WO2017022638A1 - Glass substrate suitable for cover glass, etc., of mobile display device - Google Patents

Glass substrate suitable for cover glass, etc., of mobile display device Download PDF

Info

Publication number
WO2017022638A1
WO2017022638A1 PCT/JP2016/072214 JP2016072214W WO2017022638A1 WO 2017022638 A1 WO2017022638 A1 WO 2017022638A1 JP 2016072214 W JP2016072214 W JP 2016072214W WO 2017022638 A1 WO2017022638 A1 WO 2017022638A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glass substrate
formula
alkoxysilane
layer
Prior art date
Application number
PCT/JP2016/072214
Other languages
French (fr)
Japanese (ja)
Inventor
政太郎 大田
洋介 飯沼
和輝 江口
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201680057980.6A priority Critical patent/CN108139506B/en
Priority to KR1020187006069A priority patent/KR102633247B1/en
Priority to JP2017532556A priority patent/JP6773036B2/en
Publication of WO2017022638A1 publication Critical patent/WO2017022638A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass substrate having high scratch resistance, slipperiness, good visibility, and low reflectance, in particular, a glass substrate suitably used as a cover glass of a mobile display device.
  • cover glass for protecting the surface of a display element is often used in liquid crystal display elements such as mobile devices and touch panels. Further, glass plates having excellent scratch resistance and good visibility are used in protective glasses such as watches and camera viewfinders (see Patent Documents 1 and 2).
  • the cover glass in such a display element is required to have a high hardness and a high scratch resistance so that it is more difficult to break and scratch.
  • a diamond-like carbon (DLC) layer or the like is formed on a glass substrate in order to increase hardness and scratch resistance, it is usually formed on the glass substrate in order to impart the slip property of the cover glass.
  • DLC diamond-like carbon
  • An object of the present invention is to provide a glass substrate having excellent scratch resistance, corrosion resistance, and good visibility, in particular, a glass substrate suitably used as a cover glass of a display device such as a mobile device or a touch panel. It is in.
  • an alkoxysilane represented by the following formula (1) In a glass substrate having a fluorine coating layer on the surface side and a diamond-like carbon (DLC) layer on the substrate side, an alkoxysilane represented by the following formula (1), an alkoxysilane represented by the following formula (2), A glass substrate comprising an intermediate layer made of a polysiloxane-containing film obtained by polycondensation of an alkoxysilane containing benzene between the fluorine coating layer and the DLC layer.
  • DLC diamond-like carbon
  • R 1 ⁇ Si (OR 2 ) 3 ⁇ P (1)
  • R 1 is a hydrocarbon group having 1 to 12 carbon atoms substituted with a ureido group
  • R 2 is an alkyl group having 1 to 5 carbon atoms
  • p represents an integer of 1 or 2.
  • R 3 is a hydrogen atom, or a hetero atom, a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and having 1 to 8 carbon atoms.
  • a hydrocarbon group, R 4 is an alkyl group having 1 to 5 carbon atoms, and n is an integer of 0 to 3.) 2.
  • the alkoxysilane represented by the formula (1) is at least one selected from the group consisting of ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane and ⁇ -ureidopropyltripropoxysilane.
  • the glass substrate of said 1 or 2 whose alkoxysilane represented by Formula (2) is tetraalkoxysilane whose n is 0 in Formula (2). 4). 4.
  • the alkoxysilane represented by the formula (1) is contained in an amount of 0.5 to 60 mol% in the total alkoxysilane, and the alkoxysilane represented by the formula (2) in the total alkoxysilane is 40 to 99.5 mol. 5.
  • the present invention has high scratch resistance and slippage, and it is unexpected by having a specific polysiloxane intermediate layer in addition to the fluorine coating layer on the surface and the DLC layer on the substrate side. Further, since the transmittance can be improved and the reflectance is also lowered, a glass substrate having excellent visibility is provided.
  • the intermediate layer of the above specific polysiloxane can be cured at a low temperature of 300 ° C.
  • FIG. 1 is a schematic cross-sectional view showing an example of a glass substrate according to an embodiment of the present invention.
  • Glass substrate As the glass substrate of the present invention, a glass plate made of alkali glass, quartz glass, sapphire glass, alumina silicon glass or the like can be widely used.
  • the thickness is not particularly limited, but is usually preferably 0.1 to 2.0 mm, more preferably 0.2 to 1.3 mm.
  • the glass plate may be chemically strengthened or air-cooled strengthened in order to increase the strength.
  • the glass substrate of the present invention has a DLC layer on the substrate side and a fluorine coating layer on the surface side.
  • the DLC layer on the substrate side of the glass substrate is formed in order to impart high scratch resistance and corrosion resistance.
  • the DLC layer in the present invention is easily obtained by a sputtering method using a hydrocarbon gas such as acetylene or methane as a raw material, preferably a plasma CVD method, a sputtering method, an ionization vapor deposition method, among others.
  • the raw material can also contain hydrogen.
  • the DLC layer in the present invention has a thickness of preferably 50 to 150 nm, more preferably 70 to 130 nm. Further, the refractive index is preferably 1.7 or less, more preferably 1.5 or less, in order to achieve low reflection.
  • the DLC layer may be porous, and the volume ratio of pores is preferably 40 to 70%, more preferably 45 to 65%.
  • the fluorine coating layer on the surface side of the glass substrate is formed in order to improve the slipperiness and improve the ease of operation and the prevention of fingerprint adhesion.
  • a glass substrate having a fluorine coating layer on its surface is known, for example, from International Publication WO2013 / 115191, Japanese Patent Application Laid-Open No. 2014-218639, etc., and these known coating materials can also be used in the present invention.
  • the fluorine coating layer in the present invention is, for example, R f —Q 1 —SiX 1 3 (R f is a perfluoroalkyl having 1 to 6 carbon atoms, and Q 1 contains a fluorine atom having 1 to 10 carbon atoms.
  • a divalent organic group, and X 1 is a hydrolyzable group such as a halogen atom or an alkoxy group.
  • a silane compound having a perfluoroalkyl group such as CF 3 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) 20 CF 2 CF 2 CH 2 OCH 2 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) 20 CF 2 CF 2 CH 2 OCH 2 CH 2 CH 2 It is formed from a fluorine-containing polymer such as a polycondensation product of a perfluoro (poly) ether group-containing silane compound such as Si (CH 2 CH ⁇ CH 2 ) 3 .
  • a liquid in which these fluoropolymers are dispersed in a medium is applied on the DLC layer of the glass substrate, dried and heated to form a fluorine coating layer.
  • the thickness of the fluorine coating layer is preferably 1 to 30 nm, more preferably 1 to 15 nm, from the viewpoint of optical performance, surface slipperiness, friction durability and antifouling property.
  • the intermediate layer in the present invention is used between the fluorine coating layer and the DLC layer, and contains polysiloxane having a ureido group as described below. Thereby, a film having sufficient hardness and adhesion can be formed even at a low temperature of 100 to 300 ° C. That is, the intermediate layer in the present invention is obtained by polycondensation of an alkoxysilane represented by the following formula (1) and, if necessary, an alkoxysilane containing an alkoxysilane represented by the following formula (2). Contains siloxane.
  • R 1 is a hydrocarbon group having 1 to 12 carbon atoms having a ureido group.
  • R 1 is preferably a hydrocarbon group of 1 to 7, more preferably 1 to 5, and any hydrogen atom thereof, preferably 3 to 15 hydrogen atoms, particularly preferably 3 to 11 hydrogen atoms.
  • the hydrocarbon group is preferably an alkyl group.
  • R 2 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.
  • p represents an integer of 1 or 2.
  • the alkoxysilane represented by the formula (1) is an alkoxysilane represented by the formula (1-1) when p is 1.
  • the alkoxysilane represented by the formula (1) is an alkoxysilane represented by the formula (1-2) when p is 2.
  • alkoxysilane represented by the formula (1-1) are listed below, but are not limited thereto.
  • ⁇ -ureidopropyltriethoxysilane or ⁇ -ureidopropyltrimethoxysilane is particularly preferable because it is easily available as a commercial product.
  • alkoxysilane represented by the formula (1-2) will be given, but the invention is not limited to these.
  • bis [3- (triethoxysilyl) propyl] urea is particularly preferable because it is easily available as a commercial product.
  • the alkoxysilane represented by the formula (1) is preferably 0.5 mol% or more, more preferably 1.0 mol% or more, further preferably 2 in all alkoxysilanes used for obtaining the intermediate layer. 0.0 mol% or more. Moreover, 100 mol% may be sufficient as the alkoxysilane represented by Formula (1) in all the alkoxysilanes used in order to obtain an intermediate
  • R 3 is a hydrogen atom or a carbon atom which may be substituted with a hetero atom, a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group. It is a hydrocarbon group of the number 1-6.
  • R 4 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • n represents an integer of 0 to 3, preferably 0 to 2.
  • R 3 in the formula (2) examples include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings or heterocycles; unsaturated bonds; heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms Or an organic group having 1 to 6 carbon atoms, which may have a branched structure.
  • R 3 may be substituted with a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group, an acryloxy group, or the like.
  • R 4 has the same meaning as R 2 described above, and the preferred range is also the same.
  • alkoxysilane represented by Formula (2) is not limited to this. That is, in the alkoxysilane represented by the formula (2), specific examples of the alkoxysilane when R 3 is a hydrogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, and the like. .
  • alkoxysilanes represented by formula (2) and formula (2) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, Propyltriethoxysilane, methyltripropoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3- Aminopropyltrimethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-amino) Eth
  • the alkoxysilane in which n is 0 is tetraalkoxysilane.
  • Tetraalkoxysilane is preferable for obtaining the polysiloxane of the present invention because it easily condenses with the alkoxysilane represented by the formula (1).
  • tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
  • the amount used is preferably 40 to 99.5 mol%, more preferably 50 to 50%, based on the total alkoxysilane used for obtaining the intermediate layer. It is 99.5 mol%, more preferably 60 to 99.5 mol%.
  • the alkoxysilane represented by the formula (1) is preferably 60 mol% or less, more preferably 50 mol% or less, still more preferably 40 mol% or less in all alkoxysilanes used for obtaining the intermediate layer. is there.
  • the polysiloxane forming the intermediate layer in the present invention is preferably a polycondensation of an alkoxysilane represented by the formula (1) and, if necessary, an alkoxysilane containing the alkoxysilane represented by the formula (2). Obtained. As long as the properties of the intermediate layer are not impaired, a plurality of types of alkoxysilanes represented by formula (1) and alkoxysilanes represented by formula (2) may be used in combination.
  • Examples of the polycondensation method in the present invention include a method of hydrolyzing and condensing the alkoxysilane in an organic solvent such as alcohol or glycol.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • complete hydrolysis theoretically, it is sufficient to add 0.5 moles of water of all alkoxide groups in the alkoxysilane, but it is usually preferable to add an excess amount of water over 0.5 moles.
  • the amount of water can be appropriately selected as desired, but it is preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid and fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine and triethylamine
  • a catalyst such as a metal salt such as hydrochloric acid, sulfuric acid or nitric acid is preferably used. It is also preferable to further promote hydrolysis / condensation reaction by heating a solution in which alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. Examples thereof include a method of heating and stirring at 50 ° C. to reflux for 1 to 24 hours.
  • a method of heating and polycondensing a mixture of an alkoxysilane, an organic solvent, and an organic acid such as formic acid, oxalic acid, maleic acid, and fumaric acid can be used.
  • a method of polycondensation by heating a mixture of alkoxysilane, solvent and oxalic acid can be mentioned.
  • succinic acid to alcohol in advance to make an alcohol solution of succinic acid
  • alkoxysilane is mixed while the solution is heated.
  • the amount of succinic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of the alkoxysilane.
  • Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
  • a mixture of alkoxysilanes may be mixed in advance, or a plurality of types of alkoxysilanes may be mixed sequentially.
  • the solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt
  • organic solvent in the condensation reaction examples include alcohols such as methanol, ethanol, propanol, butanol and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol and 1,3-propanediol.
  • alcohols such as methanol, ethanol, propanol, butanol and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol and 1,3-propanediol.
  • the polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less. By selecting an arbitrary concentration within this concentration range, it is possible to obtain a homogeneous solution while suppressing gel formation.
  • the polysiloxane polymerization solution obtained above may be used as it is to form an intermediate layer, and if necessary, the polymerization solution may be concentrated or a solvent may be added. It may be diluted or replaced with another solvent.
  • the solvent to be used (hereinafter also referred to as additive solvent) may be the same as the polymerization solvent, or may be another solvent.
  • the additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
  • Such an additive solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as methyl acetate, ethyl acetate, and ethyl lactate in addition to the solvents mentioned as examples of the polymerization solvent. It is done. A liquid whose viscosity is adjusted with these solvents can be applied on a substrate by spin coating, flexographic printing, ink jetting, slit coating, or the like, thereby improving the coating property when an intermediate layer is formed.
  • the coating liquid for forming the intermediate layer contains other components other than the above polysiloxane, for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, and further components such as surfactants. May be included.
  • inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, or magnesium fluoride fine particles are preferable, and those in a colloidal solution state are particularly preferable.
  • the inorganic fine particles preferably have an average particle diameter (D50) of 0.001 to 0.2 ⁇ m, and more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter exceeds 0.2 ⁇ m, the transparency of the formed intermediate layer may be lowered.
  • D50 average particle diameter
  • the dispersion medium for inorganic fine particles examples include water and organic solvents.
  • the colloidal solution preferably has a pH or pKa of 1 to 10 from the viewpoint of the stability of the polysiloxane liquid. 2 to 7 are more preferable.
  • organic solvent used for the dispersion medium of the colloidal solution examples include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred.
  • the organic solvent can be used alone or in combination of two or more.
  • metalloxane oligomer and metalloxane polymer single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used.
  • the metalloxane oligomer and metalloxane polymer may be obtained by hydrolysis or the like from monomers such as metal alkoxides, nitrates, hydrochlorides, and carboxylates.
  • the metalloxane oligomer and metalloxane polymer may be commercially available products. Examples thereof include methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, SS-101, etc. manufactured by Colcoat, and titanoxane oligomers such as titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Ltd. Can be mentioned. These may be used alone or in combination of two or more.
  • leveling agent and surfactant known ones, in particular, commercially available products can be used.
  • method of mixing the above-mentioned other components with polysiloxane may be simultaneous with or after polysiloxane, and is not particularly limited.
  • the intermediate layer can be obtained by applying the polysiloxane solution of the present invention on the DLC layer of the glass substrate and thermosetting.
  • a known or well-known method can be employed for applying the polysiloxane solution.
  • a dip method, a flow coating method, a spray method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, a flexographic printing method, an ink jet method, a slit coating method and the like can be employed.
  • a good coating film can be formed by the flexographic printing method, the slit coating method, the ink jet method, the spray coating method, and the gravure coating method.
  • the polysiloxane solution is preferably filtered using a filter or the like before application.
  • the formed coating film is preferably dried at room temperature to 120 ° C., more preferably 50 to 100 ° C., followed by heat curing at 100 to 600 ° C., more preferably 150 ° C. or more.
  • the time required for drying is preferably 1 minute to 30 minutes, more preferably 1 minute to 10 minutes.
  • the heat curing time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 24 hours.
  • the intermediate layer used in the glass substrate of the present invention can provide a cured film having sufficient hardness even at a curing temperature exceeding 180 ° C.
  • the thickness of the intermediate layer in the present invention is preferably 10 to 500 nm, more preferably 30 to 300 nm.
  • thermosetting It is also effective to irradiate energy rays (ultraviolet rays or the like) using a mercury lamp, a metal halide lamp, a xenon lamp, an excimer lamp or the like prior to thermosetting.
  • energy rays ultraviolet rays or the like
  • the curing temperature can be further lowered, or the hardness of the coating can be increased.
  • the irradiation amount of the energy beam can be appropriately selected as necessary, but it is usually preferably from several hundred to several thousand mJ / cm 2 .
  • a fluorine coating layer is provided on the surface of the intermediate layer obtained as described above.
  • a fluorine coating layer is known as described above, and is formed by a known method.
  • FIG. 1 is a schematic cross-sectional view showing an example of a glass substrate according to an embodiment of the present invention.
  • the glass 1 includes a fluorine coating layer 2, an intermediate layer 3, a DLC layer 4, and a glass substrate 5.
  • the intermediate layer 3 is an intermediate layer formed on the DLC layer.
  • the fluorine coating layer is formed by applying and baking the liquid containing the fluorine-containing polymer described above.
  • the glass base plate of the present invention is obtained by using a glass substrate having a DLC layer, forming an intermediate layer on the DLC layer, and then forming a fluorine coating layer on the intermediate layer.
  • TEOS Tetraethoxysilane UPS: 3-Ureidopropyltriethoxysilane MeOH: Methanol EtOH: Ethanol IPA: Isopropyl alcohol PGME: Propylene glycol monomethyl ether HG: Hexylene glycol BCS: Ethylene glycol monobutyl ether AF: manufactured by FT-Net Fluoromat P-5425 "
  • GC gas chromatography
  • GC measurement was performed under the following conditions using Shimadzu GC-14B (manufactured by Shimadzu Corporation).
  • Sample injection volume 1 ⁇ L
  • injection temperature 240 ° C.
  • detector temperature 290 ° C.
  • carrier gas nitrogen (flow rate 30 mL / min)
  • detection method FID method.
  • Example 1 The polysiloxane solution (A) (50 g) obtained in Production Example 1 is diluted with PGME (30 g), HG (10 g), BCS (5 g), and PB (5 g), and a coating solution for film formation (A1) It was. On the DLC layer of the glass substrate (thickness: 0.7 mm) on which the DLC layer having a thickness of 100 nm was formed by the sputtering method, the coating solution for coating film formation (A1) was applied with a spin coater to form a coating film. Next, after the glass plate on which the coating film has been formed is dried on a hot plate at 80 ° C. for 3 minutes, the glass plate is cured in a clean oven at 300 ° C.
  • the glass substrate of Sample 1 (Example 1) was obtained by curing at 170 ° C. for 20 minutes in a clean oven.
  • Example 1 the AF coating film was directly applied on the DLC layer of the glass substrate without using the polysiloxane solution (A) obtained in Production Example 1 and without forming an intermediate layer.
  • a glass substrate of Sample 2 (Comparative Example 1) was obtained by carrying out in the same manner as in Example 1 except that the coating film of the fluorine coating layer was formed.
  • Example 2 In Example 1, it carries out similarly to Example 1 except having used the polysiloxane solution (B) obtained by the comparative manufacture example 1 instead of the polysiloxane solution (A) obtained by manufacture example 1. Thus, a glass substrate of Sample 3 (Comparative Example 2) was obtained.
  • the glass substrate of the present invention is widely used as a cover glass for display elements such as mobile devices and touch panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is a glass substrate suitable particularly as a cover glass or the like for a mobile display device, the glass substrate having high scratch resistance and smoothness, good visibility, and low reflectance. A glass substrate having, between a fluorine coating layer on a front surface side and a DLC layer on a substrate side, an intermediate layer containing a polysiloxane obtained by polycondensation of an alkoxy silane including an alkoxy silane represented by formula (1) and, as needed, an alkoxy silane represented by formula (2). (1): R1[Si(OR2)3]P (In formula (1), R1 represents a C1-12 hydrocarbon group substituted by a ureido group, R2 represents a C1-5 alkyl group, and p represents an integer of 1 or 2.) (2): (R3)nSi(OR4)4-n (In formula (2), R3 represents a hydrogen atom or a C1-8 hydrocarbon group which may be substituted by a hetero atom, a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group, or an acryloxy group, R4 represents a C1-5 alkyl group, and n represents an integer of 0-3.)

