WO2017020834A1 - 一体化热超导板式热交换器及其制造方法 - Google Patents

一体化热超导板式热交换器及其制造方法 Download PDF

Info

Publication number
WO2017020834A1
WO2017020834A1 PCT/CN2016/093063 CN2016093063W WO2017020834A1 WO 2017020834 A1 WO2017020834 A1 WO 2017020834A1 CN 2016093063 W CN2016093063 W CN 2016093063W WO 2017020834 A1 WO2017020834 A1 WO 2017020834A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat
fluid
heat exchanger
heat exchange
Prior art date
Application number
PCT/CN2016/093063
Other languages
English (en)
French (fr)
Inventor
李居强
杨俊强
仝爱星
Original Assignee
浙江嘉熙光电设备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江嘉熙光电设备制造有限公司 filed Critical 浙江嘉熙光电设备制造有限公司
Priority to US15/739,991 priority Critical patent/US11002469B2/en
Publication of WO2017020834A1 publication Critical patent/WO2017020834A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • F28F3/14Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • F25B39/024Evaporators with plate-like or laminated elements with elements constructed in the shape of a hollow panel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/08Assemblies of conduits having different features

Definitions

  • the present invention relates to a heat exchanger, and more particularly to an integrated thermal superconducting plate heat exchanger and a method of manufacturing the same.
  • composite aluminum sheets used in heat exchangers mostly use a single-pipe system, which feeds fluid from one end, flows through the tubes on the board, flows out from the other end, and is connected to a heating or cooling circulation system of the fluid, usually acting as a refrigerator.
  • the main problem of the evaporator heat absorbing part is that due to the thermal conductivity of aluminum material (220W/mk) and the thickness of the plate, the thermal resistance of the heat conduction is large, and the fluid pipeline cannot cover the entire surface of the board, thus resulting in The temperature of the whole plate surface of the heat exchanger composite plate is not uniform, and there is local overheating or supercooling. The heat exchange area of the entire evaporator cannot be fully utilized. At the same time, because the pipe system is too long, the flow resistance of the fluid in the pipe in the heat exchange plate is very high. Large, resulting in a reduction in system energy efficiency.
  • the thermal superconducting plate is usually a phase change suppression heat transfer plate or a combination of a heat pipe and an aluminum plate. Since the heat conduction rate is fast and the temperature uniformity is good, it is usually used as a separate heat dissipation plate.
  • the thermal superconducting plate can be combined with the plate heat exchanger with piping system, the thermal superconducting plate has the advantages of fast heat conduction rate and good temperature uniformity, and only needs to set part of the fluid circulation pipe in the thermal super On the guide plate, the uniform temperature and high heat transfer characteristics of the plate heat exchanger can be realized, which can greatly shorten the length of the fluid pipeline, reduce the flow resistance and energy consumption, and the amount of fluid used, and improve the efficiency and energy efficiency of the heat exchanger. ratio.
  • an object of the present invention is to provide an integrated thermal superconducting plate heat exchanger and a manufacturing method thereof for solving the limitation of the thermal conductivity and thickness of the aluminum material in the prior art.
  • the thermal resistance of the heat transfer is large, and the fluid pipeline cannot cover the entire surface of the plate. Therefore, the temperature of the entire surface of the heat exchanger composite plate is not uniform, and there is local overheating or supercooling, and the heat exchange area of the entire evaporator cannot be fully utilized.
  • the pipeline system is too long, the flow resistance of the fluid in the pipeline in the heat exchange plate is large, which causes a problem of system energy efficiency reduction.
  • the integrated thermal superconducting plate heat exchanger comprises a heat exchange plate of a composite plate structure, wherein the heat exchange plate is formed with a fluid pipeline having a certain structural shape and a thermal supercatheter road having a certain structural shape;
  • An opening is formed at both ends of the fluid line, the opening being adapted to communicate with a fluid system to introduce a fluid into the fluid line;
  • the thermal superconductor path is a closed line, the thermal supercatheter
  • the road is filled with heat transfer medium.
  • the fluid conduit and the thermal superconducting conduit are both formed by an inflation process and formed on the surface of the heat exchange plate a first convex structure corresponding to the thermal supercatheter road and a second convex structure corresponding to the fluid conduit.
  • the first convex structure and the second convex structure are respectively formed on different surfaces of the heat exchange plate.
  • the heat exchange plate includes an intermediate plate, a first plate and a second plate; the first plate, the intermediate plate, and the first Two plates are sequentially stacked, and the first plate and the second plate are respectively located on two sides of the intermediate plate, and are combined with the intermediate plate by a rolling process;
  • the hot superconductor road is located between the intermediate plate and the first plate, and the first protruding structure is located on the first plate;
  • the fluid conduit is formed between the intermediate plate and the second plate, and the second raised structure is located on the second plate.
  • the first convex structure and the second convex structure are formed on the same surface of the heat exchange plate.
  • the first convex structure and the second convex structure are formed on both surfaces of the heat exchange plate.
  • the heat exchange plate includes a first plate and a second plate; and the first plate and the second plate are combined by a rolling process together;
  • the hot superconductor path and the fluid line are located between the first plate and the second plate; the first protrusion structure and the second protrusion structure are simultaneously located on the first plate And on the second plate or on the first plate and the second plate.
  • the cross-sectional dimension of the thermal superconducting passage is smaller than the cross-sectional dimension of the fluid conduit.
  • the invention also provides a method for manufacturing an integrated thermal superconducting plate heat exchanger, the manufacturing method comprising:
  • the side plates are placed on both sides of the intermediate plate, and the roughened surface of the side plates is aligned with the intermediate plate and riveted along the sides;
  • the three plates which are riveted together are heated to a certain temperature and maintained for a period of time after hot rolling to form a composite sheet;
  • the heat transfer conduit is filled with a heat transfer medium and the hot super conduit is sealed.
  • the invention also provides a method for manufacturing an integrated thermal superconducting plate heat exchanger, the manufacturing method comprising:
  • the flashing surface printing of one of the sheets defines the shape of the fluid line and the hot superconducting path
  • the heat transfer conduit is filled with a heat transfer medium and the hot super conduit is sealed.
  • the integrated thermal superconducting plate heat exchanger of the present invention and the method of manufacturing the same have the following beneficial effects: a hot superconducting pipe and a fluid pipe in a heat exchange plate of an integrated thermal superconducting plate heat exchanger Combined, the heat transfer medium is filled with heat transfer medium to form a phase change suppression heat transfer device, and the temperature uniformity of the heat exchange plate is improved; the heat conduction rate of the heat superconducting plate is fast and the temperature uniformity is good.
