WO2017020568A1 - 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用 - Google Patents

一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用 Download PDF

Info

Publication number
WO2017020568A1
WO2017020568A1 PCT/CN2016/073393 CN2016073393W WO2017020568A1 WO 2017020568 A1 WO2017020568 A1 WO 2017020568A1 CN 2016073393 W CN2016073393 W CN 2016073393W WO 2017020568 A1 WO2017020568 A1 WO 2017020568A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
peptide chain
poorly soluble
polypeptide
chain
Prior art date
Application number
PCT/CN2016/073393
Other languages
English (en)
French (fr)
Inventor
周彬
查建生
康武
徐金荣
潘奕
Original Assignee
南京斯拜科生化实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京斯拜科生化实业有限公司 filed Critical 南京斯拜科生化实业有限公司
Priority to US15/739,544 priority Critical patent/US10906933B2/en
Publication of WO2017020568A1 publication Critical patent/WO2017020568A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/292Liquid sorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/06Peptides being immobilised on, or in, an organic carrier attached to the carrier via a bridging agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00916Separation by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/04Monocyclic monocarboxylic acids
    • C07C63/06Benzoic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8831Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins

Definitions

  • the invention relates to the field of bioengineering and polypeptide production, in particular to a coupled peptide chain for dissolving poorly soluble polypeptides and its use in separation and purification in liquid chromatography.
  • Solubility is a relatively important problem in the study of proteins and peptides, each of which has its own inherent chemical properties.
  • leucine, isoleucine, and valine are hydrophobic
  • lysine, histidine, and arginine are hydrophilic.
  • the poorly soluble polypeptide is mainly caused by the insoluble amino acid contained therein.
  • the ratio of the poorly soluble amino acid to the polypeptide exceeds 75%, which causes the polypeptide to be insoluble.
  • Ph represents a substituted benzene ring of 1,4;
  • X represents a hydroxyl group or a C1-C4 monohydroxyalkyl group
  • Y represents a carbonyl group or a C2-C4 carbonylalkyl group formed after dehydration condensation reaction with (B) n ;
  • n represents a hydrophilic polypeptide chain composed of n identical or different hydrophilic amino acid condensations, and n is 1.2 to 2 times the number of amino acids of the poorly soluble polypeptide.
  • X of the formula (I) is a linear or branched -CH 2 OH, -CH 2 CH 2 OH, -CH 2 CH 2 CH 2 OH, -CH 2 CH 2 CH 2 CH 2 OH Any one of the linear or branched -CH 2 CO-, -CH 2 CH 2 CO- or -CH 2 CH 2 CH 2 CO-.
  • X-Ph-Y originally derived from a benzene ring substituted at the 1,4 position by a monohydroxyalkyl group and a monocarboxyalkyl group, respectively.
  • the -OH of the carboxyl group is dehydrated and condensed with the amino group of (B) n to form a peptide chain, and thus Y of the formula (I) is a linear or branched -CH 2 CO-, -CH 2 CH 2 CO- or -CH 2 CH 2 CH 2 CO- of any kind.
  • X-Ph-Y is a "linking arm" which couples a hydrophilic polypeptide chain and a poorly soluble polypeptide chain
  • the "linking arm” is derived from 4-hydroxybenzoic acid, p-hydroxymethylbenzoic acid, 4-(2-hydroxyethyl)benzoic acid, 4-(3-hydroxypropyl)benzoic acid, 4-(4-hydroxybutyl)benzoic acid, p-hydroxyphenylacetic acid, 4-(hydroxymethyl)phenylacetic acid , p-hydroxyphenylpropionic acid, 3-[4-(hydroxymethyl)phenyl]propionic acid, 4-(4-hydroxyphenyl)butyric acid, 2-(4-hydroxyphenyl)propionic acid, 3-(4 -Hydroxyphenyl)butyric acid, 2-[(4-hydroxyphenyl)methyl]aminobutyric acid, 4-(1-hydroxyethyl)-benzoic acid, by de
  • hydrophilic amino acids include, but are not limited to, arginine, lysine, asparagine, aspartic acid, glutamine, glutamic acid, histidine, proline. Any one of these amino acids is shown in Table 1 below, and the hydrophobic parameter is small; and the poorly soluble polypeptide chain is understood to be a polypeptide chain containing a poorly soluble amino acid and having a low solubility or poor solubility in liquid chromatography.
