WO2017026194A1 - Laser system and method for cooling laser device - Google Patents

Laser system and method for cooling laser device Download PDF

Info

Publication number
WO2017026194A1
WO2017026194A1 PCT/JP2016/069483 JP2016069483W WO2017026194A1 WO 2017026194 A1 WO2017026194 A1 WO 2017026194A1 JP 2016069483 W JP2016069483 W JP 2016069483W WO 2017026194 A1 WO2017026194 A1 WO 2017026194A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
laser
space
laser device
heat absorbing
Prior art date
Application number
PCT/JP2016/069483
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 葛西
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2017026194A1 publication Critical patent/WO2017026194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a laser system, and more particularly to a method for cooling a laser device that emits laser light within the laser system.
  • the present invention has been made in view of the above-described problems of the prior art, and provides a laser system and a laser device cooling method capable of releasing heat generated from the laser device to the outside with a simple and inexpensive configuration. For the purpose.
  • a laser system capable of releasing heat generated from the laser device to the outside with a simple and inexpensive configuration.
  • This laser system includes a laser device that emits laser light and a heat transfer member on which the laser device is placed.
  • the heat transfer member has a heat transfer surface to which heat generated from the laser device is transmitted.
  • the laser system can be disposed in a heat absorption space formed adjacent to the heat transfer surface in contact with the heat transfer surface of the heat transfer member, and heat absorbed from the heat absorption space in the heat absorption space.
  • At least one heat absorbing member configured to be movable in the heat dissipation space for releasing the heat.
  • the heat generated from the laser device can be absorbed by the heat absorption member disposed in the heat absorption space via the heat transfer surface of the heat transfer member, and the heated heat absorption member is It can move to the heat dissipation space and dissipate heat there. Therefore, the heat generated from the laser device can be released to the outside with a simple configuration without the need for a heat sink, tank, heat exchanger or the like in which the flow path is formed, thereby reducing the cost of the entire laser system. Can do. Moreover, since it is not what cools using a fluid and a flow path, it is not necessary to maintain frequently.
  • the laser system may further include a moving mechanism that moves the at least one heat absorbing member from the heat absorbing space to the heat radiating space.
  • the at least one heat absorbing member may include a plurality of heat absorbing members.
  • the moving mechanism moves the heat absorbing member located in the heat absorbing space among the plurality of heat absorbing members to the heat radiating space, and moves the other heat absorbing members of the plurality of heat absorbing members to the heat absorbing member. It is preferable to move to space. By setting it as such a structure, it becomes possible to absorb heat continuously using the heat absorption member which has not been heated yet.
  • a method of cooling a laser device that can release heat generated from the laser device to the outside with a simple and inexpensive configuration.
  • the laser device placed on the heat transfer member is cooled.
  • At least one heat absorbing member in which heat from the laser device is disposed in a heat absorbing space formed adjacent to the heat transfer surface via a heat transfer surface of the heat transfer member to which heat generated from the laser device is transmitted.
  • the at least one heat absorbing member is moved from the heat absorbing space to the heat radiating space, and the heat absorbed by the at least one heat absorbing member in the heat radiating space is absorbed. Release.
  • FIG. 1 is a cross-sectional view showing a laser system according to a first embodiment of the present invention.
  • 2 is a cross-sectional view taken along line AA ′ of FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG. 4 is a cross-sectional view showing a state in which the heat absorbing member is moved in the laser system of FIG. 1, and corresponds to a cross section taken along line AA ′ of FIG.
  • FIG. 5 is a cross-sectional view showing a state where the heat absorbing member is moved in the laser system of FIG. 1, and corresponds to a cross section taken along line BB ′ of FIG.
  • FIG. 6 is a timing chart in the case of emitting laser light at regular time intervals in the laser system of FIG.
  • a submount 52 mounted, a semiconductor laser element (semiconductor laser diode) 54 mounted on the submount 52, and a fiber mount 56 mounted on the bottom plate 50 are provided.
  • the submount 52 and the fiber mount 56 are fixed on the bottom plate 50 by, for example, solder.
  • the laser system 101 includes a heat transfer member 80 on which a semiconductor laser module 120 as a laser device is placed, and a flat plate shape on which two heat absorbing members 70 ⁇ / b> A and 70 ⁇ / b> B are placed on the upper surface.
  • the tray 72 is provided.
  • the heat absorbing members 70A and 70B are members made of metal or ceramic.
  • a through hole 83 extending in the Y direction is formed below the semiconductor laser element 54 and the submount 52 in the heat transfer member 80, and a part of the tray 72 is inserted into the through hole 83.
  • the heat absorbing members 70A and 70B are moved using the moving mechanism 74 and the moving mechanism 74 is controlled using the control unit 76, but the moving mechanism 74 and the control unit 76 are not necessarily provided.
  • the moving mechanism 74 and the control unit 76 are not necessarily provided.
  • an insertion hole 183 located below the semiconductor laser element 54 and the submount 52 is formed in the heat transfer member 80, and the heat absorption member 170 (see FIG. 8) provided with the handle 171 is attached to the heat absorption member 170.
  • the insertion hole 183 may be pushed by hand.

Abstract

The present invention provides a laser system capable of externally releasing heat generated by a laser device using a simple and inexpensive configuration. The laser system 101 is provided with a semiconductor laser module 120 for emitting a laser beam, a heat transfer member 80 on which the semiconductor laser module 120 is placed, and heat absorption members 70A, 70B. The heat transfer member 80 has a heat transfer surface 80A through which heat generated by a laser element 54 of the semiconductor laser module 120 is transmitted. The heat absorption members 70A, 70B can be disposed in a heat absorption space E, which is formed adjacent to the heat transfer surface 80A of the heat transfer member 80, in contact with the heat transfer surface 80A. The heat absorption members 70A, 70B can be moved from the heat absorption space E to a heat release space R for releasing the heat absorbed in the heat absorption space E. The laser system 101 is provided with a movement mechanism 74 for moving the heat absorption members 70A, 70B from the heat absorption space E to the heat release space R.