  • the utility model has the advantages that the temperature difference between the heat exchange plate and the air and the effective heat transfer area are improved, the heat dissipation capacity and heat exchange efficiency of the heat exchange plate are greatly improved, and the integrated heat superconducting plate heat exchanger has the characteristics of uniform temperature and high heat exchange. Greatly shorten the fluid line The length reduces flow resistance and energy consumption, as well as the amount of fluid used, increasing the efficiency and energy efficiency of the heat exchanger.
  • FIG. 1 is a schematic view showing the structure of a surface of a heat exchange plate having interconnected hexagonal honeycomb-shaped hot superconductor paths in an integrated thermal superconducting plate heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 2 is a structural schematic view showing the surface of a heat exchange plate of a fluid line having a single-pass single-loop circulation structure in an integrated thermal superconducting plate heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional partial structural view showing a heat exchange plate in an integrated thermal superconducting plate heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 4 is a view showing the heat of a fluid line having a hexagonal honeycomb-shaped hot super-duct conduit and a single-way single-loop loop structure in an integrated heat-superconducting plate heat exchanger provided in Embodiment 2 of the present invention; Schematic diagram of the surface of the exchange board.
  • FIG. 5 is a view showing heat of a fluid pipe having a hexagonal honeycomb-shaped hot super-duct pipe and two-way two-way circulation structure in an integrated heat-superconducting plate heat exchanger provided in Embodiment 2 of the present invention; Schematic diagram of the surface of the exchange board.
  • FIG. 6 is a view showing a surface of a heat exchange plate having a multi-way communication structure and a single-way single-circuit circulation structure fluid line in an integrated thermal superconducting plate heat exchanger according to Embodiment 2 of the present invention; Schematic.
  • FIG. 7 is a schematic cross-sectional partial structural view of a heat exchange plate in an integrated thermal superconducting plate heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 8 is a flow chart showing a method of manufacturing an integrated thermal superconducting plate heat exchanger according to a third embodiment of the present invention.
  • FIG. 9 is a flow chart showing a method of manufacturing an integrated thermal superconducting plate heat exchanger according to Embodiment 4 of the present invention.
  • FIG. 1 to FIG. 9 Please refer to FIG. 1 to FIG. 9. It should be noted that the illustrations provided in the present embodiment merely illustrate the basic concept of the present invention in a schematic manner, although only the components related to the present invention are shown in the drawings instead of being implemented according to actual implementation. When the number, shape and size of the components are drawn, the type, number and proportion of each component in the actual implementation may be a random change, and the component layout pattern may also be more complicated.
  • the present invention provides an integrated thermal superconducting plate heat exchanger, wherein the integrated thermal superconducting plate heat exchanger comprises a heat exchange plate of a composite plate structure, and the heat exchange plate is provided There is a two-pipe system in which a fluid line 2 having a certain structural shape and a thermal super-conductor path 5 having a certain structural shape are formed; an opening is formed at both ends of the fluid line 2, and the opening Suitable for communicating with the fluid system through the fluid inlet nozzle 3 and the fluid outlet nozzle 4 to introduce fluid into the interior space 202 of the fluid conduit 2; the thermal superconducting conduit 5 is a closed conduit, the heat The internal space 502 of the superconducting passage 5 is filled with a heat transfer medium 503.
  • the heat superduct conduit 5 is filled with a heat transfer medium 503 to constitute a phase change suppression heat transfer device, and the temperature uniformity of the heat exchange plate is improved.
  • the heat transfer medium 503 is a fluid.
  • the heat transfer medium 503 may be a gas or a liquid or a mixture of a gas and a liquid. More preferably, in the embodiment, the heat transfer worker Mass 503 is a mixture of liquid and gas.
  • the fluid line 2 and the thermal superconductor path 5 are each formed by an inflation process, and a first convex structure 501 corresponding to the thermal superconductor path 5 is formed on the surface of the heat exchange plate. And a second raised structure 201 corresponding to the fluid line 2.
  • the first raised structure 501 and the second raised structure 201 are formed on different surfaces of the heat exchange plate, respectively.
  • the heat exchange plate includes an intermediate plate 8, a first plate 7 and a second plate 9; the first plate 7, the intermediate plate 8 and the second plate 9 are sequentially stacked The first plate 7 and the second plate 9 are respectively located at two sides of the intermediate plate 8 and are combined with the intermediate plate 8 by a rolling process; the hot super conduit 5 is located at the Between the intermediate plate 8 and the first plate 7, the first protruding structure 501 is located on the first plate 7; the fluid pipe 2 is formed on the intermediate plate 8 and the second plate 9 The second raised structure 201 is located on the second plate member 9.
  • the hot super-duct conduit 5 and the fluid conduit 2 are combined in a heat exchange plate of the integrated thermal superconducting plate heat exchanger, and the thermal superconducting plate 5 is used for high thermal conductivity and good temperature uniformity.
  • the utility model has the advantages that the temperature difference between the heat exchange plate and the air and the effective heat transfer area are improved, the heat dissipation capacity and the heat exchange efficiency of the heat exchange plate are greatly improved; and the integrated heat superconducting plate heat exchanger has a uniform temperature
  • the characteristics of efficient heat exchange greatly shorten the length of the fluid line 2, reduce flow resistance and energy consumption, and the amount of fluid used, and improve the efficiency and energy efficiency ratio of the heat exchanger.
  • the cross-sectional dimension of the hot super-duct conduit 5 and the cross-sectional dimension of the fluid conduit 2 can be set according to actual needs.
  • the cross-sectional dimension of the thermal superconductor passage 5 is smaller than The cross-sectional dimension of the fluid line 2.
  • the shape of the thermal superconductor path 5 may be a hexagonal honeycomb shape, a circular honeycomb shape, a quadrangular honeycomb shape, a plurality of U-shapes connected end-to-end, a diamond shape, a triangle shape, a circular shape, or any one of them. Any combination of the above.
  • FIG. 1 is a schematic structural view of a surface of a heat exchange plate having interconnected hexagonal honeycomb hot superconductor paths in an integrated thermal superconducting plate heat exchanger, as shown in FIG. 1, an edge portion of the heat exchange plate and The hexagonal portion is a non-pipe portion 1, and the structure surrounding the hexagons and communicating with each other is the hot superconductor path 5.
  • the hot super-duct conduit 5 is prepared by an inflation process
  • the heat exchange plate is formed with a process port 6, which is also a filling port.
  • the process port 6 is sealed by welding to achieve sealing of the hot superconductor path 5, so that the hot superconductor path 5 does not Conducted with the outside world.
  • the heat exchange plate includes an intermediate plate 8, a first plate 7 and a second plate 9; the first plate 7, the intermediate plate 8 and the second plate 9 are sequentially stacked, and The fluid inlet nozzle 3 and the fluid outlet nozzle 4 of the fluid line 2 are simultaneously illustrated in Fig. 1 by a rolling process.
  • the shape of the fluid pipeline 2 may be a single-way single-loop loop structure, or a two-way two-way loop structure, or a multi-path multi-circuit loop structure, such as three-way loop.
