WO2017024572A1 - Led光源结构及其封装方法 - Google Patents

Led光源结构及其封装方法 Download PDF

Info

Publication number
WO2017024572A1
WO2017024572A1 PCT/CN2015/086816 CN2015086816W WO2017024572A1 WO 2017024572 A1 WO2017024572 A1 WO 2017024572A1 CN 2015086816 W CN2015086816 W CN 2015086816W WO 2017024572 A1 WO2017024572 A1 WO 2017024572A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light source
led light
source structure
packaging
Prior art date
Application number
PCT/CN2015/086816
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/775,521 priority Critical patent/US20170222096A1/en
Publication of WO2017024572A1 publication Critical patent/WO2017024572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/87Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing platina group metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/885Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention relates to the technical field of a backlight module in a liquid crystal display, in particular to an LED light source structure and a packaging method thereof using a Quantum Dots (QD) technology.
  • QD Quantum Dots
  • Liquid crystal displays have the advantages of thin body, low power consumption, no radiation, etc., and are widely used, such as mobile phones, digital cameras, computers, television screens, and the like.
  • Most of the liquid crystal displays on the existing market are backlight type liquid crystal displays, including a liquid crystal panel and a backlight module.
  • the liquid crystal panel and the backlight module are oppositely disposed, and the backlight module provides a display light source to the liquid crystal panel to enable the liquid crystal panel to display images.
  • the quality requirements of the display screen of the liquid crystal display are getting higher and higher.
  • the color saturation of the picture can be improved by improving the chromaticity of the light bar in the backlight module.
  • Some techniques use quantum dot technology to improve the color gamut in backlight modules.
  • Quantum Dots also known as nanocrystals, are composed of a finite number of atoms, all of which are on the order of nanometers.
  • Quantum dots are generally nanoparticles made of a semiconductor material (usually composed of Group II-VI or Group III-V elements) and having a stable diameter between 1 and 10 nm.
  • a quantum dot is an aggregate of atoms and molecules on the nanometer scale. It can be composed of a semiconductor material, such as elements of Group II, VI (such as CdS, CdSe, CdTe, ZnSe, etc.) or III, V elements (such as InP). , InAs, etc.) composition, can also be composed of two or more semiconductor materials.
  • Quantum dots are semiconductor nanostructures that bind conduction band electrons, valence band holes, and excitons in three spatial directions. Since the conduction band electrons and the valence band holes are quantum confined, the continuous band structure becomes a discrete energy level structure having molecular characteristics, and can emit fluorescence after being excited.
  • the application of quantum dots in the field of illumination and display is to change the wavelength of incident light, and it is possible to control wavelengths by using crystals of different sizes. As long as the crystal size can be precisely controlled, the color can be precisely controlled and a wide range of color development is possible.
  • Quantum dots have a small Width at Half Maximum (FWHM), usually only 20 to 50 nm, which is a very good backlight.
  • a liquid crystal display with a quantum dot phosphor backlight usually has a wider gamut coverage.
  • the liquid crystal display of YAG phosphor backlight is increased by about 50%, which makes the color of the liquid crystal display more beautiful, and makes the picture more three-dimensional.
  • the application of quantum dot phosphors in LED backlights is mainly after the LED chip package is completed, and the mixed colloid formed by preparing the quantum dot phosphor and the silica gel is coated or other processes on the light emitting surface of the LED chip.
  • a quantum dot phosphor film is formed thereon. Because the quantum dot phosphor is easily oxidized and the temperature quenching phenomenon of the quantum dot phosphor is serious, the luminous efficiency decreases seriously with the increase of temperature.
  • the quantum dot phosphor directly forms a thin film on the LED chip, lacks protection of the quantum dot phosphor, seriously shortens the service life of the quantum dot phosphor, and also reduces the luminescence of the quantum dot phosphor. Efficiency, light color uniformity also decreases.
  • the present invention provides a quantum dot glass box for forming an effective protection for a quantum dot phosphor material to solve the current application of the quantum dot phosphor in an LED chip, and the quantum dot phosphor has a short lifetime and emits light. Low efficiency and poor uniformity of light color.
  • An LED light source structure comprising: a fixing bracket, an LED chip, an encapsulant, and a quantum dot glass box; wherein the fixing bracket is provided with a packaging slot and a mounting slot from bottom to top, the mounting slot The LED chip is encapsulated in the package slot by the encapsulant, and the mounting slot has a size matched with the quantum dot glass box, and the quantum dot glass box has a width larger than a width of the package slot.
  • the quantum dot glass box includes a glass box and a quantum dot phosphor material, the glass box has an accommodating cavity, and the quantum dot phosphor material is cured and packaged in the receiving cavity In the cavity.
  • the glass box has a wall thickness of 0.1 to 0.7 mm.
  • the quantum dot phosphor material comprises a colloidal material and a quantum dot phosphor mixed in the colloidal material.
  • the weight percentage of the quantum dot phosphor is 1% to 20%.
  • the quantum dot phosphor is CdSe/ZnSe, CdSe/ZnS, CdS/ZnS, CdS/HgS, CdSe/ZnS/CdS, CdSe/CdS/ZnS, InP/CdS, CuInS or graphene oxide quantum dots.
  • the colloidal material is UV glue or IR glue.
  • the LED chip comprises a printed circuit board and is electrically connected to the printed circuit board LED lights.
  • the LED lamp is a blue LED lamp or an ultraviolet LED lamp.
