WO2017022186A1 - Battery cell swelling estimation system for assembled battery - Google Patents

Battery cell swelling estimation system for assembled battery Download PDF

Info

Publication number
WO2017022186A1
WO2017022186A1 PCT/JP2016/003327 JP2016003327W WO2017022186A1 WO 2017022186 A1 WO2017022186 A1 WO 2017022186A1 JP 2016003327 W JP2016003327 W JP 2016003327W WO 2017022186 A1 WO2017022186 A1 WO 2017022186A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
swelling
battery module
estimation system
Prior art date
Application number
PCT/JP2016/003327
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 隆史
啓介 清水
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017022186A1 publication Critical patent/WO2017022186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cell swelling estimation system for an assembled battery.
  • a battery module may be configured by arranging a plurality of pouch-shaped battery cells side by side.
  • a battery module is housed in a case to form an assembled battery.
  • the battery cells may be swollen by charging or discharging a plurality of battery cells. For this reason, it has been proposed to physically estimate the swelling of the battery cell using a switch or a pressure sensitive device attached to the battery cell.
  • Patent Document 1 describes that a strain sensor is attached to the surface of the film outer package of the pouch-shaped battery cell, detects the elongation of the film outer package, and detects the increase in internal pressure.
  • the configuration in which the pouch-shaped battery cell is physically estimated by using a dedicated switch or a pressure-sensitive device, the configuration is complicated because the pressure-sensitive device is required, and the cost may be excessively increased. For this reason, it is desired to accurately estimate the amount of swelling of the pouch-shaped battery cell of the assembled battery with a simpler configuration.
  • a battery cell swelling estimation system for an assembled battery is a battery module in which a plurality of pouch-shaped battery cells each having a chargeable / dischargeable power generation element and an exterior body configured of a sheet material and containing the power generation element are arranged side by side. It is a battery cell swelling estimation system of an assembled battery containing.
  • the battery module is an internal flow path provided between at least some adjacent battery cells, and the side surface of the battery cell exterior body has an internal flow path forming an inner wall surface.
  • the battery cell swelling estimation system includes a refrigerant supply unit that supplies and passes a refrigerant fluid to an internal flow path of the battery module, a drive unit that drives the refrigerant supply unit, and a drive unit that is charged or discharged when the battery module is charged. And a control device that estimates a swelling amount of each battery cell based on an acquired value of the load.
  • the swelling amount of the pouch-shaped battery cell can be accurately estimated with a simpler configuration.
  • FIG. 1 is a configuration diagram of a battery cell swelling estimation system according to an embodiment.
  • FIG. 2 is a perspective view of the assembled battery and the cooling structure constituting the battery cell swelling estimation system of the embodiment.
  • FIG. 3 is a perspective view of a battery module constituting the assembled battery shown in FIG. 4A is a perspective view of a battery cell constituting the battery module, and FIG. 4B is an enlarged cross-sectional view of a portion C in FIG. 4A.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. 3 and an enlarged view of a D portion.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG. 3 and an enlarged view of a D portion.
  • FIG. 7 is a schematic diagram illustrating a method of estimating the amount of battery cell swelling in the battery cell swelling estimation system of the embodiment.
  • FIG. 8 is a diagram illustrating an example of a time change of a load of a motor that drives a cooling fan in the battery cell swelling estimation system of the embodiment.
  • FIG. 9 is an exploded perspective view of parallel blocks of battery modules that constitute another example of the battery cell swelling estimation system of the embodiment.
  • FIG. 10 is a block diagram showing a configuration of another example of the battery cell swelling estimation system of the embodiment.
  • FIG. 1 is a configuration diagram of a battery cell swelling estimation system 10 according to the embodiment.
  • the battery cell swelling estimation system 10 includes a charge / discharge control system 12 and a cooling structure 60.
  • the charge / discharge control system 12 is used to charge / discharge the battery module 32.
  • the charge / discharge control system 12 includes a charge input terminal 13, an external output terminal 14, a charger 15, a charge / discharge switch unit 16, an assembled battery 30, and a control device 50.
  • the external power supply (not shown) can be connected to the charging input terminal 13.
  • the external power source is, for example, a commercial AC power source having a frequency such as 50 Hz or 60 Hz and a voltage such as 100 V (voltage amplitude: 141 V).
  • An external load (not shown) can be connected to the external output terminal 14.
  • the external load is, for example, a lighting fixture or air conditioning equipment in a home or factory facility.
  • an output converter 17 that is a DC / AC converter is provided.
  • the output conversion unit 17 converts DC power supplied from the battery module 32 via the charge / discharge switch unit 16 into AC power and outputs the AC power to the external output terminal 14.
  • the output converter 17 is omitted.
  • the power line is indicated by a thick line and the signal line is indicated by a thin line.
  • the charger 15 is a charging AC / DC converter that converts the input AC power supplied from the charging input terminal 13 in accordance with the DC power specifications of the battery module 32.
  • the charger 15 receives a charge instruction from the control device 50 described later, returns a response signal to the control device 50 in response thereto, and performs AC / DC conversion based on the response signal.
  • the charge / discharge switch unit 16 switches between charging the battery module 32 from the charger 15 side and discharging from the battery module 32 to the external output terminal 14 side.
  • the charging / discharging switch unit 16 includes a charging switching element that supplies DC power output from the charger 15 to the battery module 32 as charging power.
  • the charge / discharge switch unit 16 also includes a discharge switching element that outputs DC power stored in the battery module 32 as discharge power to the external output terminal 14 side.
  • a charging switching element and a discharging switching element a high power semiconductor element is used.
  • an insulated gate bipolar transistor (IGBT) or a high power field effect transistor (FET) can be used.
  • the operation of the charge / discharge switch unit 16 is performed under the control of the control device 50.
  • the assembled battery 30 includes a battery module 32 housed in a case 39 (FIG. 2) described later.
  • the battery module 32 includes a plurality of battery cells 33. In FIG. 1, four battery cells 33 are connected in series.
  • the plurality of battery cells 33 may be connected in parallel depending on the specifications of the charge / discharge control system 12, and may be combined with series connection and parallel connection as shown in the configuration of FIG. 9 described later.
  • FIG. 1 four battery cells are distinguished and shown as battery cells 33a, 33b, 33c, and 33d.
  • the negative terminal of the battery cell 33a is connected to the positive terminal of the battery cell 33b
  • the negative terminal of the battery cell 33b is connected to the positive terminal of the battery cell 33c, and this is repeated.
  • the voltage value between the positive terminal of the battery cell 33 a and the negative terminal of the battery cell 33 d is the total voltage value of the battery module 32.
  • the battery cell 33 constituting the battery module 32 is a pouch-shaped secondary battery, for example, a lithium ion battery or a lithium polymer battery. As shown in FIG. 4 to be described later, the battery cell 33 has a power generation element 37 built in a sealed space of an exterior body 34 made of a sheet material.
  • the battery module 32 is configured such that a plurality of battery cells 33 are stacked and arranged in one direction.
  • the control device 50 includes an SOC calculation unit 51, a charge / discharge control unit 52, a cell swelling estimation unit 53, a life determination unit 54, and a fan control unit 55.
  • the control device 50 is configured by a control circuit or the like equipped with a computer or a microprocessor.
  • the SOC calculation unit 51 determines the battery module 32 based on the detected temperature of the battery module 32 detected by the temperature detection unit 18 described later, the voltage measured by the voltage detection unit 19 described later, and the data of the current detection unit 20. A charge state index is calculated.
  • the state of charge indicator is called SOC (State Of Charge).
  • the charge / discharge control unit 52 performs charge / discharge control so as to maintain the power storage state of the battery module 32 in a high state.
  • the charge / discharge control unit 52 controls charging and discharging based on the output power amount required by the external load and the SOC of the battery module 32.
  • the charge / discharge control unit 52 can also perform charge / discharge control according to a manual input operation.
  • the cell swelling estimation unit 53, the life determination unit 54, and the fan control unit 55 included in the control device 50 will be described later.
  • the AC / DC converter 22 and the DC / DC converter 23 are power converters that supply power to the control device 50 having a predetermined DC voltage value.
  • the control device 50 is usually supplied with electric power from an external power source via the AC / DC converter 22.
  • the AC / DC converter 22 supplies power to the control device 50 without going through the charger 15.
  • the control device 50 is supplied with power from the battery module 32 via the DC / DC converter 23.
  • the cooling structure 60 includes a cooling fan 61 that is a refrigerant supply unit, a motor 61a that is a driving unit of the cooling fan 61, an introduction duct 62 (FIG. 2), and a discharge duct 63 (FIG. 2).
  • the battery cell swelling estimation system 10 includes a control device 50 that estimates the swelling amount of the battery cell 33.
  • the cell swelling estimation unit 53 included in the control device 50 estimates the swelling amount of each battery cell 33 based on the measured value of the load of the motor 61a when the battery module 32 is charged or discharged.
  • the cooling structure 60 is used for estimating the amount of swelling. Therefore, first, the cooling structure 60 and the battery module 32 cooled by the cooling structure 60 will be described with reference to FIGS. 2 to 6, and then the cell swelling estimation unit 53 will be described.
  • FIG. 2 is a perspective view of the assembled battery 30 and the cooling structure 60 constituting the battery cell swelling estimation system 10.
  • FIG. 3 is a perspective view of the battery module 32 constituting the assembled battery 30 shown in FIG.
  • the assembled battery 30 has a battery module 32 shown in FIG. 3 housed inside a substantially rectangular parallelepiped case 39.
  • An inlet duct 62 for introducing cooling air and a discharge duct 63 for discharging cooling air are connected to one end portion in the vertical direction of the case 39 (the front side end portion in FIG. 2).
  • FIG. 2 in order to make it easy to understand the connection portion and the inside of the introduction duct 62 and the discharge duct 63, they are shown as perspective views.
  • the battery module 32 is configured by stacking a plurality of battery cells 33 in one direction.
  • the battery module 32 has a substantially rectangular parallelepiped shape and extends longer in the vertical direction Y than in the horizontal direction X. 2 and 3 and FIG. 4 to be described later, the lateral direction of the case 39 and the battery module 32 is indicated by X, the longitudinal direction is indicated by Y, and the lateral direction X and the vertical direction perpendicular to the longitudinal direction Y are indicated by Z.
  • the horizontal direction X, the vertical direction Y, and the up-down direction Z are used for convenience of explanation, and the relationship between the direction and the direction of the actual use state and the dimensional relationship are not limited.
  • the battery module 32 is not limited to a configuration in which the plurality of battery cells 33 are stacked so as to be in contact with each other.
  • the end portions in the lateral direction of the plurality of battery cells are joined by wall members on both sides and arranged in one direction. May be good.
  • FIG. 4 is a perspective view (a) of the battery cell 33 constituting the battery module 32 and an enlarged cross-sectional view of the C part in (a).
  • one end portion of the battery cell 33 in the vertical direction Y is disposed on the back side of the paper surface, and the other end portion in the vertical direction Y is disposed on the front side of the paper surface.
  • the back side of the paper surface of FIG. 4 is the connection side (duct connection side) of the introduction duct 62 and the discharge duct 63.
  • the battery cell 33 is a laminated battery having an exterior body 34 and a pair of electrode tabs extending from the end of the exterior body 34 opposite to the duct connection side, that is, a positive electrode tab 36a and a negative electrode tab 36b.
  • the exterior body 34 is composed of laminate films 35a and 35b that are two sheet materials.
  • An exterior body is not limited to what is comprised from the two laminate films 35a and 35b, For example, it may be comprised from one laminate film and may be comprised from metal sheet
  • a power generation element 37 including an electrode body and an electrolyte is accommodated in an exterior body 34.
  • an electrode body is a winding type in which a positive electrode and a negative electrode are wound through a separator.
  • the positive electrode tab 36a is connected to the positive electrode
  • the negative electrode tab 36b is connected to the negative electrode.
  • the laminate films 35a and 35b constituting the exterior body 34 films in which resin layers are formed on both surfaces of a metal layer can be used.
  • the exterior body 34 has joint portions 38 extending from both ends in the longitudinal direction Y of a flat, substantially rectangular parallelepiped portion.
  • the joining portion 38 is formed by joining the edges of the two laminate films 35a and 35b.
  • the two laminate films 35a and 35b are bonded to both ends in the lateral direction X of the outer package 34 in the same manner as both ends in the vertical direction Y.
  • the both ends of the lateral direction X are bent in the vertical direction so as to follow both side surfaces of the lateral direction X of the substantially rectangular parallelepiped portion.
  • the battery cell is not limited to such a shape, and may be a pouch having an exterior body made of a sheet material.
  • the first holder 40 and the second holder 41 are attached to both end surfaces of the battery module 32 in the longitudinal direction Y, respectively.
  • a plurality of first holder elements 40 a are stacked and joined in the vicinity of the end portion (the front surface side end portion in FIG. 3) opposite to the tabs 36 a and 36 b (FIG. 4) of each battery cell 33. It is formed by doing.
  • a groove (not shown) extending in the lateral direction X is formed on the end surface of the first holder element 40a on the back side (battery cell 33 side).
  • a joining portion of one end portion in the longitudinal direction Y of each battery cell 33 (front end portion in FIG. 3) is inserted into the groove portion.
  • the second holder 41 is formed by stacking and joining a plurality of second holder elements 41a in the vicinity of the tabs 36a, 36b end portions (the back side end portions in FIG. 3) of each battery cell 33. Moreover, the joining part 38 (FIG. 4) of the vertical direction Y other end part (back side edge part of FIG. 3, front side edge part of FIG. 4) of each battery cell 33 is inserted
  • the positive electrode tab 36 a of one battery cell 33 and the negative electrode tab 36 b of the other battery cell 33 are connected by a bus bar (not shown), and this is repeated in the adjacent battery cell 33. Thereby, the some battery cell 33 is connected in series.
  • the positive terminal (not shown) of the battery module 32 is connected to the positive electrode tab 36a of the battery cell 33 at one end in the vertical direction of the battery module 32.
  • the negative electrode terminal (not shown) of the battery module 32 is connected to the negative electrode tab 36 b of the battery cell 33 at the other end in the vertical direction of the battery module 32.
  • An insulating cover (not shown) may be attached to the outer side surface of the second holder 41 in the vertical direction Y (the back side surface of FIG. 3). When the insulating cover is attached, the positive terminal and the negative terminal are led out to the outside through holes formed at both ends of the insulating cover in the vertical direction. Further, tapes 42 are affixed to substantially the entire area on both sides of the battery module 32 in the lateral direction X.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB of FIG.
  • a partition wall member 43 is attached to the upper side surface of each battery cell 33 so as to extend in the longitudinal direction Y from the lateral X central portion at one end in the longitudinal direction Y.
  • side wall members 44 are attached along the longitudinal direction Y at both ends in the lateral direction X on the upper side surface of each battery cell 33.
  • the partition wall member 43 and the side wall member 44 are disposed between the adjacent battery cells 33.
  • a U-shaped internal flow path 45 is formed between adjacent battery cells 33.
  • the upper ends of the partition wall member 43 and the side wall member 44 attached to the upper side surface of the battery cell 33 positioned at the upper end are in contact with the inner side surface of the case 39, and A U-shaped internal flow path 45 is also formed between the side surface and the inner side surface of the case 39.
  • the partition wall member 43 and the side wall member 44 are attached to the lower side surface of the battery cell 33 located at the lower end among the plurality of battery cells 33 in the same manner as the upper side surface.
  • the lower ends of the partition wall member 43 and the side wall member 44 of the battery cell 33 at the lower end are in contact with the inner surface of the case 39, and a U-shaped internal flow path 45 is also formed between the battery cell 33 at the lower end and the case 39.
  • An elastic member capable of elastic deformation can be used for the partition member 43 and the side wall member 44.
  • rubber or foamed resin material is used as the elastic member.
  • the elastic member is attached to the upper surface or upper and lower surfaces of the substantially rectangular parallelepiped portion of the battery cell 33 using an adhesive. Since the internal flow path 45 is provided between the adjacent battery cells 33 or between the battery cells 33 and the case 39, the outer surface of the exterior body 34 of the battery cell 33 constitutes the inner wall surface of the internal flow path 45. .
  • a plurality of inlets are provided on one side (left side in FIG. 3) in the lateral direction X of the first holder 40 disposed on one end surface in the vertical direction Y (the front surface on the paper surface in FIG. 3) of the battery module 32.
  • 46 is formed, and a plurality of discharge ports 47 are formed on the other side in the lateral direction X of the first holder (the right side in FIG. 3).
  • both ends of each internal flow path 45 communicate with the introduction port 46 and the discharge port 47.
  • the other end of the internal flow path 45 in the longitudinal direction Y (the front surface side end in FIG. 3) is closed by the second holder 41. For this reason, the cooling air flowing in the internal flow path 45 from the inlet 46 in the direction of the arrow E1 in FIG.
  • the introduction side opening R1 is formed at one end of the longitudinal direction Y of the case 39, and the downstream end portion of the introduction duct 62 is connected to the introduction side opening R1.
  • the introduction side opening R1 communicates with a plurality of introduction ports 46 (FIG. 3) of the first holder 40.
  • a discharge side opening R2 is formed at one end in the longitudinal direction of the case 39, and the upstream end of the discharge duct 63 is connected to the discharge side opening R2.
  • the discharge-side opening R2 communicates with the plurality of discharge ports 47 (FIG. 3) of the first holder 40.
  • the upstream end of the introduction duct 62 shown in FIG. 2 is opened and communicates with, for example, outside air.
  • a cooling fan 61 is provided inside the discharge duct 63.
  • the cooling fan 61 is driven by a motor 61a.
  • the drive of the motor 61a is controlled by controlling the drive circuit 24 such as an inverter by a fan control unit 55 included in the control device 50.
  • the cooling fan 61 When the cooling fan 61 is driven, air that is a refrigerant fluid is supplied from the introduction duct 62 to each internal flow path 45, and the air passes through each internal flow path 45 as cooling air.
  • the cooling fan 61 operates as a suction type that sucks air to cool the battery module 32.
  • the cooling fan is not limited to the suction type, and a cooling fan that is provided inside the introduction duct 62 and operates as an extrusion type that pushes air toward the battery module 32 may be used. Further, another gaseous refrigerant can be used as the refrigerant fluid instead of air.
  • the voltage detector 19 detects the voltage state of each battery cell 33.
  • the voltage detection unit 19 includes a voltage measurement unit 19a that is a measurement circuit and a voltage monitoring unit 19b that is a monitoring circuit.
  • the voltage measuring unit 19a measures the voltage value between the terminals of each battery cell 33.
  • a first bus bar (not shown) is connected to the positive electrode tab 36a of one battery cell 33, and the second bus bar is connected to the negative electrode tab of the other battery cell. (Not shown) is connected.
  • a 1st bus bar and a 2nd bus bar are connected on both sides of a thin plate-shaped electroconductive member. An end portion of the conductive member is led out from between the first bus bar and the second bus bar to form a voltage measurement terminal.
  • the voltage measurement terminal is connected to the voltage measurement unit 19a constituting the voltage detection unit 19 (FIG. 1), and is used for measuring the voltage value between the terminals of each battery cell 33.
  • the voltage monitoring unit 19b determines in cooperation with the voltage measurement unit 19a whether one or both of the voltage value between the terminals of each battery cell 33 and the total voltage of the battery module 32 are within a predetermined allowable range. .
  • the measurement result of the voltage measurement unit 19a and the determination result of the voltage monitoring unit 19b are transmitted to the control device 50 via a signal line.
  • the battery module 32 is provided with a shunt resistor 48.