  • the three-way loop structure, the four-way four-way loop structure, the five-way five-way loop structure, and the parallel loop structure may be a single-way single-loop loop structure, or a two-way two-way loop structure, or a multi-path multi-circuit loop structure, such as three-way loop.
  • the shape of the fluid line 2 is The single-way single-loop structure means that the fluid line 2 in the heat exchange plate is formed by bending a fluid line 2 in a certain shape; wherein the parallel tube structure is The fluid line 2, the fluid line 2 is a non-pipe portion 1; one end of the fluid line 2 is a fluid inlet connection 3, and the other end is a fluid outlet connection 4; the fluid inlet connection 3 And the fluid outlet connection 4 is a copper joint or an aluminum joint welded to the fluid system at an opening at both ends of the fluid line 2.
  • the material of the heat exchange plate (ie, the material of the intermediate plate 8, the first plate 7 and the second plate 9) should be a material having good thermal conductivity; preferably, in this embodiment, The material of the heat exchange sheet may be copper, copper alloy, aluminum, aluminum alloy, titanium, titanium alloy, or any combination of any one or more.
  • the working principle of the integrated thermal superconducting plate heat exchanger is: when the fluid flows with the latent heat through the fluid line 2 of the heat exchange plate, heat is rapidly transferred from the fluid line 2 to the heat super
  • the conduit 5 because the thermal superconductor path 5 covers the entire surface of the heat exchange plate, and has the characteristics of high heat transfer rate and high heat transfer density, so that heat is rapidly and evenly distributed throughout the heat exchange plate, thereby improving
  • the temperature difference between the heat exchange plate and the air and the effective heat transfer area greatly improve the heat dissipation capacity and heat exchange efficiency of the heat exchange plate.
  • the present invention further provides an integrated thermal superconducting plate heat exchanger.
  • the structure of the integrated thermal superconducting plate heat exchanger in the embodiment is the same as that described in the first embodiment.
  • the structure of the heat-heating superconducting plate heat exchanger is substantially the same, and the difference between the two is that the heat exchange plate of the first embodiment comprises the first plate 7, the intermediate plate 8 and the second plate 9 three-layer plate, and the first convex structure 501 and the second protruding structure 201 are respectively formed on different surfaces of the heat exchange plate; in this embodiment, the heat exchange plate comprises two layers of the first plate 7 and the second plate 9, the first protrusion The structure 501 and the second protrusion structure 201 are formed on the same surface of the heat exchange plate; wherein, FIG.
  • FIG. 4 is a hexagonal honeycomb heat having mutual communication in the integrated heat superconducting plate heat exchanger. Schematic diagram of the surface of the heat exchanger plate of the fluid conduit 2 of the superconducting passage 5 and the single-pass single-circuit circulation structure;
  • FIG. 5 is a hexagonal honeycomb having interconnected cells in the integrated thermal superconducting plate heat exchanger Flow of superheated conduit 5 and two-way two-way circulation structure Schematic diagram of the surface of the heat exchange plate of the pipeline 2;
  • FIG. 6 is a thermal supercatheter road 5 having a multi-way communication structure in the integrated thermal superconducting plate heat exchanger and a single-way single-circuit circulation structure fluid pipeline 2 Schematic diagram of the surface of the heat exchange plate.
  • the heat exchange plate includes a first plate 7 and a second plate 9; the first plate 7 and the second plate 9 are compounded by a rolling process; the thermal superconductor The road 5 and the fluid line 2 are located between the first plate 7 and the second plate 9; the heat exchange plate is in a double-sided inflated configuration, the first raised structure 501 and the first
  • the second protruding structure 201 can be simultaneously formed on the first plate member 7 and the second plate member 9; that is, the first convex structure 501 and the second convex portion are formed on both surfaces of the heat exchange plate. Structure 201.
  • the heat exchange plate may also be in a single-sided inflated configuration, and the first raised structure 501 and the second raised structure 201 may be located on the first plate 7 at the same time or at the same time.
  • the surface of the second plate member 9 is a plane; when the first protruding structure 501 and When the second protruding structure 201 is simultaneously located on the second plate member 9, the surface of the first plate member 7 is flat.
  • the present invention also provides a method for manufacturing an integrated thermal superconducting plate heat exchanger, the manufacturing method comprising:
  • S1 providing three plates, which may be, but not limited to, aluminum plates; one of the plates is used as an intermediate plate, and the other two of the plates are used as side plates; the side plates are single-faced and blown clean, The intermediate plate is double-faced and blown clean; and the oxide layer on the surface of the plate is removed;
  • S6 charging a heat transfer medium into the hot super-duct conduit and sealing the hot super-duct conduit; soldering a copper joint or an aluminum joint at two ports of the fluid pipeline, the copper joint or the aluminum joint Connected to the fluid system.
  • the structure and characteristics of the integrated thermal superconducting plate heat exchanger manufactured by the method for manufacturing the integrated thermal superconducting plate heat exchanger described in this embodiment are the same as that of the integrated thermal superconducting plate type heat exchange described in the first embodiment.
  • the structure and the features of the device are the same. For details, refer to the first embodiment, and the details are not described herein.
  • the present invention also provides a method for manufacturing an integrated thermal superconducting plate heat exchanger, the manufacturing method comprising:
  • S1 providing two sheets, which may be, but not limited to, an aluminum sheet; the two sheets are single-faced and blown clean, and the oxide layer on the surface of the sheet is removed;
  • S6 charging a heat transfer medium into the hot super-duct conduit and sealing the hot super-duct conduit; soldering a copper joint or an aluminum joint at two ports of the fluid pipeline, the copper joint or the aluminum joint Connected to the fluid system.
  • the structure and characteristics of the integrated thermal superconducting plate heat exchanger manufactured by the method for manufacturing the integrated thermal superconducting plate heat exchanger described in this embodiment and the integrated thermal superconducting plate type heat exchange described in the second embodiment are the same. For details, refer to the second embodiment, which is not repeated here.
  • the present invention provides an integrated thermal superconducting plate heat exchanger and a method of manufacturing the same, in which a thermal superconductor path and a fluid line are combined in a heat exchange plate of an integrated thermal superconducting plate heat exchanger Together, the heat transfer conduit is filled with a heat transfer medium to form a phase change suppression heat transfer device, which improves the temperature uniformity of the heat exchange plate; and the thermal superconducting plate has the advantages of fast heat conduction rate and good temperature uniformity.
  • the temperature difference between the heat exchange plate and the air and the effective heat transfer area are improved, the heat dissipation capacity and heat exchange efficiency of the heat exchange plate are greatly improved, and the integrated heat superconducting plate heat exchanger has the characteristics of uniform temperature and high heat exchange, and is greatly shortened.
  • the length of the fluid line reduces flow resistance and energy consumption, as well as the amount of fluid used, increasing the efficiency and energy efficiency of the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