Description

モバイルディスプレイ機器のカバーガラス等に好適なガラス基板Glass substrate suitable for cover glass of mobile display devices
 本発明は、高い耐擦傷性、滑り性、良好な視認性、及び低反射率を有するガラス基板、特に、モバイルディスプレイ機器のカバーガラス等として好適に用いられるガラス基板に関する。 The present invention relates to a glass substrate having high scratch resistance, slipperiness, good visibility, and low reflectance, in particular, a glass substrate suitably used as a cover glass of a mobile display device.
 近年、モバイル機器、タッチパネル等の液晶ディスプレイ素子においては、ディスプレイ素子の表面の保護のためのカバーガラスが多く用いられている。また、時計やカメラのファインダーなどの保護ガラスにおいても、優れた耐傷性と良好な視認性を有するガラス板が用いられている(特許文献1、特許文献2参照)。 In recent years, cover glass for protecting the surface of a display element is often used in liquid crystal display elements such as mobile devices and touch panels. Further, glass plates having excellent scratch resistance and good visibility are used in protective glasses such as watches and camera viewfinders (see Patent Documents 1 and 2).
 このようなディスプレイ素子におけるカバーガラスにおいては、より割れにくく、傷つきにくくするために、高硬度、高耐擦傷性であることが要求されている。しかし、硬度、耐擦傷性を高めるために、ダイヤモンドライクカーボン(DLC)層などをガラス基板上に形成した場合、通常、カバーガラスのすべり性を付与するために、ガラス基板上に形成されている表面に形成されるフッ素コーティング層との密着性が低下し、使用中に著しくすべり性が低下してしまうという問題があった(特許文献3参照)。 The cover glass in such a display element is required to have a high hardness and a high scratch resistance so that it is more difficult to break and scratch. However, when a diamond-like carbon (DLC) layer or the like is formed on a glass substrate in order to increase hardness and scratch resistance, it is usually formed on the glass substrate in order to impart the slip property of the cover glass. There was a problem that the adhesion with the fluorine coating layer formed on the surface was lowered, and the slipping property was remarkably lowered during use (see Patent Document 3).
特開2009-186234号公報JP 2009-186234 A 特開2009-186236号号公報JP 2009-186236 A 特開2010-228307号号公報JP 2010-228307 A
 本発明の目的は、優れた耐擦傷性や耐腐食性、良好な視認性を有するガラス基板、特に、モバイル機器、タッチパネル等のディスプレイ素子のカバーガラスなどとして好適に用いられるガラス基板を提供することにある。 An object of the present invention is to provide a glass substrate having excellent scratch resistance, corrosion resistance, and good visibility, in particular, a glass substrate suitably used as a cover glass of a display device such as a mobile device or a touch panel. It is in.
 本発明者らは、上記の状況に鑑み鋭意研究した結果、下記する本発明を完成するに至った。
 1.表面側にフッ素コーティング層と、基板側にダイヤモンドライクカーボン(DLC)層を有するガラス基板において、下式(1)で表されるアルコキシシランと、下式(2)で表されるアルコキシシランと、を含むアルコキシシランを重縮合して得られるポリシロキサンを含有するフィルムからなる中間層を、前記フッ素コーティング層と前記DLC層との間に有することを特徴とするガラス基板。
   R{Si(OR     (1)
(Rはウレイド基で置換された炭素原子数1~12の炭化水素基であり、Rは炭素原子数1~5のアルキル基であり、pは1又は2の整数を表す。)
   (RSi(OR4-n     (2)
(Rは、水素原子、又はヘテロ原子、ハロゲン原子、ビニル基、アミノ基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよい、炭素原子数1~8の炭化水素基である。Rは炭素原子数1~5のアルキル基である。nは0~3の整数である。)
 2.式(1)で表されるアルコキシシランが、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシランからなる群から選ばれる少なくとも1種である、上記1に記載のガラス基板。
 3.式(2)で表されるアルコキシシランが、式(2)中、nが0である、テトラアルコキシシランである、上記1又は2に記載のガラス基板。
 4.式(1)で表されるアルコキシシランが、全アルコキシシラン中、0.5%以上含まれる上記1~3のいずれかに記載のガラス基板。
 5.式(1)で表されるアルコキシシランが、全アルコキシシラン中、0.5~60モル%含まれ、かつ式(2)で表されるアルコキシシランが全アルコキシシラン中、40~99.5モル%含まれる、上記1~4のいずれかに記載のガラス基板。
 6.フッ素コーティング層が、パーフルオロアルキル又はパーフルオロポリエーテルのシラン化合物の縮重合物から形成される上記1~5のいずれかに記載のガラス基板。
 7.フッ素コーティング層の厚みが1~30nmであり、ダイヤモンドライクカーボン層の厚みが50~150nmであり、かつ中間層の厚みが10~500nmである上記1~6のいずれかに記載のガラス基板。
 8.上記1~7のいずれかに記載のガラス基板を備えるディスプレイ素子。
As a result of intensive studies in view of the above situation, the present inventors have completed the present invention described below.
1. In a glass substrate having a fluorine coating layer on the surface side and a diamond-like carbon (DLC) layer on the substrate side, an alkoxysilane represented by the following formula (1), an alkoxysilane represented by the following formula (2), A glass substrate comprising an intermediate layer made of a polysiloxane-containing film obtained by polycondensation of an alkoxysilane containing benzene between the fluorine coating layer and the DLC layer.
R 1 {Si (OR 2 ) 3 } P (1)
(R 1 is a hydrocarbon group having 1 to 12 carbon atoms substituted with a ureido group, R 2 is an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 1 or 2.)
(R 3 ) n Si (OR 4 ) 4-n (2)
(R 3 is a hydrogen atom, or a hetero atom, a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and having 1 to 8 carbon atoms. A hydrocarbon group, R 4 is an alkyl group having 1 to 5 carbon atoms, and n is an integer of 0 to 3.)
2. In the above 1, the alkoxysilane represented by the formula (1) is at least one selected from the group consisting of γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane and γ-ureidopropyltripropoxysilane. The glass substrate as described.
3. The glass substrate of said 1 or 2 whose alkoxysilane represented by Formula (2) is tetraalkoxysilane whose n is 0 in Formula (2).
4). 4. The glass substrate according to any one of 1 to 3 above, wherein the alkoxysilane represented by the formula (1) is contained in an amount of 0.5% or more in the total alkoxysilane.
5). The alkoxysilane represented by the formula (1) is contained in an amount of 0.5 to 60 mol% in the total alkoxysilane, and the alkoxysilane represented by the formula (2) in the total alkoxysilane is 40 to 99.5 mol. 5. The glass substrate according to any one of 1 to 4 above, which is contained in an amount of 1%.
6. The glass substrate according to any one of 1 to 5 above, wherein the fluorine coating layer is formed from a polycondensate of a silane compound of perfluoroalkyl or perfluoropolyether.
7). 7. The glass substrate according to any one of 1 to 6 above, wherein the fluorine coating layer has a thickness of 1 to 30 nm, the diamond-like carbon layer has a thickness of 50 to 150 nm, and the intermediate layer has a thickness of 10 to 500 nm.
8). 8. A display device comprising the glass substrate according to any one of 1 to 7 above.
 本発明によれば、高い耐擦傷性やすべり性を有するとともに、表面にフッ素コーティング層、基板側にDLC層に加えて、更に、特定のポリシロキサンの中間層を有することにより、予想外のことに、透過率を向上させることができ、かつ反射率も低下するために視認性に優れたガラス基板が提供される。
 また、本発明のガラス基板は、上記特定のポリシロキサンの中間層は、300℃以下という低温で硬化できるので製造効率が良く、また、ナノメートルオーダーの厚さで十分な硬度を有し、かつ、フッ素コーティング層及びDLC層に対して高い密着性を有するため、電子デバイスなどの特性に影響を与えることもなく、特に、液晶ディスプレイ素子のカバーガラスなどとして好適に用いられる。
According to the present invention, it has high scratch resistance and slippage, and it is unexpected by having a specific polysiloxane intermediate layer in addition to the fluorine coating layer on the surface and the DLC layer on the substrate side. Further, since the transmittance can be improved and the reflectance is also lowered, a glass substrate having excellent visibility is provided.
In the glass substrate of the present invention, the intermediate layer of the above specific polysiloxane can be cured at a low temperature of 300 ° C. or less, so that the production efficiency is good, and the thickness of the nanometer order has sufficient hardness, and In addition, since it has high adhesion to the fluorine coating layer and the DLC layer, it does not affect the characteristics of electronic devices and the like, and is particularly suitably used as a cover glass for liquid crystal display elements.
図1は、本発明の実施形態のガラス基板の例を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a glass substrate according to an embodiment of the present invention.
 [ガラス基板]
 本発明のガラス基板は、アルカリガラス、石英ガラス、サファイアガラス、アルミナケイ素ガラスなどを素材とするガラス板が広く使用できる。厚みは、特に限定されないが、通常、好ましくは、0.1~2.0mm、より好ましくは0.2~1.3mmである。ガラス板は、強度を大きくするために、化学強化又は風冷強化されていてもよい。本発明のガラス基板には、その基板側にDLC層を有し、また、表面側にフッ素コーティング層を有する。
[Glass substrate]
As the glass substrate of the present invention, a glass plate made of alkali glass, quartz glass, sapphire glass, alumina silicon glass or the like can be widely used. The thickness is not particularly limited, but is usually preferably 0.1 to 2.0 mm, more preferably 0.2 to 1.3 mm. The glass plate may be chemically strengthened or air-cooled strengthened in order to increase the strength. The glass substrate of the present invention has a DLC layer on the substrate side and a fluorine coating layer on the surface side.
 [DLC層]
 ガラス基板の基板側に有するDLC層は、高い耐擦傷性や耐腐食性を付与するために形成される。本発明におけるDLC層は、アセチレン、メタンなどの炭化水素ガスを原料にし、プラズマCVD法、スパッタリング法、イオン化蒸着法など、なかでも、好ましくはスパッタリング法によって容易に得られる。原料には、水素を含有することもできる。
 本発明におけるDLC層は、厚みが好ましくは、50~150nm、より好ましくは70~130nmである。また、屈折率は、低反射にするために、好ましくは1.7以下、より好ましくは1.5以下である。DLC層は、ポーラスであってもよく、空孔の体積率は、好ましくは40~70%、より好ましくは45~65%である。
[DLC layer]
The DLC layer on the substrate side of the glass substrate is formed in order to impart high scratch resistance and corrosion resistance. The DLC layer in the present invention is easily obtained by a sputtering method using a hydrocarbon gas such as acetylene or methane as a raw material, preferably a plasma CVD method, a sputtering method, an ionization vapor deposition method, among others. The raw material can also contain hydrogen.
The DLC layer in the present invention has a thickness of preferably 50 to 150 nm, more preferably 70 to 130 nm. Further, the refractive index is preferably 1.7 or less, more preferably 1.5 or less, in order to achieve low reflection. The DLC layer may be porous, and the volume ratio of pores is preferably 40 to 70%, more preferably 45 to 65%.
