool and a measurement result (for example, a radio resource usage rate, the number of UEs, and the like) to the eNB 200.
  • eNB200 may determine the transmission resource pool set to UE100 based on a measurement result.
  • the UE 100-1 selects a transmission resource pool based on the selection probability of the transmission resource pool based on the weight associated with each of the plurality of transmission resource pools.
  • the UE 100-1 calculates the selection probability of each transmission resource pool based on the weight (weight) of each transmission resource pool.
  • the UE 100-1 can calculate the selection probability based on the weighting information.
  • the weighting information is information in which an index indicating a transmission resource pool is associated with weighting.
  • the UE 100-1 may receive the weighting information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the weighting may be a value such that selection probability of each transmission resource pool becomes an equal probability.
  • UE 100-1 calculates 1/3 as the selection probability of Pool1, and 2/3 as the selection probability of Pool2. Is calculated. The UE 100-1 selects Pool 1 with a probability of 1/3 and calculates Pool 2 with a probability of 2/3.
  • the UE 100-1 may calculate the selection probability with a value corresponding to the radio resource amount of each of the plurality of transmission resource pools. For example, when the resource amount of Pool1 and the resource amount of Pool2 is 100: 300, UE 100-1 calculates 0.25 as the selection probability of Pool1, and calculates 0.75 as the selection probability of Pool2.
  • the amount of radio resources may be represented by the number of UEs that can be transmitted with the radio resources in the transmission resource pool.
  • the UE 100-1 may calculate the selection probability by weighting according to the usage rate of the radio resource.
  • the UE 100-1 may calculate the selection probability by weighting the reciprocal of the radio resource usage rate so that a transmission resource pool with a low radio resource usage rate is easily selected. For example, when the usage rate of Pool1 and the usage rate of Pool2 is 0.1: 0.5, UE 100-1 calculates 10/12 as the selection probability of Pool1, and 2/12 as the selection probability of Pool2. May be calculated.
  • the UE 100-1 selects a transmission resource pool based on the reception status of the radio signal. Specifically, UE 100-1 measures the received signal strength (RSRP) of a radio signal from eNB 200 or another UE 100. The UE 100-1 selects a transmission resource pool based on the RSRP measurement result.
  • RSRP received signal strength
  • the UE100-1 measures RSRP based on the reference signal from eNB200, when located in the coverage of a cell. On the other hand, when the UE 100-1 is located outside the cell coverage, the UE 100-1 measures the side link reference signal received power (S-RSRP) based on the side link reference signal from the UE 100 (reference signal in the proximity service).
  • S-RSRP side link reference signal received power
  • the side link reference signal may be a synchronization signal in the proximity service.
  • the UE 100-1 selects a transmission resource pool based on signal strength information indicating a range of received signal strength associated with each of a plurality of transmission resource pools.
  • the signal strength information is information in which each of a plurality of transmission resource pools is associated with a range of received signal strength.
  • the index of the transmission resource pool is associated with the maximum threshold value (threshHigh) and the minimum threshold value (threshLow) of the received signal strength.
  • the UE 100-1 may receive the signal strength information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 determines whether or not the measured received signal strength is included in the range of the received signal strength associated with each transmission resource pool. When the measured received signal strength is included in the range of the received signal strength, the UE 100-1 selects a transmission resource pool associated with the range as a transmission resource pool for transmitting a packet.
  • the case of selecting one transmission resource pool has been described.
  • a case where a plurality of transmission resource pools are selected will be described. Description of the same parts as those in the first and second embodiments will be omitted as appropriate.
  • the UE 100-1 can execute the same operation as at least one of the operations in the first and second embodiments. For example, as in the first embodiment, the UE 100-1 can select a plurality of transmission resource pools from the candidate pool group. Further, as in the second embodiment, the UE 100-1 can select a plurality of transmission resource pools from all transmission resource pools (configured transmission resource pools).
  • the UE 100-1 can determine the number of transmission resource pools to be selected by the following method.
  • the UE 100-1 determines the number of transmission resource pools based on the resource number information.
  • the resource number information is information indicating the number of selectable transmission resource pools (for example, maxNumSelected Pools).
  • the UE 100-1 selects a plurality of transmission resource pools within a range not exceeding the number of selectable transmission resource pools based on the resource number information.
  • the UE 100-1 may receive the resource number information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 can perform measurement based on the measurement information.
  • the UE 100-1 determines the number of transmission resource pools based on the number of packet priorities.
  • the UE 100-1 determines the number of transmission resource pools based on the number of packet priorities included in the direct communication SL buffer. For example, when the SL buffer includes a high priority packet and a low priority packet, the UE 100-1 determines the number of transmission resource pools to be selected as 2. In this way, the UE 100-1 can determine the number of transmission resource pools according to the number of packet priorities.
  • FIG. 15 is a diagram for describing an example of a selection timing of a plurality of transmission resource pools.
  • the UE 100-1 reselects each transmission resource pool at an independent timing. Therefore, as shown in FIG. 15, UE 100-1 has independent selection timings for each transmission resource pool.
  • the UE 100-1 reselects each transmission resource pool at the same timing.
  • the UE 100-1 reselects each transmission resource pool at the same timing as in the first embodiment.
  • the UE 100-1 may select a new transmission resource pool when at least some of the selected transmission resource pools satisfy a predetermined condition. At least a part of the transmission resource pool may be a transmission resource pool of a predetermined value or more, or may be a selected specific transmission resource pool. Alternatively, the UE 100-1 may select a new transmission resource pool when all of the plurality of transmission resource pools satisfy a predetermined condition.
  • the predetermined condition is a condition for the UE 100-1 to select a transmission resource pool (see “(transmission resource pool selection timing)” in the first embodiment).
  • the predetermined condition is a condition that the usage rate of the radio resource is higher than a threshold value.
  • FIG. 16 is a diagram illustrating an example of radio resource selection.
  • the UE 100-1 can select a radio resource or transmit a packet by the following method.
  • the UE 100-1 may repeatedly transmit a packet using a plurality of transmission resource pools.
  • the UE 100-1 can select a plurality of transmission resource pools based on the repetition resource number information indicating the number of transmission resource pools (for example, numPoolsRepetition) used for repeated transmission of packets.
  • the UE 100-1 may receive the repetition resource number information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the information may be preset (Pre-config.) In the UE 100-1.
  • the UE 100-1 selects two transmission resource pools and repeatedly transmits packets using the two transmission resource pools.
  • the packet is a packet based on the same data.
  • the UE 100-1 may transmit packets to a plurality of destinations using a plurality of radio resource pools.
  • the packet here is a packet based on different data depending on the destination.
  • the UE 100-1 uses different transmission resource pools according to the destination identifier. Therefore, the UE 100-1 transmits different data in each transmission resource pool.
  • the UE 100-1 When transmitting data (packets) with different destinations using a plurality of transmission resource pools, the UE 100-1 transmits data (for example, first data transmitted to UEA) after the first data (for example, first data to be transmitted to UEA).
  • the transmission of the second data to be transmitted to the UEB may be restricted. Therefore, the UE 100-1 may be limited so that it is difficult to transmit the second data. For example, by reducing at least one of the probability that the second data itself can be transmitted (txProbability), the probability that it can be repeatedly transmitted (repeat), the selection probability of the control resource in the PSCCH, and the number of data resources that the UE can select, The UE 100-1 becomes difficult to transmit the second data.
  • the UE 100-1 is restricted from transmitting the second data.
  • the UE 100-1 can transmit the second data without limitation when transmitting the first data in the first SC period and transmitting the second data in the second SC period.
  • the UE 100-1 may transmit the second data without restriction. Good. Therefore, the UE 100-1 can transmit the second data in the same manner as the first data.
  • resources that can be used by the UE 100-1 may be limited regardless of priority.
  • the UE 100 is limited by limiting the resource block usage of control resources, the number of transmission control information (number of SCIs), the transmission control probability (txProbability), the resource block usage of data resources, the transmission data probability (txProbability), and the like.
  • Resources that can use -1 may be limited. These resource restrictions may be notified from the eNB 200 by SIB, may be individually set from the eNB 200, or may be set in advance in the UE 100-1.
  • the UE 100-1 is restricted to single cluster transmission (Single Cluster transmission)
  • Single Cluster transmission Single Cluster transmission
  • the UE 100-1 is allowed to transmit only with continuous RBs. That is, the UE 100-1 cannot transmit data in a plurality of transmission resource pools separated in the frequency direction at the same time. For this reason, the UE 100-1 may select a plurality of transmission resource pools so that the plurality of transmission resource pools do not overlap each other.
  • the UE 100-1 selects a plurality of overlapping transmission resource pools, at least one of the following methods can be used.
  • the UE 100-1 selects a transmission resource pool to be used in the overlap period in the overlap period (a period indicated by hatching in FIG. 16), similarly to the selection probability described above. For example, the UE 100-1 can select the transmission resource pool based on the selection probability of the transmission resource pool based on the weight (weight).
  • the UE 100-1 selects a transmission resource pool to be used in the overlap period so that the amount of available radio resources is maximized. Specifically, the UE 100-1 selects a transmission resource pool with a large number of resources in the frequency direction (radio resource amount) in the overlap period.
  • the transmission resource pool to be used in the overlap period is selected so that the number of resources that can be used in each transmission resource pool is the same.
  • the UE 100-1 selects a transmission resource pool based on the following equation.
  • the UE 100-1 selects a transmission resource pool so as to satisfy Equation 1.
  • the UE 100-1 uses parameters related to the transmission resource pool (for example, the usage rate of radio resources) Based on the transmission resource pool may be selected using the following formula.
  • the UE 100-1 gives priority to the control area (PSCCH) over the data area (PSSCH). Specifically, the UE 100-1 selects the second transmission resource pool in a period in which the data area of the first transmission resource pool and the control area of the second transmission resource pool overlap. In other words, when the data area of the first transmission resource pool and the control area of the second transmission resource pool overlap in the time direction, the UE 100-1 controls the control area of the second transmission resource pool. Priority.
  • the operations according to the above-described embodiments may be executed in appropriate combination.
  • the UE 100-1 when the UE 100-1 selects a transmission resource pool from the candidate resource groups, the UE 100-1 may select the transmission resource pool based on the content of the second embodiment.
  • the UE 100-1 after selecting the transmission resource pool, the UE 100-1 operates based on the contents of “(transmission resource pool selection timing)” and “(radio resource selection)” in the first embodiment. Can be executed.
  • a transmission resource pool corresponding to a release may be set for a UE (for example, a Rel-12 UE) that cannot perform the operation of each embodiment described above.
  • the UE 100-1 can select a transmission resource pool based on its own release. Specifically, the UE 100-1 selects a transmission resource pool based on release information in which a transmission resource pool (transmission resource pool index) and a release (resourcePoolComm-rx) are associated.
  • the UE 100-1 may receive the release information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message).
  • the destination information or the source information may be preset (Pre-config.) In the UE 100-1.
  • a program for causing a computer to execute each process performed by any of the above-described nodes may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • tip comprised by the memory which memorize
  • the LTE system has been described as an example of the mobile communication system.
  • the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.
  • the present invention is useful in the field of wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This wireless terminal is provided with a controller for transmitting packets to another wireless terminal by direct communication in proximity service. The controller selects a transmission resource pool which is used in the transmission of the packets on the basis of the priority level of the packets, from among a plurality of pool groups that are constituted by transmission resource pools for the direct communication and that have mutually different priority levels.

Description

無線端末Wireless terminal
 本出願は、通信システムにおいて用いられる無線端末に関する。 This application relates to a wireless terminal used in a communication system.
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、装置間近傍サービス(D2D ProSe:Device to Device Proximity Service)の仕様策定が進められている。D2D ProSeの一つとして、直接通信(Direct Communication)が規定されている。 In 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, specifications are being developed for inter-device proximity service (D2D ProSe: Device to Device Proximity Service). Direct communication (Direct Communication) is defined as one of D2D ProSe.
 無線端末は、送信リソースプール内の無線リソースを用いて、直接通信によりデータを送信することができる。 The wireless terminal can transmit data by direct communication using the wireless resource in the transmission resource pool.
 一の実施形態に係る無線端末は、近傍サービスにおける直接通信によりパケットを他の無線端末に送信するコントローラを備える。前記コントローラは、前記直接通信用の送信リソースプールにより構成され且つ互いに異なる優先度を有する複数のプールグループの中から、前記パケットの優先度に基づいて、前記パケットの送信に用いられる送信リソースプールを選択する。 The wireless terminal according to one embodiment includes a controller that transmits a packet to another wireless terminal by direct communication in the proximity service. The controller includes a transmission resource pool used for transmitting the packet based on the priority of the packet from a plurality of pool groups configured by the transmission resource pool for direct communication and having different priorities. select.
 一の実施形態に係る無線端末は、近傍サービスにおける直接通信用の複数の送信リソースプールの中から、前記直接通信によりパケットを送信するための送信リソースプールを選択するコントローラを備える。前記コントローラは、送信リソースプールの使用状況、前記複数の送信リソースプールそれぞれに関連付けられた重み付けに基づく送信リソースプールの選択確率、及び、無線信号の受信状況、の少なくともいずれかに基づいて、前記送信リソースプールを選択する。 A wireless terminal according to an embodiment includes a controller that selects a transmission resource pool for transmitting a packet by direct communication from a plurality of transmission resource pools for direct communication in a proximity service. The controller is configured to transmit the transmission resource pool based on at least one of a transmission resource pool usage status, a transmission resource pool selection probability based on a weight associated with each of the plurality of transmission resource pools, and a radio signal reception status. Select a resource pool.
図1は、LTEシステムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an LTE system. 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。FIG. 2 is a protocol stack diagram of a radio interface in the LTE system. 図3は、LTEシステムで使用される無線フレームの構成図である。FIG. 3 is a configuration diagram of a radio frame used in the LTE system. 図4は、実施形態に係るUE・ネットワーク中継を説明するための図である。FIG. 4 is a diagram for explaining UE / network relay according to the embodiment. 図5は、UE100のブロック図である。FIG. 5 is a block diagram of the UE 100. 図6は、eNB200のブロック図である。FIG. 6 is a block diagram of the eNB 200. 図7は、第1実施形態に係る動作環境を説明するための図である。FIG. 7 is a diagram for explaining the operating environment according to the first embodiment. 図8は、第1実施形態に係る動作を説明するための図である。FIG. 8 is a diagram for explaining an operation according to the first embodiment. 図9は、送信リソースプールの選択の一例を説明するための図である。FIG. 9 is a diagram for explaining an example of selection of a transmission resource pool. 図10は、送信リソースプールの選択の一例を説明するための図である。FIG. 10 is a diagram for explaining an example of selection of a transmission resource pool. 図11は、送信リソースプールの選択の一例を説明するための図である。FIG. 11 is a diagram for explaining an example of selection of a transmission resource pool. 図12は、送信リソースプールの選択タイミングの一例を説明するための図である。FIG. 12 is a diagram for explaining an example of transmission resource pool selection timing. 図13は、無線リソースの選択の一例を説明する図である。FIG. 13 is a diagram illustrating an example of radio resource selection. 図14は、送信リソースプールの選択の一例を説明するための図である。FIG. 14 is a diagram for explaining an example of selection of a transmission resource pool. 図15は、複数の送信リソースプールの選択タイミングの一例を説明するための図である。FIG. 15 is a diagram for describing an example of a selection timing of a plurality of transmission resource pools. 図16は、無線リソースの選択の一例を説明する図である。FIG. 16 is a diagram illustrating an example of radio resource selection.
 [実施形態の概要]
 無線端末が直接通信を行う場合、複数の送信リソースプールの中からパケットの送信に用いる送信リソースプールを無線端末が自律的に選択するケースが想定される。
[Outline of Embodiment]
When a wireless terminal performs direct communication, a case where the wireless terminal autonomously selects a transmission resource pool used for packet transmission from a plurality of transmission resource pools is assumed.
 このケースにおいて、複数の無線端末が直接通信を行う場合、同じ送信リソースプールを選択することによって、同じ無線リソースの使用に基づく干渉が発生する可能性がある。受信端末は、干渉の発生により、パケットを受信できない可能性がある。 In this case, when a plurality of wireless terminals perform direct communication, selecting the same transmission resource pool may cause interference based on the use of the same wireless resource. There is a possibility that the receiving terminal cannot receive the packet due to the occurrence of interference.
 そこで、本出願は、複数の無線端末が同じ無線リソースを選択することに基づくパケットの受信低下を抑制することを目的とする。 Therefore, an object of the present application is to suppress a decrease in packet reception based on a plurality of wireless terminals selecting the same wireless resource.
 実施形態に係る無線端末は、近傍サービスにおける直接通信によりパケットを他の無線端末に送信するコントローラを備える。前記コントローラは、前記直接通信用の送信リソースプールにより構成され且つ互いに異なる優先度を有する複数のプールグループの中から、前記パケットの優先度に基づいて、前記パケットの送信に用いられる送信リソースプールを選択する。 The wireless terminal according to the embodiment includes a controller that transmits a packet to another wireless terminal by direct communication in the proximity service. The controller includes a transmission resource pool used for transmitting the packet based on the priority of the packet from a plurality of pool groups configured by the transmission resource pool for direct communication and having different priorities. select.
 実施形態において、前記複数のプールグループを構成する各プールグループに含まれる送信リソースプールの数は、前記各プールグループの優先度に応じた値である。 In the embodiment, the number of transmission resource pools included in each pool group constituting the plurality of pool groups is a value corresponding to the priority of each pool group.
 実施形態において、前記コントローラは、前記複数のプールグループの中から候補プールグループを決定する。前記コントローラは、前記候補プールグループの中から前記送信リソースプールを選択する。 In the embodiment, the controller determines a candidate pool group from the plurality of pool groups. The controller selects the transmission resource pool from the candidate pool group.
 実施形態において、前記コントローラは、前記複数のプールグループの中から、前記パケットの優先度に基づいて、前記候補プールグループを決定する。 In the embodiment, the controller determines the candidate pool group based on the priority of the packet from the plurality of pool groups.
 実施形態において、前記コントローラは、各送信リソースプールに関連付けられているプールグループを示す情報に基づいて、前記候補プールグループを構成する送信リソースプールを特定する。 In the embodiment, the controller specifies a transmission resource pool that constitutes the candidate pool group based on information indicating a pool group associated with each transmission resource pool.