  • the poorly soluble amino acid includes any one of alanine, methionine, cysteine, phenylalanine, leucine, valine, and isoleucine. These amino acids are as shown in Table 2, and the hydrophobic parameters are large and contain The polypeptide chains of these amino acids generally have very low solubility.
  • the above poorly soluble polypeptide chains are generally the target products in the synthesis of peptide chains, and hydrophilic polypeptide chains and tethers can be preferred in connection with production practices.
  • the X-Ph-Y is derived from 4-hydroxybenzoic acid, p-hydroxymethylbenzoic acid, 4-(2-hydroxyethyl)benzoic acid, p-hydroxyphenylacetic acid, 4-(hydroxyl) Any one of phenylacetic acid is linked to the N-terminus of the hydrophilic polypeptide chain by a dehydration condensation reaction.
  • the hydrophilic amino acid in the hydrophilic polypeptide chain is preferably glutamic acid or aspartic acid.
  • X-Ph-Y-(B) n is highly hydrophilic and the peptide chain is mostly acidic, the effect of dissolving in LiOH is very prominent.
  • the high content of glutamic acid and aspartic acid in the hydrophilic polypeptide chain facilitates the dissolution of the hydrophilic polypeptide chain in the alkaline solution and improves the precipitation effect of the target polypeptide chain.
  • DMAP 4-dimethylaminopyridine increases the efficiency of linking hydroxyl groups to carboxyl groups
  • ACN acetonitrile increasing the solvent content of the polypeptide in aqueous solution
  • Trt trityl ⁇ -amino protecting group
  • the present invention provides a method for attaching a hydrophilic polypeptide chain to a poorly soluble polypeptide chain by using a special linker, and solves the problem that the poorly soluble polypeptide chain cannot be operated in liquid chromatography.
  • the coupled peptide chain of the present invention can be synthesized by solid phase synthesis in production or test, or as a customized product to provide service for the production of the target peptide chain.
  • the present invention is directed to the characteristics of liquid chromatography separation and purification environment, optimizes the combination of hydrophilic amino acids, and finally uses ester bond hydrolysis to break off the insoluble polypeptide chain and the hydrophilic polypeptide chain, so that the target peptide chain is directly precipitated, which is simple and efficient.
  • the characteristics of the insoluble peptide products obtained by this method can fully meet the customer's requirements.
  • Example 1 is a schematic flow chart of a step of synthesizing a polypeptide of Example 1 of the present invention
  • Fig. 2 is a flow chart showing the steps of synthesizing a polypeptide of Example 2 of the present invention.
  • the poorly soluble polypeptide ILVLLIII was isolated and purified, and the tether was selected from 4-hydroxymethylbenzoic acid (HMBA), and the DDDDDEEKEEEE hydrophilic polypeptide chain was linked through a tether.
  • HMBA 4-hydroxymethylbenzoic acid
  • D represents aspartic acid, hydrophobic parameter -3.5, protected with OtBu
  • E represents glutamic acid, hydrophobic parameter -3.5, protected with OtBu
  • K represents lysine, hydrophobic parameter -3.9, protected with Boc
  • These amino acids are all solid phase synthesized using Fmoc to protect the ⁇ -amino group. As shown in Figure 1, the specific synthesis steps are as follows:
  • [Operation B] is performed, that is, DIC and HOBT which are twice the molar amount of the initial resin are added, and twice the amount of the amino acid having a protective group is reacted for 1 hour, the temperature is controlled at 30 ° C, and the reaction is completed 3 times with DMF. After the color is detected as colorless by ninhydrin, the reaction is complete.
  • [Operation B] were alternated, except that the parent amino acid added in [Operation B] was replaced with the synthesis sequence.
  • the glutamic acid, aspartic acid and lysine having a protecting group are Fmoc-Glu(OtBu)-OH, Fmoc-Asp(OtBu)-OH, and Fmoc-Lys(Boc)-OH, respectively.