一种一体化热超导板式热交换器及其制造方法,一体化热超导板式热交换器包括复合板式结构的热交换板,热交换板内形成有具有一定结构形状的流体管路(2)及具有一定结构形状的热超导管路(5);流体管路(2)两端形成有开口;热超导管路(5)为封闭管路,热超导管路(5)内填充有传热工质(503)。在一体化热超导板式热交换器的热交换板内将热超导管路(5)及流体管路(2)组合在一起,利用热超导板的导热速率快、均温性好的特点,提高了热交换板与空气的温差和有效传热面积,大大提高了热交换板的散热能力和热交换效率;使得一体化热超导板式热交换器具有均温和高效换热的特性,大大缩短流体管路的长度,减小流动阻力和能耗,以及流体的使用量,提高热交换器的效率和能效比。

Description

一体化热超导板式热交换器及其制造方法 技术领域
本发明涉及一种热交换器,特别是涉及一种一体化热超导板式热交换器及其制造方法。
背景技术
目前,用于热交换器的复合铝板大多采用单管路***,从一端进流体,流经板上的管路,从另一端流出,连接到流体的加热或冷却的循环***中,通常充当冰箱的蒸发器吸热部件,存在主要问题是:由于受到铝材质导热系数(220W/mk),且板的厚度的限制,导热热阻较大,且流体管路不能覆盖整个板的表面,因此导致热交换器复合板整个板面温度不均匀,局部有过热或过冷现象,不能充分发挥整个蒸发器的热交换面积,同时由于管路***过长,流体在热交换板内管道中流动阻力很大,造成***能效的降低。
热超导板通常为相变抑制传热板或热管与铝板的组合,由于导热速率快,均温性好,通常作为单独的散热板使用。
若能将热超导板与带管路***的板式热交换器复合在一起,利用热超导板的导热速率快,均温性好的特点,仅需将部分流体流通管路设置在热超导板上,就能实现板式热交换器的均温和高效换热特性,这样可大大缩短流体管路的长度,减小流动阻力和能耗,以及流体的使用量,提高热交换器效率和能效比。
本发明的目的就是提供一种将热超导板与流体管路板式热交换器复合在一起的一种新型高效的热超导板式热交换器。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种一体化热超导板式热交换器及其制造方法,用于解决现有技术中由于受到铝材质导热系数及厚度的限制,导热热阻较大,且流体管路不能覆盖整个板的表面,因此导致热交换器复合板整个板面温度不均匀,局部有过热或过冷现象,不能充分发挥整个蒸发器的热交换面积,同时由于管路***过长,流体在热交换板内管道中流动阻力很大,造成***能效的降低的问题。
为实现上述目的及其他相关目的,本发明提供一种一体化热超导板式热交换 器,所述一体化热超导板式热交换器包括复合板式结构的热交换板,所述热交换板内形成有具有一定结构形状的流体管路及具有一定结构形状的热超导管路;
所述流体管路两端形成有开口,所述开口适于与流体***相连通,以在所述流体管路内通入流体;所述热超导管路为封闭管路,所述热超导管路内填充有传热工质。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述流体管路及所述热超导管路均通过吹胀工艺形成,并在所述热交换板表面形成与所述热超导管路相对应的第一凸起结构及与所述流体管路相对应的第二凸起结构。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述第一凸起结构及所述第二凸起结构分别形成于所述热交换板的不同表面上。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述热交换板包括中间板材、第一板材及第二板材;所述第一板材、所述中间板材及所述第二板材依次叠置,所述第一板材及所述第二板材分别位于所述中间板材的两侧,并与所述中间板材通过辊压工艺复合在一起;
所述热超导管路位于所述中间板材及所述第一板材之间,所述第一凸起结构位于所述第一板材上;
所述流体管路形成于所述中间板材及所述第二板材之间,所述第二凸起结构位于所述第二板材上。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述第一凸起结构及所述第二凸起结构形成于所述热交换板的同一表面上。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述热交换板的两表面上均形成有所述第一凸起结构及所述第二凸起结构。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述热交换板包括第一板材及第二板材;所述第一板材及所述第二板材通过辊压工艺复合在一起;
所述热超导管路及所述流体管路位于所述第一板材及所述第二板材之间;所述第一凸起结构及所述第二凸起结构同时位于所述第一板材上、所述第二板材上、或所述第一板材及所述第二板材上。
作为本发明的一体化热超导板式热交换器的一种优选方案,所述热超导管路的截面尺寸小于所述流体管路的截面尺寸。
本发明还提供一种一体化热超导板式热交换器的制造方法,所述制造方法包括:
提供三块板材,其中一块所述板材作为中间板材,其他两块所述板材作为侧面板材;将所述侧面板材单面打毛,将所述中间板材双面打毛;
在所述中间板材的两打毛面分别印刷定义出流体管路及热超导管路的形状;
将所述侧面板材置于所述中间板材两侧,所述侧面板材的打毛面与所述中间板材贴合并对齐,沿边铆合;
将铆合在一起的所述三块板材加热至一定温度并维持一段时间后进行热轧加工以形成复合板材;
向所述复合板材内充入高压流体至所述复合板材膨胀,在所述复合板材的两表面分别形成第一凸起结构及第二凸起结构的同时在所述复合板材内部形成所述流体管路及所述热超导管路;
向所述热超导管路内充入传热工质并密封所述热超导管路。
本发明还提供一种一体化热超导板式热交换器的制造方法,所述制造方法包括:
提供两块板材,将所述两块板材单面打毛;