 実施形態において、前記コントローラは、前記複数のプールグループを構成する各プールグループに含まれる送信リソースプールの数を決定する。前記コントローラは、前記決定された送信リソースプールの数に応じて、複数の送信リソースプールの中から前記候補プールグループを構成する送信リソースプールを決定する。 In the embodiment, the controller determines the number of transmission resource pools included in each pool group constituting the plurality of pool groups. The controller determines a transmission resource pool constituting the candidate pool group from a plurality of transmission resource pools according to the determined number of transmission resource pools.
 実施形態において、前記コントローラは、前記各プールグループを構成する送信リソースプールの数と優先度との関連付けを示す情報、又は、前記複数の送信リソースプールに対する前記各プールグループを構成する送信リソースプールの割合と優先度との関連付けを示す情報に基づいて、前記各プールグループに含まれる前記送信リソースプールの数を決定する。 In the embodiment, the controller includes information indicating an association between the number of transmission resource pools constituting each pool group and a priority, or transmission resource pools constituting the pool groups for the plurality of transmission resource pools. Based on the information indicating the association between the ratio and the priority, the number of the transmission resource pools included in each pool group is determined.
 実施形態において、前記コントローラは、前記複数のプールグループの中から、前記パケットの送信先又は送信元の識別子に基づいて、候補プールグループを決定する。前記コントローラは、前記候補プールグループの中から前記送信リソースプールを選択する。 In the embodiment, the controller determines a candidate pool group from the plurality of pool groups based on an identifier of a transmission destination or a transmission source of the packet. The controller selects the transmission resource pool from the candidate pool group.
 実施形態において、前記コントローラは、基地局から通知された選択周期に基づいて、新たな送信リソースプールを選択する。 In the embodiment, the controller selects a new transmission resource pool based on the selection period notified from the base station.
 実施形態において、前記コントローラは、前記送信リソースプールにおける無線リソースの使用率に基づいて、新たな送信リソースプールを選択する。 In the embodiment, the controller selects a new transmission resource pool based on a radio resource usage rate in the transmission resource pool.
 実施形態において、前記コントローラは、前記無線リソースの使用率が閾値よりも高い場合に、前記新たな送信リソースプールを選択する。 In the embodiment, the controller selects the new transmission resource pool when the usage rate of the radio resource is higher than a threshold value.
 実施形態において、前記コントローラは、前記閾値に関する情報を基地局から受信する。 In an embodiment, the controller receives information on the threshold from a base station.
 実施形態において、前記コントローラは、前記送信リソースプールの中から、前記パケットを送信するデータリソースを通知するための制御リソースを選択する。前記コントローラは、前記パケットの優先度に基づいて、前記制御リソースの選択範囲を決定する。 In the embodiment, the controller selects a control resource for notifying a data resource for transmitting the packet from the transmission resource pool. The controller determines a selection range of the control resource based on the priority of the packet.
 実施形態において、前記コントローラは、前記送信リソースプールの中から、前記パケットを送信するデータリソースを選択する。前記コントローラは、前記パケットの優先度に基づいて、前記データリソースの選択範囲を決定する。 In the embodiment, the controller selects a data resource for transmitting the packet from the transmission resource pool. The controller determines a selection range of the data resource based on the priority of the packet.
 実施形態において、前記コントローラは、前記パケットの優先度に基づいて、前記パケットを繰り返し送信する回数を決定する。 In the embodiment, the controller determines the number of times to repeatedly transmit the packet based on the priority of the packet.
 実施形態において、前記コントローラは、前記パケットの優先度に基づいて、前記パケットの送信確率を決定する。 In the embodiment, the controller determines the transmission probability of the packet based on the priority of the packet.
 実施形態において、前記コントローラは、前記候補プールグループの中から、前記パケットの送信に用いられる複数の送信リソースプールを選択する。 In the embodiment, the controller selects a plurality of transmission resource pools used for transmission of the packet from the candidate pool group.
 実施形態において、前記コントローラは、前記送信リソースプールを選択可能な数を示す情報を基地局から受信する。 In the embodiment, the controller receives information indicating the number of selectable transmission resource pools from the base station.
 実施形態において、前記コントローラは、前記複数の送信リソースプールのうち少なくとも一部の送信リソースプールが所定条件を満たした場合に、新たな送信リソースプールを選択する。 In the embodiment, the controller selects a new transmission resource pool when at least some of the plurality of transmission resource pools satisfy a predetermined condition.
 実施形態において、前記コントローラは、前記複数の送信リソースプールの全てが所定条件を満たした場合に、新たな送信リソースプールを選択する。 In the embodiment, the controller selects a new transmission resource pool when all of the plurality of transmission resource pools satisfy a predetermined condition.
 実施形態において、前記コントローラは、前記複数の送信リソースプールのうち、前記パケットの繰り返し送信に用いられる送信リソースプールの数を示す情報を基地局から受信する。 In the embodiment, the controller receives, from a base station, information indicating the number of transmission resource pools used for repeated transmission of the packet among the plurality of transmission resource pools.
 実施形態に係る無線端末は、近傍サービスにおける直接通信用の複数の送信リソースプールの中から、前記直接通信によりパケットを送信するための送信リソースプールを選択するコントローラを備える。前記コントローラは、送信リソースプールの使用状況、前記複数の送信リソースプールそれぞれに関連付けられた重み付けに基づく送信リソースプールの選択確率、及び、無線信号の受信状況、の少なくともいずれかに基づいて、前記送信リソースプールを選択する。 The wireless terminal according to the embodiment includes a controller that selects a transmission resource pool for transmitting a packet by direct communication from among a plurality of transmission resource pools for direct communication in a proximity service. The controller is configured to transmit the transmission resource pool based on at least one of a transmission resource pool usage status, a transmission resource pool selection probability based on a weight associated with each of the plurality of transmission resource pools, and a radio signal reception status. Select a resource pool.
 実施形態において、前記コントローラは、前記複数の送信リソースプールのうちの1以上の送信リソースプールにおける無線リソースの使用率に基づいて、前記送信リソースプールを選択する。 In the embodiment, the controller selects the transmission resource pool based on a usage rate of radio resources in one or more transmission resource pools of the plurality of transmission resource pools.
 実施形態において、前記コントローラは、前記無線リソースの使用率が最も低い送信リソースプールを、前記送信リソースプールとして選択する。 In the embodiment, the controller selects a transmission resource pool having the lowest usage rate of the radio resource as the transmission resource pool.
 実施形態において、前記コントローラは、前記1以上の送信リソースプールのうち、閾値よりも低い無線リソースの使用率を有する送信リソースプールを、前記送信リソースプールとして選択する。 In the embodiment, the controller selects, as the transmission resource pool, a transmission resource pool having a radio resource usage rate lower than a threshold among the one or more transmission resource pools.
 実施形態において、前記コントローラは、前記送信リソースプールの使用状況を測定する周期、前記送信リソースプールの使用状況を測定する頻度、及び、前記複数の送信リソースプールのうち前記送信リソースプールの使用状況を測定する対象となる送信リソースプール、の少なくともいずれかの情報を基地局から受信する。 In the embodiment, the controller determines a cycle for measuring the usage status of the transmission resource pool, a frequency for measuring the usage status of the transmission resource pool, and a usage status of the transmission resource pool among the plurality of transmission resource pools. Information from at least one of the transmission resource pools to be measured is received from the base station.
 実施形態において、前記コントローラは、前記複数の送信リソースプールのうち1以上の送信リソースプールの使用状況を測定する。前記コントローラは、前記使用状況の測定結果を基地局に送信する。 In the embodiment, the controller measures the usage status of one or more transmission resource pools among the plurality of transmission resource pools. The controller transmits the measurement result of the usage status to the base station.
 実施形態において、前記コントローラは、前記複数の送信リソースプールそれぞれに関連付けられた重み付けに基づいて前記送信リソースプールの選択確率を算出する。前記コントローラは、前記算出された確率で前記送信リソースプールを選択する。 In the embodiment, the controller calculates a selection probability of the transmission resource pool based on a weight associated with each of the plurality of transmission resource pools. The controller selects the transmission resource pool with the calculated probability.
 実施形態において、前記コントローラは、前記複数の送信リソースプールそれぞれに関連付けられた重み付けを示す情報を基地局から受信する。 In the embodiment, the controller receives information indicating a weight associated with each of the plurality of transmission resource pools from a base station.
 実施形態において、前記重み付けは、前記複数の送信リソースプールそれぞれの無線リソース量に応じた値である。 In the embodiment, the weighting is a value corresponding to the radio resource amount of each of the plurality of transmission resource pools.
 実施形態において、前記コントローラは、基地局又は他の無線端末からの無線信号の受信信号強度を測定する。前記コントローラは、前記受信信号強度の測定結果に基づいて、前記送信リソースプールを選択する。 In the embodiment, the controller measures the received signal strength of a radio signal from a base station or another radio terminal. The controller selects the transmission resource pool based on the measurement result of the received signal strength.
 実施形態において、前記コントローラは、前記複数の送信リソースプールそれぞれに関連付けられた前記受信信号強度の範囲を示す情報を基地局から受信する。 In the embodiment, the controller receives information indicating a range of the received signal strength associated with each of the plurality of transmission resource pools from a base station.
 (移動通信システム)
 以下において、実施形態に係る移動通信システムであるLTEシステムについて説明する。図1は、LTEシステムの構成を示す図である。
(Mobile communication system)
Below, the LTE system which is the mobile communication system which concerns on embodiment is demonstrated. FIG. 1 is a diagram illustrating a configuration of an LTE system.
 図1に示すように、LTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。また、セルラネットワークのオペレータにより管理されない外部ネットワークには、Server400が設けられる。 As shown in FIG. 1, the LTE system includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20. A server 400 is provided in an external network that is not managed by an operator of the cellular network.
 UE100は、無線端末に相当する。UE100は、移動型の通信装置であり、セル(サービングセル)との無線通信を行う。UE100の構成については後述する。 UE 100 corresponds to a wireless terminal. The UE 100 is a mobile communication device, and performs radio communication with a cell (serving cell). The configuration of the UE 100 will be described later.
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。 E-UTRAN 10 corresponds to a radio access network. The E-UTRAN 10 includes an eNB 200 (evolved Node-B). The eNB 200 corresponds to a base station. The eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。 The eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell. The eNB 200 has a radio resource management (RRM) function, a routing function of user data (hereinafter simply referred to as “data”), a measurement control function for mobility control / scheduling, and the like. “Cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
 EPC20は、コアネットワークに相当する。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、P-GW(Packet Data Network Gateway)350とを含む。MMEは、UE100に対する各種モビリティ制御等を行う。S-GWは、データの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。E-UTRAN10及びEPC20は、ネットワークを構成する。P-GW350は、外部ネットワークから(及び外部ネットワークに)ユーザデータを中継する制御を行う。 The EPC 20 corresponds to a core network. The EPC 20 includes a MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and a P-GW (Packet Data Network Gateway) 350. MME performs various mobility control etc. with respect to UE100. The S-GW performs data transfer control. The MME / S-GW 300 is connected to the eNB 200 via the S1 interface. The E-UTRAN 10 and the EPC 20 constitute a network. The P-GW 350 performs control for relaying user data from the external network (and to the external network).
 Server400は、ProSeアプリケーションサーバ(ProSe Application Server)である。この場合、Server400は、ProSeにおいて用いられる識別子を管理する。例えば、Server400は、「EPC ProSe ユーザID」及び「ProSeファンクションID」を記憶する。また、Server400は、「アプリケーションレイヤユーザID」と「EPC ProSe ユーザID」とをマッピングする。 Server 400 is a ProSe application server (ProSe Application Server). In this case, the Server 400 manages an identifier used in ProSe. For example, the server 400 stores “EPC ProSe user ID” and “ProSe function ID”. Further, the server 400 maps “application layer user ID” and “EPC ProSe user ID”.
 図2は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図2に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。 FIG. 2 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 2, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer. The second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes an RRC (Radio Resource Control) layer.
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してデータ及び制御信号が伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control signals are transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
 MAC層は、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセス手順等を行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースブロックを決定するスケジューラを含む。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), random access procedure, and the like. Data and control signals are transmitted between the MAC layer of the UE 100 and the MAC layer of the eNB 200 via a transport channel. The MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocation resource block to the UE 100.
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してデータ及び制御信号が伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data and control signals are transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のためのメッセージ(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態(コネクティッド状態)であり、そうでない場合、UE100はRRCアイドル状態(アイドル状態)である。 The RRC layer is defined only in the control plane that handles control signals. Messages for various settings (RRC messages) are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state (connected state), and otherwise, the UE 100 is in the RRC idle state (idle state).
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理等を行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図3は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 3 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink, and SC-FDMA (Single Carrier Division Multiple Access) is applied to the uplink.
 図3に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのシンボル及び1つのサブキャリアにより1つのリソースエレメント(RE)が構成される。また、UE100に割り当てられる無線リソース(時間・周波数リソース)のうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。 As shown in FIG. 3, the radio frame is composed of 10 subframes arranged in the time direction. Each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. Each resource block includes a plurality of subcarriers in the frequency direction. One symbol and one subcarrier constitute one resource element (RE). Further, among radio resources (time / frequency resources) allocated to the UE 100, a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に下りリンク制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される領域である。PDCCHの詳細については後述する。また、各サブフレームの残りの部分は、主に下りリンクデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。 In the downlink, the section of the first few symbols of each subframe is an area mainly used as a physical downlink control channel (PDCCH) for transmitting a downlink control signal. Details of the PDCCH will be described later. The remaining part of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH) for transmitting downlink data.
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に上りリンク制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される領域である。各サブフレームにおける残りの部分は、主に上りリンクデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。 In the uplink, both ends in the frequency direction in each subframe are regions used mainly as physical uplink control channels (PUCCH) for transmitting uplink control signals. The remaining part of each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting uplink data.
 (近傍サービス)
 以下において、近傍サービス(ProSe:Proximity-based Services)について説明する。ProSeにおいて、複数のUE100は、eNB200を介さない直接的な無線リンクを介して各種の信号を送受信する。ProSeにおける直接的な無線リンクは、「サイドリンク(Sidelink)」と称される。
(Nearby service)
In the following, the proximity service (ProSe: Proximity-based Services) will be described. In ProSe, a plurality of UEs 100 transmit and receive various signals via a direct radio link that does not go through the eNB 200. A direct radio link in ProSe is referred to as a “side link”.
 「Sidelink」は、直接ディスカバリ及び直接通信のためのUE-UE間インターフェイスである。「Sidelink」は、PC5インターフェイスに対応する。PC5は、直接ディスカバリ、直接通信及び近傍サービスによるUE・ネットワーク中継のための制御及びユーザプレーンのために用いられる近傍サービスを利用可能なUE間の参照点である。PC5インターフェイスは、ProSeにおけるUE-UE間インターフェイスである。 “Sidelink” is a UE-UE interface for direct discovery and direct communication. “Sidelink” corresponds to the PC5 interface. The PC 5 is a reference point between UEs that can use the proximity service used for direct discovery, direct communication and UE / network relay by proximity service, and for the user plane. The PC5 interface is a UE-UE interface in ProSe.
 ProSeのモードとしては、「直接ディスカバリ(Direct Discovery)」及び「直接通信(Direct Communication)」の2つのモードが規定されている。 As the ProSe mode, two modes of “Direct Discovery” and “Direct Communication” are defined.
 直接ディスカバリは、特定の宛先を指定しないディスカバリ信号をUE間で直接的に伝送することにより、相手先を探索するモードである。また、直接ディスカバリは、PC5を介してE-UTRA(Evolved Universal Terrestrial Radio Access)における直接無線信号を用いて、UEの近傍における他のUEを発見するための手順である。或いは、直接ディスカバリは、E-UTRA技術で2つのUE100の能力のみを用いて、近傍サービスを実行可能な他のUE100を発見するために近傍サービスを実行可能なUE100によって採用される手順である。直接ディスカバリは、UE100がE-UTRAN(eNB200(セル))によってサービスが提供される場合にのみ、サポートされる。UE100は、セル(eNB200)に接続又はセルに在圏している場合、E-UTRANによってサービスが提供され得る。 Direct discovery is a mode in which a partner is searched by directly transmitting a discovery signal that does not designate a specific destination between UEs. Direct discovery is a procedure for discovering another UE in the vicinity of the UE using a direct radio signal in E-UTRA (Evolved Universal Terrestrial Radio Access) via the PC 5. Alternatively, the direct discovery is a procedure adopted by the UE 100 capable of executing the proximity service in order to discover other UEs 100 capable of executing the proximity service using only the capability of the two UEs 100 with the E-UTRA technology. Direct discovery is supported only when UE 100 is served by E-UTRAN (eNB 200 (cell)). When the UE 100 is connected to the cell (eNB 200) or located in the cell, the UE 100 can be provided with service by the E-UTRAN.
 ディスカバリ信号(ディスカバリメッセージ)の送信(アナウンスメント)のためのリソース割り当てタイプには、UE100が無線リソースを選択する「タイプ1」と、eNB200が無線リソースを選択する「タイプ2(タイプ2B)」と、がある。 As a resource allocation type for transmission (announcement) of a discovery signal (discovery message), “type 1” in which the UE 100 selects a radio resource, and “type 2 (type 2B)” in which the eNB 200 selects a radio resource, There is.
 「Sidelink Direct Discovery」プロトコルスタックは、物理(PHY)層、MAC層、及びProSeプロトコルを含む。UE(A)の物理層とUE(B)の物理層との間では、物理サイドリンクディスカバリチャネル(PSDCH)と称される物理チャネルを介してディスカバリ信号が伝送される。UE(A)のMAC層とUE(B)のMAC層との間では、サイドリンクディスカバリチャネル(SL-DCH)と称されるトランスポートチャネルを介してディスカバリ信号が伝送される。 The “Sidelink Direct Discovery” protocol stack includes a physical (PHY) layer, a MAC layer, and a ProSe protocol. A discovery signal is transmitted between a physical layer of UE (A) and a physical layer of UE (B) via a physical channel called a physical side link discovery channel (PSDCH). A discovery signal is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link discovery channel (SL-DCH).
 直接通信は、特定の宛先(宛先グループ)を指定してデータをUE間で直接的に伝送するモードである。また、直接通信は、いずれのネットワークノードを通過しない経路を介してE-UTRA技術を用いたユーザプレーン伝送による、近傍サービスを実行可能である2以上のUE間の通信である。 Direct communication is a mode in which data is directly transmitted between UEs by specifying a specific destination (destination group). The direct communication is communication between two or more UEs that can execute a proximity service by user plane transmission using E-UTRA technology via a route that does not pass through any network node.
