WO2017024778A1 - 一种音频调节方法、终端设备及计算机可读存储介质 - Google Patents

一种音频调节方法、终端设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2017024778A1
WO2017024778A1 PCT/CN2016/073052 CN2016073052W WO2017024778A1 WO 2017024778 A1 WO2017024778 A1 WO 2017024778A1 CN 2016073052 W CN2016073052 W CN 2016073052W WO 2017024778 A1 WO2017024778 A1 WO 2017024778A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio
signal
frequency response
adjustment
parameter
Prior art date
Application number
PCT/CN2016/073052
Other languages
English (en)
French (fr)
Inventor
李小棠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017024778A1 publication Critical patent/WO2017024778A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control

Definitions

  • the present invention relates to terminal audio processing technologies in the field of communications, and in particular, to an audio adjustment method, a terminal device, and a computer readable storage medium.
  • the intelligent terminal with voice function mainly uses a sound collection module for user voice collection, and the sound collection module can be a microphone (MIC).
  • the MIC is soldered to the printed circuit board (PCB) of the smart terminal and connected to the sound hole through the adapter device through the switching device; the switching device between the MIC and the structure member into the sound hole is sealed by the assembly process.
  • PCB printed circuit board
  • the sealing between the MIC and the structure member into the sound hole may be poor, and the sound transmission leakage may occur; or, if the structural member is sounded
  • the sound transmission path of the sound transmission path caused by the blockage of the sound hole is increased; or the performance of the MIC itself is deviated after a period of use. All of these situations will cause a difference in the frequency response when the MIC collects speech, which in turn leads to a decrease in the speech recognition effect, which brings a very poor experience to the user.
  • the embodiments of the present invention provide an audio adjustment method and a terminal device, which can solve at least the above problems in the prior art.
  • the embodiment of the invention provides an audio adjustment method, which is applied to a terminal device, and the method includes:
  • the at least two audio acquisition signals of the audio reference signal are respectively processed according to the at least two audio processing channels, to obtain frequency response parameters corresponding to the at least two audio acquisition signals;
  • the adjustment parameters for the at least two audio processing channels are determined based on the frequency response parameters corresponding to the at least two audio acquisition signals and the reference frequency response curve.
  • the embodiment of the invention further provides a terminal device, including:
  • An audio output module for controlling an output audio reference signal
  • An audio collection module configured to collect the audio reference signal to obtain at least two acquisition signals of the audio reference signal
  • the audio processing module is configured to process the at least two audio acquisition signals of the audio reference signal based on the at least two audio processing channels to obtain frequency response parameters corresponding to the at least two audio acquisition signals;
  • the adjusting module is configured to determine adjustment parameters for the at least two audio processing channels based on the frequency response parameters corresponding to the at least two audio acquisition signals and the reference frequency response curve.
  • the audio adjustment method and the terminal device provided by the invention output audio reference signal, and then the audio collection module performs audio collection on the audio reference signal, and compares the obtained audio acquisition signal with the frequency response curve of the audio reference signal to obtain an adjustment. Parameters, gain adjustment of the audio acquisition module according to the adjustment parameters. In this way, the consistency of the frequency response can be maintained, thereby preventing the voice recognition effect from being lowered, so that the audio collection avoids the frequency response difference and ensures the success rate of the voice recognition.
  • Multi-channel sound collection and corresponding audio adjustment methods can solve the above problems, maintain consistency before and after the frequency response, and prevent the speech recognition effect from being reduced.
  • FIG. 1 is a schematic flow chart of an audio adjustment method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram 1 of a frequency response curve of a frequency response curve and an audio acquisition signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of adjustment of an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram 1 of a terminal device according to an embodiment of the present invention.
  • FIG. 5 is a second schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of operations based on each module according to an embodiment of the present invention.
  • FIG. 7 is a third schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • An embodiment of the present invention provides an audio adjustment method, as shown in FIG. 1 , including:
  • Step 101 Control output audio reference signal
  • Step 102 Collect the audio reference signal to obtain at least two acquisition signals of the audio reference signal.
  • Step 103 The at least two audio acquisition signals of the audio reference signal are respectively processed according to the at least two audio processing channels, to obtain frequency response parameters corresponding to the at least two audio acquisition signals;
  • Step 104 Determine adjustment parameters for at least two audio processing channels based on frequency response parameters corresponding to the at least two audio acquisition signals and the reference frequency response curve.
  • the manner in which the audio reference signal is obtained in this embodiment may be the following two types:
  • Method 1 Before the controlling outputting the audio reference signal, the method further includes:
  • the swept sound wave is an audio signal covering at least one frequency point within a preset frequency range.
  • Method 2 Before the controlling outputting the audio reference signal, the method further includes:
  • the reference frequency response curve can be preset, or it can be collected by audio by playing an audio reference signal. Module to get.
  • this embodiment describes two audio collection modules:
  • Collecting the audio reference signal to obtain at least two acquired signals of the audio reference signal including:
  • the determining, according to the frequency response parameter corresponding to the at least two audio acquisition signals and the reference frequency response curve, determining adjustment parameters for the at least two audio processing channels including:
  • the gain difference parameter includes Having a gain difference between the audio acquisition signal and each of the reference frequency response curves;
  • Figure 2 shows a schematic diagram of the frequency response for the above operation.
  • the central processor controls the audio output module to generate a swept sound wave within a preset frequency range.
  • the preset frequency range may be set according to an actual situation, for example, a sweep frequency waveform of a 300 Hz to 3400 Hz voice frequency range, and is played by a speaker device electro-acoustic conversion.
  • Two audio acquisition modules receive the swept sound and convert it into an electrical signal.
  • the A/D conversion is transmitted to the adjustment module, and the first audio collection sub-module and the second audio collection sub-module in the adjustment module are respectively used for gain adjustment of each frequency point of the two sound collection paths;
  • the two channels of digital audio of the adjustment module are transmitted to the audio processing module, and the audio processing module acquires two frequency response curve data (the horizontal coordinate of the frequency response curve is the frequency, and the ordinate is the voltage logarithmic gain), that is, the voltage corresponding to each frequency point.
  • Gain audio processing module calculates and compares two frequency response and reference frequency response. The steps are as follows:
  • the superposition calculation is performed, and according to the sensitivity and gain formula of the audio collection module, the overall frequency response data obtained by the superimposition of the two sweeping sounds picked up by the audio acquisition module can be calculated, and the frequency response data acquired by the two audio acquisition modules is in a certain
  • the frequency sound pressure is n
  • the unit Pa the same sweep sound can be considered that the sound pressure is consistent when the distance between the two audio acquisition modules is relatively close
  • the sensitivity of the two audio acquisition modules is x1, x2, and the unit is V/Pa
  • two The sound pressure of the road sound is converted to voltages of nx1 and nx2, respectively, and the unit is V.
  • dBV 20lg (Vx/1v)
  • the gains of the two audio acquisition modules are 20lg (nx1) and 20lg (nx2) respectively.
  • the superposition calculation has a frequency gain of 20 lg (nx1+nx2), and the gains of the superpositions of the respective frequency points are obtained one by one, and the frequency is the abscissa, and the gain is the ordinate, and the gain lines of the respective frequency points can be superimposed. Frequency response curve.
  • the audio processing module obtains the reference frequency response curve data preset in the memory module through the central processing unit.
  • the microphone frequency characteristic frame requirement is as shown in FIG. 2, and the reference frequency response curve of the preset frequency range 300-3400 Hz is 0 dB horizontal line, that is, each frequency.
  • the relative gain of the point gain and the 1KHz frequency point is 0dB, and the reference frequency response ordinate is the relative value, not the absolute value.
  • the reference frequency response curve data can be set according to the actual situation (such as the actually measured transmission frequency response curve).
  • the actual set frequency response curve data can be referenced to 1KHz. If the 1KHz gain is -10dB, the other frequency gains are set according to the relative gain difference;
  • the overall frequency response curve after the superposition is moved, so that the reference frequency response is consistent with the relative gain of the reference frequency of the overall frequency response after superposition (eg, reference frequency response 1KHz relative gain) -10dB, after the superposition, the overall frequency response is 1KHz gain -5dB, then the overall frequency response will be shifted by 5dB in the ordinate after superposition.
  • the reference frequency response and the relative frequency of the overall frequency response at each frequency point after superposition compare the reference frequency response and the relative frequency of the overall frequency response at each frequency point after superposition. The gain difference is obtained by adjusting the gain of each frequency point of the overall frequency response after superposition. As shown in Fig.
  • the reference frequency response curve is a horizontal horizontal line with a frequency range of 300-3400 Hz and a relative gain of -10 dB
  • the superimposed post-frequency response curve is at a 1 KHz gain- 5dB, gain -7dB at 300Hz
  • the entire frequency response curve is shifted down by 5dB
  • the superimposed frequency response curve becomes -10dB at 1KHz, -12dB at 300Hz, and coincides with the reference frequency response curve at 1KHz at the reference frequency.
  • the two frequency responses are respectively compared with the reference frequency response, and the relative gain difference of each frequency point of the two frequency response and the reference frequency response is obtained.
  • the gains that need to be adjusted for each frequency point of the two frequency response are allocated.
  • the principle of adjustment is to minimize the increase in noise or the distortion caused by excessive gain when changing the frequency response gain of a certain channel.