  • the shunt resistor 48 is provided between the negative terminal of the battery module 32 and the system ground terminal of the charge / discharge control system 12.
  • the shunt resistor 48 detects the charge / discharge current value of the battery module 32 flowing through the four battery cells 33a, 33b, 33c, and 33d connected in series.
  • the shunt resistor 48 may be provided not between the negative terminal side of the battery module 32 but between the positive terminal side of the battery module 32 or between the battery cells 33.
  • the current detection unit 20 detects the voltage value across the shunt resistor 48. And the electric current detection part 20 transmits the charging / discharging electric current value of the battery module 32 calculated from this voltage value to the control apparatus 50 via a signal line.
  • Temperature detectors 18 are provided at a plurality of positions of the battery module 32.
  • the temperature detection unit 18 (FIG. 1) can be provided in three internal flow paths 45 between adjacent battery cells 33.
  • the temperature rise tends to increase at the folded portion of the internal flow path 45, which is the portion indicated by the sand in FIG.
  • the temperature detection part 18 can be provided in any position of this sandy part.
  • a temperature fuse or a thermistor can be used as the temperature detector 18.
  • the temperature of the battery module 32 detected by the temperature detector 18 is transmitted to the control device 50 via a signal line.
  • the temperatures of the three internal flow paths 45 between the adjacent battery cells 33 are detected by the three temperature detection units 18.
  • the temperatures detected by the three temperature detectors 18 may be transmitted to the control device 50 as they are. Instead, the highest temperature among the temperatures detected by the three temperature detection units 18 may be transmitted to the control device 50 as the temperature of the battery module 32. In addition, when the temperature detected by the temperature detection unit 18 reaches an abnormally high temperature, it is preferable to use a temperature fuse as the temperature detection unit from the viewpoint of easily confirming that the high temperature has been reached later. .
  • the charge / discharge control unit 52 has a function of stopping charge / discharge including discharge limitation of the battery module 32 based on the SOC and the detected temperature T of the temperature detection unit 18. Further, the charge / discharge control unit 52 has a function of stopping charge / discharge even when the life determination unit 54 described later determines that the battery module 32 has reached the end of its life.
  • the cell swelling estimation part 53 which the control apparatus 50 has estimates the swelling amount of each battery cell 33 based on the acquired value of the load of the motor 61a at the time of charge of the battery module 32 or discharge. Specifically, when charging / discharging of the battery module 32 is repeated for a long time, or when charging or discharging is performed at a high rate, each battery cell 33 in the internal flow path 45 (FIG. 3) of the assembled battery 30. There is a possibility that both side surfaces in the up-down direction Z may swell outward. For example, as shown in FIGS.
  • the cooling air flows in the direction of the arrow E2 in the internal flow path 45, and in FIG. 6, the cooling air flows in the internal flow path 45 toward the back side of the paper surface on the left side of the partition wall member 43 and toward the front side of the paper surface on the right side.
  • the cell swelling estimation unit 53 (FIG. 1), based on the acquired value of the load of the motor 61a, the swelling amount of each battery cell 33, for example, the maximum swelling amount (d2-d1) (FIGS. 5 and 6). Is estimated.
  • the load of the motor 61a is determined according to the flow path resistance of the internal flow path 45, the relationship between the load of the motor 61a and the swelling amount of the battery cell 33 is obtained in advance by an experiment or a calculation formula.
  • the shape of the internal flow path 45 and the dimensions of the battery module 32 and the case 39 affect the magnitude of the load.
  • the relationship between the load and the amount of swelling is obtained by experiment, it is preferable to obtain the above relationship using the battery module 32 and the case 39 that are actually used for estimating the amount of swelling.
  • the relationship between the load of the motor 61a and the amount of swelling of each battery cell 33 is stored in advance in the storage unit of the control device 50 as a preset relationship.
  • the cell swelling estimation unit 53 estimates the swelling amount from the acquired value of the load of the motor 61a and the stored relationship between the load and the swelling amount.
  • the acquired value that is the load value of the motor 61a is derived by calculation from, for example, a detection value of power (motor supply power) that is output supplied to the motor 61a as cooling fan drive power and a rotation speed detection value of the cooling fan 61. can do.
  • the motor supply power is calculated from detected values of current and voltage supplied to the drive circuit 24 (FIG. 1), for example.
  • the motor supply power can also be obtained by calculation using a current command and a voltage command in the control device 50.
  • the rotation speed detection unit includes a rotation angle detection unit 64 (FIG. 1) such as a resolver that detects the rotation angle of the rotation shaft of the motor 61a.
  • the control device 50 derives a detection value of the number of rotations of the cooling fan 61 by calculation from the detection value of the rotation angle. Even when the motor supply power is constant, when the rotation speed of the cooling fan 61 is reduced compared to the initial state, the load value of the motor 61a is calculated as an acquired value from the amount of decrease in the rotation speed.
  • the rotation speed detection unit may be configured to calculate the rotation speed of the cooling fan 61 directly or indirectly by means other than the resolver.
  • FIG. 7 is a schematic diagram showing a method for estimating the amount of swelling of the battery cell 33 in the battery cell swelling estimation system 10.
  • the load acquisition value is calculated from the rotation speed detection value of the cooling fan 61 and the detection value of the driving power of the cooling fan 61.
  • the acquired value of the load is acquired from the rotation speed detection value of the cooling fan 61 and the detection value of the drive power using a map set in advance so as to define the relationship between the load, the rotation speed, and the drive power. May be.
  • the amount of swelling of each battery cell 33 is estimated from the acquired load value.
  • each battery cell 33 gradually swells almost uniformly as the battery module 32 is repeatedly charged and discharged.
  • FIG. 8 is a diagram illustrating an example of a change over time in the load of the motor 61a that drives the cooling fan 61 in the battery cell swelling estimation system 10.
  • FIG. The horizontal axis in FIG. 8 indicates the time when the battery module 32 is repeatedly charged and discharged at a substantially constant rate.
  • the resistance of the internal flow path 45 gradually increases, and the load on the motor 61a also gradually increases as shown by the solid line P1 in FIG.
  • the calculated load value gradually increases almost linearly as indicated by P1
  • the swelling amount of each battery cell 33 can be estimated according to the acquired value of load.
  • the life determination unit 54 included in the control device 50 determines whether or not the battery module 32 has reached the life from the estimated value of the swelling amount of each battery cell 33. For example, when the estimated value of the swelling amount of each battery cell 33 is equal to or greater than a predetermined value set in advance, the life determination unit 54 determines that the battery module 32 has reached the life. When the determination is made, the control device 50 stops the charging / discharging of the battery module 32 under the control of the charging / discharging switch unit 16 (FIG. 1).
  • the battery pack 30 is longer than the case where the life is simply determined by the number of times of charging / discharging. Life expectancy can be achieved.
  • the control device 50 displays a predetermined warning display on a display unit (not shown), generates a warning sound, or generates a predetermined warning light as a warning. Can be lit.
  • the lifetime determination unit 54 has a function of calculating a remaining lifetime that is the remaining time during charging / discharging until the estimated value of the swelling amount reaches a predetermined value. May be.
  • the load increases rapidly as indicated by the solid line P2 after the point Q position.
  • Such a rapid increase in load is unlikely to occur simultaneously in the plurality of battery cells 33.
  • the time change rate of load increases rapidly, it can be determined that an abnormality has occurred in some of the battery cells 33 of the plurality of battery cells 33. From this, when the ratio at which the load acquisition value increases with respect to time (time increase ratio) is equal to or greater than a predetermined ratio, the control device 50 has an abnormality in some of the battery cells 33 of the battery module 32. You may have the function to determine what happened.
  • the life determination unit 54 of the control device 50 determines the life of the battery module 32 based on at least one of the detected value of the voltage between the terminals of each battery cell 33, the detected temperature of the battery module 32, and the load acquisition value. It may have a function to judge. At this time, the lifetime of the battery module 32 is determined from the relationship between the solid arrows ⁇ 1, ⁇ 2, and ⁇ 3 in FIG. 7 and the two-dot chain line arrow ⁇ .
  • the life determination unit 54 may be configured to correct the estimated value of the swelling amount to be the swelling amount at the reference temperature using the temperature detection value of the battery module 32.
  • the life determination unit 54 determines the life of the battery module 32 from the estimated value of the swollen amount after correction. Thereby, it can be determined more accurately whether or not the battery module 32 has reached the end of its life.
  • the temperature detection unit 18 (FIG. 1) that detects the temperature of the battery module 32 is not limited to the one provided in all the internal flow paths 45 of the assembled battery 30, and some of the plurality of internal flow paths 45 are not provided. It is good also as a structure provided only in the internal flow path 45.
  • a duct for discharging the gas to the outside may be provided.
  • a temperature detection unit for detecting the ambient temperature is installed in the duct, and the life determination unit 54 determines the life of the battery module 32 from the detected temperature of the temperature detection unit and the estimated value of the swelling amount. It is good also as a structure to determine.
  • the functions of the charge / discharge control unit 52, the cell swelling estimation unit 53, and the life determination unit 54 can be realized by the control device 50 executing software. Specifically, the control device 50 executes a predetermined control program. Can be realized. A part of the above functions may be executed by hardware.
  • the life determination unit 54 determines that an abnormality may have occurred in the some battery cells 33. It is good also as composition to do.
  • some battery cells are controlled by the control device 50. It is possible to more accurately determine that an abnormality has occurred in 33 and the life has been reached.
  • the life determination unit 54 combines the above functions based on both the detected value of the voltage between terminals of each battery cell 33 and the detected temperature value of the battery and the acquired value of the load, thereby increasing the life of the battery module 32. Furthermore, it is good also as a structure which determines with sufficient precision.
  • the swelling amount of the pouch-shaped battery cell 33 can be accurately estimated.
  • the amount of swelling can be accurately estimated with a simpler configuration.
  • the cost can be reduced by reducing the number of parts.
  • it can suppress that the physique of the battery module 32 enlarges.
  • the amount of swelling can be continuously estimated even during normal times when there is no abnormality in voltage and discharge time, it is possible to detect a sudden change in the amount of swelling.
  • the remaining life of the battery module 32 can be estimated and the life can be extended according to the use conditions, and the user's degree of freedom in selecting the application can be increased.
  • the battery is set so that the control device 50 enters the long life mode and the charge / discharge rate is lower than normal. You may have the structure which controls charging / discharging of the module 32. FIG.
  • FIG. 9 is an exploded perspective view of a parallel block 70 of battery modules constituting another example of the battery cell swelling estimation system of the embodiment.
  • a plurality of parallel blocks 70 are used instead of the plurality of battery cells 33 in the battery module 32 shown in FIGS. 2 to 6.
  • Each parallel block 70 includes an upper battery cell 71 and a lower battery cell 72 connected in parallel.
  • the upper battery cell 71 is formed in the same manner as the battery cell 33 shown in FIG. 4 with the partition wall member 43 and the side wall member 44 attached to the upper side.
  • the lower battery cell 72 is the same as the upper battery cell 71 except that the partition wall member 43 and the side wall member 44 are omitted, and, of the positive electrode tab 36c and the negative electrode tab 36d, the other end in the longitudinal direction Y of the exterior body 34 (see FIG. 9). A portion extending from the front edge of the paper surface is bent into an L-shaped cross section. The tip portions of the positive electrode tab 36c and the negative electrode tab 36d are arranged above the connection portions of the tabs 36c and 36d with the exterior body 34.
  • Each battery cell 71, 72 is preferably fixed at a substantially rectangular parallelepiped portion via an adhesive layer 73.
  • the adhesive layer 73 for example, a double-sided tape is used.
  • the positive electrode tabs 36a and 36c and the negative electrode tabs 36b and 36d of the upper battery cell 71 and the lower battery cell 72 are overlapped and connected in the vertical direction Z, respectively.
  • the battery module is configured by connecting a plurality of such parallel blocks 70 in series. Therefore, in the battery module, the plurality of battery cells 71 and 72 are connected in combination of series connection and parallel connection.
  • the positive electrode bus bar 74 shown in FIG. 9 is connected to the positive electrode tabs 36 a and 36 c of the parallel block 70, and the negative electrode bus bar 75 is connected to the negative electrode tabs 36 b and 36 d of the parallel block 70.
  • the positive bus bar 74 is connected to a bus bar connected to the negative electrode tab of another parallel block (not shown) adjacent to the upper side of the parallel block 70.
  • the negative electrode bus bar 75 is connected to a bus bar connected to the positive electrode tab of another parallel block (not shown) adjacent to the lower side of the parallel block 70.
  • each joint portion (not shown) of one end portion in the vertical direction Y of the parallel block 70 is the back surface of the first holder element 40a constituting the first holder (the front side surface of the paper surface in FIG. 9).
  • One joint portion 38 at the other end portion in the longitudinal direction Y of the parallel block 70 is sandwiched between the upper and lower second holder elements 41b and 41c constituting the second holder.
  • two groove portions 77 are formed on the upper surface of the first holder element 40a in accordance with the positions of both ends of the internal flow path 45 formed by the upper battery cell 71.
  • the upper ends of the two groove portions 77 are closed by another first holder element (not shown) on the upper side of the first holder element 40a or the inner surface of the case, and form an inlet and an outlet for cooling air, respectively.
  • the introduction port and the discharge port respectively communicate with both ends of the internal flow path 45.
  • each battery cell 71, 72 can expand by repeated charge / discharge or by high-rate charge / discharge, as in the case of the battery cell 33 having the configuration of FIGS. There is sex.
  • the upper and lower surfaces of the parallel block 70 also swell outward.
  • control device 50 estimates the swelling amount of each battery cell 71, 72 based on the acquired value of the load of motor 61 a when the battery module is charged or discharged. .
  • a voltage measurement terminal (not shown) is used to measure the voltage value of each parallel block 70. The voltage measurement terminal is connected to the voltage measurement unit 19a (FIG. 1).
  • the control device 50 confirms that an abnormality has occurred in at least one battery cell 33 of the some parallel blocks 70. judge.
  • Other configurations and operations are the same as those in FIGS. 1 to 8.
  • FIG. 10 is a block diagram showing a configuration of another example of the battery cell swelling estimation system 10 of the embodiment.
  • a gaseous refrigerant such as air as the refrigerant fluid
  • the battery module (not shown) inside the assembled battery 30a is cooled with liquid refrigerant such as water or an insulating fluid as the refrigerant fluid.
  • the internal flow path of the assembled battery 30a has a liquid-tight structure that prevents liquid refrigerant from leaking outside the internal flow path.
  • This internal flow path leads to the introduction side opening R1 and the discharge side opening R2 of the case 80 of the assembled battery 30a.
  • the introduction side opening R1 and the discharge port S1 of the coolant pump 81 which is a refrigerant
  • the discharge side opening R2 and the suction port S2 of the coolant pump 81 are connected by the second pipe G2.
  • each piping G1, G2 comprises the refrigerant circuit which connects the coolant pump 81 and the internal flow path of the assembled battery 30a.
  • the coolant pump 81 is driven by a motor 81a to supply and pass a liquid refrigerant to the battery module inside the assembled battery 30a.
  • the driving of the motor 81a is controlled by the control device 50.
  • One or both of the first pipe G1 and the second pipe G2 are provided with a pressure detector 82 that detects the internal refrigerant pressure. The pressure detected by the pressure detector 82 is transmitted to the control device 50.
  • the coolant pump 81 is driven by driving the motor 81a, the liquid refrigerant passes through the coolant pump 81, the first pipe G1, the internal flow path of the assembled battery 30a, and the second pipe G2 in the direction of the arrow ⁇ in FIG. This is repeated in order.
  • the battery module inside the assembled battery 30a is cooled by the liquid refrigerant.
  • a part of the refrigerant circuit may be provided with a heat exchange unit that exchanges heat between the liquid refrigerant and another fluid such as air.
  • each battery cell of the battery module may swell due to repeated charge / discharge or high-rate charge / discharge, similar to the configurations of the above examples.
  • the load of the motor 81a increases by the increase in resistance of an internal flow path.
  • the control apparatus 50 estimates the amount of swelling of each battery cell based on the acquired value of load.
  • the acquired value of the load of the motor 81a can be derived by calculation from, for example, a detection value of the power supplied to the motor 81a and a rotation speed detection value of the coolant pump 81.
  • the rotation speed detection unit that detects the rotation speed of the coolant pump 81 includes a resolver (not shown) that detects the rotation angle of the rotation shaft of the motor 81a.
  • the acquired value of the load of the motor 81a may be calculated from the rotation number detection value of the coolant pump 81 and the detection value of the pressure of the liquid refrigerant detected by the pressure detection unit 82.
  • the discharge amount of the coolant pump 81 is calculated from the rotation speed detection value of the coolant pump 81, and the pressure value of the liquid refrigerant in the initial state is calculated from the discharge amount.
  • the control device 50 calculates the load acquisition value from the rotation speed detection value and the pressure detection value of the coolant pump 81.
  • the control apparatus 50 estimates the swelling amount of each battery cell 33 from the relationship between the preset load and the swelling amount of each battery cell 33, and the acquired value of load.
  • Other configurations and operations are the same as those in FIGS. 1 to 8.
  • FIG. 1 the case where the charge / discharge control system has only one battery module 32 has been described.
  • a plurality of battery modules are provided in the charge / discharge control system, and a plurality of battery modules are connected in series, connected in parallel, or connected in combination with parallel connection and series connection to form a storage block.
  • FIG. At this time, the charge / discharge state can be controlled by monitoring the voltage of each battery module and the charge / discharge current of the storage block.
  • the amount of swelling of each battery cell can be estimated by the control device 50 in each battery module as in the above examples.
  • a different duct may be connected to each battery module, and cooling air may be supplied by the cooling fan 61 corresponding to each duct.
  • a common introduction duct or discharge duct may be connected to a plurality of battery modules, and cooling air may be supplied to each battery module by a common cooling fan.
  • the battery cell swelling estimation system of the present invention is not limited to a configuration including a charge / discharge control system that charges an assembled battery from an external power source and discharges the assembled battery to an external load.
  • the system of the present invention is mounted on a vehicle having a generator and a vehicle drive motor, and the battery constituting the assembled battery is configured such that the assembled battery is charged by power generation of the generator and discharged from the assembled battery to the vehicle drive motor. It may be used to estimate the amount of cell swelling.
  • 10 battery cell swelling estimation system 12 charge / discharge control system, 13 charge input terminal, 14 external output terminal, 15 charger, 16 charge / discharge switch part, 17 output conversion part, 18 temperature detection part, 19 voltage detection part, 19a voltage Measurement unit, 19b Voltage monitoring unit, 20 Current detection unit, 22 AC / DC converter, 23 DC / DC converter, 24 drive circuit, 30, 30a battery pack, 32 battery module, 33 battery cell, 34 exterior body, 35a, 35b Laminate film, 36a, 36c positive electrode tab, 36b, 36d negative electrode tab, 37 power generation element, 38 joint, 39 case, 40 first holder, 40a first holder element, 41 second holder, 41a, 41b, 41c second holder Element, 42 tape, 43 bulkhead member, 44 side Member, 45 internal flow path, 46 introduction port, 47 discharge port, 48 shunt resistance, 50 control device, 51 SOC calculation unit, 52 charge / discharge control unit, 53 cell swelling estimation unit, 54 life determination unit, 55 fan control unit, 60 cooling structure, 61 cooling fan, 61a motor, 55