Description

レーザシステム及びレーザ装置の冷却方法Laser system and laser apparatus cooling method
 本発明は、レーザシステムに係り、特にレーザシステム内でレーザ光を出射するレーザ装置の冷却方法に関するものである。 The present invention relates to a laser system, and more particularly to a method for cooling a laser device that emits laser light within the laser system.
 近年のレーザ装置の高出力化に伴い、レーザ光を出射するレーザ素子の発熱量も増加する傾向にある。一般的に、このようなレーザ素子から生じる熱を吸収するために水冷による冷却方法が用いられている(例えば、特許文献1参照)。すなわち、内部に流路が形成されたヒートシンクをレーザ素子の近傍に設置し、ポンプを用いてヒートシンク内の流路に水を循環させる。ヒートシンク内の流路を流れる水は、レーザ素子から生じる熱を吸収する。レーザ素子からの熱を吸収して温度が上昇した水はタンクに導かれ、そこで熱交換器などによって冷却された後、再びヒートシンクに循環される。このとき用いられる熱交換器としては、ファンを用いた空冷式熱交換器や別個の水冷式熱交換器などがある。 With the recent increase in output of laser devices, the amount of heat generated by laser elements that emit laser light tends to increase. In general, a cooling method using water cooling is used to absorb heat generated from such a laser element (see, for example, Patent Document 1). That is, a heat sink having a flow path formed therein is installed in the vicinity of the laser element, and water is circulated through the flow path in the heat sink using a pump. The water flowing through the flow path in the heat sink absorbs heat generated from the laser element. The water whose temperature has risen due to absorption of heat from the laser element is guided to the tank, where it is cooled by a heat exchanger or the like and then circulated to the heat sink again. Examples of the heat exchanger used at this time include an air-cooled heat exchanger using a fan and a separate water-cooled heat exchanger.
 しかしながら、上述した水冷式ヒートシンクを用いた方法では、ヒートシンクの内部に流路を形成する必要があり、単純な金属製のブロックよりもコストがかかる。また、タンクや熱交換器、さらにこれらとヒートシンクとを接続する管路も必要となるため、さらにコストが上昇するとともに、必要とするスペースも大きくなる。さらに、流路や管路の目詰まりを防止するために、定期的に流路や管路をメンテナンスする必要もある。 However, in the method using the water-cooled heat sink described above, it is necessary to form a flow path inside the heat sink, which is more expensive than a simple metal block. Further, since a tank, a heat exchanger, and a pipe line connecting these with the heat sink are also required, the cost is further increased and the required space is increased. Furthermore, in order to prevent clogging of the flow path and the pipeline, it is necessary to periodically maintain the flow path and the pipeline.
特開2010-135704号公報JP 2010-135704 A
 本発明は、このような従来技術の問題点に鑑みてなされたもので、簡単かつ安価な構成によってレーザ装置から生じる熱を外部に放出することができるレーザシステム及びレーザ装置の冷却方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and provides a laser system and a laser device cooling method capable of releasing heat generated from the laser device to the outside with a simple and inexpensive configuration. For the purpose.
 本発明の第1の態様によれば、簡単かつ安価な構成によってレーザ装置から生じる熱を外部に放出することができるレーザシステムが提供される。このレーザシステムは、レーザ光を出射するレーザ装置と、上記レーザ装置が載置される伝熱部材とを備えている。この伝熱部材は、上記レーザ装置から生じた熱が伝達される伝熱面を有している。上記レーザシステムは、上記伝熱部材の上記伝熱面に接触した状態で該伝熱面に隣接して形成された吸熱空間に配置可能であって、上記吸熱空間から該吸熱空間で吸収した熱を放出するための放熱空間に移動可能に構成された少なくとも1つの吸熱部材を備える。 According to the first aspect of the present invention, there is provided a laser system capable of releasing heat generated from the laser device to the outside with a simple and inexpensive configuration. This laser system includes a laser device that emits laser light and a heat transfer member on which the laser device is placed. The heat transfer member has a heat transfer surface to which heat generated from the laser device is transmitted. The laser system can be disposed in a heat absorption space formed adjacent to the heat transfer surface in contact with the heat transfer surface of the heat transfer member, and heat absorbed from the heat absorption space in the heat absorption space. At least one heat absorbing member configured to be movable in the heat dissipation space for releasing the heat.
 本発明の第1の態様によれば、レーザ装置から生じた熱を伝熱部材の伝熱面を介して吸熱空間に配置された吸熱部材に吸収させることができるとともに、加熱された吸熱部材を放熱空間に移動してそこで放熱させることができる。したがって、流路の形成されたヒートシンクやタンクや熱交換器などを必要とすることなく、単純な構成によってレーザ装置から生じる熱を外部に放出することができ、レーザシステム全体のコストを低減することができる。また、流体や流路を利用して冷却するものではないので、頻繁にメンテナンスをする必要もない。 According to the first aspect of the present invention, the heat generated from the laser device can be absorbed by the heat absorption member disposed in the heat absorption space via the heat transfer surface of the heat transfer member, and the heated heat absorption member is It can move to the heat dissipation space and dissipate heat there. Therefore, the heat generated from the laser device can be released to the outside with a simple configuration without the need for a heat sink, tank, heat exchanger or the like in which the flow path is formed, thereby reducing the cost of the entire laser system. Can do. Moreover, since it is not what cools using a fluid and a flow path, it is not necessary to maintain frequently.
 上記レーザシステムは、上記少なくとも1つの吸熱部材を上記吸熱空間から上記放熱空間に移動する移動機構をさらに備えていてもよい。また、上記少なくとも1つの吸熱部材が複数の吸熱部材を含んでいてもよい。この場合において、上記移動機構は、上記複数の吸熱部材のうち上記吸熱空間に位置していた吸熱部材を上記放熱空間に移動するとともに、上記複数の吸熱部材のうちの他の吸熱部材を上記吸熱空間に移動することが好ましい。このような構成とすることで、まだ加熱されていない吸熱部材を用いて連続的に吸熱することが可能となる。 The laser system may further include a moving mechanism that moves the at least one heat absorbing member from the heat absorbing space to the heat radiating space. Further, the at least one heat absorbing member may include a plurality of heat absorbing members. In this case, the moving mechanism moves the heat absorbing member located in the heat absorbing space among the plurality of heat absorbing members to the heat radiating space, and moves the other heat absorbing members of the plurality of heat absorbing members to the heat absorbing member. It is preferable to move to space. By setting it as such a structure, it becomes possible to absorb heat continuously using the heat absorption member which has not been heated yet.
 上記レーザ装置は、上記レーザ光を生成するレーザ素子を含んでいてもよい。この場合において、上記レーザ素子を平面視したときの上記レーザ素子の面積は、上記少なくとも1つの吸熱部材を平面視したときの上記少なくとも1つの吸熱部材の面積以下であることが好ましく、上記レーザ素子と上記吸熱空間に位置する上記少なくとも1つの吸熱部材とを平面視したとき、上記少なくとも1つの吸熱部材と上記レーザ素子とが一致するか又は上記少なくとも1つの吸熱部材の内部に上記レーザ素子が含まれることが好ましい。さらに、上記レーザ素子を平面視したときの上記レーザ素子の面積は、上記少なくとも1つの吸熱部材を平面視したときの上記少なくとも1つの吸熱部材の面積よりも小さいことが好ましい。このような関係を維持することによって、レーザ素子で生じた熱をより確実に吸熱部材に伝達することが可能となる。 The laser device may include a laser element that generates the laser light. In this case, the area of the laser element when the laser element is viewed in plan is preferably equal to or less than the area of the at least one heat absorption member when the at least one heat absorbing member is viewed in plan. And the at least one endothermic member positioned in the endothermic space, the at least one endothermic member and the laser element coincide with each other, or the at least one endothermic member includes the laser element. It is preferable that Furthermore, it is preferable that an area of the laser element when the laser element is viewed in plan is smaller than an area of the at least one endothermic member when the at least one endothermic member is viewed in plan. By maintaining such a relationship, the heat generated by the laser element can be more reliably transmitted to the heat absorbing member.
 本発明の第2の態様によれば、簡単かつ安価な構成によってレーザ装置から生じる熱を外部に放出することができるレーザ装置の冷却方法が提供される。この方法では、伝熱部材上に載置されたレーザ装置を冷却する。上記レーザ装置から生じた熱が伝達される上記伝熱部材の伝熱面を介して上記レーザ装置からの熱を上記伝熱面に隣接して形成された吸熱空間に配置した少なくとも1つの吸熱部材に吸収させる。上記レーザ装置からの上記レーザ光の出射を停止させた後、上記少なくとも1つの吸熱部材を上記吸熱空間から放熱空間に移動させて、上記放熱空間で上記少なくとも1つの吸熱部材に吸収させた熱を放出させる。 According to the second aspect of the present invention, there is provided a method of cooling a laser device that can release heat generated from the laser device to the outside with a simple and inexpensive configuration. In this method, the laser device placed on the heat transfer member is cooled. At least one heat absorbing member in which heat from the laser device is disposed in a heat absorbing space formed adjacent to the heat transfer surface via a heat transfer surface of the heat transfer member to which heat generated from the laser device is transmitted. To absorb. After stopping the emission of the laser light from the laser device, the at least one heat absorbing member is moved from the heat absorbing space to the heat radiating space, and the heat absorbed by the at least one heat absorbing member in the heat radiating space is absorbed. Release.
 本発明の第2の態様によれば、レーザ装置から生じた熱をレーザ装置に隣接する位置に形成された吸熱空間に配置された吸熱部材に吸収させることができるとともに、加熱された吸熱部材を放熱空間に移動してそこで放熱させることができる。したがって、流路の形成されたヒートシンクやタンクや熱交換器などを必要とすることなく、単純な構成によってレーザ装置から生じる熱を外部に放出することができ、レーザシステム全体のコストを低減することができる。また、流体や流路を利用して冷却するものではないので、頻繁にメンテナンスをする必要もない。 According to the second aspect of the present invention, the heat generated from the laser device can be absorbed by the heat absorption member disposed in the heat absorption space formed at a position adjacent to the laser device, and the heated heat absorption member is It can move to the heat dissipation space and dissipate heat there. Therefore, the heat generated from the laser device can be released to the outside with a simple configuration without the need for a heat sink, tank, heat exchanger or the like in which the flow path is formed, thereby reducing the cost of the entire laser system. Can do. Moreover, since it is not what cools using a fluid and a flow path, it is not necessary to maintain frequently.
 ここで、上記レーザ装置からの前記レーザ光の出射を停止させた後、任意の時間Tが経過したときに再度上記レーザ光を出射する場合において、上記少なくとも1つの吸熱部材としてn個(nは2以上の整数)の吸熱部材を用意し、上記レーザ装置からの上記レーザ光の出射を停止させてから時間Tが経過する前に、上記熱を吸収させた上記吸熱部材を上記吸熱空間から上記放熱空間に移動するとともに、他の吸熱部材を上記伝熱面に接触するように上記吸熱空間に移動することが好ましい。このようにすることで、連続的にレーザ装置を冷却することができる。 Here, when the laser beam is emitted again when an arbitrary time T has elapsed after the emission of the laser beam from the laser device is stopped, the at least one heat absorbing member (n is (An integer of 2 or more) is prepared, and before the time T has elapsed since the emission of the laser beam from the laser device is stopped, the heat absorption member that has absorbed the heat is removed from the heat absorption space. It is preferable to move to the heat radiating space and move the other heat absorbing member to the heat absorbing space so as to be in contact with the heat transfer surface. By doing in this way, a laser apparatus can be cooled continuously.