 直接通信のリソース割り当てタイプには、直接通信の無線リソースをeNB200が指定する「モード1」と、直接通信の無線リソースをUE100が選択する「モード2」と、がある。 The direct communication resource allocation type includes “mode 1” in which the eNB 200 designates radio resources for direct communication and “mode 2” in which the UE 100 selects radio resources for direct communication.
 直接通信プロトコルスタックは、物理(PHY)層、MAC層、RLC層、及びPDCP層を含む。UE(A)の物理層とUE(B)の物理層との間では、物理サイドリンク制御チャネル(PSCCH)を介して制御信号が伝送され、物理サイドリンク共有チャネル(PSSCH)を介してデータが伝送される。また、物理サイドリンクブロードキャストチャネル(PSBCH)を介して同期信号等が伝送されてもよい。UE(A)のMAC層とUE(B)のMAC層との間では、サイドリンク共有チャネル(SL-SCH)と称されるトランスポートチャネルを介してデータが伝送される。UE(A)のRLC層とUE(B)のRLC層との間では、サイドリンクトラフィックチャネル(STCH)と称される論理チャネルを介してデータが伝送される。 The direct communication protocol stack includes a physical (PHY) layer, a MAC layer, an RLC layer, and a PDCP layer. Between the physical layer of UE (A) and the physical layer of UE (B), a control signal is transmitted via the physical side link control channel (PSCCH), and data is transmitted via the physical side link shared channel (PSSCH). Is transmitted. Further, a synchronization signal or the like may be transmitted via a physical side link broadcast channel (PSBCH). Data is transmitted between the MAC layer of UE (A) and the MAC layer of UE (B) via a transport channel called a side link shared channel (SL-SCH). Between the RLC layer of UE (A) and the RLC layer of UE (B), data is transmitted through a logical channel called a side link traffic channel (STCH).
 (UE・ネットワーク中継)
 以下において、UE・ネットワーク中継について、図4を用いて説明する。図4は、実施形態に係るUE・ネットワーク中継を説明するための図である。
(UE / network relay)
Hereinafter, UE / network relay will be described with reference to FIG. FIG. 4 is a diagram for explaining UE / network relay according to the embodiment.
 図4において、リモートUE(Remote UE)は、ネットワーク圏外(Out-of-Network)(セルのカバレッジ外)に位置する場合に、E-UTRAN10によって直接サービスが提供されないUE100(E-UTRAN10によってサーブ(serve)されないUE100)である。リモートUEは、セルのカバレッジ内に位置していてもよい。また、リモートUE100は、後述するリレーUEを介してパケットデータネットワーク(PDN:Packet Data Network)と通信できる。リモートUEは、公衆安全(Public Safety)のためのUE(ProSe-enabled Public Safety UE)であってもよい。 In FIG. 4, when a remote UE (Remote UE) is located outside the network area (Out-of-Network) (out of cell coverage), the UE 100 that is not directly served by the E-UTRAN 10 (served by the E-UTRAN 10 ( UE 100) that is not served). The remote UE may be located within the coverage of the cell. Further, the remote UE 100 can communicate with a packet data network (PDN: Packet Data Network) via a relay UE described later. The remote UE may be a public safety (UE) for public safety (ProSe-enabled Public Safe UE).
 なお、「ProSe-enabled Public Safety UE」は、HPLMNが公衆安全のための使用を許可するように構成されている。「ProSe-enabled Public Safety UE」は、近傍サービスを利用可能であり、近傍サービスにおける手順及び公衆安全のための特定の能力をサポートしている。例えば、「ProSe-enabled Public Safety UE」は、公衆安全のための情報を近傍サービスにより送信する。公衆安全のための情報とは、例えば、災害(地震・火災など)に関する情報、消防関係者又は警察関係者に用いられる情報などである。 The “ProSe-enabled Public Safety UE” is configured so that the HPLMN permits use for public safety. “ProSe-enabled Public Safety UE” can use the neighborhood service and supports the procedure in the neighborhood service and specific capabilities for public safety. For example, “ProSe-enabled Public Safe UE” transmits information for public safety through a neighborhood service. The information for public safety is, for example, information on disasters (earthquakes, fires, etc.), information used for fire fighting personnel or police personnel, and the like.
 リモートUEは、後述するように、リレーUEからProSe中継サービスを提供される。ProSe中継サービスが提供されるリモートUEとProSe中継サービスを提供するリレーUEとの間で、UE・ネットワーク中継が実行される。 The remote UE is provided with a ProSe relay service from the relay UE, as will be described later. The UE / network relay is executed between the remote UE provided with the ProSe relay service and the relay UE provided with the ProSe relay service.
 リレーUE(ProSe UE-to Network Relay)は、ProSe中継サービスをリモートUEのために提供する。具体的には、リレーUEは、リモートUEのためにパケットデータネットワークとの通信のサービス継続性を提供する。従って、リレーUEは、リモートUEとネットワークとの間でデータ(ユニキャストトラフィック)を中継する。リレーUEは、近傍サービス(直接通信)によりリモートUEのデータ(トラフィック)を中継する。具体的には、リレーUEは、PC5インターフェイスを介してリモートUEから受信したデータ(上りトラフィック)を、Uuインターフェイス(LTE-Uu)又はUnインターフェイス(LTE-Un)を介してeNB200に中継する。また、リレーUEは、Uuインターフェイス又はUnインターフェイスを介してeNB200から受信したデータ(下りトラフィック)をPC5インターフェイスを介してリモートUEへ中継する。リレーUEは、ネットワーク内(セルのカバレッジ内)にのみ位置する。 Relay UE (ProSe UE-to Network Relay) provides ProSe relay service for remote UEs. Specifically, the relay UE provides service continuity of communication with the packet data network for the remote UE. Therefore, the relay UE relays data (unicast traffic) between the remote UE and the network. The relay UE relays data (traffic) of the remote UE by a proximity service (direct communication). Specifically, the relay UE relays data (uplink traffic) received from the remote UE via the PC5 interface to the eNB 200 via the Uu interface (LTE-Uu) or the Un interface (LTE-Un). The relay UE relays data (downlink traffic) received from the eNB 200 via the Uu interface or Un interface to the remote UE via the PC5 interface. The relay UE is located only in the network (within the coverage of the cell).
 また、リレーUEは、公衆安全のための通信に関係する任意のタイプのトラフィックを中継できる包括的な機能を提供することができる。 Also, the relay UE can provide a comprehensive function that can relay any type of traffic related to communication for public safety.
 リレーUEとリモートUEは、物理層間でデータ及び制御信号を伝送できる。同様に、リレーUEとリモートUEは、MAC層間、RLC層間及びPDCP層間でデータ及び制御信号を伝送できる。さらに、リレーUEは、PDCP層の上位層としてIPリレー(IP-Relay)層を有してもよい。リモートUEは、PDCP層の上位層としてIP層を有してもよい。リレーUEとリモートUEとは、IPリレー層とIP層との間でデータ及び制御信号を伝送できる。また、リレーUEは、IPリレー層とP-GW350のIP層との間でデータを伝送できる。 Relay UE and remote UE can transmit data and control signals between physical layers. Similarly, the relay UE and the remote UE can transmit data and control signals between the MAC layer, the RLC layer, and the PDCP layer. Further, the relay UE may have an IP relay (IP-Relay) layer as an upper layer of the PDCP layer. The remote UE may have an IP layer as an upper layer of the PDCP layer. The relay UE and the remote UE can transmit data and control signals between the IP relay layer and the IP layer. Further, the relay UE can transmit data between the IP relay layer and the IP layer of the P-GW 350.
 なお、リレーUEは、AS層(Access Stratum)において、ブロードキャストを用いてリモートUEにデータ(トラフィック)を送信できる。リレーUEは、AS層において、ユニキャストを用いてリモートUEにデータを送信してもよい。なお、UE・ネットワーク中継がブロードキャストを用いて実行されている場合、リレーUEとリモートUEとの間において、AS層におけるフィードバックは行われないが、NAS層におけるフィードバックは行われてもよい。また、UE・ネットワーク中継がユニキャストを用いて実行されている場合、AS層におけるフィードバックが行われてもよい。 Note that the relay UE can transmit data (traffic) to the remote UE using broadcast in the AS layer (Access Stratum). The relay UE may transmit data to the remote UE using unicast in the AS layer. When the UE / network relay is performed using broadcast, feedback in the AS layer is not performed between the relay UE and the remote UE, but feedback in the NAS layer may be performed. When UE / network relay is performed using unicast, feedback in the AS layer may be performed.
 (無線端末)
 以下において、実施形態に係るUE100(無線端末)について説明する。図5は、UE100のブロック図である。図5に示すように、UE100は、レシーバ(Receiver:受信部)110、トランスミッタ(Transmitter:送信部)120、及びコントローラ(Controller:制御部)130を備える。レシーバ110とトランスミッタ120とは、一体化されたトランシーバ(送受信部)であってもよい。
(Wireless terminal)
Below, UE100 (radio | wireless terminal) which concerns on embodiment is demonstrated. FIG. 5 is a block diagram of the UE 100. As illustrated in FIG. 5, the UE 100 includes a receiver (receiver) 110, a transmitter (transmitter) 120, and a controller (controller) 130. The receiver 110 and the transmitter 120 may be an integrated transceiver (transmission / reception unit).
 レシーバ110は、コントローラ130の制御下で各種の受信を行う。レシーバ110は、アンテナを含む。レシーバ110は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ130に出力する。 The receiver 110 performs various types of reception under the control of the controller 130. The receiver 110 includes an antenna. The receiver 110 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 130.
 なお、UE100は、「ProSe-enabled Public Safety UE」である場合、レシーバ110は、異なる2つの周波数における無線信号を同時に受信可能である。例えば、UE100は、2つのレシーバ110(2 RX Chain)を有する。UE100は、一方のレシーバ110によりセルラ用の無線信号を受信でき、他方のレシーバ110によりProSe用の無線信号を受信できる。 Note that when the UE 100 is a “ProSe-enabled Public Safety UE”, the receiver 110 can simultaneously receive radio signals at two different frequencies. For example, the UE 100 includes two receivers 110 (2 RX Chain). The UE 100 can receive a radio signal for cellular by one receiver 110 and can receive a radio signal for ProSe by the other receiver 110.
 トランスミッタ120は、コントローラ130の制御下で各種の送信を行う。トランスミッタ120は、アンテナを含む。トランスミッタ120は、コントローラ130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmitter 120 performs various transmissions under the control of the controller 130. The transmitter 120 includes an antenna. The transmitter 120 converts the baseband signal (transmission signal) output from the controller 130 into a radio signal and transmits it from the antenna.
 コントローラ130は、UE100における各種の制御を行う。コントローラ130は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。 The controller 130 performs various controls in the UE 100. The controller 130 includes a processor and a memory. The memory stores a program executed by the processor and information used for processing by the processor. The processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory. The processor may include a codec that performs encoding / decoding of an audio / video signal. The processor executes various processes described later and various communication protocols described above.
 UE100は、GNSS受信機を備えていてもよい。GNSS受信機は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をコントローラ130に出力する。或いは、UE100は、UE100の位置情報を取得するためのGPS機能を有していてもよい。 The UE 100 may include a GNSS receiver. The GNSS receiver receives a GNSS signal and outputs the received signal to the controller 130 in order to obtain position information indicating the geographical position of the UE 100. Or UE100 may have a GPS function for acquiring position information on UE100.
 (基地局)
 以下において、実施形態に係るeNB200(基地局)について説明する。図6は、eNB200のブロック図である。図6に示すように、eNB200は、レシーバ(受信部)210、トランスミッタ(送信部)220、コントローラ(制御部)230、及びネットワークインターフェイス240を備える。トランスミッタ220とレシーバ210は、一体化されたトランシーバ(送受信部)であってもよい。
(base station)
Below, eNB200 (base station) which concerns on embodiment is demonstrated. FIG. 6 is a block diagram of the eNB 200. As illustrated in FIG. 6, the eNB 200 includes a receiver (reception unit) 210, a transmitter (transmission unit) 220, a controller (control unit) 230, and a network interface 240. The transmitter 220 and the receiver 210 may be an integrated transceiver (transmission / reception unit).
 レシーバ210は、コントローラ230の制御下で各種の受信を行う。レシーバ210は、アンテナを含む。レシーバ210は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換してコントローラ230に出力する。 The receiver 210 performs various types of reception under the control of the controller 230. The receiver 210 includes an antenna. The receiver 210 converts a radio signal received by the antenna into a baseband signal (received signal) and outputs it to the controller 230.
 トランスミッタ220は、コントローラ230の制御下で各種の送信を行う。トランスミッタ220は、アンテナを含む。トランスミッタ220は、コントローラ230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmitter 220 performs various transmissions under the control of the controller 230. The transmitter 220 includes an antenna. The transmitter 220 converts the baseband signal (transmission signal) output from the controller 230 into a radio signal and transmits it from the antenna.
 コントローラ230は、eNB200における各種の制御を行う。コントローラ230は、プロセッサ及びメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に使用される情報を記憶する。プロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行うベースバンドプロセッサと、メモリに記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサは、後述する各種の処理及び上述した各種の通信プロトコルを実行する。 The controller 230 performs various controls in the eNB 200. The controller 230 includes a processor and a memory. The memory stores a program executed by the processor and information used for processing by the processor. The processor includes a baseband processor that performs modulation / demodulation and encoding / decoding of the baseband signal, and a CPU (Central Processing Unit) that executes various processes by executing programs stored in the memory. The processor executes various processes described later and various communication protocols described above.
 ネットワークインターフェイス240は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス240は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信等に使用される。 The network interface 240 is connected to the neighboring eNB 200 via the X2 interface, and is connected to the MME / S-GW 300 via the S1 interface. The network interface 240 is used for communication performed on the X2 interface and communication performed on the S1 interface.
 [第1実施形態]
 次に、第1実施形態について説明する。第1実施形態では、直接通信用の複数のリソースプールが同一のキャリア内に設けられる。
[First Embodiment]
Next, the first embodiment will be described. In the first embodiment, a plurality of resource pools for direct communication are provided in the same carrier.
 (動作環境)
 第1実施形態に係る動作環境について、図7及び図8を用いて説明する。図7は、第1実施形態に係る動作環境を説明するための図である。図8は、第1実施形態に係る動作を説明するための図である。
(Operating environment)
The operating environment according to the first embodiment will be described with reference to FIGS. FIG. 7 is a diagram for explaining the operating environment according to the first embodiment. FIG. 8 is a diagram for explaining an operation according to the first embodiment.
 図7に示すように、UE100-1及びUE100-2は、直接通信(Direct communication)を行うケースについて説明する。UE100-1及びUE100-2は、eNB200が管理するセル内に位置してもよいし、セル外に位置してもよい。UE100-1がセル内に位置し、UE100-2がセル外に位置してもよい。UE100-1は、リレーUEであってもよいし、UE100-2は、リモートUEであってもよい。また、UE100(UE100-1及びUE100-2)は、RRCコネクティッド状態であってもよいし、RRCアイドル状態であってもよい。 As shown in FIG. 7, a case will be described in which the UE 100-1 and the UE 100-2 perform direct communication. The UE 100-1 and the UE 100-2 may be located in a cell managed by the eNB 200 or may be located outside the cell. The UE 100-1 may be located in the cell and the UE 100-2 may be located outside the cell. The UE 100-1 may be a relay UE, and the UE 100-2 may be a remote UE. Further, UE 100 (UE 100-1 and UE 100-2) may be in an RRC connected state or an RRC idle state.
 なお、図8に示すように、直接通信に用いられる無線リソースプール(送信リソースプール/受信リソースプール)は、時間方向において所定の周期(SC期間:SC Period)で繰り返し配置される。直接通信に用いられる無線リソースプールは、制御領域(物理サイドリンク制御チャネル(PSCCH:Physical sidelink control channel))と、データ領域(物理サイドリンク共有チャネル(PSSCH:Physical sidelink shared channel))とによって構成される。制御領域とデータ領域とからなる複数の無線リソースプールが時間方向に配置される。1つの無線リソースプールの時間方向の長さは、無線リソースプールの周期であるSC期間(SC Period)と一致する。制御領域とデータ領域とは、時間方向において交互に配置される。データ領域は、時間方向において、制御領域の後に続く。なお、データ領域は、時間方向において、制御領域と重複していてもよい。 Note that, as shown in FIG. 8, the radio resource pool (transmission resource pool / reception resource pool) used for direct communication is repeatedly arranged in a predetermined period (SC period: SC Period) in the time direction. A radio resource pool used for direct communication is composed of a control area (physical side link control channel (PSCCH)) and a data area (physical side link shared channel (PSSCH)). The A plurality of radio resource pools composed of a control area and a data area are arranged in the time direction. The length of one radio resource pool in the time direction coincides with an SC period (SC Period) that is a cycle of the radio resource pool. The control area and the data area are alternately arranged in the time direction. The data area follows the control area in the time direction. The data area may overlap with the control area in the time direction.
 制御領域は、直接通信によりサイドリンク用の制御情報(SCI:Sidelink Control Information)を送信するためのPSCCHが配置される領域である。従って、制御領域は、直接通信によりSCIを送信するための無線リソース(以下、制御リソース)が配置される制御リソースプールに相当する。なお、SCIは、直接通信によりデータを送信するために割り当てられた無線リソース(以下、データリソース)を通知するための情報である。具体的には、SCIは、データリソースの割当情報を含む。データ領域は、データを送信するためのPSSCHが配置される領域である。従って、データ領域は、直接通信によりデータを送信するための無線リソースが配置されるデータリソースプールに相当する。 The control area is an area where a PSCCH for transmitting side link control information (SCI: Sidelink Control Information) by direct communication is arranged. Therefore, the control area corresponds to a control resource pool in which radio resources (hereinafter referred to as control resources) for transmitting SCI by direct communication are arranged. The SCI is information for notifying a radio resource (hereinafter referred to as data resource) allocated to transmit data by direct communication. Specifically, the SCI includes data resource allocation information. The data area is an area where a PSSCH for transmitting data is arranged. Therefore, the data area corresponds to a data resource pool in which radio resources for transmitting data by direct communication are arranged.