  • the reference frequency point is 800 Hz
  • the relative frequency difference between the two frequency response and the reference frequency 800 Hz frequency is compared with a preset value (for example, 6 dB).
  • the first is that the two-channel frequency response and the reference frequency response 800 Hz frequency point relative gain difference are not more than 6 dB; the second is that the two-way frequency response and the reference frequency response 800 Hz frequency point relative gain difference are greater than 6 dB; One of the frequency response and the reference frequency response 800Hz frequency point relative gain difference is greater than 6dB, and the other frequency response and the reference frequency response 800Hz frequency point relative gain difference is less than 6dB.
  • the first type and the second case correspond to the first adjustment mode, specifically: calculating according to the first step
  • the gain of the overall frequency response 800 Hz frequency point needs to be adjusted to be allocated to the two frequency response 800 Hz frequency points.
  • the gain of the two frequency frequencies is 20 lg (nx1) and 20 lg (nx2) respectively, and the frequency is superimposed.
  • the gain is 20lg (nx1+nx2), and the relative gain difference of the reference frequency response is y dB at the frequency.
  • the two frequency response needs to be adjusted by y dB at the frequency gain.
  • the second adjustment mode is corresponding. Specifically, if the relative gain of the overall frequency response 800 Hz frequency point is lower than the relative gain of the reference frequency response 800 Hz frequency point, the overall frequency response 800 Hz frequency point needs to be adjusted after superposition.
  • the gain is allocated to the frequency response 800Hz frequency point with a reference frequency response difference of less than 6dB. If the relative gain of the overall frequency response 800Hz frequency point is higher than the relative gain of the reference frequency response 800Hz frequency point, the overall value will be superimposed.
  • the gain of the 800 Hz frequency point needs to be adjusted to the frequency of 800 Hz with the reference frequency response difference greater than 6 dB.
  • the two frequency responses are 20 lg (nx1) and 20 lg (nx2) respectively. After the frequency gain is 20lg (nx1+nx2), and the relative frequency difference of the reference frequency response is y dB, the frequency gain needs to be adjusted to
  • the first frequency response needs to be adjusted to a dB of the frequency gain, that is, the frequency response of the frequency response is adjusted to 20 lg [nx1*10 ⁇ (a/20)], and the frequency of the two frequencies is superimposed after adjusting the gain.
  • Gain is
  • the gain a dB that needs to be adjusted when adjusting the frequency response gain can be calculated.
  • the audio processing module calculates the gain that needs to be adjusted for each frequency point of the two-channel frequency response through the above steps, and transmits the gain to the adjustment module, and adjusts the gain of each frequency point in the channel 1 and channel 2 of the adjustment module to complete the two-channel frequency response adjustment, so that two The final superimposed frequency response of the road sound collection path is consistent with the preset reference frequency response.
  • An embodiment of the present invention provides an audio adjustment method, as shown in FIG. 1 , including:
  • Step 101 Control output audio reference signal
  • Step 102 Collect the audio reference signal to obtain at least two acquisition signals of the audio reference signal.
  • Step 103 The at least two audio acquisition signals of the audio reference signal are respectively processed according to the at least two audio processing channels, to obtain frequency response parameters corresponding to the at least two audio acquisition signals;
  • Step 104 Determine adjustment parameters for at least two audio processing channels based on frequency response parameters corresponding to the at least two audio acquisition signals and the reference frequency response curve.
  • the manner in which the audio reference signal is obtained in this embodiment may be the following two types:
  • Method 1 Before the controlling outputting the audio reference signal, the method further comprises: setting a frequency-swept sound wave in the preset frequency range as an audio reference signal.
  • the second method before the controlling outputting the audio reference signal, the method further includes: collecting voice information, using the voice information as the audio reference signal;
  • the sweeping sound can be replaced with the user's voice.
  • the user turns on the recording function, and the user is allowed to take a voice, and the voice of the segment is obtained as a reference frequency response.
  • the frequency response can be turned on.
  • the adjustment function, the plurality of audio collection modules acquire the same segment of speech of the user, and adjust the frequency response of each sound collection channel according to the above process, so that the overall frequency response after the final superposition is consistent with the reference frequency response.
  • the operation scenario provided in this embodiment may include three audio collection modules, including:
  • the obtaining at least two audio acquisition signals includes:
  • Determining the adjustment parameter based on the at least two audio processing signals and the reference frequency response curve corresponding to the audio reference signal including:
  • the gain difference parameter includes a gain difference between each of the audio collection signal and the reference frequency response curve
  • Determining an adjustment manner based on a gain difference parameter of each of the audio collection signals including:
  • the adjustment mode is the first adjustment mode
  • the method for allocating the frequency response gains is as follows: taking the reference frequency point as the selected frequency point as an example, comparing the relative gain difference between the three-way frequency response and the reference frequency response to the preset value (for example, 6 dB) There are four cases. The first one is that the three-way frequency response and the reference frequency response have a relative gain difference of not more than 6 dB. The second is that the three-way frequency response and the reference frequency response are different in the relative gain difference.
  • the third is that the frequency difference between the frequency response and the reference frequency response is greater than 6dB, and the difference between the other two frequency response and the reference frequency response is less than 6dB; the fourth is one of the frequency The relative gain difference between the frequency and the reference frequency response is less than 6 dB, and the difference between the other two frequency response and the reference frequency response is greater than 6 dB.
  • the gain that needs to be adjusted after the superposition is superimposed is allocated to the frequency of the three-way frequency response, that is, the three-way frequency response is 20lg (nx1) at the frequency point respectively.
  • the three-way frequency response is 20lg (nx1) at the frequency point respectively.
  • the frequency gain is 20lg (nx1+nx2+nx3) after superposition, and the relative gain difference of the reference frequency response is y dB at the frequency point, then the three-way frequency response is The frequency gain needs to be adjusted by y dB;
  • the overall frequency response of the frequency after the superposition is adjusted to the reference frequency response.
  • the two frequencies whose difference is less than 6dB are the frequency. If the relative gain of the frequency is higher than the relative gain of the reference frequency, the overall frequency response will be adjusted after superposition.
  • the gain is allocated to the two frequency response frequencies with a reference frequency response difference greater than 6 dB, and the three-way frequency response is 20 lg (nx1), 20 lg (nx2), 20 lg (nx3), respectively.
  • the frequency gain is 20lg (nx1+nx2+nx3), and the relative gain difference of the reference frequency response at the frequency point is y dB, then the frequency gain needs to be adjusted to
  • the formula (1) is equal to the formula (2), it can be calculated that the two channels of frequency response superimpose the gain a dB of the frequency point to be adjusted, and the two-band frequency response needs to be adjusted by a dB.
  • the overall frequency response of the frequency after the superposition is adjusted to the reference frequency response
  • the frequency difference of less than 6dB is the frequency
  • the three-way frequency response is 20lg (nx1), 20lg (nx2), and 20lg (nx3) respectively.
  • the gain of the frequency is 20lg (nx1+). Nx2+nx3), and the relative frequency difference of the reference frequency response at the frequency point is y dB, then the frequency gain of the frequency point needs to be adjusted to
  • a dB of one frequency response that is, the frequency response of the frequency response is adjusted to 20 lg[nx1*10 ⁇ (a/20)], and the frequency of the three frequencies is adjusted after adjusting the gain.
  • Superimposed gain is
  • the gain a dB that the frequency response needs to be adjusted for the frequency point can be calculated.
  • the gain of the overall frequency response after the superposition is adjusted to be greater than the reference frequency difference of more than 6 dB.
  • the two-way frequency response is the frequency point, and the three-way frequency response is 20lg in the frequency point respectively. (nx1), 20lg(nx2), 20lg(nx3), the frequency gain is 20lg (nx1+nx2+nx3) after superposition, and the relative gain difference of the reference frequency response is y dB at the frequency point, then the superimposed The frequency gain needs to be adjusted to be adjusted to
  • the formula (1) is equal to the formula (2), it can be calculated that the two channels of frequency response superimpose the gain a dB of the frequency point to be adjusted, and the two-band frequency response needs to be adjusted by a dB.
  • the existing single MIC voice terminal is poorly assembled or inadvertently dropped during the user's use, causing poor sealing between the MIC and the sound input hole of the structural member, and sound leakage occurs; or the structural member enters the sound hole and enters the foreign matter to block the sound transmission path sound.
  • the increase in resistance, as well as the performance deviation of the MIC itself after a period of use, will cause a difference in the frequency response of the MIC acquisition voice, resulting in a decrease in the success rate of the user's speech recognition.
  • the invention can output audio reference signal, and then the audio collection module performs audio collection on the audio reference signal, compares the obtained audio acquisition signal with the frequency response curve of the audio reference signal, and obtains an adjustment parameter, and the audio collection module is adjusted according to the adjustment parameter. Make a gain adjustment. In this way, the consistency of the frequency response can be maintained, thereby preventing the voice recognition effect from being lowered, so that the audio collection avoids the frequency response difference and ensures the success rate of the voice recognition.
  • Multi-channel sound collection and corresponding audio adjustment methods can solve the above problems, maintain consistency before and after the frequency response, and prevent the speech recognition effect from being reduced.
  • An embodiment of the present invention provides a terminal device, as shown in FIG. 4, including:
  • An audio output module 41 configured to control an output audio reference signal
  • the audio collection module 42 is configured to collect the audio reference signal to obtain at least two acquisition signals of the audio reference signal;
  • the audio processing module 43 is configured to process the at least two audio acquisition signals of the audio reference signal based on the at least two audio processing channels to obtain frequency response parameters corresponding to the at least two audio collection signals;