 また、上記n個の吸熱部材を順番に上記吸熱空間又は上記放熱空間に移動することとすれば冷却の効率が向上する。この場合において、上記レーザ装置からの上記レーザ光の出射を停止させてから時間T/nが経過する以前に、上記n個の吸熱部材のうち最初の吸熱部材を上記吸熱空間から上記放熱空間に移動することとすれば、レーザ装置からの熱をn個の吸熱部材に効率的に分配することができ、放熱性が向上する。 Further, if the n heat absorbing members are sequentially moved to the heat absorbing space or the heat radiating space, the cooling efficiency is improved. In this case, before the time T / n elapses after the emission of the laser beam from the laser device is stopped, the first heat absorbing member among the n heat absorbing members is changed from the heat absorbing space to the heat radiating space. If it moves, the heat from the laser device can be efficiently distributed to the n heat absorbing members, and the heat dissipation is improved.
 本発明によれば、レーザ装置から生じた熱を伝熱部材の伝熱面を介して吸熱空間に配置された吸熱部材に吸収させることができるとともに、加熱された吸熱部材を放熱空間に移動してそこで放熱させることができる。したがって、流路の形成されたヒートシンクやタンクや熱交換器などを必要とすることなく、単純な構成によってレーザ装置から生じる熱を外部に放出することができ、レーザシステム全体のコストを低減することができる。また、流体や流路を利用して冷却するものではないので、頻繁にメンテナンスをする必要もない。 According to the present invention, the heat generated from the laser device can be absorbed by the heat absorption member disposed in the heat absorption space via the heat transfer surface of the heat transfer member, and the heated heat absorption member is moved to the heat dissipation space. Heat can be dissipated there. Therefore, the heat generated from the laser device can be released to the outside with a simple configuration without the need for a heat sink, tank, heat exchanger or the like in which the flow path is formed, thereby reducing the cost of the entire laser system. Can do. Moreover, since it is not what cools using a fluid and a flow path, it is not necessary to maintain frequently.
図1は、本発明の第1の実施形態におけるレーザシステムを示す断面図である。FIG. 1 is a cross-sectional view showing a laser system according to a first embodiment of the present invention. 図2は、図1のA-A'線断面図である。2 is a cross-sectional view taken along line AA ′ of FIG. 図3は、図1のB-B'線断面図である。3 is a cross-sectional view taken along the line BB ′ of FIG. 図4は、図1のレーザシステムにおいて吸熱部材を移動させた状態を示す断面図であり、図1のA-A'線断面に対応するものである。4 is a cross-sectional view showing a state in which the heat absorbing member is moved in the laser system of FIG. 1, and corresponds to a cross section taken along line AA ′ of FIG. 図5は、図1のレーザシステムにおいて吸熱部材を移動させた状態を示す断面図であり、図1のB-B'線断面に対応するものである。FIG. 5 is a cross-sectional view showing a state where the heat absorbing member is moved in the laser system of FIG. 1, and corresponds to a cross section taken along line BB ′ of FIG. 図6は、図1のレーザシステムにおいて一定の時間間隔でレーザ光を出射する場合のタイミングチャートである。FIG. 6 is a timing chart in the case of emitting laser light at regular time intervals in the laser system of FIG. 図7は、本発明の他の実施形態におけるレーザシステムを模式的に示す断面図であり、図1のA-A'線断面に対応するものである。FIG. 7 is a cross-sectional view schematically showing a laser system according to another embodiment of the present invention, and corresponds to a cross section taken along line AA ′ of FIG. 図8は、図7のレーザシステムに使用される吸熱部材を模式的に示す斜視図である。FIG. 8 is a perspective view schematically showing a heat absorbing member used in the laser system of FIG. 図9は、本発明の第2の実施形態におけるレーザシステムの構成を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a configuration of a laser system in the second embodiment of the present invention. 図10は、図9のC-C'線断面図である。10 is a cross-sectional view taken along the line CC ′ of FIG. 図11は、図9の平面図である。FIG. 11 is a plan view of FIG. 図12は、図9のレーザシステムにおけるファイバレーザ装置を模式的に示す図である。FIG. 12 is a diagram schematically showing a fiber laser device in the laser system of FIG. 図13は、本発明の他の実施形態におけるレーザシステムを模式的に示す断面図である。FIG. 13 is a cross-sectional view schematically showing a laser system according to another embodiment of the present invention.
 以下、本発明に係るレーザシステムの実施形態について図1から図13を参照して詳細に説明する。なお、図1から図13において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図13においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。 Hereinafter, embodiments of a laser system according to the present invention will be described in detail with reference to FIGS. 1 to 13. 1 to 13, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted. In addition, in FIGS. 1 to 13, the scale and dimensions of each component are exaggerated, and some components may be omitted.
 図1は、本発明の第1の実施形態におけるレーザシステム101を模式的に示す断面図、図2は、図1のA-A'線断面図、図3は、図1のB-B'線断面図である。図1から図3に示すように、本実施形態におけるレーザシステム101は、レーザ光を出射するレーザ装置として半導体レーザモジュール120を備えている。半導体レーザモジュール120は、4つの側壁41~44を有する枠体40と、枠体40の下方に配置された底板50と、枠体40の上方に配置された蓋体51と、底板50上に載置されたサブマウント52と、サブマウント52上に載置された半導体レーザ素子(半導体レーザダイオード)54と、底板50上に載置されたファイバマウント56とを備えている。サブマウント52及びファイバマウント56は例えば半田によって底板50上に固定される。 1 is a cross-sectional view schematically showing a laser system 101 according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA ′ in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB ′ in FIG. It is line sectional drawing. As shown in FIGS. 1 to 3, the laser system 101 in this embodiment includes a semiconductor laser module 120 as a laser device that emits laser light. The semiconductor laser module 120 includes a frame body 40 having four side walls 41 to 44, a bottom plate 50 disposed below the frame body 40, a lid body 51 disposed above the frame body 40, and a bottom plate 50. A submount 52 mounted, a semiconductor laser element (semiconductor laser diode) 54 mounted on the submount 52, and a fiber mount 56 mounted on the bottom plate 50 are provided. The submount 52 and the fiber mount 56 are fixed on the bottom plate 50 by, for example, solder.
 枠体40にはX方向に延びる光ファイバ60を挿通するためのファイバ孔(図示せず)が形成されており、ファイバ孔に挿通された光ファイバ60の端部がファイバマウント56上に例えば半田58によって固定されている。このとき、光ファイバ60は、半導体レーザ素子54から出射されたレーザ光(励起光)が光ファイバ60の先端部60Aに結合するように配置される。半導体レーザ素子54から出射されたレーザ光は、光ファイバ60の先端部60Aに入射して光ファイバ60内を伝搬し、例えば増幅用光ファイバに導かれるようになっている。 A fiber hole (not shown) for inserting an optical fiber 60 extending in the X direction is formed in the frame body 40, and an end portion of the optical fiber 60 inserted into the fiber hole is, for example, soldered on the fiber mount 56. 58 is fixed. At this time, the optical fiber 60 is arranged so that the laser light (excitation light) emitted from the semiconductor laser element 54 is coupled to the distal end portion 60 </ b> A of the optical fiber 60. The laser light emitted from the semiconductor laser element 54 is incident on the distal end portion 60A of the optical fiber 60, propagates in the optical fiber 60, and is guided to, for example, an amplification optical fiber.
 図1から図3に示すように、レーザシステム101は、レーザ装置としての半導体レーザモジュール120が載置される伝熱部材80と、上面に2つの吸熱部材70A,70Bが載置された平板状のトレー72とを備えている。例えば、吸熱部材70A,70Bは、金属やセラミックからなる部材である。伝熱部材80には、半導体レーザ素子54及びサブマウント52の下方にY方向に延びる貫通孔83が形成されており、この貫通孔83の内部にトレー72の一部が挿入されている。 As shown in FIGS. 1 to 3, the laser system 101 includes a heat transfer member 80 on which a semiconductor laser module 120 as a laser device is placed, and a flat plate shape on which two heat absorbing members 70 </ b> A and 70 </ b> B are placed on the upper surface. The tray 72 is provided. For example, the heat absorbing members 70A and 70B are members made of metal or ceramic. A through hole 83 extending in the Y direction is formed below the semiconductor laser element 54 and the submount 52 in the heat transfer member 80, and a part of the tray 72 is inserted into the through hole 83.
 ここで、半導体レーザ素子54から生じた熱は、サブマウント52及び底板50を介して伝熱部材80に伝達されて貫通孔83を形成する面80Aまで伝達される。このように、伝熱部材80は、半導体レーザ素子54から生じた熱が伝達される伝熱面80Aを有している。この面80Aに隣接した(貫通孔83内の)空間は吸熱空間Eとなっている。なお、伝熱部材80は、半導体レーザモジュール120から生じた熱が伝熱される伝熱面80Aを有しているのであれば、複数の部材から構成されていてもよい。 Here, the heat generated from the semiconductor laser element 54 is transmitted to the heat transfer member 80 through the submount 52 and the bottom plate 50, and is transmitted to the surface 80A that forms the through hole 83. Thus, the heat transfer member 80 has the heat transfer surface 80A to which the heat generated from the semiconductor laser element 54 is transferred. A space adjacent to the surface 80A (in the through hole 83) is an endothermic space E. The heat transfer member 80 may be composed of a plurality of members as long as it has a heat transfer surface 80A through which heat generated from the semiconductor laser module 120 is transferred.
 トレー72は、図1及び図2に示すように、リニアコンベアやアクチュエータ、モータなどから構成される移動機構74によりY方向に移動可能となっている。移動機構74は、例えばCPUを内蔵した制御部76に接続されており、制御部76が移動機構74を制御することによって、半導体レーザ素子54及びサブマウント52の下方の吸熱空間Eに吸熱部材70Aと吸熱部材70Bのいずれか一方を移動するようになっている。図1から図3は、吸熱部材70Aが半導体レーザ素子54及びサブマウント52の下方に位置し、吸熱部材70Bが伝熱部材80の外部に位置している状態を示している。 As shown in FIGS. 1 and 2, the tray 72 is movable in the Y direction by a moving mechanism 74 composed of a linear conveyor, an actuator, a motor, and the like. The moving mechanism 74 is connected to, for example, a control unit 76 having a built-in CPU. The control unit 76 controls the moving mechanism 74, so that the heat absorbing member 70 </ b> A is placed in the heat absorbing space E below the semiconductor laser element 54 and the submount 52. Any one of the heat absorbing member 70B is moved. 1 to 3 show a state in which the heat absorbing member 70A is positioned below the semiconductor laser element 54 and the submount 52, and the heat absorbing member 70B is positioned outside the heat transfer member 80.