 UE100-1は、直接通信によりパケット(データ)をUE100-2に送信すると仮定する。UE100-1は、複数の送信リソースプール(Pool1及びPool2)の中からパケットを送信するための送信リソースプール(例えば、Pool2)を選択する(図8参照)。UE100-1は、選択したPool2の中から制御リソースとデータリソースとを選択する。UE100-1は、選択した制御リソースを用いて、選択したデータリソースの割当情報を含むSCIをUE100-2に送信する。また、UE100-1は、選択したデータリソースを用いて、パケット(データ)をUE100-2に送信する。 It is assumed that UE 100-1 transmits a packet (data) to UE 100-2 by direct communication. The UE 100-1 selects a transmission resource pool (for example, Pool 2) for transmitting a packet from among a plurality of transmission resource pools (Pool 1 and Pool 2) (see FIG. 8). The UE 100-1 selects a control resource and a data resource from the selected Pool2. UE 100-1 transmits SCI including allocation information of the selected data resource to UE 100-2 using the selected control resource. Further, the UE 100-1 transmits a packet (data) to the UE 100-2 using the selected data resource.
 ここで、UE100-1及びUE100-2と異なるUE(不図示)と直接通信を行うUE100-3が、複数の送信リソースプールの中からUE100-1と同じPool2を選択したと仮定する。この場合、UE100-1とUE100-3とは、同じ無線リソース(制御リソース及びデータリソースの少なくとも一方)を選択する可能性がある。UE100-1とUE100-3とが同じ無線リソースを使用した場合、干渉が発生し、UE100-2は、UE100-1からのパケット(又はSCI)を受信できない可能性がある。 Here, it is assumed that UE 100-3 that directly communicates with UE (not shown) different from UE 100-1 and UE 100-2 selects the same Pool 2 as UE 100-1 from a plurality of transmission resource pools. In this case, the UE 100-1 and the UE 100-3 may select the same radio resource (at least one of a control resource and a data resource). When the UE 100-1 and the UE 100-3 use the same radio resource, interference occurs, and the UE 100-2 may not be able to receive a packet (or SCI) from the UE 100-1.
 そこで、複数のUE100が同じ無線リソースを選択することに基づくパケットの受信低下を抑制可能にする技術を説明する。 Therefore, a technique that enables suppression of packet reception degradation based on a plurality of UEs 100 selecting the same radio resource will be described.
 なお、以下で説明するUE100(UE100-1及びUE100-2)が実行する処理(動作)について、UE100が備えるレシーバ110、トランスミッタ120、コントローラ130の少なくともいずれかが実行するが、便宜上、UE100が実行する処理として説明する。同様に、以下で説明するeNB200が実行する処理(動作)について、eNB200が備えるレシーバ210、トランスミッタ220、コントローラ230、ネットワークインターフェイス240の少なくともいずれかが実行するが、便宜上、eNB200が実行する処理として説明する。 Note that the processing (operation) executed by the UE 100 (UE 100-1 and UE 100-2) described below is executed by at least one of the receiver 110, the transmitter 120, and the controller 130 included in the UE 100. This process will be described. Similarly, a process (operation) executed by the eNB 200 described below is executed by at least one of the receiver 210, the transmitter 220, the controller 230, and the network interface 240 included in the eNB 200. To do.
 また、以下において、特に説明がない限り、パケットは、直接通信用のパケットである。 In the following, unless otherwise specified, a packet is a packet for direct communication.
 (送信リソースプールの選択)
 送信リソースプールの選択について、図9-11を用いて説明する。図9-11は、送信リソースプールの選択の一例を説明するための図である。
(Select transmission resource pool)
Selection of the transmission resource pool will be described with reference to FIGS. FIGS. 9-11 are diagrams for explaining an example of selection of a transmission resource pool.
 UE100-1は、複数のプールグループの中から、パケットの優先度に基づいて、パケットの送信に用いられる送信リソースプールを選択する。 The UE 100-1 selects a transmission resource pool to be used for packet transmission from a plurality of pool groups based on the priority of the packet.
 複数のプールグループは、直接通信用の送信リソースプールにより構成されるグループである。複数のプールグループは、互いに異なる優先度を有する。例えば、複数のプールグループは、高優先度のプールグループ(以下、高優先度グループ)と低優先度(すなわち、高優先度よりも低い優先度)のプールグループ(以下、低優先度グループ)とにより構成される。高優先度グループは、高優先度のパケットを送信するために用いられる送信リソースプールにより構成されてもよい。低優先度グループは、低優先度(高優先度よりも低い優先度)のパケットを送信するために用いられる送信リソースプールにより構成されてもよい。なお、複数のプールグループは、3つ以上のプールグループ(例えば、第1優先度(Low)のプールグループ、第2優先度(Middle)のプールグループ、及び、第3優先度(High)のプールグループ)により構成されてもよい。 • Multiple pool groups are groups composed of transmission resource pools for direct communication. The plurality of pool groups have different priorities. For example, a plurality of pool groups include a high priority pool group (hereinafter, high priority group) and a low priority (that is, lower priority than high priority) pool group (hereinafter, low priority group). Consists of. The high priority group may be constituted by a transmission resource pool used for transmitting a high priority packet. The low priority group may be configured by a transmission resource pool that is used to transmit packets with low priority (priority lower than high priority). The plurality of pool groups include three or more pool groups (for example, a first priority (Low) pool group, a second priority (Middle) pool group, and a third priority (High) pool group). Group).
 各プールグループに含まれる送信リソースプールの数は、各プールグループの優先度に応じた値であってもよい。具体的には、高優先度グループは、送信リソースプールの数が多く、低優先度グループは、送信リソースプールの数が少なくてもよい。すなわち、高優先度グループに含まれる送信リソースプールの数は、低優先度グループに含まれる送信リソースプールの数よりも多くてもよい。例えば、図9において、高優先度グループ(High Priority Resource Pool Group)は、Pool0、Pool3、Pool5及びPool6により構成される。従って、高優先度グループは、4つの送信リソースプールを含む。一方、低優先度グループ(Low Priority Resource Pool Group)は、Pool1及びPool2により構成される。従って、低優先度グループは、2つの送信リソースプールを含む。これにより、高優先パケットを送信するUE100どうしが、同じ高優先度グループから送信リソースプールを選択する場合であっても、同じ送信リソースプールを選択する確率が減少する。その結果、干渉の発生を抑制できる。 The number of transmission resource pools included in each pool group may be a value corresponding to the priority of each pool group. Specifically, the high priority group may have a large number of transmission resource pools, and the low priority group may have a small number of transmission resource pools. That is, the number of transmission resource pools included in the high priority group may be larger than the number of transmission resource pools included in the low priority group. For example, in FIG. 9, a high priority group (High Priority Resource Pool Group) is configured by Pool 0, Pool 3, Pool 5, and Pool 6. Therefore, the high priority group includes four transmission resource pools. On the other hand, the low priority group (Low Priority Resource Pool Group) is composed of Pool1 and Pool2. Therefore, the low priority group includes two transmission resource pools. Thereby, even if UE100 which transmits a high priority packet selects a transmission resource pool from the same high priority group, the probability of selecting the same transmission resource pool decreases. As a result, the occurrence of interference can be suppressed.
 UE100-1は、以下のいずれかの方法により、候補プールグループを決定する。 UE 100-1 determines a candidate pool group by one of the following methods.
 第1に、UE100-1は、複数のプールグループの中から、パケットの優先度に基づいて、候補プールグループを決定する。具体的には、UE100-1は、パケットの優先度に対応する優先度を有するプールグループを候補プールグループに決定する。 First, the UE 100-1 determines a candidate pool group based on the priority of the packet from among a plurality of pool groups. Specifically, the UE 100-1 determines a pool group having a priority corresponding to the priority of the packet as a candidate pool group.
 図9において、UE100-1は、高優先度を有するパケット(以下、高優先度パケット)を送信する場合、複数のプールグループの中から高優先度グループを候補プールグループに決定する。UE100-1は、候補プールグループである高優先度グループの中から送信リソースプール(例えば、Pool0)を選択する。UE100-1は、選択したPool0内の無線リソースを用いて高優先度パケットをUE100-2に送信する。 In FIG. 9, when transmitting a packet having a high priority (hereinafter referred to as a high priority packet), the UE 100-1 determines a high priority group as a candidate pool group from a plurality of pool groups. The UE 100-1 selects a transmission resource pool (for example, Pool 0) from the high priority group that is a candidate pool group. The UE 100-1 transmits a high priority packet to the UE 100-2 using the selected radio resource in Pool0.
 一方、UE100-1は、低優先度を有するパケット(以下、低優先度パケット)を送信する場合、複数のプールグループの中から低優先度グループを候補プールグループに決定する。UE100-1は、候補プールグループである低優先度グループの中から送信リソースプール(例えば、Pool2)を選択する。UE100-1は、選択したPool2内の無線リソースを用いて低優先度パケットをUE100-2に送信する。 On the other hand, when transmitting a packet having a low priority (hereinafter referred to as a low priority packet), the UE 100-1 determines a low priority group as a candidate pool group from among a plurality of pool groups. The UE 100-1 selects a transmission resource pool (for example, Pool 2) from the low priority groups that are candidate pool groups. The UE 100-1 transmits a low priority packet to the UE 100-2 using the radio resource in the selected Pool2.
 なお、UE100-1は、優先度とプールグループとの関連付けを示す情報に基づいて、プールグループの優先度を把握する。当該情報は、プールグループのインデックスと優先度とが関連付けられた情報であってもよいし、プールグループのインデックスと論理チャネルに関する識別情報とが関連付けられた情報であってもよい。論理チャネルに関する識別情報は、論理チャネルの識別子(LCID)又は論理チャネルグループの識別子(LCGID)である。LCID及びLCGIDの少なくとも一方が、優先度と関連付けられている場合に、UE100-1は、プールグループの優先度を把握できる。UE100-1は、優先度とプールグループとの関連付けを示す情報をeNB200からブロードキャスト(例えば、SIB(System Information Block))又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。なお、UE100-1は、優先度とプールグループとの関連付けを示す情報と優先度との関連付けを示す情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 Note that the UE 100-1 grasps the priority of the pool group based on the information indicating the association between the priority and the pool group. The information may be information in which the pool group index and the priority are associated with each other, or may be information in which the pool group index is associated with the identification information on the logical channel. The identification information regarding the logical channel is a logical channel identifier (LCID) or a logical channel group identifier (LCGID). When at least one of the LCID and the LCGID is associated with the priority, the UE 100-1 can grasp the priority of the pool group. The UE 100-1 may receive information indicating the association between the priority level and the pool group from the eNB 200 by broadcast (for example, SIB (System Information Block)) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1. Note that the UE 100-1 receives information indicating the association between the priority and the pool group and the information indicating the association between the priority from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). May be. The information may be preset (Pre-config.) In the UE 100-1.
 また、UE100-1は、各送信リソースプールに関連付けられているプールグループを示す情報(すなわち、プールグループと送信リソースプールとの関連付けを示す情報)に基づいて、候補プールグループを構成する送信リソースプールを特定する。例えば、Pool0、Pool3、Pool5、Pool6がプールグループインデックス1と関連付けられ、Pool1、Pool2がプールグループインデックス2と関連付けられる。なお、例えば、プールグループインデックス1は、優先度2(高優先度)と関連付けられ、プールグループインデックス2は、優先度1(低優先度)と関連付けられる。 In addition, the UE 100-1 uses the transmission resource pools that configure the candidate pool group based on information indicating the pool group associated with each transmission resource pool (that is, information indicating the association between the pool group and the transmission resource pool). Is identified. For example, Pool 0, Pool 3, Pool 5 and Pool 6 are associated with the pool group index 1, and Pool 1 and Pool 2 are associated with the pool group index 2. For example, pool group index 1 is associated with priority 2 (high priority), and pool group index 2 is associated with priority 1 (low priority).
 第2に、UE100-1は、上述の第1の方法と同様に、複数のプールグループの中から、パケットの優先度に基づいて、候補プールグループを決定する。ただし、第1の方法と異なり、UE100-1自身が、複数のプールグループを構成する各送信リソースプールを決定する。 Second, the UE 100-1 determines a candidate pool group from a plurality of pool groups based on the priority of the packet, as in the first method described above. However, unlike the first method, the UE 100-1 itself determines each transmission resource pool constituting a plurality of pool groups.
 UE100-1は、各プールグループを構成する送信リソースプールの数と優先度との関連付けを示す数情報、又は、複数の送信リソースプール(全送信リソースプール)に対する各プールグループを構成する送信リソースプールの割合と優先度との関連付けを示す割合情報に基づいて、各プールグループに含まれる送信リソースプールの数を決定する。なお、UE100-1は、数情報及び/又は割合情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。数情報及び/又は割合情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The UE 100-1 uses number information indicating an association between the number of transmission resource pools constituting each pool group and priority, or a transmission resource pool constituting each pool group for a plurality of transmission resource pools (all transmission resource pools). The number of transmission resource pools included in each pool group is determined based on the ratio information indicating the association between the ratio and the priority. Note that the UE 100-1 may receive the number information and / or the ratio information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The number information and / or the ratio information may be preset (Pre-config.) In the UE 100-1.
 数情報は、プールグループ(候補プールグループ)を構成する送信リソースプールとして選択可能な送信リソースプールの数を示す情報を含む。数情報は、優先度と選択可能数(例えば、1個、2個、3個・・・)との関連付けを示す。割合情報は、プールグループ(候補プールグループ)を構成する送信リソースプールとして選択可能な送信リソースプールの割合を示す情報を含む。具体的には、割合情報は、選択可能な送信リソースプールの数/全体の送信リソースプール(設定された送信リソースプール)の数で表される割合を示す情報を含む。割合情報は、優先度と選択可能な送信リソースプールの割合(例えば、25%、50%、75%、100%)との関連付けを示す。 The number information includes information indicating the number of transmission resource pools that can be selected as transmission resource pools constituting the pool group (candidate pool group). The number information indicates the association between the priority and the selectable number (for example, 1, 2, 3,...). The ratio information includes information indicating a ratio of transmission resource pools that can be selected as transmission resource pools that constitute a pool group (candidate pool group). Specifically, the ratio information includes information indicating a ratio expressed by the number of selectable transmission resource pools / the total number of transmission resource pools (set transmission resource pools). The ratio information indicates the association between the priority and the ratio (for example, 25%, 50%, 75%, 100%) of the selectable transmission resource pool.
 UE100-1は、複数のプールグループを構成する各プールグループに含まれる送信リソースプールの数を決定する。具体的には、UE100-1は、例えば、数情報又は割合情報に基づいて、送信リソースプールの数を決定する。UE100-1は、決定された送信リソースプールの数に応じて、複数のプールグループの中から候補プールグループを構成する送信リソースプールを決定する。 UE 100-1 determines the number of transmission resource pools included in each pool group constituting a plurality of pool groups. Specifically, the UE 100-1 determines the number of transmission resource pools based on the number information or the ratio information, for example. The UE 100-1 determines a transmission resource pool constituting the candidate pool group from among a plurality of pool groups according to the determined number of transmission resource pools.
 例えば、図10において、数情報は、高優先度グループが6個の送信リソースプールにより構成されることを示し、低優先度グループが2個の送信リソースプールにより構成されることを示す。UE100-1は、設定されているPool(Pool1-Pool7)の中から、高優先度グループを構成する送信リソースプールとして6個の送信リソースプール(例えば、Pool1-Pool3、Pool5、Pool6)を決定(選択)する。また、UE100-1は、低優先度グループを構成する送信リソースプールとして2個の送信リソースプール(例えば、Pool1、Pool2)を決定(選択)する。 For example, in FIG. 10, the number information indicates that the high priority group is configured by six transmission resource pools, and the low priority group is configured by two transmission resource pools. The UE 100-1 determines six transmission resource pools (for example, Pool1-Pool3, Pool5, Pool6) as transmission resource pools constituting the high priority group from the set Pool (Pool1-Pool7) ( select. In addition, the UE 100-1 determines (selects) two transmission resource pools (for example, Pool 1 and Pool 2) as the transmission resource pools constituting the low priority group.
 なお、UE100-1は、割合情報に基づいて、候補プールグループの数を決定してもよい。例えば、割合情報が、高優先度が「6/7」と関連付けられることを示し、低優先度が「2/7」と関連付けられることを示す場合、UE100-1は、上述と同様に、送信リソースプールを決定できる。 Note that the UE 100-1 may determine the number of candidate pool groups based on the ratio information. For example, when the ratio information indicates that the high priority is associated with “6/7” and the low priority is associated with “2/7”, the UE 100-1 transmits the same as described above. Resource pool can be determined.
 UE100-1は、パケットの優先度に基づいて、候補プールグループを決定する。UE100-1は、高優先度パケットを送信する場合、高優先度グループ(Pool1-Pool3、Pool5、Pool6)の中から送信リソースプールを選択する。UE100-2は、低優先度パケットを送信する場合、低優先度グループ(Pool1、Pool2)の中から送信リソースプールを選択する。 The UE 100-1 determines a candidate pool group based on the priority of the packet. When transmitting a high priority packet, the UE 100-1 selects a transmission resource pool from among the high priority groups (Pool1-Pool3, Pool5, Pool6). When transmitting a low priority packet, the UE 100-2 selects a transmission resource pool from the low priority group (Pool1, Pool2).
 第3に、UE100-1は、複数のプールグループの中から、パケットの送信先(宛先識別子)又は送信元の識別子に基づいて、候補プールグループを決定する。これらの識別子は、例えば、MAC PDUの宛先(送信元)を示す。 Third, the UE 100-1 determines a candidate pool group based on a packet transmission destination (destination identifier) or a transmission source identifier from among a plurality of pool groups. These identifiers indicate, for example, the destination (source) of the MAC PDU.
 UE100-1は、パケットの送信先の識別子と送信リソースプール(又はプールグループ)との関連付けを示す送信先情報に基づいて、宛先識別子と送信リソースプールとの関連付けを把握する。なお、UE100-1は、上述の各送信リソースプールに関連付けられているプールグループを示す情報も用いて、宛先識別子と送信リソースプールとの関連付けを把握してもよい。また、UE100-1は、パケットの送信元の識別子と送信リソースプール(又はプールグループ)との関連付けを示す送信元情報に基づいて、送信元識別子と送信リソースプールとの関連付けを把握してもよい。UE100-1は、送信先情報又は送信元情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。送信先情報又は送信元情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The UE 100-1 grasps the association between the destination identifier and the transmission resource pool based on the transmission destination information indicating the association between the packet transmission destination identifier and the transmission resource pool (or pool group). Note that the UE 100-1 may grasp the association between the destination identifier and the transmission resource pool using information indicating the pool group associated with each transmission resource pool described above. Further, the UE 100-1 may grasp the association between the transmission source identifier and the transmission resource pool based on the transmission source information indicating the association between the packet transmission source identifier and the transmission resource pool (or pool group). . The UE 100-1 may receive the transmission destination information or the transmission source information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The destination information or the source information may be preset (Pre-config.) In the UE 100-1.