  • the adjusting module 44 is configured to determine adjustment parameters for the at least two audio processing channels based on the frequency response parameters corresponding to the at least two audio acquisition signals and the reference frequency response curve.
  • the manner in which the audio reference signal is obtained in this embodiment may be the following two types:
  • the first terminal device further includes: a central processing unit 46, configured to control the storage module and the audio processing module; and a storage module 45, configured to save the frequency-swept sound wave in the preset frequency range as an audio reference signal.
  • the audio collection module 42 is further configured to collect voice information, and use the voice information as the audio reference signal.
  • the audio processing module 43 is further configured to acquire a reference frequency response curve corresponding to the audio reference signal.
  • this embodiment describes two audio collection modules:
  • the audio collection module 42 includes:
  • the first audio collection sub-module 421 is configured to perform audio collection on the audio reference signal to obtain a first audio collection signal.
  • the second audio collection sub-module 422 is configured to perform audio collection on the audio reference signal to obtain a second audio collection signal.
  • the audio processing module 43 is specifically configured to superimpose the first audio processing signal and the second audio processing signal to obtain a total audio collection signal and a corresponding frequency response parameter thereof; and based on the total audio collection signal and corresponding a frequency response parameter and the reference frequency response curve, obtaining a first adjustment parameter, where the first adjustment parameter includes the total audio collection signal a gain adjustment value corresponding to all frequency points; based on a frequency response parameter of the first audio processing signal, a frequency response parameter of the second audio processing signal, and a reference frequency response curve, respectively acquiring gain difference parameters of each of the audio acquisition signals; And the gain difference parameter includes a gain difference value of each frequency point of the audio collection signal and the reference frequency response curve; determining an adjustment manner based on a gain difference parameter of each of the audio collection signals; Determining the adjustment mode and the first adjustment parameter to determine adjustment parameters of the audio processing channel for the first audio collection sub-module and the second audio collection sub-module.
  • Figure 2 shows a schematic diagram of the frequency response for the above operation.
  • the central processor controls the audio output module to generate a swept sound wave within a preset frequency range.
  • the preset frequency range may be set according to an actual situation, for example, a sweep frequency waveform of a 300 Hz to 3400 Hz voice frequency range, and is played by a speaker device electro-acoustic conversion.
  • Two audio acquisition modules receive the sweeping sound, convert it into an electrical signal, and then transmit it to the adjustment module through A/D conversion, and adjust the first audio collection sub-module and the second audio collection sub-module in the module, respectively.
  • the two channels of digital audio of the adjustment module are transmitted to the audio processing module, and the audio processing module acquires two frequency response curve data (the horizontal coordinate of the frequency response curve is the frequency, and the ordinate is the voltage logarithmic gain), that is, the voltage corresponding to each frequency point.
  • Gain audio processing module calculates and compares two frequency response and reference frequency response. The steps are as follows:
  • the superposition calculation is performed, and according to the sensitivity and gain formula of the audio collection module, the overall frequency response data obtained by the superimposition of the two sweeping sounds picked up by the audio acquisition module can be calculated, and the frequency response data acquired by the two audio acquisition modules is in a certain
  • the frequency sound pressure is n
  • the unit Pa the same sweep sound can be considered that the sound pressure is consistent when the distance between the two audio acquisition modules is relatively close
  • the sensitivity of the two audio acquisition modules is x1, x2, and the unit is V/Pa
  • two The sound pressure of the road sound is converted to voltages of nx1 and nx2, respectively, and the unit is V.
  • dBV 20lg (Vx/1v)
  • the gains of the two audio acquisition modules are 20lg (nx1) and 20lg (nx2) respectively.
  • superimposing the frequency gain to 20lg (nx1+nx2) the gain of each frequency point is obtained by frequency-by-frequency calculation.
  • the frequency is the abscissa and the gain is the ordinate.
  • the frequency gain curve of each frequency point can be obtained.
  • the audio processing module obtains the reference frequency response curve data preset in the memory module through the central processing unit.
  • the microphone frequency characteristic frame requirement is as shown in FIG. 2, and the reference frequency response curve of the preset frequency range 300-3400 Hz is 0 dB horizontal line, that is, each frequency.
  • the relative gain of the point gain and the 1KHz frequency point is 0dB, and the reference frequency response ordinate is the relative value, not the absolute value.
  • the reference frequency response curve data can be set according to the actual situation (such as the actual measured transmission frequency response curve). Set the frequency response curve data to be 1KHz as the reference. If the 1KHz gain is -10dB, the other frequency gains are set according to the relative gain difference;
  • the overall frequency response curve after the superposition is moved, so that the reference frequency response is consistent with the relative gain of the reference frequency of the overall frequency response after superposition (eg, reference frequency response 1KHz relative gain) -10dB, after the superposition, the overall frequency response is 1KHz gain -5dB, then the overall frequency response will be shifted by 5dB in the ordinate after superposition.
  • the reference frequency response and the relative frequency of the overall frequency response at each frequency point after superposition compare the reference frequency response and the relative frequency of the overall frequency response at each frequency point after superposition. The gain difference is obtained by adjusting the gain of each frequency point of the overall frequency response after superposition. As shown in Fig.
  • the reference frequency response curve is a horizontal horizontal line with a frequency range of 300-3400 Hz and a relative gain of -10 dB
  • the superimposed post-frequency response curve is at a 1 KHz gain- 5dB, gain -7dB at 300Hz
  • the entire frequency response curve is shifted down by 5dB
  • the superimposed frequency response curve becomes -10dB at 1KHz, -12dB at 300Hz, and coincides with the reference frequency response curve at 1KHz at the reference frequency.
  • the two frequency responses are respectively compared with the reference frequency response, and the relative gain difference of each frequency point of the two frequency response and the reference frequency response is obtained.
  • the gains that need to be adjusted for each frequency point of the two frequency response are allocated.
  • the principle of adjustment is to minimize the increase in noise or the distortion caused by excessive gain when changing the frequency response gain of a certain channel.
  • the reference frequency point is 800 Hz
  • the relative frequency difference between the two frequency response and the reference frequency 800 Hz frequency is compared with a preset value (for example, 6 dB).
  • the first is that the two-channel frequency response and the reference frequency response 800 Hz frequency point relative gain difference are not more than 6 dB; the second is that the two-way frequency response and the reference frequency response 800 Hz frequency point relative gain difference are greater than 6 dB; One of the frequency response and the reference frequency response 800Hz frequency point relative gain difference is greater than 6dB, and the other frequency response and the reference frequency response 800Hz frequency point relative gain difference is less than 6dB.
  • the first type and the second case correspond to the first adjustment mode, specifically: according to the first calculation result, the gain to be adjusted after the superposition of the overall frequency response 800 Hz frequency point is allocated to the two frequency response 800 Hz frequency points, and the two frequency response
  • the gain at the frequency point is 20 lg (nx1) and 20 lg (nx2) respectively.
  • the gain of the frequency point is 20 lg (nx1+nx2)
  • the relative gain of the reference frequency response at the frequency point is y dB
  • the two paths are The frequency response needs to be adjusted by y dB at this frequency gain.
  • the second adjustment mode is corresponding. Specifically, if the relative gain of the overall frequency response 800 Hz frequency point is lower than the relative gain of the reference frequency response 800 Hz frequency point, the overall frequency response 800 Hz frequency point needs to be adjusted after superposition.
  • the gain is allocated to the frequency response 800Hz frequency point with a reference frequency response difference of less than 6dB. If the relative gain of the overall frequency response 800Hz frequency point is higher than the relative gain of the reference frequency response 800Hz frequency point, the overall value will be superimposed.
  • the gain of the 800 Hz frequency point needs to be adjusted to the frequency of 800 Hz with the reference frequency response difference greater than 6 dB.
  • the two frequency responses are 20 lg (nx1) and 20 lg (nx2) respectively. After the frequency gain is 20lg (nx1+nx2), and the relative frequency difference of the reference frequency response is y dB, the frequency gain needs to be adjusted to
  • the first frequency response needs to be adjusted to a dB of the frequency gain, that is, the frequency response of the frequency response is adjusted to 20 lg [nx1*10 ⁇ (a/20)], and the frequency of the two frequencies is superimposed after adjusting the gain.
  • Gain is
  • the gain a dB that needs to be adjusted when adjusting the frequency response gain can be calculated.
  • the audio processing module calculates the gain that needs to be adjusted for each frequency point of the two-channel frequency response through the above steps, and transmits the gain to the adjustment module, and adjusts the gain of each frequency point in the channel 1 and channel 2 of the adjustment module to complete the two-channel frequency response adjustment, so that two The final superimposed frequency response of the road sound collection path is consistent with the preset reference frequency response.
  • the specific block diagram of the terminal device shown in the embodiment of the present invention may include: the audio collection module 51 is configured to collect an external sound;
  • the adjustment module 52 is configured to adjust the sound and sound response and the loudness gain obtained by each audio collection submodule in the audio collection module;
  • the audio processing module 53 is configured to perform calculation processing on the sound and audio sounds acquired by each audio collection module, compare the preset frequency responses, and obtain adjustment parameters, which are transmitted to the adjustment module for frequency response and loudness gain of each audio collection module. Adjustment;
  • the storage module 54 is configured to preset reference frequency response data
  • the audio output module 55 is configured to generate a swept sound within a preset frequency range; preferably, the audio output module 55 may include a speaker device 551; wherein the speaker device is configured to play the swept sound generated by the audio output module.
  • the embodiment may further provide a central processing unit 56 for control management of each module;
  • the audio collection module includes a first audio collection sub-module 511 and a second audio collection sub-module 512.