 [フッ素コーティング層]
 ガラス基板の表面側に有するフッ素コーティング層は、すべり性を高め、操作のしやすさや指紋付着防止性などを改善するために形成される。フッ素コーティング層を表面に有するガラス基板は、例えば、国際公開WO2013/115191、特開2014-218639号公報などにより既知であり、フッ素コーティング層は、本発明においてもこれらの既知のものが使用できる。
 本発明におけるフッ素コーティング層は、例えば、R-Q-SiX (Rは炭素数が1~6のパーフルオロアルキルであり、Qは炭素数が1~10のフッ素原子を含まない2価の有機基であり、Xはハロゲン原子、アルコキシ基などの加水分解性基である。)などのパーフルオロアルキル基を有するシラン化合物や、CFCFCFO(CFCFCFO)20CFCFCHOCHCHCHSiCl、CFCFCFO(CFCFCFO)20CFCFCHOCHCHCHSi(CHCH=CHなどのパーフルオロ(ポリ)エーテル基含有シラン化合物の縮重合物などの含フッ素重合物から形成される。これらの含フッ素重合物を媒体中に分散させた液をガラス基板のDLC層上に塗布し、乾燥、加熱することによりフッ素コーティング層が形成される。
 フッ素コーティング層の厚みは、光学性能、表面滑り性、摩擦耐久性および防汚性の点から、好ましくは1~30nm、より好ましくは1~15nmである。
[Fluorine coating layer]
The fluorine coating layer on the surface side of the glass substrate is formed in order to improve the slipperiness and improve the ease of operation and the prevention of fingerprint adhesion. A glass substrate having a fluorine coating layer on its surface is known, for example, from International Publication WO2013 / 115191, Japanese Patent Application Laid-Open No. 2014-218639, etc., and these known coating materials can also be used in the present invention.
The fluorine coating layer in the present invention is, for example, R f —Q 1 —SiX 1 3 (R f is a perfluoroalkyl having 1 to 6 carbon atoms, and Q 1 contains a fluorine atom having 1 to 10 carbon atoms. A divalent organic group, and X 1 is a hydrolyzable group such as a halogen atom or an alkoxy group.) Or a silane compound having a perfluoroalkyl group such as CF 3 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) 20 CF 2 CF 2 CH 2 OCH 2 CH 2 CH 2 SiCl 3, CF 3 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) 20 CF 2 CF 2 CH 2 OCH 2 CH 2 CH 2 It is formed from a fluorine-containing polymer such as a polycondensation product of a perfluoro (poly) ether group-containing silane compound such as Si (CH 2 CH═CH 2 ) 3 . A liquid in which these fluoropolymers are dispersed in a medium is applied on the DLC layer of the glass substrate, dried and heated to form a fluorine coating layer.
The thickness of the fluorine coating layer is preferably 1 to 30 nm, more preferably 1 to 15 nm, from the viewpoint of optical performance, surface slipperiness, friction durability and antifouling property.
[中間層]
 本発明における中間層は、上記フッ素コーティング層とDLC層との間に用いられ、下記するように、ウレイド基を持つポリシロキサンを含有することを特徴とする。これにより、100~300℃という低温においても十分な硬度と密着性を有する膜を形成可能である。
 すなわち、本発明における中間層は、下式(1)で表されるアルコキシシラン、及び必要に応じて、下式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサンを含有する。
[Middle layer]
The intermediate layer in the present invention is used between the fluorine coating layer and the DLC layer, and contains polysiloxane having a ureido group as described below. Thereby, a film having sufficient hardness and adhesion can be formed even at a low temperature of 100 to 300 ° C.
That is, the intermediate layer in the present invention is obtained by polycondensation of an alkoxysilane represented by the following formula (1) and, if necessary, an alkoxysilane containing an alkoxysilane represented by the following formula (2). Contains siloxane.
   R{Si(OR     (1)
 式(1)中、Rはウレイド基を有する炭素原子数1~12の炭化水素基である。なかでも、Rは、好ましくは1~7、より好ましくは1~5の炭化水素基であり、その任意の水素原子、好ましくは3~15水素原子、特に好ましくは3~11の水素原子がウレイド基で置換された基である。炭化水素基はアルキル基が好ましい。
 Rは炭素原子数1~5、好ましくは炭素原子数が1~3のアルキル基であり、より好ましくはメチル基又はエチル基である。pは1又は2の整数を表す。
R 1 {Si (OR 2 ) 3 } P (1)
In the formula (1), R 1 is a hydrocarbon group having 1 to 12 carbon atoms having a ureido group. Among them, R 1 is preferably a hydrocarbon group of 1 to 7, more preferably 1 to 5, and any hydrogen atom thereof, preferably 3 to 15 hydrogen atoms, particularly preferably 3 to 11 hydrogen atoms. A group substituted with a ureido group. The hydrocarbon group is preferably an alkyl group.
R 2 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group. p represents an integer of 1 or 2.
 式(1)で表されるアルコキシシランは、pが1の場合は式(1-1)で表されるアルコキシシランである。
   RSi(OR   (1-1)
 また、式(1)で表されるアルコキシシランは、pが2の場合は式(1-2)で表されるアルコキシシランである。
   (RO)Si-R1-Si(OR   (1-2)
The alkoxysilane represented by the formula (1) is an alkoxysilane represented by the formula (1-1) when p is 1.
R 1 Si (OR 2 ) 3 (1-1)
The alkoxysilane represented by the formula (1) is an alkoxysilane represented by the formula (1-2) when p is 2.
(R 2 O) 3 Si—R 1 -Si (OR 2 ) 3 (1-2)
 式(1-1)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、(R)-N-1-フェニルエチル-N’-トリエトキシシリルプロピルウレア、(R)-N-1-フェニルエチル-N’-トリメトキシシリルプロピルウレア等が挙げられる。なかでも、γ-ウレイドプロピルトリエトキシシラン、又はγ-ウレイドプロピルトリメトキシシランは、市販品として入手が容易であるため特に好ましい。 Specific examples of the alkoxysilane represented by the formula (1-1) are listed below, but are not limited thereto. For example, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltripropoxysilane, (R) -N-1-phenylethyl-N′-triethoxysilylpropylurea, (R) — And N-1-phenylethyl-N′-trimethoxysilylpropylurea. Among these, γ-ureidopropyltriethoxysilane or γ-ureidopropyltrimethoxysilane is particularly preferable because it is easily available as a commercial product.
 式(1-2)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、ビス[3-(トリエトキシシリル)プロピル]ウレア、ビス[3-(トリエトキシシリル)エチル]ウレア、ビス[3-(トリメトキシシリル)プロピル]ウレア、ビス[3-(トリプロポキシシリル)プロピル]ウレア等が挙げられる。なかでも、ビス[3-(トリエトキシシリル)プロピル]ウレアは、市販品として入手が容易であるため特に好ましい。 Specific examples of the alkoxysilane represented by the formula (1-2) will be given, but the invention is not limited to these. For example, bis [3- (triethoxysilyl) propyl] urea, bis [3- (triethoxysilyl) ethyl] urea, bis [3- (trimethoxysilyl) propyl] urea, bis [3- (tripropoxysilyl) Propyl] urea and the like. Of these, bis [3- (triethoxysilyl) propyl] urea is particularly preferable because it is easily available as a commercial product.
 式(1)で表されるアルコキシシランは、中間層を得るために用いる全アルコキシシラン中において、0.5モル%以上が好ましく、より好ましくは1.0モル%以上であり、更に好ましくは2.0モル%以上である。また、式(1)で表されるアルコキシシランは、中間層を得るために用いる全アルコキシシラン中、100モル%でもよい。 The alkoxysilane represented by the formula (1) is preferably 0.5 mol% or more, more preferably 1.0 mol% or more, further preferably 2 in all alkoxysilanes used for obtaining the intermediate layer. 0.0 mol% or more. Moreover, 100 mol% may be sufficient as the alkoxysilane represented by Formula (1) in all the alkoxysilanes used in order to obtain an intermediate | middle layer.
 また、中間層を得るアルコキシシランは、上記式(1)で表されるアルコキシシランとともに、下式(2)で表されるアルコキシシランを使用するのが好ましい。
   (RSi(OR4-n     (2)
 式(2)中、Rは、水素原子、又はヘテロ原子、ハロゲン原子、ビニル基、アミノ基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよい、炭素原子数1~6の炭化水素基である。Rは炭素原子数1~5、好ましくは1~3のアルキル基である。nは0~3、好ましくは0~2の整数を表す。
Moreover, it is preferable to use the alkoxysilane represented by the following Formula (2) with the alkoxysilane represented by the said Formula (1) as the alkoxysilane which obtains an intermediate | middle layer.
(R 3 ) n Si (OR 4 ) 4-n (2)
In the formula (2), R 3 is a hydrogen atom or a carbon atom which may be substituted with a hetero atom, a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group. It is a hydrocarbon group of the number 1-6. R 4 is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. n represents an integer of 0 to 3, preferably 0 to 2.
 式(2)中のRの例としては、脂肪族炭化水素;脂肪族環、芳香族環若しくはヘテロ環のような環構造;不飽和結合;酸素原子、窒素原子、硫黄原子等のヘテロ原子等を含んでいてもよく、分岐構造を有していてもよい、炭素原子数が1~6の有機基である。加えて、Rはハロゲン原子、ビニル基、アミノ基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基、アクリロキシ基などで置換されていてもよい。Rは、上述したRと同義であり、好ましい範囲も同様である。 Examples of R 3 in the formula (2) include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings or heterocycles; unsaturated bonds; heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms Or an organic group having 1 to 6 carbon atoms, which may have a branched structure. In addition, R 3 may be substituted with a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group, an acryloxy group, or the like. R 4 has the same meaning as R 2 described above, and the preferred range is also the same.
 式(2)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。すなわち、式(2)で表されるアルコキシシランにおいて、Rが水素原子である場合のアルコキシシランの具体例としては、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等が挙げられる。 Although the specific example of the alkoxysilane represented by Formula (2) is given, it is not limited to this. That is, in the alkoxysilane represented by the formula (2), specific examples of the alkoxysilane when R 3 is a hydrogen atom include trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane, and the like. .
 また、その他の式(2)、式(2)で表されるアルコキシシランの具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、アリルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン等が挙げられる。 Other specific examples of the alkoxysilanes represented by formula (2) and formula (2) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, Propyltriethoxysilane, methyltripropoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3- Aminopropyltrimethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-amino) Ethylthioethyl) trie Xysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, allyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3 -Acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Silane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimeth Shishiran, diphenyl diethoxy silane, 3-aminopropyl methyl diethoxy silane, 3-aminopropyl dimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane and the like.