 図1から図3に示す状態において、半導体レーザ素子54からレーザ光が出射されると、半導体レーザ素子54が発熱するが、この熱はサブマウント52及び底板50を介して伝熱部材80に伝達されて伝熱部材80の伝熱面80Aまで伝達される。吸熱空間Eにある吸熱部材70Aは、伝熱部材80の伝熱面80Aに接触しており、半導体レーザ素子54から生じた熱は伝熱面80Aを介して吸熱部材70Aに吸収される。このとき、半導体レーザ素子54からの熱を吸熱部材70Aに伝達しやすくするために、吸熱部材70Aの上面と伝熱部材80の伝熱面80Aとの間にグリース(図示せず)を塗布することが好ましい。 In the state shown in FIGS. 1 to 3, when laser light is emitted from the semiconductor laser element 54, the semiconductor laser element 54 generates heat. This heat is transmitted to the heat transfer member 80 through the submount 52 and the bottom plate 50. Then, it is transmitted to the heat transfer surface 80A of the heat transfer member 80. The heat absorption member 70A in the heat absorption space E is in contact with the heat transfer surface 80A of the heat transfer member 80, and the heat generated from the semiconductor laser element 54 is absorbed by the heat absorption member 70A via the heat transfer surface 80A. At this time, grease (not shown) is applied between the upper surface of the heat absorbing member 70A and the heat transfer surface 80A of the heat transfer member 80 in order to easily transfer the heat from the semiconductor laser element 54 to the heat absorption member 70A. It is preferable.
 このようにして、半導体レーザ素子54からレーザ光が出射されている間は、半導体レーザ素子54から生じた熱が、サブマウント52、底板50、及び伝熱部材80を介して吸熱空間Eに配置された吸熱部材70Aに吸収される。その後、半導体レーザ素子54からのレーザ光の出射が停止されると、これを受けて制御部76が移動機構74を制御し、トレー72を-Y方向に移動して、図4及び図5に示すように、半導体レーザ素子54の熱を吸収した吸熱部材70Aを伝熱部材80の外部(放熱空間R)に移動するとともに、新しい吸熱部材70Bを半導体レーザ素子54及びサブマウント52の下方の吸熱空間Eに移動する。 Thus, while the laser beam is emitted from the semiconductor laser element 54, the heat generated from the semiconductor laser element 54 is arranged in the heat absorption space E via the submount 52, the bottom plate 50, and the heat transfer member 80. The absorbed heat absorbing member 70A is absorbed. After that, when the emission of the laser light from the semiconductor laser element 54 is stopped, the control unit 76 receives this and controls the moving mechanism 74 to move the tray 72 in the −Y direction. As shown, the endothermic member 70A that has absorbed the heat of the semiconductor laser element 54 is moved to the outside of the heat transfer member 80 (heat dissipation space R), and the new endothermic member 70B is moved to the lower end of the semiconductor laser element 54 and the submount 52. Move to space E.
 その後、半導体レーザ素子54から再びレーザ光が出射されると、半導体レーザ素子54から生じた熱が、サブマウント52及び伝熱部材80の伝熱面80Aを介して伝熱面80Aに接触している吸熱部材70Bに吸収される。このとき、先の工程で半導体レーザ素子54の熱を吸収した吸熱部材70Aは、伝熱部材80の外部(放熱空間R)で放熱されて冷却される。なお、伝熱部材80の外部に移動させた吸熱部材70Aの冷却方法としては、自然冷却のほか、ファンなどを使って風を当てる風冷、水や氷などを吸熱部材70Aの表面に接触させることによる冷却などが考えられる。 Thereafter, when laser light is emitted again from the semiconductor laser element 54, the heat generated from the semiconductor laser element 54 comes into contact with the heat transfer surface 80A via the heat transfer surface 80A of the submount 52 and the heat transfer member 80. Is absorbed by the heat absorbing member 70B. At this time, the heat absorbing member 70A that has absorbed the heat of the semiconductor laser element 54 in the previous step is radiated and cooled outside the heat transfer member 80 (heat radiation space R). In addition, as a cooling method of the heat absorption member 70A moved to the outside of the heat transfer member 80, in addition to natural cooling, air cooling using a fan or the like, or water or ice is brought into contact with the surface of the heat absorption member 70A. Cooling by things can be considered.
 半導体レーザ素子54からのレーザ光の出射が再び停止されると、これを受けて制御部76が移動機構74を制御し、トレー72を+Y方向に移動して、半導体レーザ素子54の熱を吸収した吸熱部材70Bを伝熱部材80の外部(放熱空間R)に移動するとともに、冷却された吸熱部材70Aを半導体レーザ素子54及びサブマウント52の下方の吸熱空間Eに移動する(図2及び図3参照)。 When the emission of the laser light from the semiconductor laser element 54 is stopped again, the control unit 76 receives this and controls the moving mechanism 74 to move the tray 72 in the + Y direction and absorb the heat of the semiconductor laser element 54. The heat absorbing member 70B is moved to the outside (heat radiation space R) of the heat transfer member 80, and the cooled heat absorption member 70A is moved to the heat absorption space E below the semiconductor laser element 54 and the submount 52 (FIG. 2 and FIG. 2). 3).
 その後、半導体レーザ素子54から再びレーザ光が出射されると、半導体レーザ素子54から生じた熱が、サブマウント52及び伝熱部材80の伝熱面80Aを介して伝熱面80Aに接触している吸熱部材70Aに吸収されるとともに、吸熱部材70Bが伝熱部材80の外部(放熱空間R)で放熱されて冷却される。 Thereafter, when laser light is emitted again from the semiconductor laser element 54, the heat generated from the semiconductor laser element 54 comes into contact with the heat transfer surface 80A via the heat transfer surface 80A of the submount 52 and the heat transfer member 80. The heat absorbing member 70 </ b> A is absorbed by the heat absorbing member 70 </ b> A, and the heat absorbing member 70 </ b> B is radiated and cooled outside the heat transfer member 80 (heat radiation space R).
 このように、本実施形態では、レーザ装置としての半導体レーザモジュール120から生じた熱を伝熱部材80の内部(吸熱空間E)に配置された吸熱部材70A又は吸熱部材70Bに吸収させることができるとともに、加熱された吸熱部材70B又は吸熱部材70Aを伝熱部材80の外部(放熱空間R)で放熱させることができる。したがって、流路の形成されたヒートシンクやタンクや熱交換器などを必要とすることなく、単純な構成によって半導体レーザ素子54から生じる熱を放出することができ、レーザシステム101全体のコストを低減することができる。また、流体や流路を利用して冷却するものではないので、頻繁にメンテナンスをする必要もない。 Thus, in this embodiment, the heat generated from the semiconductor laser module 120 as the laser device can be absorbed by the heat absorbing member 70A or the heat absorbing member 70B disposed inside the heat transfer member 80 (the heat absorbing space E). At the same time, the heated endothermic member 70B or endothermic member 70A can be dissipated outside the heat transfer member 80 (heat dissipating space R). Therefore, heat generated from the semiconductor laser element 54 can be released with a simple configuration without requiring a heat sink, a tank, a heat exchanger or the like in which a flow path is formed, and the cost of the entire laser system 101 is reduced. be able to. Moreover, since it is not what cools using a fluid and a flow path, it is not necessary to maintain frequently.
 ここで、半導体レーザ素子54から吸熱部材70A,70Bに効率的に熱を伝達するために、半導体レーザ素子54を平面視したときの半導体レーザ素子54の面積は、サブマウント52を平面視したときのサブマウント52の面積以下であり、サブマウント52を平面視したときのサブマウント52の面積は、吸熱部材70A,70Bのそれぞれを平面視したときの吸熱部材70A,70Bの面積以下であることが好ましい。このとき、半導体レーザ素子54とサブマウント52と吸熱空間Eに位置している吸熱部材70A,70Bを平面視したとき、吸熱部材70A,70Bの内部にサブマウント52が含まれ、サブマウント52の内部に半導体レーザ素子54が含まれることが好ましい。あるいは、吸熱部材70A,70Bがサブマウント52に一致してもよいし、サブマウント52が半導体レーザ素子54に一致してもよい。このような関係を維持することによって、半導体レーザ素子54で生じた熱がより確実に吸熱部材70A,70Bに伝達される。 Here, in order to efficiently transfer heat from the semiconductor laser element 54 to the heat absorbing members 70A and 70B, the area of the semiconductor laser element 54 when the semiconductor laser element 54 is viewed in plan is the same as that when the submount 52 is viewed in plan. The area of the submount 52 when the submount 52 is viewed in plan is less than the area of the heat absorbing members 70A and 70B when each of the heat absorbing members 70A and 70B is viewed in plan. Is preferred. At this time, when the semiconductor laser element 54, the submount 52, and the heat absorbing members 70A and 70B located in the heat absorbing space E are viewed in plan view, the submount 52 is included inside the heat absorbing members 70A and 70B. A semiconductor laser element 54 is preferably included inside. Alternatively, the heat absorbing members 70 </ b> A and 70 </ b> B may coincide with the submount 52, or the submount 52 may coincide with the semiconductor laser element 54. By maintaining such a relationship, the heat generated in the semiconductor laser element 54 is more reliably transmitted to the heat absorbing members 70A and 70B.
 上述した実施形態においては、2つの吸熱部材70A,70Bを設けた例を説明したが、使用する吸熱部材を3つ以上としてもよく、あるいは1つの吸熱部材のみを用いてもよい。また、上述した実施形態では、吸熱部材70A,70Bを水平方向(Y方向)に移動する例を説明したが、鉛直方向(Z方向)又は他の方向への移動により吸熱部材70A,70Bを吸熱空間及び放熱空間へ移動してもよい。また、水平方向(Y方向)の移動と鉛直方向(Z方向)の移動とを組み合わせて吸熱部材70A,70Bを移動させてもよい。さらに、上述した実施形態では、吸熱部材70A,70Bを平行移動する例を説明したが、吸熱部材70A,70Bをある軸を中心として回転することによりこれらを吸熱空間及び放熱空間へ移動してもよい。また、吸熱部材70A,70Bを伝熱面80Aに押し付けて接触させるように構成してもよい。 In the above-described embodiment, the example in which the two heat absorbing members 70A and 70B are provided has been described. However, three or more heat absorbing members may be used, or only one heat absorbing member may be used. In the above-described embodiment, the example in which the heat absorbing members 70A and 70B are moved in the horizontal direction (Y direction) has been described. However, the heat absorbing members 70A and 70B are endothermic by moving in the vertical direction (Z direction) or other directions. You may move to space and heat dissipation space. Further, the endothermic members 70A and 70B may be moved by combining the movement in the horizontal direction (Y direction) and the movement in the vertical direction (Z direction). Further, in the above-described embodiment, the example in which the endothermic members 70A and 70B are moved in parallel has been described. However, even if the endothermic members 70A and 70B are rotated about a certain axis to move them to the endothermic space and the heat dissipation space. Good. Moreover, you may comprise so that the heat absorption members 70A and 70B may be pressed and contacted to the heat-transfer surface 80A.
 ここで、図6に示すように、レーザ光の出射が任意の時間間隔Tで行われる場合には、時間T内に吸熱部材70A,70Bが上述した放熱空間Rにおいて環境温度程度まで冷却できないときに、レーザ光の出射が停止されてからT/2経過時に吸熱部材70A,70Bを入れ替えることが好ましい。このようにレーザ光の出射が停止されてからT/2経過時に吸熱部材70A,70Bを入れ替えることにより、半導体レーザ素子54からの熱を吸熱部材70A,70Bに均等に分配することができ、放熱性が向上する。 Here, as shown in FIG. 6, when the laser light is emitted at an arbitrary time interval T, the heat absorbing members 70 </ b> A and 70 </ b> B cannot be cooled to the environmental temperature in the heat radiation space R within the time T. In addition, it is preferable to replace the heat-absorbing members 70A and 70B when T / 2 has elapsed after the emission of the laser light is stopped. In this way, by replacing the heat absorbing members 70A and 70B when T / 2 has elapsed after the emission of the laser light is stopped, the heat from the semiconductor laser element 54 can be evenly distributed to the heat absorbing members 70A and 70B. Improves.