  • the upper side is preferentially located on the same side, such as the bottom of the mobile intelligent terminal. Try to avoid two audio collection modules distributed on both sides of the terminal, such as the top and bottom, so as not to affect the implementation effect;
  • Adjustment module adjusting the sound and sound of the two audio acquisition modules
  • the audio processing module performs calculation processing on the sound and audio sounds obtained by each audio collecting module, compares with the preset frequency response, and obtains adjusting parameters, which are transmitted to the adjusting module for frequency response gain adjustment of each audio collecting module;
  • Central processor used for control management of each module
  • Memory module used to preset reference frequency response data
  • Audio output module used to generate sweeping sounds in the preset frequency range, such as sweeping sounds with a normal frequency range of 300Hz-3400Hz; speaker device: electroacoustic conversion, used to play the sweeping sound generated by the audio output module.
  • this embodiment further describes the process of each module when performing an operation, as shown in FIG. 6:
  • Step 61 The central processor controls the audio output module to output an audio reference signal.
  • Step 62 The audio output module controls its own speaker device to sound
  • Step 63 The audio collection module collects an audio reference signal, and sends the collected signal to the audio processing module through the adjustment module.
  • Step 64 After the audio processing module acquires the audio collection signal, the audio collection signals are superimposed to obtain a total audio collection signal.
  • Step 65 It is determined whether the gain of each frequency point of the audio collection signal is consistent with the reference frequency response curve. If they are consistent, the processing flow ends; otherwise, step 66 is performed;
  • Step 66 Based on the total audio acquisition signal, each audio acquisition signal, and the reference frequency response Line, determine the adjustment parameters;
  • Step 67 Based on the adjustment parameters, the control adjustment unit adjusts for each audio collection channel.
  • the embodiment is further capable of providing an audio collection module 72 including a plurality of audio collection sub-modules, including:
  • the first audio collection sub-module 721 is configured to perform audio collection on the audio reference signal to obtain a first audio collection signal.
  • a second audio collection sub-module 722 configured to perform audio collection on the audio reference signal to obtain a second audio collection signal
  • the third audio collection sub-module 723 is configured to perform audio collection on the audio reference signal to obtain a third audio collection signal.
  • the audio processing module is specifically configured to superimpose the first audio collection signal, the second audio collection signal, and the third audio collection signal to obtain a total audio collection signal; and based on the total audio collection signal and the Referring to the reference frequency response curve, the first adjustment parameter is obtained, where the first adjustment parameter includes a gain adjustment value corresponding to all frequency points in the total audio collection signal; based on the first audio collection signal and the second audio collection signal And a third audio acquisition signal and a reference frequency response curve respectively, respectively obtaining a gain difference parameter of each audio acquisition signal; wherein the gain difference parameter includes each of an audio acquisition signal and the reference frequency response curve a gain difference of the frequency points; determining an adjustment mode based on the gain difference parameter of each of the audio collection signals; determining adjustment parameters for the three audio collection modules based on the adjustment mode and the first adjustment parameter .
  • the audio processing module is specifically configured to determine, according to the gain difference parameter of each audio collection signal, that a gain difference of a reference frequency point of each audio collection signal is greater than a preset threshold, or neither If the threshold is greater than the preset threshold, the adjustment mode is determined as the first adjustment mode; if the gain difference parameter of each audio acquisition signal is determined, only one sound is determined. If the gain difference of the reference frequency of the frequency acquisition signal is greater than the preset threshold, the adjustment mode is determined to be the second adjustment mode; if the gain difference parameter of each audio acquisition signal is determined, only one audio acquisition signal is determined. If the gain difference of the reference frequency point is less than the preset threshold, it is determined that the adjustment mode is the third adjustment mode.
  • the method for allocating the frequency response gains is as follows: taking the reference frequency point as the selected frequency point as an example, comparing the relative gain difference between the three-way frequency response and the reference frequency response to the preset value (for example, 6 dB) There are four cases. The first one is that the three-way frequency response and the reference frequency response have a relative gain difference of not more than 6 dB. The second is that the three-way frequency response and the reference frequency response are different in the relative gain difference.
  • the third is that the frequency difference between the frequency response and the reference frequency response is greater than 6dB, and the difference between the other two frequency response and the reference frequency response is less than 6dB; the fourth is one of the frequency The relative gain difference between the frequency and the reference frequency response is less than 6 dB, and the difference between the other two frequency response and the reference frequency response is greater than 6 dB.
  • the first adjustment mode the first and second cases are based on the calculation result of the first step, and the gain that needs to be adjusted after the superposition is superimposed is allocated to the three-way frequency response frequency, that is, the three-way frequency response is respectively at the frequency point gain 20lg(nx1), 20lg(nx2), 20lg(nx3), the frequency gain is 20lg (nx1+nx2+nx3) after superposition, and the relative gain difference of the reference frequency response at the frequency point is y dB, then three The frequency response of the frequency response needs to be adjusted by y dB;
  • the second adjustment mode in the third case, if the relative frequency of the frequency point of the overall frequency response is lower than the relative gain of the frequency point of the reference frequency response after superimposition, the overall frequency response will be adjusted to the gain distribution of the frequency point.
  • the frequency of the two channels with the reference frequency response difference of less than 6 dB is given. If the relative frequency of the frequency is higher than the relative gain of the frequency of the reference frequency response, the overall frequency response will be superimposed.
  • the gain that needs to be adjusted at the frequency point is allocated to the two frequency response frequencies whose reference frequency response difference is greater than 6 dB, and the three-way frequency response is 20 lg (nx1), 20 lg (nx2), 20 lg ( Nx3), after the superposition, the gain of the frequency point is 20lg (nx1+nx2+nx3), and the relative gain difference of the reference frequency response at the frequency point is y dB, then the frequency gain of the frequency point needs to be adjusted to
  • the formula (1) is equal to the formula (2), it can be calculated that the two channels of frequency response superimpose the gain a dB of the frequency point to be adjusted, and the two-band frequency response needs to be adjusted by a dB.
  • the third adjustment mode is: in the fourth case, if the relative gain of the frequency point of the overall frequency response is lower than the relative gain of the frequency point of the reference frequency response after superimposition, the overall frequency response of the superimposed frequency band needs to be adjusted after superposition.
  • the gain is allocated to the frequency response which is less than 6dB from the reference frequency response, and the gain of the three-way frequency response is 20lg (nx1), 20lg (nx2), 20lg (nx3) respectively, and the frequency is superimposed.
  • the point gain is 20lg (nx1+nx2+nx3), and the relative gain difference of the reference frequency response is y dB at the frequency point. After superposition, the frequency gain needs to be adjusted to
  • a dB of one frequency response that is, the frequency response of the frequency response is adjusted to 20 lg[nx1*10 ⁇ (a/20)], and the frequency of the three frequencies is adjusted after adjusting the gain.
  • Superimposed gain is
  • the gain a dB that the frequency response needs to be adjusted for the frequency point can be calculated.
  • the gain of the overall frequency response after the superposition is adjusted to be greater than the reference frequency difference of more than 6 dB.
  • the frequency of the two channels is the frequency, and the gain of the three channels is 20lg (nx1), 20lg (nx2), and 20lg (nx3) respectively.
  • the gain of the frequency is 20lg (nx1+nx2+nx3).
  • the reference frequency response has a relative gain difference of y dB at the frequency point, and the frequency gain is required after superposition tweak to
  • the formula (1) is equal to the formula (2), it can be calculated that the two channels of frequency response superimpose the gain a dB of the frequency point to be adjusted, and the two-band frequency response needs to be adjusted by a dB.
  • the audio reference signal can be output, and then the audio collection module performs audio collection on the audio reference signal, and the obtained audio acquisition signal is compared with the frequency response curve of the audio reference signal to obtain an adjustment parameter, according to Adjust the parameters to adjust the gain of the audio acquisition module.
  • the consistency of the frequency response can be maintained, thereby preventing the voice recognition effect from being reduced, so that the audio collection avoids the difference in frequency response, ensuring the success rate of voice recognition, and further ensuring the user experience.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or modules, and may be electrical, mechanical or other forms. of.
  • the modules described above as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place or distributed to multiple network modules; You can choose which one according to your actual needs. Some or all of the modules implement the objectives of the solution of this embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may be separately used as one module, or two or more modules may be integrated into one module;
  • the module can be implemented in the form of hardware or in the form of hardware plus software function modules.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the embodiment of the invention discloses an audio adjustment method, a terminal device and a computer readable storage medium.
  • the audio collection module After outputting an audio reference signal, the audio collection module performs audio collection on the audio reference signal, and the obtained audio acquisition signal and audio reference signal are obtained.
  • the frequency response curves are compared to obtain adjustment parameters, and the audio acquisition module is adjusted in accordance with the adjustment parameters. In this way, the consistency of the frequency response can be maintained, thereby preventing the voice recognition effect from being lowered, so that the audio collection avoids the frequency response difference and ensures the success rate of the voice recognition.
  • Multi-channel sound collection and corresponding audio adjustment methods can solve the above problems, maintain consistency before and after the frequency response, and prevent the speech recognition effect from being reduced.