  • This reaction is completed until the HMBA is connected, and the coloration with the ninhydrin solution is colorless, indicating that the reaction is complete.
  • the above reaction yields a hydrophilically coupled peptide chain of X-Ph-Y-(B) n .
  • the resin was then filtered off to leave a mother liquor, and 100 ml of diethyl ether was added to precipitate the polypeptide. After centrifugation at 3000 rpm for 2 min, the crude polypeptide was precipitated, washed repeatedly, centrifuged, and dried in a vacuum dryer to obtain a poorly soluble polypeptide chain-linker-hydrophilic polypeptide chain.
  • the above pure product is hydrolyzed with a saturated solution of LiOH, and after reacting at room temperature for 3 hours, the target polypeptide chain ILVLLIII is precipitated, and the increased sequence HMBA-DDDDDEEKEEEE is dissolved in the LiOH solution due to its strong hydrophilicity and the entire polypeptide is acidic. Then, the precipitated target polypeptide is subjected to filtration and lyophilization to obtain a finished product.
  • Fmoc amino acid was purchased from Jill Biochemical, production batch number GLS141015-4071, DIC Hobt DMAP was purchased from Suzhou Yifan, HMBA was purchased from Jill Biochemical, TFA, TIS, EDT, diethyl ether, piperidine and DMF were purchased from Nanjing Qingqing. .
  • the poorly soluble polypeptide ILVLLIII was isolated and purified, and 4-(2-hydroxyethyl)benzoic acid (HPA) was used as a tether, and the RRRRREDKKKKK hydrophilic polypeptide chain was linked through a tether.
  • HPA 4-(2-hydroxyethyl)benzoic acid
  • D represents aspartic acid, hydrophobic parameter -3.5, protected with OtBu
  • E represents glutamic acid, hydrophobic parameter -3.5, protected with OtBu
  • K represents lysine, hydrophobic parameter -3.9, protected with Boc
  • R represents arginine, hydrophobic parameter -4.5, and functional groups are protected by Pbf; these amino acids are all solid phase synthesized by Fmoc protecting ⁇ -amino group.
  • the specific synthesis steps are as follows:
  • [Operation B] is performed, that is, DIC and HOBT which are twice the molar amount of the initial resin are added, and twice the amount of the amino acid having a protective group is reacted for 1 hour, the temperature is controlled at 30 ° C, and the reaction is completed 3 times with DMF. After the color is detected as colorless by ninhydrin, the reaction is complete.
  • [Operation B] were alternated, except that the parent amino acid added in [Operation B] was replaced with the synthesis sequence.
  • lysine, aspartic acid, glutamic acid and arginine having a protective group are Fmoc-Lys(Boc)-OH, Fmoc-Asp(OtBu)-OH, and Fmoc-Glu(OtBu)-OH, respectively.
  • Fmoc-Arg (Pbf)-OH such reaction until the completion of HPA, color test with ninhydrin solution is colorless, indicating that the reaction is complete.
  • the above reaction yields a hydrophilically coupled peptide chain of X-Ph-Y-(B) n .
  • the resin was then filtered off to leave a mother liquor, and 100 ml of diethyl ether was added to precipitate the polypeptide. After centrifugation at 3000 rpm for 2 min, the crude polypeptide was precipitated, washed repeatedly, centrifuged, and dried in a vacuum dryer to obtain a poorly soluble polypeptide chain-linker-hydrophilic polypeptide chain.
  • the above pure product was hydrolyzed with a saturated solution of LiOH, and after reacting at room temperature for 3 hours, the target polypeptide chain ILVLLIII was precipitated, and the increased sequence HPA-RRRRREDKKKKK was dissolved in LiOH solution due to its strong hydrophilicity and the entire polypeptide being acidic. Then, the precipitated target polypeptide is subjected to filtration and lyophilization to obtain a finished product.
  • ILVLLIII4-HMBA-DDDDDEEKEEEE was very clear and free of solids precipitation after dissolution of DMF, DMSO and common HPLC purification conditions ACN:H 2 O (1:3). While ILVLLIII-HPA-RRRRREDKKKKK was completely dissolved in ACN:H 2 O (1:3), solids were still precipitated in DMF and DMSO.