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Automation & Control Theory (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

This battery cell swelling estimation system includes a battery module wherein a plurality of pouch-shaped battery cells are disposed in an arrangement, each of the battery cells having a power generating element capable of being charged and discharged, and an exterior body comprising a sheet material and housing the power generating element. The battery module has an internal flow path provided between at least some among adjacent battery cells, the internal side wall surfaces of the internal flow path being constituted by the side surfaces on the exterior bodies from the battery cells. The battery cell swelling estimation system includes: a refrigerant supply unit causing a refrigerant fluid to be supplied to and pass through the internal flow path of the battery module; a drive unit for driving the refrigerant supply unit; and a control device for estimating the amount of swelling for each battery cell on the basis of the acquired value of the load on the drive unit at charging time or discharging time of the battery module.

Description

組電池の電池セル膨れ推定システムBattery cell swelling estimation system for battery pack
 本発明は、組電池の電池セル膨れ推定システムに関する。 The present invention relates to a battery cell swelling estimation system for an assembled battery.
 パウチ状電池セルを複数並べて配置することにより電池モジュールを構成する場合がある。通常は電池モジュールがケースの内部に収容されて組電池が構成される。この場合において、複数の電池セルの充電または放電によって電池セルの膨れが生じる可能性がある。このため、電池セルに取り付けたスイッチまたは感圧装置などにより物理的に電池セルの膨れを推定することが提案されている。 ∙ A battery module may be configured by arranging a plurality of pouch-shaped battery cells side by side. Usually, a battery module is housed in a case to form an assembled battery. In this case, the battery cells may be swollen by charging or discharging a plurality of battery cells. For this reason, it has been proposed to physically estimate the swelling of the battery cell using a switch or a pressure sensitive device attached to the battery cell.
 特許文献1には、パウチ状電池セルのフィルム外装体の表面に歪センサを付着し、フィルム外装体の伸びを検出し、内圧の上昇を検出することが記載されている。 Patent Document 1 describes that a strain sensor is attached to the surface of the film outer package of the pouch-shaped battery cell, detects the elongation of the film outer package, and detects the increase in internal pressure.
特開2000-340264号公報JP 2000-340264 A
 専用のスイッチまたは感圧装置などにより物理的にパウチ状電池セルの膨れを推定する構成では、感圧装置などを必要とするため構成が複雑となり、コストが過度に増大する可能性がある。このため、組電池のパウチ状電池セルの膨れ量をより簡単な構成で精度よく推定することが望まれる。 In the configuration in which the pouch-shaped battery cell is physically estimated by using a dedicated switch or a pressure-sensitive device, the configuration is complicated because the pressure-sensitive device is required, and the cost may be excessively increased. For this reason, it is desired to accurately estimate the amount of swelling of the pouch-shaped battery cell of the assembled battery with a simpler configuration.
 本発明に係る組電池の電池セル膨れ推定システムは、充放電可能な発電要素と、シート材から構成され発電要素を収容する外装体とを有するパウチ状電池セルが複数並んで配置された電池モジュールを含む組電池の電池セル膨れ推定システムである。電池モジュールは、少なくとも一部の隣り合う電池セルの間に設けられた内部流路であって、電池セルの外装体の側面が内側壁面を構成する内部流路を有する。そして、電池セル膨れ推定システムは、電池モジュールの内部流路に冷媒流体を供給し通過させる冷媒供給部と、冷媒供給部を駆動する駆動部と、電池モジュールの充電時または放電時における駆動部の負荷の取得値に基づいて、各電池セルの膨れ量を推定する制御装置とを備える。 A battery cell swelling estimation system for an assembled battery according to the present invention is a battery module in which a plurality of pouch-shaped battery cells each having a chargeable / dischargeable power generation element and an exterior body configured of a sheet material and containing the power generation element are arranged side by side. It is a battery cell swelling estimation system of an assembled battery containing. The battery module is an internal flow path provided between at least some adjacent battery cells, and the side surface of the battery cell exterior body has an internal flow path forming an inner wall surface. The battery cell swelling estimation system includes a refrigerant supply unit that supplies and passes a refrigerant fluid to an internal flow path of the battery module, a drive unit that drives the refrigerant supply unit, and a drive unit that is charged or discharged when the battery module is charged. And a control device that estimates a swelling amount of each battery cell based on an acquired value of the load.
 本発明に係る組電池の電池セル膨れ推定システムによれば、パウチ状電池セルの膨れ量をより簡単な構成で精度よく推定できる。 According to the battery cell swelling estimation system for an assembled battery according to the present invention, the swelling amount of the pouch-shaped battery cell can be accurately estimated with a simpler configuration.
図1は実施形態の電池セル膨れ推定システムの構成図である。FIG. 1 is a configuration diagram of a battery cell swelling estimation system according to an embodiment. 図2は実施形態の電池セル膨れ推定システムを構成する組電池及び冷却構造の斜視図である。FIG. 2 is a perspective view of the assembled battery and the cooling structure constituting the battery cell swelling estimation system of the embodiment. 図3は図2に示す組電池を構成する電池モジュールの斜視図である。FIG. 3 is a perspective view of a battery module constituting the assembled battery shown in FIG. 図4(a)は電池モジュールを構成する電池セルの斜視図であり、図4(b)は図4(a)のC部拡大断面図である。4A is a perspective view of a battery cell constituting the battery module, and FIG. 4B is an enlarged cross-sectional view of a portion C in FIG. 4A. 図5は図3のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA in FIG. 図6は図3のB-B断面図と、D部の拡大図である。FIG. 6 is a cross-sectional view taken along the line BB of FIG. 3 and an enlarged view of a D portion. 図7は実施形態の電池セル膨れ推定システムにおいて、電池セルの膨れ量を推定する方法を示す模式図である。FIG. 7 is a schematic diagram illustrating a method of estimating the amount of battery cell swelling in the battery cell swelling estimation system of the embodiment. 図8は実施形態の電池セル膨れ推定システムにおいて、冷却ファンを駆動するモータの負荷の時間変化の1例を示す図である。FIG. 8 is a diagram illustrating an example of a time change of a load of a motor that drives a cooling fan in the battery cell swelling estimation system of the embodiment. 図9は実施形態の電池セル膨れ推定システムの別例を構成する電池モジュールの並列ブロックの分解斜視図である。FIG. 9 is an exploded perspective view of parallel blocks of battery modules that constitute another example of the battery cell swelling estimation system of the embodiment. 図10は実施形態の電池セル膨れ推定システムの別例の構成を示すブロック図である。FIG. 10 is a block diagram showing a configuration of another example of the battery cell swelling estimation system of the embodiment.
 以下、図面を用いて本発明の実施形態を説明する。以下で説明する形状、材料、及び個数は、説明のための例示であって、電池セル膨れ推定システムの仕様等に応じ適宜変更することができる。以下において複数の実施形態、変形例などが含まれる場合、それらを適宜組み合わせて実施することができる。以下ではすべての図面において同等の要素には同一の符号を付して説明する。また、本文中の説明においては、必要に応じてそれ以前に述べた符号を用いるものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The shape, material, and number described below are illustrative examples, and can be changed as appropriate according to the specifications of the battery cell swelling estimation system. In the following, when a plurality of embodiments, modified examples, and the like are included, they can be implemented by appropriately combining them. In the following description, identical elements are denoted by the same reference symbols in all drawings. In the description in the text, the symbols described before are used as necessary.
 図1は、実施形態の電池セル膨れ推定システム10の構成図である。電池セル膨れ推定システム10は、充放電制御システム12と、冷却構造60とを備える。充放電制御システム12は、電池モジュール32に充放電を行うために用いられる。充放電制御システム12は、充電入力端子13、外部出力端子14、充電器15、充放電スイッチ部16、組電池30、及び制御装置50を含む。 FIG. 1 is a configuration diagram of a battery cell swelling estimation system 10 according to the embodiment. The battery cell swelling estimation system 10 includes a charge / discharge control system 12 and a cooling structure 60. The charge / discharge control system 12 is used to charge / discharge the battery module 32. The charge / discharge control system 12 includes a charge input terminal 13, an external output terminal 14, a charger 15, a charge / discharge switch unit 16, an assembled battery 30, and a control device 50.
 充電入力端子13には、図示しない外部電源が接続可能である。外部電源は、例えば、50Hzまたは60Hz等の周波数と100V等の電圧(電圧振幅:141V)を有する商用交流電源である。 An external power supply (not shown) can be connected to the charging input terminal 13. The external power source is, for example, a commercial AC power source having a frequency such as 50 Hz or 60 Hz and a voltage such as 100 V (voltage amplitude: 141 V).
 外部出力端子14には、図示しない外部負荷が接続可能である。外部負荷は、例えば、家庭または工場施設等における照明器具、空調設備等である。外部負荷は交流電力で動作するものが多いが、充放電制御システム12が内蔵する電池モジュール32の出力は直流電力であるので、DC/AC変換器である出力変換部17が設けられる。出力変換部17は、電池モジュール32から充放電スイッチ部16を介して供給される直流電力を交流電力に変換して、外部出力端子14に出力する。ユーザの要望によって、DC/AC変換器を充放電制御システム12の外部に設ける場合には、出力変換部17は省略する。 An external load (not shown) can be connected to the external output terminal 14. The external load is, for example, a lighting fixture or air conditioning equipment in a home or factory facility. Although many external loads operate with AC power, since the output of the battery module 32 built in the charge / discharge control system 12 is DC power, an output converter 17 that is a DC / AC converter is provided. The output conversion unit 17 converts DC power supplied from the battery module 32 via the charge / discharge switch unit 16 into AC power and outputs the AC power to the external output terminal 14. When the DC / AC converter is provided outside the charge / discharge control system 12 according to the user's request, the output converter 17 is omitted.
 図1では、充放電制御システム12の各構成要素の接続関係について、電力線を太線で、信号線を細線で示している。 In FIG. 1, regarding the connection relationship of each component of the charge / discharge control system 12, the power line is indicated by a thick line and the signal line is indicated by a thin line.
 充電器15は、充電入力端子13から供給される入力交流電力を電池モジュール32の直流電力仕様に合わせて変換する充電用AC/DC変換器である。充電器15は、後述する制御装置50から充電指示を受け取り、それに対して制御装置50に応答信号を返し、それに基づいてAC/DC変換を実行する。 The charger 15 is a charging AC / DC converter that converts the input AC power supplied from the charging input terminal 13 in accordance with the DC power specifications of the battery module 32. The charger 15 receives a charge instruction from the control device 50 described later, returns a response signal to the control device 50 in response thereto, and performs AC / DC conversion based on the response signal.
 充放電スイッチ部16は、充電器15側から電池モジュール32への充電と、電池モジュール32から外部出力端子14側への放電とを切り替える。具体的には、充放電スイッチ部16は、充電器15から出力される直流電力を電池モジュール32に充電電力として供給する充電用スイッチング素子を含む。充放電スイッチ部16は、電池モジュール32に蓄電された直流電力を外部出力端子14側へ放電電力として出力する放電用スイッチング素子も含む。かかる充電用スイッチング素子及び放電用スイッチング素子として、大電力用半導体素子が用いられる。例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)、または大電力用電界効果トランジスタ(FET)を用いることができる。充放電スイッチ部16の動作は、制御装置50の制御の下で行われる。 The charge / discharge switch unit 16 switches between charging the battery module 32 from the charger 15 side and discharging from the battery module 32 to the external output terminal 14 side. Specifically, the charging / discharging switch unit 16 includes a charging switching element that supplies DC power output from the charger 15 to the battery module 32 as charging power. The charge / discharge switch unit 16 also includes a discharge switching element that outputs DC power stored in the battery module 32 as discharge power to the external output terminal 14 side. As such a charging switching element and a discharging switching element, a high power semiconductor element is used. For example, an insulated gate bipolar transistor (IGBT) or a high power field effect transistor (FET) can be used. The operation of the charge / discharge switch unit 16 is performed under the control of the control device 50.
 組電池30は、後述するケース39(図2)の内部に電池モジュール32が収容されてなる。電池モジュール32は、複数の電池セル33を含む。図1では4つの電池セル33が直列接続されている。複数の電池セル33は、充放電制御システム12の仕様によっては並列接続されてもよく、後述の図9の構成で示すように直列接続と並列接続とが組み合わされてもよい。 The assembled battery 30 includes a battery module 32 housed in a case 39 (FIG. 2) described later. The battery module 32 includes a plurality of battery cells 33. In FIG. 1, four battery cells 33 are connected in series. The plurality of battery cells 33 may be connected in parallel depending on the specifications of the charge / discharge control system 12, and may be combined with series connection and parallel connection as shown in the configuration of FIG. 9 described later.
 図1では、4つの電池セルを区別して、電池セル33a,33b,33c,33dと示している。電池セル33aの負極端子を電池セル33bの正極端子に接続し、電池セル33bの負極端子を電池セル33cの正極端子に接続し、以下これを繰り返している。電池セル33aの正極端子と電池セル33dの負極端子との間の電圧値が電池モジュール32の総電圧値となる。 In FIG. 1, four battery cells are distinguished and shown as battery cells 33a, 33b, 33c, and 33d. The negative terminal of the battery cell 33a is connected to the positive terminal of the battery cell 33b, the negative terminal of the battery cell 33b is connected to the positive terminal of the battery cell 33c, and this is repeated. The voltage value between the positive terminal of the battery cell 33 a and the negative terminal of the battery cell 33 d is the total voltage value of the battery module 32.
 電池モジュール32を構成する電池セル33は、パウチ状の二次電池であり、例えばリチウムイオン電池、またはリチウムポリマー電池である。電池セル33は、後述の図4で示すようにシート材から構成される外装体34の密閉空間内に発電要素37が内蔵される。 The battery cell 33 constituting the battery module 32 is a pouch-shaped secondary battery, for example, a lithium ion battery or a lithium polymer battery. As shown in FIG. 4 to be described later, the battery cell 33 has a power generation element 37 built in a sealed space of an exterior body 34 made of a sheet material.
 電池モジュール32は、複数の電池セル33が積層されることにより、一方向に並んで配置されて構成される。 The battery module 32 is configured such that a plurality of battery cells 33 are stacked and arranged in one direction.
 制御装置50は、SOC算出部51と、充放電制御部52と、セル膨れ推定部53と、寿命判定部54と、ファン制御部55とを有する。制御装置50は、コンピュータまたはマイクロプロセッサを搭載した制御回路などで構成される。 The control device 50 includes an SOC calculation unit 51, a charge / discharge control unit 52, a cell swelling estimation unit 53, a life determination unit 54, and a fan control unit 55. The control device 50 is configured by a control circuit or the like equipped with a computer or a microprocessor.
 SOC算出部51は、後述の温度検出部18で検出される電池モジュール32の検出温度、後述の電圧検出部19により計測される電圧、及び電流検出部20のデータに基づいて、電池モジュール32の充電状態指標を算出する。充電状態指標は、SOC(State Of Charge)と呼ばれる。 The SOC calculation unit 51 determines the battery module 32 based on the detected temperature of the battery module 32 detected by the temperature detection unit 18 described later, the voltage measured by the voltage detection unit 19 described later, and the data of the current detection unit 20. A charge state index is calculated. The state of charge indicator is called SOC (State Of Charge).
 充放電制御部52は、電池モジュール32の電力蓄電状態を高い状態に維持するように、充放電制御を行う。充放電制御部52は、外部負荷が要求する出力電力量と電池モジュール32のSOCとに基づいて充電と放電を制御する。充放電制御部52は、手動による入力操作に応じて、充放電制御を行うこともできる。制御装置50が有するセル膨れ推定部53、寿命判定部54、及びファン制御部55は後で説明する。 The charge / discharge control unit 52 performs charge / discharge control so as to maintain the power storage state of the battery module 32 in a high state. The charge / discharge control unit 52 controls charging and discharging based on the output power amount required by the external load and the SOC of the battery module 32. The charge / discharge control unit 52 can also perform charge / discharge control according to a manual input operation. The cell swelling estimation unit 53, the life determination unit 54, and the fan control unit 55 included in the control device 50 will be described later.
 AC/DCコンバータ22とDC/DCコンバータ23とは、制御装置50に所定の直流電圧値を有する電源電力を供給する電力変換器である。制御装置50には、通常、AC/DCコンバータ22を介して外部電源から電力が供給される。充電器15が動作しなくても制御装置50の動作を確保するために、AC/DCコンバータ22は、充電器15を介さずに制御装置50に電力を供給する。外部電源が停電などによって充電入力端子13に供給されないときには、制御装置50には、DC/DCコンバータ23を介して電池モジュール32から電力が供給される。 The AC / DC converter 22 and the DC / DC converter 23 are power converters that supply power to the control device 50 having a predetermined DC voltage value. The control device 50 is usually supplied with electric power from an external power source via the AC / DC converter 22. In order to ensure the operation of the control device 50 even when the charger 15 does not operate, the AC / DC converter 22 supplies power to the control device 50 without going through the charger 15. When the external power source is not supplied to the charging input terminal 13 due to a power failure or the like, the control device 50 is supplied with power from the battery module 32 via the DC / DC converter 23.
 また、電池モジュール32は充電時及び放電時に温度上昇する。後述の冷却構造60は、電池モジュール32を冷却するために用いられる。冷却構造60は、冷媒供給部である冷却ファン61、冷却ファン61の駆動部であるモータ61a、導入ダクト62(図2)及び排出ダクト63(図2)を含んで構成される。 Further, the temperature of the battery module 32 rises during charging and discharging. A cooling structure 60 described later is used to cool the battery module 32. The cooling structure 60 includes a cooling fan 61 that is a refrigerant supply unit, a motor 61a that is a driving unit of the cooling fan 61, an introduction duct 62 (FIG. 2), and a discharge duct 63 (FIG. 2).
 また、電池モジュール32を構成する電池セル33は、充放電の長時間の繰り返しによって、または高レートの充電または放電によって、内圧が上昇する。これにより、電池セル33の両側面が外側に膨らむ場合がある。電池セル33の膨れ量が所定値以上になると、寿命に達したとして、充放電の動作を停止させる必要がある。このために、電池セル膨れ推定システム10は、電池セル33の膨れ量を推定する制御装置50を有する。具体的には、制御装置50が有するセル膨れ推定部53は、電池モジュール32の充電時または放電時におけるモータ61aの負荷の計測値に基づいて、各電池セル33の膨れ量を推定する。この膨れ量の推定には冷却構造60が用いられる。したがって、まず、冷却構造60と、冷却構造60で冷却する電池モジュール32とについて、図2から図6を用いて説明し、その後、セル膨れ推定部53を説明する。 Further, the internal pressure of the battery cell 33 constituting the battery module 32 increases due to repeated charging / discharging for a long time or charging or discharging at a high rate. Thereby, the both side surfaces of the battery cell 33 may swell outward. When the swelling amount of the battery cell 33 reaches a predetermined value or more, it is necessary to stop the charging / discharging operation because the life is reached. For this purpose, the battery cell swelling estimation system 10 includes a control device 50 that estimates the swelling amount of the battery cell 33. Specifically, the cell swelling estimation unit 53 included in the control device 50 estimates the swelling amount of each battery cell 33 based on the measured value of the load of the motor 61a when the battery module 32 is charged or discharged. The cooling structure 60 is used for estimating the amount of swelling. Therefore, first, the cooling structure 60 and the battery module 32 cooled by the cooling structure 60 will be described with reference to FIGS. 2 to 6, and then the cell swelling estimation unit 53 will be described.
 図2は、電池セル膨れ推定システム10を構成する組電池30及び冷却構造60の斜視図である。図3は、図2に示す組電池30を構成する電池モジュール32の斜視図である。 FIG. 2 is a perspective view of the assembled battery 30 and the cooling structure 60 constituting the battery cell swelling estimation system 10. FIG. 3 is a perspective view of the battery module 32 constituting the assembled battery 30 shown in FIG.