Landscapes

  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种音频调节方法、终端设备及计算机可读存储介质,其中方法包括:控制输出音频参考信号(101);对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号(102);基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数(103);基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数(104)。

Description

一种音频调节方法、终端设备及计算机可读存储介质 技术领域
本发明涉及通信领域的终端音频处理技术,尤其涉及一种音频调节方法、终端设备及计算机可读存储介质。
背景技术
目前,含有语音功能的智能终端,主要采用一个声音采集模块进行用户语音的采集,声音采集模块可以为麦克(MIC)。MIC贴焊在智能终端的印刷电路板(PCB)上,并通过转接装置与外壳结构件入音孔连接;MIC与结构件入音孔之间的转接装置由装配工艺来保证密封状态。
但是,在智能终端的使用过程中,如果出现装配不良、或用户使用不当,就会引起MIC与结构件入音孔之间的密封不良,出现声音传递泄漏的情况;或者,如果结构件入音孔进入异物,就会使得入音孔堵塞而造成的声音传输途径声阻增加;或者,MIC本身使用一段时间后性能出现偏差等。以上这些情况,都会引起MIC采集语音时出现频响差异,进而导致语音识别效果降低,给用户带来极差的体验感受。
发明内容
有鉴于此,本发明实施例提供一种音频调节方法及终端设备,能至少解决现有技术中存在的上述问题。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供一种音频调节方法,应用于终端设备,所述方法包括:
控制输出音频参考信号;
对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
本发明实施例还提供一种终端设备,包括:
音频输出模块,用于控制输出音频参考信号;
音频采集模块,用于对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
音频处理模块,用于基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
调整模块,用于基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
本发明所提供的音频调节方法及终端设备,通过输出音频参考信号,再由音频采集模块对音频参考信号进行音频采集,将得到的音频采集信号与音频参考信号的频响曲线进行对比,得到调整参数,根据调整参数对音频采集模块进行增益调整。如此,能够维持频响使用前后一致性,从而防止语音识别效果降低,使得音频采集避免频响差异,保证语音识别的成功率。多路声音采集及相应音频调节方法能解决上述问题,维持频响使用前后一致性,防止语音识别效果降低。
附图说明
图1为本发明实施例音频调节方法流程示意图;
图2为本发明实施例频响曲线与音频采集信号频点增益示意图一;
图3为本发明实施例调整示意图;
图4为本发明实施例终端设备组成结构示意图一;
图5为本发明实施例终端设备组成结构示意图二;
图6为本发明实施例基于各个模块的操作示意图;
图7为本发明实施例终端设备组成结构示意图三。
具体实施方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
实施例一、
本发明实施例提供了一种音频调节方法,如图1所示,包括:
步骤101:控制输出音频参考信号;
步骤102:对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
步骤103:基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
步骤104:基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
优选地,本实施例中所述音频参考信号的获取方式可以有以下两种:
方式一、所述控制输出音频参考信号之前,所述方法还包括:
设置预设频率范围内的扫频声波作为音频参考信号。其中,所述扫频声波为在预设频率范围内的覆盖至少一个频点的音频信号。
方式二、所述控制输出音频参考信号之前,所述方法还包括:
采集到语音信息,将所述语音信息作为所述音频参考信号;
获取到所述音频参考信号对应的参考频响曲线。
参考频响曲线可以预置,也可以通过播放音频参考信号由音频采集 模块来获取。
基于上述场景,本实施例针对两个音频采集模块进行描述:
所述对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号,包括:
通过第一音频采集子模块以及第二音频采集子模块对所述音频参考信号进行音频采集,得到第一音频采集信号以及第二音频采集信号。
其中,所述基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数,包括:
将所述第一音频处理信号以及第二音频处理信号进行叠加,得到总音频采集信号及其对应的频响参数;
基于所述总音频采集信号及其对应的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;
基于第一音频处理信号的频响参数、第二音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;
基于所述每一路音频采集信号的增益差值参数,确定调整方式;
基于所述调整方式以及所述第一调整参数,确定针对所述第一音频采集子模块以及第二音频采集子模块的音频处理通道的调整参数。
图2给出了针对上述操作的频响示意图,通过中央处理器控制音频输出模块生成预设频率范围内的扫频声波。其中,所述预设频率范围可以为根据实际情况进行设置,比如300Hz—3400Hz语音频率范围的扫频声波形,经扬声器装置电声转换进行播放。
两个音频采集模块(以MIC为例)接收扫频声,转换为电信号后经 A/D转换传送给调整模块,调整模块内第一音频采集子模块和第二音频采集子模块,分别用于两个声音采集通路的各频点增益调整;
经调整模块的两路数字音频传送给音频处理模块,音频处理模块获取两路频响曲线数据(频响曲线图横坐标为频率,纵坐标为电压对数增益),即各频点对应的电压增益,音频处理模块对两路频响及参考频响进行计算及比较处理。其步骤如下:
第一步,进行叠加计算,根据音频采集模块灵敏度及增益公式可以计算获取音频采集模块拾取的两路扫频声叠加后的整体频响数据,两路音频采集模块获取的频响数据在某一频点声压为n,单位Pa(同一扫频声在两路音频采集模块距离较近时可认为声压一致),两路音频采集模块灵敏度分别为x1、x2,单位为V/Pa,两路声音采集该频点的声压转换为电压分别为nx1、nx2,单位V,根据增益公式dBV=20lg(Vx/1v),两路音频采集模块增益分别为20lg(nx1)、20lg(nx2),叠加计算该频点增益为20lg(nx1+nx2),逐一频点计算获得各个频点叠加后的增益,以频率为横坐标,以增益为纵坐标,各频点增益连线可得到叠加后的频率响应曲线图。以某频点为例,若两路音频采集模块声压转换为电压后结果一致,即nx1=nx2,则叠加计算后增益20lg(nx1+nx2)=20lg2+20lg(nx1)=6+20lg(nx1),即叠加后增益增加6dB,如果两个音频采集模块获取的整个频率范围内频响数据一致,则叠加后频响曲线形状不变,只是各频点增益都增加6dB;
音频处理模块通过中央处理器获取存储器模块内预置的参考频响曲线数据,通常麦克风频率特性框限要求如图2,可以预设频率范围300-3400Hz参考频响曲线为0dB水平线,即各频点增益与1KHz频点相对增益为0dB,参考频响纵坐标是相对值,不是绝对值,当然,参考频响曲线数据可以根据实际情况(如实际测得的发送频响曲线)进行设置, 实际设置频响曲线数据可以1KHz为基准,如设1KHz增益为-10dB,则其他频点增益根据相对增益差值进行设置;
以参考频响某一频点相对增益为基准(如1KHz),移动叠加后整体频响曲线,使参考频响和叠加后整体频响的基准频点相对增益一致(如参考频响1KHz相对增益-10dB,叠加后整体频响1KHz增益-5dB,则将叠加后整体频响各频点在纵坐标下移5dB),进一步,比较参考频响和叠加后整体频响在各个频点上的相对增益差值,获得叠加后整体频响各频点需要调整的增益,如图3,参考频响曲线为频率范围300-3400Hz相对增益-10dB的水平横线,叠加后频响曲线在1KHz增益-5dB,300Hz处增益-7dB,将整个频响曲线下移5dB,则叠加后频响曲线在1KHz增益变为-10dB,300Hz处增益-12dB,与参考频响曲线在基准频点1KHz处重合,300Hz处叠加频响曲线与参考频响曲线相对增益差值为-12dB-(-10dB)=-2dB,即叠加后频响在300Hz需要增加2dB。
第二步,按上述参考频响和叠加后整体频响比较方法,将两路频响分别与参考频响作比较,获取两路频响与参考频响各频点相对增益差值。
第三步,根据上述两个步骤计算结果,分配两路频响各频点需要调整的增益。调整原则是改变某一路频响增益时尽量减少噪声的提升或过大增益引起的失真等等。
本实施例中,假设参考频点为800Hz频点,两路频响与参考频点800Hz频点相对增益差值与预设值(如6dB)比较有三种情况:
第一种是两路频响与参考频响800Hz频点相对增益差值均不大于6dB;第二种是两路频响与参考频响800Hz频点相对增益差值均大于6dB;第三种是其中一路频响与参考频响800Hz频点相对增益差值大于6dB,另一路频响与参考频响800Hz频点相对增益差值小于6dB。
第一种和第二种情况对应第一调整方式,具体为:根据第一步计算 结果将叠加后整体频响800Hz频点需要调整的增益分配给两路频响800Hz频点,两路频响在该频点增益分别为20lg(nx1)、20lg(nx2),叠加后该频点增益为20lg(nx1+nx2),与参考频响在该频点相对增益差值为y dB,则两路频响在该频点增益均需要调整y dB。
第三种情况下对应第二调整方式,具体为,若叠加后整体频响800Hz频点的相对增益低于参考频响800Hz频点的相对增益,则将叠加后整体频响800Hz频点需要调整的增益分配给与参考频响差值小于6dB的那一路频响800Hz频点,若叠加后整体频响800Hz频点的相对增益高于参考频响800Hz频点的相对增益,则将叠加后整体频响800Hz频点需要调整的增益分配给与参考频响差值大于6dB的那一路频响800Hz频点,两路频响在该频点增益分别为20lg(nx1)、20lg(nx2),叠加后该频点增益为20lg(nx1+nx2),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2)*10^(y/20)]…………(1)
假设需要调整第一路频响该频点增益a dB,即该路频响该频点增益调整为20lg[nx1*10^(a/20)],调整增益后两路频响该频点叠加增益为
20lg[nx1*10^(a/20)+nx2]…………(2)
根据式(1)等于式(2),可以算得调整一路频响增益时需要调整的增益a dB。
音频处理模块经上述步骤计算获取两路频响各频点需要调整的增益,传送给调整模块,对调整模块内通道1、通道2进行各频点增益调整,完成两路频响调节,使两路声音采集通路最终叠加频响与预置的参考频响一致。
可见,通过采用上述方案,就能够通过输出音频参考信号,再由音频采集模块对音频参考信号进行音频采集,将得到的音频采集信号与音 频参考信号的频响曲线进行对比,得到调整参数,根据调整参数对音频采集模块进行增益调整。如此,能够维持频响使用前后一致性,从而防止语音识别效果降低,使得音频采集避免频响差异,保证语音识别的成功率,进一步保证用户的使用体验。
实施例二、
本发明实施例提供了一种音频调节方法,如图1所示,包括:
步骤101:控制输出音频参考信号;