  • the peptide chain is dissolved in a saturated solution of LiOH, and it is required to be completely dissolved when it is preferably added, and then, after the reaction for 3 hours, the poorly soluble polypeptide chain water resolves the solid.
  • the dissolution effect of the second group is obviously not as good as the first group, which leads to a decrease in product yield. It can be seen that the amino acid structure of the first group of hydrophilic polypeptide chains is more conducive to the precipitation of the last insoluble polypeptide chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供了一种溶解难溶多肽的偶联肽链及其在液相色谱中的应用。利用特殊连接臂将亲水多肽链与难溶多肽链连接,使难溶多肽可在液相色谱中操作,然后水解断开难溶多肽和亲水多肽链,使目标肽链析出。

Description

一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用 技术领域
本发明涉及生物工程和多肽生产领域,具体的说涉及一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用。
背景技术
溶解性是研究蛋白质和多肽会遇到比较重要的问题,每个氨基酸都有其固有的化学特性。如亮氨酸、异亮氨酸、颉氨酸是疏水性的,而赖氨酸、组氨酸、精氨酸是亲水性的。难溶多肽主要是其包含的难溶氨基酸引起的,一般来说,难溶氨基酸占多肽比例超过75%就会造成多肽的难溶。
在多肽生产和制备方面,难溶性一直是多肽分离纯化步骤的一大难题。多肽主要的纯化手段是反相高效液相色谱,其具有分离效果好,分辨率高回收率高的特点。反相高效液相色谱在对多肽进行分离纯化时,需要将多肽完全溶解到溶剂中,最适合的常规溶剂为H2O、ACN,这样才能利用反相高效液相色谱进行有效的分离纯化,但难溶多肽给广大科研人员在该操作带来极***烦。
现有解决难溶多肽纯化的方法只能选择优良的有机溶剂(如:DMSO,DMF)去溶解多肽,然后进行反相高效液相色谱分离纯化。而DMF或DMSO是通过破坏多肽的二级结构助溶,会导致高效液相色谱分离效果大大降低,且对难容肽链的溶解能力有限。
发明内容
发明目的:本发明的目的是提供一种用于溶解难溶多肽的的偶联肽链;本发明还有一个目的是提供前述偶联肽链在溶解难溶多肽上的应用。
技术方案:为了实现上述发明目的,本发明的一种溶解难溶多肽的偶联肽链如式(I)所示:
X-Ph-Y-(B)n                     (I),
其中,Ph表示1,4位被取代的苯环;
X表示羟基或C1-C4的单羟基烷基;
Y表示与(B)n发生脱水缩合反应后形成的羰基或C2~C4羰基烷基;
(B)n表示n个相同或不同的亲水氨基酸缩合组成的亲水多肽链,n为难溶多肽氨基酸数的1.2~2倍。
具体地说,式(I)所述X为直链或支链的-CH2OH、-CH2CH2OH、-CH2CH2CH2OH、-CH2CH2CH2CH2OH的任意一种;所述Y为直链或支链的-CH2CO-、-CH2CH2CO-或-CH2CH2CH2CO-的任意一种。
X-Ph-Y原本来自于1,4位分别被单羟基烷基和单羧基烷基取代的苯环。羧基的-OH与(B)n的氨基脱水缩合形成肽链,因此通式(I)的Y为直链或支链的-CH2CO-、-CH2CH2CO-或-CH2CH2CH2CO-的任意一种。