 図11において、宛先識別子の1-9は、Pool0、Pool3、Pool5、Pool6により構成される第1リソースプールと関連付けられ、宛先識別子の10-99は、Pool1、Pool2により構成される第2リソースプールと関連付けられる。UE100-1は、2を示す宛先識別子を用いる場合、第1リソースプールを候補リソースグループと決定する。UE100-1は、第1リソースプールの中から送信リソースプール(例えば、Pool0)を選択する。なお、第1リソースプールは、高優先度グループであってもよい。或いは、宛先識別子と優先度とが独立してリソースグループ(送信リソースプール)と関連付けられていてもよい。この場合において、UE100-1は、例えば、高優先度パケットを送信する場合、第1リソースプールの中から高優先度グループに属する送信リソースプールを選択する。 In FIG. 11, the destination identifier 1-9 is associated with the first resource pool configured by Pool0, Pool3, Pool5, and Pool6, and the destination identifier 10-99 is the second resource pool configured by Pool1 and Pool2. Associated with. When the destination identifier indicating 2 is used, the UE 100-1 determines the first resource pool as a candidate resource group. The UE 100-1 selects a transmission resource pool (for example, Pool 0) from the first resource pool. The first resource pool may be a high priority group. Alternatively, the destination identifier and the priority may be independently associated with a resource group (transmission resource pool). In this case, for example, when transmitting a high priority packet, the UE 100-1 selects a transmission resource pool belonging to the high priority group from the first resource pool.
 同様に、UE100-1は、55を示す宛先識別子を用いる場合、第2リソースプールを候補リソースグループと決定する。UE100-1は、第2リソースプールの中から送信リソースプール(例えば、Pool2)を選択する。なお、UE100-1は、例えば、低優先度パケットを送信する場合、第2リソースプールの中から低優先度グループに属する送信リソースプールを選択する。第2リソースプールが低優先度グループである場合、UE100-1は、第2リソースプールの中から自由に選択できる。 Similarly, when the destination identifier indicating 55 is used, the UE 100-1 determines the second resource pool as a candidate resource group. The UE 100-1 selects a transmission resource pool (for example, Pool 2) from the second resource pool. For example, when transmitting a low priority packet, the UE 100-1 selects a transmission resource pool belonging to the low priority group from the second resource pool. When the second resource pool is a low priority group, the UE 100-1 can freely select from the second resource pool.
 なお、UE100-1は、同様にして、送信先識別子(UE100-1の識別子)に基づいて、候補リソースグループを決定してもよい。 Note that the UE 100-1 may similarly determine a candidate resource group based on a transmission destination identifier (an identifier of the UE 100-1).
 (送信リソースプールの選択タイミング)
 次に、送信リソースプールの選択タイミングについて、図12を用いて説明する。図12は、送信リソースプールの選択タイミングの一例を説明するための図である。
(Sending resource pool selection timing)
Next, transmission resource pool selection timing will be described with reference to FIG. FIG. 12 is a diagram for explaining an example of transmission resource pool selection timing.
 UE100-1は、候補リソースグループ(又は複数のプールグループ)の中から送信リソースプールを一度選択した後、同じ送信リソースプールを常に用いなくてもよい。UE100-1は、以下に示すように、新たな送信リソースプールを(再)選択することができる。 The UE 100-1 may not always use the same transmission resource pool after once selecting a transmission resource pool from candidate resource groups (or a plurality of pool groups). The UE 100-1 can (re-) select a new transmission resource pool as shown below.
 第1に、UE100-1は、SC期間が終了した後に、送信リソースプールを選択してもよい。 First, the UE 100-1 may select a transmission resource pool after the SC period ends.
 第2に、UE100-1は、所定の選択周期に基づいて、送信リソースプールを選択してもよい。UE100-1は、例えば、eNB200から通知された選択周期に基づいて、新たな送信リソースプールを選択する。UE100-1は、所定の選択周期を示す情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 Second, the UE 100-1 may select a transmission resource pool based on a predetermined selection cycle. For example, the UE 100-1 selects a new transmission resource pool based on the selection period notified from the eNB 200. The UE 100-1 may receive information indicating a predetermined selection cycle from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 第3に、UE100-1は、使用中の送信リソースプールが混雑した場合に、送信リソースプールの選択を行う。具体的には、UE100-1は、使用中の送信リソースプールにおける無線リソースの使用率に基づいて、新たな送信リソースプールを選択する。 Third, the UE 100-1 selects a transmission resource pool when the transmission resource pool in use is congested. Specifically, the UE 100-1 selects a new transmission resource pool based on the usage rate of radio resources in the transmission resource pool in use.
 図12に示すように、UE100-1は、制御領域のうち、制御情報(SCI)を送信している期間と異なる期間の無線リソースを測定対象リソースとみなす。UE100-1は、測定対象リソースをモニタ(測定)する。UE100-1は、他のUE100-1からの制御情報の有無を判断し、無線リソースの使用率(占有率)を測定する。なお、UE100-1は、複数の受信機を備える場合には、制御領域の全ての期間をモニタしてもよい。UE100-1は、例えば、以下の式により、無線リソースの使用率(占有率)を算出する。 As shown in FIG. 12, the UE 100-1 considers, as a measurement target resource, a radio resource in a period different from a period in which control information (SCI) is transmitted in the control area. The UE 100-1 monitors (measures) the measurement target resource. The UE 100-1 determines the presence / absence of control information from the other UE 100-1, and measures the usage rate (occupancy rate) of the radio resource. Note that, when the UE 100-1 includes a plurality of receivers, the UE 100-1 may monitor the entire period of the control region. For example, the UE 100-1 calculates the usage rate (occupation rate) of the radio resource by the following equation.
 無線リソースの使用率=(制御情報を受信した制御リソース)/(測定した制御リソース) Wireless resource usage rate = (control resource that received control information) / (measured control resource)
 なお、UE100-1は、制御領域だけでなく、データ領域も測定し、無線リソースの使用率を算出してもよい。また、UE100-1は、測定結果に基づいて、無線リソースの使用率の代わりに、送信リソースプールを使用するUE数を算出してもよい。例えば、送信UEは、時間方向に2RBの無線リソースを用いて、SCIを送信できることに基づいて、概算のUE数を算出してもよい。 Note that the UE 100-1 may measure not only the control area but also the data area and calculate the usage rate of the radio resource. Further, the UE 100-1 may calculate the number of UEs using the transmission resource pool instead of the radio resource usage rate based on the measurement result. For example, the transmitting UE may calculate the approximate number of UEs based on being able to transmit SCI using 2 RB radio resources in the time direction.
 UE100-1は、無線リソースの使用率が閾値よりも高い場合に、新たな送信リソースプールを選択できる。閾値は、無線リソースの使用率の絶対値(例えば、0.5(50%))であってもよい。或いは、閾値は、例えば、UE100-1が送信リソースプールの使用を開始した時の無線リソースの使用率に補正値(例えば、0.1/0.3/0.5)を加えた値であってもよい。UE100-1は、閾値に関する情報(閾値及び/又は補正値)をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The UE 100-1 can select a new transmission resource pool when the usage rate of the radio resource is higher than the threshold. The threshold may be an absolute value (for example, 0.5 (50%)) of the usage rate of the radio resource. Alternatively, the threshold value is, for example, a value obtained by adding a correction value (for example, 0.1 / 0.3 / 0.5) to the radio resource usage rate when the UE 100-1 starts using the transmission resource pool. May be. The UE 100-1 may receive information on the threshold (threshold and / or correction value) from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 第4に、UE100-1は、パケットが発生している間、送信リソースプールを選択する。UE100-1は、全てのパケットを送信した場合、送信リソースプールの選択を省略する。UE100-1は、関連情報を消去してもよい。或いは、UE100-1は、関連情報を保持していてもよい。関連情報は、例えば、選択していた送信リソースプールに関する情報(パラメータ)である。 Fourth, the UE 100-1 selects a transmission resource pool while a packet is generated. When transmitting all packets, the UE 100-1 omits selection of a transmission resource pool. The UE 100-1 may delete the related information. Alternatively, the UE 100-1 may hold related information. The related information is, for example, information (parameters) related to the selected transmission resource pool.
 UE100-1は、新たなパケットが発生した場合に、送信リソースプールの選択を開始(再開)する。UE100-1は、新たなパケットが発生したタイミングで、送信リソースプールを選択するための制御を開始してもよいし、所定期間(所定周期)経過してから、送信リソースプールの選択を開始してもよい。また、UE100-1は、最後に使用した送信リソースプールのパラメータを参照してもよい。例えば、UE100-1は、最後に使用した送信リソースプールの使用率よりも低い使用率の送信リソースプールを選択してもよい。 The UE 100-1 starts (resumes) transmission resource pool selection when a new packet occurs. The UE 100-1 may start control for selecting a transmission resource pool at a timing when a new packet is generated, or start selection of a transmission resource pool after a predetermined period (predetermined period) has elapsed. May be. Further, the UE 100-1 may refer to the parameter of the transmission resource pool used last. For example, the UE 100-1 may select a transmission resource pool with a usage rate lower than the usage rate of the transmission resource pool used last.
 (無線リソースの選択/パケットの送信)
 次に、無線リソースの選択/パケットの送信について、図13を用いて説明する。図13は、無線リソースの選択の一例を説明する図である。
(Radio resource selection / packet transmission)
Next, radio resource selection / packet transmission will be described with reference to FIG. FIG. 13 is a diagram illustrating an example of radio resource selection.
 UE100-1は、以下の方法により、選択した送信リソースプールの中から無線リソース(制御リソース及び/又はデータリソース)を選択してもよい。また、UE100-1は、以下の方法により、パケットを送信してもよい。UE100-1は、高優先度パケットの受信確率を上げるために、以下の方法を行うことができる。 The UE 100-1 may select a radio resource (control resource and / or data resource) from the selected transmission resource pool by the following method. Further, the UE 100-1 may transmit a packet by the following method. In order to increase the reception probability of the high priority packet, the UE 100-1 can perform the following method.
 第1に、UE100-1は、パケットの優先度に基づいて、制御リソースの選択範囲を決定する。制御リソースの選択範囲は、例えば、制御リソースとして選択可能な候補リソースの数である。 First, the UE 100-1 determines the selection range of the control resource based on the priority of the packet. The selection range of the control resource is, for example, the number of candidate resources that can be selected as the control resource.
 UE100-1は、パケットの優先度(例えば、パケットの送信に用いられる論理チャネルに関する識別子(LCID/LCGID))と制御リソースの選択範囲の最大値とが関連付けられた選択範囲情報に基づいて、制御リソースを選択する。選択範囲情報は、例えば、低優先度のLCIDと選択範囲(最大値)mとが関連付けられ、高優先度LCIDと選択範囲(最大値)n(>m)とが関連付けられていることを示す情報である。UE100-1は、パケットの優先度(LCIDなど)に基づいて、制御リソースを選択する。なお、UE100-1は、第1選択範囲情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The UE 100-1 performs control based on the selection range information in which the priority of the packet (for example, the identifier (LCID / LCGID) relating to the logical channel used for packet transmission) and the maximum value of the selection range of the control resource are associated with each other. Select a resource. The selection range information indicates that, for example, a low priority LCID and a selection range (maximum value) m are associated, and a high priority LCID and a selection range (maximum value) n (> m) are associated. Information. The UE 100-1 selects a control resource based on the packet priority (LCID or the like). Note that the UE 100-1 may receive the first selection range information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 UE100-1は、選択範囲情報に基づいて、候補リソースの数を決定する。UE100-1は、候補リソースの数を決定した後、決定された数の候補リソースから、パケットの送信に用いる制御リソースを選択する。なお、候補リソース(制御リソース)の量は、2RBである。 UE 100-1 determines the number of candidate resources based on the selection range information. After determining the number of candidate resources, the UE 100-1 selects a control resource to be used for packet transmission from the determined number of candidate resources. Note that the amount of candidate resources (control resources) is 2 RBs.
 第2に、UE100-1は、パケットの優先度に基づいて、データリソースの選択範囲を決定する。データリソースの選択範囲は、例えば、データリソースを選択可能なサブフレームの数である。 Second, the UE 100-1 determines the selection range of the data resource based on the priority of the packet. The data resource selection range is, for example, the number of subframes in which the data resource can be selected.
 UE100-1は、時間リソースパターン選択パラメータ(mode2TRPSubset)と優先度とが関連付けられたリソース選択情報に基づいて、データリソースの選択範囲(使用するサブフレーム(の数))を決定する。UE100-1は、リソース選択情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 UE 100-1 determines a data resource selection range (number of subframes to be used) based on resource selection information in which a time resource pattern selection parameter (mode2TRPSsubset) is associated with a priority. The UE 100-1 may receive the resource selection information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 例えば、mode2TRPSubset={k,k,k}であるケースを説明する。図12に示すように、k=1の場合、1個のサブフレームが使用可能なサブフレームパターン(kTRP=1(8パターン))のいずれかを選択できる。k=1の場合、2個のサブフレームが使用可能なサブフレームパターン(kTRP=2(27パターン))のいずれかを選択できる。k=1の場合、4個のサブフレームが使用可能なサブフレームパターン(kTRP=4(70パターン))のいずれかを選択できる。なお、サブフレームパターンは、データリソースが終了するまで繰り返し用いられる。 For example, a case where mode2TRPSsubset = {k 0 , k 1 , k 2 } will be described. As shown in FIG. 12, when k 0 = 1, one of subframe patterns (k TRP = 1 (8 patterns)) in which one subframe can be used can be selected. When k 1 = 1, one of subframe patterns (k TRP = 2 (27 patterns)) in which two subframes can be used can be selected. When k 2 = 1, one of subframe patterns (k TRP = 4 (70 patterns)) in which four subframes can be used can be selected. The subframe pattern is repeatedly used until the data resource is completed.
 例えば、リソース選択情報は、「Priority={k,k,k}(=mode2TRPSubset)」を示す情報である。具体的には、リソース選択情報は、「Priority0(低優先度)={1,0,0}、Priority1(中優先度)={0,1,0}、Priority2(高優先度)={0,0,1}」を示す情報である。優先度が高いほど、使用可能なサブフレームの数が多くなるように、時間リソースパターン選択パラメータと優先度とが関連付けられている。なお、優先度(Priority)の代わりに、上述の通り、優先度と関連付けられた論理チャネルに関する識別情報と、mode2TRPSubsetとが関連付けられていてもよい
 例えば、UE100-1は、中優先度のパケットを送信する場合、Priority1(中優先度)={0,1,0}(={k,k,k})により、k=1と判断する。UE100-1は、2個のサブフレームが使用可能なサブフレームパターンのいずれかを選択する(図13の斜線部参照)。UE100-1は、選択したサブフレームパターン内のデータリソースを用いて、パケットをUE100-2に送信できる。
For example, the resource selection information is information indicating “Priority = {k 0 , k 1 , k 2 } (= mode2TRPSsubset)”. Specifically, the resource selection information includes “Priority 0 (low priority) = {1, 0, 0}, Priority 1 (medium priority) = {0, 1, 0}, Priority 2 (high priority) = {0. , 0, 1} ”. The time resource pattern selection parameter and the priority are associated so that the higher the priority is, the larger the number of usable subframes is. Instead of priority (Priority), as described above, identification information related to the logical channel associated with the priority may be associated with mode2TRPSsubset. For example, UE 100-1 may transmit a medium priority packet. When transmitting, it is determined that k 1 = 1 by Priority 1 (medium priority) = { 0 , 1 , 0 } (= {k 0 , k 1 , k 2 }). The UE 100-1 selects one of the subframe patterns in which two subframes can be used (see the hatched portion in FIG. 13). The UE 100-1 can transmit a packet to the UE 100-2 using the data resource in the selected subframe pattern.
 なお、データリソースの選択範囲は、データリソース量(又はデータリソースの数)であってもよい。 Note that the data resource selection range may be the amount of data resources (or the number of data resources).
 第3に、UE100-1は、パケットの優先度に基づいて、パケットを繰り返し送信する回数を決定してもよい。UE100-1は、パケットを繰り返し送信する回数に基づいて、データリソースを選択する。 Third, the UE 100-1 may determine the number of times to repeatedly transmit a packet based on the priority of the packet. The UE 100-1 selects a data resource based on the number of times the packet is repeatedly transmitted.
 UE100-1は、繰り返し送信の回数と優先度(例えば、論理チャネルに関する識別子(LCID/LCGID)との関連付けを示すリピテーション情報に基づいて、パケットを繰り返し送信する回数を決定する。例えば、リピテーション情報は、高優先度と8(繰り返し送信の回数)とが関連付けられ、低優先度と4(繰り返し送信の回数)とが関連付けられていることを示す情報である。優先度が高いほど、繰り返し送信の回数が多くなるように、繰り返し送信の回数と優先度とが関連付けられている。なお、リピテーション情報は、低優先度の繰り返し送信の回数を含まずに、高優先度の繰り返し送信の回数を示す情報を含んでもよい。低優先度のパケットは、予め規定された固定値(例えば、4回)で送信されることができる。 The UE 100-1 determines the number of times to repeatedly transmit a packet based on repetition information indicating the association between the number of repeated transmissions and a priority (for example, an identifier (LCID / LCGID) related to a logical channel). The information is information indicating that the high priority is associated with 8 (the number of repeated transmissions) and the low priority is associated with 4 (the number of repeated transmissions). In order to increase the number of transmissions, the number of repeated transmissions is associated with the priority, and the repetition information does not include the number of low-priority repeated transmissions, Information indicating the number of times may be included, and the low-priority packet may be transmitted with a predetermined fixed value (for example, four times).
 UE100-1は、リピテーション情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The UE 100-1 may receive the repetition information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 UE100-1は、リピテーション情報に基づいて、例えば、高優先度パケットを8回送信し、低優先度パケットを4回送信できる。 Based on the repetition information, the UE 100-1 can transmit, for example, a high priority packet 8 times and a low priority packet 4 times.