在其中一所述板材的打毛面印刷定义出流体管路及热超导管路的形状;
将所述两块板材的打毛面贴合对齐,沿边铆合;
将铆合在一起的所述两块板材加热至一定温度并维持一段时间后进行热轧加工以形成复合板材;
向所述复合板材内充入高压流体至所述复合板材膨胀,在所述复合板材两表面形成第一凸起结构及第二凸起结构的同时在所述复合板材内部形成所述流体管路及所述热超导管路;
向所述热超导管路内充入传热工质并密封所述热超导管路。
如上所述,本发明的一体化热超导板式热交换器及其制造方法,具有以下有益效果:在一体化热超导板式热交换器的热交换板内将热超导管路及流体管路组合在一起,在热超导管路内充入传热工质,构成相变抑制传热器件,提高了热交换板的均温性;利用热超导板的导热速率快、均温性好的特点,提高了热交换板与空气的温差和有效传热面积,大大提高了热交换板的散热能力和热交换效率;使得一体化热超导板式热交换器具有均温和高效换热的特性,大大缩短流体管路 的长度,减小流动阻力和能耗,以及流体的使用量,提高热交换器的效率和能效比。
附图说明
图1显示为本发明实施例一中提供的一体化热超导板式热交换器中具有相互连通六边形蜂窝状热超导管路的热交换板表面的结构示意图。
图2显示为本发明实施例一中提供的一体化热超导板式热交换器中具有单路进单路回循环结构的流体管路的热交换板表面的结构示意图。
图3显示为本发明实施例一中提供的一体化热超导板式热交换器中热交换板的截面局部结构示意图。
图4显示为本发明实施例二中提供的一体化热超导板式热交换器中具有相互连通的六边形蜂窝状热超导管路及单路进单路回循环结构的流体管路的热交换板表面的结构示意图。
图5显示为本发明实施例二中提供的一体化热超导板式热交换器中具有相互连通的六边形蜂窝状热超导管路及两路进两路回循环结构的流体管路的热交换板表面的结构示意图。
图6显示为本发明实施例二中提供的一体化热超导板式热交换器中具有多路连通结构的热超导管路及单路进单路回循环结构流体管路的热交换板表面的结构示意图。
图7显示为本发明实施例二中提供的一体化热超导板式热交换器中热交换板的截面局部结构示意图。
图8显示为本发明实施例三中提供的一体化热超导板式热交换器的制造方法的流程图。
图9显示为本发明实施例四中提供的一体化热超导板式热交换器的制造方法的流程图。
元件标号说明
1      非管道部分
2      流体管路
201    第二凸起结构
202    流体管路内部空间
3      流体进口接管
4      流体出口接管
5      热超导管路
501    第一凸起结构
502    热超导管路内部空间
503    传热工质
6      工艺口
7      第一板材
8      中间板材
9      第二板材
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图9需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
请参阅图1至图3,本发明提供一种一体化热超导板式热交换器,所述一体化热超导板式热交换器包括复合板式结构的热交换板,所述热交换板内设有双管路***,所述热交换板内形成有具有一定结构形状的流体管路2及具有一定结构形状的热超导管路5;所述流体管路2两端形成有开口,所述开口适于通过流体进口接管3及流体出口接管4与流体***相连通,以在所述流体管路2的内部空间202内通入流体;所述热超导管路5为封闭管路,所述热超导管路5的内部空间502内填充有传热工质503。所述热超导管路5内充入传热工质503,构成相变抑制传热器件,提高了热交换板的均温性。
作为示例,所述传热工质503为流体,优选地,所述传热工质503可以为气体或液体或气体与液体的混合物,更为优选地,本实施例中,所述传热工质503为液体与气体的混合物。
作为示例,所述流体管路2及所述热超导管路5均通过吹胀工艺形成,并在所述热交换板表面形成与所述热超导管路5相对应的第一凸起结构501及与所述流体管路2相对应的第二凸起结构201。
作为示例,所述第一凸起结构501及所述第二凸起结构201分别形成于所述热交换板的不同表面上。
作为示例,请参阅图3,所述热交换板包括中间板材8、第一板材7及第二板材9;所述第一板材7、所述中间板材8及所述第二板材9依次叠置,所述第一板材7及所述第二板材9分别位于所述中间板材8的两侧,并与所述中间板材8通过辊压工艺复合在一起;所述热超导管路5位于所述中间板材8及所述第一板材7之间,所述第一凸起结构501位于所述第一板材7上;所述流体管路2形成于所述中间板材8及所述第二板材9之间,所述第二凸起结构201位于所述第二板材9上。在一体化热超导板式热交换器的热交换板内将所述热超导管路5及流体管路2组合在一起,利用所述热超导板5的导热速率快、均温性好的特点,提高了所述热交换板与空气的温差和有效传热面积,大大提高了所述热交换板的散热能力和热交换效率;使得所述一体化热超导板式热交换器具有均温和高效换热的特性,大大缩短所述流体管路2的长度,减小流动阻力和能耗,以及流体的使用量,提高热交换器的效率和能效比。
作为示例,所述热超导管路5的截面尺寸与所述流体管路2的截面尺寸可以根据实际需要进行设定,优选地,本实施例中,所述热超导管路5的截面尺寸小于所述流体管路2的截面尺寸。
作为示例,所述热超导管路5的形状可以为六边形蜂窝状、圆形蜂窝状、四边形蜂窝状、首尾串联的多个U形,、菱形、三角形、圆环形或其中任一种以上的任意组合。
图1为一体化热超导板式热交换器中具有相互连通的六边形蜂窝状热超导管路的热交换板表面的结构示意图,如图1所示,所述热交换板的边缘部分及六边形部分为非管道部分1,环绕各六边形周围并相互连通的结构即为所述热超导管路5。需要说明的是,由于所述热超导管路5通过吹胀工艺制备而成,所以在 形成所述热超导管路5的过程中,所述热交换板上形成有工艺口6,即亦为充工质口。所述工艺口6在所述热超导管路5的形状初步形成以后,所述工艺口6通过焊接方式密封,以实现所述热超导管路5的密封,使得所述热超导管路5不与外界导通。