本发明的耦合肽链中,X-Ph-Y是将亲水多肽链和难溶多肽链耦合的“连接臂”,该“连接臂”来自4-羟基苯甲酸、对羟甲基苯甲酸、4-(2-羟乙基)苯甲酸、4-(3-羟基丙基)苯甲酸、4-(4-羟基丁基)苯甲酸、对羟基苯乙酸、4-(羟甲基)苯乙酸、对羟基苯丙酸、3-[4-(羟基甲基)苯基]丙酸、4-(4-羟基苯基)丁酸、2-(4-羟基苯)丙酸、3-(4-羟基苯基)丁酸、2-[(4-羟基苯基)甲基]氨基丁酸、4-(1-羟基乙基)-苯甲酸的任意一种,通过脱水缩合反应与亲水多肽链的N端连接。
另外,本发明的耦合肽链中,亲水氨基酸包括但不限于精氨酸、赖氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸、组氨酸、脯氨酸中的任意一种,这些氨基酸如下表1所示,疏水参数很小;而所述的难溶多肽链,可以理解为包含难溶氨基酸且在液相色谱中溶解度很低或难溶的多肽链,难溶氨基酸包括丙氨酸、蛋氨酸、半胱氨酸、苯丙氨酸、亮氨酸、缬氨酸、异亮氨酸的任意一种,这些氨基酸如表2所示,疏水参数大,含有这些氨基酸的多肽链一般溶解度都非常低。
表1 亲水氨基酸列表
氨基酸名称 缩写 代码 疏水参数
精氨酸 Arg R -4.5
赖氨酸 Lys K -3.9
天冬酰胺 Asn N -3.5
天冬氨酸 Asp D -3.5
谷氨酰胺 Gln Q -3.5
谷氨酸 Glu E -3.5
组氨酸 His H -3.2
脯氨酸 Pro P -1.6
表2 难溶氨基酸列表
氨基酸名称 缩写 代码 疏水参数
丙氨酸 Ala A 1.8
蛋氨酸 Met M 1.9
半胱氨酸 Cys C 2.5
苯丙氨酸 Phe F 2.8
亮氨酸 Leu L 3.8
缬氨酸 Val V 4.2
异亮氨酸 Ile I 4.5
上述难溶多肽链一般是肽链合成中的目标产物,而亲水多肽链和连接臂可结合生产实践进行优选。作为本发明的进一步优化,所述X-Ph-Y来自4-羟基苯甲酸、对羟甲基苯甲酸、4-(2-羟乙基)苯甲酸、对羟基苯乙酸、4-(羟甲基)苯乙酸的任意一种,通过脱水缩合反应与亲水多肽链的N端连接。亲水多肽链中的亲水氨基酸优选谷氨酸或天冬氨酸。当谷氨酸和/或天冬氨酸总数目占总亲水氨基酸数目的30%~80%时,利用X-Ph-Y-(B)n在液相色谱中分离纯化,最后再水解酯键的效果最好。
本发明利用上述偶联肽链进行分离纯化的步骤如下:
(1)通过固相合成法先合成亲水多肽链,再合成连接臂和难溶多肽链,经过处理后获得难溶多肽链-连接臂-亲水多肽链粗品;
(2)将上述产品用水/乙腈溶解,于高效液相色谱装样进行分离提纯,真空冷冻干燥,获得纯品;
(3)将上述纯品用LiOH饱和溶液进行酯键水解,常温下反应3小时后,目标多肽链析出,过滤干燥后获得成品。
由于X-Ph-Y-(B)n的亲水性强,且肽链多呈酸性,在溶解在LiOH中的效果非常突出。而亲水多肽链中谷氨酸、天冬氨酸含量高的话,利于亲水多肽链在碱性溶液中的溶解,提高目标多肽链的析出效果。
本发明中一些常用缩写及其含义如下:
HMBA    4-羟甲基苯甲酸,连接臂;
DIC     N,N′-二异丙基碳二亚胺,缩合剂;
DMAP    4-二甲氨基吡啶,作为超强亲核催化剂,增加羟基与羧基链接效率;
HOBT    1-羟基苯并***,用于防止消旋反应,减少副反应;
DMF     二甲基甲酰胺,反应溶剂;
TFA     三氟乙酸,用于裂解多肽与树脂;
TIS     三异丙基硅烷,用于更好地去除氨基酸保护基团;
EDT     乙二硫醇,用于更好地去除氨基酸保护基团;
ACN     乙腈,增加多肽在水溶液的溶剂度;
Fmoc    N-芴甲氧羰基,官能团保护基团;
Pbf     [(2,3-二氢-2,2,4,6,7-五甲基苯并呋喃-5-基)磺酰基,α-氨基保护基团;
Boc     叔丁氧羰基,α-氨基保护基团;
Trt     三苯甲基,α-氨基保护基团;
Otbu    叔丁酯,α-氨基保护基团