 吸熱部材をn個(nは2以上の整数)設けた場合には、レーザ光の出射が停止されてから時間Tが経過する前、すなわち次にレーザ光が出射されるまでに、熱を吸収させた吸熱部材を吸熱空間Eから放熱空間Rに移動するとともに、他の吸熱部材を伝熱面80Aに接触するように吸熱空間Eに移動することが好ましい。この場合において、n個の吸熱部材を順番に吸熱空間及び放熱空間へ移動することが好ましい。このようにすれば、半導体レーザ素子54からの熱をn個の吸熱部材に分配することができ、放熱性が向上する。さらに、レーザ光の出射を停止させてから時間T/nが経過する以前に、n個の吸熱部材のうち最初の吸熱部材を吸熱空間Eから放熱空間Rに移動することが好ましい。吸熱部材に伝達される熱量は温度差に依存するため、n個の吸熱部材のうち最初の吸熱部材に伝達される熱量が最も多くなる。したがって、レーザ光の出射を停止させてから時間T/nが経過する以前に最初の吸熱部材を放熱空間Rに移動することにより、半導体レーザ素子54からの熱をn個の吸熱部材により効率的に分配することが可能となり、放熱性が向上する。 When n heat absorbing members (n is an integer of 2 or more) are provided, heat is absorbed before the time T elapses after the emission of the laser beam is stopped, that is, until the next laser beam is emitted. It is preferable that the endothermic member thus moved is moved from the endothermic space E to the heat dissipating space R, and another endothermic member is moved to the endothermic space E so as to be in contact with the heat transfer surface 80A. In this case, it is preferable to move the n heat absorbing members sequentially to the heat absorbing space and the heat radiating space. In this way, heat from the semiconductor laser element 54 can be distributed to the n heat absorbing members, and heat dissipation is improved. Furthermore, it is preferable to move the first endothermic member out of the n endothermic members from the endothermic space E to the heat dissipating space R before the time T / n elapses after the emission of the laser light is stopped. Since the amount of heat transferred to the heat absorbing member depends on the temperature difference, the amount of heat transferred to the first heat absorbing member among the n heat absorbing members is the largest. Therefore, the heat from the semiconductor laser element 54 is more efficiently transferred to the n heat absorbing members by moving the first heat absorbing member to the heat radiating space R before the time T / n elapses after the emission of the laser light is stopped. It becomes possible to distribute to the heat and heat dissipation is improved.
 上述した実施形態においては、移動機構74を用いて吸熱部材70A,70Bを移動し、制御部76を用いて移動機構74を制御したが、移動機構74や制御部76は必ずしも設ける必要はない。例えば、図7に示すように、半導体レーザ素子54及びサブマウント52の下方に位置する挿入孔183を伝熱部材80に形成し、把手171が設けられた吸熱部材170(図8参照)をこの挿入孔183に手で押し込んでもよい。この場合においても、伝熱部材80の挿入孔183の内部の吸熱空間Eに押し込まれた吸熱部材170は、伝熱部材80の伝熱面80Aと接触しており、半導体レーザ素子54からの熱はこの吸熱部材170に吸収される。半導体レーザ素子54からのレーザ光の出射が停止された後、吸熱部材170の把手171を手で掴んで伝熱部材80の挿入孔183から吸熱部材170を取り出し、伝熱部材80の外部(放熱空間)で吸熱部材170を冷却することができる。このとき、吸熱部材170を例えば水中や海水などに漬けて冷却することもできる。 In the embodiment described above, the heat absorbing members 70A and 70B are moved using the moving mechanism 74 and the moving mechanism 74 is controlled using the control unit 76, but the moving mechanism 74 and the control unit 76 are not necessarily provided. For example, as shown in FIG. 7, an insertion hole 183 located below the semiconductor laser element 54 and the submount 52 is formed in the heat transfer member 80, and the heat absorption member 170 (see FIG. 8) provided with the handle 171 is attached to the heat absorption member 170. The insertion hole 183 may be pushed by hand. Also in this case, the heat absorption member 170 pushed into the heat absorption space E inside the insertion hole 183 of the heat transfer member 80 is in contact with the heat transfer surface 80A of the heat transfer member 80, and heat from the semiconductor laser element 54 is obtained. Is absorbed by the heat absorbing member 170. After the emission of the laser light from the semiconductor laser element 54 is stopped, the handle 171 of the heat absorbing member 170 is grasped by hand, the heat absorbing member 170 is taken out from the insertion hole 183 of the heat transfer member 80, and the heat transfer member 80 is exposed to the outside (heat radiation). The heat absorbing member 170 can be cooled in the space. At this time, the heat absorbing member 170 can be cooled by being immersed in, for example, water or seawater.
 上述した実施形態においては、本発明に係る冷却構造を半導体レーザモジュール120に対して適用した例について説明したが、本発明に係る冷却構造は半導体レーザモジュールに限らず、レーザ光を出射する任意のレーザ装置に適用できるものである。例えば、本発明に係る冷却構造をファイバレーザ装置に適用することもできる。以下、発明に係る冷却構造をファイバレーザ装置に適用した例について説明する。 In the above-described embodiment, the example in which the cooling structure according to the present invention is applied to the semiconductor laser module 120 has been described. However, the cooling structure according to the present invention is not limited to the semiconductor laser module, and an arbitrary laser beam that emits laser light. It can be applied to a laser device. For example, the cooling structure according to the present invention can be applied to a fiber laser device. Hereinafter, an example in which the cooling structure according to the invention is applied to a fiber laser device will be described.
 図9は、本発明の第2の実施形態におけるレーザシステム201の構成を模式的に示す断面図、図10は、図9のC-C'線断面図、図11は、図9の平面図である。図9から図11に示すように、本実施形態におけるレーザシステム201は、レーザ光を出射するレーザ装置として、以下に述べるファイバレーザ装置1を有している。 9 is a cross-sectional view schematically showing a configuration of a laser system 201 in the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along the line CC ′ of FIG. 9, and FIG. 11 is a plan view of FIG. It is. As shown in FIGS. 9 to 11, the laser system 201 in the present embodiment includes a fiber laser device 1 described below as a laser device that emits laser light.
 図12は、ファイバレーザ装置1を模式的に示す図である。図12に示すように、本実施形態におけるファイバレーザ装置1は、例えばYb(イッテルビウム)などの希土類元素が添加された増幅用光ファイバ10と、増幅用光ファイバ10の第1の端部10A側に接続された高反射ファイバブラッググレーティング(Fiber Bragg Grating(FBG))12と、増幅用光ファイバ10の第2の端部10B側に接続された低反射FBG14と、増幅用光ファイバ10の第1の端部10Aから増幅用光ファイバ10に励起光を導入する複数の励起光源ユニット20Aと、複数の励起光源ユニット20Aからの励起光を合波するコンバイナ22Aと、増幅用光ファイバ10の第2の端部10Bから増幅用光ファイバ10に励起光を導入する複数の励起光源ユニット20Bと、複数の励起光源ユニット20Bからの励起光を合波するコンバイナ22Bと、増幅用光ファイバ10からの出力レーザ光(レーザ発振光)を例えば被加工物に向けて出射するレーザ出射部30とを備えている。 FIG. 12 is a diagram schematically showing the fiber laser device 1. As shown in FIG. 12, the fiber laser device 1 according to the present embodiment includes an amplification optical fiber 10 to which a rare earth element such as Yb (ytterbium) is added, and the first end portion 10 </ b> A side of the amplification optical fiber 10. A high-reflection fiber Bragg grating (FBG) 12 connected to the optical fiber 10, a low-reflection FBG 14 connected to the second end portion 10 B side of the amplification optical fiber 10, and the first of the amplification optical fiber 10. A plurality of pumping light source units 20A for introducing pumping light into the amplifying optical fiber 10 from the end 10A, a combiner 22A for combining pumping light from the plurality of pumping light source units 20A, and a second of the amplifying optical fiber 10. From a plurality of pumping light source units 20B for introducing pumping light into the amplification optical fiber 10 from the end 10B of the optical fiber, and from the pumping light source units 20B Combiner 22B for multiplexing Okoshiko, and a laser emitting unit 30 for emitting toward the output laser beam from the amplification optical fiber 10 (the laser oscillation light), for example, the workpiece.
 励起光源ユニット20A,20Bとしては、例えば、波長915nmの高出力マルチモード半導体レーザ(LD)を用いることができ、このような励起光源ユニット20A,20Bとして上述した第1の実施形態における半導体レーザモジュール120を用いることもできる。励起光源ユニット20Aからの励起光は、コンバイナ22Aにより合波され、高反射FBG12側から増幅用光ファイバ10に導入される。同様に、励起光源ユニット20Bからの励起光は、コンバイナ22Bにより合波され、低反射FBG14側から増幅用光ファイバ10に導入される。増幅用光ファイバ10は、内部クラッドと、内部クラッドの屈折率よりも低い外部クラッドとを備えたダブルクラッド構造を有することが好ましい。コンバイナ22Bには、レーザ出射部30まで延びるシングルクラッドの光ファイバ(デリバリファイバ)32が接続されている。 As the excitation light source units 20A and 20B, for example, a high-power multimode semiconductor laser (LD) having a wavelength of 915 nm can be used, and the semiconductor laser module in the first embodiment described above as such excitation light source units 20A and 20B. 120 can also be used. Excitation light from the excitation light source unit 20A is combined by the combiner 22A and introduced into the amplification optical fiber 10 from the highly reflective FBG 12 side. Similarly, the excitation light from the excitation light source unit 20B is combined by the combiner 22B and introduced into the amplification optical fiber 10 from the low reflection FBG 14 side. The amplification optical fiber 10 preferably has a double clad structure having an inner clad and an outer clad lower than the refractive index of the inner clad. A single clad optical fiber (delivery fiber) 32 extending to the laser emitting section 30 is connected to the combiner 22B.
 ここで、高反射FBG12及び低反射FBG14は、レーザ光の波長に対応した波長の光を反射するように構成されており、所定の共振条件を満たすように配置されており、増幅用光ファイバ10、高反射FBG12、及び低反射FBG14により、増幅用光ファイバ10に生じたレーザ光を発振させる光共振器16が構成されている。高反射FBG12の反射率は90%~100%であることが好ましく、低反射FBG14の反射率は30%以下であることが好ましい。 Here, the high reflection FBG 12 and the low reflection FBG 14 are configured to reflect light having a wavelength corresponding to the wavelength of the laser light, and are arranged so as to satisfy a predetermined resonance condition. The high-reflection FBG 12 and the low-reflection FBG 14 constitute an optical resonator 16 that oscillates the laser light generated in the amplification optical fiber 10. The reflectance of the high reflection FBG 12 is preferably 90% to 100%, and the reflectance of the low reflection FBG 14 is preferably 30% or less.