需要说明的是,由于所述热交换板包括中间板材8、第一板材7及第二板材9;所述第一板材7、所述中间板材8及所述第二板材9依次叠置,并通过辊压工艺复合在一起,图1中同时示意出了所述流体管路2的流体进口接管3及流体出口接管4。
作为示例,所述流体管路2的形状可以为单路进单路回循环结构,也可以为两路进两路回循环结构,也可以为多路进多路回循环结构,譬如三路进三路回循环结构、四路进四路回循环结构、五路进五路回循环结构,还可以为并联式循环结构。
图2为一体化热超导板式热交换器中具有单路进单路回循环结构的流体管路的热交换板表面的结构示意图,如图2所示,所述流体管路2的形状为单路进单路回循环结构是指在所述热交换板内的所述流体管路2为一根流体管路2按一定的形状弯折而形成;其中,平行状的细管结构即为所述流体管路2,所述流体管路2之间即为非管道部分1;所述流体管路2的一端为流体进口接管3,另一端为流体出口接管4;所述流体进口接管3及所述流体出口接管4为在所述流体管路2两端的开口上焊接的与流体***相连接的铜接头或铝接头。
作为示例,所述热交换板的材料(即所述中间板材8、所述第一板材7及所述第二板材9的材料)应为导热性良好的材料;优选地,本实施例中,所述热交换片的材料均可以为铜、铜合金、铝、铝合金、钛、钛合金、或任一种以上的任意组合。
所述一体化热超导板式热交换器的工作原理为:由流体带着潜热流经所述热交换板的所述流体管路2时,热量从流体管路2迅速传递至所述热超导管路5,由于热超导管路5覆盖整个所述热交换板的表面,且具有高传热速率和高传热密度的特点,使得热量迅速均匀的分布在整个所述热交换板上,提高了所述热交换板与空气的温差和有效传热面积,大大提高了所述热交换板的散热能力和热交换效率。
实施例二
请参阅图4至图7,本发明还提供一种一体化热超导板式热交换器,本实施例中所述一体化热超导板式热交换器的结构与实施例一中所述的一体化热超导板式热交换器的结构大致相同,二者的区别在于:实施例一中的热交换板包括第一板材7、中间板材8及第二板材9三层板材,第一凸起结构501及所述第二凸起结构201分别形成于所述热交换板的不同表面上;而本实施例中,热交换板包括第一板材7及第二板材9两层板材,第一凸起结构501及所述第二凸起结构201形成于所述热交换板的同一表面上;其中,图4为所述一体化热超导板式热交换器中具有相互连通的六边形蜂窝状热超导管路5及单路进单路回循环结构的流体管路2的热交换板表面的结构示意图;图5为所述一体化热超导板式热交换器中具有相互连通的六边形蜂窝状热超导管路5及两路进两路回循环结构的流体管路2的热交换板表面的结构示意图;图6为所述一体化热超导板式热交换器中具有多路连通结构的热超导管路5及单路进单路回循环结构流体管路2的热交换板表面的结构示意图。
作为示例,请参阅图7,所述热交换板包括第一板材7及第二板材9;所述第一板材7及所述第二板材9通过辊压工艺复合在一起;所述热超导管路5及所述流体管路2位于所述第一板材7及所述第二板材9之间;所述热交换板为双面吹胀形态,所述第一凸起结构501及所述第二凸起结构201可同时在所述第一板材7及所述第二板材9上;即所述热交换板的两表面上均形成有所述第一凸起结构501及所述第二凸起结构201。
作为示例,所述热交换板还可以为单面吹胀形态,所述第一凸起结构501及所述第二凸起结构201可以同时位于所述第一板材7上或同时位于所述第二板材9上。当所述第一凸起结构501及所述第二凸起结构201同时位于所述第一板材7上时,所述第二板材9的表面为平面;当所述第一凸起结构501及所述第二凸起结构201同时位于所述第二板材9上时,所述第一板材7的表面为平面。
本实施例中所述一体化热超导板式热交换器的其他结构及特点与实施例一中所述一体化热超导板式热交换器的其他结构及特点相同,具体请参阅实施例一,这里不再累述。
实施例三
请参阅图8,本发明还提供一种一体化热超导板式热交换器的制造方法,所述制造方法包括:
S1:提供三块板材,所述板材可以为但不仅限于铝板;其中一块所述板材作为中间板材,其他两块所述板材作为侧面板材;将所述侧面板材单面打毛并吹干净,将所述中间板材双面打毛并吹干净;并去除所述板材表面的氧化层;
S2:采用石墨印刷法在所述中间板材的两打毛面分别形成相互连通的具有一定形状的石墨线路,位于所述中间板材两侧的所述石墨线路分别定义出流体管路及热超导管路的形状;
S3:将所述侧面板材置于所述中间板材两侧,所述侧面板材的打毛面与所述中间板材贴合并对齐,沿边铆合;
S4:将铆合在一起的所述三块板材置于加热炉中加热至一定温度并维持一段时间后送入轧机轧制形成复合板材;
S5:利用胀形机向所述复合板材内充入高压氮气至所述复合板材膨胀,在所述复合板材的两表面分别形成第一凸起结构及第二凸起结构的同时在所述复合板材内部形成所述流体管路及所述热超导管路;
S6:向所述热超导管路内充入传热工质并密封所述热超导管路;在所述流体管路的两个端口焊接铜接头或铝接头,所述铜接头或铝接头用于与流体***相连接。
本实施例中所述的一体化热超导板式热交换器的制造方法制造的一体化热超导板式热交换器的结构及特点与实施例一中所述的一体化热超导板式热交换器的结构及特点相同,具体可参阅实施例一,此处不再累述。
实施例四
请参阅图9,本发明还提供一种一体化热超导板式热交换器的制造方法,所述制造方法包括:
S1:提供两块板材,所述板材可以为但不仅限于铝板;将所述两块板材单面打毛并吹干净,并去除所述板材表面的氧化层;
S2:采用石墨印刷法在其中一所述板材的打毛面形成具有一定形状的石墨线路,所述石墨线路定义出流体管路及热超导管路的形状;
S3:将所述两块板材的打毛面贴合对齐,沿边铆合;
S4:将铆合在一起的所述两块板材置于加热炉中加热至一定温度并维持一段时间后送入轧机轧制形成复合板材;