有益效果:本发明提供了一种利用特殊连接臂将亲水多肽链与难溶多肽链连接的方案,解决了难溶多肽链在液相色谱中无法操作的问题。本发明的耦合肽链既可以在生产、试验中通过固相合成法合成,也可作作为定制产品为目标肽链的生产提供服务。尤其是本发明针对液相色谱分离提纯环境的特点,优化了亲水氨基酸的组合,最后利用酯键水解断开难溶多肽链和亲水多肽链,使目标肽链直接析出,具有简易、高效的特点,用该方法获得的难溶多肽产品完全可以达到客户要求标准。
附图说明
图1是本发明实施例1的多肽合成步骤流程示意图;
图2是本发明实施例2的多肽合成步骤流程示意图。
具体实施方式
下面结合具体实施例对本发明进行进一步说明。
实施例1
本实施例针对难溶多肽ILVLLIII进行分离纯化,连接臂选用4-羟甲基苯甲酸(HMBA),通过连接臂连接DDDDDEEKEEEE亲水多肽链。其中,D表示天冬氨酸,疏水参数-3.5,利用OtBu保护官能团;E表示谷氨酸,疏水参数-3.5,利用OtBu保护官能团,K表示赖氨酸,疏水参数-3.9,利用Boc保护官能团;这些氨基酸都采用Fmoc保护α-氨基进行固相合成。如图1所示,具体合成步骤如下:
称取1g Fmoc-Glu(OtBu)-Wang resin树脂,执行[操作A],即:加入哌啶∶DMF=1∶4(体积比)移除N端的Fmoc保护基团,温度控制在30℃,反应20分钟,反应后利用DMF/甲醇各洗涤3次,利用茚三酮检测试剂检测,颜色为蓝色表示反应完全。
然后执行[操作B],即:加入初始树脂摩尔数两倍的DIC和HOBT,以及两倍量的具有保护基团的氨基酸反应1小时,温度控制在30℃,反应结束后用DMF洗涤3次后,用茚三酮检测颜色为无色,则说明反应完全。
后续以[操作A]、[操作B]交替进行,只是在[操作B]中所加入的亲氨基酸随着合成顺序的进行更换。其中具有保护基团的谷氨酸、天冬氨酸和赖氨酸分别为Fmoc-Glu(OtBu)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Lys(Boc)-OH。如此反应直到连接完HMBA,用茚三酮溶液验色为无色即说明反应完成。以上反应即获得X-Ph-Y-(B)n的亲水偶联肽链。
基于上述获得的肽链,直接进行[操作B],并在后续步骤与[操作A]交替,直至获得王氏树脂-难溶多肽链-连接臂-亲水多肽链。
然后用10ml TFA∶TIS∶EDT=95%∶3%∶2%裂解树脂2小时,将偶联肽链脱除保护基团。然后将树脂滤除留下母液,加100ml***析出多肽。用3000转/秒离心2min,沉淀得到粗品多肽,重复洗涤离心后在真空干燥机里干燥,获得难溶多肽链-连接臂-亲水多肽链粗品。
将上述粗品用水/乙腈的混合液体溶解,于高效液相色谱装样进行分离提纯,经过用H2O/0.1TFA%做水相,ACN/0.1%TFA做有机相的梯度洗脱色谱体系分离提纯,收集目标峰。把收集的目标峰用分析性高效液相色谱检测纯度。合格的样品用旋转蒸发仪浓缩,放冰箱预冻成固体。最后放入真空冷冻干燥机冻干,获得纯品ILVLLIII-HMBA-DDDDDEEKEEEE。
将上述纯品用LiOH饱和溶液进行酯键水解,常温下反应3小时后,目标多肽链ILVLLIII析出,而增加的序列HMBA-DDDDDEEKEEEE由于亲水性强且整个多肽呈酸性,将溶解在LiOH溶液中,然后将析出的目标多肽经过过滤冻干即可得到成品。
上述反应中,Fmoc氨基酸购于吉尔生化,生产批号GLS141015-4071、DIC Hobt DMAP购于苏州昊帆、HMBA购于吉尔生化,TFA、TIS、EDT、***、哌啶、DMF均购于南京晚晴。
实施例2
本实施例针对难溶多肽ILVLLIII进行分离纯化,连接臂选用4-(2-羟乙基)苯甲酸(HPA),通过连接臂连接RRRRREDKKKKK亲水多肽链。其中,D表示天冬氨酸,疏水参数-3.5,利用OtBu保护官能团;E表示谷氨酸,疏水参数-3.5,利用OtBu保护官能团;K表示赖氨酸,疏水参数-3.9,利用Boc保护官能团,R表示精氨酸,疏水参数-4.5,利用Pbf保护官能团;这些氨基酸都采用Fmoc保护α-氨基进行固相合成。如图2所示,具体合成步骤如下:
称取1g Fmoc-Lys(boc)-Wang resin树脂,执行[操作A],即:加入哌啶∶DMF=1∶4(体积比)移除N端的Fmoc保护基团,温度控制在30℃,反应20分钟,反应后利用DMF/甲醇各洗涤3次,利用茚三酮检测试剂检测,颜色为蓝色表示反应完全。