  • the upper surface of the encapsulant is not higher than the bottom of the mounting groove; the encapsulant is silica gel.
  • Another aspect of the present invention is to provide a method of packaging an LED light source structure as described above, wherein the method comprises the steps of:
  • the LED light source structure provided by the embodiment of the present invention combines an LED light source with a Quantum Dots (QD) technology, wherein the quantum dot phosphor material is solidified and packaged in a glass box, which can be waterproof and moisture proof, and prevents quantum.
  • QD Quantum Dots
  • the oxidation failure of the point phosphor effectively prolongs the service life of the quantum dot phosphor, and the problem of short life, low luminous efficiency and poor uniformity of light color of the quantum dot phosphor is effectively solved compared with the prior art.
  • FIG. 1 is a schematic structural view of a structure of an LED light source in an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a fixing bracket in an LED light source structure in an embodiment of the present invention.
  • Figure 3 is a top cross-sectional view of a quantum dot glass cell in accordance with an embodiment of the present invention.
  • Figure 4 is a side cross-sectional view of a quantum dot glass cell in accordance with an embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure of a glass case before the quantum dot phosphor material is packaged.
  • FIG. 6 is a process flow diagram of a method of preparing a quantum dot glass box in an embodiment of the present invention.
  • FIG. 7 is an exemplary illustration of a packaging process of an LED light source structure in an embodiment of the present invention.
  • the embodiment provides an LED light source structure.
  • the light source structure includes a fixing bracket 20 , an LED chip 30 , an encapsulant 40 , and a quantum dot glass box 10 .
  • the fixing bracket 20 is sequentially provided with a packaging slot 201 and a mounting slot 202 from the bottom to the top, and the mounting slot 202 has a width greater than a width of the packaging slot 201 .
  • the storage space of the package slot 201 is located in an inverted trapezoidal structure.
  • the LED chip 30 is encapsulated in the package slot 201 by the encapsulant 40 , and the mounting slot 202 has a size matched with the quantum dot glass box 10 .
  • the quantum dot glass box 10 is snapped into the mounting groove 202.
  • the light emitted from the LED chip 30 passes through the encapsulant 40 and is incident on the quantum dot glass cell 10, thereby exciting the quantum dot phosphor material in the quantum dot glass cell 10 to emit fluorescence.
  • the LED chip 30 includes a printed circuit board 31 and an LED lamp 32 electrically connected to the printed circuit board 31 .
  • the LED lamp 32 may be a blue LED lamp or an ultraviolet LED lamp.
  • the quantum dot glass case 10 described in the above embodiment includes a glass case 11 and a quantum dot phosphor material 12.
  • the glass box 11 has an accommodating cavity 111, and the quantum dot phosphor material 12 is solidified and packaged in the accommodating cavity 111.
  • the glass case 12 has an injection port 112 that is fluidly connected to the accommodating cavity 111. Further, the wall thickness of the glass case 12 preferably ranges from 0.1 to 0.7 mm.
  • the quantum dot phosphor material 12 comprises a colloidal material and a quantum dot phosphor mixed in the colloidal material.
  • the weight percentage of the quantum dot phosphor may be selected to be 1% to 20%.
  • the quantum dot phosphor may be selected from CdSe/ZnSe, CdSe/ZnS, CdS/ZnS, CdS/HgS, CdSe/ZnS/CdS, CdSe/CdS/ZnS, InP/CdS, CuInS or graphene oxide quantum.
  • the colloidal material is UV glue (ultraviolet light curing glue) or IR glue (infrared light curing glue).
  • UV glue ultraviolet light curing glue
  • IR glue infrared light curing glue
  • the method includes the steps of:
  • S101 Prepare a glass box having a receiving cavity and an injection port. As shown in FIG. 5, the glass box 12 is provided with an accommodating cavity 111 and an injection port 112 fluidly connected to the accommodating cavity 111.
  • a fluid quantum dot phosphor material Preparing a fluid quantum dot phosphor material. Specifically, first, a quantum dot phosphor and a colloidal material of a predetermined ratio weight are separately obtained, and then the quantum dot phosphor powder and the colloidal material are mixed and stirred uniformly.
  • the curing process may be selected as an IR (Infrared Ray) curing process, a UV (Ultra-violet Ray) curing process, or a thermal curing process.
  • IR Infrared Ray
  • UV Ultra-violet Ray
  • the present embodiment further provides a packaging method for the LED light source structure as described above.
  • the packaging method specifically includes: firstly providing a fixing bracket 20, wherein the fixing bracket 20 is sequentially provided with a packaging slot 201 from bottom to top. And a mounting groove 202, as shown in (a) of FIG. Then, the LED chip 30 is encapsulated in the package slot 201 by using the encapsulant 40, as shown in (b) of FIG. 7; the upper surface 40a of the encapsulant 40 should not be higher than the bottom 202a of the mounting slot 202.
  • the upper surface 40a of the encapsulant 40 is flush with the bottom portion 202a of the mounting groove 202), and the encapsulant 40 may be made of silica gel.
  • the quantum dot glass box 10 is snap-fitted into the mounting groove 202, as shown in (c) of FIG. 7; the mounting groove 202 has a size adapted to the quantum dot glass box 10, and is mounted.
  • the groove 202 can be engaged with the fixed quantum dot glass box 10.
  • the LED light source structure and the corresponding packaging method provided by the above embodiments combine the LED light source with Quantum Dots (QD) technology, wherein the quantum dot phosphor material is cured and packaged in a glass box, which can be waterproof and moisture proof. It prevents the oxidation failure of the quantum dot phosphor and effectively prolongs the service life of the quantum dot phosphor. Compared with the prior art, the quantum dot phosphor has a short life, low luminous efficiency and poor uniformity of light color.
  • QD Quantum Dots