S5:利用胀形机向所述复合板材内充入高压氮气至所述复合板材膨胀,在所 述复合板材同一表面上同时形成第一凸起结构及第二凸起结构的同时在所述复合板材内部形成所述流体管路及所述热超导管路;
S6:向所述热超导管路内充入传热工质并密封所述热超导管路;在所述流体管路的两个端口焊接铜接头或铝接头,所述铜接头或铝接头用于与流体***相连接。
本实施例中所述的一体化热超导板式热交换器的制造方法制造的一体化热超导板式热交换器的结构及特点与实施例二中所述的一体化热超导板式热交换器的结构及特点相同,具体可参阅实施例二,此处不再累述。
综上所述,本发明提供一种一体化热超导板式热交换器及其制造方法,在一体化热超导板式热交换器的热交换板内将热超导管路及流体管路组合在一起,在热超导管路内充入传热工质,构成相变抑制传热器件,提高了热交换板的均温性;利用热超导板的导热速率快、均温性好的特点,提高了热交换板与空气的温差和有效传热面积,大大提高了热交换板的散热能力和热交换效率;使得一体化热超导板式热交换器具有均温和高效换热的特性,大大缩短流体管路的长度,减小流动阻力和能耗,以及流体的使用量,提高热交换器的效率和能效比。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种一体化热超导板式热交换器,其特征在于,所述一体化热超导板式热交换器包括复合板式结构的热交换板,所述热交换板内形成有具有一定结构形状的流体管路及具有一定结构形状的热超导管路;
    所述流体管路两端形成有开口,所述开口适于与流体***相连通,以在所述流体管路内通入流体;所述热超导管路为封闭管路,所述热超导管路内填充有传热工质。
  2. 根据权利1要求所述的一体化热超导板式热交换器,其特征在于:所述流体管路及所述热超导管路均通过吹胀工艺形成,并在所述热交换板表面形成与所述热超导管路相对应的第一凸起结构及与所述流体管路相对应的第二凸起结构。
  3. 根据权利2要求所述的一体化热超导板式热交换器,其特征在于:所述第一凸起结构及所述第二凸起结构分别形成于所述热交换板的不同表面上。
  4. 根据权利要求3所述的一体化热超导板式热交换器,其特征在于,所述热交换板包括中间板材、第一板材及第二板材;所述第一板材、所述中间板材及所述第二板材依次叠置,所述第一板材及所述第二板材分别位于所述中间板材的两侧,并与所述中间板材通过辊压工艺复合在一起;
    所述热超导管路位于所述中间板材及所述第一板材之间,所述第一凸起结构位于所述第一板材上;
    所述流体管路形成于所述中间板材及所述第二板材之间,所述第二凸起结构位于所述第二板材上。
  5. 根据权利2要求所述的一体化热超导板式热交换器,其特征在于:所述第一凸起结构及所述第二凸起结构形成于所述热交换板的同一表面上。
  6. 根据权利5要求所述的一体化热超导板式热交换器,其特征在于:所述热交 换板的两表面上均形成有所述第一凸起结构及所述第二凸起结构。
  7. 根据权利要求5所述的一体化热超导板式热交换器,其特征在于,所述热交换板包括第一板材及第二板材;所述第一板材及所述第二板材通过辊压工艺复合在一起;
    所述热超导管路及所述流体管路位于所述第一板材及所述第二板材之间;所述第一凸起结构及所述第二凸起结构同时位于所述第一板材上、所述第二板材上、或所述第一板材及所述第二板材上。
  8. 根据权利1要求所述的一体化热超导板式热交换器,其特征在于:所述热超导管路的截面尺寸小于所述流体管路的截面尺寸。
  9. 一种一体化热超导板式热交换器的制造方法,其特征在于,所述制造方法包括:
    提供三块板材,其中一块所述板材作为中间板材,其他两块所述板材作为侧面板材;将所述侧面板材单面打毛,将所述中间板材双面打毛;
    在所述中间板材的两打毛面分别印刷定义出流体管路及热超导管路的形状;
    将所述侧面板材置于所述中间板材两侧,所述侧面板材的打毛面与所述中间板材贴合并对齐,沿边铆合;
    将铆合在一起的所述三块板材加热至一定温度并维持一段时间后进行热轧加工以形成复合板材;
    向所述复合板材内充入高压流体至所述复合板材膨胀,在所述复合板材的两表面分别形成第一凸起结构及第二凸起结构的同时在所述复合板材内部形成所述流体管路及所述热超导管路;
    向所述热超导管路内充入传热工质并密封所述热超导管路。
  10. 一种一体化热超导板式热交换器的制造方法,其特征在于,所述制造方法包括:
    提供两块板材,将所述两块板材单面打毛;
    在其中一所述板材的打毛面印刷定义出流体管路及热超导管路的形状;
    将所述两块板材的打毛面贴合对齐,沿边铆合;
    将铆合在一起的所述两块板材加热至一定温度并维持一段时间后进行热轧加工以形成复合板材;
    向所述复合板材内充入高压流体至所述复合板材膨胀,在所述复合板材两表面形成第一凸起结构及第二凸起结构的同时在所述复合板材内部形成所述流体管路及所述热超导管路;
    向所述热超导管路内充入传热工质并密封所述热超导管路。
PCT/CN2016/093063 2015-08-06 2016-08-03 一体化热超导板式热交换器及其制造方法 WO2017020834A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,991 US11002469B2 (en) 2015-08-06 2016-08-03 Integral heat superconducting plate heat exchanger and fabrication method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510476911.6 2015-08-06
CN201510476911.6A CN105004205B (zh) 2015-08-06 2015-08-06 一体化热超导板式热交换器及其制造方法