然后执行[操作B],即:加入初始树脂摩尔数两倍的DIC和HOBT,以及两倍量的具有保护基团的氨基酸反应1小时,温度控制在30℃,反应结束后用DMF洗涤3次后,用茚三酮检测颜色为无色,则说明反应完全。
后续以[操作A]、[操作B]交替进行,只是在[操作B]中所加入的亲氨基酸随着合成顺序的进行更换。其中具有保护基团的赖氨酸、天冬氨酸、谷氨酸、精氨酸分别为 Fmoc-Lys(Boc)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Arg(Pbf)-OH,如此反应直到连接完HPA,用茚三酮溶液验色为无色即说明反应完成。以上反应即获得X-Ph-Y-(B)n的亲水偶联肽链。
基于上述获得的肽链,直接进行[操作B],并在后续步骤与[操作A]交替,直至获得王氏树脂-难溶多肽链-连接臂-亲水多肽链。
然后用10ml TFA∶TIS∶EDT=95%∶3%∶2%裂解树脂2小时,将偶联肽链脱除保护基团。然后将树脂滤除留下母液,加100ml***析出多肽。用3000转/秒离心2min,沉淀得到粗品多肽,重复洗涤离心后在真空干燥机里干燥,获得难溶多肽链-连接臂-亲水多肽链粗品。
将上述粗品用水/乙腈的混合液体溶解,于高效液相色谱装样进行分离提纯,经过用H2O/0.1TFA%做水相,ACN/0.1%TFA做有机相的梯度洗脱色谱体系分离提纯,收集目标峰。把收集的目标峰用分析性高效液相色谱检测纯度。合格的样品用旋转蒸发仪浓缩,放冰箱预冻成固体。最后放入真空冷冻干燥机冻干,获得纯品ILVLLIII-HPA-RRRRREDKKKKK。
将上述纯品用LiOH饱和溶液进行酯键水解,常温下反应3小时后,目标多肽链ILVLLIII析出,而增加的序列HPA-RRRRREDKKKKK由于亲水性强且整个多肽呈酸性,将溶解在LiOH溶液中,然后将析出的目标多肽经过过滤冻干即可得到成品。
试验例
本试验针对各组的肽链分别评判其在DMF溶液、DMSO溶液、HPLC中ACN∶H2O(1∶3)溶液、以及LiOH饱和溶液下,2mg/mL的溶解能力。上述实施例1、2中的难溶多肽链-连接臂-亲水多肽链分别作为组1、组2,单独的难溶多肽链ILVLLIII作为对照组。如表3所示:
表3难溶多肽连处理后的溶解能力评价
Figure PCTCN2016073393-appb-000001
目标肽链的序列为:ILVLLIII,在DMF、DMSO和常用HPLC纯化条件ACN∶H2O=1∶ 3溶解后十分浑浊且有固体析出。ILVLLIII4-HMBA-DDDDDEEKEEEE在DMF、DMSO和常用HPLC纯化条件ACN∶H2O(1∶3)溶解后均十分清澈且无固体析出。而ILVLLIII-HPA-RRRRREDKKKKK在ACN∶H2O(1∶3)中完全溶解,但在DMF和DMSO中仍有固形物析出。
对于第一组和第二组的肽链溶解在LiOH饱和溶液中,要求最好加入的时候能完全溶解,然后等反应3小时后,难溶多肽链水解析出固体。而第二组的溶解效果显然没有第一组好,会导致产品产率下降。可见第一组亲水多肽链的氨基酸结构更利于最后难溶多肽链的析出。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种溶解难溶多肽的偶联肽链,其特征在于,该肽链如式(I)所示:
    X-Ph-Y-(B)n   (I),
    其中,Ph表示1,4位被取代的苯环;
    X表示羟基或C1-C4的单羟基烷基;
    Y表示与(B)n发生脱水缩合反应后形成的羰基或C2~C4羰基烷基;
    (B)n表示n个相同或不同的亲水氨基酸缩合组成的亲水多肽链,n为难溶多肽氨基酸数的1.2~2倍。
  2. 根据权利要求1所述的一种溶解难溶多肽的偶联肽链,其特征在于:
    所述X为直链或支链的-CH2OH、-CH2CH2OH、-CH2CH2CH2OH、-CH2CH2CH2CH2OH的任意一种;
    所述Y为直链或支链的-CH2CO-、-CH2CH2CO-或-CH2CH2CH2CO-的任意一种。