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED光源结构,该光源结构包括:固定支架(20)、LED芯片(30)、封装胶(40)以及量子点玻璃盒(10);其中,所述固定支架(20)由底部到顶部依次设置有一封装槽(201)和一安装槽(202),所述安装槽(202)的宽度大于所述封装槽(201)的宽度,所述LED芯片(30)由所述封装胶(40)封装于所述封装槽(201)内,所述安装槽(202)具有与所述量子点玻璃盒(10)相适配的尺寸,所述量子点玻璃盒(10)卡合放置于所述安装槽(202)中;其中,量子点玻璃盒(10)包括玻璃盒(11)以及量子点荧光粉材料(12),所述玻璃盒(10)具有容置腔体(111),所述量子点荧光粉材料(12)固化封装于所述容置腔体(111)中。还有一种如上所述LED光源结构的封装方法。

Description

LED光源结构及其封装方法 技术领域
本发明涉及液晶显示器中的背光模组技术领域,尤其是一种应用量子点(Quantum Dots,QD)技术LED光源结构及其封装方法。
背景技术
液晶显示器(LCD)具有机身薄、功耗低、无辐射等优点,得到了广泛的应用,例如移动电话、数字相机、计算机、电视机屏幕等等。现有市场上的液晶显示器大部分为背光型液晶显示器,包括液晶面板及背光模组,液晶面板与背光模组相对设置,背光模组提供显示光源给液晶面板,以使液晶面板显示影像。随着社会的发展,用户对液晶显示器显示画面的质量要求越来越高,为了提高画面的色彩饱和度,通过改善背光模组中灯条的色度,就可以提升画面的色彩饱和度,现有的技术是在背光模组中采用量子点技术来提高色域。
量子点(Quantum Dots,QD)又可以称为纳米晶体,是由有限数目的原子组成,三个维度尺寸均在纳米数量级。量子点一般是由半导体材料(通常由II~Ⅵ族或III~V族元素组成)制成的、稳定直径介于1~10nm之间的纳米粒子。量子点是在纳米尺度上的原子和分子的集合体,既可由一种半导体材料组成,如由II、VI族元素(如CdS、CdSe、CdTe、ZnSe等)或III、V族元素(如InP、InAs等)组成,也可以由两种或两种以上的半导体材料组成。量子点是把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。由于导带电子和价带空穴被量子限域,连续的能带结构变成具有分子特性的分立能级结构,受激后可以发射荧光。量子点在照明与显示领域的应用,是利用其改变入射光波长的性质,可利用不同大小结晶体控制波长。只要能精确控制结晶体的大小,即可精确控制颜色,且有相当广泛的发色范围。
量子点的发光光谱半高峰宽(Full Width at Half Maximum,FWHM)小,通常只有20~50nm,是一种非常良好的背光,具有量子点荧光粉背光的液晶显示器,通常其色域覆盖范围较YAG荧光粉背光的液晶显示器提升50%左右,可使液晶显示器颜色更加绚丽,使画面更具有立体感。
目前,量子点荧光粉在LED背光源中的应用,主要是在LED芯片封装完成后,将量子点荧光粉与硅胶等材料制备形成的混合胶体通过涂覆或其他工艺,在LED芯片的出光面上形成一量子点荧光粉薄膜。由于量子点荧光粉极易氧化失效,且量子点荧光粉温度淬灭现象严重,随温度升高,其发光效率下降严重。因此,前述方法中直接将量子点荧光粉在LED芯片上形成薄膜的方式,缺乏对量子点荧光粉的保护,严重缩短了量子点荧光粉的使用寿命,同时也降低了量子点荧光粉的发光效率,光色均匀性也随着降低。
发明内容
有鉴于此,本发明提供了一种量子点玻璃盒,对量子点荧光粉材料形成有效的保护,以解决目前的量子点荧光粉在LED芯片中的应用中,量子点荧光粉寿命短、发光效率低、光色均匀性差的问题。