 式(2)で表されるアルコキシシランにおいて、nが0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、式(1)で表されるアルコキシシランと縮合し易いので、本発明のポリシロキサンを得るために好ましい。かかる式(2)においてnが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、テトラメトキシシラン又はテトラエトキシシランが特に好ましい。 In the alkoxysilane represented by the formula (2), the alkoxysilane in which n is 0 is tetraalkoxysilane. Tetraalkoxysilane is preferable for obtaining the polysiloxane of the present invention because it easily condenses with the alkoxysilane represented by the formula (1). As the alkoxysilane in which n is 0 in the formula (2), tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 式(2)で表されるアルコキシシランを使用する場合、その使用量は中間層を得るために用いる全アルコキシシラン中、40~99.5モル%であることが好ましく、より好ましくは、50~99.5モル%であり、更に好ましくは60~99.5モル%である。この場合、式(1)で表されるアルコキシシランは、中間層を得るために用いる全アルコキシシラン中、60モル%以下が好ましく、より好ましくは50モル%以下、更に好ましくは40モル%以下である。 When the alkoxysilane represented by the formula (2) is used, the amount used is preferably 40 to 99.5 mol%, more preferably 50 to 50%, based on the total alkoxysilane used for obtaining the intermediate layer. It is 99.5 mol%, more preferably 60 to 99.5 mol%. In this case, the alkoxysilane represented by the formula (1) is preferably 60 mol% or less, more preferably 50 mol% or less, still more preferably 40 mol% or less in all alkoxysilanes used for obtaining the intermediate layer. is there.
 本発明における中間層を形成するポリシロキサンは、式(1)で表されるアルコキシシラン、及び必要に応じて、式(2)で表されるアルコキシシランを含むアルコキシシランを、好ましくは重縮合して得られる。中間層は、その特性を損なわない限りにおいて、式(1)で表されるアルコキシシラン、及び式(2)で表されるアルコキシシランを、それぞれ、複数種を併用していてもよい。 The polysiloxane forming the intermediate layer in the present invention is preferably a polycondensation of an alkoxysilane represented by the formula (1) and, if necessary, an alkoxysilane containing the alkoxysilane represented by the formula (2). Obtained. As long as the properties of the intermediate layer are not impaired, a plurality of types of alkoxysilanes represented by formula (1) and alkoxysilanes represented by formula (2) may be used in combination.
 本発明における重縮合する方法としては、例えば、上記アルコキシシランをアルコール又はグリコールなどの有機溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシド基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。水の量は、所望により適宜選択することができるが、アルコキシシラン中の全アルコキシ基の0.5~2.5倍モルであるのが好ましい。 Examples of the polycondensation method in the present invention include a method of hydrolyzing and condensing the alkoxysilane in an organic solvent such as alcohol or glycol. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 moles of water of all alkoxide groups in the alkoxysilane, but it is usually preferable to add an excess amount of water over 0.5 moles. The amount of water can be appropriately selected as desired, but it is preferably 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
 本発明では、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩などの触媒が用いられるのが好ましい。また、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも好ましい。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃~還流下で、1~24時間加熱・撹拌するなどの方法が挙げられる。 In the present invention, for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid and fumaric acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine and triethylamine A catalyst such as a metal salt such as hydrochloric acid, sulfuric acid or nitric acid is preferably used. It is also preferable to further promote hydrolysis / condensation reaction by heating a solution in which alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. Examples thereof include a method of heating and stirring at 50 ° C. to reflux for 1 to 24 hours.
 また、別法として、アルコキシシラン、有機溶媒、及び蟻酸、蓚酸、マレイン酸、フマル酸等の有機酸の混合物を加熱して重縮合させる方法が挙げられる。例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、予めアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2~2モルとすることが好ましい。この方法における加熱は、液温50~180℃で行うことができる。好ましくは、液の蒸発、揮散などが起こらないように、還流下で数十分~十数時間加熱する方法である。 As another method, a method of heating and polycondensing a mixture of an alkoxysilane, an organic solvent, and an organic acid such as formic acid, oxalic acid, maleic acid, and fumaric acid can be used. For example, a method of polycondensation by heating a mixture of alkoxysilane, solvent and oxalic acid can be mentioned. Specifically, after adding succinic acid to alcohol in advance to make an alcohol solution of succinic acid, alkoxysilane is mixed while the solution is heated. In that case, the amount of succinic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
 ポリシロキサンを得る際に、アルコキシシランを複数種用いる場合は、アルコキシシランを予め混合した混合物として混合してもよいし、複数種のアルコキシシランを順次混合してもよい。
 アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが溶解しない場合でも、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。
In the case of using a plurality of types of alkoxysilanes when obtaining polysiloxane, a mixture of alkoxysilanes may be mixed in advance, or a plurality of types of alkoxysilanes may be mixed sequentially.
The solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt | dissolve, what melt | dissolves as the polycondensation reaction of alkoxysilane progresses is sufficient. In general, since an alcohol is generated by a polycondensation reaction of alkoxysilane, an alcohol, a glycol, a glycol ether, or an organic solvent having good compatibility with the alcohol is used.
 上記縮合反応における有機溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類:エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2,3-ペンタンジオール、1,6-ヘキサンジオール等のグリコール類:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m-クレゾール等が挙げられる。上記の有機溶媒を複数種混合して用いてもよい。 Specific examples of the organic solvent in the condensation reaction include alcohols such as methanol, ethanol, propanol, butanol and diacetone alcohol: ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol and 1,3-propanediol. 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, Glycols such as 1,5-pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl Pill ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl Glycol ethers such as ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, γ -Butyrolactone, dimethyl sulfoxide, tetramethylurea, hexamethylphosphotriamide, m-cresol and the like. A plurality of the above organic solvents may be mixed and used.
 上記の方法で得られたポリシロキサンの重合溶液(以下、重合溶液ともいう。)は、原料として仕込んだ全アルコキシシランのケイ素原子をSiOに換算した濃度(以下、SiO換算濃度と称す。)を20質量%以下とすることが好ましい。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑えて均質な溶液を得ることができる。
 本発明においては、上記で得られたポリシロキサンの重合溶液をそのまま中間層を形成するために使用してもよいし、必要に応じて、上記の重合溶液を、濃縮したり、溶媒を加えて希釈したり又は他の溶媒に置換してもよい。
 その際、用いる溶媒(以下、添加溶媒ともいう)は、重合溶媒と同じでもよいし、別の溶媒でもよい。この添加溶媒は、ポリシロキサンが均一に溶解している限りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができる。
The polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less. By selecting an arbitrary concentration within this concentration range, it is possible to obtain a homogeneous solution while suppressing gel formation.
In the present invention, the polysiloxane polymerization solution obtained above may be used as it is to form an intermediate layer, and if necessary, the polymerization solution may be concentrated or a solvent may be added. It may be diluted or replaced with another solvent.
In that case, the solvent to be used (hereinafter also referred to as additive solvent) may be the same as the polymerization solvent, or may be another solvent. The additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
 かかる添加溶媒の具体例としては、上記の重合溶媒の例として挙げた溶媒のほかに、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸メチル、酢酸エチル、乳酸エチル等のエステル類等が挙げられる。これらの溶媒により粘度を調整した液を、スピンコート、フレキソ印刷、インクジェット、スリットコート等により、基板上に塗布して中間層を形成する際の塗布性を向上できる。 Specific examples of such an additive solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; esters such as methyl acetate, ethyl acetate, and ethyl lactate in addition to the solvents mentioned as examples of the polymerization solvent. It is done. A liquid whose viscosity is adjusted with these solvents can be applied on a substrate by spin coating, flexographic printing, ink jetting, slit coating, or the like, thereby improving the coating property when an intermediate layer is formed.
 本発明において、中間層を形成する際の塗布液には、上記ポリシロキサン以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、更には、界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、又はフッ化マグネシウム微粒子等の微粒子が好ましく、特にコロイド溶液の状態にあるものが好ましい。中間層を形成する際の塗布液中に無機微粒子を含有させることにより、形成される硬化被膜の表面形状及び屈折率の調整、その他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径(D50)が0.001~0.2μmが好ましく、0.001~0.1μmが更に好ましい。平均粒子径が0.2μmを超える場合には、形成される中間層の透明性が低下する場合がある。
In the present invention, the coating liquid for forming the intermediate layer contains other components other than the above polysiloxane, for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, and further components such as surfactants. May be included.