Publications (1)

Publication Number Publication Date
WO2017020834A1 true WO2017020834A1 (zh) 2017-02-09

Family

ID=54376972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093063 WO2017020834A1 (zh) 2015-08-06 2016-08-03 一体化热超导板式热交换器及其制造方法

Country Status (3)

Country Link
US (1) US11002469B2 (zh)
CN (1) CN105004205B (zh)
WO (1) WO2017020834A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147736A1 (zh) * 2019-01-16 2020-07-23 多美达瑞典有限公司 一种用于移动冰箱的吹胀式蒸发器和移动冰箱
CN115615233A (zh) * 2022-11-08 2023-01-17 中国核动力研究设计院 流体承载组件及热量交换装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004205B (zh) * 2015-08-06 2018-06-08 浙江嘉熙科技有限公司 一体化热超导板式热交换器及其制造方法
CN105466262A (zh) * 2015-12-31 2016-04-06 浙江嘉熙科技有限公司 一体化相变抑制传热换热板结构及其制造方法
CN105698271B (zh) 2016-04-01 2019-07-16 浙江嘉熙科技有限公司 温差电热泵型空调器
CN105865241B (zh) * 2016-04-11 2018-07-24 广州华钻电子科技有限公司 一种超薄均热板及其制作方法
CN107782186A (zh) * 2016-08-31 2018-03-09 浙江嘉熙科技有限公司 超薄复合材料相变抑制传热板及其制造方法
CN107801350A (zh) * 2016-08-31 2018-03-13 浙江嘉熙科技有限公司 单面平相变抑制散热板及移动终端设备
CN107782184A (zh) * 2016-08-31 2018-03-09 浙江嘉熙科技有限公司 相变抑制传热板及其制造方法
CN106322492A (zh) * 2016-09-14 2017-01-11 上海嘉熙科技有限公司 热超导散热板式电暖器
IT201800021274A1 (it) 2018-12-27 2020-06-27 Cga Tech S R L Scambiatore di calore e relativo metodo di realizzazione
CN109561640A (zh) * 2019-01-14 2019-04-02 常州常发制冷科技有限公司 多层复合翅片式均温板及加工方法
CN109822000B (zh) * 2019-02-28 2021-01-15 常州恒创热管理有限公司 板式热管的加工方法
DE102019110870A1 (de) * 2019-04-26 2020-10-29 Liebherr-Components Biberach Gmbh Kühlvorrichtung zum Kühlen einer Energiespeicher- und/oder Elektronikbaugruppe sowie Verfahren zu deren Herstellung
US11221162B2 (en) * 2019-05-27 2022-01-11 Asia Vital Components (China) Co., Ltd. Roll bond plate evaporator structure
US11549626B2 (en) * 2019-06-17 2023-01-10 GM Global Technology Operations LLC Method of forming a cooling plate
CN110351991B (zh) * 2019-07-22 2020-10-27 浙江嘉熙科技有限公司 传热基板及散热器结构
CN110567301A (zh) * 2019-08-23 2019-12-13 深圳市嘉名科技有限公司 一种散热板及其制造方法
TWI738602B (zh) * 2020-01-22 2021-09-01 訊凱國際股份有限公司 多通道薄熱交換器
CN112207509A (zh) * 2020-09-02 2021-01-12 上海坤勇节能科技有限公司 一种微通道换热板的制造方法
CN113115575A (zh) * 2021-04-19 2021-07-13 佛山市液冷时代科技有限公司 一种三层板一体吹胀成型的液冷散热模组及其制造方法
CN114453848B (zh) * 2022-01-14 2023-04-07 惠州市七点光电科技有限公司 一种超级散热复合板的工艺流程
JP2024039665A (ja) * 2022-06-29 2024-03-25 ヴァレオ システム テルミク 熱交換器の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH411005A (de) * 1963-07-16 1966-04-15 Bauknecht Gmbh G Verdampfer für Kompressionskältemaschinen
CN1187606A (zh) * 1998-02-12 1998-07-15 叶加鼎 蓄冷式不间断工作蒸发器
CN2554799Y (zh) * 2002-06-03 2003-06-04 诺亚公司 平板型真空超导散热器
CN102729019A (zh) * 2012-06-25 2012-10-17 常州市常蒸蒸发器有限公司 用复铝板生产吹胀式蒸发器的生产方法
CN103277946A (zh) * 2013-06-05 2013-09-04 合肥美的电冰箱有限公司 吹胀式蒸发器和具有该吹胀式蒸发器的冰箱
CN103394882A (zh) * 2013-08-27 2013-11-20 浙江嘉熙光电设备制造有限公司 纯铝板材双面平吹胀工艺
CN105004205A (zh) * 2015-08-06 2015-10-28 浙江嘉熙光电设备制造有限公司 一体化热超导板式热交换器及其制造方法
CN204944260U (zh) * 2015-08-06 2016-01-06 浙江嘉熙光电设备制造有限公司 一体化热超导板式热交换器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210292A (en) * 1981-06-22 1982-12-23 Hiroyuki Morita Heat accumulating element
US4678027A (en) * 1984-12-14 1987-07-07 Paul Mueller Company Dual-walled coiled plate heat exchanger with vented interface
FR2748956B1 (fr) * 1996-05-24 1998-06-26 Lorraine Laminage Reservoir metallique pour liquide
US5941091A (en) * 1998-01-14 1999-08-24 Broadbent; John A. Low cost ice making evaporator
FR2913109B1 (fr) * 2007-02-27 2009-05-01 Boostec Sa Procede de fabrication d'un dispositif de type echangeur de chaleur en ceramique et dispositifs obtenus par le procede.
CN201599863U (zh) * 2010-02-01 2010-10-06 赵耀华 平板热管采暖***
CN202032930U (zh) * 2011-03-25 2011-11-09 长沙理工大学 一种双面槽道板式脉动热管
CN202947334U (zh) * 2012-08-15 2013-05-22 慈溪市贝瑞软件有限公司 一种平板型太阳能热泵集热器
CN204187722U (zh) * 2014-10-21 2015-03-04 兰州陇星沃尔凯采暖设备制造集团有限公司 基于新传热技术的采暖散热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH411005A (de) * 1963-07-16 1966-04-15 Bauknecht Gmbh G Verdampfer für Kompressionskältemaschinen
CN1187606A (zh) * 1998-02-12 1998-07-15 叶加鼎 蓄冷式不间断工作蒸发器
CN2554799Y (zh) * 2002-06-03 2003-06-04 诺亚公司 平板型真空超导散热器
CN102729019A (zh) * 2012-06-25 2012-10-17 常州市常蒸蒸发器有限公司 用复铝板生产吹胀式蒸发器的生产方法
CN103277946A (zh) * 2013-06-05 2013-09-04 合肥美的电冰箱有限公司 吹胀式蒸发器和具有该吹胀式蒸发器的冰箱
CN103394882A (zh) * 2013-08-27 2013-11-20 浙江嘉熙光电设备制造有限公司 纯铝板材双面平吹胀工艺
CN105004205A (zh) * 2015-08-06 2015-10-28 浙江嘉熙光电设备制造有限公司 一体化热超导板式热交换器及其制造方法
CN204944260U (zh) * 2015-08-06 2016-01-06 浙江嘉熙光电设备制造有限公司 一体化热超导板式热交换器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020147736A1 (zh) * 2019-01-16 2020-07-23 多美达瑞典有限公司 一种用于移动冰箱的吹胀式蒸发器和移动冰箱
CN115615233A (zh) * 2022-11-08 2023-01-17 中国核动力研究设计院 流体承载组件及热量交换装置
CN115615233B (zh) * 2022-11-08 2023-04-07 中国核动力研究设计院 流体承载组件及热量交换装置

Also Published As

Publication number Publication date
US20180266738A1 (en) 2018-09-20
CN105004205A (zh) 2015-10-28
CN105004205B (zh) 2018-06-08
US11002469B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2017020834A1 (zh) 一体化热超导板式热交换器及其制造方法
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
WO2017020629A1 (zh) 相变抑制传热板式热交换器
CN105486128A (zh) 一体化单面平相变抑制传热板式热交换器及其制造方法
CN108240719A (zh) 网式换热器
CN107548263B (zh) 高热流密度机柜散热冷却方法及其复合换热器
JPWO2019193713A1 (ja) 分配器及び熱交換器
US20090288811A1 (en) Aluminum plate-fin heat exchanger utilizing titanium separator plates
CN108548326A (zh) 一种热水器水箱及空气能热水器
CN205373478U (zh) 一体化相变抑制传热换热板结构
CN206440035U (zh) 网式换热器
CN205642102U (zh) 一体化单面平相变抑制传热板式热交换器
CN207180104U (zh) 一种风冷式冷凝器
CN207262766U (zh) 一种吹胀换热管式表冷器
CN204944260U (zh) 一体化热超导板式热交换器
CN215572379U (zh) 一种换热器芯体结构
CN207180099U (zh) 一种整体吹胀双侧变径管交叉流换热器
CN109163588A (zh) 小圆弧折弯热超导传热板结构及其制造方法
CN205049034U (zh) 一种铝管式换热器
CN206056356U (zh) 超薄复合材料相变抑制传热板
CN110806129A (zh) 一种环路热管
CN107388643A (zh) 一种风冷式冷凝器
CN218123530U (zh) 一种新能源电池包用直冷直热换热器冲压板与扁管结构
CN219531773U (zh) 超导复合相变蓄热蓄冷板
CN215177137U (zh) 一种相变散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15739991

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 16832322

Country of ref document: EP

Kind code of ref document: A1