 図2に示すように、組電池30は、略直方体状のケース39の内側に、図3に示す電池モジュール32が収容されている。ケース39の縦方向一端部(図2の紙面の表側端部)には、冷却風導入用の導入ダクト62と冷却風排出用の排出ダクト63とが接続されている。なお、図2では、導入ダクト62及び排出ダクト63の接続部と内部とを分かりやすくするために、透視図として示している。 As shown in FIG. 2, the assembled battery 30 has a battery module 32 shown in FIG. 3 housed inside a substantially rectangular parallelepiped case 39. An inlet duct 62 for introducing cooling air and a discharge duct 63 for discharging cooling air are connected to one end portion in the vertical direction of the case 39 (the front side end portion in FIG. 2). In FIG. 2, in order to make it easy to understand the connection portion and the inside of the introduction duct 62 and the discharge duct 63, they are shown as perspective views.
 図3に示すように、電池モジュール32は、電池セル33を一方向に複数積層して構成される。電池モジュール32も、ケース39(図2)と同様に、略直方体形状であり、横方向Xよりも縦方向Yに長く伸びている。図2、図3、及び後述の図4では、ケース39及び電池モジュール32の横方向をX,縦方向をY、横方向X及び縦方向Yに直交する上下方向をZで示す。なお、横方向X、縦方向Y、上下方向Zは、説明の便宜上用いるもので、その方向と実際の使用状態の方向との関係及び寸法関係が限定されるものではない。なお、電池モジュール32は、複数の電池セル33が接触するように積み重なる構成に限定せず、例えば複数の電池セルの横方向端部が両側の壁部材で結合されて一方向に並んで配置されたものでもよい。 As shown in FIG. 3, the battery module 32 is configured by stacking a plurality of battery cells 33 in one direction. Similarly to the case 39 (FIG. 2), the battery module 32 has a substantially rectangular parallelepiped shape and extends longer in the vertical direction Y than in the horizontal direction X. 2 and 3 and FIG. 4 to be described later, the lateral direction of the case 39 and the battery module 32 is indicated by X, the longitudinal direction is indicated by Y, and the lateral direction X and the vertical direction perpendicular to the longitudinal direction Y are indicated by Z. In addition, the horizontal direction X, the vertical direction Y, and the up-down direction Z are used for convenience of explanation, and the relationship between the direction and the direction of the actual use state and the dimensional relationship are not limited. In addition, the battery module 32 is not limited to a configuration in which the plurality of battery cells 33 are stacked so as to be in contact with each other. For example, the end portions in the lateral direction of the plurality of battery cells are joined by wall members on both sides and arranged in one direction. May be good.
 図4は、電池モジュール32を構成する電池セル33の斜視図(a)と、(a)のC部拡大断面図である。図4では、電池セル33の縦方向Yの一端部が紙面の裏側に配置され、縦方向Yの他端部が紙面の表側に配置されるので、図3の縦方向Yの両側の位置関係とは逆になっている。具体的には、図4の紙面の裏側が導入ダクト62及び排出ダクト63の接続側(ダクト接続側)である。 FIG. 4 is a perspective view (a) of the battery cell 33 constituting the battery module 32 and an enlarged cross-sectional view of the C part in (a). In FIG. 4, one end portion of the battery cell 33 in the vertical direction Y is disposed on the back side of the paper surface, and the other end portion in the vertical direction Y is disposed on the front side of the paper surface. The opposite is true. Specifically, the back side of the paper surface of FIG. 4 is the connection side (duct connection side) of the introduction duct 62 and the discharge duct 63.
 電池セル33は、外装体34と、外装体34のダクト接続側とは反対側の端部から延出した一対の電極タブ、すなわち正極タブ36a及び負極タブ36bとを有するラミネート電池である。外装体34は、2枚のシート材であるラミネートフィルム35a、35bから構成される。外装体は、2枚のラミネートフィルム35a、35bから構成されるものに限定されず、例えば1枚のラミネートフィルムから構成されてもよく、また、金属製のシート材から構成されてもよい。 The battery cell 33 is a laminated battery having an exterior body 34 and a pair of electrode tabs extending from the end of the exterior body 34 opposite to the duct connection side, that is, a positive electrode tab 36a and a negative electrode tab 36b. The exterior body 34 is composed of laminate films 35a and 35b that are two sheet materials. An exterior body is not limited to what is comprised from the two laminate films 35a and 35b, For example, it may be comprised from one laminate film and may be comprised from metal sheet | seat materials.
 電池セル33は、電極体及び電解質を含む発電要素37が、外装体34の内部に収容されている。電極体の1例は、正極及び負極がセパレータを介して巻回された巻回型である。正極タブ36aは正極に接続され、負極タブ36bは負極に接続される。外装体34を構成するラミネートフィルム35a、35bとして、金属層の両面に樹脂層が形成されたフィルムを用いることができる。 In the battery cell 33, a power generation element 37 including an electrode body and an electrolyte is accommodated in an exterior body 34. One example of an electrode body is a winding type in which a positive electrode and a negative electrode are wound through a separator. The positive electrode tab 36a is connected to the positive electrode, and the negative electrode tab 36b is connected to the negative electrode. As the laminate films 35a and 35b constituting the exterior body 34, films in which resin layers are formed on both surfaces of a metal layer can be used.
 外装体34は、扁平な略直方体部分の縦方向Y両端部から接合部38が延出している。接合部38は、2枚のラミネートフィルム35a、35bの端縁が接合されて形成される。外装体34の横方向X両端部でも縦方向Y両端部と同様に2枚のラミネートフィルム35a、35bが接合される。この横方向X両端部は、図4(b)に示すように、略直方体部分の横方向X両側面に沿うように上下方向に曲げられる。なお、電池セルは、このような形状に限定するものではなく、シート材から構成された外装体を有するパウチ状であればよい。 The exterior body 34 has joint portions 38 extending from both ends in the longitudinal direction Y of a flat, substantially rectangular parallelepiped portion. The joining portion 38 is formed by joining the edges of the two laminate films 35a and 35b. The two laminate films 35a and 35b are bonded to both ends in the lateral direction X of the outer package 34 in the same manner as both ends in the vertical direction Y. As shown in FIG. 4B, the both ends of the lateral direction X are bent in the vertical direction so as to follow both side surfaces of the lateral direction X of the substantially rectangular parallelepiped portion. The battery cell is not limited to such a shape, and may be a pouch having an exterior body made of a sheet material.
 図3に戻って、電池モジュール32の縦方向Y両端面には、第1ホルダ40と第2ホルダ41とがそれぞれ取り付けられる。第1ホルダ40は、各電池セル33の各タブ36a、36b(図4)とは反対側の端部(図3の紙面表側端部)付近において、複数の第1ホルダ要素40aを積み重ねて結合することにより形成される。第1ホルダ要素40aの裏側(電池セル33側)の端面には横方向Xに伸びる図示しない溝部が形成される。溝部には、各電池セル33の縦方向Y一端部(図3の表側端部)の接合部が挿入される。 3, the first holder 40 and the second holder 41 are attached to both end surfaces of the battery module 32 in the longitudinal direction Y, respectively. In the first holder 40, a plurality of first holder elements 40 a are stacked and joined in the vicinity of the end portion (the front surface side end portion in FIG. 3) opposite to the tabs 36 a and 36 b (FIG. 4) of each battery cell 33. It is formed by doing. A groove (not shown) extending in the lateral direction X is formed on the end surface of the first holder element 40a on the back side (battery cell 33 side). A joining portion of one end portion in the longitudinal direction Y of each battery cell 33 (front end portion in FIG. 3) is inserted into the groove portion.
 第2ホルダ41は、各電池セル33のタブ36a、36b側の端部(図3の紙面裏側端部)付近において、複数の第2ホルダ要素41aを積み重ねて結合することにより形成される。また、隣り合う第2ホルダ要素41aにより、各電池セル33の縦方向Y他端部(図3の裏側端部、図4の表側端部)の接合部38(図4)が挟み込まれる。このとき、各電池セル33の正極タブ36a(図4)及び負極タブ36b(図4)は、隣り合う第2ホルダ要素41aの間から縦方向Yに伸びて外側に導出される。 The second holder 41 is formed by stacking and joining a plurality of second holder elements 41a in the vicinity of the tabs 36a, 36b end portions (the back side end portions in FIG. 3) of each battery cell 33. Moreover, the joining part 38 (FIG. 4) of the vertical direction Y other end part (back side edge part of FIG. 3, front side edge part of FIG. 4) of each battery cell 33 is inserted | pinched by the adjacent 2nd holder element 41a. At this time, the positive electrode tab 36a (FIG. 4) and the negative electrode tab 36b (FIG. 4) of each battery cell 33 are extended to the outside in the vertical direction Y from between the adjacent second holder elements 41a.
 隣り合う電池セル33のうち、一方の電池セル33の正極タブ36aと他方の電池セル33の負極タブ36bとが、図示しないバスバーによって接続され、これが隣り合う電池セル33で繰り返される。これにより、複数の電池セル33が直列接続される。そして、電池モジュール32の上下方向一端の電池セル33の正極タブ36aには、電池モジュール32の正極端子(図示せず)が接続される。また、電池モジュール32の上下方向他端の電池セル33の負極タブ36bには、電池モジュール32の負極端子(図示せず)が接続される。 Among the adjacent battery cells 33, the positive electrode tab 36 a of one battery cell 33 and the negative electrode tab 36 b of the other battery cell 33 are connected by a bus bar (not shown), and this is repeated in the adjacent battery cell 33. Thereby, the some battery cell 33 is connected in series. The positive terminal (not shown) of the battery module 32 is connected to the positive electrode tab 36a of the battery cell 33 at one end in the vertical direction of the battery module 32. Further, the negative electrode terminal (not shown) of the battery module 32 is connected to the negative electrode tab 36 b of the battery cell 33 at the other end in the vertical direction of the battery module 32.
 第2ホルダ41の縦方向Y外側面(図3の紙面裏側面)には、図示しない絶縁カバーが取り付けられてもよい。絶縁カバーが取り付けられる場合、絶縁カバーの上下方向両端部に形成される孔を通じて正極端子及び負極端子が外側に導出される。また、電池モジュール32の横方向X両側面には、略全域にテープ42が貼付されている。 An insulating cover (not shown) may be attached to the outer side surface of the second holder 41 in the vertical direction Y (the back side surface of FIG. 3). When the insulating cover is attached, the positive terminal and the negative terminal are led out to the outside through holes formed at both ends of the insulating cover in the vertical direction. Further, tapes 42 are affixed to substantially the entire area on both sides of the battery module 32 in the lateral direction X.
 図5は、図3のA-A断面図である。図6は、図3のB-B断面図と、D部拡大図である。図3、図5、図6に示すように、各電池セル33の上側面には、隔壁部材43が縦方向Y一端の横方向X中央部から縦方向Yに伸びるように取り付けられる。また、各電池セル33の上側面の横方向X両端部には、縦方向Yに沿うように側壁部材44が取り付けられる。これにより、隣り合う電池セル33の間に隔壁部材43及び側壁部材44が配置される。そして、隣り合う電池セル33の間にU字形の内部流路45が形成される。 FIG. 5 is a cross-sectional view taken along the line AA in FIG. FIG. 6 is a cross-sectional view taken along the line BB of FIG. As shown in FIGS. 3, 5, and 6, a partition wall member 43 is attached to the upper side surface of each battery cell 33 so as to extend in the longitudinal direction Y from the lateral X central portion at one end in the longitudinal direction Y. Further, side wall members 44 are attached along the longitudinal direction Y at both ends in the lateral direction X on the upper side surface of each battery cell 33. Thereby, the partition wall member 43 and the side wall member 44 are disposed between the adjacent battery cells 33. A U-shaped internal flow path 45 is formed between adjacent battery cells 33.
 複数の電池セル33のうち、上端に位置する電池セル33の上側面に取り付けられた隔壁部材43及び側壁部材44の上端は、ケース39の内側面に接触して、上端の電池セル33の上側面とケース39の内側面との間にもU字形の内部流路45が形成される。また、複数の電池セル33のうち、下端に位置する電池セル33の下側面にも、上側面と同様に隔壁部材43及び側壁部材44が取り付けられる。下端の電池セル33の隔壁部材43及び側壁部材44の下端は、ケース39の内側面に接触して、下端の電池セル33とケース39との間にもU字形の内部流路45が形成される。 Among the plurality of battery cells 33, the upper ends of the partition wall member 43 and the side wall member 44 attached to the upper side surface of the battery cell 33 positioned at the upper end are in contact with the inner side surface of the case 39, and A U-shaped internal flow path 45 is also formed between the side surface and the inner side surface of the case 39. Moreover, the partition wall member 43 and the side wall member 44 are attached to the lower side surface of the battery cell 33 located at the lower end among the plurality of battery cells 33 in the same manner as the upper side surface. The lower ends of the partition wall member 43 and the side wall member 44 of the battery cell 33 at the lower end are in contact with the inner surface of the case 39, and a U-shaped internal flow path 45 is also formed between the battery cell 33 at the lower end and the case 39. The
 隔壁部材43及び側壁部材44には、弾性変形可能な弾性部材を用いることができる。弾性部材として、例えばゴム、発泡樹脂材が用いられる。弾性部材は、電池セル33の略直方体部分の上面または上下両面に接着剤を用いて取り付けられる。内部流路45は、隣り合う電池セル33の間、または電池セル33とケース39との間に設けられるので、電池セル33の外装体34の外側面が内部流路45の内側壁面を構成する。 An elastic member capable of elastic deformation can be used for the partition member 43 and the side wall member 44. For example, rubber or foamed resin material is used as the elastic member. The elastic member is attached to the upper surface or upper and lower surfaces of the substantially rectangular parallelepiped portion of the battery cell 33 using an adhesive. Since the internal flow path 45 is provided between the adjacent battery cells 33 or between the battery cells 33 and the case 39, the outer surface of the exterior body 34 of the battery cell 33 constitutes the inner wall surface of the internal flow path 45. .
 図3に示すように、電池モジュール32の縦方向Y一端面(図3の紙面表側端面)に配置された第1ホルダ40の横方向X一方側(図3の左側)には複数の導入口46が形成され、第1ホルダの横方向X他方側(図3の右側)には複数の排出口47が形成される。そして、各内部流路45の両端が、導入口46及び排出口47に通じる。内部流路45の縦方向Yの他端(図3の紙面表側端)は、第2ホルダ41で塞がれる。このため、導入口46から内部流路45内を図3の矢印E1方向に流れる冷却風は、縦方向Yの他端部で折り返して排出口47に向かう。 As shown in FIG. 3, a plurality of inlets are provided on one side (left side in FIG. 3) in the lateral direction X of the first holder 40 disposed on one end surface in the vertical direction Y (the front surface on the paper surface in FIG. 3) of the battery module 32. 46 is formed, and a plurality of discharge ports 47 are formed on the other side in the lateral direction X of the first holder (the right side in FIG. 3). Then, both ends of each internal flow path 45 communicate with the introduction port 46 and the discharge port 47. The other end of the internal flow path 45 in the longitudinal direction Y (the front surface side end in FIG. 3) is closed by the second holder 41. For this reason, the cooling air flowing in the internal flow path 45 from the inlet 46 in the direction of the arrow E1 in FIG.
 図2に戻って示すように、ケース39の縦方向Y一端には導入側開口R1が形成され、導入側開口R1には導入ダクト62の下流端部が接続される。導入側開口R1は、第1ホルダ40の複数の導入口46(図3)に通じる。また、ケース39の縦方向一端には排出側開口R2が形成され、排出側開口R2には排出ダクト63の上流端部が接続される。排出側開口R2は、第1ホルダ40の複数の排出口47(図3)に通じる。 2, the introduction side opening R1 is formed at one end of the longitudinal direction Y of the case 39, and the downstream end portion of the introduction duct 62 is connected to the introduction side opening R1. The introduction side opening R1 communicates with a plurality of introduction ports 46 (FIG. 3) of the first holder 40. Further, a discharge side opening R2 is formed at one end in the longitudinal direction of the case 39, and the upstream end of the discharge duct 63 is connected to the discharge side opening R2. The discharge-side opening R2 communicates with the plurality of discharge ports 47 (FIG. 3) of the first holder 40.
 図2に示す導入ダクト62の上流側端部は開口して、例えば外気に通じる。排出ダクト63の内部には、冷却ファン61が設けられる。冷却ファン61は、モータ61aによって駆動される。図1に示すように、モータ61aの駆動は制御装置50が有するファン制御部55によって、インバータなどの駆動回路24を制御することにより制御される。冷却ファン61が駆動されると、冷媒流体である空気が導入ダクト62から各内部流路45に供給され、各内部流路45に空気が冷却風として通過する。このとき、冷却ファン61は、空気を吸引して電池モジュール32を冷却する吸引型として動作する。なお、冷却ファンは吸引型に限定せず、導入ダクト62の内部に設けられて、空気を電池モジュール32側へ押し出す押し出し型として動作するものを用いてもよい。また、冷媒流体として空気の代わりに別のガス状冷媒を用いることもできる。 The upstream end of the introduction duct 62 shown in FIG. 2 is opened and communicates with, for example, outside air. A cooling fan 61 is provided inside the discharge duct 63. The cooling fan 61 is driven by a motor 61a. As shown in FIG. 1, the drive of the motor 61a is controlled by controlling the drive circuit 24 such as an inverter by a fan control unit 55 included in the control device 50. When the cooling fan 61 is driven, air that is a refrigerant fluid is supplied from the introduction duct 62 to each internal flow path 45, and the air passes through each internal flow path 45 as cooling air. At this time, the cooling fan 61 operates as a suction type that sucks air to cool the battery module 32. The cooling fan is not limited to the suction type, and a cooling fan that is provided inside the introduction duct 62 and operates as an extrusion type that pushes air toward the battery module 32 may be used. Further, another gaseous refrigerant can be used as the refrigerant fluid instead of air.
 次に、図1に戻って、電圧検出部19、電流検出部20、温度検出部18、及び充放電制御部52を説明する。 Next, returning to FIG. 1, the voltage detection unit 19, the current detection unit 20, the temperature detection unit 18, and the charge / discharge control unit 52 will be described.
 電圧検出部19は、各電池セル33の電圧状態を検知する。電圧検出部19は、計測回路である電圧計測部19aと、監視回路である電圧監視部19bとを含む。電圧計測部19aは、各電池セル33の端子間電圧値を計測する。 The voltage detector 19 detects the voltage state of each battery cell 33. The voltage detection unit 19 includes a voltage measurement unit 19a that is a measurement circuit and a voltage monitoring unit 19b that is a monitoring circuit. The voltage measuring unit 19a measures the voltage value between the terminals of each battery cell 33.
 例えば図3、図4の隣り合う電池セル33のうち、一方の電池セル33の正極タブ36aには第1バスバー(図示せず)が接続され、他方の電池セルの負極タブには第2バスバー(図示せず)が接続される。そして、第1バスバー及び第2バスバーが薄板状の導電性部材を挟んで接続される。この導電性部材の端部が第1バスバー及び第2バスバーの間から外側に導出して、電圧計測用端子を形成する。電圧計測用端子は、電圧検出部19(図1)を構成する電圧計測部19aに接続されて、各電池セル33の端子間電圧値の計測のために用いられる。 For example, of the adjacent battery cells 33 in FIGS. 3 and 4, a first bus bar (not shown) is connected to the positive electrode tab 36a of one battery cell 33, and the second bus bar is connected to the negative electrode tab of the other battery cell. (Not shown) is connected. And a 1st bus bar and a 2nd bus bar are connected on both sides of a thin plate-shaped electroconductive member. An end portion of the conductive member is led out from between the first bus bar and the second bus bar to form a voltage measurement terminal. The voltage measurement terminal is connected to the voltage measurement unit 19a constituting the voltage detection unit 19 (FIG. 1), and is used for measuring the voltage value between the terminals of each battery cell 33.
 電圧監視部19bは、各電池セル33の端子間電圧値及び電池モジュール32の総電圧の一方または両方が予め定めた許容範囲に入っているか否かを電圧計測部19aと協働して判断する。電圧計測部19aの計測結果と、電圧監視部19bの判断結果とは、信号線を介して制御装置50に伝送される。 The voltage monitoring unit 19b determines in cooperation with the voltage measurement unit 19a whether one or both of the voltage value between the terminals of each battery cell 33 and the total voltage of the battery module 32 are within a predetermined allowable range. . The measurement result of the voltage measurement unit 19a and the determination result of the voltage monitoring unit 19b are transmitted to the control device 50 via a signal line.
 電池モジュール32にはシャント抵抗48が設けられる。シャント抵抗48は、電池モジュール32の負極端子と充放電制御システム12のシステム接地端子との間に設けられる。シャント抵抗48は、直列接続される4つの電池セル33a,33b,33c,33dに流れる電池モジュール32の充放電電流値を検出する。シャント抵抗48は、電池モジュール32の負極端子側ではなく電池モジュール32の正極端子側、または電池セル33間に設けられてもよい。 The battery module 32 is provided with a shunt resistor 48. The shunt resistor 48 is provided between the negative terminal of the battery module 32 and the system ground terminal of the charge / discharge control system 12. The shunt resistor 48 detects the charge / discharge current value of the battery module 32 flowing through the four battery cells 33a, 33b, 33c, and 33d connected in series. The shunt resistor 48 may be provided not between the negative terminal side of the battery module 32 but between the positive terminal side of the battery module 32 or between the battery cells 33.
 電流検出部20は、シャント抵抗48の両端の電圧値を検出する。そして、電流検出部20は、この電圧値から算出される電池モジュール32の充放電電流値を制御装置50に、信号線を介して伝送する。 The current detection unit 20 detects the voltage value across the shunt resistor 48. And the electric current detection part 20 transmits the charging / discharging electric current value of the battery module 32 calculated from this voltage value to the control apparatus 50 via a signal line.