As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, or magnesium fluoride fine particles are preferable, and those in a colloidal solution state are particularly preferable. By including inorganic fine particles in the coating liquid for forming the intermediate layer, it is possible to adjust the surface shape and refractive index of the formed cured film and to provide other functions. The inorganic fine particles preferably have an average particle diameter (D50) of 0.001 to 0.2 μm, and more preferably 0.001 to 0.1 μm. When the average particle diameter exceeds 0.2 μm, the transparency of the formed intermediate layer may be lowered.
 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、ポリシロキサン液の安定性の観点から、pH又はpKaが1~10が好ましく、い。2~7がより好ましい。 Examples of the dispersion medium for inorganic fine particles include water and organic solvents. The colloidal solution preferably has a pH or pKa of 1 to 10 from the viewpoint of the stability of the polysiloxane liquid. 2 to 7 are more preferable.
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類及びケトン類が好ましい。有機溶剤は、単独又は2種以上使用することができる。 Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, hexylene glycol, diethylene glycol, dipropylene glycol, and ethylene glycol monopropyl ether; Ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; Examples include ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. The organic solvent can be used alone or in combination of two or more.
 上記メタロキサンオリゴマー、メタロキサンポリマーとしては、ケイ素、チタン、アルミニウム、タンタル、アンチモン、ビスマス、錫、インジウム、亜鉛等の単独又は複合酸化物前駆体が用いられる。メタロキサンオリゴマー、メタロキサンポリマーは、金属アルコキシド、硝酸塩、塩酸塩、カルボン酸塩等のモノマーから加水分解等により得られたものであってもよい。 As the metalloxane oligomer and metalloxane polymer, single or composite oxide precursors such as silicon, titanium, aluminum, tantalum, antimony, bismuth, tin, indium, and zinc are used. The metalloxane oligomer and metalloxane polymer may be obtained by hydrolysis or the like from monomers such as metal alkoxides, nitrates, hydrochlorides, and carboxylates.
 メタロキサンオリゴマー、メタロキサンポリマーは市販品でもよい。その例としては、コルコート社製メチルシリケート51、メチルシリケート53A、エチルシリケート40、エチルシリケート48、EMS-485、SS-101等;関東化学社製チタニウム-n-ブトキシドテトラマー等のチタノキサンオリゴマーが挙げられる。これらは単独で又は2種以上使用してもよい。 The metalloxane oligomer and metalloxane polymer may be commercially available products. Examples thereof include methyl silicate 51, methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, EMS-485, SS-101, etc. manufactured by Colcoat, and titanoxane oligomers such as titanium-n-butoxide tetramer manufactured by Kanto Chemical Co., Ltd. Can be mentioned. These may be used alone or in combination of two or more.
 また、レベリング剤及び界面活性剤等は、公知のもの、特に市販品を用いることができる。また、ポリシロキサンに、上記したその他の成分を混合する方法は、ポリシロキサンと同時でも、後であってもよく、特に限定されない。 In addition, as the leveling agent and surfactant, known ones, in particular, commercially available products can be used. Moreover, the method of mixing the above-mentioned other components with polysiloxane may be simultaneous with or after polysiloxane, and is not particularly limited.
 本発明のポリシロキサン溶液を、ガラス基板のDLC層上に塗布し、熱硬化することで中間層を得ることができる。ポリシロキサン溶液の塗布は、公知又は周知の方法を採用できる。例えば、ディップ法、フローコート法、スプレー法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、エアーナイフコート法、フレキソ印刷法、インクジェット法、スリットコート法等を採用できる。中でもフレキソ印刷法、スリットコート法、インクジェット法、スプレーコート法、グラビアコート法において良好な塗膜を形成することができる。 The intermediate layer can be obtained by applying the polysiloxane solution of the present invention on the DLC layer of the glass substrate and thermosetting. A known or well-known method can be employed for applying the polysiloxane solution. For example, a dip method, a flow coating method, a spray method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, a flexographic printing method, an ink jet method, a slit coating method and the like can be employed. Among them, a good coating film can be formed by the flexographic printing method, the slit coating method, the ink jet method, the spray coating method, and the gravure coating method.
 ポリシロキサン溶液は、塗布前に、フィルター等を用いて濾過することが好ましい。形成された塗膜は、好ましくは室温~120℃、より好ましくは50~100℃で乾燥させた後、好ましくは100~600℃、より好ましくは150℃以上で熱硬化される。乾燥に要する時間は、好ましくは1分~30分、より好ましくは1分~10分である。熱硬化時間は、好ましくは10分~24時間、より好ましくは30分~24時間である。 The polysiloxane solution is preferably filtered using a filter or the like before application. The formed coating film is preferably dried at room temperature to 120 ° C., more preferably 50 to 100 ° C., followed by heat curing at 100 to 600 ° C., more preferably 150 ° C. or more. The time required for drying is preferably 1 minute to 30 minutes, more preferably 1 minute to 10 minutes. The heat curing time is preferably 10 minutes to 24 hours, more preferably 30 minutes to 24 hours.
 本発明のガラス基板に用いられる中間層は、温度180℃を超える硬化温度であっても充分な硬さを有する硬化被膜を得ることができる。本発明における中間層の厚みは、好ましくは10~500nm、より好ましくは30~300nmである。 The intermediate layer used in the glass substrate of the present invention can provide a cured film having sufficient hardness even at a curing temperature exceeding 180 ° C. The thickness of the intermediate layer in the present invention is preferably 10 to 500 nm, more preferably 30 to 300 nm.
 また、熱硬化に先立ち、水銀ランプ、メタルハライドランプ、キセノンランプ、エキシマランプ等を用いてエネルギー線(紫外線等)を照射することも有効である。乾燥した塗膜にエネルギー線を照射することで、更に硬化温度を低下できたり、被膜の硬さを高めたりすることができる。エネルギー線の照射量は必要に応じて適宜選択することができるが、通常、数百~数千mJ/cmが好ましい。 It is also effective to irradiate energy rays (ultraviolet rays or the like) using a mercury lamp, a metal halide lamp, a xenon lamp, an excimer lamp or the like prior to thermosetting. By irradiating the dried coating with energy rays, the curing temperature can be further lowered, or the hardness of the coating can be increased. The irradiation amount of the energy beam can be appropriately selected as necessary, but it is usually preferably from several hundred to several thousand mJ / cm 2 .
 本発明では、上記のようにして得られる中間層の表面にフッ素コーティング層が設けられる。かかるフッ素コーティング層は、上記したように既知であり、既知の方法により形成される。 In the present invention, a fluorine coating layer is provided on the surface of the intermediate layer obtained as described above. Such a fluorine coating layer is known as described above, and is formed by a known method.
 図1は、本発明の実施形態のガラス基材の例を示す模式的な断面図である。ガラス1は、フッ素コーティング層2、中間層3、DLC層4、及びガラス基板5を備える。中間層3は、DLC層上に形成された中間層である。フッ素コーティング層は、上述した含フッ素重合物の含有液を塗布し、焼成することで形成する。DLC層を有するガラス基板用い、そのDLC層上に中間層を形成し、次いで、中間層の上にフッ素コーティング層を形成することにより本発明のガラス基版が得られる。 FIG. 1 is a schematic cross-sectional view showing an example of a glass substrate according to an embodiment of the present invention. The glass 1 includes a fluorine coating layer 2, an intermediate layer 3, a DLC layer 4, and a glass substrate 5. The intermediate layer 3 is an intermediate layer formed on the DLC layer. The fluorine coating layer is formed by applying and baking the liquid containing the fluorine-containing polymer described above. The glass base plate of the present invention is obtained by using a glass substrate having a DLC layer, forming an intermediate layer on the DLC layer, and then forming a fluorine coating layer on the intermediate layer.
 以下に、本発明の実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限して解釈されるものではない。以下における略語の意味、及び測定方法は以下のとおりである。 Hereinafter, examples of the present invention will be shown and the present invention will be specifically described. However, the present invention is not construed as being limited to the following examples. The meanings of the abbreviations below and the measurement methods are as follows.
  TEOS:テトラエトキシシラン
  UPS:3-ウレイドプロピルトリエトキシシラン
  MeOH:メタノール
  EtOH:エタノール
  IPA:イソプロピルアルコール
  PGME:プロピレングリコールモノメチルエーテル
  HG:ヘキシレングリコール
  BCS:エチレングリコールモノブチルエーテル
  AF:FT-Net社製、「フルオマート P-5425」
TEOS: Tetraethoxysilane UPS: 3-Ureidopropyltriethoxysilane MeOH: Methanol EtOH: Ethanol IPA: Isopropyl alcohol PGME: Propylene glycol monomethyl ether HG: Hexylene glycol BCS: Ethylene glycol monobutyl ether AF: manufactured by FT-Net Fluoromat P-5425 "
[残存アルコキシシランモノマー測定法]
 ポリシロキサン溶液中の残存アルコキシシランモノマーをガスクロマトグラフィー(以下、GCと称す。)で測定した。GC測定は、Shimadzu GC-14B(島津製作所社製)を用い、下記の条件で測定した。
 カラム:キャピラリーカラム CBP1-W25-100(長さ25mm、直径0.53mm、肉厚1μm)
 カラム温度:開始温度50℃から15℃/分で昇温して到達温度290℃(保持時間3分)とした。
 サンプル注入量:1μL、インジェクション温度:240℃、検出器温度:290℃、キャリヤーガス:窒素(流量30mL/分)、検出方法:FID法。
[Measurement of residual alkoxysilane monomer]
The residual alkoxysilane monomer in the polysiloxane solution was measured by gas chromatography (hereinafter referred to as GC). GC measurement was performed under the following conditions using Shimadzu GC-14B (manufactured by Shimadzu Corporation).
Column: Capillary column CBP1-W25-100 (length 25 mm, diameter 0.53 mm, wall thickness 1 μm)
Column temperature: The temperature was raised from a starting temperature of 50 ° C. at 15 ° C./min to reach an ultimate temperature of 290 ° C. (holding time 3 minutes).
Sample injection volume: 1 μL, injection temperature: 240 ° C., detector temperature: 290 ° C., carrier gas: nitrogen (flow rate 30 mL / min), detection method: FID method.
[スチールウール耐擦傷性]
 スチールウール耐擦傷性試験機(大栄精機社製)、ボンスター業務用(ポンド巻)♯0000(ボンスター販売社)を用い、速度:25往復/分、距離:6cm、面積:2cm×2cm、荷重:1kgにて基板にスチールウールをこすり付けた後、水接触角を測定した。
[Steel wool scratch resistance]