 このような構成において、励起光源ユニット20A,20Bから例えば915nmの波長の励起光を増幅用光ファイバ10に導入すると、増幅用光ファイバ10のYbが励起され、自然放出光(ASE光)が放出される。このASE光は、所定の共振条件を満たすように配置された高反射FBG12及び低反射FBG14で反射して増幅された波長(1000nm帯の波長)でレーザ発振する。光共振器16内で生じたレーザ光は、その一部が低反射FBG14で反射して増幅用光ファイバ10に戻るが、低反射FBG14を透過して光ファイバ32を通ってレーザ出射部30から出力レーザ光として照射される。例えば、この出力レーザ光は被加工物を加工するために用いられる。 In such a configuration, when excitation light having a wavelength of, for example, 915 nm is introduced from the excitation light source units 20A and 20B into the amplification optical fiber 10, Yb of the amplification optical fiber 10 is excited and spontaneous emission light (ASE light) is emitted. Is done. This ASE light is laser-oscillated at a wavelength (1000 nm band wavelength) reflected and amplified by the high reflection FBG 12 and the low reflection FBG 14 arranged so as to satisfy a predetermined resonance condition. A part of the laser light generated in the optical resonator 16 is reflected by the low reflection FBG 14 and returns to the amplification optical fiber 10, but passes through the low reflection FBG 14 and passes through the optical fiber 32 from the laser emitting unit 30. Irradiated as output laser light. For example, this output laser beam is used for processing a workpiece.
 図9から図11に戻って、本実施形態におけるレーザシステム201は、ファイバレーザ装置1が載置される伝熱部材280と、上面に2つの吸熱部材270A,270Bが載置された平板状のトレー272とを備えている。例えば、吸熱部材270A,270Bは、金属やセラミックからなる部材である。伝熱部材280には、ファイバレーザ装置1の下方にY方向に延びる貫通孔283が形成されており、この貫通孔283の内部にトレー272の一部が挿入されている。 Returning to FIG. 9 to FIG. 11, the laser system 201 in the present embodiment is a flat plate shape in which the heat transfer member 280 on which the fiber laser device 1 is placed and the two heat absorbing members 270 </ b> A and 270 </ b> B are placed on the upper surface. A tray 272. For example, the heat absorbing members 270A and 270B are members made of metal or ceramic. A through hole 283 extending in the Y direction is formed in the heat transfer member 280 below the fiber laser device 1, and a part of the tray 272 is inserted into the through hole 283.
 ここで、ファイバレーザ装置1で生じた熱は伝熱部材280に伝達されて貫通孔283を形成する面280Aまで伝達される。このように、伝熱部材280は、ファイバレーザ装置1で生じた熱が伝達される伝熱面280Aを有している。この面280Aに隣接した(貫通孔283内の)空間は吸熱空間Eとなっている。なお、伝熱部材280は、ファイバレーザ装置1から生じた熱が伝熱される伝熱面280Aを有しているのであれば、複数の部材から構成されていてもよい。 Here, the heat generated in the fiber laser device 1 is transmitted to the heat transfer member 280 to be transmitted to the surface 280A forming the through hole 283. Thus, the heat transfer member 280 has the heat transfer surface 280A to which the heat generated in the fiber laser device 1 is transferred. A space adjacent to the surface 280A (in the through hole 283) is a heat absorption space E. The heat transfer member 280 may be composed of a plurality of members as long as it has a heat transfer surface 280A through which heat generated from the fiber laser device 1 is transferred.
 トレー272は、第1の実施形態のトレー72と同様に移動機構274によりY方向に移動可能となっている。移動機構274は、例えばCPUを内蔵した制御部276に接続されており、制御部276が移動機構274を制御することによって、吸熱空間Eに吸熱部材270Aと吸熱部材270Bのいずれか一方を移動するようになっている。 The tray 272 can be moved in the Y direction by the moving mechanism 274 similarly to the tray 72 of the first embodiment. The moving mechanism 274 is connected to, for example, a control unit 276 having a built-in CPU, and the control unit 276 controls the moving mechanism 274 to move either the heat absorbing member 270A or the heat absorbing member 270B to the heat absorbing space E. It is like that.
 ファイバレーザ装置1で生じた熱は伝熱部材280に伝達されて伝熱部材280の伝熱面280Aまで伝達される。吸熱空間Eにある吸熱部材270Aは、伝熱部材280の伝熱面280Aに接触しており、ファイバレーザ装置1で生じた熱は伝熱面280Aを介して吸熱部材270Aに吸収される。このとき、ファイバレーザ装置1で生じた熱を吸熱部材270Aに伝達しやすくするために、吸熱部材270Aの上面と伝熱部材280の伝熱面280Aとの間にグリース(図示せず)を塗布することが好ましい。 The heat generated in the fiber laser device 1 is transmitted to the heat transfer member 280 and is transmitted to the heat transfer surface 280A of the heat transfer member 280. The heat absorption member 270A in the heat absorption space E is in contact with the heat transfer surface 280A of the heat transfer member 280, and the heat generated in the fiber laser device 1 is absorbed by the heat absorption member 270A via the heat transfer surface 280A. At this time, grease (not shown) is applied between the upper surface of the heat absorbing member 270A and the heat transfer surface 280A of the heat transfer member 280 in order to easily transfer the heat generated in the fiber laser device 1 to the heat absorption member 270A. It is preferable to do.
 このようにして、ファイバレーザ装置1で生じた熱が伝熱部材280を介して吸熱空間Eに配置された吸熱部材270Aに吸収される。その後、ファイバレーザ装置1の動作が停止されると、これを受けて制御部276が移動機構274を制御し、トレー272を-Y方向に移動して、ファイバレーザ装置1の熱を吸収した吸熱部材270Aを伝熱部材280の外部(放熱空間R)に移動するとともに、新しい吸熱部材270Bをファイバレーザ装置1の下方の吸熱空間Eに移動する。 In this way, the heat generated in the fiber laser device 1 is absorbed by the heat absorbing member 270A disposed in the heat absorbing space E via the heat transfer member 280. Thereafter, when the operation of the fiber laser device 1 is stopped, the control unit 276 receives this and controls the moving mechanism 274 to move the tray 272 in the −Y direction and absorb the heat of the fiber laser device 1. The member 270A is moved to the outside of the heat transfer member 280 (heat radiation space R), and the new heat absorption member 270B is moved to the heat absorption space E below the fiber laser device 1.
 その後、ファイバレーザ装置1が駆動されると、ファイバレーザ装置1で生じた熱が伝熱部材280の伝熱面280Aを介して伝熱面280Aに接触している吸熱部材270Bに吸収される。このとき、先の工程でファイバレーザ装置1の熱を吸収した吸熱部材270Aは、伝熱部材280の外部(放熱空間R)で放熱されて冷却される。 Thereafter, when the fiber laser device 1 is driven, the heat generated in the fiber laser device 1 is absorbed by the heat absorbing member 270B in contact with the heat transfer surface 280A via the heat transfer surface 280A of the heat transfer member 280. At this time, the heat absorbing member 270A that has absorbed the heat of the fiber laser device 1 in the previous step is radiated and cooled outside the heat transfer member 280 (heat radiation space R).
 ファイバレーザ装置1の動作が再び停止されると、これを受けて制御部276が移動機構274を制御し、トレー272を+Y方向に移動して、ファイバレーザ装置1の熱を吸収した吸熱部材270Bを伝熱部材280の外部(放熱空間R)に移動するとともに、冷却された吸熱部材270Aをファイバレーザ装置1の下方の吸熱空間Eに移動する。 When the operation of the fiber laser device 1 is stopped again, the control unit 276 controls the movement mechanism 274 in response to this, and moves the tray 272 in the + Y direction to absorb the heat of the fiber laser device 1. Is moved to the outside (heat radiation space R) of the heat transfer member 280, and the cooled heat absorption member 270A is moved to the heat absorption space E below the fiber laser device 1.
 その後、再びファイバレーザ装置1が駆動されると、ファイバレーザ装置1で生じた熱が伝熱部材280の伝熱面280Aを介して伝熱面280Aに接触している吸熱部材270Aに吸収されるとともに、吸熱部材270Bが伝熱部材280の外部(放熱空間R)で放熱されて冷却される。 Thereafter, when the fiber laser device 1 is driven again, the heat generated in the fiber laser device 1 is absorbed by the heat absorbing member 270A in contact with the heat transfer surface 280A via the heat transfer surface 280A of the heat transfer member 280. At the same time, the heat absorbing member 270B is radiated and cooled outside the heat transfer member 280 (heat radiation space R).
 このように、ファイバレーザ装置1に対しても本発明に係る冷却構造を適用することができる。ファイバレーザ装置1に対して本発明に係る冷却構造を適用することにより、流路の形成されたヒートシンクやタンクや熱交換器などを必要とすることなく、単純な構成によってファイバレーザ装置1を冷却することができ、レーザシステム201全体のコストを低減することができる。 Thus, the cooling structure according to the present invention can also be applied to the fiber laser device 1. By applying the cooling structure according to the present invention to the fiber laser device 1, the fiber laser device 1 can be cooled with a simple configuration without requiring a heat sink, a tank, a heat exchanger or the like in which a flow path is formed. The cost of the entire laser system 201 can be reduced.
 また、第1の実施形態の伝熱部材80の上に第2の実施形態の励起光源ユニット20Aや励起光源ユニット20B、増幅用光ファイバ10を載置してレーザシステムを構成してもよい。あるいは、第1の実施形態の伝熱部材80の上に複数の励起光源ユニット20A,20Bを載置して複数の励起光源ユニット20A,20Bを同時に冷却するように構成してもよい。例えば、図13に示すレーザシステム301のように、複数の励起光源ユニット20A(20B)を含むレーザ装置1を伝熱部材80上に配置し、吸熱空間Eに位置する吸熱部材70A(又は70B)がこれらの励起光源ユニット20A(20B)に跨がるように構成してもよい。 Further, the laser system may be configured by mounting the excitation light source unit 20A, the excitation light source unit 20B, and the amplification optical fiber 10 of the second embodiment on the heat transfer member 80 of the first embodiment. Or you may comprise so that several excitation light source unit 20A, 20B may be mounted on the heat-transfer member 80 of 1st Embodiment, and several excitation light source unit 20A, 20B may be cooled simultaneously. For example, as in a laser system 301 shown in FIG. 13, a laser device 1 including a plurality of excitation light source units 20 </ b> A (20 </ b> B) is arranged on a heat transfer member 80, and a heat absorption member 70 </ b> A (or 70 </ b> B) located in the heat absorption space E. May be configured to straddle these excitation light source units 20A (20B).
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although the preferred embodiments of the present invention have been described so far, it is needless to say that the present invention is not limited to the above-described embodiments, and may be implemented in various forms within the scope of the technical idea.
 本発明は、レーザシステム内でレーザ光を出射するレーザ装置に好適に用いられる。 The present invention is suitably used for a laser apparatus that emits laser light in a laser system.
  1  ファイバレーザ装置
 10  増幅用光ファイバ
 12  高反射FBG
 14  低反射FBG
 16  光共振器
 20A,20B  励起光源ユニット
 22A,20B  コンバイナ
 30  レーザ出射部
 32  光ファイバ
 40  枠体
 41~44  側壁
 50  底板
 51  蓋体
 52  サブマウント
 54  半導体レーザ素子
 56  ファイバマウント
 58  半田
 60  光ファイバ
 70A,70B 吸熱部材
 72  トレー
 74  移動機構
 76  制御部
 80  伝熱部材
 80A 伝熱面
 83  貫通孔
101  レーザシステム
183  挿入孔
170  吸熱部材
171  把手
201  レーザシステム
280  伝熱部材
280A 伝熱面
283  貫通孔
301  レーザシステム
  E  吸熱空間
  R  放熱空間
DESCRIPTION OF SYMBOLS 1 Fiber laser apparatus 10 Optical fiber for amplification 12 High reflection FBG
14 Low reflection FBG
16 Optical resonators 20A and 20B Excitation light source units 22A and 20B Combiner 30 Laser emission part 32 Optical fiber 40 Frame body 41 to 44 Side wall 50 Bottom plate 51 Lid body 52 Submount 54 Semiconductor laser element 56 Fiber mount 58 Solder 60 Optical fiber 70A, 70B Heat absorbing member 72 Tray 74 Moving mechanism 76 Control unit 80 Heat transfer member 80A Heat transfer surface 83 Through hole 101 Laser system 183 Insertion hole 170 Heat absorption member 171 Handle 201 Laser system 280 Heat transfer member 280A Heat transfer surface 283 Through hole 301 Laser system E Heat absorption space R Heat dissipation space

Claims (9)

  1.  レーザ光を出射するレーザ装置と、
     前記レーザ装置が載置される伝熱部材であって、前記レーザ装置から生じた熱が伝達される伝熱面を有する伝熱部材と、
     前記伝熱部材の前記伝熱面に接触した状態で該伝熱面に隣接して形成された吸熱空間に配置可能であって、前記吸熱空間から該吸熱空間で吸収した熱を放出するための放熱空間に移動可能に構成された少なくとも1つの吸熱部材と、
    を備えた、レーザシステム。
    A laser device for emitting laser light;
    A heat transfer member on which the laser device is mounted, the heat transfer member having a heat transfer surface to which heat generated from the laser device is transmitted; and
    The heat transfer member can be disposed in a heat absorption space formed adjacent to the heat transfer surface in contact with the heat transfer surface, and for releasing the heat absorbed in the heat absorption space from the heat absorption space. At least one heat absorbing member configured to be movable to the heat dissipation space;
    With a laser system.
  2.  前記少なくとも1つの吸熱部材を前記吸熱空間から前記放熱空間に移動する移動機構をさらに備えた、請求項1に記載のレーザシステム。 The laser system according to claim 1, further comprising a moving mechanism for moving the at least one heat absorbing member from the heat absorbing space to the heat radiating space.
  3.  前記少なくとも1つの吸熱部材は、複数の吸熱部材を含み、
     前記移動機構は、前記複数の吸熱部材のうち前記吸熱空間に位置していた吸熱部材を前記放熱空間に移動するとともに、前記複数の吸熱部材のうちの他の吸熱部材を前記吸熱空間に移動する、
    請求項2に記載のレーザシステム。
    The at least one heat absorbing member includes a plurality of heat absorbing members;
    The moving mechanism moves a heat absorbing member located in the heat absorbing space among the plurality of heat absorbing members to the heat radiating space, and moves another heat absorbing member of the plurality of heat absorbing members to the heat absorbing space. ,
    The laser system according to claim 2.
  4.  前記レーザ装置は、前記レーザ光を生成するレーザ素子を含み、
     前記レーザ素子を平面視したときの前記レーザ素子の面積は、前記少なくとも1つの吸熱部材を平面視したときの前記少なくとも1つの吸熱部材の面積以下であり、
     前記レーザ素子と前記吸熱空間に位置する前記少なくとも1つの吸熱部材とを平面視したとき、前記少なくとも1つの吸熱部材と前記レーザ素子とが一致するか又は前記吸熱部材の内部に前記レーザ素子が含まれる、
    請求項1から3のいずれか一項に記載のレーザシステム。
    The laser device includes a laser element that generates the laser light,
    The area of the laser element when the laser element is viewed in plan is equal to or less than the area of the at least one heat absorption member when the at least one heat absorbing member is viewed in plan,
    When the laser element and the at least one endothermic member located in the endothermic space are viewed in plan, the at least one endothermic member and the laser element coincide with each other, or the endothermic member includes the laser element. The
    The laser system according to any one of claims 1 to 3.
  5.  前記レーザ素子を平面視したときの前記レーザ素子の面積は、前記少なくとも1つの吸熱部材を平面視したときの前記少なくとも1つの吸熱部材の面積よりも小さい、請求項4に記載のレーザシステム。 5. The laser system according to claim 4, wherein an area of the laser element when the laser element is viewed in plan is smaller than an area of the at least one endothermic member when the at least one endothermic member is viewed in plan.
  6.  伝熱部材上に載置されたレーザ装置を冷却する方法であって、
     前記レーザ装置から生じた熱が伝達される前記伝熱部材の伝熱面を介して前記レーザ装置からの熱を前記伝熱面に隣接して形成された吸熱空間に配置した少なくとも1つの吸熱部材に吸収させ、
     前記レーザ装置からの前記レーザ光の出射を停止させた後、前記少なくとも1つの吸熱部材を前記吸熱空間から放熱空間に移動させ、
     前記放熱空間で前記少なくとも1つの吸熱部材に吸収させた熱を放出させる、
    レーザ装置の冷却方法。
    A method of cooling a laser device placed on a heat transfer member,
    At least one heat absorbing member in which heat from the laser device is disposed in a heat absorbing space formed adjacent to the heat transfer surface via a heat transfer surface of the heat transfer member to which heat generated from the laser device is transmitted. To absorb,
    After stopping the emission of the laser light from the laser device, the at least one heat absorbing member is moved from the heat absorbing space to the heat radiating space,
    Releasing the heat absorbed by the at least one heat absorbing member in the heat dissipation space;
    Laser device cooling method.
  7.  前記レーザ装置からの前記レーザ光の出射を停止させた後、任意の時間Tが経過したときに再度前記レーザ光を出射する場合において、
     前記少なくとも1つの吸熱部材としてn個(nは2以上の整数)の吸熱部材を用意し、
     前記レーザ装置からの前記レーザ光の出射を停止させてから時間Tが経過する前に、前記熱を吸収させた前記吸熱部材を前記吸熱空間から前記放熱空間に移動するとともに、他の吸熱部材を前記伝熱面に接触するように前記吸熱空間に移動する、
    請求項6に記載のレーザ装置の冷却方法。
    In the case of emitting the laser light again when an arbitrary time T has elapsed after stopping the emission of the laser light from the laser device,
    N (n is an integer of 2 or more) endothermic members are prepared as the at least one endothermic member,
    Before the time T elapses after the emission of the laser light from the laser device is stopped, the heat absorbing member that has absorbed the heat is moved from the heat absorbing space to the heat radiating space, and another heat absorbing member is mounted. Move to the endothermic space to contact the heat transfer surface;
    The method for cooling a laser device according to claim 6.
  8.  前記n個の吸熱部材を順番に前記吸熱空間又は前記放熱空間に移動する、請求項7に記載のレーザ装置の冷却方法。 The laser device cooling method according to claim 7, wherein the n heat absorbing members are sequentially moved to the heat absorbing space or the heat radiating space.
  9.  前記レーザ装置からの前記レーザ光の出射を停止させてから時間T/nが経過する以前に、前記n個の吸熱部材のうち最初の吸熱部材を前記吸熱空間から前記放熱空間に移動する、請求項8に記載のレーザ装置の冷却方法。 The first heat-absorbing member among the n heat-absorbing members is moved from the heat-absorbing space to the heat-dissipating space before the time T / n elapses after the emission of the laser light from the laser device is stopped. Item 9. A method for cooling a laser device according to Item 8.
PCT/JP2016/069483 2015-08-07 2016-06-30 Laser system and method for cooling laser device WO2017026194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015156609A JP2017037890A (en) 2015-08-07 2015-08-07 Laser system and laser equipment cooling method
JP2015-156609 2015-08-07

Publications (1)

Publication Number Publication Date
WO2017026194A1 true WO2017026194A1 (en) 2017-02-16

Family

ID=57984506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069483 WO2017026194A1 (en) 2015-08-07 2016-06-30 Laser system and method for cooling laser device

Country Status (2)

Country Link
JP (1) JP2017037890A (en)
WO (1) WO2017026194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809055A (en) * 2017-12-14 2018-03-16 长春理工大学 A kind of high-power semiconductor laser chip welding and assembling method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320190A (en) * 1995-05-26 1996-12-03 Sanyo Electric Co Ltd Heat exchanger
JP2001221529A (en) * 2000-02-09 2001-08-17 Sony Corp Cooling system and electronic apparatus
JP2002329920A (en) * 2001-04-27 2002-11-15 Kyocera Corp Optical module
JP2005300664A (en) * 2004-04-07 2005-10-27 Seiko Epson Corp Light source device and projector using the same, and cooling method for light source device
JP2007227437A (en) * 2006-02-21 2007-09-06 Toyota Central Res & Dev Lab Inc Cooling apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320190A (en) * 1995-05-26 1996-12-03 Sanyo Electric Co Ltd Heat exchanger
JP2001221529A (en) * 2000-02-09 2001-08-17 Sony Corp Cooling system and electronic apparatus
JP2002329920A (en) * 2001-04-27 2002-11-15 Kyocera Corp Optical module
JP2005300664A (en) * 2004-04-07 2005-10-27 Seiko Epson Corp Light source device and projector using the same, and cooling method for light source device
JP2007227437A (en) * 2006-02-21 2007-09-06 Toyota Central Res & Dev Lab Inc Cooling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107809055A (en) * 2017-12-14 2018-03-16 长春理工大学 A kind of high-power semiconductor laser chip welding and assembling method

Also Published As

Publication number Publication date
JP2017037890A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US8576885B2 (en) Optical pump for high power laser
JP6245629B2 (en) In-vehicle ignition system using semiconductor laser pumped solid-state laser device
US6724792B2 (en) Laser diode arrays with replaceable laser diode bars and methods of removing and replacing laser diode bars
JP4877009B2 (en) Optical direct amplifier for WDM optical transmission
JP5753718B2 (en) Optical delivery component and laser device using the same
JPH11195825A (en) Small-sized fiber laser device
JP4835294B2 (en) Laser oscillator
US9312654B2 (en) Optical amplification component and fiber laser device
CN112020802B (en) Optical module unit and laser device
US9337605B2 (en) Optical amplification component and fiber laser device
US7949022B2 (en) Diode pumping of a laser gain medium
JP2007110039A (en) Solid-state laser excitation module
WO2017026194A1 (en) Laser system and method for cooling laser device
JP6265895B2 (en) Optical element module
JPH08116138A (en) Cooling device of semiconductor laser element
JP4014885B2 (en) Excitation light source for Raman
JP6113630B2 (en) Optical amplification component and fiber laser device
JP6579569B2 (en) Solid state laser element
JP2012074603A (en) Optical fiber laser module
JP6246228B2 (en) Optically pumped solid-state laser device having self-arranged pumping optical system and high gain
KR102069245B1 (en) Linearly aligned multiple pumping apparatus for solid-state solid lasers
JP6210732B2 (en) Laser amplifier and laser oscillator
JP6799328B2 (en) Optical fiber holding device and laser oscillator with it
RU2624661C1 (en) Diffractive device
JP2011119342A (en) Laser diode cooling mechanism and laser device equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834891

Country of ref document: EP

Kind code of ref document: A1