 第4に、UE100-1は、パケットの優先度に基づいて、パケットの送信確率を決定してもよい。 Fourth, the UE 100-1 may determine the packet transmission probability based on the packet priority.
 UE100-1は、送信確率(txProbability)に基づいてパケット(MAC PDU)を送信するか否かを決定する。具体的には、UE100-1は、送信確率と優先度(例えば、論理チャネルに関する識別子(LCID/LCGID)との関連付けを示す送信確率情報に基づいて、パケット(MAC PDU)を送信するか否かを決定する。なお、UE100-1は、1つのSC期間でパケットを送信するか否かを決定してもよいし、パケット毎に当該パケットを送信するか否かを決定してもよい。 UE 100-1 determines whether or not to transmit a packet (MAC PDU) based on the transmission probability (txProbability). Specifically, the UE 100-1 determines whether or not to transmit a packet (MAC PDU) based on transmission probability information indicating an association between a transmission probability and a priority (for example, an identifier (LCID / LCGID) relating to a logical channel). Note that the UE 100-1 may determine whether to transmit a packet in one SC period, or may determine whether to transmit the packet for each packet.
 例えば、送信確率情報は、高優先度と100%(送信確率)とが関連付けられ、低優先度と50%(送信確率)とが関連付けられていることを示す情報である。優先度が高いほど、送信確率が高くなるように、優先度と送信確率とが関連付けられている。 For example, the transmission probability information is information indicating that a high priority is associated with 100% (transmission probability) and a low priority is associated with 50% (transmission probability). The priority and the transmission probability are associated so that the higher the priority is, the higher the transmission probability is.
 UE100-1は、送信確率情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The UE 100-1 may receive the transmission probability information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 UE100-1は、制御情報(SCI)を送信する前に、送信確率に基づいて、パケットを送信するか否かを決定することが好ましい。UE100-1は、パケットを送信すると決定した場合に、制御情報を送信する。パケットを送信しないと判断した場合には、制御情報の送信を省略する。UE100-1は、無線リソース(制御リソース/データリソース)の選択前に、パケットを送信するか否かを決定してもよい。 It is preferable that the UE 100-1 determines whether to transmit a packet based on the transmission probability before transmitting the control information (SCI). When the UE 100-1 determines to transmit a packet, the UE 100-1 transmits control information. If it is determined not to transmit a packet, transmission of control information is omitted. The UE 100-1 may determine whether to transmit a packet before selecting a radio resource (control resource / data resource).
 送信される低優先度パケットの量が減少するため、低優先度パケットと高優先度パケットとの衝突が減少する。その結果、UE100-2が、高優先度パケットを受信する確率が向上する。 -Since the amount of low-priority packets transmitted decreases, collision between low-priority packets and high-priority packets decreases. As a result, the probability that the UE 100-2 receives the high priority packet is improved.
 [第2実施形態]
 次に、第2実施形態について、図14を用いて説明する。図14は、送信リソースプールの選択の一例を説明するための図である。なお、第1実施形態と同様の部分は、説明を適宜省略する。
[Second Embodiment]
Next, a second embodiment will be described with reference to FIG. FIG. 14 is a diagram for explaining an example of selection of a transmission resource pool. Note that description of parts similar to those of the first embodiment is omitted as appropriate.
 第1実施形態では、UE100-1は、複数のプールグループの中から候補リソースグループを選択し、候補リソースグループの中から送信リソースプールを選択していた。第2実施形態では、UE100-1は、全送信リソースプール(設定された送信リソースプール)の中から送信リソースプールを選択する。 In the first embodiment, the UE 100-1 selects a candidate resource group from a plurality of pool groups, and selects a transmission resource pool from the candidate resource groups. In the second embodiment, the UE 100-1 selects a transmission resource pool from all transmission resource pools (configured transmission resource pools).
 第2実施形態では、UE100-1は、送信リソースプールの使用状況、送信リソースプールの選択確率、及び、無線信号の受信状況、の少なくともいずれかに基づいて、送信リソースプールを選択する。以下、詳細に説明する。 In the second embodiment, the UE 100-1 selects a transmission resource pool based on at least one of the usage status of the transmission resource pool, the selection probability of the transmission resource pool, and the reception status of the radio signal. Details will be described below.
 第1に、UE100-1は、送信リソースプールの使用状況に基づいて、送信リソースプールを選択する。 First, the UE 100-1 selects a transmission resource pool based on the usage status of the transmission resource pool.
 図14に示すように、UE100-1は、送信リソースプールの使用状況を把握するために、第1実施形態と同様に、送信リソースプールをモニタ(測定)する。UE100-1は、複数の送信リソースプール(設定された送信リソースプール)のうち、1以上の送信リソースプール(の測定対象リソース)をモニタする。UE100-1は、パケットの送信を開始していない期間(n period)では、制御領域の全てをモニタする。 As shown in FIG. 14, the UE 100-1 monitors (measures) the transmission resource pool in the same manner as in the first embodiment in order to grasp the usage status of the transmission resource pool. The UE 100-1 monitors one or more transmission resource pools (measurement target resources) among a plurality of transmission resource pools (configured transmission resource pools). The UE 100-1 monitors all of the control area during a period (n period) when packet transmission has not started.
 UE100-1は、測定情報に基づいて、送信リソースプールの測定を行うことができる。測定情報は、送信リソースプールの使用状況を測定する周期(例えば、X period)、送信リソースプールの使用状況をを測定する頻度(例えば、3periodに1回)、送信リソースプールの使用状況を測定する対象となる送信リソースプール、の少なくともいずれかの情報である。UE100-1は、測定情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。なお、第1実施形態においても、UE100-1は、測定情報に基づいて測定できる。 The UE 100-1 can measure the transmission resource pool based on the measurement information. The measurement information includes a cycle for measuring the usage status of the transmission resource pool (for example, X period), a frequency for measuring the usage status of the transmission resource pool (for example, once every 3 periods), and a usage status of the transmission resource pool. Information on at least one of the transmission resource pools to be processed. The UE 100-1 may receive measurement information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1. Also in the first embodiment, the UE 100-1 can perform measurement based on the measurement information.
 UE100-1は、測定結果に基づいて、無線リソースの使用率を算出する。UE100-1は、算出した無線リソースの使用率に基づいて、送信リソースプールを選択する。 UE 100-1 calculates the usage rate of the radio resource based on the measurement result. The UE 100-1 selects a transmission resource pool based on the calculated radio resource usage rate.
 ここで、UE100-1は、複数の送信リソースプールを対象として測定を行った場合には、無線リソースの使用率が最も低い送信リソースプールを、パケットを送信するための送信リソースプールとして選択する。 Here, when measurement is performed for a plurality of transmission resource pools, the UE 100-1 selects a transmission resource pool with the lowest radio resource usage rate as a transmission resource pool for transmitting packets.
 UE100-1は、第1実施形態と同様に、閾値よりも低い送信リソースプールを、パケットを送信するための送信リソースプールとして選択する。閾値よりも低い送信リソースプールが複数存在する場合には、任意の送信リソースプールを選択してもよいし、無線リソースの使用率が最も低い送信リソースプールを選択してもよい。UE100-1は、1つの送信リソースプールしか測定していない場合であっても、閾値よりも低い使用率を有する送信リソースプールが見つかった場合、他の送信リソースプールの測定を省略してもよい。 As in the first embodiment, the UE 100-1 selects a transmission resource pool lower than the threshold as a transmission resource pool for transmitting a packet. When there are a plurality of transmission resource pools lower than the threshold, an arbitrary transmission resource pool may be selected, or a transmission resource pool with the lowest radio resource usage rate may be selected. Even when only one transmission resource pool is measured, the UE 100-1 may omit measurement of other transmission resource pools when a transmission resource pool having a usage rate lower than the threshold is found. .
 閾値は、無線リソースの使用率の絶対値(例えば、0.1/0.3/0.5)である。UE100-1は、閾値に関する情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 The threshold is an absolute value (for example, 0.1 / 0.3 / 0.5) of the radio resource usage rate. The UE 100-1 may receive information on the threshold from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 なお、UE100-1は、無線リソースの使用率の代わりに、UE数に基づいて、送信リソースプールを選択してもよい。 Note that the UE 100-1 may select a transmission resource pool based on the number of UEs instead of the usage rate of radio resources.
 UE100-1は、送信リソースプールの使用状況の測定結果をeNB200に送信してもよい。UE100-1は、送信リソースプールのインデックスと測定結果(例えば、無線リソースの使用率、UE数など)とを関連付けた情報を含む測手結果をeNB200に送信できる。eNB200は、測定結果に基づいて、UE100に設定する送信リソースプールを決定してもよい。 The UE 100-1 may transmit the measurement result of the usage status of the transmission resource pool to the eNB 200. The UE 100-1 can transmit a measurer result including information associating an index of the transmission resource pool and a measurement result (for example, a radio resource usage rate, the number of UEs, and the like) to the eNB 200. eNB200 may determine the transmission resource pool set to UE100 based on a measurement result.
 第2に、UE100-1は、複数の送信リソースプールそれぞれに関連付けられた重み付けに基づく送信リソースプールの選択確率に基づいて、送信リソースプールを選択する。 Second, the UE 100-1 selects a transmission resource pool based on the selection probability of the transmission resource pool based on the weight associated with each of the plurality of transmission resource pools.
 UE100-1は、各送信リソースプールの重み付け(ウェイト)に基づいて、各送信リソースプールの選択確率を算出する。UE100-1は、重み付け情報に基づいて、選択確率を算出できる。重み付け情報は、送信リソースプールを示すインデックスと重み付けとが関連付けられた情報である。UE100-1は、重み付け情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。なお、重み付けは、各送信リソースプールの選択確率が等確率になるような値であってもよい。 The UE 100-1 calculates the selection probability of each transmission resource pool based on the weight (weight) of each transmission resource pool. The UE 100-1 can calculate the selection probability based on the weighting information. The weighting information is information in which an index indicating a transmission resource pool is associated with weighting. The UE 100-1 may receive the weighting information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1. The weighting may be a value such that selection probability of each transmission resource pool becomes an equal probability.
 例えば、UE100-1は、Pool1の重み付けが0.25であり、Pool2の重み付けが0.5である場合には、Pool1の選択確率として1/3を算出し、Pool2の選択確率として2/3を算出する。UE100-1は、Pool1を1/3の確率で選択し、Pool2を2/3の確率で算出する。 For example, when the weight of Pool1 is 0.25 and the weight of Pool2 is 0.5, UE 100-1 calculates 1/3 as the selection probability of Pool1, and 2/3 as the selection probability of Pool2. Is calculated. The UE 100-1 selects Pool 1 with a probability of 1/3 and calculates Pool 2 with a probability of 2/3.
 また、UE100-1は、複数の送信リソースプールそれぞれの無線リソース量に応じた値で選択確率を算出してもよい。例えば、Pool1のリソース量とPool2のリソース量とが、100:300である場合、UE100-1は、Pool1の選択確率として0.25を算出し、Pool2の選択確率として0.75を算出する。 Also, the UE 100-1 may calculate the selection probability with a value corresponding to the radio resource amount of each of the plurality of transmission resource pools. For example, when the resource amount of Pool1 and the resource amount of Pool2 is 100: 300, UE 100-1 calculates 0.25 as the selection probability of Pool1, and calculates 0.75 as the selection probability of Pool2.
 なお、無線リソース量は、送信リソースプール内の無線リソースで送信可能なUE数で表されてもよい。 Note that the amount of radio resources may be represented by the number of UEs that can be transmitted with the radio resources in the transmission resource pool.
 また、UE100-1は、無線リソースの使用率に応じた重み付けにより、選択確率を算出してもよい。UE100-1は、無線リソースの使用率が低い送信リソースプールが選択され易いように、無線リソースの使用率の逆数の重み付けにより選択確率を算出してもよい。例えば、Pool1の使用率とPool2の使用率とが、0.1:0.5である場合、UE100-1は、Pool1の選択確率として10/12を算出し、Pool2の選択確率として2/12を算出してもよい。 Also, the UE 100-1 may calculate the selection probability by weighting according to the usage rate of the radio resource. The UE 100-1 may calculate the selection probability by weighting the reciprocal of the radio resource usage rate so that a transmission resource pool with a low radio resource usage rate is easily selected. For example, when the usage rate of Pool1 and the usage rate of Pool2 is 0.1: 0.5, UE 100-1 calculates 10/12 as the selection probability of Pool1, and 2/12 as the selection probability of Pool2. May be calculated.
 第3に、UE100-1は、無線信号の受信状況に基づいて、送信リソースプールを選択する。具体的には、UE100-1は、eNB200又は他のUE100からの無線信号の受信信号強度(RSRP)を測定する。UE100-1は、RSRPの測定結果に基づいて、送信リソースプールを選択する。 Third, the UE 100-1 selects a transmission resource pool based on the reception status of the radio signal. Specifically, UE 100-1 measures the received signal strength (RSRP) of a radio signal from eNB 200 or another UE 100. The UE 100-1 selects a transmission resource pool based on the RSRP measurement result.
 UE100-1は、セルのカバレッジ内に位置する場合、eNB200からの参照信号に基づいて、RSRPを測定する。一方、UE100-1は、セルのカバレッジ外に位置する場合、UE100からのサイドリンク参照信号(近傍サービスにおける参照信号)に基づいて、サイドリンク参照信号受信電力(S-RSRP)を測定する。サイドリンク参照信号は、近傍サービスにおける同期信号であってもよい。 UE100-1 measures RSRP based on the reference signal from eNB200, when located in the coverage of a cell. On the other hand, when the UE 100-1 is located outside the cell coverage, the UE 100-1 measures the side link reference signal received power (S-RSRP) based on the side link reference signal from the UE 100 (reference signal in the proximity service). The side link reference signal may be a synchronization signal in the proximity service.
 UE100-1は、複数の送信リソースプールそれぞれに関連付けられた受信信号強度の範囲を示す信号強度情報に基づいて、送信リソースプールを選択する。信号強度情報は、複数の送信リソースプールそれぞれと受信信号強度の範囲とが関連付けられた情報である。例えば、送信リソースプールのインデックスと、受信信号強度の最大閾値(threshHigh)及び最小閾値(threshLow)とが関連付けられている。UE100-1は、信号強度情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 UE 100-1 selects a transmission resource pool based on signal strength information indicating a range of received signal strength associated with each of a plurality of transmission resource pools. The signal strength information is information in which each of a plurality of transmission resource pools is associated with a range of received signal strength. For example, the index of the transmission resource pool is associated with the maximum threshold value (threshHigh) and the minimum threshold value (threshLow) of the received signal strength. The UE 100-1 may receive the signal strength information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 UE100-1は、測定した受信信号強度が各送信リソースプールに関連付けられた受信信号強度の範囲に含まれるか否かを判定する。UE100-1は、測定した受信信号強度が受信信号強度の範囲に含まれる場合、当該範囲に関連付けられている送信リソースプールを、パケットを送信するための送信リソースプールとして選択する。 UE 100-1 determines whether or not the measured received signal strength is included in the range of the received signal strength associated with each transmission resource pool. When the measured received signal strength is included in the range of the received signal strength, the UE 100-1 selects a transmission resource pool associated with the range as a transmission resource pool for transmitting a packet.
 [第3実施形態]
 次に、第3実施形態について説明する。
[Third Embodiment]
Next, a third embodiment will be described.
 第1及び第2実施形態では、1つの送信リソースプールを選択するケースについて説明した。本実施形態では、複数の送信リソースプールを選択するケースについて説明する。第1及び第2実施形態と同様の部分の説明を適宜省略する。 In the first and second embodiments, the case of selecting one transmission resource pool has been described. In this embodiment, a case where a plurality of transmission resource pools are selected will be described. Description of the same parts as those in the first and second embodiments will be omitted as appropriate.
 UE100-1は、複数の送信リソースプールを選択する場合、第1及び第2実施形態の少なくとも一方の動作と同様の動作を実行できる。例えば、UE100-1は、第1実施形態と同様に、候補プールグループの中から、複数の送信リソースプールを選択できる。また、UE100-1は、第2実施形態と同様に、全送信リソースプール(設定された送信リソースプール)の中から複数の送信リソースプールを選択できる。 When selecting a plurality of transmission resource pools, the UE 100-1 can execute the same operation as at least one of the operations in the first and second embodiments. For example, as in the first embodiment, the UE 100-1 can select a plurality of transmission resource pools from the candidate pool group. Further, as in the second embodiment, the UE 100-1 can select a plurality of transmission resource pools from all transmission resource pools (configured transmission resource pools).
 従って、第3実施形態では、複数の送信リソースプールを選択する場合に、特有な動作を中心に説明する。第1実施形態と同様の部分は、説明を適宜省略する。 Therefore, in the third embodiment, when a plurality of transmission resource pools are selected, a description will be given focusing on unique operations. Description of the same parts as those in the first embodiment will be omitted as appropriate.
 (複数の送信リソースプールの選択)
 UE100-1は、複数の送信リソースプールを選択する場合、選択する送信リソースプールの数を以下の方法により決定できる。
(Select multiple transmission resource pools)
When selecting a plurality of transmission resource pools, the UE 100-1 can determine the number of transmission resource pools to be selected by the following method.
 第1に、UE100-1は、リソース数情報に基づいて、送信リソースプールの数を決定する。リソース数情報は、選択可能な送信リソースプールの数(例えば、maxNumSelectedPools)を示す情報である。UE100-1は、リソース数情報に基づいて、選択可能な送信リソースプールの数を超えない範囲で複数の送信リソースプールを選択する。 First, the UE 100-1 determines the number of transmission resource pools based on the resource number information. The resource number information is information indicating the number of selectable transmission resource pools (for example, maxNumSelected Pools). The UE 100-1 selects a plurality of transmission resource pools within a range not exceeding the number of selectable transmission resource pools based on the resource number information.
 UE100-1は、リソース数情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。なお、第1実施形態においても、UE100-1は、測定情報に基づいて測定できる。 The UE 100-1 may receive the resource number information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1. Also in the first embodiment, the UE 100-1 can perform measurement based on the measurement information.