Steel wool scratch resistance tester (manufactured by Daiei Seiki Co., Ltd.), Bonster commercial use (pound roll) # 0000 (Bonster sales company), speed: 25 reciprocations / minute, distance: 6 cm, area: 2 cm × 2 cm, load: After rubbing steel wool on the substrate with 1 kg, the water contact angle was measured.
[水接触角]
 接触角計DM-701(協和界面化学社製)を用い、基板上のスチールウール耐擦傷性試験箇所上に水3μm(リットル)を滴下し、水接触角を測定した。
[Water contact angle]
Using a contact angle meter DM-701 (manufactured by Kyowa Interface Chemical Co., Ltd.), 3 μm (liter) of water was dropped on the steel wool scratch resistance test site on the substrate, and the water contact angle was measured.
[平均透過率]
 実施例及び比較例で得られたサンプル1~3のガラス基板を、紫外可視分光光度計UV-3600(島津製作所社製品名)を用い、可視光波長(380~780nm)における透過率スペクトルに対して、昼光スペクトルと比視感度の波長分布から得られる重価係数を乗じ、加重平均することで求められる値を平均透過率とした。JIS R3106(1998)に準じて測定した結果を表1に示す。
[平均反射率]
 実施例及び比較例で得られたサンプル1~3のガラス基板を、紫外可視分光光度計UV-3600(島津製作所社製品名)、絶対鏡面反射測定装置ASR3145、マルチパーパス大型試料室MPC-3100を用い45°反射率を視光波長(380~780nm)における反射率スペクトルに対して、昼光スペクトルと比視感度の波長分布から得られる重価係数を乗じ、加重平均することで求められる値を平均反射率とした。JIS R3106(1998)に準じて測定した結果を表1に示す。その結果を表1に示す。
[Average transmittance]
The glass substrates of Samples 1 to 3 obtained in Examples and Comparative Examples were measured with respect to a transmittance spectrum at a visible light wavelength (380 to 780 nm) using an ultraviolet-visible spectrophotometer UV-3600 (product name of Shimadzu Corporation). Thus, a value obtained by multiplying the weighting coefficient obtained from the daylight spectrum and the wavelength distribution of the relative luminous sensitivity and performing weighted averaging was defined as the average transmittance. The results measured according to JIS R3106 (1998) are shown in Table 1.
[Average reflectance]
The glass substrates of Samples 1 to 3 obtained in the Examples and Comparative Examples were prepared using an ultraviolet-visible spectrophotometer UV-3600 (product name of Shimadzu Corporation), an absolute specular reflection measuring apparatus ASR3145, and a multipurpose large sample chamber MPC-3100. Using 45 ° reflectance, the value obtained by multiplying the reflectance spectrum at the visible light wavelength (380 to 780 nm) by the weighting coefficient obtained from the daylight spectrum and the wavelength distribution of the relative luminous sensitivity, and calculating the weighted average. Average reflectance was used. The results measured according to JIS R3106 (1998) are shown in Table 1. The results are shown in Table 1.
[製造例1]
 還流管を備えつけた4つ口反応フラスコ中に、溶媒としてMeOH(27.25g)及びアルコキシシランとしてTEOS(32.98g)を投入し、攪拌した。
 次いで、溶媒としてMeOH(11.23g)、酸として6%硝酸溶液(8.75g)、及び水(15.0g)の混合物を滴下し、30分攪拌した。攪拌後、2時間還流し、次いで、アルコキシシランとして92%UPS(2.39g)、及びMeOH(2.39g)を加え、更に30分還流し、室温まで放冷した。放冷後、溶媒としてMeOH(70.67g)投入し、ポリシロキサンの溶液(A)を調製した。
 このポリシロキサンの溶液をGCで測定したところ、アルコキシシランモノマーは検出されなかった。
[Production Example 1]
In a four-necked reaction flask equipped with a reflux tube, MeOH (27.25 g) as a solvent and TEOS (32.98 g) as an alkoxysilane were added and stirred.
Next, a mixture of MeOH (11.23 g) as a solvent, 6% nitric acid solution (8.75 g) as an acid, and water (15.0 g) was added dropwise and stirred for 30 minutes. After stirring, the mixture was refluxed for 2 hours, and then 92% UPS (2.39 g) and MeOH (2.39 g) were added as alkoxysilane, refluxed for another 30 minutes, and allowed to cool to room temperature. After allowing to cool, MeOH (70.67 g) was added as a solvent to prepare a polysiloxane solution (A).
When this polysiloxane solution was measured by GC, no alkoxysilane monomer was detected.
[比較製造例1]
 還流管を備えつけた4つ口反応フラスコ中に、溶媒としてMeOH(27.92g)及びアルコキシシランとしてTEOS(34.72g)を投入し、攪拌した。
 次いで、溶媒としてMeOH(13.96g)、酸として6%硝酸溶液(8.75g)、及び水(14.65g)の混合物を滴下し、30分攪拌した。攪拌後、2時間30分還流し、室温まで放冷した。放冷後、溶媒としてMeOH(70.67g)を投入し、ポリシロキサンの溶液(B)を調製した。
 このポリシロキサンの溶液をGCで測定したところ、アルコキシシランモノマーは検出されなかった。
[Comparative Production Example 1]
In a four-necked reaction flask equipped with a reflux tube, MeOH (27.92 g) as a solvent and TEOS (34.72 g) as an alkoxysilane were added and stirred.
Next, a mixture of MeOH (13.96 g) as a solvent, 6% nitric acid solution (8.75 g) as an acid, and water (14.65 g) was added dropwise and stirred for 30 minutes. After stirring, the mixture was refluxed for 2 hours and 30 minutes and allowed to cool to room temperature. After allowing to cool, MeOH (70.67 g) was added as a solvent to prepare a polysiloxane solution (B).
When this polysiloxane solution was measured by GC, no alkoxysilane monomer was detected.
[実施例1]
 製造例1で得られたポリシロキサン溶液(A)(50g)を、PGME(30g)、HG(10g)、BCS(5g)、及びPB(5g)で希釈し、被膜形成用塗布液(A1)とした。
 スパッタリング法にて厚み100nmのDLC層を形成したガラス基板(厚み:0.7mm)のDLC層上に、被膜形成用塗布液(A1)をスピンコーターで塗布し、塗膜を形成した。次いで、塗膜を形成したガラス板をホットプレート上にて、80℃で3分間乾燥させた後、クリーンオーブン中、300℃で30分間硬化させ、厚み100nmの被膜(中間層)を有するガラス基板を得た。
 このガラス基板の有する中間層上に、AFをスピンコーターで塗布し、接触角が113°程度になるように厚さ約10nmのフッ素コーティング層の塗膜を形成した。次いで、ホットプレート上、80℃で3分間乾燥させた後、クリーンオーブン中、170℃で20分間硬化させることにより、サンプル1(実施例1)のガラス基板を得た。
[Example 1]
The polysiloxane solution (A) (50 g) obtained in Production Example 1 is diluted with PGME (30 g), HG (10 g), BCS (5 g), and PB (5 g), and a coating solution for film formation (A1) It was.
On the DLC layer of the glass substrate (thickness: 0.7 mm) on which the DLC layer having a thickness of 100 nm was formed by the sputtering method, the coating solution for coating film formation (A1) was applied with a spin coater to form a coating film. Next, after the glass plate on which the coating film has been formed is dried on a hot plate at 80 ° C. for 3 minutes, the glass plate is cured in a clean oven at 300 ° C. for 30 minutes to have a coating film (intermediate layer) having a thickness of 100 nm. Got.
On the intermediate layer of the glass substrate, AF was applied with a spin coater to form a coating film of a fluorine coating layer having a thickness of about 10 nm so that the contact angle was about 113 °. Next, after drying at 80 ° C. for 3 minutes on a hot plate, the glass substrate of Sample 1 (Example 1) was obtained by curing at 170 ° C. for 20 minutes in a clean oven.
[比較例1]
 実施例1において、製造例1で得られたポリシロキサン溶液(A)を使用せず、ガラス基板のDLC層上に、中間層を形成することなく、AF塗膜を直接塗布することによりしてフッ素コーティング層の塗膜を形成した以外は、実施例1と同様に実施することにより、サンプル2(比較例1)のガラス基板を得た。
[Comparative Example 1]
In Example 1, the AF coating film was directly applied on the DLC layer of the glass substrate without using the polysiloxane solution (A) obtained in Production Example 1 and without forming an intermediate layer. A glass substrate of Sample 2 (Comparative Example 1) was obtained by carrying out in the same manner as in Example 1 except that the coating film of the fluorine coating layer was formed.
[比較例2]
 実施例1において、製造例1で得られたポリシロキサン溶液(A)の代わりに、比較製造例1で得られたポリシロキサン溶液(B)を使用した以外は、実施例1と同様に実施することにより、サンプル3(比較例2)のガラス基板を得た。
[Comparative Example 2]
In Example 1, it carries out similarly to Example 1 except having used the polysiloxane solution (B) obtained by the comparative manufacture example 1 instead of the polysiloxane solution (A) obtained by manufacture example 1. Thus, a glass substrate of Sample 3 (Comparative Example 2) was obtained.
 上記で得られたサンプル1(実施例1)、サンプル2(比較例1)、及びサンプル3(比較例2)のそれぞれについて、スチールウール耐擦傷性試験後の水接触角、平均透過率、及び平均反射率を測定し、その結果を表1及び表2に示す。なお、表中、「-」は未測定を意味する。 For each of Sample 1 (Example 1), Sample 2 (Comparative Example 1), and Sample 3 (Comparative Example 2) obtained above, the water contact angle after steel wool scratch resistance test, the average transmittance, and The average reflectance was measured, and the results are shown in Tables 1 and 2. In the table, “-” means not measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示されるように、実施例では、スチールウール耐擦傷性試験を9000往復しても水接触角90°以上で且つ透過率も94%以上と高い結果となり、平均反射率6%以下と低い結果となった。
 一方、比較例1、2では、スチールウール耐擦傷性試験が5000往復以下で、いずれも水接触角90°以下と耐擦傷性が低いにもかかわらず、平均透過率が94%以下と実施例と比較して低い値を示し、平均反射率は6%以上と実施例と比較して高い値を示した。
As shown in Tables 1 and 2, in the examples, even when the steel wool scratch resistance test was repeated 9000, the water contact angle was 90 ° or more and the transmittance was as high as 94% or more, and the average reflectance 6 The result was as low as% or less.
On the other hand, in Comparative Examples 1 and 2, the steel wool scratch resistance test was 5,000 round trips or less, and both had a water contact angle of 90 ° or less and low scratch resistance, but the average transmittance was 94% or less. The average reflectance was 6% or more, which was a high value compared to the examples.
 本発明のガラス基板は、モバイル機器、タッチパネル等のディスプレイ素子のカバーガラスなどとして広範に用いられる。 The glass substrate of the present invention is widely used as a cover glass for display elements such as mobile devices and touch panels.
 なお、2015年7月31日に出願された日本特許出願2015-152008号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2015-152008 filed on July 31, 2015 are cited here as disclosure of the specification of the present invention. Incorporate.
 1:カバーガラス  2:フッ素コーティング層  3:中間層  4:DLC層  5:ガラス基板 1: Cover glass 2: Fluorine coating layer 3: Intermediate layer 4: DLC layer 5: Glass substrate