 電池モジュール32の複数位置には、温度検出部18が設けられる。例えば、図3に戻って、温度検出部18(図1)は、隣り合う電池セル33間の3つの内部流路45に設けることができる。電池モジュール32では、図3の砂地で示す部分である、内部流路45の折り返し部分で温度上昇が大きくなりやすい。このため、この砂地部分のいずれかの位置に温度検出部18を設けることができる。温度検出部18として、温度ヒューズまたはサーミスタを用いることができる。温度検出部18で検出された電池モジュール32の温度は、信号線を介して制御装置50に伝送される。電池モジュール32の温度として、例えば、隣り合う電池セル33間の3つの内部流路45の温度が3つの温度検出部18で検出される。3つの温度検出部18で検出された温度は、そのまま制御装置50に伝送されてもよい。これに代えて、3つの温度検出部18で検出された温度のうち、最高の温度が、電池モジュール32の温度として制御装置50に伝送されてもよい。また、温度検出部18で検出された温度が異常に高い温度に達した場合に、その高い温度に達したことを後で確認しやすくする面からは温度検出部として温度ヒューズを用いることが好ましい。 Temperature detectors 18 are provided at a plurality of positions of the battery module 32. For example, returning to FIG. 3, the temperature detection unit 18 (FIG. 1) can be provided in three internal flow paths 45 between adjacent battery cells 33. In the battery module 32, the temperature rise tends to increase at the folded portion of the internal flow path 45, which is the portion indicated by the sand in FIG. For this reason, the temperature detection part 18 can be provided in any position of this sandy part. A temperature fuse or a thermistor can be used as the temperature detector 18. The temperature of the battery module 32 detected by the temperature detector 18 is transmitted to the control device 50 via a signal line. As the temperature of the battery module 32, for example, the temperatures of the three internal flow paths 45 between the adjacent battery cells 33 are detected by the three temperature detection units 18. The temperatures detected by the three temperature detectors 18 may be transmitted to the control device 50 as they are. Instead, the highest temperature among the temperatures detected by the three temperature detection units 18 may be transmitted to the control device 50 as the temperature of the battery module 32. In addition, when the temperature detected by the temperature detection unit 18 reaches an abnormally high temperature, it is preferable to use a temperature fuse as the temperature detection unit from the viewpoint of easily confirming that the high temperature has been reached later. .
 また、充放電制御部52は、SOCと、温度検出部18の検出温度Tとに基づいて、電池モジュール32の放電制限を含む充放電停止を行う機能を有する。さらに、充放電制御部52は、後述の寿命判定部54において、電池モジュール32が寿命に達したと判定された場合にも、充放電停止を行う機能を有する。 Further, the charge / discharge control unit 52 has a function of stopping charge / discharge including discharge limitation of the battery module 32 based on the SOC and the detected temperature T of the temperature detection unit 18. Further, the charge / discharge control unit 52 has a function of stopping charge / discharge even when the life determination unit 54 described later determines that the battery module 32 has reached the end of its life.
 制御装置50が有するセル膨れ推定部53は、電池モジュール32の充電時または放電時におけるモータ61aの負荷の取得値に基づいて、各電池セル33の膨れ量を推定する。具体的には、電池モジュール32の充放電を長時間繰り返した場合、または充電または放電を高レートで行った場合には、組電池30の内部流路45(図3)において、各電池セル33の上下方向Zの両側面が外側に膨らむ可能性がある。例えば図5、図6に示すように、組電池30の内部流路45において、各電池セル33の上下方向Zの両側面が実線で示す位置の初期時の外形から、二点鎖線で示す位置の外形に膨らむ可能性がある。図5、図6では、初期状態での電池セル33の厚みがd1であるときに、電池セル33が膨らんで最大厚みがd1より大きいd2となる可能性がある。このように電池セル33が膨らむと、冷却ファン61により内部流路45に冷却風を電池モジュール32に通過させるときに、内部流路45の流路抵抗が増大するので、冷却ファン61を駆動するモータ61aの負荷が増大する。図5では、内部流路45において冷却風が矢印E2方向に流れ、図6では、内部流路45において冷却風が隔壁部材43の左側では紙面裏側に向かって流れ、右側では紙面表側に向かって流れる。このことから、セル膨れ推定部53(図1)は、モータ61aの負荷の取得値に基づいて、各電池セル33の膨れ量、例えば最大膨れ量(d2-d1)(図5、図6)を推定する。 The cell swelling estimation part 53 which the control apparatus 50 has estimates the swelling amount of each battery cell 33 based on the acquired value of the load of the motor 61a at the time of charge of the battery module 32 or discharge. Specifically, when charging / discharging of the battery module 32 is repeated for a long time, or when charging or discharging is performed at a high rate, each battery cell 33 in the internal flow path 45 (FIG. 3) of the assembled battery 30. There is a possibility that both side surfaces in the up-down direction Z may swell outward. For example, as shown in FIGS. 5 and 6, in the internal flow path 45 of the assembled battery 30, the position indicated by the two-dot chain line from the initial outline of the position where both side surfaces in the vertical direction Z of each battery cell 33 are indicated by the solid line. There is a possibility that it will swell to the outer shape. 5 and 6, when the thickness of the battery cell 33 in the initial state is d1, there is a possibility that the battery cell 33 swells and the maximum thickness becomes d2 larger than d1. When the battery cell 33 swells as described above, the cooling fan 61 is driven because the flow resistance of the internal flow path 45 increases when the cooling fan 61 allows the cooling air to pass through the internal flow path 45 through the battery module 32. The load on the motor 61a increases. In FIG. 5, the cooling air flows in the direction of the arrow E2 in the internal flow path 45, and in FIG. 6, the cooling air flows in the internal flow path 45 toward the back side of the paper surface on the left side of the partition wall member 43 and toward the front side of the paper surface on the right side. Flowing. From this, the cell swelling estimation unit 53 (FIG. 1), based on the acquired value of the load of the motor 61a, the swelling amount of each battery cell 33, for example, the maximum swelling amount (d2-d1) (FIGS. 5 and 6). Is estimated.
 モータ61aの負荷は内部流路45の流路抵抗に応じて定まるので、モータ61aの負荷と電池セル33の膨れ量との関係が予め実験または計算式で求められる。このとき、負荷の大きさには、内部流路45の形状と、電池モジュール32及びケース39の寸法とが影響する。これにより、負荷及び膨れ量の関係を実験で求める場合には、実際に膨れ量の推定に用いる電池モジュール32及びケース39を用いて上記の関係を求めることが好ましい。そして、制御装置50の記憶部には、予め設定された関係として、モータ61aの負荷と各電池セル33の膨れ量との関係が予め記憶される。セル膨れ推定部53は、モータ61aの負荷の取得値と、記憶された負荷及び膨れ量の関係とから、膨れ量を推定する。 Since the load of the motor 61a is determined according to the flow path resistance of the internal flow path 45, the relationship between the load of the motor 61a and the swelling amount of the battery cell 33 is obtained in advance by an experiment or a calculation formula. At this time, the shape of the internal flow path 45 and the dimensions of the battery module 32 and the case 39 affect the magnitude of the load. Thus, when the relationship between the load and the amount of swelling is obtained by experiment, it is preferable to obtain the above relationship using the battery module 32 and the case 39 that are actually used for estimating the amount of swelling. Then, the relationship between the load of the motor 61a and the amount of swelling of each battery cell 33 is stored in advance in the storage unit of the control device 50 as a preset relationship. The cell swelling estimation unit 53 estimates the swelling amount from the acquired value of the load of the motor 61a and the stored relationship between the load and the swelling amount.
 モータ61aの負荷の値である取得値は、例えば冷却ファン駆動電力としてモータ61aに供給する出力である電力(モータ供給電力)の検出値と、冷却ファン61の回転数検出値とから算出で導出することができる。例えば、モータ供給電力は、例えば駆動回路24(図1)に供給される電流及び電圧の検出値から算出される。モータ供給電力は、制御装置50での電流指令及び電圧指令により算出で求めることもできる。回転数検出部は、モータ61aの回転軸の回転角度を検出するレゾルバなどの回転角度検出部64(図1)を含んで構成される。制御装置50は、回転角度の検出値から冷却ファン61の回転数の検出値を算出により導出する。モータ供給電力が一定でも、初期状態に比べて冷却ファン61の回転数が低下した場合には、その回転数の低下量からモータ61aの負荷の値が取得値として算出される。なお、回転数検出部は、レゾルバ以外の手段で冷却ファン61の回転数が直接、または間接的に算出される構成としてもよい。 The acquired value that is the load value of the motor 61a is derived by calculation from, for example, a detection value of power (motor supply power) that is output supplied to the motor 61a as cooling fan drive power and a rotation speed detection value of the cooling fan 61. can do. For example, the motor supply power is calculated from detected values of current and voltage supplied to the drive circuit 24 (FIG. 1), for example. The motor supply power can also be obtained by calculation using a current command and a voltage command in the control device 50. The rotation speed detection unit includes a rotation angle detection unit 64 (FIG. 1) such as a resolver that detects the rotation angle of the rotation shaft of the motor 61a. The control device 50 derives a detection value of the number of rotations of the cooling fan 61 by calculation from the detection value of the rotation angle. Even when the motor supply power is constant, when the rotation speed of the cooling fan 61 is reduced compared to the initial state, the load value of the motor 61a is calculated as an acquired value from the amount of decrease in the rotation speed. The rotation speed detection unit may be configured to calculate the rotation speed of the cooling fan 61 directly or indirectly by means other than the resolver.
 図7は、電池セル膨れ推定システム10において、電池セル33の膨れ量を推定する方法を示す模式図である。この推定方法では、図7の実線矢印α1で示すように、冷却ファン61の回転数検出値と冷却ファン61の駆動電力の検出値とから負荷の取得値が算出される。このとき、負荷の取得値は、冷却ファン61の回転数検出値と駆動電力の検出値とから、負荷、回転数及び駆動電力の関係を規定するように予め設定されたマップを用いて取得されてもよい。そして、実線矢印α2で示すように、負荷の取得値から各電池セル33の膨れ量が推定される。通常時には、電池モジュール32の充放電の繰り返しによって各電池セル33がほぼ均等に徐々に膨らむ。 FIG. 7 is a schematic diagram showing a method for estimating the amount of swelling of the battery cell 33 in the battery cell swelling estimation system 10. In this estimation method, as indicated by a solid arrow α1 in FIG. 7, the load acquisition value is calculated from the rotation speed detection value of the cooling fan 61 and the detection value of the driving power of the cooling fan 61. At this time, the acquired value of the load is acquired from the rotation speed detection value of the cooling fan 61 and the detection value of the drive power using a map set in advance so as to define the relationship between the load, the rotation speed, and the drive power. May be. Then, as indicated by the solid line arrow α2, the amount of swelling of each battery cell 33 is estimated from the acquired load value. At normal times, each battery cell 33 gradually swells almost uniformly as the battery module 32 is repeatedly charged and discharged.
 図8は、電池セル膨れ推定システム10において、冷却ファン61を駆動するモータ61aの負荷の時間変化の1例を示す図である。図8の横軸は、略一定のレートで電池モジュール32の充放電を繰り返す場合の時間を示している。上記のように各電池セル33が徐々に膨らむと、内部流路45の抵抗が徐々に大きくなり、図8に実線P1で示すように、モータ61aの負荷も徐々に増大する。負荷の算出値がP1で示すようにほぼ直線的に緩やかに増大している場合には、各電池セル33がほぼ均等に膨らんでいることが推測される。これにより、負荷の取得値に応じて各電池セル33の膨れ量を推定することができる。 FIG. 8 is a diagram illustrating an example of a change over time in the load of the motor 61a that drives the cooling fan 61 in the battery cell swelling estimation system 10. FIG. The horizontal axis in FIG. 8 indicates the time when the battery module 32 is repeatedly charged and discharged at a substantially constant rate. As each battery cell 33 gradually expands as described above, the resistance of the internal flow path 45 gradually increases, and the load on the motor 61a also gradually increases as shown by the solid line P1 in FIG. When the calculated load value gradually increases almost linearly as indicated by P1, it is estimated that the battery cells 33 swell almost uniformly. Thereby, the swelling amount of each battery cell 33 can be estimated according to the acquired value of load.
 図7の矢印α3で示すように、制御装置50が有する寿命判定部54は、各電池セル33の膨れ量の推定値から電池モジュール32が寿命に達したか否かを判定する。例えば、各電池セル33の膨れ量の推定値が予め設定された所定値以上になった場合には、寿命判定部54は、電池モジュール32が寿命に達したと判定する。制御装置50は、その判定がされたときには、充放電スイッチ部16(図1)の制御により電池モジュール32の充放電を停止させる。これにより、電池セル33の膨れ量の推定値に応じたより適切な寿命を判定してその寿命で充放電を停止させるので、単に充放電回数によって寿命を判定する場合に比べて組電池30の長寿命化を図れる。 7, the life determination unit 54 included in the control device 50 determines whether or not the battery module 32 has reached the life from the estimated value of the swelling amount of each battery cell 33. For example, when the estimated value of the swelling amount of each battery cell 33 is equal to or greater than a predetermined value set in advance, the life determination unit 54 determines that the battery module 32 has reached the life. When the determination is made, the control device 50 stops the charging / discharging of the battery module 32 under the control of the charging / discharging switch unit 16 (FIG. 1). As a result, since a more appropriate life according to the estimated value of the swelling amount of the battery cell 33 is determined and charging / discharging is stopped at that life, the battery pack 30 is longer than the case where the life is simply determined by the number of times of charging / discharging. Life expectancy can be achieved.
 一方、実施形態と異なる比較例として、各電池セル33の端子間電圧の検出値及び電池モジュール32の放電時間の一方または両方のみにより、電池セル33の膨れ量を推定することも考えられる。このような比較例では、電圧及び放電時間が異常でない通常時での膨れ量を推定することは困難である。 On the other hand, as a comparative example different from the embodiment, it is also conceivable to estimate the swelling amount of the battery cell 33 based only on one or both of the detected value of the voltage between the terminals of each battery cell 33 and the discharge time of the battery module 32. In such a comparative example, it is difficult to estimate the swollen amount at the normal time when the voltage and the discharge time are not abnormal.
 さらに、上記のように充放電を停止させるときにおいて、制御装置50は、警告発生として、図示しない表示部に所定の警告表示を表示させたり、または警告音を発生させたり、または所定の警告灯を点灯させることができる。寿命判定部54は、電池モジュール32が寿命に達していないと判定した場合において、膨れ量の推定値が所定値に達するまでの充放電時における残時間である残寿命を算出する機能を有してもよい。 Furthermore, when stopping charging / discharging as described above, the control device 50 displays a predetermined warning display on a display unit (not shown), generates a warning sound, or generates a predetermined warning light as a warning. Can be lit. When it is determined that the battery module 32 has not reached the lifetime, the lifetime determination unit 54 has a function of calculating a remaining lifetime that is the remaining time during charging / discharging until the estimated value of the swelling amount reaches a predetermined value. May be.
 一方、図8の負荷の時間変化を表す線では、点Q位置以降で実線P2に示すように、負荷が急激に増大している。このような負荷の急激な増大が複数の電池セル33で同時に発生することは生じにくい。これにより、負荷の時間変化率が急激に増大した場合には、複数の電池セル33の一部の電池セル33で異常が生じたと判定することができる。このことから、制御装置50は、負荷の取得値が時間に対して上昇する比率(時間上昇比率)が所定比率以上となった場合には、電池モジュール32の一部の電池セル33に異常が生じたことを判定する機能を有してもよい。 On the other hand, in the line representing the time change of the load in FIG. 8, the load increases rapidly as indicated by the solid line P2 after the point Q position. Such a rapid increase in load is unlikely to occur simultaneously in the plurality of battery cells 33. Thereby, when the time change rate of load increases rapidly, it can be determined that an abnormality has occurred in some of the battery cells 33 of the plurality of battery cells 33. From this, when the ratio at which the load acquisition value increases with respect to time (time increase ratio) is equal to or greater than a predetermined ratio, the control device 50 has an abnormality in some of the battery cells 33 of the battery module 32. You may have the function to determine what happened.
 さらに、制御装置50の寿命判定部54は、各電池セル33の端子間電圧の検出値及び電池モジュール32の温度検出値の少なくとも1つと、負荷の取得値とに基づいて、電池モジュール32の寿命を判定する機能を有してもよい。このとき、図7の実線矢印α1、α2、α3と、二点鎖線矢印βとの関係から電池モジュール32の寿命が判定される。 Furthermore, the life determination unit 54 of the control device 50 determines the life of the battery module 32 based on at least one of the detected value of the voltage between the terminals of each battery cell 33, the detected temperature of the battery module 32, and the load acquisition value. It may have a function to judge. At this time, the lifetime of the battery module 32 is determined from the relationship between the solid arrows α1, α2, and α3 in FIG. 7 and the two-dot chain line arrow β.
 例えば、電池セル33の膨れ量は電池モジュール32の温度が上昇するほど大きくなりやすい。これにより、寿命判定部54は、電池モジュール32の温度検出値を用いて、膨れ量の推定値を基準温度での膨れ量となるように補正する構成としてもよい。この構成では、寿命判定部54は、補正後の膨れ量の推定値から電池モジュール32の寿命を判定する。これにより、電池モジュール32が寿命に達したか否かをより精度よく判定できる。なお、電池モジュール32の温度を検出する温度検出部18(図1)は、組電池30のすべての内部流路45に設けるものに限定せず、複数の内部流路45のうち、一部の内部流路45のみに設ける構成としてもよい。また、電池モジュール32に一部の電池セル33から高圧のガスが発生した場合において、そのガスを外部に排出するダクトが設けられてもよい。そして、このときに、そのダクト内に雰囲気温度を検出する温度検出部を取り付けて、寿命判定部54が、その温度検出部の検出温度と、膨れ量の推定値とから電池モジュール32の寿命を判定する構成としてもよい。 For example, the swelling amount of the battery cell 33 tends to increase as the temperature of the battery module 32 increases. Thereby, the life determination unit 54 may be configured to correct the estimated value of the swelling amount to be the swelling amount at the reference temperature using the temperature detection value of the battery module 32. In this configuration, the life determination unit 54 determines the life of the battery module 32 from the estimated value of the swollen amount after correction. Thereby, it can be determined more accurately whether or not the battery module 32 has reached the end of its life. The temperature detection unit 18 (FIG. 1) that detects the temperature of the battery module 32 is not limited to the one provided in all the internal flow paths 45 of the assembled battery 30, and some of the plurality of internal flow paths 45 are not provided. It is good also as a structure provided only in the internal flow path 45. FIG. In addition, when high-pressure gas is generated from some of the battery cells 33 in the battery module 32, a duct for discharging the gas to the outside may be provided. At this time, a temperature detection unit for detecting the ambient temperature is installed in the duct, and the life determination unit 54 determines the life of the battery module 32 from the detected temperature of the temperature detection unit and the estimated value of the swelling amount. It is good also as a structure to determine.
 充放電制御部52、セル膨れ推定部53及び寿命判定部54の機能は、制御装置50がソフトウェアを実行することで実現でき、具体的には、所定の制御プログラムを制御装置50が実行することで実現できる。上記機能の一部をハードウェアで実行する構成としてもよい。 The functions of the charge / discharge control unit 52, the cell swelling estimation unit 53, and the life determination unit 54 can be realized by the control device 50 executing software. Specifically, the control device 50 executes a predetermined control program. Can be realized. A part of the above functions may be executed by hardware.
 また、電池モジュール32において、一部の電池セル33の端子間電圧値が異常に低い場合には、寿命判定部54は、この一部の電池セル33に異常が生じた可能性があると判定する構成としてもよい。この構成では、上記の図8の実線P2で示したように、負荷の取得値の時間上昇比率が所定比率以上となることが合わせて生じた場合において、制御装置50により、一部の電池セル33に異常が生じて寿命に達したことをより精度よく判定できる。 Moreover, in the battery module 32, when the voltage value between the terminals of some of the battery cells 33 is abnormally low, the life determination unit 54 determines that an abnormality may have occurred in the some battery cells 33. It is good also as composition to do. In this configuration, as shown by the solid line P2 in FIG. 8 described above, when the time increase ratio of the load acquisition value is equal to or higher than a predetermined ratio, some battery cells are controlled by the control device 50. It is possible to more accurately determine that an abnormality has occurred in 33 and the life has been reached.
 また、寿命判定部54は、各電池セル33の端子間電圧の検出値及び温度検出値の両方と、負荷の取得値とに基づいて、上記の機能を組み合わせることにより、電池モジュール32の寿命をさらに精度よく判定する構成としてもよい。 Further, the life determination unit 54 combines the above functions based on both the detected value of the voltage between terminals of each battery cell 33 and the detected temperature value of the battery and the acquired value of the load, thereby increasing the life of the battery module 32. Furthermore, it is good also as a structure which determines with sufficient precision.
 上記の電池セル膨れ推定システム10によれば、パウチ状の電池セル33の膨れ量を精度よく推定できる。また、専用のスイッチまたは感圧装置などにより物理的に電池セル33の膨れを推定する必要がないので、より簡単な構成で膨れ量を精度よく推定できる。これにより、部品点数の削減によるコスト低減を図れる。また、電池モジュール32の体格が大型化することを抑制できる。また、電圧及び放電時間に異常がない通常時でも膨れ量を連続的に推定することができるので、膨れ量の急激な変化を検出することが可能である。これにより電池モジュール32の残寿命の推定、及び、使用条件に応じた長寿命化を図ることができ、ユーザの用途の選択の自由度を高くできる。例えば、膨れ量の推定値が、電池モジュール32が寿命に達する以前の所定膨れ量以上となった場合において、制御装置50が長寿命化モードとして、充放電レートが通常時より低くなるように電池モジュール32の充放電を制御する構成を有してもよい。 According to the battery cell swelling estimation system 10 described above, the swelling amount of the pouch-shaped battery cell 33 can be accurately estimated. In addition, since it is not necessary to physically estimate the swelling of the battery cell 33 with a dedicated switch or a pressure sensitive device, the amount of swelling can be accurately estimated with a simpler configuration. As a result, the cost can be reduced by reducing the number of parts. Moreover, it can suppress that the physique of the battery module 32 enlarges. Moreover, since the amount of swelling can be continuously estimated even during normal times when there is no abnormality in voltage and discharge time, it is possible to detect a sudden change in the amount of swelling. As a result, the remaining life of the battery module 32 can be estimated and the life can be extended according to the use conditions, and the user's degree of freedom in selecting the application can be increased. For example, when the estimated value of the swelling amount is equal to or greater than a predetermined swelling amount before the battery module 32 reaches the end of its life, the battery is set so that the control device 50 enters the long life mode and the charge / discharge rate is lower than normal. You may have the structure which controls charging / discharging of the module 32. FIG.
 図9は、実施形態の電池セル膨れ推定システムの別例を構成する電池モジュールの並列ブロック70の分解斜視図である。図9に示す別例の電池モジュールでは、上記の図2から図6に示した電池モジュール32において、複数の電池セル33の代わりに複数の並列ブロック70が用いられる。各並列ブロック70は、上側電池セル71及び下側電池セル72が並列接続されてなる。図9に示すように上側電池セル71は、上記の図4に示した電池セル33で上側に隔壁部材43及び側壁部材44を取り付けた構成と同様に形成される。下側電池セル72は、上側電池セル71において、隔壁部材43及び側壁部材44を省略し、さらに、正極タブ36c及び負極タブ36dのうち、外装体34の縦方向Y他端部(図9の紙面表側端部)から延出した部分が、断面L字形に曲げ形成される。正極タブ36c及び負極タブ36dの先端部は、各タブ36c、36dの外装体34との接続部より上側に配置される。各電池セル71,72は、略直方体部分が接着層73を介して固定されることが好ましい。接着層73には、例えば両面テープが用いられる。上側電池セル71及び下側電池セル72の正極タブ36a、36c及び負極タブ36b、36dはそれぞれ上下方向Zに重ね合されて接続される。 FIG. 9 is an exploded perspective view of a parallel block 70 of battery modules constituting another example of the battery cell swelling estimation system of the embodiment. In the battery module of another example shown in FIG. 9, a plurality of parallel blocks 70 are used instead of the plurality of battery cells 33 in the battery module 32 shown in FIGS. 2 to 6. Each parallel block 70 includes an upper battery cell 71 and a lower battery cell 72 connected in parallel. As shown in FIG. 9, the upper battery cell 71 is formed in the same manner as the battery cell 33 shown in FIG. 4 with the partition wall member 43 and the side wall member 44 attached to the upper side. The lower battery cell 72 is the same as the upper battery cell 71 except that the partition wall member 43 and the side wall member 44 are omitted, and, of the positive electrode tab 36c and the negative electrode tab 36d, the other end in the longitudinal direction Y of the exterior body 34 (see FIG. 9). A portion extending from the front edge of the paper surface is bent into an L-shaped cross section. The tip portions of the positive electrode tab 36c and the negative electrode tab 36d are arranged above the connection portions of the tabs 36c and 36d with the exterior body 34. Each battery cell 71, 72 is preferably fixed at a substantially rectangular parallelepiped portion via an adhesive layer 73. For the adhesive layer 73, for example, a double-sided tape is used. The positive electrode tabs 36a and 36c and the negative electrode tabs 36b and 36d of the upper battery cell 71 and the lower battery cell 72 are overlapped and connected in the vertical direction Z, respectively.
 電池モジュールは、このような並列ブロック70を複数個、直列接続して構成される。したがって、電池モジュールでは、複数の電池セル71,72が、直列接続と並列接続とが組み合わされて接続される。 The battery module is configured by connecting a plurality of such parallel blocks 70 in series. Therefore, in the battery module, the plurality of battery cells 71 and 72 are connected in combination of series connection and parallel connection.
 図9に示す正極バスバー74は、並列ブロック70の正極タブ36a、36cに接続され、負極バスバー75は、並列ブロック70の負極タブ36b、36dに接続される。そして、正極バスバー74は、並列ブロック70の上側に隣り合う図示しない別の並列ブロックの負極タブに接続されたバスバーに接続される。負極バスバー75は、並列ブロック70の下側に隣り合う図示しない別の並列ブロックの正極タブに接続されたバスバーに接続される。これが隣り合う並列ブロック70で繰り返されることにより複数の並列ブロック70が直列接続される。 The positive electrode bus bar 74 shown in FIG. 9 is connected to the positive electrode tabs 36 a and 36 c of the parallel block 70, and the negative electrode bus bar 75 is connected to the negative electrode tabs 36 b and 36 d of the parallel block 70. The positive bus bar 74 is connected to a bus bar connected to the negative electrode tab of another parallel block (not shown) adjacent to the upper side of the parallel block 70. The negative electrode bus bar 75 is connected to a bus bar connected to the positive electrode tab of another parallel block (not shown) adjacent to the lower side of the parallel block 70. By repeating this in adjacent parallel blocks 70, a plurality of parallel blocks 70 are connected in series.
 さらに、並列ブロック70の縦方向Y一端部(図9の紙面の裏側端部)の図示しない各接合部は、第1ホルダを構成する第1ホルダ要素40aの裏面(図9の紙面の表側面)に形成された溝部76に挿入される。並列ブロック70の縦方向Y他端部(図9の紙面の表側端部)の1つの接合部38は、第2ホルダを構成する上下2つの第2ホルダ要素41b、41cによって挟まれる。 Furthermore, each joint portion (not shown) of one end portion in the vertical direction Y of the parallel block 70 (the back side end portion of the paper surface in FIG. 9) is the back surface of the first holder element 40a constituting the first holder (the front side surface of the paper surface in FIG. 9). ). One joint portion 38 at the other end portion in the longitudinal direction Y of the parallel block 70 (the front side end portion in FIG. 9) is sandwiched between the upper and lower second holder elements 41b and 41c constituting the second holder.
 また、第1ホルダ要素40aの上面には、上側電池セル71により形成される内部流路45の両端位置に応じて2つの溝部77が形成される。2つの溝部77は、第1ホルダ要素40aの上側の図示しない別の第1ホルダ要素またはケースの内側面によって上端が塞がれて、冷却風の導入口及び排出口をそれぞれ形成する。導入口及び排出口は、それぞれ内部流路45の両端に通じる。 Further, two groove portions 77 are formed on the upper surface of the first holder element 40a in accordance with the positions of both ends of the internal flow path 45 formed by the upper battery cell 71. The upper ends of the two groove portions 77 are closed by another first holder element (not shown) on the upper side of the first holder element 40a or the inner surface of the case, and form an inlet and an outlet for cooling air, respectively. The introduction port and the discharge port respectively communicate with both ends of the internal flow path 45.
 このような並列ブロック70を有する構成でも、図1から図8の構成の電池セル33と同様に、充放電の繰り返しによって、または高レートの充電または放電によって、各電池セル71,72が膨らむ可能性がある。電池セル71,72が膨らんだ場合には、並列ブロック70の上面及び下面も外側に膨らむ。この構成の場合も、図1を参照して、制御装置50は、電池モジュールの充電時または放電時におけるモータ61aの負荷の取得値に基づいて、各電池セル71,72の膨れ量を推定する。また、図示しない電圧計測用端子は、各並列ブロック70の電圧値を計測するために用いられる。電圧計測用端子は、電圧計測部19a(図1)に接続される。複数の並列ブロック70において一部の並列ブロック70の電圧値が異常に低下した場合には、制御装置50は、この一部の並列ブロック70の少なくとも一方の電池セル33に異常が生じたことを判定する。その他の構成及び作用は、図1から図8の構成と同様である。 Even in the configuration having such a parallel block 70, each battery cell 71, 72 can expand by repeated charge / discharge or by high-rate charge / discharge, as in the case of the battery cell 33 having the configuration of FIGS. There is sex. When the battery cells 71 and 72 swell, the upper and lower surfaces of the parallel block 70 also swell outward. Also in this configuration, referring to FIG. 1, control device 50 estimates the swelling amount of each battery cell 71, 72 based on the acquired value of the load of motor 61 a when the battery module is charged or discharged. . A voltage measurement terminal (not shown) is used to measure the voltage value of each parallel block 70. The voltage measurement terminal is connected to the voltage measurement unit 19a (FIG. 1). When the voltage values of some of the parallel blocks 70 in the plurality of parallel blocks 70 are abnormally lowered, the control device 50 confirms that an abnormality has occurred in at least one battery cell 33 of the some parallel blocks 70. judge. Other configurations and operations are the same as those in FIGS. 1 to 8.
 図10は、実施形態の電池セル膨れ推定システム10の別例の構成を示すブロック図である。上記の各例では、冷媒流体として空気などのガス状冷媒で電池モジュールを冷却する場合を説明した。一方、図10に示す構成では、冷媒流体として水、または絶縁性流体などの液状冷媒で組電池30aの内部の電池モジュール(図示せず)が冷却される。 FIG. 10 is a block diagram showing a configuration of another example of the battery cell swelling estimation system 10 of the embodiment. In each of the above examples, the case where the battery module is cooled with a gaseous refrigerant such as air as the refrigerant fluid has been described. On the other hand, in the configuration shown in FIG. 10, the battery module (not shown) inside the assembled battery 30a is cooled with liquid refrigerant such as water or an insulating fluid as the refrigerant fluid.
 具体的には、組電池30aの内部流路は、この内部流路の外部に液状冷媒が漏れ出さない液密構造とする。この内部流路は、組電池30aのケース80の導入側開口R1及び排出側開口R2に通じる。そして、導入側開口R1と冷媒供給部である冷却液ポンプ81の吐出口S1とが第1配管G1で接続される。排出側開口R2と冷却液ポンプ81の吸入口S2とが第2配管G2で接続される。これにより、各配管G1,G2は、冷却液ポンプ81と組電池30aの内部流路とを接続する冷媒回路を構成する。冷却液ポンプ81は、モータ81aで駆動され、組電池30aの内部の電池モジュールに液状冷媒を供給し通過させる。モータ81aの駆動は制御装置50によって制御される。第1配管G1及び第2配管G2の一方、または両方には、内部の冷媒圧力を検出する圧力検出部82が設けられる。圧力検出部82で検出された圧力は、制御装置50に伝送される。モータ81aの駆動によって冷却液ポンプ81が駆動されると、液状冷媒は、冷却液ポンプ81、第1配管G1、組電池30aの内部流路、第2配管G2を、図10の矢印γ方向に沿って順に流れ、これが繰り返される。これにより、組電池30aの内部の電池モジュールが液状冷媒によって冷却される。冷媒回路の一部には、液状冷媒と空気などの別の流体を熱交換させる熱交換部が設けられてもよい。 Specifically, the internal flow path of the assembled battery 30a has a liquid-tight structure that prevents liquid refrigerant from leaking outside the internal flow path. This internal flow path leads to the introduction side opening R1 and the discharge side opening R2 of the case 80 of the assembled battery 30a. And the introduction side opening R1 and the discharge port S1 of the coolant pump 81 which is a refrigerant | coolant supply part are connected by 1st piping G1. The discharge side opening R2 and the suction port S2 of the coolant pump 81 are connected by the second pipe G2. Thereby, each piping G1, G2 comprises the refrigerant circuit which connects the coolant pump 81 and the internal flow path of the assembled battery 30a. The coolant pump 81 is driven by a motor 81a to supply and pass a liquid refrigerant to the battery module inside the assembled battery 30a. The driving of the motor 81a is controlled by the control device 50. One or both of the first pipe G1 and the second pipe G2 are provided with a pressure detector 82 that detects the internal refrigerant pressure. The pressure detected by the pressure detector 82 is transmitted to the control device 50. When the coolant pump 81 is driven by driving the motor 81a, the liquid refrigerant passes through the coolant pump 81, the first pipe G1, the internal flow path of the assembled battery 30a, and the second pipe G2 in the direction of the arrow γ in FIG. This is repeated in order. Thereby, the battery module inside the assembled battery 30a is cooled by the liquid refrigerant. A part of the refrigerant circuit may be provided with a heat exchange unit that exchanges heat between the liquid refrigerant and another fluid such as air.
 このように電池モジュールが液状冷媒で冷却される構成でも、上記の各例の構成と同様に、充放電の繰り返しによって、または高レートの充電または放電によって、電池モジュールの各電池セルが膨らむ可能性がある。そして、電池セルが膨らんだ場合には、内部流路の抵抗の増大によってモータ81aの負荷が増大する。このことから、制御装置50は、負荷の取得値に基づいて、各電池セルの膨れ量を推定する。このとき、モータ81aの負荷の取得値は、例えばモータ81aに供給する電力の検出値と、冷却液ポンプ81の回転数検出値とから算出で導出することができる。例えば、冷却液ポンプ81の回転数を検出する回転数検出部は、モータ81aの回転軸の回転角度を検出する図示しないレゾルバを含んで構成される。 Even in the configuration in which the battery module is cooled with the liquid refrigerant as described above, each battery cell of the battery module may swell due to repeated charge / discharge or high-rate charge / discharge, similar to the configurations of the above examples. There is. And when a battery cell swells, the load of the motor 81a increases by the increase in resistance of an internal flow path. From this, the control apparatus 50 estimates the amount of swelling of each battery cell based on the acquired value of load. At this time, the acquired value of the load of the motor 81a can be derived by calculation from, for example, a detection value of the power supplied to the motor 81a and a rotation speed detection value of the coolant pump 81. For example, the rotation speed detection unit that detects the rotation speed of the coolant pump 81 includes a resolver (not shown) that detects the rotation angle of the rotation shaft of the motor 81a.
 一方、モータ81aの負荷の取得値は、冷却液ポンプ81の回転数検出値と、圧力検出部82で検出された液状冷媒の圧力の検出値とから算出される構成としてもよい。例えば冷却液ポンプ81の回転数検出値から冷却液ポンプ81の吐出量を算出し、その吐出量から初期状態での液状冷媒の圧力値が算出される。この圧力値に対し、圧力検出部82で検出された圧力検出値が高い場合には、負荷が増大していると判断される。このことから制御装置50は、冷却液ポンプ81の回転数検出値と圧力検出値とから負荷の取得値を算出する。そして、制御装置50は、予め設定された負荷及び各電池セル33の膨れ量の関係と、負荷の取得値とから、各電池セル33の膨れ量を推定する。その他の構成及び作用は、図1から図8の構成と同様である。 On the other hand, the acquired value of the load of the motor 81a may be calculated from the rotation number detection value of the coolant pump 81 and the detection value of the pressure of the liquid refrigerant detected by the pressure detection unit 82. For example, the discharge amount of the coolant pump 81 is calculated from the rotation speed detection value of the coolant pump 81, and the pressure value of the liquid refrigerant in the initial state is calculated from the discharge amount. When the pressure detection value detected by the pressure detection unit 82 is higher than the pressure value, it is determined that the load is increasing. From this, the control device 50 calculates the load acquisition value from the rotation speed detection value and the pressure detection value of the coolant pump 81. And the control apparatus 50 estimates the swelling amount of each battery cell 33 from the relationship between the preset load and the swelling amount of each battery cell 33, and the acquired value of load. Other configurations and operations are the same as those in FIGS. 1 to 8.
 なお、図1では、充放電制御システムが電池モジュール32を1つのみ有する場合を説明した。一方、充放電制御システムにおいて複数の電池モジュールを設けて、複数の電池モジュールを直列接続したり、または並列接続したり、または並列接続と直列接続とを組み合わせて接続して、蓄電ブロックを構成することもできる。そして制御装置50が充放電スイッチ部16の切り替えを制御することで蓄電ブロックへの外部電源からの充電と、蓄電ブロックから外部負荷への電力供給とを切り替える構成としてもよい。このとき、各電池モジュールの電圧及び蓄電ブロックの充放電電流を監視することで充放電状態を制御できる。このような構成でも、各電池モジュールにおいて、上記の各例と同様に制御装置50によって各電池セルの膨れ量を推定することができる。このとき、各電池モジュールに異なるダクトを接続しそれぞれに対応する冷却ファン61により冷却風を供給する構成としてもよい。またはこの構成の代わりに、複数の電池モジュールに共通の導入ダクトまたは排出ダクトを接続し、共通の冷却ファンで各電池モジュールに冷却風が供給される構成としてもよい。 In FIG. 1, the case where the charge / discharge control system has only one battery module 32 has been described. On the other hand, a plurality of battery modules are provided in the charge / discharge control system, and a plurality of battery modules are connected in series, connected in parallel, or connected in combination with parallel connection and series connection to form a storage block. You can also And it is good also as a structure which switches the charge from the external power supply to an electrical storage block, and the electric power supply from an electrical storage block to an external load by the control apparatus 50 controlling switching of the charging / discharging switch part 16. FIG. At this time, the charge / discharge state can be controlled by monitoring the voltage of each battery module and the charge / discharge current of the storage block. Even in such a configuration, the amount of swelling of each battery cell can be estimated by the control device 50 in each battery module as in the above examples. At this time, a different duct may be connected to each battery module, and cooling air may be supplied by the cooling fan 61 corresponding to each duct. Alternatively, instead of this configuration, a common introduction duct or discharge duct may be connected to a plurality of battery modules, and cooling air may be supplied to each battery module by a common cooling fan.
 また、本発明の電池セル膨れ推定システムは、外部電源から組電池に充電し、組電池から外部負荷に放電する充放電制御システムを備える構成に限定しない。例えば、本発明のシステムは、発電機及び車両駆動モータを有する車両に搭載され、発電機の発電によって組電池に充電し、組電池から車両駆動モータに放電する構成で、組電池を構成する電池セルの膨れ量の推定のために用いられてもよい。 Further, the battery cell swelling estimation system of the present invention is not limited to a configuration including a charge / discharge control system that charges an assembled battery from an external power source and discharges the assembled battery to an external load. For example, the system of the present invention is mounted on a vehicle having a generator and a vehicle drive motor, and the battery constituting the assembled battery is configured such that the assembled battery is charged by power generation of the generator and discharged from the assembled battery to the vehicle drive motor. It may be used to estimate the amount of cell swelling.
 10 電池セル膨れ推定システム、12 充放電制御システム、13 充電入力端子、14 外部出力端子、15 充電器、16 充放電スイッチ部、17 出力変換部、18 温度検出部、19 電圧検出部、19a 電圧計測部、19b 電圧監視部、20 電流検出部、22 AC/DCコンバータ、23 DC/DCコンバータ、24 駆動回路、30,30a 組電池、32 電池モジュール、33 電池セル、34 外装体、35a、35b ラミネートフィルム、36a、36c 正極タブ、36b、36d 負極タブ、37 発電要素、38 接合部、39 ケース、40 第1ホルダ、40a 第1ホルダ要素、41 第2ホルダ、41a、41b、41c 第2ホルダ要素、42 テープ、43 隔壁部材、44 側壁部材、45 内部流路、46 導入口、47 排出口、48 シャント抵抗、50 制御装置、51 SOC算出部、52 充放電制御部、53 セル膨れ推定部、54 寿命判定部、55 ファン制御部、60 冷却構造、61 冷却ファン、61a モータ、62 導入ダクト、63 排出ダクト、64 回転角度検出部、70 並列ブロック、71 上側電池セル、72 下側電池セル、73 接着層、74 正極バスバー、75 負極バスバー、76 溝部、77 溝部、80 ケース、81 冷却液ポンプ、82 圧力検出部。 10 battery cell swelling estimation system, 12 charge / discharge control system, 13 charge input terminal, 14 external output terminal, 15 charger, 16 charge / discharge switch part, 17 output conversion part, 18 temperature detection part, 19 voltage detection part, 19a voltage Measurement unit, 19b Voltage monitoring unit, 20 Current detection unit, 22 AC / DC converter, 23 DC / DC converter, 24 drive circuit, 30, 30a battery pack, 32 battery module, 33 battery cell, 34 exterior body, 35a, 35b Laminate film, 36a, 36c positive electrode tab, 36b, 36d negative electrode tab, 37 power generation element, 38 joint, 39 case, 40 first holder, 40a first holder element, 41 second holder, 41a, 41b, 41c second holder Element, 42 tape, 43 bulkhead member, 44 side Member, 45 internal flow path, 46 introduction port, 47 discharge port, 48 shunt resistance, 50 control device, 51 SOC calculation unit, 52 charge / discharge control unit, 53 cell swelling estimation unit, 54 life determination unit, 55 fan control unit, 60 cooling structure, 61 cooling fan, 61a motor, 62 introduction duct, 63 discharge duct, 64 rotation angle detector, 70 parallel block, 71 upper battery cell, 72 lower battery cell, 73 adhesive layer, 74 positive bus bar, 75 negative electrode Bus bar, 76 grooves, 77 grooves, 80 case, 81 coolant pump, 82 pressure detector.

Claims (8)

  1.  充放電可能な発電要素と、シート材から構成され前記発電要素を収容する外装体とを有するパウチ状電池セルが複数並んで配置された電池モジュールを含む組電池の電池セル膨れ推定システムであって、
     前記電池モジュールは、少なくとも一部の隣り合う前記電池セルの間に設けられた内部流路であって、前記電池セルの前記外装体の側面が内側壁面を構成する内部流路を有し、
     前記電池モジュールの前記内部流路に冷媒流体を供給し通過させる冷媒供給部と、
     前記冷媒供給部を駆動する駆動部と、
     前記電池モジュールの充電時または放電時における前記駆動部の負荷の取得値に基づいて、前記各電池セルの膨れ量を推定する制御装置とを備える、電池セル膨れ推定システム。
    A battery cell swelling estimation system for a battery pack including a battery module in which a plurality of pouch-shaped battery cells each having a power generation element capable of charging and discharging and an exterior body configured of a sheet material and containing the power generation element are arranged ,
    The battery module is an internal flow path provided between at least some of the adjacent battery cells, and the side surface of the exterior body of the battery cell has an internal flow path forming an inner wall surface,
    A refrigerant supply unit configured to supply and pass a refrigerant fluid to the internal flow path of the battery module;
    A drive unit for driving the refrigerant supply unit;
    A battery cell swelling estimation system comprising: a control device that estimates a swelling amount of each battery cell based on an acquired value of a load of the driving unit during charging or discharging of the battery module.
  2.  請求項1に記載の電池セル膨れ推定システムにおいて、
     前記制御装置は、前記駆動部に供給する出力と前記冷媒供給部の回転数とから前記駆動部の前記負荷の値を取得し、予め設定された前記負荷及び前記各電池セルの膨れ量の関係と、前記負荷の取得値とから、前記各電池セルの膨れ量を推定する、電池セル膨れ推定シテム。
    In the battery cell swelling estimation system according to claim 1,
    The control device obtains the value of the load of the drive unit from the output supplied to the drive unit and the rotation speed of the refrigerant supply unit, and the relationship between the preset load and the amount of swelling of each battery cell And a battery cell swelling estimation system for estimating the swelling amount of each battery cell from the acquired value of the load.
  3.  請求項1に記載の電池セル膨れ推定システムにおいて、
     前記冷媒流体は液状冷媒であり、
     前記冷媒供給部は、前記電池モジュールに液状冷媒を供給する冷却液ポンプであり、
     前記制御装置は、前記冷却液ポンプと前記電池モジュールの前記内部流路とを接続する流路の圧力の検出値と、前記冷却液ポンプの回転数の検出値とから前記駆動部の前記負荷の値を取得し、予め設定された前記負荷及び前記各電池セルの膨れ量の関係と、前記負荷の取得値とから、前記各電池セルの膨れ量を推定する、電池セル膨れ推定システム。
    In the battery cell swelling estimation system according to claim 1,
    The refrigerant fluid is a liquid refrigerant;
    The refrigerant supply unit is a coolant pump that supplies liquid refrigerant to the battery module,
    The control device determines the load of the drive unit from a detected value of a pressure of a flow path connecting the coolant pump and the internal flow path of the battery module and a detected value of the rotation speed of the coolant pump. The battery cell swelling estimation system which acquires a value and estimates the swelling amount of each battery cell from the relationship between the preset load and the swelling amount of each battery cell and the acquired value of the load.
  4.  請求項1から請求項3のいずれか1に記載の電池セル膨れ推定システムにおいて、
     外部電源に接続可能な充電器と、
     前記充電器側から前記電池モジュールへの充電と、前記電池モジュールから外部出力端子側への放電とを切り替える充放電スイッチ部とを備え、
     前記制御装置は、前記充放電スイッチ部の制御によって前記電池モジュールの充放電を制御する、電池セル膨れ推定システム。
    In the battery cell swelling estimation system according to any one of claims 1 to 3,
    A charger that can be connected to an external power source;
    A charge / discharge switch unit that switches between charging the battery module from the charger side and discharging from the battery module to the external output terminal side,
    The said control apparatus is a battery cell swelling estimation system which controls charging / discharging of the said battery module by control of the said charging / discharging switch part.
  5.  請求項1から請求項4のいずれか1に記載の電池セル膨れ推定システムにおいて、
     前記制御装置は、前記各電池の膨れ量の推定値に基づいて、前記電池モジュールの寿命を判定する、電池セル膨れ推定システム。
    In the battery cell swelling estimation system according to any one of claims 1 to 4,
    The said control apparatus is a battery cell swelling estimation system which determines the lifetime of the said battery module based on the estimated value of the swelling amount of each said battery.
  6.  請求項1から請求項4のいずれか1に記載の電池セル膨れ推定システムにおいて、
     前記制御装置は、前記各電池セルの端子間電圧の検出値及び前記電池モジュールの温度検出値の少なくとも1つと、前記負荷の取得値とに基づいて、前記電池モジュールの寿命を判定する、電池セル膨れ推定システム。
    In the battery cell swelling estimation system according to any one of claims 1 to 4,
    The control device determines a lifetime of the battery module based on at least one of a detected value of a voltage between terminals of each battery cell, a detected temperature value of the battery module, and an acquired value of the load. Bulge estimation system.
  7.  請求項5または請求項6に記載の電池セル膨れ推定システムにおいて、
     前記制御装置は、前記各電池の膨れ量の推定値が予め設定された所定値以上の場合に、前記電池モジュールの充放電を停止させる、電池セル膨れ推定システム。
    In the battery cell swelling estimation system according to claim 5 or 6,
    The said control apparatus is a battery cell swelling estimation system which stops charging / discharging of the said battery module, when the estimated value of the swelling amount of each said battery is more than the preset predetermined value.
  8.  請求項1から請求項7のいずれか1に記載の電池セル膨れ推定システムにおいて、
     前記制御装置は、前記負荷の取得値が時間に対して上昇する比率が所定比率以上の場合に、前記電池モジュールの一部の前記電池セルに異常が生じたことを判定する、電池セル膨れ推定システム。
    In the battery cell swelling estimation system according to any one of claims 1 to 7,
    The control device is configured to determine whether or not an abnormality has occurred in some of the battery cells of the battery module when a rate at which the acquired value of the load increases with respect to time is equal to or greater than a predetermined ratio. system.
PCT/JP2016/003327 2015-08-06 2016-07-14 Battery cell swelling estimation system for assembled battery WO2017022186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015156195A JP2018152156A (en) 2015-08-06 2015-08-06 System for estimating battery cell expansion of battery pack
JP2015-156195 2015-08-06

Publications (1)

Publication Number Publication Date
WO2017022186A1 true WO2017022186A1 (en) 2017-02-09

Family

ID=57942711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003327 WO2017022186A1 (en) 2015-08-06 2016-07-14 Battery cell swelling estimation system for assembled battery

Country Status (2)

Country Link
JP (1) JP2018152156A (en)
WO (1) WO2017022186A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120111A1 (en) * 2018-08-17 2020-02-20 Volkswagen Aktiengesellschaft System for determining the aging of a modular battery
TWI763438B (en) * 2021-04-16 2022-05-01 宏碁股份有限公司 Battery module and method for suppressing battery swelling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210158044A (en) 2020-06-23 2021-12-30 주식회사 엘지에너지솔루션 System and method for testing fatigue of metal foil
KR20230055030A (en) * 2021-10-18 2023-04-25 주식회사 엘지에너지솔루션 Battery module with swelling detection means

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283937A (en) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd Liquid-cooled type battery pack
JP2012150977A (en) * 2011-01-19 2012-08-09 Tigers Polymer Corp Battery cooling structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283937A (en) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd Liquid-cooled type battery pack
JP2012150977A (en) * 2011-01-19 2012-08-09 Tigers Polymer Corp Battery cooling structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018120111A1 (en) * 2018-08-17 2020-02-20 Volkswagen Aktiengesellschaft System for determining the aging of a modular battery
TWI763438B (en) * 2021-04-16 2022-05-01 宏碁股份有限公司 Battery module and method for suppressing battery swelling

Also Published As

Publication number Publication date
JP2018152156A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2017022186A1 (en) Battery cell swelling estimation system for assembled battery
JP6047810B2 (en) Secondary battery, secondary battery module including the same, and secondary battery pack
JP5470404B2 (en) Battery control device and motor drive system
US9531046B2 (en) Battery pack
JP6025964B2 (en) Battery pack
KR101642329B1 (en) Battery management apparatus and Method for managing the battery using the same
JP6146332B2 (en) Relay sticking detection system
JP6064958B2 (en) Fuel cell system for electric vehicle and control method thereof
CN111033873A (en) Power storage system and management device
JP2015186266A (en) Power storage system comprising abnormality detection unit
JP2011041422A (en) Battery pack control unit
JP2008091239A (en) Failure diagnostic device of battery cooling system
JP6729714B2 (en) Short circuit detector
EP2645449A1 (en) Battery module and battery system using the same
JP2010040324A (en) Estimation method of state of charge of battery module, and charging method using this
JP3709859B2 (en) Battery temperature detector for thin batteries
JP5693302B2 (en) Battery system
JP2015153696A (en) Battery monitoring device and battery pack including battery monitoring device
JP7015449B2 (en) Battery assembly abnormality judgment system
JP4195241B2 (en) Battery pack unit
JP6365820B2 (en) Secondary battery abnormality determination device
JP7382586B2 (en) power system
JP2008096383A (en) Apparatus for diagnosing temperature detecting means
JP6446920B2 (en) Multilayer battery impedance measurement device
JP2020047566A (en) Battery temperature sensor abnormality detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16832476

Country of ref document: EP

Kind code of ref document: A1