为了达到上述目的,本发明采用了如下技术方案:
一种LED光源结构,该光源结构包括:固定支架、LED芯片、封装胶以及量子点玻璃盒;其中,所述固定支架由底部到顶部依次设置有一封装槽和一安装槽,所述安装槽的宽度大于所述封装槽的宽度,所述LED芯片由所述封装胶封装于所述封装槽内,所述安装槽具有与所述量子点玻璃盒相适配的尺寸,所述量子点玻璃盒卡合放置于所述安装槽中;其中,量子点玻璃盒包括玻璃盒以及量子点荧光粉材料,所述玻璃盒具有容置腔体,所述量子点荧光粉材料固化封装于所述容置腔体中。
其中,所述玻璃盒的壁厚为0.1~0.7mm。
其中,所述量子点荧光粉材料包括胶体材料以及混合于所述胶体材料中的量子点荧光粉。
其中,所述量子点荧光粉材料中,所述量子点荧光粉的重量百分比为1%~20%。
其中,所述量子点荧光粉为CdSe/ZnSe、CdSe/ZnS、CdS/ZnS、CdS/HgS、CdSe/ZnS/CdS、CdSe/CdS/ZnS、InP/CdS、CuInS或氧化石墨烯量子点。
其中,所述胶体材料为UV胶或IR胶。
其中,所述LED芯片包括印刷电路板以及电性连接于所述印刷电路板上的 LED灯。
其中,所述LED灯为蓝光LED灯或紫外光LED灯。
其中,所述封装胶的上表面不高于所述安装槽的底部;所述封装胶为硅胶。
本发明的另一方面是提供了如上所述的LED光源结构的封装方法,其中,该方法包括步骤:
(a)、提供一固定支架,所述固定支架由底部到顶部依次设置有一封装槽和一安装槽;
(b)、采用封装胶将LED芯片封装于所述封装槽内;
(c)、将量子点玻璃盒卡合放置于所述安装槽内。
有益效果:本发明实施例提供的LED光源结构,将LED光源与量子点(Quantum Dots,QD)技术相结合,其中,将量子点荧光粉材料固化封装于玻璃盒中,可以防水防潮,防止量子点荧光粉氧化失效,有效延长了量子点荧光粉的使用寿命,相比于现有技术,有效解决了量子点荧光粉寿命短、发光效率低、光色均匀性差的问题。
附图说明
图1是本发明实施例中的LED光源结构的结构示意图。
图2是本发明实施例中的LED光源结构中的固定支架的结构示意图。
图3是本发明实施例中的量子点玻璃盒的俯视剖面图。
图4是本发明实施例中的量子点玻璃盒的侧视剖面图。
图5是封装有量子点荧光粉材料之前的玻璃盒的结构示意图。
图6是本发明实施例中的量子点玻璃盒的制备方法的工艺流程图。
图7是本发明实施例中的LED光源结构的封装工艺过程的示例性图示。
具体实施方式
下面将结合附图以及具体实施例,对本发明实施例中的技术方案进行详细地描述,显然,所描述的实施例仅仅是本发明一部分实例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下 所获得的所有其他实施例,都属于本发明保护范围。
参阅附图1和图2,本实施例提供了一种LED光源结构,该光源结构包括:固定支架20、LED芯片30、封装胶40以及量子点玻璃盒10。
其中,如图2所示的,所述固定支架20由底部到顶部依次设置有一封装槽201和一安装槽202,所述安装槽202的宽度大于所述封装槽201的宽度。所述封装槽201位于较下方的容纳空间呈倒梯形结构。
其中,如图1所示的,所述LED芯片30由所述封装胶40封装于所述封装槽201内,所述安装槽202具有与所述量子点玻璃盒10相适配的尺寸,所述量子点玻璃盒10卡合放置于所述安装槽202中。LED芯片30发出的光穿过封装胶40再入射到量子点玻璃盒10中,激发量子点玻璃盒10中的量子点荧光粉材料发射荧光。
其中,如图1所示的,所述LED芯片30包括印刷电路板31以及电性连接于所述印刷电路板31上的LED灯32。具体地,所述LED灯32可以是蓝光LED灯或紫外光LED灯。
进一步地,参阅图3和图4,如上实施例中所述的量子点玻璃盒10包括玻璃盒11以及量子点荧光粉材料12。具体地,所述玻璃盒11具有容置腔体111,所述量子点荧光粉材料12固化封装于所述容置腔体111中。
其中,如图5所示,在将量子点荧光粉材料12封装如玻璃盒11内之前,该玻璃盒12具有流体连通至所述容置腔体111的注入口112。进一步地,该玻璃盒12的壁厚优选的范围是0.1~0.7mm。
其中,所述量子点荧光粉材料12包括胶体材料以及混合于所述胶体材料中的量子点荧光粉。具体地,在该量子点荧光粉材料12中,所述量子点荧光粉的重量百分比可以选择为1%~20%。进一步地,所述量子点荧光粉可以选择为CdSe/ZnSe、CdSe/ZnS、CdS/ZnS、CdS/HgS、CdSe/ZnS/CdS、CdSe/CdS/ZnS、InP/CdS、CuInS或氧化石墨烯量子点(Graphene Oxide QDs)中的任意一种量子点荧光粉;所述胶体材料为UV胶(紫外光固化胶)或IR胶(红外光固化胶)。其中,由于量子点荧光粉不用与硅胶混合,而是选择可使量子点荧光粉混合更加均匀的胶体材料UV胶或IR胶,可以使得量子点荧光粉不易发生团聚。
下面介绍如上所述的量子点玻璃盒10的制备方法。参阅图6的工艺流程图,该方法包括步骤:
S101、制备具有容置腔体和注入口的玻璃盒。如图5所示的,该玻璃盒12设置有有容置腔体111以及流体连通至所述容置腔体111的注入口112。
S102、制备流体状的量子点荧光粉材料。具体地,首先分别获取预定配比重量的量子点荧光粉和胶体材料,然后将量子点荧光粉和胶体材料混合,并且搅拌均匀。
S103、将所述流体状的量子点荧光粉材料通过所述注入口注入到所述容置腔体内。
S104、应用固化工艺固化所述容置腔体内的流体状的量子点荧光粉材料。具体地,所述固化工艺可以选择为IR(Infrared Ray,红外线)固化工艺、UV(Ultra-violet Ray,紫外线)固化工艺或热固化工艺。
S105、热熔密封所述注入口,获得所述量子点玻璃盒。
本实施例还提供了如上所述的LED光源结构的封装方法,参阅附图7,该封装方法具体包括:首先提供一固定支架20,所述固定支架20由底部到顶部依次设置有一封装槽201和一安装槽202,如图7中的(a)所示。然后采用封装胶40将LED芯片30封装于所述封装槽201内,如图7中的(b)所示;所述封装胶40的上表面40a应不高于所述安装槽202的底部202a(本实施例中封装胶40的上表面40a与安装槽202的底部202a平齐),所述封装胶40可以选用硅胶。最后将量子点玻璃盒10卡合放置于所述安装槽202内,如图7中的(c)所示;所述安装槽202具有与所述量子点玻璃盒10相适配的尺寸,安装槽202可以卡合固定量子点玻璃盒10。在另外的一些实施例中,为了使量子点玻璃盒10与安装槽202的连接更加牢固,还可以在量子点玻璃盒10与安装槽202的贴合位置采用双面胶粘贴。
如上实施例提供的的LED光源结构及其相应的封装方法,将LED光源与量子点(Quantum Dots,QD)技术相结合,其中,将量子点荧光粉材料固化封装于玻璃盒中,可以防水防潮,防止量子点荧光粉氧化失效,有效延长了量子点荧光粉的使用寿命,相比于现有技术,有效解决了量子点荧光粉寿命短、发光效率低、光色均匀性差的问题。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包 含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
显然,本发明的保护范围并不局限于上诉的具体实施方式,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (18)

  1. 一种LED光源结构,其中,包括:固定支架、LED芯片、封装胶以及量子点玻璃盒;其中,所述固定支架由底部到顶部依次设置有一封装槽和一安装槽,所述安装槽的宽度大于所述封装槽的宽度,所述LED芯片由所述封装胶封装于所述封装槽内,所述安装槽具有与所述量子点玻璃盒相适配的尺寸,所述量子点玻璃盒卡合放置于所述安装槽中;
    其中,量子点玻璃盒包括玻璃盒以及量子点荧光粉材料,所述玻璃盒具有容置腔体,所述量子点荧光粉材料固化封装于所述容置腔体中。
  2. 根据权利要求1所述的LED光源结构,其中,所述玻璃盒的壁厚为0.1~0.7mm。
  3. 根据权利要求1所述的LED光源结构,其中,所述量子点荧光粉材料包括胶体材料以及混合于所述胶体材料中的量子点荧光粉。
  4. 根据权利要求3所述的LED光源结构,其中,所述量子点荧光粉材料中,所述量子点荧光粉的重量百分比为1%~20%。
  5. 根据权利要求4所述的LED光源结构,其中,所述量子点荧光粉为CdSe/ZnSe、CdSe/ZnS、CdS/ZnS、CdS/HgS、CdSe/ZnS/CdS、CdSe/CdS/ZnS、InP/CdS、CuInS或氧化石墨烯量子点。
  6. 根据权利要求4所述的LED光源结构,其中,所述胶体材料为UV胶或IR胶。
  7. 根据权利要求1所述的LED光源结构,其中,所述LED芯片包括印刷电路板以及电性连接于所述印刷电路板上的LED灯。
  8. 根据权利要求7所述的LED光源结构,其中,所述LED灯为蓝光LED灯或紫外光LED灯。
  9. 根据权利要求1所述的LED光源结构,其中,所述封装胶的上表面不高于所述安装槽的底部;所述封装胶为硅胶。
  10. 一种LED光源结构的封装方法,其中,该方法包括步骤:
    (a)、提供一固定支架,所述固定支架由底部到顶部依次设置有一封装槽 和一安装槽,所述安装槽的宽度大于所述封装槽的宽度;
    (b)、采用封装胶将LED芯片封装于所述封装槽内;
    (c)、将量子点玻璃盒卡合放置于所述安装槽内;其中,所述量子点玻璃盒包括玻璃盒以及量子点荧光粉材料,所述玻璃盒具有容置腔体,所述量子点荧光粉材料固化封装于所述容置腔体中。
  11. 根据权利要求10所述的LED光源结构的封装方法,其中,所述玻璃盒的壁厚为0.1~0.7mm。
  12. 根据权利要求10所述的LED光源结构的封装方法,其中,所述量子点荧光粉材料包括胶体材料以及混合于所述胶体材料中的量子点荧光粉。
  13. 根据权利要求12所述的LED光源结构的封装方法,其中,所述量子点荧光粉材料中,所述量子点荧光粉的重量百分比为1%~20%。
  14. 根据权利要求13所述的LED光源结构的封装方法,其中,所述量子点荧光粉为CdSe/ZnSe、CdSe/ZnS、CdS/ZnS、CdS/HgS、CdSe/ZnS/CdS、CdSe/CdS/ZnS、InP/CdS、CuInS或氧化石墨烯量子点。
  15. 根据权利要求13所述的LED光源结构的封装方法,其中,所述胶体材料为UV胶或IR胶。
  16. 根据权利要求10所述的LED光源结构的封装方法,其中,所述LED芯片包括印刷电路板以及电性连接于所述印刷电路板上的LED灯。
  17. 根据权利要求16所述的LED光源结构的封装方法,其中,所述LED灯为蓝光LED灯或紫外光LED灯。
  18. 根据权利要求10所述的LED光源结构的封装方法,其中,所述封装胶的上表面不高于所述安装槽的底部;所述封装胶为硅胶。
PCT/CN2015/086816 2015-08-10 2015-08-13 Led光源结构及其封装方法 WO2017024572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/775,521 US20170222096A1 (en) 2015-08-10 2015-08-13 Led light source structure and packaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510487244.1 2015-08-10
CN201510487244.1A CN105185890A (zh) 2015-08-10 2015-08-10 Led光源结构及其封装方法

Publications (1)

Publication Number Publication Date
WO2017024572A1 true WO2017024572A1 (zh) 2017-02-16

Family

ID=54907857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086816 WO2017024572A1 (zh) 2015-08-10 2015-08-13 Led光源结构及其封装方法

Country Status (3)

Country Link
US (1) US20170222096A1 (zh)
CN (1) CN105185890A (zh)
WO (1) WO2017024572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635640A (zh) * 2020-12-14 2021-04-09 深圳信息职业技术学院 量子点发光器件及其制备方法与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180050480A (ko) * 2016-11-04 2018-05-15 삼성디스플레이 주식회사 표시 장치
CN206271743U (zh) * 2016-11-22 2017-06-20 广州视源电子科技股份有限公司 量子点led模组
CN106981562B (zh) * 2017-03-30 2019-04-02 深圳市华星光电技术有限公司 量子点led封装结构
WO2019190026A1 (ko) 2018-03-26 2019-10-03 주식회사 루멘스 퀀텀닷 플레이트 조립체와 이를 포함하는 발광소자 패키지 및 led 모듈
CN108598248A (zh) * 2018-06-13 2018-09-28 广东恒润光电有限公司 一种具有量子点膜片的新型发光二极管结构
CN112909147A (zh) * 2019-11-19 2021-06-04 深圳Tcl新技术有限公司 一种量子点led及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022142A (zh) * 2006-02-15 2007-08-22 亿光电子工业股份有限公司 发光半导体组件封装结构及其制造方法
CN101075655A (zh) * 2007-06-05 2007-11-21 诸建平 白光面光源发光装置
CN101937965A (zh) * 2010-08-30 2011-01-05 深圳市易特照明有限公司 一种诱发白光led
WO2011035483A1 (zh) * 2009-09-25 2011-03-31 海洋王照明科技股份有限公司 半导体发光器件及其封装方法
CN103292225A (zh) * 2013-06-28 2013-09-11 深圳市华星光电技术有限公司 一种led背光光源
CN103456865A (zh) * 2013-09-03 2013-12-18 易美芯光(北京)科技有限公司 一种led封装

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308866A1 (de) * 2003-02-28 2004-09-09 Osram Opto Semiconductors Gmbh Beleuchtungsmodul und Verfahren zu dessen Herstellung
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US7943946B2 (en) * 2005-11-21 2011-05-17 Sharp Kabushiki Kaisha Light emitting device
TWI303494B (en) * 2006-04-26 2008-11-21 Everlight Electronics Co Ltd Surface mounting optoelectronic device
US8525213B2 (en) * 2010-03-30 2013-09-03 Lg Innotek Co., Ltd. Light emitting device having multiple cavities and light unit having the same
US8294168B2 (en) * 2010-06-04 2012-10-23 Samsung Electronics Co., Ltd. Light source module using quantum dots, backlight unit employing the light source module, display apparatus, and illumination apparatus
CN103025670B (zh) * 2010-07-28 2016-08-10 日本电气硝子株式会社 荧光体封入用毛细管的制造方法、荧光体封入用毛细管、波长变换部件和波长变换部件的制造方法
WO2012132232A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 半導体発光装置
WO2013019330A1 (en) * 2011-07-29 2013-02-07 Corning Incorporated Solar-redshift systems
US9864121B2 (en) * 2011-11-22 2018-01-09 Samsung Electronics Co., Ltd. Stress-resistant component for use with quantum dots
CN103236483A (zh) * 2013-03-15 2013-08-07 达亮电子(苏州)有限公司 发光二极管封装结构及封装方法
CN103681990B (zh) * 2013-12-11 2017-09-01 深圳市华星光电技术有限公司 Led封装件及其制作方法
JP2016076634A (ja) * 2014-10-08 2016-05-12 エルジー ディスプレイ カンパニー リミテッド Ledパッケージ、バックライトユニット及び液晶表示装置
CN104460208A (zh) * 2014-12-31 2015-03-25 合肥鑫晟光电科技有限公司 光源总成、成像装置以及成像方法
CN105140377A (zh) * 2015-08-10 2015-12-09 深圳市华星光电技术有限公司 量子点玻璃盒及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022142A (zh) * 2006-02-15 2007-08-22 亿光电子工业股份有限公司 发光半导体组件封装结构及其制造方法
CN101075655A (zh) * 2007-06-05 2007-11-21 诸建平 白光面光源发光装置
WO2011035483A1 (zh) * 2009-09-25 2011-03-31 海洋王照明科技股份有限公司 半导体发光器件及其封装方法
CN101937965A (zh) * 2010-08-30 2011-01-05 深圳市易特照明有限公司 一种诱发白光led
CN103292225A (zh) * 2013-06-28 2013-09-11 深圳市华星光电技术有限公司 一种led背光光源
CN103456865A (zh) * 2013-09-03 2013-12-18 易美芯光(北京)科技有限公司 一种led封装

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635640A (zh) * 2020-12-14 2021-04-09 深圳信息职业技术学院 量子点发光器件及其制备方法与应用

Also Published As

Publication number Publication date
US20170222096A1 (en) 2017-08-03
CN105185890A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2017024572A1 (zh) Led光源结构及其封装方法
US10025139B2 (en) Display device
KR101604339B1 (ko) 광 변환 필름, 이를 포함하는 백라이트 유닛 및 표시장치
US9110203B2 (en) Display device with light guide plate and optical path conversion unit
US9893252B2 (en) White LED, backlight module and liquid crystal display device
TWI631395B (zh) 光學構件與具有其之顯示裝置及其製造方法
TWI612011B (zh) 光學片、顯示裝置及具有其之發光裝置
KR101742625B1 (ko) 액정표시장치
US9818917B2 (en) Quantum dots (QD) glass cells, and the manufacturing methods and applications thereof
TW201307962A (zh) 光轉換裝置及具有其之顯示裝置
KR102474116B1 (ko) 표시 장치
TW201305673A (zh) 光學構件、顯示裝置及具有其之發光裝置
KR101744871B1 (ko) 액정표시장치
KR101262520B1 (ko) 광학 부재 및 이를 포함하는 표시장치
WO2018201617A1 (zh) 一种光学膜组件、背光模组及显示设备
KR101660167B1 (ko) 광 변환 부재, 이를 포함하는 백라이트 유닛 및 표시장치
KR101338695B1 (ko) 표시 장치, 광 변환 부재 및 광 변환 부재 제조 방법
KR20130065484A (ko) 광 변환 복합체, 이를 포함하는 발광장치 및 표시장치 및 이의 제조방법
KR101862873B1 (ko) 광학 부재, 발광장치 및 표시장치
KR101956079B1 (ko) 발광 장치 및 표시 장치
KR101382974B1 (ko) 광 변환 복합체, 이를 포함하는 발광장치 및 표시장치 및 이의 제조방법
KR101210084B1 (ko) 광학 부재 및 이를 포함하는 표시장치
US10503008B2 (en) Quantum dot (QD) lamps and displays
KR20160087492A (ko) 표시 장치
KR101812338B1 (ko) 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14775521

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900770

Country of ref document: EP

Kind code of ref document: A1