Claims (8)

  1.  表面側にフッ素コーティング層と、基板側にダイヤモンドライクカーボン(DLC)層を有するガラス基板であって、下式(1)で表されるアルコキシシラン、及び必要に応じて下式(2)で表されるアルコキシシランを含むアルコキシシランを重縮合して得られるポリシロキサンを含有する中間層を、前記フッ素コーティング層と前記DLC層との間に有することを特徴とするガラス基板。
       R{Si(OR     (1)
    (Rはウレイド基で置換された炭素原子数1~12の炭化水素基であり、Rは炭素原子数1~5のアルキル基であり、pは1又は2の整数を表す。)
       (RSi(OR4-n     (2)
    (Rは、水素原子、又はヘテロ原子、ハロゲン原子、ビニル基、アミノ基、グリシドキシ基、メルカプト基、メタクリロキシ基、イソシアネート基若しくはアクリロキシ基で置換されていてもよい、炭素原子数1~8の炭化水素基である。Rは炭素原子数1~5のアルキル基である。nは0~3の整数である。)
    A glass substrate having a fluorine coating layer on the surface side and a diamond-like carbon (DLC) layer on the substrate side, which is represented by the alkoxysilane represented by the following formula (1) and, if necessary, the following formula (2) A glass substrate comprising an intermediate layer containing polysiloxane obtained by polycondensation of an alkoxysilane containing an alkoxysilane, between the fluorine coating layer and the DLC layer.
    R 1 {Si (OR 2 ) 3 } P (1)
    (R 1 is a hydrocarbon group having 1 to 12 carbon atoms substituted with a ureido group, R 2 is an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 1 or 2.)
    (R 3 ) n Si (OR 4 ) 4-n (2)
    (R 3 is a hydrogen atom, or a hetero atom, a halogen atom, a vinyl group, an amino group, a glycidoxy group, a mercapto group, a methacryloxy group, an isocyanate group or an acryloxy group, and having 1 to 8 carbon atoms. A hydrocarbon group, R 4 is an alkyl group having 1 to 5 carbon atoms, and n is an integer of 0 to 3.)
  2.  式(1)で表されるアルコキシシランが、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン及びγ-ウレイドプロピルトリプロポキシシランからなる群から選ばれる少なくとも1種である、請求項1に記載のガラス基板。 The alkoxysilane represented by the formula (1) is at least one selected from the group consisting of γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, and γ-ureidopropyltripropoxysilane. A glass substrate as described in 1.
  3.  式(2)で表されるアルコキシシランが、式(2)中、nが0である、テトラアルコキシシランである、請求項1又は2に記載のガラス基板。 The glass substrate of Claim 1 or 2 whose alkoxysilane represented by Formula (2) is tetraalkoxysilane whose n is 0 in Formula (2).
  4.  式(1)で表されるアルコキシシランが、全アルコキシシラン中、0.5%以上含まれる請求項1~3のいずれかに記載のガラス基板。 The glass substrate according to any one of claims 1 to 3, wherein the alkoxysilane represented by the formula (1) is contained in an amount of 0.5% or more in the total alkoxysilane.
  5.  式(1)で表されるアルコキシシランが、全アルコキシシラン中、0.5~60モル%含まれ、かつ式(2)で表されるアルコキシシランが全アルコキシシラン中、40~99.5モル%含まれる、請求項1~4のいずれかに記載のガラス基板。 The alkoxysilane represented by the formula (1) is contained in an amount of 0.5 to 60 mol% in the total alkoxysilane, and the alkoxysilane represented by the formula (2) in the total alkoxysilane is 40 to 99.5 mol. The glass substrate according to claim 1, wherein the glass substrate is contained in an amount of 1%.
  6.  フッ素コーティング層が、パーフルオロアルキル又はパーフルオロポリエーテルのシラン化合物の縮重合物から形成される請求項1~5のいずれかに記載のガラス基板。 The glass substrate according to any one of claims 1 to 5, wherein the fluorine coating layer is formed from a polycondensate of a silane compound of perfluoroalkyl or perfluoropolyether.
  7.  フッ素コーティング層の厚みが1~30nmであり、ダイヤモンドライクカーボン層の厚みが50~150nmであり、かつ中間層の厚みが10~500nmである請求項1~6のいずれかに記載のガラス基板。 7. The glass substrate according to claim 1, wherein the fluorine coating layer has a thickness of 1 to 30 nm, the diamond-like carbon layer has a thickness of 50 to 150 nm, and the intermediate layer has a thickness of 10 to 500 nm.
  8.  請求項1~7のいずれかに記載のガラス基板を備えるディスプレイ素子。 A display element comprising the glass substrate according to any one of claims 1 to 7.
PCT/JP2016/072214 2015-07-31 2016-07-28 Glass substrate suitable for cover glass, etc., of mobile display device WO2017022638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680057980.6A CN108139506B (en) 2015-07-31 2016-07-28 It is suitable for the glass substrate of cover glass of mobile display device etc.
KR1020187006069A KR102633247B1 (en) 2015-07-31 2016-07-28 A glass substrate suitable for cover glass of mobile display devices, etc.
JP2017532556A JP6773036B2 (en) 2015-07-31 2016-07-28 Glass substrate suitable for cover glass of mobile display devices, etc.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-152008 2015-07-31
JP2015152008 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017022638A1 true WO2017022638A1 (en) 2017-02-09