 第2に、UE100-1は、パケットの優先度の数に基づいて、送信リソースプールの数を決定する。UE100-1は、直接通信用のSLバッファに含まれるパケットの優先度の数に基づいて、送信リソースプールの数を決定する。例えば、SLバッファに高優先度のパケットと低優先度とのパケットとが含まれる場合、UE100-1は、選択する送信リソースプールの数を2に決定する。このように、UE100-1は、パケットの優先度の数に応じて、送信リソースプールの数を決定できる。 Second, the UE 100-1 determines the number of transmission resource pools based on the number of packet priorities. The UE 100-1 determines the number of transmission resource pools based on the number of packet priorities included in the direct communication SL buffer. For example, when the SL buffer includes a high priority packet and a low priority packet, the UE 100-1 determines the number of transmission resource pools to be selected as 2. In this way, the UE 100-1 can determine the number of transmission resource pools according to the number of packet priorities.
 (複数の送信リソースプールの選択タイミング)
 次に、複数の送信リソースプールの選択タイミングについて、図15を用いて説明する。図15は、複数の送信リソースプールの選択タイミングの一例を説明するための図である。
(Selection timing of multiple transmission resource pools)
Next, the selection timing of a plurality of transmission resource pools will be described with reference to FIG. FIG. 15 is a diagram for describing an example of a selection timing of a plurality of transmission resource pools.
 第1に、UE100-1は、第1実施形態と同様に、各送信リソースプールを独立したタイミングで再選択する。従って、図15に示すように、UE100-1は、各送信リソースプールの選択タイミングが独立している。 First, as in the first embodiment, the UE 100-1 reselects each transmission resource pool at an independent timing. Therefore, as shown in FIG. 15, UE 100-1 has independent selection timings for each transmission resource pool.
 第2に、UE100-1は、各送信リソースプールを同じタイミングで再選択する。UE100-1は、第1実施形態と同様のタイミングで各送信リソースプールを再選択する。 Second, the UE 100-1 reselects each transmission resource pool at the same timing. The UE 100-1 reselects each transmission resource pool at the same timing as in the first embodiment.
 ここで、UE100-1は、選択済みの複数の送信リソースプールのうち少なくとも一部の送信リソースプールが所定条件を満たした場合に、新たな送信リソースプールを選択してもよい。少なくとも一部の送信リソースプールは、所定値以上の送信リソースプールであってもよいし、選択済みの特定の送信リソースプールであってもよい。或いは、UE100-1は、複数の送信リソースプールの全てが所定条件を満たした場合に、新たな送信リソースプールを選択してもよい。 Here, the UE 100-1 may select a new transmission resource pool when at least some of the selected transmission resource pools satisfy a predetermined condition. At least a part of the transmission resource pool may be a transmission resource pool of a predetermined value or more, or may be a selected specific transmission resource pool. Alternatively, the UE 100-1 may select a new transmission resource pool when all of the plurality of transmission resource pools satisfy a predetermined condition.
 なお、所定条件は、UE100-1が送信リソースプールを選択する条件である(第1実施形態の「(送信リソースプールの選択タイミング)」参照)。例えば、所定条件は、無線リソースの使用率が閾値よりも高いという条件である。 The predetermined condition is a condition for the UE 100-1 to select a transmission resource pool (see “(transmission resource pool selection timing)” in the first embodiment). For example, the predetermined condition is a condition that the usage rate of the radio resource is higher than a threshold value.
 (無線リソースの選択/パケットの送信)
 次に、無線リソースの選択/パケットの送信について、図16を用いて説明する。図16は、無線リソースの選択の一例を説明する図である。
(Radio resource selection / packet transmission)
Next, radio resource selection / packet transmission will be described with reference to FIG. FIG. 16 is a diagram illustrating an example of radio resource selection.
 UE100-1は、以下の方法により、無線リソースを選択したり、パケットを送信したりすることができる。 The UE 100-1 can select a radio resource or transmit a packet by the following method.
 第1に、UE100-1は、複数の送信リソースプールを用いてパケットの繰り返し送信を行ってもよい。UE100-1は、パケットの繰り返し送信に用いる送信リソースプールの数(例えば、numPoolsRepetition)を示すリピテーションリソース数情報に基づいて、複数の送信リソースプールを選択できる。UE100-1は、リピテーションリソース数情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。当該情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 First, the UE 100-1 may repeatedly transmit a packet using a plurality of transmission resource pools. The UE 100-1 can select a plurality of transmission resource pools based on the repetition resource number information indicating the number of transmission resource pools (for example, numPoolsRepetition) used for repeated transmission of packets. The UE 100-1 may receive the repetition resource number information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The information may be preset (Pre-config.) In the UE 100-1.
 UE100-1は、リピテーションリソース数情報が2を示す場合、2つの送信リソースプールを選択し、2つの送信リソースプールを用いて、パケットの繰り返し送信を行う。なお、ここでのパケットは同じデータに基づくパケットである。 When the repetition resource number information indicates 2, the UE 100-1 selects two transmission resource pools and repeatedly transmits packets using the two transmission resource pools. Here, the packet is a packet based on the same data.
 第2に、UE100-1は、複数の無線リソースプールを用いて、複数の宛先にパケットを送信してもよい。ここでのパケットは、宛先に応じて異なるデータに基づくパケットである。例えば、UE100-1は、宛先識別子に応じて送信リソースプールを使い分ける。従って、UE100-1は、各送信リソースプールで互いに異なるデータを送信する。 Second, the UE 100-1 may transmit packets to a plurality of destinations using a plurality of radio resource pools. The packet here is a packet based on different data depending on the destination. For example, the UE 100-1 uses different transmission resource pools according to the destination identifier. Therefore, the UE 100-1 transmits different data in each transmission resource pool.
 UE100-1は、複数の送信リソースプールを用いて、宛先が異なるデータ(パケット)を送信する場合、最初のデータ(例えば、UEAに送信する第1データ)よりも後に送信されるデータ(例えば、UEBに送信する第2データ)の送信が制限されてもよい。従って、UE100-1は、第2データが送信し難くなるように制限されてもよい。例えば、第2データ自体を送信できる確率(txProbability)、繰り返し送信(リピテーション)できる確率、PSCCH内の制御リソースの選択確率、UEが選択できるデータリソースの数の少なくともいずれかを低下することによって、UE100-1は、第2データが送信し難くなる。なお、同一のSC期間内において、複数のデータを送信するケースにおいて、UE100-1は、第2データの送信が制限される。UE100-1は、第1のSC期間で第1データを送信し、第2のSC期間で第2データを送信する場合には、第2データを制限なく送信できる。 When transmitting data (packets) with different destinations using a plurality of transmission resource pools, the UE 100-1 transmits data (for example, first data transmitted to UEA) after the first data (for example, first data to be transmitted to UEA). The transmission of the second data to be transmitted to the UEB may be restricted. Therefore, the UE 100-1 may be limited so that it is difficult to transmit the second data. For example, by reducing at least one of the probability that the second data itself can be transmitted (txProbability), the probability that it can be repeatedly transmitted (repeat), the selection probability of the control resource in the PSCCH, and the number of data resources that the UE can select, The UE 100-1 becomes difficult to transmit the second data. Note that, in the case of transmitting a plurality of data within the same SC period, the UE 100-1 is restricted from transmitting the second data. The UE 100-1 can transmit the second data without limitation when transmitting the first data in the first SC period and transmitting the second data in the second SC period.
 また、UE100-1は、第2データの優先度(パケットの優先度)が第1データの優先度(パケットの優先度)と同じ又は高い場合には、第2データが制限なく送信してもよい。従って、UE100-1は、第2データを第1データと同じように送信できる。 Further, when the priority of the second data (packet priority) is equal to or higher than the priority of the first data (packet priority), the UE 100-1 may transmit the second data without restriction. Good. Therefore, the UE 100-1 can transmit the second data in the same manner as the first data.
 これにより、UE100-1が高優先データを送信しつつも、優先度が低いデータと他のUEが送信する優先度が高いデータとが衝突することを避けることができる。 Thereby, it is possible to avoid collision between data with low priority and data with high priority transmitted by another UE while the UE 100-1 transmits high priority data.
 また、複数の宛先にデータを送信する場合において、優先度に関係なく、UE100-1が使用できるリソースが制限されてもよい。例えば、制御リソースのリソースブロック使用量、送信制御情報数(SCIの数)、送信制御確率(txProbability)、データリソースのリソースブロック使用量、送信データ確率(txProbability)等が制限されることによって、UE100-1が使用できるリソースが制限されてもよい。これらのリソース制限は、eNB200からSIBにより通知されてもよいし、eNB200から個別に設定されていてもよいし、UE100-1に予め設定されていてもよい。 In addition, when data is transmitted to a plurality of destinations, resources that can be used by the UE 100-1 may be limited regardless of priority. For example, the UE 100 is limited by limiting the resource block usage of control resources, the number of transmission control information (number of SCIs), the transmission control probability (txProbability), the resource block usage of data resources, the transmission data probability (txProbability), and the like. Resources that can use -1 may be limited. These resource restrictions may be notified from the eNB 200 by SIB, may be individually set from the eNB 200, or may be set in advance in the UE 100-1.
 このような制限を設けることによって、直接通信用の無線リソースの消費を抑制できる。また、1つのデータを送信するUEと複数のデータを送信するUEとの間で無線リソースの使用量の不公平を抑制できる。すなわち、UEが自律的にリソースを選択する場合と比べて、送信UE間でのリソース使用の不公平を抑制できる。 ● By setting such restrictions, consumption of radio resources for direct communication can be suppressed. In addition, it is possible to suppress an unfairness in usage of radio resources between a UE that transmits one data and a UE that transmits a plurality of data. That is, compared with a case where the UE autonomously selects a resource, it is possible to suppress unfair use of resources between transmitting UEs.
 第3に、UE100-1がシングルクラスタ送信(Single Cluster送信)に制限されているケースについて説明する。UE100-1は、Single Cluster送信に制限されている場合、連続するRBでの送信のみが許容される。すなわち、UE100-1は、同一時間で、周波数方向に離れた複数の送信リソースプールで、データを送信することができない。このため、UE100-1は、複数の送信リソースプールが互いに重複しないように、複数の送信リソースプールを選択してもよい。 Third, the case where the UE 100-1 is restricted to single cluster transmission (Single Cluster transmission) will be described. When the UE 100-1 is limited to the single cluster transmission, the UE 100-1 is allowed to transmit only with continuous RBs. That is, the UE 100-1 cannot transmit data in a plurality of transmission resource pools separated in the frequency direction at the same time. For this reason, the UE 100-1 may select a plurality of transmission resource pools so that the plurality of transmission resource pools do not overlap each other.
 UE100-1は、重複する複数の送信リソースプールを選択した場合には、以下の少なくともいずれかの方法を用いることができる。 When the UE 100-1 selects a plurality of overlapping transmission resource pools, at least one of the following methods can be used.
 第1の方法では、UE100-1は、重複期間(図16における斜線で示される期間)において、上述の選択確率と同様に、重複期間で使用する送信リソースプールを選択する。例えば、UE100-1は、重み付け(ウェイト)に基づく送信リソースプールの選択確率に基づいて、送信リソースプールを選択できる。 In the first method, the UE 100-1 selects a transmission resource pool to be used in the overlap period in the overlap period (a period indicated by hatching in FIG. 16), similarly to the selection probability described above. For example, the UE 100-1 can select the transmission resource pool based on the selection probability of the transmission resource pool based on the weight (weight).
 第2の方法では、UE100-1は、使用可能な無線リソース量が最大になるように、重複期間で使用する送信リソースプールを選択する。具体的には、UE100-1は、重複期間では、周波数方向のリソース数(無線リソース量)が多い送信リソースプールを選択する。 In the second method, the UE 100-1 selects a transmission resource pool to be used in the overlap period so that the amount of available radio resources is maximized. Specifically, the UE 100-1 selects a transmission resource pool with a large number of resources in the frequency direction (radio resource amount) in the overlap period.
 第3の方法では、各送信リソースプールで使用可能なリソース数が同じになるように、重複期間で使用する送信リソースプールを選択する。 In the third method, the transmission resource pool to be used in the overlap period is selected so that the number of resources that can be used in each transmission resource pool is the same.
 例えば、UE100-1は、以下の式に基づいて、送信リソースプール選択する。UE100-1は、式1を満たすように、送信リソースプールを選択する。 For example, the UE 100-1 selects a transmission resource pool based on the following equation. The UE 100-1 selects a transmission resource pool so as to satisfy Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 A:送信リソースプールAの全リソース数、
 a:重複期間以外の送信リソースプールAのリソース数
 X:重複期間のリソース数のうち、送信リソースプールAのリソース数
 B:送信リソースプールBの全リソース数、
 b:重複期間以外の送信リソースプールBのリソース数
 Y:重複期間のリソース数のうち、送信リソースプールBのリソース数
 なお、UE100-1は、送信リソースプールに関するパラメータ(例えば、無線リソースの使用率など)に基づいて、以下の式を用いて、送信リソースプールを選択してもよい。
A: the total number of resources in the transmission resource pool A,
a: Number of resources in the transmission resource pool A other than the overlapping period X: Number of resources in the transmission resource pool A out of the number of resources in the overlapping period B: Total number of resources in the transmission resource pool B,
b: Number of resources in the transmission resource pool B other than the overlapping period Y: Number of resources in the transmission resource pool B among the number of resources in the overlapping period Note that the UE 100-1 uses parameters related to the transmission resource pool (for example, the usage rate of radio resources) Based on the transmission resource pool may be selected using the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 α:送信リソースプールAに関するパラメータ
 β:送信リソースプールBに関するパラメータ
α: Parameter related to transmission resource pool A β: Parameter related to transmission resource pool B
 第4の方法では、UE100-1は、データ領域(PSSCH)よりも制御領域(PSCCH)を優先する。具体的には、UE100-1は、第1の送信リソースプールのデータ領域と第2の送信リソースプールの制御領域とが重複している期間では、第2の送信リソースプールを選択する。言い換えると、UE100-1は、第1の送信リソースプールのデータ領域と、第2の送信リソースプールの制御領域とが時間方向において重複している場合には、第2の送信リソースプールの制御領域を優先する。 In the fourth method, the UE 100-1 gives priority to the control area (PSCCH) over the data area (PSSCH). Specifically, the UE 100-1 selects the second transmission resource pool in a period in which the data area of the first transmission resource pool and the control area of the second transmission resource pool overlap. In other words, when the data area of the first transmission resource pool and the control area of the second transmission resource pool overlap in the time direction, the UE 100-1 controls the control area of the second transmission resource pool. Priority.
 [その他の実施形態]
 上述した各実施形態によって、本出願の内容を説明したが、この開示の一部をなす論述及び図面は、本出願の内容を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the contents of the present application have been described by the embodiments described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the contents of the present application. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 上述した各実施形態に係る動作は、適宜組み合わせて実行されてもよい。例えば、第1実施形態において、UE100-1は、候補リソースグループの中から送信リソースプールを選択する場合に、第2実施形態の内容に基づいて、送信リソースプールを選択してもよい。また、第2実施形態において、UE100-1は、送信リソースプールを選択した後に、第1実施形態における「(送信リソースプールの選択タイミング)」及び「(無線リソースの選択)」の内容に基づく動作を実行できる。 The operations according to the above-described embodiments may be executed in appropriate combination. For example, in the first embodiment, when the UE 100-1 selects a transmission resource pool from the candidate resource groups, the UE 100-1 may select the transmission resource pool based on the content of the second embodiment. In the second embodiment, after selecting the transmission resource pool, the UE 100-1 operates based on the contents of “(transmission resource pool selection timing)” and “(radio resource selection)” in the first embodiment. Can be executed.
 上述した各実施形態において、上述した各実施形態の動作が実行できないUE(例えば、Rel-12のUE)のために、リリースに応じた送信リソースプールが設定されてもよい。UE100-1は、自身のリリースに基づいて、送信リソースプールを選択できる。具体的には、UE100-1は、送信リソースプール(送信リソースプールのインデックス)とリリース(resourcePoolComm-rx)とが関連付けられたリリース情報に基づいて、送信リソースプールを選択する。UE100-1は、リリース情報をeNB200からブロードキャスト(例えば、SIB)又はユニキャスト(例えば、RRC再設定メッセージ)により受信してもよい。送信先情報又は送信元情報は、UE100-1に事前設定(Pre-config.)されていてもよい。 In each embodiment described above, a transmission resource pool corresponding to a release may be set for a UE (for example, a Rel-12 UE) that cannot perform the operation of each embodiment described above. The UE 100-1 can select a transmission resource pool based on its own release. Specifically, the UE 100-1 selects a transmission resource pool based on release information in which a transmission resource pool (transmission resource pool index) and a release (resourcePoolComm-rx) are associated. The UE 100-1 may receive the release information from the eNB 200 by broadcast (for example, SIB) or unicast (for example, RRC reconfiguration message). The destination information or the source information may be preset (Pre-config.) In the UE 100-1.
 上述した実施形態では特に触れていないが、上述した各ノード(UE100、eNB200など)のいずれかが行う各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。 Although not particularly mentioned in the above-described embodiment, a program for causing a computer to execute each process performed by any of the above-described nodes (UE 100, eNB 200, etc.) may be provided. The program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
 或いは、UE100、eNB200及びAP300のいずれかが行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサ)によって構成されるチップが提供されてもよい。 Or the chip | tip comprised by the memory which memorize | stores the program for performing each process which one of UE100, eNB200, and AP300 performs, and the processor which executes the program memorize | stored in memory may be provided.
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。 In the above-described embodiment, the LTE system has been described as an example of the mobile communication system. However, the present invention is not limited to the LTE system, and the present invention may be applied to systems other than the LTE system.
 日本国特許出願第2015-159053号(2015年8月11日出願)の全内容が、参照により本願明細書に組み込まれている。 The entire contents of Japanese Patent Application No. 2015-159053 (filed on August 11, 2015) are incorporated herein by reference.
 本発明は、無線通信分野において有用である。 The present invention is useful in the field of wireless communication.

Claims (32)

  1.  無線端末であって、
     近傍サービスにおける直接通信によりパケットを他の無線端末に送信するコントローラを備え、
     前記コントローラは、前記直接通信用の送信リソースプールにより構成され且つ互いに異なる優先度を有する複数のプールグループの中から、前記パケットの優先度に基づいて、前記パケットの送信に用いられる送信リソースプールを選択する無線端末。
    A wireless terminal,
    With a controller that transmits packets to other wireless terminals by direct communication in the proximity service,
    The controller includes a transmission resource pool used for transmitting the packet based on the priority of the packet from a plurality of pool groups configured by the transmission resource pool for direct communication and having different priorities. Wireless terminal to select.