步骤102:对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
步骤103:基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
步骤104:基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
优选地,本实施例中所述音频参考信号的获取方式可以有以下两种:
方式一、所述控制输出音频参考信号之前,所述方法还包括:设置预设频率范围内的扫频声波作为音频参考信号。
方式二、所述控制输出音频参考信号之前,所述方法还包括:采集到语音信息,将所述语音信息作为所述音频参考信号;
获取到所述音频参考信号对应的参考频响曲线。
实施时可将扫频声替换成用户语音,首先,用户开启录音功能,录取用户一段语音,获取该段语音频响,作为参考频响,后续用户使用感觉语音识别成功率降低时可开启频响调节功能,多个音频采集模块获取用户同一段语音,按上述过程调整各声音采集通道频响,使最终叠加后的整体频响与参考频响一致。
本实施例提供的操作场景中可以包括有三个音频采集模块,具体包括:
所述得到至少二个音频采集信号,包括:
通过第一音频采集子模块、第二音频采集子模块以及第三音频采集子模块对所述音频参考信号进行音频采集,得到第一音频采集信号、第二音频采集信号以及第三音频采集信号。
所述基于所述至少二个音频处理信号、以及所述音频参考信号对应的参考频响曲线,确定调整参数,包括:
将所述第一音频处理信号、第二音频处理信号以及第三音频处理信号进行叠加,得到总音频采集信号及其对应的频响参数;
基于所述总音频采集信号的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;
基于第一音频处理信号的频响参数、第二音频处理信号的频响参数、第三音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;
基于所述每一路音频采集信号的增益差值参数,确定调整方式;
基于所述调整方式以及所述第一调整参数,确定针对所述三个音频采集模块的音频处理通道的调整参数。
所述基于所述每一路音频采集信号的增益差值参数,确定调整方式,包括:
若根据所述每一路音频采集信号的增益差值参数,确定每一路音频采集信号的参考频点的增益差值均大于预设门限值,或者,均不大于预设门限值,则确定调整方式为第一调整方式;
若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值大于预设门限值,则确定调整方式为第二调整方式;
若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值小于预设门限值,则确定调整方式为第三调整方式。
上述实施例中分配各路频响增益的方法是,以参考频点为选定频点为例,三路频响与参考频响该频点相对增益差值与预设值(如6dB)比较有四种情况,第一种是三路频响与参考频响该频点相对增益差值均不大于6dB;第二种是三路频响与参考频响该频点相对增益差值均大于6dB;第三种是其中一路频响与参考频响该频点相对增益差值大于6dB,另两路频响与参考频响该频点相对增益差值小于6dB;第四种是其中一路频响与参考频响该频点相对增益差值小于6dB,另两路频响与参考频响该频点相对增益差值大于6dB。
第一种和第二种情况根据第一步骤计算结果将叠加后该频点需要调整的增益分配给三路频响该频点,即三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则三路频响在该频点增益均需要调整y dB;
第三种情况下,若叠加后整体频响该频点的相对增益低于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值小于6dB的那两路频响该频点,若叠加后整体频响该频点的相对增益高于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值大于6dB的那两路频响该频点,三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3), 叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2+nx3)*10^(y/20)]…………(1)
假设需要调整其中两路频响该频点叠加增益a dB,即两路频响该频点叠加增益调整为20lg[(nx1+nx2)*10^(a/20)],调整增益后三路频响该频点叠加增益为
20lg[(nx1+nx2)*10^(a/20)+nx3]…………(2)
根据式(1)等于式(2),可以算得两路频响叠加该频点需要调整的增益a dB,则两路频响该频点增益均需要调整a dB。
第四种情况下,若叠加后整体频响该频点的相对增益低于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值小于6dB的那一路频响该频点,三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2+nx3)*10^(y/20)]…………(1)
假设需要调整其中一路频响该频点叠加增益a dB,即该路频响该频点叠加增益调整为20lg[nx1*10^(a/20)],调整增益后三路频响该频点叠加增益为
20lg[nx1*10^(a/20)+nx2+nx3]…………(2)
根据式(1)等于式(2),可以算得此路频响该频点需要调整的增益a dB。
若叠加后整体频响该频点的相对增益高于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值大于6dB的那两路频响该频点,三路频响在该频点增益分别为20lg (nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2+nx3)*10^(y/20)]…………(1)
假设需要调整其中两路频响该频点叠加增益a dB,即两路频响该频点叠加增益调整为20lg[(nx1+nx2)*10^(a/20)],调整增益后三路频响该频点叠加增益为
20lg[(nx1+nx2)*10^(a/20)+nx3]…………(2)
根据式(1)等于式(2),可以算得两路频响叠加该频点需要调整的增益a dB,则两路频响该频点增益均需要调整a dB。
可见,现有单MIC语音终端由于装配不良或用户使用过程中不慎跌落引起MIC与结构件入音孔之间密封不良,出现声音泄漏;或者结构件入音孔进入异物堵塞造成声音传递途径声阻增加,以及MIC本身使用一段时间后性能出现偏差等,都会引起MIC采集语音出现频响差异,导致用户语音识别成功率降低。
本发明能够通过输出音频参考信号,再由音频采集模块对音频参考信号进行音频采集,将得到的音频采集信号与音频参考信号的频响曲线进行对比,得到调整参数,根据调整参数对音频采集模块进行增益调整。如此,能够维持频响使用前后一致性,从而防止语音识别效果降低,使得音频采集避免频响差异,保证语音识别的成功率。多路声音采集及相应音频调节方法能解决上述问题,维持频响使用前后一致性,防止语音识别效果降低。
实施例三、
本发明实施例提供了一种终端设备,如图4所示,包括:
音频输出模块41,用于控制输出音频参考信号;
音频采集模块42,用于对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
音频处理模块43,用于基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
调整模块44,用于基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
优选地,本实施例中所述音频参考信号的获取方式可以有以下两种:
方式一、所述终端设备还包括:中央处理器46,用于控制存储模块以及音频处理模块;存储模块45,用于保存设置预设频率范围内的扫频声波作为音频参考信号。
方式二、所述音频采集模块42,还用于采集到语音信息,将所述语音信息作为所述音频参考信号;
相应的,所述音频处理模块43,还用于获取到所述音频参考信号对应的参考频响曲线。
基于上述场景,本实施例针对两个音频采集模块进行描述:
所述音频采集模块42,包括:
第一音频采集子模块421,用于对所述音频参考信号进行音频采集,得到第一音频采集信号;
第二音频采集子模块422,用于对所述音频参考信号进行音频采集,得到第二音频采集信号。
所述音频处理模块43,具体用于将所述第一音频处理信号以及第二音频处理信号进行叠加,得到总音频采集信号及其对应的频响参数;基于所述总音频采集信号及其对应的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中 全部频点对应的增益调整值;基于第一音频处理信号的频响参数、第二音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;基于所述每一路音频采集信号的增益差值参数,确定调整方式;基于所述调整方式以及所述第一调整参数,确定针对所述第一音频采集子模块以及第二音频采集子模块的音频处理通道的调整参数。
图2给出了针对上述操作的频响示意图,通过中央处理器控制音频输出模块生成预设频率范围内的扫频声波。其中,所述预设频率范围可以为根据实际情况进行设置,比如300Hz—3400Hz语音频率范围的扫频声波形,经扬声器装置电声转换进行播放。
两个音频采集模块(以MIC为例)接收扫频声,转换为电信号后经A/D转换传送给调整模块,调整模块内第一音频采集子模块和第二音频采集子模块,分别用于两个声音采集通路的各频点增益调整;
经调整模块的两路数字音频传送给音频处理模块,音频处理模块获取两路频响曲线数据(频响曲线图横坐标为频率,纵坐标为电压对数增益),即各频点对应的电压增益,音频处理模块对两路频响及参考频响进行计算及比较处理。其步骤如下:
第一步,进行叠加计算,根据音频采集模块灵敏度及增益公式可以计算获取音频采集模块拾取的两路扫频声叠加后的整体频响数据,两路音频采集模块获取的频响数据在某一频点声压为n,单位Pa(同一扫频声在两路音频采集模块距离较近时可认为声压一致),两路音频采集模块灵敏度分别为x1、x2,单位为V/Pa,两路声音采集该频点的声压转换为电压分别为nx1、nx2,单位V,根据增益公式dBV=20lg(Vx/1v),两路音频采集模块增益分别为20lg(nx1)、20lg(nx2),叠加计算该频点增益为 20lg(nx1+nx2),逐一频点计算获得各个频点叠加后的增益,以频率为横坐标,以增益为纵坐标,各频点增益连线可得到叠加后的频率响应曲线图。以某频点为例,若两路音频采集模块声压转换为电压后结果一致,即nx1=nx2,则叠加计算后增益20lg(nx1+nx2)=20lg2+20lg(nx1)=6+20lg(nx1),即叠加后增益增加6dB,如果两个音频采集模块获取的整个频率范围内频响数据一致,则叠加后频响曲线形状不变,只是各频点增益都增加6dB;
音频处理模块通过中央处理器获取存储器模块内预置的参考频响曲线数据,通常麦克风频率特性框限要求如图2,可以预设频率范围300-3400Hz参考频响曲线为0dB水平线,即各频点增益与1KHz频点相对增益为0dB,参考频响纵坐标是相对值,不是绝对值,当然,参考频响曲线数据可以根据实际情况(如实际测得的发送频响曲线)进行设置,实际设置频响曲线数据可以1KHz为基准,如设1KHz增益为-10dB,则其他频点增益根据相对增益差值进行设置;
以参考频响某一频点相对增益为基准(如1KHz),移动叠加后整体频响曲线,使参考频响和叠加后整体频响的基准频点相对增益一致(如参考频响1KHz相对增益-10dB,叠加后整体频响1KHz增益-5dB,则将叠加后整体频响各频点在纵坐标下移5dB),进一步,比较参考频响和叠加后整体频响在各个频点上的相对增益差值,获得叠加后整体频响各频点需要调整的增益,如图3,参考频响曲线为频率范围300-3400Hz相对增益-10dB的水平横线,叠加后频响曲线在1KHz增益-5dB,300Hz处增益-7dB,将整个频响曲线下移5dB,则叠加后频响曲线在1KHz增益变为-10dB,300Hz处增益-12dB,与参考频响曲线在基准频点1KHz处重合,300Hz处叠加频响曲线与参考频响曲线相对增益差值为-12dB-(-10dB)=-2dB,即叠加后频响在300Hz需要增加2dB。
第二步,按上述参考频响和叠加后整体频响比较方法,将两路频响分别与参考频响作比较,获取两路频响与参考频响各频点相对增益差值。
第三步,根据上述两个步骤计算结果,分配两路频响各频点需要调整的增益。调整原则是改变某一路频响增益时尽量减少噪声的提升或过大增益引起的失真等等。
本实施例中,假设参考频点为800Hz频点,两路频响与参考频点800Hz频点相对增益差值与预设值(如6dB)比较有三种情况:
第一种是两路频响与参考频响800Hz频点相对增益差值均不大于6dB;第二种是两路频响与参考频响800Hz频点相对增益差值均大于6dB;第三种是其中一路频响与参考频响800Hz频点相对增益差值大于6dB,另一路频响与参考频响800Hz频点相对增益差值小于6dB。
第一种和第二种情况对应第一调整方式,具体为:根据第一步计算结果将叠加后整体频响800Hz频点需要调整的增益分配给两路频响800Hz频点,两路频响在该频点增益分别为20lg(nx1)、20lg(nx2),叠加后该频点增益为20lg(nx1+nx2),与参考频响在该频点相对增益差值为y dB,则两路频响在该频点增益均需要调整y dB。
第三种情况下对应第二调整方式,具体为,若叠加后整体频响800Hz频点的相对增益低于参考频响800Hz频点的相对增益,则将叠加后整体频响800Hz频点需要调整的增益分配给与参考频响差值小于6dB的那一路频响800Hz频点,若叠加后整体频响800Hz频点的相对增益高于参考频响800Hz频点的相对增益,则将叠加后整体频响800Hz频点需要调整的增益分配给与参考频响差值大于6dB的那一路频响800Hz频点,两路频响在该频点增益分别为20lg(nx1)、20lg(nx2),叠加后该频点增益为20lg(nx1+nx2),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2)*10^(y/20)]…………(1)
假设需要调整第一路频响该频点增益a dB,即该路频响该频点增益调整为20lg[nx1*10^(a/20)],调整增益后两路频响该频点叠加增益为
20lg[nx1*10^(a/20)+nx2]…………(2)
根据式(1)等于式(2),可以算得调整一路频响增益时需要调整的增益a dB。
音频处理模块经上述步骤计算获取两路频响各频点需要调整的增益,传送给调整模块,对调整模块内通道1、通道2进行各频点增益调整,完成两路频响调节,使两路声音采集通路最终叠加频响与预置的参考频响一致。
本发明实施例所示的终端设备的具体框图可以如图5所示中包括:所述音频采集模块51用于采集外接声音;
调整模块52,用于调整音频采集模块中各个音频采集子模块获取到的声音频响及响度增益;
音频处理模块53,用于对各音频采集模块获取到的声音频响进行计算处理,和预置的频响进行比较获取调整参数,传递给调整模块用于各音频采集模块的频响和响度增益调整;
其中存储模块54用于预置参考频响数据;
音频输出模块55,用于产生预设频率范围内的扫频声;优选地,所述音频输出模块55中可以包括有扬声器装置551;其中扬声器装置用于播放音频输出模块产生的扫频声。
优选地,本实施例还可以提供中央处理器56,用于各模块的控制管理;
音频采集模块中包括有第一音频采集子模块511以及第二音频采集子模块512,本实施例以两个为例:用于采集外界声音,结构位置布局 上以位于同一侧优先,如手机智能终端底部,尽量避免两个音频采集模块分开分布在终端两侧,如顶部、底部,以免影响实施效果;
调整模块:调整两个音频采集模块获取到的声音频响;
音频处理模块:对各音频采集模块获取到的声音频响进行计算处理,和预置的频响进行比较获取调整参数,传递给调整模块用于各音频采集模块的频响增益调整;
中央处理器:用于各模块的控制管理;
存储器模块:用于预置参考频响数据;
音频输出模块:用于产生预设频率范围内的扫频声,如语音通常频率范围300Hz—3400Hz的扫频声;扬声器装置:电声转换,用于播放音频输出模块产生的扫频声。
上述音频处理模块计算过程只是本发明的一种实施例,并非限制本发明的专利范围,凡是利用多路频响经计算处理合成最终目标频响,均同理包括在本发明权利保护范围之内。
基于上述结构,本实施例进一步描述各个模块在执行操作时的过程,如图6所示:
步骤61:中央处理器控制音频输出模块输出音频参考信号;
步骤62:音频输出模块控制自身的扬声器装置发声;
步骤63:音频采集模块采集到音频参考信号,将采集到的信号经过调整模块发送至音频处理模块;
步骤64:音频处理模块获取到音频采集信号后,将各个音频采集信号叠加得到总音频采集信号;
步骤65:判断音频采集信号的各个频点的增益与参考频响曲线是否一致,若一致,则结束处理流程;否则执行步骤66;
步骤66:基于总音频采集信号、各路音频采集信号以及参考频响曲 线,确定调整参数;
步骤67:基于调整参数,控制调整单元针对各个音频采集通道进行调整。
优选地,如图7所示,本实施例还能够提供包括有多个音频采集子模块的音频采集模块72,包括:
第一音频采集子模块721,用于对所述音频参考信号进行音频采集,得到第一音频采集信号;
第二音频采集子模块722,用于对所述音频参考信号进行音频采集,得到第二音频采集信号;
第三音频采集子模块723,用于对所述音频参考信号进行音频采集,得到第三音频采集信号。
相应的,所述音频处理模块,具体用于将所述第一音频采集信号、第二音频采集信号以及第三音频采集信号进行叠加,得到总音频采集信号;基于所述总音频采集信号以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;基于第一音频采集信号、第二音频采集信号、第三音频采集信号与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;基于所述每一路音频采集信号的增益差值参数,确定调整方式;基于所述调整方式以及所述第一调整参数,确定针对所述三个音频采集模块的调整参数。
所述音频处理模块,具体用于若根据所述每一路音频采集信号的增益差值参数,确定每一路音频采集信号的参考频点的增益差值均大于预设门限值,或者,均不大于预设门限值,则确定调整方式为第一调整方式;若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音 频采集信号的参考频点的增益差值大于预设门限值,则确定调整方式为第二调整方式;若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值小于预设门限值,则确定调整方式为第三调整方式。
上述实施例中分配各路频响增益的方法是,以参考频点为选定频点为例,三路频响与参考频响该频点相对增益差值与预设值(如6dB)比较有四种情况,第一种是三路频响与参考频响该频点相对增益差值均不大于6dB;第二种是三路频响与参考频响该频点相对增益差值均大于6dB;第三种是其中一路频响与参考频响该频点相对增益差值大于6dB,另两路频响与参考频响该频点相对增益差值小于6dB;第四种是其中一路频响与参考频响该频点相对增益差值小于6dB,另两路频响与参考频响该频点相对增益差值大于6dB。
第一调整方式:第一种和第二种情况根据第一步骤计算结果将叠加后该频点需要调整的增益分配给三路频响该频点,即三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则三路频响在该频点增益均需要调整y dB;
第二调整方式:第三种情况下,若叠加后整体频响该频点的相对增益低于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值小于6dB的那两路频响该频点,若叠加后整体频响该频点的相对增益高于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值大于6dB的那两路频响该频点,三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2+nx3)*10^(y/20)]…………(1)
假设需要调整其中两路频响该频点叠加增益a dB,即两路频响该频点叠加增益调整为20lg[(nx1+nx2)*10^(a/20)],调整增益后三路频响该频点叠加增益为
20lg[(nx1+nx2)*10^(a/20)+nx3]…………(2)
根据式(1)等于式(2),可以算得两路频响叠加该频点需要调整的增益a dB,则两路频响该频点增益均需要调整a dB。
第三调整方式为:在第四种情况下,若叠加后整体频响该频点的相对增益低于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值小于6dB的那一路频响该频点,三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需调整为
20lg[(nx1+nx2+nx3)*10^(y/20)]…………(1)
假设需要调整其中一路频响该频点叠加增益a dB,即该路频响该频点叠加增益调整为20lg[nx1*10^(a/20)],调整增益后三路频响该频点叠加增益为
20lg[nx1*10^(a/20)+nx2+nx3]…………(2)
根据式(1)等于式(2),可以算得此路频响该频点需要调整的增益a dB。
若叠加后整体频响该频点的相对增益高于参考频响该频点的相对增益,则将叠加后整体频响该频点需要调整的增益分配给与参考频响差值大于6dB的那两路频响该频点,三路频响在该频点增益分别为20lg(nx1)、20lg(nx2)、20lg(nx3),叠加后该频点增益为20lg(nx1+nx2+nx3),与参考频响在该频点相对增益差值为y dB,则叠加后该频点增益需 调整为
20lg[(nx1+nx2+nx3)*10^(y/20)]…………(1)
假设需要调整其中两路频响该频点叠加增益a dB,即两路频响该频点叠加增益调整为20lg[(nx1+nx2)*10^(a/20)],调整增益后三路频响该频点叠加增益为
20lg[(nx1+nx2)*10^(a/20)+nx3]…………(2)
根据式(1)等于式(2),可以算得两路频响叠加该频点需要调整的增益a dB,则两路频响该频点增益均需要调整a dB。
可见,通过采用上述方案,就能够通过输出音频参考信号,再由音频采集模块对音频参考信号进行音频采集,将得到的音频采集信号与音频参考信号的频响曲线进行对比,得到调整参数,根据调整参数对音频采集模块进行增益调整。如此,能够维持频响使用前后一致性,从而防止语音识别效果降低,使得音频采集避免频响差异,保证语音识别的成功率,进一步保证用户的使用体验。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个模块或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的模块可以是、或也可以不是物理上分开的,作为模块显示的部件可以是、或也可以不是物理模块,即可以位于一个地方,也可以分布到多个网络模块上;可以根据实际的需要选择其中的 部分或全部模块来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能模块可以全部集成在一个处理模块中,也可以是各模块分别单独作为一个模块,也可以两个或两个以上模块集成在一个模块中;上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例公开了一种音频调节方法、终端设备及计算机可读存储介质,通过输出音频参考信号,再由音频采集模块对音频参考信号进行音频采集,将得到的音频采集信号与音频参考信号的频响曲线进行对比,得到调整参数,根据调整参数对音频采集模块进行增益调整。如此,能够维持频响使用前后一致性,从而防止语音识别效果降低,使得音频采集避免频响差异,保证语音识别的成功率。多路声音采集及相应音频调节方法能解决上述问题,维持频响使用前后一致性,防止语音识别效果降低。

Claims (17)

  1. 一种音频调节方法,应用于终端设备,所述方法包括:
    控制输出音频参考信号;
    对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
    基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
    基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
  2. 根据权利要求1所述的方法,其中,所述控制输出音频参考信号之前,所述方法还包括:
    设置预设频率范围内的扫频声波作为音频参考信号。
  3. 根据权利要求1所述的方法,其中,所述控制输出音频参考信号之前,所述方法还包括:
    采集到语音信息,将所述语音信息作为所述音频参考信号;
    获取到所述音频参考信号对应的参考频响曲线。
  4. 根据权利要求1-3任一项所述的方法,其中,所述对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号,包括:
    通过第一音频采集子模块以及第二音频采集子模块对所述音频参考信号进行音频采集,得到音频参考信号的第一音频采集信号以及第二音频采集信号。
  5. 根据权利要求4所述的方法,其中,所述基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数,包括:
    将所述第一音频处理信号以及第二音频处理信号进行叠加,得到总 音频采集信号及其对应的频响参数;
    基于所述总音频采集信号及其对应的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;
    基于第一音频处理信号的频响参数、第二音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;
    基于所述每一路音频采集信号的增益差值参数,确定调整方式;
    基于所述调整方式以及所述第一调整参数,确定针对所述第一音频采集子模块以及第二音频采集子模块的音频处理通道的调整参数。
  6. 根据权利要求1-3任一项所述的方法,其中,所述对所述音频参考信号进行音频采集,得到至少二个音频采集信号,包括:
    通过第一音频采集子模块、第二音频采集子模块以及第三音频采集子模块对所述音频参考信号进行音频采集,得到第一音频采集信号、第二音频采集信号以及第三音频采集信号。
  7. 根据权利要求6所述的方法,其中,所述基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数,包括:
    将所述第一音频处理信号、第二音频处理信号以及第三音频处理信号进行叠加,得到总音频采集信号及其对应的频响参数;
    基于所述总音频采集信号的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;
    基于第一音频处理信号的频响参数、第二音频处理信号的频响参数、 第三音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;
    基于所述每一路音频采集信号的增益差值参数,确定调整方式;
    基于所述调整方式以及所述第一调整参数,确定针对所述三个音频采集模块的音频处理通道的调整参数。
  8. 根据权利要求7所述的方法,其中,所述基于所述每一路音频采集信号的增益差值参数,确定调整方式,包括:
    若根据所述每一路音频采集信号的增益差值参数,确定每一路音频采集信号的参考频点的增益差值均大于预设门限值,或者,均不大于预设门限值,则确定调整方式为第一调整方式;
    若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值大于预设门限值,则确定调整方式为第二调整方式;
    若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值小于预设门限值,则确定调整方式为第三调整方式。
  9. 一种终端设备,包括:
    音频输出模块,配置为控制输出音频参考信号;
    音频采集模块,配置为对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
    音频处理模块,配置为基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
    调整模块,配置为基于至少二个音频采集信号对应的频响参数、以 及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
  10. 根据权利要求9所述的终端设备,其中,所述终端设备还包括:中央处理器,配置为控制存储模块以及音频处理模块;
    存储模块,配置为保存设置预设频率范围内的扫频声波作为音频参考信号。
  11. 根据权利要求9所述的终端设备,其中,
    所述音频采集模块,配置为采集到语音信息,将所述语音信息作为所述音频参考信号;
    相应的,所述音频处理模块,配置为获取到所述音频参考信号对应的参考频响曲线。
  12. 根据权利要求9-11任一项所述的终端设备,其中,所述音频采集模块,包括:
    第一音频采集子模块,配置为对所述音频参考信号进行音频采集,得到音频参考信号的第一音频采集信号;
    第二音频采集子模块,配置为对所述音频参考信号进行音频采集,得到音频参考信号的第二音频采集信号。
  13. 根据权利要求12所述的终端设备,其中,所述音频处理模块,配置为将所述第一音频处理信号以及第二音频处理信号进行叠加,得到总音频采集信号及其对应的频响参数;基于所述总音频采集信号及其对应的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;基于第一音频处理信号的频响参数、第二音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;基于所述每一路音频采集信号的增益差值参数,确定 调整方式;基于所述调整方式以及所述第一调整参数,确定针对所述第一音频采集子模块以及第二音频采集子模块的音频处理通道的调整参数。
  14. 根据权利要求9-11任一项所述的终端设备,其中,所述音频采集模块,包括:
    第一音频采集子模块,配置为对所述音频参考信号进行音频采集,得到第一音频采集信号;
    第二音频采集子模块,配置为对所述音频参考信号进行音频采集,得到第二音频采集信号;
    第三音频采集子模块,配置为对所述音频参考信号进行音频采集,得到第三音频采集信号。
  15. 根据权利要求14所述的终端设备,其中,所述音频处理模块,配置为将所述第一音频处理信号、第二音频处理信号以及第三音频处理信号进行叠加,得到总音频采集信号及其对应的频响参数;基于所述总音频采集信号的频响参数以及所述参考频响曲线,获取到第一调整参数,所述第一调整参数中包括有所述总音频采集信号中全部频点对应的增益调整值;基于第一音频处理信号的频响参数、第二音频处理信号的频响参数、第三音频处理信号的频响参数与参考频响曲线,分别获取到每一路音频采集信号的增益差值参数;其中,所述增益差值参数中包括有音频采集信号与所述参考频响曲线中每一个频点的增益差值;基于所述每一路音频采集信号的增益差值参数,确定调整方式;基于所述调整方式以及所述第一调整参数,确定针对所述三个音频采集模块的音频处理通道的调整参数。
  16. 根据权利要求15所述的终端设备,其中,所述音频处理模块,配置为若根据所述每一路音频采集信号的增益差值参数,确定每一路音 频采集信号的参考频点的增益差值均大于预设门限值,或者,均不大于预设门限值,则确定调整方式为第一调整方式;若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值大于预设门限值,则确定调整方式为第二调整方式;若根据所述每一路音频采集信号的增益差值参数,确定仅有一路音频采集信号的参考频点的增益差值小于预设门限值,则确定调整方式为第三调整方式。
  17. 一种计算机可读存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
    控制输出音频参考信号;
    对所述音频参考信号进行采集,得到音频参考信号的至少二个采集信号;
    基于至少二个音频处理通道分别对音频参考信号的所述至少二个音频采集信号进行处理,得到至少二个音频采集信号对应的频响参数;
    基于至少二个音频采集信号对应的频响参数、以及参考频响曲线,确定针对至少二个音频处理通道的调整参数。
PCT/CN2016/073052 2015-08-10 2016-02-01 一种音频调节方法、终端设备及计算机可读存储介质 WO2017024778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510488973.9 2015-08-10
CN201510488973.9A CN106452384A (zh) 2015-08-10 2015-08-10 一种音频调节方法及终端设备

Publications (1)

Publication Number Publication Date
WO2017024778A1 true WO2017024778A1 (zh) 2017-02-16

Family

ID=57982949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073052 WO2017024778A1 (zh) 2015-08-10 2016-02-01 一种音频调节方法、终端设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN106452384A (zh)
WO (1) WO2017024778A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112037825A (zh) * 2020-08-10 2020-12-04 北京小米松果电子有限公司 音频信号的处理方法及装置、存储介质
CN115776626A (zh) * 2023-02-10 2023-03-10 杭州兆华电子股份有限公司 一种麦克风阵列的频响校准方法及***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151705A (zh) * 2018-08-27 2019-01-04 北京爱数智慧科技有限公司 一种会议数据的对齐方法及相关设备
CN109979469B (zh) * 2019-04-03 2021-04-23 北京小米智能科技有限公司 信号处理方法、设备及存储介质
CN112185324B (zh) * 2020-10-12 2024-04-02 Oppo广东移动通信有限公司 调音方法、装置、存储介质、智能设备及调音***
CN114449337A (zh) * 2020-10-30 2022-05-06 深圳Tcl新技术有限公司 音频信号处理方法、装置、设备及计算机可读存储介质
CN113347529A (zh) * 2021-05-19 2021-09-03 深圳市展韵科技有限公司 一种多单元喇叭数字分频方法和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414991A (zh) * 2013-05-21 2013-11-27 杭州联汇数字科技有限公司 一种室内扩声***自适应调整方法
CN103414980A (zh) * 2013-07-30 2013-11-27 浙江中科电声研发中心 一种多输出通道音响***的时延和频响特性的补偿方法
CN104780259A (zh) * 2014-01-14 2015-07-15 深圳富泰宏精密工业有限公司 通话语音质量自动调节***与方法
CN104811155A (zh) * 2015-04-20 2015-07-29 深圳市冠旭电子有限公司 一种均衡器调整方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414991A (zh) * 2013-05-21 2013-11-27 杭州联汇数字科技有限公司 一种室内扩声***自适应调整方法
CN103414980A (zh) * 2013-07-30 2013-11-27 浙江中科电声研发中心 一种多输出通道音响***的时延和频响特性的补偿方法
CN104780259A (zh) * 2014-01-14 2015-07-15 深圳富泰宏精密工业有限公司 通话语音质量自动调节***与方法
CN104811155A (zh) * 2015-04-20 2015-07-29 深圳市冠旭电子有限公司 一种均衡器调整方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112037825A (zh) * 2020-08-10 2020-12-04 北京小米松果电子有限公司 音频信号的处理方法及装置、存储介质
CN112037825B (zh) * 2020-08-10 2022-09-27 北京小米松果电子有限公司 音频信号的处理方法及装置、存储介质
CN115776626A (zh) * 2023-02-10 2023-03-10 杭州兆华电子股份有限公司 一种麦克风阵列的频响校准方法及***
CN115776626B (zh) * 2023-02-10 2023-05-02 杭州兆华电子股份有限公司 一种麦克风阵列的频响校准方法及***

Also Published As

Publication number Publication date
CN106452384A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2017024778A1 (zh) 一种音频调节方法、终端设备及计算机可读存储介质
US8611570B2 (en) Data storage system, hearing aid, and method of selectively applying sound filters
US9508335B2 (en) Active noise control and customized audio system
US10111018B2 (en) Processor-readable medium, apparatus and method for updating hearing aid
EP3048779B1 (en) Sound volume adjusting method and device
EP2870779B1 (en) Method and system for fitting hearing aids, for training individuals in hearing with hearing aids and/or for diagnostic hearing tests of individuals wearing hearing aids
CN113676804A (zh) 一种主动降噪方法及装置
WO2015117343A1 (zh) 一种提高语音音质的方法、***及移动终端
US10104459B2 (en) Audio system with conceal detection or calibration
CN203522901U (zh) 声音自动调节装置及电视机
US9847767B2 (en) Electronic device capable of adjusting an equalizer according to physiological condition of hearing and adjustment method thereof
CN103841241B (zh) 音量调整方法及装置
US10506323B2 (en) User customizable headphone system
CN108737948A (zh) 扬声器位置检测***、装置和方法
CN107172527B (zh) 协同播放的音量调节方法、装置及协同播放装置
US20220246161A1 (en) Sound modification based on frequency composition
CN104717594A (zh) 助听***、助听手机及其助听方法
CN103155409B (zh) 用于向用户提供听力辅助的方法与***
CN105357613A (zh) 音频输出设备播放参数的调整方法及装置
CN110213707A (zh) 耳机及其助听方法、计算机可读存储介质
CN103517193A (zh) 用于耳鸣缓解的声音富集***
CN111526467A (zh) 声学收听区域制图和频率校正
EP3610366B1 (en) Display apparatus and controlling method thereof
US9084050B2 (en) Systems and methods for remapping an audio range to a human perceivable range
US10936277B2 (en) Calibration method for customizable personal sound delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834406

Country of ref document: EP

Kind code of ref document: A1