Family

ID=57943121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072214 WO2017022638A1 (en) 2015-07-31 2016-07-28 Glass substrate suitable for cover glass, etc., of mobile display device

Country Status (5)

Country Link
JP (1) JP6773036B2 (en)
KR (1) KR102633247B1 (en)
CN (1) CN108139506B (en)
TW (1) TWI704050B (en)
WO (1) WO2017022638A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107500566A (en) * 2017-10-17 2017-12-22 信利光电股份有限公司 A kind of wear-resisting anti-fingerprint ground glass and preparation method thereof
WO2019069642A1 (en) * 2017-10-03 2019-04-11 信越化学工業株式会社 Water-repellent, oil-repellent member and method for manufacturing water-repellent, oil-repellent member
WO2019124269A1 (en) * 2017-12-21 2019-06-27 Agc株式会社 Article equipped with functional layer and method for manufacturing article equipped with functional layer
CN110914720A (en) * 2017-06-01 2020-03-24 因特瓦克公司 Optical coating with nanolaminate for improved durability

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320097B (en) * 2018-08-30 2022-04-19 湖北大学 Method for preparing oil injection super-smooth surface based on sol-gel method
KR102277769B1 (en) * 2018-11-23 2021-07-15 주식회사 엘지화학 Silica Glass Layer
CN113072866A (en) * 2021-03-10 2021-07-06 宁波威霖住宅设施有限公司 Surface self-cleaning coating for glass electronic screen and use method thereof
WO2023027305A1 (en) * 2021-08-27 2023-03-02 삼성전자주식회사 Exterior material for cooking device and preparation method therefor
CN114302604B (en) * 2022-01-18 2024-03-15 Oppo广东移动通信有限公司 Cover plate, preparation method thereof and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006155A (en) * 1999-06-17 2001-01-12 Fuji Electric Co Ltd Magnetic recording medium and fabricating method thereof
JP2005335980A (en) * 2004-05-25 2005-12-08 Honda Motor Co Ltd Water slipping surface structure
JP2006178147A (en) * 2004-12-22 2006-07-06 Pentax Corp Subwavelength structure optical element highly-precise and excellent in durability and moisture resistance
WO2015056772A1 (en) * 2013-10-18 2015-04-23 日産化学工業株式会社 Glass substrate having protective film
WO2016035765A1 (en) * 2014-09-03 2016-03-10 ダイキン工業株式会社 Antifouling article

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826374B1 (en) * 2004-04-13 2008-05-02 다이킨 고교 가부시키가이샤 Chlorotrifluoroethylene Copolymer
JP5194563B2 (en) * 2007-05-28 2013-05-08 信越化学工業株式会社 Scratch resistant coating composition and coated article
JP2009186236A (en) 2008-02-04 2009-08-20 Seiko Epson Corp Light-transmitting member and timepiece provided with same
JP2009186234A (en) 2008-02-04 2009-08-20 Seiko Epson Corp Light-transmitting member and timepiece provided with same
JP2010228307A (en) 2009-03-27 2010-10-14 Citizen Holdings Co Ltd Decorative member
KR101829495B1 (en) * 2011-01-20 2018-02-14 닛산 가가쿠 고교 가부시키 가이샤 Coating composition for touch panels, coating film, and touch panel
EP2842920A4 (en) * 2012-04-24 2016-03-30 Asahi Glass Co Ltd Method for producing glass substrate with silicon oxide film containing inorganic fine particles
JP6027956B2 (en) * 2012-11-08 2016-11-16 富士フイルム株式会社 Aqueous composition and hard coat layer
JP6167016B2 (en) * 2013-10-31 2017-07-19 富士フイルム株式会社 Laminate, organic semiconductor manufacturing kit and organic semiconductor manufacturing resist composition
JP2015219125A (en) * 2014-05-19 2015-12-07 株式会社ダイセル Functional-group quantitative determination method of fine diamond
CN105273622B (en) * 2014-05-30 2018-12-04 三菱综合材料株式会社 Low refractive index film, which is formed, uses composition and its preparation method, the formation method of low refractive index film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006155A (en) * 1999-06-17 2001-01-12 Fuji Electric Co Ltd Magnetic recording medium and fabricating method thereof
JP2005335980A (en) * 2004-05-25 2005-12-08 Honda Motor Co Ltd Water slipping surface structure
JP2006178147A (en) * 2004-12-22 2006-07-06 Pentax Corp Subwavelength structure optical element highly-precise and excellent in durability and moisture resistance
WO2015056772A1 (en) * 2013-10-18 2015-04-23 日産化学工業株式会社 Glass substrate having protective film
WO2016035765A1 (en) * 2014-09-03 2016-03-10 ダイキン工業株式会社 Antifouling article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914720A (en) * 2017-06-01 2020-03-24 因特瓦克公司 Optical coating with nanolaminate for improved durability
WO2019069642A1 (en) * 2017-10-03 2019-04-11 信越化学工業株式会社 Water-repellent, oil-repellent member and method for manufacturing water-repellent, oil-repellent member
CN111163936A (en) * 2017-10-03 2020-05-15 信越化学工业株式会社 Water-and oil-repellent member and method for producing water-and oil-repellent member
JPWO2019069642A1 (en) * 2017-10-03 2020-11-05 信越化学工業株式会社 Water- and oil-repellent member and method for manufacturing water- and oil-repellent member
CN111163936B (en) * 2017-10-03 2022-06-14 信越化学工业株式会社 Water-and oil-repellent member and method for producing water-and oil-repellent member
CN107500566A (en) * 2017-10-17 2017-12-22 信利光电股份有限公司 A kind of wear-resisting anti-fingerprint ground glass and preparation method thereof
WO2019124269A1 (en) * 2017-12-21 2019-06-27 Agc株式会社 Article equipped with functional layer and method for manufacturing article equipped with functional layer

Also Published As

Publication number Publication date
CN108139506B (en) 2019-11-15
JP6773036B2 (en) 2020-10-21
KR102633247B1 (en) 2024-02-02
TWI704050B (en) 2020-09-11
CN108139506A (en) 2018-06-08
KR20180036762A (en) 2018-04-09
JPWO2017022638A1 (en) 2018-07-12
TW201718259A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6773036B2 (en) Glass substrate suitable for cover glass of mobile display devices, etc.
JP5019014B2 (en) Antireflection film, method of forming antireflection film, and antireflection glass
JP5382310B2 (en) Coating liquid for forming a film, manufacturing method thereof, coating film thereof, and antireflection material
KR101985547B1 (en) Agent for forming electrode protective film
JP4887783B2 (en) Coating with low refractive index and water repellency
JP5262722B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
TWI404776B (en) A film having a low refractive index and a large contact angle with respect to water
JP5458575B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
JP4893103B2 (en) Coating liquid for coating film formation, coating film therefor, and coating film forming method
JP5910494B2 (en) Coating liquid for anti-reflection coating for spray coating
KR20140134867A (en) Anti-pollution coating solution composition with low reflective property and method for preparing it
JP6578946B2 (en) Glass substrate with protective film
JP6094308B2 (en) Silica porous membrane
JP5310549B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
WO2015182657A1 (en) Agent for forming adhesive coating for aluminum oxide or aluminum substrate
TW202132490A (en) Anti-glare layer-provided substrate, image display apparatus, and manufacturing method for anti-glare layer-provided substrate which has excellent anti-glare performance and does not cause sparkling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187006069

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16832917

Country of ref document: EP

Kind code of ref document: A1