  2.  前記複数のプールグループを構成する各プールグループに含まれる送信リソースプールの数は、前記各プールグループの優先度に応じた値である請求項1に記載の無線端末。 The wireless terminal according to claim 1, wherein the number of transmission resource pools included in each pool group constituting the plurality of pool groups is a value corresponding to a priority of each pool group.
  3.  前記コントローラは、前記複数のプールグループの中から候補プールグループを決定し、
     前記コントローラは、前記候補プールグループの中から前記送信リソースプールを選択する請求項1に記載の無線端末。
    The controller determines a candidate pool group from the plurality of pool groups,
    The wireless terminal according to claim 1, wherein the controller selects the transmission resource pool from the candidate pool group.
  4.  前記コントローラは、前記複数のプールグループの中から、前記パケットの優先度に基づいて、前記候補プールグループを決定する請求項3に記載の無線端末。 The wireless terminal according to claim 3, wherein the controller determines the candidate pool group from the plurality of pool groups based on the priority of the packet.
  5.  前記コントローラは、各送信リソースプールに関連付けられているプールグループを示す情報に基づいて、前記候補プールグループを構成する送信リソースプールを特定する請求項4に記載の無線端末。 The wireless terminal according to claim 4, wherein the controller specifies a transmission resource pool constituting the candidate pool group based on information indicating a pool group associated with each transmission resource pool.
  6.  前記コントローラは、前記複数のプールグループを構成する各プールグループに含まれる送信リソースプールの数を決定し、
     前記コントローラは、前記決定された送信リソースプールの数に応じて、複数の送信リソースプールの中から前記候補プールグループを構成する送信リソースプールを決定する請求項3に記載の無線端末。
    The controller determines the number of transmission resource pools included in each pool group constituting the plurality of pool groups;
    The wireless terminal according to claim 3, wherein the controller determines a transmission resource pool constituting the candidate pool group from a plurality of transmission resource pools according to the determined number of transmission resource pools.
  7.  前記コントローラは、前記各プールグループを構成する送信リソースプールの数と優先度との関連付けを示す情報、又は、前記複数の送信リソースプールに対する前記各プールグループを構成する送信リソースプールの割合と優先度との関連付けを示す情報に基づいて、前記各プールグループに含まれる前記送信リソースプールの数を決定する請求項6に記載の無線端末。 The controller includes information indicating an association between the number of transmission resource pools constituting each pool group and priority, or a ratio and priority of transmission resource pools constituting each pool group with respect to the plurality of transmission resource pools. The wireless terminal according to claim 6, wherein the number of the transmission resource pools included in each pool group is determined based on information indicating association with the wireless terminal.
  8.  前記コントローラは、前記複数のプールグループの中から、前記パケットの送信先又は送信元の識別子に基づいて、候補プールグループを決定し、
     前記コントローラは、前記候補プールグループの中から前記送信リソースプールを選択する請求項1に記載の無線端末。
    The controller determines a candidate pool group from the plurality of pool groups based on a transmission destination or transmission source identifier of the packet,
    The wireless terminal according to claim 1, wherein the controller selects the transmission resource pool from the candidate pool group.
  9.  前記コントローラは、基地局から通知された選択周期に基づいて、新たな送信リソースプールを選択する請求項1に記載の無線端末。 The wireless terminal according to claim 1, wherein the controller selects a new transmission resource pool based on a selection period notified from the base station.
  10.  前記コントローラは、前記送信リソースプールにおける無線リソースの使用率に基づいて、新たな送信リソースプールを選択する請求項1に記載の無線端末。 The radio terminal according to claim 1, wherein the controller selects a new transmission resource pool based on a radio resource usage rate in the transmission resource pool.
  11.  前記コントローラは、前記無線リソースの使用率が閾値よりも高い場合に、前記新たな送信リソースプールを選択する請求項10に記載の無線端末。 The wireless terminal according to claim 10, wherein the controller selects the new transmission resource pool when a usage rate of the wireless resource is higher than a threshold value.
  12.  前記コントローラは、前記閾値に関する情報を基地局から受信する請求項11に記載の無線端末。 The wireless terminal according to claim 11, wherein the controller receives information on the threshold from a base station.
  13.  前記コントローラは、前記送信リソースプールの中から、前記パケットを送信するデータリソースを通知するための制御リソースを選択し、
     前記コントローラは、前記パケットの優先度に基づいて、前記制御リソースの選択範囲を決定する請求項1に記載の無線端末。
    The controller selects a control resource for notifying a data resource for transmitting the packet from the transmission resource pool,
    The wireless terminal according to claim 1, wherein the controller determines a selection range of the control resource based on a priority of the packet.
  14.  前記コントローラは、前記送信リソースプールの中から、前記パケットを送信するデータリソースを選択し、
     前記コントローラは、前記パケットの優先度に基づいて、前記データリソースの選択範囲を決定する請求項1に記載の無線端末。
    The controller selects a data resource for transmitting the packet from the transmission resource pool,
    The wireless terminal according to claim 1, wherein the controller determines a selection range of the data resource based on a priority of the packet.
  15.  前記コントローラは、前記パケットの優先度に基づいて、前記パケットを繰り返し送信する回数を決定する請求項1に記載の無線端末。 The wireless terminal according to claim 1, wherein the controller determines the number of times to repeatedly transmit the packet based on the priority of the packet.
  16.  前記コントローラは、前記パケットの優先度に基づいて、前記パケットの送信確率を決定する請求項1に記載の無線端末。 The wireless terminal according to claim 1, wherein the controller determines a transmission probability of the packet based on a priority of the packet.
  17.  前記コントローラは、前記複数のプールグループの中から候補プールグループを決定し、
     前記コントローラは、前記候補プールグループの中から、前記パケットの送信に用いられる複数の送信リソースプールを選択する請求項1に記載の無線端末。
    The controller determines a candidate pool group from the plurality of pool groups,
    The wireless terminal according to claim 1, wherein the controller selects a plurality of transmission resource pools used for transmitting the packet from the candidate pool group.
  18.  前記コントローラは、前記送信リソースプールを選択可能な数を示す情報を基地局から受信する請求項17に記載の無線端末。 The wireless terminal according to claim 17, wherein the controller receives information indicating a selectable number of the transmission resource pool from a base station.
  19.  前記コントローラは、前記複数の送信リソースプールのうち少なくとも一部の送信リソースプールが所定条件を満たした場合に、新たな送信リソースプールを選択する請求項17に記載の無線端末。 The wireless terminal according to claim 17, wherein the controller selects a new transmission resource pool when at least some of the plurality of transmission resource pools satisfy a predetermined condition.
  20.  前記コントローラは、前記複数の送信リソースプールの全てが所定条件を満たした場合に、新たな送信リソースプールを選択する請求項17に記載の無線端末。 The wireless terminal according to claim 17, wherein the controller selects a new transmission resource pool when all of the plurality of transmission resource pools satisfy a predetermined condition.
  21.  前記コントローラは、前記複数の送信リソースプールのうち、前記パケットの繰り返し送信に用いられる送信リソースプールの数を示す情報を基地局から受信する請求項17に記載の無線端末。 The wireless terminal according to claim 17, wherein the controller receives, from a base station, information indicating the number of transmission resource pools used for repeated transmission of the packet among the plurality of transmission resource pools.
  22.  無線端末であって、
     近傍サービスにおける直接通信用の複数の送信リソースプールの中から、前記直接通信によりパケットを送信するための送信リソースプールを選択するコントローラを備え、
     前記コントローラは、送信リソースプールの使用状況、前記複数の送信リソースプールそれぞれに関連付けられた重み付けに基づく送信リソースプールの選択確率、及び、無線信号の受信状況、の少なくともいずれかに基づいて、前記送信リソースプールを選択する無線端末。
    A wireless terminal,
    A controller for selecting a transmission resource pool for transmitting a packet by direct communication from a plurality of transmission resource pools for direct communication in a proximity service;
    The controller is configured to transmit the transmission resource pool based on at least one of a transmission resource pool usage status, a transmission resource pool selection probability based on a weight associated with each of the plurality of transmission resource pools, and a radio signal reception status. A wireless terminal that selects a resource pool.
  23.  前記コントローラは、前記複数の送信リソースプールのうちの1以上の送信リソースプールにおける無線リソースの使用率に基づいて、前記送信リソースプールを選択する請求項22に記載の無線端末。 The radio terminal according to claim 22, wherein the controller selects the transmission resource pool based on a usage rate of radio resources in one or more transmission resource pools of the plurality of transmission resource pools.
  24.  前記コントローラは、前記無線リソースの使用率が最も低い送信リソースプールを、前記送信リソースプールとして選択する請求項23に記載の無線端末。 24. The radio terminal according to claim 23, wherein the controller selects a transmission resource pool having the lowest usage rate of the radio resource as the transmission resource pool.
  25.  前記コントローラは、前記1以上の送信リソースプールのうち、閾値よりも低い無線リソースの使用率を有する送信リソースプールを、前記送信リソースプールとして選択する請求項23に記載の無線端末。 24. The radio terminal according to claim 23, wherein the controller selects a transmission resource pool having a radio resource usage rate lower than a threshold among the one or more transmission resource pools as the transmission resource pool.
  26.  前記コントローラは、前記送信リソースプールの使用状況を測定する周期、前記送信リソースプールの使用状況を測定する頻度、及び、前記複数の送信リソースプールのうち前記送信リソースプールの使用状況を測定する対象となる送信リソースプール、の少なくともいずれかの情報を基地局から受信する請求項23に記載の無線端末。 The controller includes a cycle for measuring the usage status of the transmission resource pool, a frequency for measuring the usage status of the transmission resource pool, and an object for measuring the usage status of the transmission resource pool among the plurality of transmission resource pools. 24. The wireless terminal according to claim 23, wherein information on at least one of said transmission resource pools is received from a base station.
  27.  前記コントローラは、前記複数の送信リソースプールのうち1以上の送信リソースプールの使用状況を測定し、
     前記コントローラは、前記使用状況の測定結果を基地局に送信する請求項22に記載の無線端末。
    The controller measures usage of one or more transmission resource pools of the plurality of transmission resource pools;
    The wireless terminal according to claim 22, wherein the controller transmits a measurement result of the usage state to a base station.
  28.  前記コントローラは、前記複数の送信リソースプールそれぞれに関連付けられた重み付けに基づいて前記送信リソースプールの選択確率を算出し、
     前記コントローラは、前記算出された確率で前記送信リソースプールを選択する請求項22に記載の無線端末。
    The controller calculates a selection probability of the transmission resource pool based on a weight associated with each of the plurality of transmission resource pools;
    23. The wireless terminal according to claim 22, wherein the controller selects the transmission resource pool with the calculated probability.
  29.  前記コントローラは、前記複数の送信リソースプールそれぞれに関連付けられた重み付けを示す情報を基地局から受信する請求項22に記載の無線端末。 The wireless terminal according to claim 22, wherein the controller receives information indicating a weight associated with each of the plurality of transmission resource pools from a base station.
  30.  前記重み付けは、前記複数の送信リソースプールそれぞれの無線リソース量に応じた値である請求項28に記載の無線端末。 The wireless terminal according to claim 28, wherein the weighting is a value corresponding to a wireless resource amount of each of the plurality of transmission resource pools.
  31.  前記コントローラは、基地局又は他の無線端末からの無線信号の受信信号強度を測定し、
     前記コントローラは、前記受信信号強度の測定結果に基づいて、前記送信リソースプールを選択する請求項22に記載の無線端末。
    The controller measures the received signal strength of a radio signal from a base station or other radio terminal,
    The wireless terminal according to claim 22, wherein the controller selects the transmission resource pool based on a measurement result of the received signal strength.
  32.  前記コントローラは、前記複数の送信リソースプールそれぞれに関連付けられた前記受信信号強度の範囲を示す情報を基地局から受信する請求項31に記載の無線端末。 32. The radio terminal according to claim 31, wherein the controller receives information indicating a range of the received signal strength associated with each of the plurality of transmission resource pools from a base station.
PCT/JP2016/073175 2015-08-11 2016-08-05 Wireless terminal WO2017026409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-159053 2015-08-11
JP2015159053 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017026409A1 true WO2017026409A1 (en) 2017-02-16

Family

ID=57984380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073175 WO2017026409A1 (en) 2015-08-11 2016-08-05 Wireless terminal

Country Status (1)

Country Link
WO (1) WO2017026409A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055813A1 (en) * 2016-09-26 2018-03-29 Nec Corporation Methods and system for device-to-device communication technical field
WO2019224893A1 (en) * 2018-05-21 2019-11-28 株式会社Nttドコモ Communication device
WO2021062585A1 (en) * 2019-09-30 2021-04-08 Lenovo (Beijing) Limited Method and device for guarantee high qos service via multiple resource pools for nr v2x
CN112740781A (en) * 2018-09-19 2021-04-30 富士通株式会社 Communication device, base station device, and communication system
CN113115364A (en) * 2020-01-10 2021-07-13 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
JP2022502943A (en) * 2018-09-27 2022-01-11 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Side link resource identification method and equipment
JP2022058760A (en) * 2017-07-21 2022-04-12 エルジー エレクトロニクス インコーポレイティド Method and device for terminal receiving signal from another terminal to transmit feedback in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169695A1 (en) * 2013-04-16 2014-10-23 中兴通讯股份有限公司 Device-to-device (d2d) discovery method, base station, and user equipment
JP2015019230A (en) * 2013-07-10 2015-01-29 パナソニックIpマネジメント株式会社 Communication terminal and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014169695A1 (en) * 2013-04-16 2014-10-23 中兴通讯股份有限公司 Device-to-device (d2d) discovery method, base station, and user equipment
JP2015019230A (en) * 2013-07-10 2015-01-29 パナソニックIpマネジメント株式会社 Communication terminal and program

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Support for priority of different groups", 3GPP TSG-RAN WG1 MEETING #81 R1- 153380, 16 May 2015 (2015-05-16), XP050972100, Retrieved from the Internet <URL:http://www. 3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_81/Docs/R1- 153380.zip> [retrieved on 20161004] *
CATT: "Discussion on Group Priority", 3GPP TSG-RAN WG2 MEETING #89BIS R2-151240, 10 April 2015 (2015-04-10), XP050952978, Retrieved from the Internet <URL:http:// www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_89bis/ Docs/R2-151240.zip> [retrieved on 20161005] *
INTERDIGITAL COMMUNICATIONS: "Priority handling for D2D communications", 3GPP TSG-RAN WG1 MEETING #81 RL-153374, 15 May 2015 (2015-05-15), XP050971754, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ ran/WG1_RL1/TSGR1_81/Docs/R1-153374.zip> [retrieved on 20161004] *
LG ELECTRONICS INC: "Resource pool selection with group priority", 3GPP TSG-RAN WG2 #88 R2-145078, 8 November 2014 (2014-11-08), XP050886658, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/ TSGR2_88/Docs/R2-145078.zip> [retrieved on 20161005] *
PANASONIC: "Prioritization mechanism for ProSe communication", 3GPP TSG-RAN WG2# MEETING 90 R2-152120, 15 May 2015 (2015-05-15), XP050970483, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/ TSGR2_90/Docs/R2-152120.zip> [retrieved on 20161005] *
SAMSUNG: "Priority handling for D2D communication", 3GPP TSG-RAN WG1 MEETING #80BIS RL-151615, 11 April 2015 (2015-04-11), XP050950086, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/ tsg_ran/WG1_RL1/TSGR1_80b/Docs/R1-151615.zip> [retrieved on 20161005] *
SONY: "D2D Measurement Reporting", 3GPP TSG-RAN WG2MEETING #87BIS R2-144395, 26 September 2014 (2014-09-26), XP050870313, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/ tsg_ran/WG2_RL2/TSGR2_87bis/Docs/R2-144395.zip> [retrieved on 20161005] *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055813A1 (en) * 2016-09-26 2018-03-29 Nec Corporation Methods and system for device-to-device communication technical field
US11284387B2 (en) 2016-09-26 2022-03-22 Nec Corporation Methods and system for device-to-device communication
JP2022058760A (en) * 2017-07-21 2022-04-12 エルジー エレクトロニクス インコーポレイティド Method and device for terminal receiving signal from another terminal to transmit feedback in wireless communication system
US11722262B2 (en) 2017-07-21 2023-08-08 Lg Electronics Inc. Method and apparatus for transmitting feedback by terminal receiving signal from another terminal in wireless communication system
WO2019224893A1 (en) * 2018-05-21 2019-11-28 株式会社Nttドコモ Communication device
CN112740781A (en) * 2018-09-19 2021-04-30 富士通株式会社 Communication device, base station device, and communication system
JP2022502943A (en) * 2018-09-27 2022-01-11 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Side link resource identification method and equipment
JP7203209B2 (en) 2018-09-27 2023-01-12 維沃移動通信有限公司 Sidelink resource identification method and device
US12004136B2 (en) 2018-09-27 2024-06-04 Vivo Mobile Communication Co., Ltd. Method for determining sidelink resource and device
WO2021062585A1 (en) * 2019-09-30 2021-04-08 Lenovo (Beijing) Limited Method and device for guarantee high qos service via multiple resource pools for nr v2x
CN113115364A (en) * 2020-01-10 2021-07-13 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN113115364B (en) * 2020-01-10 2022-11-25 上海朗帛通信技术有限公司 Method and device used in node of wireless communication

Similar Documents

Publication Publication Date Title
US11337107B2 (en) Base station and radio terminal
JP6773650B2 (en) Base stations and wireless terminals
WO2017026409A1 (en) Wireless terminal
JP6282705B2 (en) User terminal, processor, and communication control method
US20150146637A1 (en) Communication control method, user terminal, processor, storage medium, and base station
JP6773657B2 (en) Wireless terminals and base stations
US20150304969A1 (en) Communication control method, base station, user terminal, processor, and storage medium
JP6709459B2 (en) Communication control method, wireless terminal and processor
EP2861023A1 (en) Communication control method, user terminal, processor, and storage medium
WO2015005316A1 (en) Network device and communication control method
WO2017195824A1 (en) Wireless terminal and base station
US10433150B2 (en) Communication method, radio terminal, processor and base station
JP6140292B2 (en) Network device and user terminal
JP6538026B2 (en) Network selection control method, base station, and user terminal
US20180255610A1 (en) Radio terminal, processor, and network device
JP2018057032A (en) Base station, communication control method, and user terminal
JP2014220777A (en) Communication control method and cellular base station
JP2014220778A (en) User terminal and processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16835106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP