WO2017022904A1 - Nitride-based nanocomposite quantum dots having single- or multi-core-shell structure - Google Patents

Nitride-based nanocomposite quantum dots having single- or multi-core-shell structure Download PDF

Info

Publication number
WO2017022904A1
WO2017022904A1 PCT/KR2015/013817 KR2015013817W WO2017022904A1 WO 2017022904 A1 WO2017022904 A1 WO 2017022904A1 KR 2015013817 W KR2015013817 W KR 2015013817W WO 2017022904 A1 WO2017022904 A1 WO 2017022904A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
nitride
shell
spherical body
spherical
Prior art date
Application number
PCT/KR2015/013817
Other languages
French (fr)
Korean (ko)
Inventor
김성인
최선용
Original Assignee
재단법인 철원플라즈마 산업기술연구원
주식회사 올릭스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 철원플라즈마 산업기술연구원, 주식회사 올릭스 filed Critical 재단법인 철원플라즈마 산업기술연구원
Publication of WO2017022904A1 publication Critical patent/WO2017022904A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium

Definitions

  • the present invention relates to a nitride-based nano fusion spherical body having a core shell structure capable of exhibiting the characteristics of a quantum dot, more specifically, nano-crystallization and shell material of a core raw material by plasma method.
  • a single or multiple core-shell structured nitride-based nanofusion spherical body made of a single crystal unit prepared through a spheroidization process of a material and various uses thereof.
  • nano science and technology research over the last few decades has laid the groundwork for a broadly defined new direction called nano science and technology, and has worked hard to combine the two.
  • the research of these nanos is active now because of their unique and attractive properties as well as complementary applications for bulk materials. This is because newly produced nanomaterials exhibit significantly improved properties (optical properties, strength, elasticity, thermal and electrical conductivity, etc.) compared to conventional bulk and thin film materials, and can contribute to the miniaturization of devices. .
  • quantum dots are semiconducting nanoparticles that have a 0-dimensional sphere shape, but despite the same material, they exhibit different optical and electrical properties from bulk materials. The reason for this is that as the size of the material decreases, the band of a continuous energy state, originally possessed by the inorganic crystal, changes discontinuously and the characteristics change.
  • quantum dots are attracting attention because they can emit various spectra with high quantum efficiency and color purity by controlling the size of materials as compared with fluorescent dyes, and because they are not organic materials, they can guarantee light stability.
  • quantum dots capable of emitting light in various wavelengths as well as the visible light region is in progress, and researches for applying them to solar cells, bioimaging, light emitting diodes, photo detectors, etc. are also being actively conducted.
  • QD-LEDs quantum dot light emitting diodes
  • quantum dot light emitting material for QD-LED II-VI compound semiconductors with high quantum efficiency and excellent stability are mainly used.
  • core-shell (core-shell) using Cd such as CdSe / ZnS and CdZnS / ZnS as a core material
  • the quantum dot material of) structure has been widely studied because of its high photoluminescence (PL) quantum efficiency.
  • PL photoluminescence
  • the core component of the quantum dot is Cd, which is harmful to the environment and the human body
  • research on the III-V group quantum dot material without Cd and the LED device using the same is being actively conducted. Therefore, although the group III-V quantum dots, which are non-toxic environmentally friendly quantum dots, have been in the spotlight, no effective mass synthesis method and report have been reported for the group III-V quantum dots.
  • the present inventors use In, Ga, Al, and nitride, which are non-cadmium-based materials, which have been difficult to make into a core-shell structure in the related art, and thus can exhibit similar characteristics to those of conventional quantum dots.
  • nitride-based nanofusion spherical body having a single or multiple core-shell structure composed of single crystal units could be synthesized.
  • Patent Document 1 Republic of Korea Patent Registration 10-1043311
  • Patent Document 2 Republic of Korea Patent Publication 10-2011-0059855
  • Patent Document 3 Republic of Korea Patent Publication 10-2012-0019955
  • Patent Document 4 Republic of Korea Patent Registration 10-1436099
  • An object of the present invention is to use a single crystal unit using a nitride material, preferably an In-Ga-Al-N-based material, which is a non-cadmium-based material that has been difficult to conventionally make a core-shell structure.
  • a nitride material preferably an In-Ga-Al-N-based material, which is a non-cadmium-based material that has been difficult to conventionally make a core-shell structure.
  • Another object of the present invention is to provide various uses of the nitride-based nanofusion spherical body of the single or multiple core shell structure.
  • Still another object of the present invention is to provide a method for synthesizing the nitride-based nanofusion spherical body having the single or multiple core shell structure by using a plasma method.
  • nitride-based nanofusion spheres forming a single core-shell or multiple core-shell structure.
  • the globules may be spherical or protruding, including all of irregular oval, amorphous, and spherical shapes.
  • the single core-shell structure sphere has a core of 1 nm to 10 nm in diameter
  • the shell has a structure of 0.1 to 10 nm in thickness
  • the multiple core-shell structure has a sphere of 1 nm to 10 nm in diameter.
  • the core 2 or more is made of a spherical or protruding structure in which a shell having a diameter of 100 nm to 1 ⁇ m is impregnated.
  • the core is impregnated with about 100 to 50,000, 500 to 50,000, preferably 500 to 40,000, more preferably 500 to 30,000 There may be.
  • the present invention has been difficult to form a core-shell structure using a nitride material, more preferably In, Ga, Al and nitride (N) as a non-cadmium material. It is characterized by providing a structure for solving the problem.
  • the core of the sphere may be a III-V material, preferably III-V nitride (Nitrides).
  • III-V nitride Nitrides
  • Specific examples include one or more materials selected from the group consisting of InN, InP, GaAs, GaP, GaInN, GaN, and InGaAlN, and more preferably InN and / or GaInN.
  • the shell of the sphere may also be a III-V material, preferably III-V nitride (Nitrides). As a specific example, it may be at least one selected from the group consisting of GaN, InN, AlN, and AlGaN, most preferably using GaN and / or AlGaN.
  • III-V nitride Nitrides
  • it may be at least one selected from the group consisting of GaN, InN, AlN, and AlGaN, most preferably using GaN and / or AlGaN.
  • the core material of the sphere is GaN and the sphere shell material is used as InN.
  • the most preferable example of the spherical body of the core-shell structure of the present invention is a nitride-based, that is, In-Ga-Al-N-based nano-fusion spherical body characterized in that consisting of In, Ga, Al and N .
  • nitride-based globules have an advantage of very high thermal stability.
  • the present invention also provides, as another embodiment, a method for synthesizing the nitride-based nanofusion spherical body of the core-shell structure comprising:
  • At least one spherical core material selected from the group consisting of InN, GaInN, GaN and InGaAlN is vaporized at a first temperature of 5000-10000 ° C. to form a nano-crystallized core;
  • At least one spherical shell material selected from the group consisting of GaN, AlN, and AlGaN is vaporized or liquefied at a second temperature of 500 to 4000 ° C. to spheroidize into a shell surrounding the core.
  • the plasma method uses a thermal plasma method.
  • the providing of the first temperature and the second temperature may be performed by injecting raw materials for forming the core and shell of the spherical body into different heights in the plasma reaction chamber using tubes having different lengths, respectively. have.
  • the present invention provides a variety of uses of the nitride-based, that is, In-Ga-Al-N-based nano-fusion spherical body.
  • the nitride-based nano-fusion spherical body of the present invention can exhibit excellent luminescent properties of quantum dots, and also have high thermal stability, and do not easily coagulate with the spherical bodies. Therefore, it may be widely used for better physical properties in the field where the conventional quantum dot is applied.
  • FIG. 1 is a schematic diagram of a nitride-based, more preferably In-Ga-Al-N-based spherical body of the single or multicore-shell structure of the present invention.
  • Figure 2 is a schematic diagram mainly showing a feature including a dual tube according to the temperature gradient in the production of the spherical body of the core shell structure of the present invention.
  • 3 to 4 are TEM images of nitride-based nanofusion spheres having a multi-core-shell structure according to one embodiment of the present invention.
  • FIG. 5 is a TEM-EDS analysis result of the nitride-based nano-fusion spherical body of a multi-core-shell structure of one embodiment of the present invention.
  • Nanomaterial refers to a material that utilizes the size dependency of physical properties in the nanometer size region (1-100 nanometers). Applications of such nanomaterials are in the form of powders, tubes or whiskers. Available in a variety of forms, including thin, thin film and bulk forms.
  • 'about' refers to 30, 25, 20, 25, 10, 9, 8, 7, 6, by reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length.
  • amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length varying by 5, 4, 3, 2 or 1%.
  • the present invention relates to a nitride-based nano fusion spherical body having a core shell structure capable of exhibiting the characteristics of a quantum dot.
  • the nano-fusion spherical body having a single or multiple core shell structure composed of a Cd-free, nitride-based material, preferably an In-Ga-Al-N-based material, It is about.
  • the present invention relates to a spherical or protruding nitride-based nanofusion spherical body having a single or multiple core-shell structure.
  • the present invention relates to spherical In-Ga-Al-N-based globules having a single core-shell structure or a multi-core-shell structure.
  • single core-shell structure means a structure according to the schematic diagram A of Figure 1, consisting of one core and a single layer shell structure surrounding the core, and "multi-core-shell structure” means a plurality of cores and It means the structure according to the schematic diagram B of FIG.
  • nitrile-based nanofusion spheres of the present invention include both spheres of such single core-shell structure and spheres of multiple core-shell structure.
  • the "nanofusion spherical body" of the present invention includes both spherical units having nanometer-sized regions (1-100 nanometers) or structures in the form of spheroidized by fusion thereof, and preferably in the present invention. Units having a diameter of about 1 to 50 nm, 1 to 40 nm, 1 to 30 nm, 1 to 20 nm, 1 to 10 nm and spherical or protruding shapes having a diameter of 100 nm to 1 ⁇ m formed by fusion Contains all the structures.
  • nitride-based material of the present invention is generically referred to a material containing nitrogen as an anion, in the present invention, not only pure nitride but also oxynitride may be used together. Any known method may be used as a method for producing this, but, for example, ammonothermal synthesis may be used. The ammonothermal synthesis technique is advantageous for the synthesis of compounds based on nitrogen because the ammonia has physical properties similar to water than any other solvent. Nitride-based materials exhibit excellent electron mobility, dielectric breakdown voltage, saturated electron velocity, and thermal conductivity, and thus have great potential as high frequency and high output transistor materials. In addition, since there is no need to worry about resource depletion of N, there is an advantage that is promising as a material of the future.
  • the "nanofusion spherical body" of the present invention is characterized by consisting of a single crystal unit material.
  • the core and shell structures forming the spherical body consist of single crystal units having such periodically arranged atomic structures.
  • the core of the spherical body of the present invention consists of a single crystal group III-V material, more preferably III-V nitride (Nitrides) material, and when combined with a shell, a luminescent structure is produced.
  • the core may include two or more elements.
  • GaInN exhibits a wide range of band gap energy in the range of 0.7 to 1.9 eV in terms of optical properties.
  • GaInN compounds have optical and electrical properties that are advantageous for optoelectronic devices such as high electron mobility and high saturation rate.
  • the core may be about 1 nm to 40 nm, about 1 nm to 30 nm, about 1 nm to 20 nm, or about 1 nm to 10 nm, preferably about 1 nm to 10 nm.
  • the shell of the spherical body of the present invention is a semiconductor that is different from the semiconductor of the core and is bonded to the core to form the surface layer of the core.
  • the shell typically passivates the core by having a higher bandgap than the core.
  • the shell structure of the present invention may be single crystal III-V nitride (Nitrides) or III-V oxide (Oxides), preferably III-V nitride (Nitrides).
  • 1 selected from the group consisting of aluminum oxide, silicon oxide, silicon nitride, silicon oxynitride, magnesium oxide, indium oxide, hafnium oxide, zinc oxide, tin oxide, tanitanium oxide, manganese oxide, tungsten oxide and magnesium fluoride Species can be used.
  • SiO 2 , Al 2 O 3 , ZnS, GaN, InN, AlN, AlGaN and the like can be used. Even more preferably GaN, AlN, and AlGaN, most preferably GaN and / or AlGaN, may be used, but is not limited thereto. In one embodiment of the present invention, GaN was used.
  • the GaN is a semiconductor, a very hard material with a Wurtzite crystal structure, the wide band gap is 3.4eV, the light generated in the 3.4eV band gap is light corresponding to the wavelength of blue to purple, because of this characteristic It can be used mainly in optoelectronic, high-power & high frequency devices or light emitting diodes.
  • the size of the shell in a single core-shell structure may be about 0.1-10 nm, about 0.1-5 nm, or about 0.1-2 nm in thickness (FIG. 1A).
  • Nitride-based nanofusion spheres with multi-core shell structure Nitride-based nanofusion spheres with multi-core shell structure
  • the present invention may have a protrusion or spherical shape of 100nm ⁇ 1 ⁇ m diameter, including a plurality of the single core. This is referred to herein as a nitride-based nanofusion sphere of multi-core shell structure composed of single crystal units.
  • the spherical shape includes all irregular oval, amorphous, and spherical shapes.
  • the multi-core-shell structure has a structure in which, for example, a plurality of cores (multiple) having a diameter of about 1 nm to 10 nm are impregnated into a shell structure having a diameter of 100 nm to 1 ⁇ m (FIG. 1B).
  • the single core having a diameter of 0.1 to 10 nm is hundreds, thousands, tens of thousands or more, that is, about 100 to 50000, preferably 500 to 50000, more preferably, in the shell. May be impregnated with about 500 to 40000 pieces.
  • hundreds of single cores such as 500 to 30000, 500 to 20000, 500 to 10,000, 1000 to 30000, 1000 to 20000, and 1000 to 10,000, may be impregnated in the shell.
  • such a multiple core-shell structured nitride-based nanofusion spherical body may be mentioned.
  • the multi-core-shell quantum dots of the present invention solve the problem that it was difficult to agglomerate and disperse quantum dots of the conventional nano-size.
  • the multi-core-shell quantum dots of the present invention also solve the cumbersome problem that previously required additional processes to impart other functionalities to the surface to prevent such aggregation by nano size.
  • the quantum dot of the multi-core-shell structure includes a plurality of cores and forms a shell structure surrounding the core, the quantum dot can not only maximize the desired optical and electrical characteristics but also increase the efficiency and stability of the quantum dot. have.
  • the nitride-based nanofusion spherical body as a preferred embodiment of the present invention comprises a core-shell spherical body made of single crystal units such as GaN / InN, GaInN / AlGaN, InN / AlN, GaInN / AlN, InN / AlGaN. Include. That is, the nitride-based nanofusion spherical body of the present invention is characterized in that consisting of In, Ga, Al and N.
  • the synthesis is also non-environmental and it is possible to produce only a small amount as difficult to industrialize, it also solves the problem that acted as a major obstacle to commercialization.
  • the commercially available high efficiency quantum dots are made of cadmium compounds, which may cause toxicity to the environment and the human body.
  • QLED can be developed.
  • nitride-based nanofusion spherical body of the multi-core shell structure of the present invention when used, a uniform thin film can be produced because there is no such aggregation and dispersibility is very excellent.
  • the nitride-based nanofusion spherical body of the multi-core shell structure of the present invention including a plurality of cores can simultaneously increase the efficiency and lifetime of a conventional QLED.
  • the present invention therefore relates in various respects to the various uses of a single or multiple coreshell structured nanofusion spherical body of said nitride material, preferably In-Ga-Al-N-based material.
  • the nitride-based nano fusion spherical body of the single or multiple core shell structure of the present invention can exhibit the properties of the conventionally known quantum dots and improved properties thereof.
  • the spherical body of the present invention exhibits very different physical property changes in comparison with the bulk state of a solid and a general organic compound, and has infinite possibilities for various fields such as electronics, energy, and medicine based on these properties.
  • the light emitting diode can be used in the LED sphere for generating a wavelength conversion light by converting the excitation light of the light emitting diode (LED).
  • the spherical body when used in a solar cell, it may be possible to manufacture a solar cell at a lower cost in a simpler process.
  • the size control of the globular body it is able to absorb sunlight from short wavelength to long wavelength, so it can absorb light in a much wider area than the conventional solar cell, thereby covering the entire solar spectrum.
  • the next generation solar cell showing higher efficiency than the battery can be developed.
  • the application of the field of biodevices among the applications of globular bodies has high expectations.
  • the size of the globular body is similar to the size of an important molecule or protein in the living body, and the size of the globular body can be controlled to emit an accurate visible wavelength range so that it can be effectively used for cell imaging and drug delivery. have.
  • a biomarker that reacts to a specific cell to a globular body, it becomes possible to image and track the cell and use it to diagnose and treat cancer. Therefore, the development of biocompatible globules and biomarkers that respond to specific cells should be a priority.
  • Globules on the other hand, have the potential to be used as genes or drug delivery media because they can have the ability to track cells with specific diseases.
  • the present invention relates to a method of synthesizing a single or multiple core-shell structured nitride-based nanofusion spherical body comprising the following steps:
  • At least one spherical core material selected from the group consisting of InN, GaInN, GaN and InGaAlN is vaporized at a first temperature of 5000-10000 ° C. to form a nano-crystallized core;
  • At least one spherical shell material selected from the group consisting of GaN, AlN, and AlGaN is vaporized or liquefied at a second temperature of 500 to 4000 ° C. to spheroidize into a shell surrounding the core.
  • the plasma method may be performed by those skilled in the art by appropriately modifying known methods.
  • RF high frequency thermal plasma
  • RF may be used, which may produce uniform nanoparticles, but is not limited thereto.
  • a raw material for forming the core and shell of the spherical body is injected at different heights in the plasma reaction chamber using tubes having different lengths, respectively. It can be carried out as.
  • nitride-based nano-fusion spherical structure of single or multiple core-shell structure can be synthesized in situ (FIG. 2).
  • Injection of the raw material powder of the shell is carried out in a low temperature portion of the lower portion of the plasma reaction portion, preferably about 4000 ° C. or less through a long tube, so that there is not enough temperature and time for vaporization, so that the vaporization is not completed. Partial vaporization or liquefaction is performed to bind to the nanocrystals of the core material to form a spherical shell structure due to capping or a spherical or protruding shell structure having a diameter of 100 nm to 1 ⁇ m in which a plurality of cores are impregnated. .
  • the spheroid obtained by this plasma method can be obtained by mixing a quantum dot of a single core-shell structure and a quantum dot of a multiple core-shell structure.
  • this method since it is possible to continuously supply a relatively large amount of raw materials, it is possible to continuously and mass production of the spherical body.
  • Ga-In-N-based nanofusion spheres were prepared using an RF thermal plasma apparatus.
  • Argon gas was used as the central gas, the sheath gas, the carrier gas and the quenching gas introduced into the plasma processing apparatus, and ammonia and nitrogen gas inducing a nitriding reaction were mixed and introduced to generate nitride.
  • the gas was introduced at a flow rate of 30 L / min using argon gas as the central gas, and 5 L / min was introduced by mixing ammonia gas for inducing a nitriding reaction to 80 L / min of argon gas as the sheath gas.
  • the carrier gas which conveys InN and GaN which are raw materials injected nitrogen gas at the flow volume of 10 L / min.
  • Quenching gas for rapid cooling was injected at a rate of 280 L / min from 48 nozzles of approximately 1 mm in diameter installed in the wall feed section using argon gas, and a separate quenching nozzle was introduced from the lower end at the same position in the center. Additional injection was carried out at a flow rate of 100 L / min.
  • the applied power for generating the plasma was applied to 20kW based on the DC plate power to generate a high temperature thermal plasma, the pressure inside the system was maintained at 200 torr.
  • In the plasma electrode portion dual tubes having different lengths were mounted and used for raw material injection.
  • InN a spherical core raw material
  • GaN a spherical shell raw material
  • the mass ratio of injection is adjusted to about 1: 2. It was.
  • the nozzle of the short injection tube was positioned at the center height of the electrode 20 cm below the upper electrode, and the nozzle of the long injection tube was installed 38 cm below the upper electrode.
  • the nozzles are positioned in the middle of the hot zone past the electrode, so that InN injected from the short injection tube is completely vaporized and GaN injected into the long injection tube is vaporized. Most surfaces were allowed to descend while maintaining molten droplets.
  • a quenching gas was injected into the quenching section and cooled to obtain a nitride-based nanofusion spherical mixture having a single or multiple core-shell structure.
  • the quenching gas forms a single or multi-core shell structured nanofusion spherical body of the present invention, performing two roles: (i) the role of cooling to stop InN from nucleus growth at several nanoscales, And (ii) intricately creating a fluid flow by the quenching gas introduced from side to bottom and upwards to induce collisions between these particles.
  • the prepared fusion spherical bodies were moved along with the fluid flow and adsorbed to the collector's metal sintered filter, and the adsorbed particles were separated through a blowback process in which a high pressure gas was blown out in the opposite direction of the fluid flow in the adsorption process. . Then, it was collected through a collecting part by moving to the lower end by free fall.
  • the obtained nanofusion spheres were analyzed using a transmission electron microscope (TEM), and images were obtained and shown in FIGS. 3 to 5.
  • TEM transmission electron microscope
  • the single cores having a total diameter of about 10 nm appear to be impregnated on the surface of the large shell (red circle: single core part, yellow circle: single shell part).
  • the large shell structure of the GaN component forms a multi-core shell structure in which the small core InN component is bonded to the surface.
  • the Ga-In-N-based nanofusion spherical body of the present invention has conventional quantum dot-like luminescence properties.
  • the present invention is a single crystal unit having excellent stability, dispersibility, and luminescence by using In, Ga, Al, and Nitride based materials, which are non-cadmium based materials, which have been difficult to make into a core-shell structure.

Abstract

The present invention relates to nitride-based nanocomposite quantum dots having a core-shell structure, which can exhibit the characteristics of a quantum dot and, more specifically, to nitride-based nanocomposite quantum dots having a single- or multi-core-shell structure and various uses thereof, wherein the quantum dots are prepared through a process of performing the nano-crystallization of a core raw material by a plasma method and the spheroidization of a shell raw material.

Description

단일 또는 다중 코어쉘 구조의 나이트라이드계 나노융합 구상체Nitride-based nanofusion spheres with single or multiple coreshell structures
본 발명은 양자점(Quantum dot)의 특성을 발휘할 수 있는 코어쉘 구조의 나이트라이드(Nitride)계 나노융합 구상체에 관한 것으로, 더욱 구체적으로는 플라즈마법에 의한 코어 원료 물질의 나노-결정화 및 쉘 원료 물질의 구상화(spheroidization) 공정을 통해 제조되는 단결정 단위로 이루어진, 단일 또는 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체 및 이의 다양한 용도에 관한 것이다. The present invention relates to a nitride-based nano fusion spherical body having a core shell structure capable of exhibiting the characteristics of a quantum dot, more specifically, nano-crystallization and shell material of a core raw material by plasma method. A single or multiple core-shell structured nitride-based nanofusion spherical body made of a single crystal unit prepared through a spheroidization process of a material and various uses thereof.
지난 수십 년 간의 연구는 나노 과학과 기술(nano science and technology) 이라는 넓게 정의된 새로운 방향의 기틀을 잡아왔고, 또 두 가지를 결합하는데 힘써왔다. 이러한 나노의 연구는 벌크 재료를 위한 보완적인 응용뿐만 아니라 그것들의 독특하고 매혹적인 특성 때문에 현재도 활발한 연구가 이루어지고 있다. 이는 새롭게 만들어진 나노물질(nanomaterial)들이 기존의 벌크 및 박막 물질에 비해 상당히 개선된 특성(광학적 성질, 강도, 탄성, 열 및 전기전도도 등)을 나타내며, 소자의 소형화에도 많은 기여를 할 수 있기 때문이다.Research over the last few decades has laid the groundwork for a broadly defined new direction called nano science and technology, and has worked hard to combine the two. The research of these nanos is active now because of their unique and attractive properties as well as complementary applications for bulk materials. This is because newly produced nanomaterials exhibit significantly improved properties (optical properties, strength, elasticity, thermal and electrical conductivity, etc.) compared to conventional bulk and thin film materials, and can contribute to the miniaturization of devices. .
이러한 나노 물질 중에서도, 양자점은 0차원의 구 형태를 띠는 반도체 나노입자로, 같은 물질임에도 불구하고 벌크물질과는 다른 광학적, 전기적 특성을 보인다. 그 이유는 물질의 크기가 작아지면서 본래 무기 결정이 가지고 있는, 연속적인 에너지 상태로 구성된 밴드가 불연속으로 변하게 되어 특성이 변화하기 때문이다.Among these nanomaterials, quantum dots are semiconducting nanoparticles that have a 0-dimensional sphere shape, but despite the same material, they exhibit different optical and electrical properties from bulk materials. The reason for this is that as the size of the material decreases, the band of a continuous energy state, originally possessed by the inorganic crystal, changes discontinuously and the characteristics change.
특히 양자점은 형광염료와 비교하여 물질 크기 조절을 통해 높은 양자 효율과 색 순도가 우수한 다양한 스펙트럼 방출이 가능하며, 유기 물질이 아니기 때문에 광안정성도 보장할 수 있어 주목받고 있다. 또한 가시광선 영역뿐만 아니라 다양한 파장에서 발광이 가능한 양자점에 대한 연구가 진행되고 있으며 이를 태양전지, 바이오이미징, 발광 다이오드, 광 검출기 등에 응용하기 위한 연구 또한 활발히 진행되고 있다.Particularly, quantum dots are attracting attention because they can emit various spectra with high quantum efficiency and color purity by controlling the size of materials as compared with fluorescent dyes, and because they are not organic materials, they can guarantee light stability. In addition, research on quantum dots capable of emitting light in various wavelengths as well as the visible light region is in progress, and researches for applying them to solar cells, bioimaging, light emitting diodes, photo detectors, etc. are also being actively conducted.
특히, 이를 이용한 양자점 LED (quantum dot light emitting diode,QD-LED)는 색순도가 좋고 색재현성이 우수하며 동영상 특성이 좋은 대면적 고해상도 디스플레이의 구현이 가능하여 많은 연구가 진행되고 있다In particular, quantum dot light emitting diodes (QD-LEDs) using the same have a lot of research because they are possible to realize a large-area high-resolution display having good color purity, excellent color reproducibility, and good video characteristics.
QD-LED용 양자점 발광재료로 양자효율이 높고 안정성이 우수한 II-VI족 화합물 반도체가 주로 사용되고 있으며, 특히 CdSe/ZnS, CdZnS/ZnS 등의 Cd을 코어 재료로 사용하는 코아-쉘 (core-shell) 구조의 양자점 재료는 PL (photoluminescence) 양자효율이 높아 광범위하게 연구되고 있다. 하지만 양자점의 코어 구성 성분이 환경 및 인체에 유해한 Cd으로 되어 있어, Cd이 없는 III-V족 반도체 양자점 재료 및 이를 이용한 LED 소자에 관한 연구가 활발히 진행되고 있다. 따라서 무독성의 친환경 양자점인 Ⅲ-Ⅴ족 양자점이 각광을 받게 되었지만 아직까지 Ⅲ-Ⅴ족 양자점에 있어서 효과적인 대량합성법 및 이 보고되지 않았다. As a quantum dot light emitting material for QD-LED, II-VI compound semiconductors with high quantum efficiency and excellent stability are mainly used.In particular, core-shell (core-shell) using Cd such as CdSe / ZnS and CdZnS / ZnS as a core material The quantum dot material of) structure has been widely studied because of its high photoluminescence (PL) quantum efficiency. However, since the core component of the quantum dot is Cd, which is harmful to the environment and the human body, research on the III-V group quantum dot material without Cd and the LED device using the same is being actively conducted. Therefore, although the group III-V quantum dots, which are non-toxic environmentally friendly quantum dots, have been in the spotlight, no effective mass synthesis method and report have been reported for the group III-V quantum dots.
특히, 비-카드뮴계 물질인, In, Ga, Al 및 나이트라이드(Nitride)을 이용하여 코어-쉘 구조의 양자점 또는 이와 유사한 구조체를 합성한 연구는 지금까지 거의 없었다. In particular, few studies have been made to synthesize core-shell quantum dots or similar structures using non-cadmium-based materials, In, Ga, Al, and nitride.
이에 본 발명자들은 종래 코어-쉘(core-shell) 구조로 만들기 어려웠던 비-카드뮴계 물질인, In, Ga, Al 및 나이트라이드(Nitride)를 이용하여, 종래 양자점과 유사한 특성을 발휘할 수 있는 양자점 유사 구조체로서, 단결정 단위로 이루어진 단일 또는 다중의 코어-쉘 구조의 나이트라이드(Nitride)계 나노융합 구상체를 합성할 수 있음을 최초로 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors use In, Ga, Al, and nitride, which are non-cadmium-based materials, which have been difficult to make into a core-shell structure in the related art, and thus can exhibit similar characteristics to those of conventional quantum dots. As a structure, for the first time, it was confirmed that a nitride-based nanofusion spherical body having a single or multiple core-shell structure composed of single crystal units could be synthesized.
선행기술문헌Prior art literature
특허문헌Patent Literature
특허문헌 1: 대한민국 등록특허 10-1043311Patent Document 1: Republic of Korea Patent Registration 10-1043311
특허문헌 2: 대한민국 특허공개 10-2011-0059855Patent Document 2: Republic of Korea Patent Publication 10-2011-0059855
특허문헌 3: 대한민국 특허공개 10-2012-0019955Patent Document 3: Republic of Korea Patent Publication 10-2012-0019955
특허문헌 4: 대한민국 등록특허 10-1436099Patent Document 4: Republic of Korea Patent Registration 10-1436099
비특허문헌Non-Patent Literature
[1] Handbook of Nanostructured Materials and Nanotechnology (Ed: H. S. Nalwa), Academic Press, New York (2000).[1] Handbook of Nanostructured Materials and Nanotechnology (Ed: H. S. Nalwa), Academic Press, New York (2000).
[2] Nanowires and Nanobelts: Materials, Properties and Devices (Ed: Z. L. Wang), Kluwer Academic Publishers, Boston (2003).[2] Nanowires and Nanobelts: Materials, Properties and Devices (Ed: Z. L. Wang), Kluwer Academic Publishers, Boston (2003).
[3] P. Roussignol, D. Ricard and C. Flytzanis: Phys. Rev. Lett., 62 (1989) 312.[3] P. Roussignol, D. Ricard and C. Flytzanis: Phys. Rev. Lett., 62 (1989) 312.
[4] D. J. Norris, A. Sacra, C. B. Murray and M. G. Bawendi:Phys. Rev. Lett., 72 (1994) 2612.[4] D. J. Norris, A. Sacra, C. B. Murray and M. G. Bawendi: Phys. Rev. Lett., 72 (1994) 2612.
[5] C. B. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706.[5] C. B. Murray, D. J. Norris and M. G. Bawendi: J. Am. Chem. Soc., 115 (1993) 8706.
[6] P. Reiss, J. Bleuse and A. Pron: Nano Lett., 2 (2002) 781.[6] P. Reiss, J. Bleuse and A. Pron: Nano Lett., 2 (2002) 781.
[7] Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 183.[7] Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 183.
[8] L. Qu, Z. A. Peng and X. Peng: Nano Lett., 1 (2001) 333.[8] L. Qu, Z. A. Peng and X. Peng: Nano Lett., 1 (2001) 333.
[9] T. Torimoto, J. P. Reyes, K. Iwasaki, B. Pal, T. Shibayama, K. Sugawara, H. Takahashi and B. Ohtani: J. Am. Chem. Soc., 125 (2003) 316.[9] T. Torimoto, J. P. Reyes, K. Iwasaki, B. Pal, T. Shibayama, K. Sugawara, H. Takahashi and B. Ohtani: J. Am. Chem. Soc., 125 (2003) 316.
[10] Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler: J. Phys. Chem., 100 (1996) 8927.[10] Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler: J. Phys. Chem., 100 (1996) 8927.
[11] M. Danek, K. F. Jensen, C. B. Murray and M. G. Bawendi: Chem. Mater. 8 (1996) 173.[11] M. Danek, K. F. Jensen, C. B. Murray and M. G. Bawendi: Chem. Mater. 8 (1996) 173.
[12] A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent: Nat. Nanotechnol., 7 (2012) 577.[12] AH Ip, SM Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, LR Rollny, GH Carey, A. Fischer, KW Kemp, IJ Kramer, Z. Ning, AJ Labelle, KW Chou, A. Amassian and EH Sargent: Nat. Nanotechnol., 7 (2012) 577.
본 발명의 목적은 종래 코어-쉘(core-shell) 구조로 만들기 어려웠던 비-카드뮴계 물질인, 나이트라이드계(Nitride) 물질, 바람직하게는 In-Ga-Al-N계 물질을 이용하여 단결정 단위로 이루어진, 단일 또는 다중 코어쉘 구조의 나이트라이드계 나노융합 구상체를 제공하는데 있다.An object of the present invention is to use a single crystal unit using a nitride material, preferably an In-Ga-Al-N-based material, which is a non-cadmium-based material that has been difficult to conventionally make a core-shell structure. To provide a nitride-based nano-fusion spherical structure of a single or multiple core shell structure.
본 발명의 다른 목적은 상기 단일 또는 다중 코어쉘 구조의 나이트라이드계 나노융합 구상체의 다양한 용도를 제공하는데 있다.Another object of the present invention is to provide various uses of the nitride-based nanofusion spherical body of the single or multiple core shell structure.
본 발명의 또 다른 목적은 플라즈마법을 이용하여 상기 단일 또는 다중 코어쉘 구조의 나이트라이드계 나노융합 구상체를 합성하는 방법을 제공하는데 있다.Still another object of the present invention is to provide a method for synthesizing the nitride-based nanofusion spherical body having the single or multiple core shell structure by using a plasma method.
본 발명은 상기 과제를 해결하기 위해, 본 발명은The present invention to solve the above problems, the present invention
단결정 단위로 이루어지는, Consisting of single crystal unit,
단일 코어-쉘 또는 다중 코어-쉘 구조를 형성하는 나이트라이드(Nitride)계 나노융합 구상체를 제공한다. Provided are nitride-based nanofusion spheres forming a single core-shell or multiple core-shell structure.
상기 구상체는 불규칙한 타원형, 무정형, 정형의 구 형상을 모두 포함하는 구형 또는 돌기형일 수 있다. The globules may be spherical or protruding, including all of irregular oval, amorphous, and spherical shapes.
상기 단일 코어-쉘 구조 구상체는, 코어가 직경 1 nm∼10nm 이고, 쉘은 두께가 0.1∼10 nm의 구조로 이루어진 것이 바람직하고, 상기 다중 코어-쉘 구조는 구상체는 직경 1 nm∼10nm의 코어 2 이상이 100nm ~ 1μm 직경의 쉘에 함침되어 있는 구형 또는 돌기형 형태의 구조로 이루어진 것이 바람직하다. 이 때, 다중 코어-쉘 구조의 구상체에서는 상기 코어가 쉘에 약 100개 내지 50,000개, 500개 내지 50,000개, 바람직하게는 500개 내지 40,000개, 더욱 바람직하게는 500개 내지 30,000개가 함침되어 있을 수 있다. Preferably, the single core-shell structure sphere has a core of 1 nm to 10 nm in diameter, and the shell has a structure of 0.1 to 10 nm in thickness, and the multiple core-shell structure has a sphere of 1 nm to 10 nm in diameter. It is preferable that the core 2 or more is made of a spherical or protruding structure in which a shell having a diameter of 100 nm to 1 μm is impregnated. At this time, in the spherical body of the multi-core-shell structure, the core is impregnated with about 100 to 50,000, 500 to 50,000, preferably 500 to 40,000, more preferably 500 to 30,000 There may be.
특히, 본 발명은 비-카드뮴계 물질로서 나이트라이드(Nitride)계 물질, 보다 바람직하게는 In, Ga, Al 및 나이트라이드(N)를 이용하여 종래 코어-쉘(core-shell) 구조로 만들기 어려웠던 문제점을 해결하는 구조체를 제공하는 것을 특징으로 한다.In particular, the present invention has been difficult to form a core-shell structure using a nitride material, more preferably In, Ga, Al and nitride (N) as a non-cadmium material. It is characterized by providing a structure for solving the problem.
상기 구상체의 코어는 III-V족 물질, 바람직하게는 III-V 질화물(Nitrides)일 수 있다. 구체적인 예로서, InN, InP, GaAs, GaP, GaInN, GaN 및 InGaAlN로 구성된 군에서 선택되는 1종 이상의 물질 등을 들 수 있고, 더욱 바람직하게는 InN 및/또는 GaInN를 사용한다. The core of the sphere may be a III-V material, preferably III-V nitride (Nitrides). Specific examples include one or more materials selected from the group consisting of InN, InP, GaAs, GaP, GaInN, GaN, and InGaAlN, and more preferably InN and / or GaInN.
상기 구상체의 쉘도 III-V족 물질, 바람직하게는 III-V 질화물(Nitrides)일 수 있다. 구체적인 예로서, GaN, InN, AlN, 및 AlGaN로 구성된 군에서 선택되는 1종 이상일 수 있으며, 가장 바람직하게는 GaN 및/또는 AlGaN를 사용한다. The shell of the sphere may also be a III-V material, preferably III-V nitride (Nitrides). As a specific example, it may be at least one selected from the group consisting of GaN, InN, AlN, and AlGaN, most preferably using GaN and / or AlGaN.
본 발명의 일 실시예에서, 구상체의 코어 물질은 GaN이고, 구상체 쉘 물질이 InN로 사용하였다. In one embodiment of the present invention, the core material of the sphere is GaN and the sphere shell material is used as InN.
따라서, 본 발명의 상기 코어-쉘 구조의 구상체의 가장 바람직한 예는 In, Ga, Al 및 N으로 이루어진 것을 특징으로 하는 나이트라이드계, 즉, In-Ga-Al-N계 나노융합 구상체이다. 이러한 나이트라이드(Nitride)계 구상체는 열적 안정성이 매우 높은 장점이 있다. Therefore, the most preferable example of the spherical body of the core-shell structure of the present invention is a nitride-based, that is, In-Ga-Al-N-based nano-fusion spherical body characterized in that consisting of In, Ga, Al and N . Such nitride-based globules have an advantage of very high thermal stability.
본 발명은 또한, 다른 구체예로서, 다음을 포함하는 상기 코어-쉘 구조의 나이트라이드계 나노융합 구상체를 합성하는 방법을 제공한다:The present invention also provides, as another embodiment, a method for synthesizing the nitride-based nanofusion spherical body of the core-shell structure comprising:
플라즈마법을 이용하되, Using the plasma method,
InN, GaInN, GaN 및 InGaAlN로 구성된 군에서 선택되는 1종 이상의 구상체 코어 물질이 5000 ~ 10000℃의 제1 온도에서 기화되어 나노-결정화된 코어를 형성하는 단계; 및 At least one spherical core material selected from the group consisting of InN, GaInN, GaN and InGaAlN is vaporized at a first temperature of 5000-10000 ° C. to form a nano-crystallized core; And
GaN, AlN, 및 AlGaN로 구성된 군에서 선택되는 1종 이상의 구상체 쉘 물질이 500 ~ 4000℃의 제2 온도에서 기화 또는 액화되어 상기 코어를 둘러싸는 쉘로 구상화하는 단계.At least one spherical shell material selected from the group consisting of GaN, AlN, and AlGaN is vaporized or liquefied at a second temperature of 500 to 4000 ° C. to spheroidize into a shell surrounding the core.
바람직하게는 상기 플라즈마법은 열 플라즈마법을 사용한다.Preferably, the plasma method uses a thermal plasma method.
이 때, 상기 제1 온도 및 제 2온도를 제공하는 것은 상기 구상체의 코어 및 쉘 형성을 위한 원료 물질을 각각 길이가 다른 튜브를 이용하여 플라즈마 반응 챔버 내의 다른 높이에 주입하는 방법으로 실시될 수 있다. In this case, the providing of the first temperature and the second temperature may be performed by injecting raw materials for forming the core and shell of the spherical body into different heights in the plasma reaction chamber using tubes having different lengths, respectively. have.
또한, 본 발명은 또 다른 구체예로서, 상기 나이트라이드계, 즉, In-Ga-Al-N계 나노융합 구상체의 다양한 용도를 제공한다. In another aspect, the present invention provides a variety of uses of the nitride-based, that is, In-Ga-Al-N-based nano-fusion spherical body.
특히, 본 발명의 나이트라이드계 나노융합 구상체는 양자점(Quantum dot)의 우수한 발광 특성을 발휘할 수 있으면서, 열적 안정성도 높을 뿐만 아니라, 구상체 서로간 응집이 잘 일어나지 않아 분산성 또한 매우 우수한 장점을 가지므로, 종래 양자점이 적용되던 분야에서 더 우수한 물성으로 광범위하게 활용될 수 있을 것이다. In particular, the nitride-based nano-fusion spherical body of the present invention can exhibit excellent luminescent properties of quantum dots, and also have high thermal stability, and do not easily coagulate with the spherical bodies. Therefore, it may be widely used for better physical properties in the field where the conventional quantum dot is applied.
도 1는 본 발명의 단일 또는 다중코어-쉘 구조의 나이트라이드계, 보다 바람직하게는 In-Ga-Al-N계 구상체의 모식도이다. 1 is a schematic diagram of a nitride-based, more preferably In-Ga-Al-N-based spherical body of the single or multicore-shell structure of the present invention.
도 2는 본 발명의 코어쉘 구조의 구상체 제조에 있어서의 온도 구배에 따른 듀얼 튜브를 포함하는 특징부를 중심으로 나타낸 개략도이다.Figure 2 is a schematic diagram mainly showing a feature including a dual tube according to the temperature gradient in the production of the spherical body of the core shell structure of the present invention.
도 3 내지 도 4는 본 발명의 일 구체예인 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체의 TEM 이미지이다.3 to 4 are TEM images of nitride-based nanofusion spheres having a multi-core-shell structure according to one embodiment of the present invention.
도 5는 본 발명의 일 구체예인 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체의 TEM-EDS 분석 결과이다.5 is a TEM-EDS analysis result of the nitride-based nano-fusion spherical body of a multi-core-shell structure of one embodiment of the present invention.
도 6은 312nm 파장의 UV-Lamp 이용하여 발광 특성을 확인해 본 결과이다.6 is a result of confirming the light emission characteristics using a UV-Lamp of 312nm wavelength.
"나노소재"는 나노미터 크기 영역(1~100 나노미터)에서 물성의 크기의존성을 이용하는 소재를 의미하는 것으로, 이러한 나노 소재의 응용은 분말(powder) 형태, 튜브(tube) 내지는 휘스커(whisker) 형태, 박막(thin film) 형태 그리고 벌크(bulk) 형태 등 다양한 형태로 가능하다. "Nanomaterial" refers to a material that utilizes the size dependency of physical properties in the nanometer size region (1-100 nanometers). Applications of such nanomaterials are in the form of powders, tubes or whiskers. Available in a variety of forms, including thin, thin film and bulk forms.
본 명세서에서 '약'이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.As used herein, 'about' refers to 30, 25, 20, 25, 10, 9, 8, 7, 6, by reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length. By amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by 5, 4, 3, 2 or 1%.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "함유하다" 및 "포함하다"란 말은 제시된 단계 또는 원소, 또는 단계 또는 원소들의 군을 포함하나, 임의의 다른 단계 또는 원소, 또는 단계 또는 원소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, the words “comprises” and “comprises” include, but are not limited to, any other step or element, or any step or element, as indicated in the context, unless otherwise required. It should be understood that this group is not excluded.
본 발명은 양자점(Quantum dot)의 특성을 발휘할 수 있는 코어쉘 구조의 나이트라이드(Nitride)계 나노융합 구상체에 관한 것이다.The present invention relates to a nitride-based nano fusion spherical body having a core shell structure capable of exhibiting the characteristics of a quantum dot.
특히, 카드뮴(Cd)을 사용하지 않는(Cd-free), 나이트라이드계(Nitride) 물질, 바람직하게는 In-Ga-Al-N계 물질로 이루어진 단일 또는 다중 코어쉘 구조의 나노융합 구상체에 관한 것이다.In particular, the nano-fusion spherical body having a single or multiple core shell structure composed of a Cd-free, nitride-based material, preferably an In-Ga-Al-N-based material, It is about.
그러므로, 본 발명은 일 관점에서, 단일 또는 다중 코어-쉘(core-shell) 구조를 가지는 구형 또는 돌기형의 나이트라이드(Nitride)계 나노융합 구상체에 관한 것이다. Therefore, in one aspect, the present invention relates to a spherical or protruding nitride-based nanofusion spherical body having a single or multiple core-shell structure.
가장 바람직하게는 단일 코어-쉘 구조 또는 다중 코어-쉘 구조를 가지는 구형의 In-Ga-Al-N계 구상체에 관한 것이다.Most preferably, the present invention relates to spherical In-Ga-Al-N-based globules having a single core-shell structure or a multi-core-shell structure.
상기 "단일 코어-쉘 구조"는 하나의 코어 및 이를 둘러싼 단일층의 쉘 구조로 이루어진, 도 1의 모식도 A에 따른 구조를 의미하고, "다중 코어-쉘 구조"는 복수의 코어 및 이를 둘러싸면서 포함하는 도 1의 모식도 B에 따른 구조를 의미한다. The term "single core-shell structure" means a structure according to the schematic diagram A of Figure 1, consisting of one core and a single layer shell structure surrounding the core, and "multi-core-shell structure" means a plurality of cores and It means the structure according to the schematic diagram B of FIG.
본 발명의 나이트라이계 나노융합 구상체는 이러한 단일 코어-쉘 구조의 구상체 및 다중 코어-쉘 구조의 구상체를 모두 포함한다.The nitrile-based nanofusion spheres of the present invention include both spheres of such single core-shell structure and spheres of multiple core-shell structure.
본 발명의 "나노융합 구상체"는 나노미터 크기 영역(1~100 나노미터)을 가지는 구형의 단위체 또는 이들이 융합되어 구상화(spheroidization)된 형태의 구조체를 모두 포함하여 나타내는 것으로, 본 발명에서는 바람직하게 직경 약 1~50 nm, 1~40 nm, 1~30 nm, 1~20 nm, 1~10 nm 등의 크기를 가지는 단위체 및 이들이 융합되어 형성하는 직경 100 nm ~ 1 μm의 구형 또는 돌기형의 구조체를 모두 포함한다. The "nanofusion spherical body" of the present invention includes both spherical units having nanometer-sized regions (1-100 nanometers) or structures in the form of spheroidized by fusion thereof, and preferably in the present invention. Units having a diameter of about 1 to 50 nm, 1 to 40 nm, 1 to 30 nm, 1 to 20 nm, 1 to 10 nm and spherical or protruding shapes having a diameter of 100 nm to 1 μm formed by fusion Contains all the structures.
또한, 본 발명의 "나이트라이드(Nitride)계 물질"은 음이온으로 질소를 포함하는 물질을 총칭하여 일컫지만, 본 발명에서는 순질화물뿐만 아니라, 산질화물(oxynitirde)도 함께 포함하여 사용될 수 있다. 이를 생성하는 방법으로 임의의 공지 방법을 이용할 수 있지만, 예를 들어 암모노써멀합성법(Ammonothermal synthesis)을 이용할 수 있다. 상기 암모니아는 다른 어떤 용매보다 물과 비슷한 물리적 성질을 가지고 있기 때문에 암모노써멀 합성 기술은 질소를 기반으로 한 화합물 합성에 유리하다. 질화물계 물질은 우수한 전자이동도, 절연파괴전압, 포화전자속도, 및 열전도도를 나타내고, 이에 따라 고주파, 고출력트랜지스터 재료로도 많은 가능성을 갖고 있다. 또한, N의 자원 고갈도 염려할 필요가 없기에 미래의 재료로 촉망되는 장점이 있다. In addition, although "nitride-based material" of the present invention is generically referred to a material containing nitrogen as an anion, in the present invention, not only pure nitride but also oxynitride may be used together. Any known method may be used as a method for producing this, but, for example, ammonothermal synthesis may be used. The ammonothermal synthesis technique is advantageous for the synthesis of compounds based on nitrogen because the ammonia has physical properties similar to water than any other solvent. Nitride-based materials exhibit excellent electron mobility, dielectric breakdown voltage, saturated electron velocity, and thermal conductivity, and thus have great potential as high frequency and high output transistor materials. In addition, since there is no need to worry about resource depletion of N, there is an advantage that is promising as a material of the future.
또한, 본 발명의 상기 "나노융합 구상체"는 단결정 단위의 물질로 이루어져 있음을 특징으로 한다. 즉, 구상체를 형성하는 코어 및 쉘 구조는 이러한 주기적으로 배열된 원자구조를 갖는 단결정 단위로 이루어져 있다. 지금까지 일반적으로 알려진 용융액으로부터 결정을 성장시키는 것은 극히 불가능했었고 일부 연구에서는 고온, 고압 분위기에서 III-V족 물질과 N2 가스를 반응시켜 벌크(bulk) 형태로 이루어지는 경우가 있었지만, 결정성이 좋지 않은 문제점이 있었지만, 본 발명의 구상체는 단결정 단위로 이루어진, 고효율의 결정체를 형성하고 있다.In addition, the "nanofusion spherical body" of the present invention is characterized by consisting of a single crystal unit material. In other words, the core and shell structures forming the spherical body consist of single crystal units having such periodically arranged atomic structures. Up to now it has been extremely impossible to grow crystals from commonly known melts, and some studies have resulted in bulk formation by reacting Group III-V materials with N 2 gas in high temperature and high pressure atmospheres, but with good crystallinity. Although there was a problem, the spherical body of the present invention forms a highly efficient crystal composed of a single crystal unit.
이하, 단일 코어-쉘 구조를 중심으로 보다 상세하게 설명한다.Hereinafter, the single core-shell structure will be described in more detail.
코어(Core)Core
본 발명의 구상체의 코어는 단결정의 III-V족 물질, 더욱 바람직하게는 III-V 질화물(Nitrides) 물질로 이루어져 있고, 쉘과 조합시, 발광성 구조체가 생성된다.The core of the spherical body of the present invention consists of a single crystal group III-V material, more preferably III-V nitride (Nitrides) material, and when combined with a shell, a luminescent structure is produced.
구체적인 예로서, InN, GaInN, GaN 및 InGaAlN로 구성된 군에서 선택되는 1종 이상의 물질 등을 들 수 있고, 가장 바람직하게는 InN 및/또는 GaInN를 사용하지만, 이에 한정되는 것은 아니다. 본 발명의 일 실시예에서는 InN를 사용하였다.상기 코어는 2개 이상의 원소를 포함할 수 있다. Specific examples thereof include one or more materials selected from the group consisting of InN, GaInN, GaN, and InGaAlN, and most preferably InN and / or GaInN, but are not limited thereto. InN is used in one embodiment of the present invention. The core may include two or more elements.
InN은 광학적 특성면에서 밴드 갭 에너지가 0.7 ~ 1.9eV의 넓은 범위에서 특성을 보이고 있으며, GaInN 화합물은 높은 전자 이동도와 높은 포화 속도 등 광전자 소자에 유리한 광, 전기적 특성들을 가지고 있다.InN exhibits a wide range of band gap energy in the range of 0.7 to 1.9 eV in terms of optical properties. GaInN compounds have optical and electrical properties that are advantageous for optoelectronic devices such as high electron mobility and high saturation rate.
일 구체예에서, 코어는 직경이 약 1 nm∼40 nm, 약 1 nm∼30 nm, 약 1 nm∼20 nm, 또는 약 1 nm∼10nm일 수 있고, 바람직하게는 약 1 nm∼10nm이다.In one embodiment, the core may be about 1 nm to 40 nm, about 1 nm to 30 nm, about 1 nm to 20 nm, or about 1 nm to 10 nm, preferably about 1 nm to 10 nm.
쉘(Shell)Shell
본 발명의 구상체의 쉘은 상기 코어의 반도체와 상이하고 코어와 결합되어, 코어의 표면층을 형성하는 반도체이다. 쉘은 통상 코어보다 더 높은 밴드갭을 가짐으로써 코어를 부동태화시킨다. The shell of the spherical body of the present invention is a semiconductor that is different from the semiconductor of the core and is bonded to the core to form the surface layer of the core. The shell typically passivates the core by having a higher bandgap than the core.
본 발명의 쉘 구조는 단결정의 III-V 질화물(Nitrides) 또는 III-V 산화물(Oxides)일 수 있고, 바람직하게는 III-V 질화물(Nitrides)이다. The shell structure of the present invention may be single crystal III-V nitride (Nitrides) or III-V oxide (Oxides), preferably III-V nitride (Nitrides).
예를 들어, 알루미늄 산화물, 실리콘 산화물, 실리콘 질화물, 실리콘 산화질화물, 마그네슘 산화물, 인듐 산화물, 하프늄산화물, 아연산화물, 주석산화물, 타니타늄산화물, 망간 산화물, 텅스텐산화물 및 마그네슘 불화물로 이루어진 군에서 선택된 1종을 사용할 수 있다. 더욱 바람직한 예로서, SiO2, Al2O3, ZnS, GaN, InN, AlN, AlGaN 등을 사용할 수 있다. 더더욱 바람직하게는 GaN, AlN, 및 AlGaN, 가장 바람직하게는 GaN 및/또는 AlGaN를 사용할 수 있지만, 이에 한정되는 것은 아니다. 본 발명의 일 실시예에서는 GaN를 사용하였다.For example, 1 selected from the group consisting of aluminum oxide, silicon oxide, silicon nitride, silicon oxynitride, magnesium oxide, indium oxide, hafnium oxide, zinc oxide, tin oxide, tanitanium oxide, manganese oxide, tungsten oxide and magnesium fluoride Species can be used. As a more preferred example, SiO 2 , Al 2 O 3 , ZnS, GaN, InN, AlN, AlGaN and the like can be used. Even more preferably GaN, AlN, and AlGaN, most preferably GaN and / or AlGaN, may be used, but is not limited thereto. In one embodiment of the present invention, GaN was used.
상기 GaN은 반도체로 Wurtzite crystal 구조를 지닌 매우 단단한 물질로서, 와이드 밴드 갭은 3.4eV이고, 이러한 3.4eV의 밴드 갭에서 발생하는 빛은 파란색 ~ 보라색의 파장에 해당하는 빛이며, 이러한 특성 때문에 광전자(optoelectronic), 고전력 및 고주파(high-power & high frequency) 기기나 발광 다이오드에 주로 사용될 수 있다. The GaN is a semiconductor, a very hard material with a Wurtzite crystal structure, the wide band gap is 3.4eV, the light generated in the 3.4eV band gap is light corresponding to the wavelength of blue to purple, because of this characteristic It can be used mainly in optoelectronic, high-power & high frequency devices or light emitting diodes.
일 구체예에서, 단일 코어-쉘 구조에서 쉘의 크기는 두께가 약 0.1∼10 nm, 약 0.1∼5 nm, 또는 약 0.1∼2 nm일 수 있다(도 1 A). In one embodiment, the size of the shell in a single core-shell structure may be about 0.1-10 nm, about 0.1-5 nm, or about 0.1-2 nm in thickness (FIG. 1A).
다중-코어 쉘 구조의 나이트라이드계 나노융합 구상체Nitride-based nanofusion spheres with multi-core shell structure
한편, 본 발명은 다른 관점에서, 상기 단일 코어를 다수 포함하는, 100nm ~ 1μm 직경의 돌기형 또는 구형의 형태를 가질 수 있다. 이를 본원 명세서에서는 단결정 단위로 이루어진 다중-코어 쉘 구조의 나이트라이드계 나노융합 구상체로 나타낸다.On the other hand, in another aspect, the present invention may have a protrusion or spherical shape of 100nm ~ 1μm diameter, including a plurality of the single core. This is referred to herein as a nitride-based nanofusion sphere of multi-core shell structure composed of single crystal units.
상기 구형이라 함은 불규칙한 타원형, 무정형, 정형의 구 형상을 모두 포함한다. The spherical shape includes all irregular oval, amorphous, and spherical shapes.
상기 다중 코어-쉘 구조는, 예를 들어 직경 약 1 nm ∼ 10nm의 코어 다수(복수개)가 100nm ~ 1μm 직경의 쉘 구조에 함침되어 있는 구조를 이루고 있다(도 1 B). The multi-core-shell structure has a structure in which, for example, a plurality of cores (multiple) having a diameter of about 1 nm to 10 nm are impregnated into a shell structure having a diameter of 100 nm to 1 μm (FIG. 1B).
다중 코어-쉘 구조의 구상체에서는 상기 0.1∼10 nm 직경의 단일 코어가 수백, 수 천, 수 만개 이상, 즉, 쉘에 약 100개 내지 50000개, 바람직하게는 500 내지 50000개, 더욱 바람직하게는 500 내지 40000개 정도 함침되어 있을 수 있다. 예를 들어, 500~30000개, 500~20000개, 500~10000개, 1000~30000개, 1000~20000개, 1000~10000개 등 수 백개 이상의 단일 코어가 쉘에 함침되어 있을 수 있다. In the spherical body of the multi-core-shell structure, the single core having a diameter of 0.1 to 10 nm is hundreds, thousands, tens of thousands or more, that is, about 100 to 50000, preferably 500 to 50000, more preferably, in the shell. May be impregnated with about 500 to 40000 pieces. For example, hundreds of single cores, such as 500 to 30000, 500 to 20000, 500 to 10,000, 1000 to 30000, 1000 to 20000, and 1000 to 10,000, may be impregnated in the shell.
본 발명에서 가장 바람직한 구체예로서는 이러한 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체를 들 수 있다. As the most preferred embodiment in the present invention, such a multiple core-shell structured nitride-based nanofusion spherical body may be mentioned.
특히, 본 발명의 상기 다중 코어-쉘 양자점은 종래 나노 크기의 양자점이 서로 응집되어 분산시키기 어려웠던 문제를 해결한다. In particular, the multi-core-shell quantum dots of the present invention solve the problem that it was difficult to agglomerate and disperse quantum dots of the conventional nano-size.
즉, 100nm ~ 1μm 직경을 가지는 다중 코어-쉘 양자점은 표면에 나노 크기의 코어 입자가 함침되어 있는 형태이기 때문에, 뭉침 현상이 나타나지 않으므로 분산이 용이하고 대기 중에서 안정한 장점이 있다. That is, since a multi-core-shell quantum dot having a diameter of 100 nm to 1 μm is formed in which nano-sized core particles are impregnated on the surface, there is no agglomeration phenomenon and thus it is easy to disperse and stable in the air.
그러므로, 본 발명의 다중 코어-쉘 양자점은, 나노 크기에 의한 상기 응집을 막기위해 종래에는 표면에 다른 관능기를 부여하는 추가의 공정이 필요했었던 번거로운 문제점 또한 해결한다.Therefore, the multi-core-shell quantum dots of the present invention also solve the cumbersome problem that previously required additional processes to impart other functionalities to the surface to prevent such aggregation by nano size.
또한, 상기 다중 코어-쉘 구조의 양자점은 코어를 다수 포함하면서 이를 둘러싼 쉘 구조를 형성하고 있기 때문에 목적하는 광학적 전기적 특성을 극대화시킬 수 있을 뿐 아니라, 양자점의 효율과 안정성을 함께 높을 수 있는 장점이 있다. In addition, since the quantum dot of the multi-core-shell structure includes a plurality of cores and forms a shell structure surrounding the core, the quantum dot can not only maximize the desired optical and electrical characteristics but also increase the efficiency and stability of the quantum dot. have.
이처럼, 본 발명의 바람직한 구체예로서의 나이트라이드계 나노융합 구상체는 단결정 단위로 이루어진, GaN/InN, GaInN/AlGaN, InN/AlN, GaInN/AlN, InN/AlGaN 등의 코어-쉘 구조의 구상체를 포함한다. 즉, 본 발명의 나이트라이드계 나노융합 구상체는 In, Ga, Al 및 N으로 이루어진 것을 특징으로 한다.As such, the nitride-based nanofusion spherical body as a preferred embodiment of the present invention comprises a core-shell spherical body made of single crystal units such as GaN / InN, GaInN / AlGaN, InN / AlN, GaInN / AlN, InN / AlGaN. Include. That is, the nitride-based nanofusion spherical body of the present invention is characterized in that consisting of In, Ga, Al and N.
그러므로, 종래 카드뮴 기반의 양자점이 가지고 있던 독성 문제와 더불어 합성 또한 비 친환경적이고 산업화가 어려울 만큼의 소량 생산만이 가능하여 상용화에 큰 걸림돌로 작용하고 있었던 문제점도 함께 해결한다..Therefore, in addition to the toxicity problem of the conventional cadmium-based quantum dots, the synthesis is also non-environmental and it is possible to produce only a small amount as difficult to industrialize, it also solves the problem that acted as a major obstacle to commercialization.
요컨대, 다음과 같은 기술적 장점을 발휘할 수 있다:In short, the following technical advantages can be achieved:
(i) 발광효율과 안정성이 우수하면서 카드뮴과 같은 독성이 없는 친환경 양자점 유사 구조체로 활용할 수 있다. (i) It can be used as an eco-friendly quantum dot-like structure with excellent luminous efficiency and stability and no toxicity such as cadmium.
현재 상용화되고 있는 효율이 우수한 양자점은 카드뮴 화합물로 이루어져 있어서 환경과 인체에 미치는 독성에 대한 우려가 있지만, 본 발명의 카드뮴이 없는 친환경 나이트라이드계 나노융합 구상체를 이용하여 발광 효율이 우수한 QD 필름 또는 QLED를 개발할 수 있다. The commercially available high efficiency quantum dots are made of cadmium compounds, which may cause toxicity to the environment and the human body. QLED can be developed.
(ii) 본 발명의 구상체가 균일하게 분포하는 박막을 제작할 수 있다. (ii) The thin film which the spherical body of this invention distributes uniformly can be produced.
종래 양자점 표면은 짧은 유기 리간드가 덮고 있는데 박막을 형성할 때 양자점(QD)이 서로 엉겨 붙어서 균일한 발광층을 형성하기 어렵다. 그리고 QD 필름을 개발하기 위해서는 고분자 매트릭스에 QD를 균일하게 분산시켜야 하는데 상분리가 잘 일어나서 어려움이 있다. Conventional quantum dot surface is covered with a short organic ligand, it is difficult to form a uniform light emitting layer because the quantum dots (QD) are entangled with each other when forming a thin film. And in order to develop a QD film, it is necessary to uniformly disperse the QD in the polymer matrix.
그러나, 본 발명의 다중 코어 쉘 구조의 나이트라이드계 나노융합 구상체를 이용하면 이러한 응집이 없고 분산성이 매우 뛰어나 균일한 박막을 제작할 수 있다. However, when the nitride-based nanofusion spherical body of the multi-core shell structure of the present invention is used, a uniform thin film can be produced because there is no such aggregation and dispersibility is very excellent.
(iii) 다수의 코어를 포함하고 있는 본 발명의 다중 코어 쉘 구조의 나이트라이드계 나노융합 구상체는 종래 QLED의 효율과 수명을 동시에 높일 수 있다.(iii) The nitride-based nanofusion spherical body of the multi-core shell structure of the present invention including a plurality of cores can simultaneously increase the efficiency and lifetime of a conventional QLED.
그러므로, 본 발명은 다른 관점에서 상기 나이트라이드계(Nitride) 물질, 바람직하게는 In-Ga-Al-N계 물질로 이루어진 단일 또는 다중 코어쉘 구조의 나노융합 구상체의 다양한 용도에 관한 것이다. The present invention therefore relates in various respects to the various uses of a single or multiple coreshell structured nanofusion spherical body of said nitride material, preferably In-Ga-Al-N-based material.
특히, 본 발명의 단일 또는 다중 코어쉘 구조의 나이트라이드계(Nitride) 나노융합 구상체는 종래 알려진 양자점(Quantum dot)의 특성 및 이의 개량된 특성을을 발휘할 수 있다. In particular, the nitride-based nano fusion spherical body of the single or multiple core shell structure of the present invention can exhibit the properties of the conventionally known quantum dots and improved properties thereof.
즉, 본 발명의 구상체는 고체의 벌크상태와 일반적인 유기화합물과 비교하여 매우 상이한 물성변화를 나타내며 이러한 특성을 기반으로 하여 전자, 에너지, 의료 등 다양한 분야로의 무한한 응용 가능성을 가지고 있다.That is, the spherical body of the present invention exhibits very different physical property changes in comparison with the bulk state of a solid and a general organic compound, and has infinite possibilities for various fields such as electronics, energy, and medicine based on these properties.
일 구체예로, 발광다이오드(light emitting diode : LED)의 여기광을 파장 변환하여 파장 변환광을 발생시키는 LED용 구상체에 사용될 수 있다.In one embodiment, the light emitting diode (LED) can be used in the LED sphere for generating a wavelength conversion light by converting the excitation light of the light emitting diode (LED).
다른 구체예로 구상체을 태양전지에 사용하게 되면, 보다 간단한 공정으로 저렴한 가격의 태양 전지의 제작이 가능해 질 수 있다. 특히, 구상체의 크기 제어에 따라 단파장에서부터 장파장에 이르기까지 태양광을 흡수할 수 있어 기존의 태양전지 보다 훨씬 넓은 영역의 광흡수가 가능해져 태양광 스펙트럼 전체를 커버할 수 있고, 이로 인해 실리콘 태양전지보다 높은 효율을 나타내는 차세대 태양전지를 개발할 수 있다.In another embodiment, when the spherical body is used in a solar cell, it may be possible to manufacture a solar cell at a lower cost in a simpler process. In particular, according to the size control of the globular body, it is able to absorb sunlight from short wavelength to long wavelength, so it can absorb light in a much wider area than the conventional solar cell, thereby covering the entire solar spectrum. The next generation solar cell showing higher efficiency than the battery can be developed.
또 다른 구체예로, 구상체의 응용 중에서 바이오 소자 분야의 적용은 많은 기대를 갖게 한다. 구상체의 크기는 생체 내의 중요한 분자나 단백질의 크기와 비슷하고 또 그 크기에 따라 정확한 가시광 영역대의 파장을 발산하도록 조절할 수 있기때문에 세포 이미징(cell imaging), 약물전달(drug delivery) 등에 효과적으로 쓰일 수 있다. 즉, 특정한 세포에 반응하는 바이오마커를 구상체에 붙이면 세포의 이미징 및 추적이 가능하게 되고 이를 이용하여 암 진단과 치료를 할 수 있게 된다. 그러므로, 생체친화적인 구상체 및 특정 세포에 반응하는 바이오마커의 개발이 우선시 되어야 할 것이다. 한편, 구상체은 특정 질병에 걸린 세포를 추적할 수 있는 능력을 가질 수 있기 때문에 유전자 혹은 약물 전달 매체로 이용될 수 있는 높은 가능성이 있다.In another embodiment, the application of the field of biodevices among the applications of globular bodies has high expectations. The size of the globular body is similar to the size of an important molecule or protein in the living body, and the size of the globular body can be controlled to emit an accurate visible wavelength range so that it can be effectively used for cell imaging and drug delivery. have. In other words, by attaching a biomarker that reacts to a specific cell to a globular body, it becomes possible to image and track the cell and use it to diagnose and treat cancer. Therefore, the development of biocompatible globules and biomarkers that respond to specific cells should be a priority. Globules, on the other hand, have the potential to be used as genes or drug delivery media because they can have the ability to track cells with specific diseases.
이 밖에도, 다양한 나노소재의 다양한 분야에 활용될 수 있을 것이다.In addition, it may be used in various fields of various nanomaterials.
또한, 본 발명은 다른 관점에서 In addition, the present invention in another aspect
플라즈마법을 이용하는, 바람직하게는 열 플라즈마법을 이용하는, 양자점 코어 물질이 제1 온도에서 기화되어 나노-결정화된 코어를 형성하는 단계; 및 양자점 쉘 물질이 제1 온도보다 낮은 제2 온도에서 기화 또는 액화되어 상기 코어를 둘러싸는 쉘로 구상화하는 단계를 포함하는, 코어-쉘 구조의 양자점을 합성하는 방법에 관한 것이다.Vaporizing the quantum dot core material at a first temperature using a plasma method, preferably using a thermal plasma method, to form a nano-crystallized core; And spheroidizing the quantum dot shell material into a shell surrounding the core by vaporizing or liquefying at a second temperature lower than the first temperature.
일 구체예로서, 다음과 같은 단계를 포함하는, 단일 또는 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체를 합성하는 방법에 관한 것이다:In one embodiment, the present invention relates to a method of synthesizing a single or multiple core-shell structured nitride-based nanofusion spherical body comprising the following steps:
플라즈마법을 이용하되, Using the plasma method,
InN, GaInN, GaN 및 InGaAlN로 구성된 군에서 선택되는 1종 이상의 구상체 코어 물질이 5000 ~ 10000℃의 제1 온도에서 기화되어 나노-결정화된 코어를 형성하는 단계; 및 At least one spherical core material selected from the group consisting of InN, GaInN, GaN and InGaAlN is vaporized at a first temperature of 5000-10000 ° C. to form a nano-crystallized core; And
GaN, AlN, 및 AlGaN로 구성된 군에서 선택되는 1종 이상의 구상체 쉘 물질이 500 ~ 4000℃의 제2 온도에서 기화 또는 액화되어 상기 코어를 둘러싸는 쉘로 구상화하는 단계.At least one spherical shell material selected from the group consisting of GaN, AlN, and AlGaN is vaporized or liquefied at a second temperature of 500 to 4000 ° C. to spheroidize into a shell surrounding the core.
상기 플라즈마법은, 당업자가 공지의 방법을 적절히 변형하여 수행할 수 있을 것이다. The plasma method may be performed by those skilled in the art by appropriately modifying known methods.
예를 들어, 균일한 나노 입자를 제조할 수 있는, 고주파 열 플라즈마(RF)를 이용할 수 있을 것이나, 이제 제한되지 않는다. For example, high frequency thermal plasma (RF) may be used, which may produce uniform nanoparticles, but is not limited thereto.
다만, 바람직하게는, 상기 제1 온도 및 제 2온도를 제공하기 위해, 상기 구상체의 코어 및 쉘 형성을 위한 원료 물질을 각각 길이가 다른 튜브를 이용하여 플라즈마 반응 챔버 내의 다른 높이에 주입하는 방법으로 실시될 수 있다. Preferably, however, in order to provide the first temperature and the second temperature, a raw material for forming the core and shell of the spherical body is injected at different heights in the plasma reaction chamber using tubes having different lengths, respectively. It can be carried out as.
즉, 열 플라즈마 공법에서의 온도 구배 기능을 활용하여, 양자점의 코어 형성 및 쉘 형성에 필요한 각각의 온도 환경을 동시에 또는 연속적으로 제공함으로써, 단일 또는 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체를 in situ 합성할 수 있다(도 2). In other words, by utilizing the temperature gradient function in the thermal plasma method, by simultaneously or successively providing the respective temperature environment for the core and shell formation of the quantum dots, nitride-based nano-fusion spherical structure of single or multiple core-shell structure Can be synthesized in situ (FIG. 2).
합성 원리를 간단히 설명하면 다음과 같다:A brief description of the principle of synthesis follows:
쉘의 원료 분말을 주입은 긴 튜브를 통해 플라즈마 반응부의 아래쪽의 저온부, 바람직하게는 약 4000℃ 이하의 제2 저온 환경에서 이루어지게 되므로 기화에 충분한 온도 및 시간이 없어 기화가 완전히 이루어지지 않고 표면의 일부 기화 또는 액화가 이루어져, 상기 코어 물질의 나노 결정에 결합하여 캡핑(capping)에 따른 구형의 쉘 구조 또는 다수의 코어가 함침되어 있는 100nm~1μm 직경의 구형 또는 돌기형의 쉘 구조를 형성하게 된다. Injection of the raw material powder of the shell is carried out in a low temperature portion of the lower portion of the plasma reaction portion, preferably about 4000 ° C. or less through a long tube, so that there is not enough temperature and time for vaporization, so that the vaporization is not completed. Partial vaporization or liquefaction is performed to bind to the nanocrystals of the core material to form a spherical shell structure due to capping or a spherical or protruding shell structure having a diameter of 100 nm to 1 μm in which a plurality of cores are impregnated. .
이러한 플라즈마 방법에 의해 수득되는 구상체는 단일 코어-쉘 구조의 양자점 및 다중 코어-쉘 구조의 양자점이 혼합되어 수득될 수 있다. 또한, 이러한 방법에 따르면, 상대적으로 많은 양의 원료물질을 연속적으로 공급하는 것이 가능하므로, 구상체의 연속 및 대량 생산이 가능하다.The spheroid obtained by this plasma method can be obtained by mixing a quantum dot of a single core-shell structure and a quantum dot of a multiple core-shell structure. In addition, according to this method, since it is possible to continuously supply a relatively large amount of raw materials, it is possible to continuously and mass production of the spherical body.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
제조예 1: Ga-In-N계 나노융합 구상체의 제조Preparation Example 1 Preparation of Ga-In-N Nano Fusion Spheres
RF 열플라즈마 장치를 이용하여 Ga-In-N계 나노융합 구상체를 제조하였다. Ga-In-N-based nanofusion spheres were prepared using an RF thermal plasma apparatus.
플라즈마 처리장치에 도입되는 센트럴 가스, 쉬스 가스, 캐리어 가스 및 퀜칭 가스로서 아르곤 가스를 사용하였고, 나이트라이드를 생성시키기 위하여 질화 반응을 유도하는 암모니아 및 질소 가스를 혼합하여 도입하였다.Argon gas was used as the central gas, the sheath gas, the carrier gas and the quenching gas introduced into the plasma processing apparatus, and ammonia and nitrogen gas inducing a nitriding reaction were mixed and introduced to generate nitride.
구체적으로, 센트럴 가스로 아르곤 가스를 사용하여 30 L/min의 유량으로 도입하고, 쉬스 가스로 아르곤 가스 80 L/min에 질화 반응을 유도하기 위한 암모니아 가스를 5 L/min 혼합하여 도입하였다. 또한, 원료인 InN와 GaN를 이송시키는 캐리어 가스는 질소 가스를 10 L/min의 유량으로 주입하였다.Specifically, the gas was introduced at a flow rate of 30 L / min using argon gas as the central gas, and 5 L / min was introduced by mixing ammonia gas for inducing a nitriding reaction to 80 L / min of argon gas as the sheath gas. In addition, the carrier gas which conveys InN and GaN which are raw materials injected nitrogen gas at the flow volume of 10 L / min.
급격한 냉각을 위한 퀜칭 가스는 아르곤 가스를 사용하여 벽면 급량부에 설치되어 있는 직경 약 1mm 48개의 노즐로부터 280 L/min의 속도로 주입하였고, 중앙에 별도의 퀜칭 노즐을 하단으로부터 도입하여 동일한 위치에 100 L/min의 유량으로 추가 투입하였다.Quenching gas for rapid cooling was injected at a rate of 280 L / min from 48 nozzles of approximately 1 mm in diameter installed in the wall feed section using argon gas, and a separate quenching nozzle was introduced from the lower end at the same position in the center. Additional injection was carried out at a flow rate of 100 L / min.
한편, 플라즈마를 발생시키기 위한 인가 전력은 DC Plate power 기준으로 20kW를 인가하여 고온 열 플라즈마를 생성시키고, 시스템 내부의 압력은 200 torr로 유지하였다. On the other hand, the applied power for generating the plasma was applied to 20kW based on the DC plate power to generate a high temperature thermal plasma, the pressure inside the system was maintained at 200 torr.
플라즈마 전극부에서는, 서로 다른 길이를 가지는 듀얼 튜브를 장착하여 원료 주입에 이용하였다. 단차 노즐을 통해 짧은 길이의 주입관에 구상체 코어 원료물질인 InN를 주입하였고, 긴 길이의 주입관에 구상체 쉘 원료 물질인 GaN를 각각 주입하며, 주입하는 질량비율은 약 1 : 2로 조절하였다.In the plasma electrode portion, dual tubes having different lengths were mounted and used for raw material injection. InN, a spherical core raw material, is injected into a short injection tube through a step nozzle, and GaN, a spherical shell raw material, is injected into a long injection tube, and the mass ratio of injection is adjusted to about 1: 2. It was.
이 때, 짧은 길이의 주입관의 노즐은 전극 상부로부터 20cm 아래 위치인 전극 중앙높이에 위치하게 하였고, 길이가 긴 주입관의 노즐은 전극 상부로부터 38cm 아래에 위치하게 설치하였다.At this time, the nozzle of the short injection tube was positioned at the center height of the electrode 20 cm below the upper electrode, and the nozzle of the long injection tube was installed 38 cm below the upper electrode.
이러한 형태로 설치함으로써, 상기 노즐들이 전극부를 지나 핫존(hot zone) 중간에 위치되어, 짧은 주입관으로부터 주입되는 InN는 완전히 기화되어 내려오고, 긴 주입관에 주입되는 GaN는 표면의 일부가 기화되면서 대부분의 표면은 용융된 액적상태를 유지하며 내려올 수 있도록 하였다. By installing in this form, the nozzles are positioned in the middle of the hot zone past the electrode, so that InN injected from the short injection tube is completely vaporized and GaN injected into the long injection tube is vaporized. Most surfaces were allowed to descend while maintaining molten droplets.
다음으로, 급냉각부에 퀜칭 가스를 주입하여 냉각시킴으로써 단일 또는 다중 코어-쉘 구조의 나이트라이드계 나노융합 구상체 혼합물을 수득하였다. Next, a quenching gas was injected into the quenching section and cooled to obtain a nitride-based nanofusion spherical mixture having a single or multiple core-shell structure.
상기 퀜칭 가스는 다음과 같은 2가지 역할을 수행하면서 본 발명의 단일 또는 다중 코어 쉘 구조의 나노융합 구상체를 형성한다: (i) InN이 수 나노크기에서 핵 성장을 멈추게 하기 위한 냉각의 역할, 및 (ii) 측면과 아래로부터 위쪽으로 도입되는 퀜칭 가스에 의한 유체 유동을 복잡하게 생성시켜 이러한 입자 간의 충돌을 유도하는 역할.The quenching gas forms a single or multi-core shell structured nanofusion spherical body of the present invention, performing two roles: (i) the role of cooling to stop InN from nucleus growth at several nanoscales, And (ii) intricately creating a fluid flow by the quenching gas introduced from side to bottom and upwards to induce collisions between these particles.
제조된, 융합 구상체는 유체 흐름에 따라 이동되어 콜렉터의 금속 소결필터에 흡착되고, 흡착된 입자를 흡착 공정의 유체 흐름의 반대방향으로 고압의 가스를 순간적으로 불어 내는 블로우 백 공정을 통해 분리하였다. 그리고, 이어서 자유 낙하에 의해 하단으로 이동시킴으로써 수거부를 통해 포집 수득하였다. The prepared fusion spherical bodies were moved along with the fluid flow and adsorbed to the collector's metal sintered filter, and the adsorbed particles were separated through a blowback process in which a high pressure gas was blown out in the opposite direction of the fluid flow in the adsorption process. . Then, it was collected through a collecting part by moving to the lower end by free fall.
실시예 1 : 투과전자현미경(TEM)에 의한 분석Example 1 Analysis by Transmission Electron Microscopy (TEM)
수득한 나노융합 구상체를 투과전자현미경(TEM)을 이용하여 분석하고, 이미지를 수득하여 도 3 내지 도 5에 나타내었다.The obtained nanofusion spheres were analyzed using a transmission electron microscope (TEM), and images were obtained and shown in FIGS. 3 to 5.
도 3에 도시한 바와 같이, 전체 직경 약 10 nm을 가지는 단일 코어들이 큰 쉘 표면에 돌기처럼 함침되어 나타나 있음을 확인할 수 있었다.(빨간색 원: 단일 코어 부분, 노란색 원: 단일 쉘 부분)As shown in FIG. 3, it can be seen that the single cores having a total diameter of about 10 nm appear to be impregnated on the surface of the large shell (red circle: single core part, yellow circle: single shell part).
또한, TEM 이미지로부터, 도 4에 도시한 바와 같이, 약 200 nm의 GaN 입자 표면에 수 nm의 InN가 붙어 있는 것을 알 수 있었고, InN의 이론 결합 거리인 (101)면 2.693 Å, (002)면 2.845 Å에 대하여, 본 발명에 의해 제조된 구상체의 측정된 결합 거리는 2.818 Å, 2.647 Å, 2.735 Å로써 일치하는 것을 알 수 있었다.In addition, from the TEM image, as shown in FIG. 4, it was found that several nm of InN adhered to the surface of the GaN particles of about 200 nm. With respect to plane 2.845 mm 3, it was found that the measured bonding distances of the spherical bodies produced by the present invention were consistent with 2.818 mm 2, 2.647 mm 3, and 2.735 mm 3.
또한, 에너지 분산 X-ray 분석기(Energy Dispersive X-ray Spectroscopy: EDS) 장비와 연계하여 성분 mapping을 수행하여 확인된 결과를 도 5에 도시하였다. In addition, the results confirmed by performing the component mapping in conjunction with the Energy Dispersive X-ray Spectroscopy (EDS) equipment is shown in FIG.
그 결과, 앞선 실험 데이터들이 나타내는 바와 같이, GaN 성분의 큰 쉘 구조에 작은 코어 InN 성분이 표면에 결합되어 있는 다중-코어 쉘 구조를 형성하고 있음을 확인할 수 있었다. As a result, as shown in the previous experimental data, it was confirmed that the large shell structure of the GaN component forms a multi-core shell structure in which the small core InN component is bonded to the surface.
실시예 2 : 발광 특성 확인Example 2 Confirmation of Luminescent Properties
상기 수득된 Ga-In-N계 나노융합 구상체에 대한 발광 특성을 확인하였다.The luminescence properties of the obtained Ga-In-N-based nanofusion spherical bodies were confirmed.
파장 312nm의 UV-Lamp 활용하여 발광 특성을 확인해 본 결과, 도 6에 도시된 바와 같이, 청색/녹색/적색의 발광능을 확인할 수 있었다.As a result of confirming the emission characteristics by using a UV-Lamp having a wavelength of 312 nm, as shown in Figure 6, it was possible to confirm the light emitting capability of blue / green / red.
이는 본 발명의 Ga-In-N계 나노융합 구상체는 종래 양자점 유사 발광 특성을 보유하고 있음을 의미한다.This means that the Ga-In-N-based nanofusion spherical body of the present invention has conventional quantum dot-like luminescence properties.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. .
본 발명은 종래 코어-쉘(core-shell) 구조로 만들기 어려웠던 비-카드뮴계 물질인, In, Ga, Al 및 나이트라이드(Nitride)계 물질을 이용하여, 안정성, 분산성 및 발광성이 우수한 단결정 단위로 이루어진 단일 또는 다중코어-쉘 구조의 나노융합 구상체을 제공할 수 있게 함으로써, 종래 양자점이 지닌 문제점을 해결하는 동시에 이의 다양한 응용에 활용할 수 있다. The present invention is a single crystal unit having excellent stability, dispersibility, and luminescence by using In, Ga, Al, and Nitride based materials, which are non-cadmium based materials, which have been difficult to make into a core-shell structure. By providing a single or multi-core-shell structure of the nano-fused spherical structure, it can be used in a variety of applications while solving the problems with the conventional quantum dots.

Claims (14)

  1. 단결정 단위로 이루어지는, Consisting of single crystal unit,
    단일 코어-쉘 또는 다중 코어-쉘 구조를 형성하는 나이트라이드(Nitride)계 나노융합 구상체. Nitride-based nanofusion spheres forming a single core-shell or multiple core-shell structure.
  2. 제1항에 있어서, The method of claim 1,
    상기 구상체는 구형 또는 돌기형인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The spherical body is nitride-based nano-fusion spherical body, characterized in that the spherical or projection.
  3. 제1항에 있어서, 상기 단일 코어-쉘 구조는The method of claim 1, wherein the single core-shell structure is
    코어가 직경 1 nm∼10nm 이고, 쉘은 두께가 0.1∼10 nm인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. A nitride-based nanofusion spherical body, wherein the core has a diameter of 1 nm to 10 nm and the shell has a thickness of 0.1 to 10 nm.
  4. 제1항에 있어서, 상기 다중 코어-쉘 구조는The method of claim 1, wherein the multi-core-shell structure
    직경 1 nm∼10nm의 코어 2 이상이 100 ~ 1μm 직경의 쉘에 함침되어 있는 형태인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. A nitride-based nanofusion spherical body characterized in that the core 2 or more having a diameter of 1 nm to 10 nm is impregnated in a shell having a diameter of 100 to 1 μm.
  5. 제4항에 있어서, 상기 다중 코어-쉘 구조는The method of claim 4, wherein the multi-core shell structure
    상기 코어가 쉘에 100개 내지 50,000개가 함침되어 있는 형태인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The nitride-based nano-fusion spherical body, characterized in that the core is impregnated with 100 to 50,000 pieces in the shell.
  6. 제1항에 있어서, The method of claim 1,
    상기 구상체는 In, Ga, Al 및 N으로 이루어진 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The spherical body is nitride-based nano-fusion spherical body, characterized in that consisting of In, Ga, Al and N.
  7. 제1항에 있어서, The method of claim 1,
    상기 구상체의 코어는 III-V 질화물(Nitrides) 물질인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The core of the spherical body is a nitride-based nano-fusion spherical body, characterized in that the III-V nitride (Nitrides) material.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 구상체의 코어는 InN, GaInN, GaN 및 InGaAlN로 구성된 군에서 선택되는 1종 이상의 물질인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The core of the spherical body is nitride-based nano-fusion spherical body, characterized in that at least one material selected from the group consisting of InN, GaInN, GaN and InGaAlN.
  9. 제1항에 있어서, The method of claim 1,
    상기 구상체의 쉘은 III-V 질화물(Nitrides) 물질인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The shell of the sphere is nitride-based nano-fusion spherical body, characterized in that the III-V nitride (Nitrides) material.
  10. 제9항에 있어서, The method of claim 9,
    상기 구상체의 쉘은 GaN, InN, AlN, 및 AlGaN로 구성된 군에서 선택되는 1종 이상의 물질인 것을 특징으로 하는 나이트라이드계 나노융합 구상체. The shell of the spherical body is nitride-based nano-fusion spherical body, characterized in that at least one material selected from the group consisting of GaN, InN, AlN, and AlGaN.
  11. 제1항에 있어서, The method of claim 1,
    구상체의 코어 물질은 InN이고, 구상체 쉘 물질이 GaN인 것을 특징으로 하는 방법.The spherical core material is InN and the spherical shell material is GaN.
  12. 다음을 포함하는 제1항의 코어-쉘 구조의 나이트라이드계 나노융합 구상체를 합성하는 방법:A method of synthesizing the nitride-based nanofusion spherical body of claim 1 comprising:
    플라즈마법을 이용하되, Using the plasma method,
    InN, GaInN, GaN 및 InGaAlN로 구성된 군에서 선택되는 1종 이상의 구상체 코어 물질이 5000 ~ 10000℃의 제1 온도에서 기화되어 나노-결정화된 코어를 형성하는 단계; 및 At least one spherical core material selected from the group consisting of InN, GaInN, GaN and InGaAlN is vaporized at a first temperature of 5000-10000 ° C. to form a nano-crystallized core; And
    GaN, AlN, 및 AlGaN로 구성된 군에서 선택되는 1종 이상의 구상체 쉘 물질이 500 ~ 4000℃의 제2 온도에서 기화 또는 액화되어 상기 코어를 둘러싸는 쉘로 구상화하는 단계.At least one spherical shell material selected from the group consisting of GaN, AlN, and AlGaN is vaporized or liquefied at a second temperature of 500 to 4000 ° C. to spheroidize into a shell surrounding the core.
  13. 제12항에 있어서, 상기 제1 온도 및 제 2온도를 제공하는 것은 13. The method of claim 12, wherein providing the first temperature and the second temperature is
    상기 구상체의 코어 및 쉘 형성을 위한 원료 물질을 각각 길이가 다른 튜브를 이용하여 플라즈마 반응 챔버 내의 다른 높이에 주입하는 방법으로 실시되는 것을 특징으로 하는 방법.And injecting raw materials for forming the cores and shells of the spheres into different heights in the plasma reaction chamber using tubes having different lengths, respectively.
  14. 제12항에 있어서, The method of claim 12,
    상기 플라즈마법은 열 플라즈마법인 것을 특징으로 하는 방법.And said plasma method is a thermal plasma method.
PCT/KR2015/013817 2015-08-05 2015-12-16 Nitride-based nanocomposite quantum dots having single- or multi-core-shell structure WO2017022904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150110745A KR102447531B1 (en) 2015-08-05 2015-08-05 A Spheroid of Ntrides-based Nanocomposite, having a Single or Multi Core-Shell Structure
KR10-2015-0110745 2015-08-05

Publications (1)

Publication Number Publication Date
WO2017022904A1 true WO2017022904A1 (en) 2017-02-09

Family

ID=57943413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013817 WO2017022904A1 (en) 2015-08-05 2015-12-16 Nitride-based nanocomposite quantum dots having single- or multi-core-shell structure

Country Status (2)

Country Link
KR (1) KR102447531B1 (en)
WO (1) WO2017022904A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001119A1 (en) * 2004-05-10 2006-01-05 Evident Technologies, Inc. III-V semiconductor nanocrystal complexes and methods of making same
JP2008508166A (en) * 2004-06-18 2008-03-21 リージェンツ・オブ・ザ・ユニヴァーシティー・オブ・ミネソタ Method and apparatus for producing nanoparticles using radio frequency plasma
US20110140071A1 (en) * 2009-12-14 2011-06-16 Olga Kryliouk Nano-spherical group iii-nitride materials
US20120018774A1 (en) * 2009-01-26 2012-01-26 Sharp Kabushiki Kaisha Fabrication of nitride nanoparticles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2381304C1 (en) 2008-08-21 2010-02-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт прикладной акустики" Method for synthesis of semiconductor quantum dots
KR101187663B1 (en) 2010-08-27 2012-10-05 아주대학교산학협력단 Sinthesizing Method for Indium Posphate Quantum Dot Core and Indium Posphate/Zinc Sulfide Core-Shell Quantum Dot
KR101043311B1 (en) 2010-10-28 2011-06-22 한국기계연구원 The precursor p(sime2-tert-bu)3 for inp quantum dots, the method for preparing it, the inp quantum dots containing p(sime2-tert-bu)3 and the method for preparing it
KR101436099B1 (en) 2013-06-26 2014-09-01 홍익대학교 산학협력단 Dual quantum dot-polymer composite plate for light emitting diode and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001119A1 (en) * 2004-05-10 2006-01-05 Evident Technologies, Inc. III-V semiconductor nanocrystal complexes and methods of making same
JP2008508166A (en) * 2004-06-18 2008-03-21 リージェンツ・オブ・ザ・ユニヴァーシティー・オブ・ミネソタ Method and apparatus for producing nanoparticles using radio frequency plasma
US20120018774A1 (en) * 2009-01-26 2012-01-26 Sharp Kabushiki Kaisha Fabrication of nitride nanoparticles
US20110140071A1 (en) * 2009-12-14 2011-06-16 Olga Kryliouk Nano-spherical group iii-nitride materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEO, JUN - HO ET AL.: "Thermal Plasma Synthesis of Nano-Sized Powders", NUCLEAR ENGINEERING AND TECHNOLOGY, vol. 44, no. 1, 2012, pages 9 - 20, XP055362475 *

Also Published As

Publication number Publication date
KR102447531B1 (en) 2022-09-27
KR20170018153A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2020130592A1 (en) Metal halide perovskite light emitting device and method for manufacturing same
TWI699426B (en) Perovskite luminescent nanocrystal, light emitting device, and manufacturing method for perovskite luminescent nanocystal crystal
Ha et al. Metal halide perovskite nanomaterials: synthesis and applications
CN102916097B (en) A kind of electroluminescent device
WO2017115920A1 (en) Method for preparing alloy-shell quantum dots, alloy-shell quantum dots, and backlight unit comprising same
Liu et al. Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography
WO2016072804A1 (en) Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
US20170327740A1 (en) Blue light emitting semiconductor nanocrystals and devices
WO2016200225A1 (en) Large-surface-area film containing quantum dots or dye, and production method therefor
CN107507895A (en) Luminescent device containing semiconductor nanocrystal
WO2021125412A1 (en) Defect-suppressed metal halide perovskite luminescent material, and light-emitting diode comprising same
JP2008279591A (en) Nanocrystal, method for producing the same and electronic device comprising the same
WO2019190147A1 (en) Red-emitting quantum dots having narrow full width at half maximum and emission wavelength for application to high-color-purity display, and preparation method therefor
Isakov et al. Growth of ZnO and ZnMgO nanowires by Au‐catalysed molecular‐beam epitaxy
Detz et al. Lithography-free positioned GaAs nanowire growth with focused ion beam implantation of Ga
KR20190052222A (en) Bismuth-based quantum dot film having double perovskite crystalline structure, method for manufacturing the same and electronic element including the same
WO2017022904A1 (en) Nitride-based nanocomposite quantum dots having single- or multi-core-shell structure
WO2018048090A1 (en) Organic-inorganic hybrid nanowire applicable to photoelectric device, and method for producing same
WO2021054650A2 (en) Method for manufacturing quantum dots and quantum dots manufactured thereby
WO2020226375A1 (en) Nanomaterial and manufacturing method therefor
KR101858318B1 (en) A Method for in-situ Plasma Synthesizing Quantum dot of Core-shell
Park et al. Comparison between the electrical properties of ZnO nanowires based field effect transistors fabricated by back-and top-gate approaches
Li et al. Regular arrays of GaN nanorods
WO2021054658A2 (en) Method for manufacturing quantum dot and quantum dot manufactured thereby
Wen et al. Foreign-catalyst-free GaSb nanowires directly grown on cleaved Si substrates by molecular-beam epitaxy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900489

Country of ref document: EP

Kind code of ref document: A1