  3. 根据权利要求2所述的一种溶解难溶多肽的偶联肽链,其特征在于:所述X-Ph-Y来自4-羟基苯甲酸、对羟甲基苯甲酸、4-(2-羟乙基)苯甲酸、4-(3-羟基丙基)苯甲酸、4-(4-羟基丁基)苯甲酸、对羟基苯乙酸、4-(羟甲基)苯乙酸、对羟基苯丙酸、3-[4-(羟基甲基)苯基]丙酸、4-(4-羟基苯基)丁酸、2-(4-羟基苯)丙酸、3-(4-羟基苯基)丁酸、2-[(4-羟基苯基)甲基]氨基丁酸、4-(1-羟基乙基)-苯甲酸的任意一种。
  4. 根据权利要求3所述的一种溶解难溶多肽的偶联肽链,其特征在于:所述亲水氨基酸为精氨酸、赖氨酸、天冬酰胺、天冬氨酸、谷氨酰胺、谷氨酸、组氨酸、脯氨酸的任意一种。
  5. 根据权利要求4所述的一种溶解难溶多肽的偶联肽链,其特征在于:所述谷氨酸和/或天冬氨酸总数目占总亲水氨基酸数目的30%~80%。
  6. 如权利要求1所述的偶联肽链合肽链在液相色谱分离纯化上的应用。
PCT/CN2016/073393 2015-07-31 2016-02-03 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用 WO2017020568A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/739,544 US10906933B2 (en) 2015-07-31 2016-02-03 Coupled peptide chain for dissolving poorly soluble polypeptides and application thereof for separation and purification in liquid chromatography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510466145.5A CN105001307B (zh) 2015-07-31 2015-07-31 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用
CN201510466145.5 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017020568A1 true WO2017020568A1 (zh) 2017-02-09

Family

ID=54374203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073393 WO2017020568A1 (zh) 2015-07-31 2016-02-03 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用

Country Status (3)

Country Link
US (1) US10906933B2 (zh)
CN (1) CN105001307B (zh)
WO (1) WO2017020568A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105001298B (zh) * 2015-07-31 2018-01-02 南京斯拜科生化实业有限公司 一种难溶多肽的合成‑分离纯化方法
CN105001307B (zh) 2015-07-31 2016-08-24 南京斯拜科生化实业有限公司 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用
CN111855861B (zh) * 2020-07-31 2021-03-19 西湖大学 伴随蛋白/肽在提高蛋白质组实验效率中的应用
CN114805476B (zh) * 2022-04-14 2024-05-28 南京莱昂生物科技有限公司 一种鲸蜡酯的制备方法
CN114797809B (zh) * 2022-04-22 2023-06-06 云南师范大学 一种用于拆分外消旋化合物的多孔液体气相色谱手性柱

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098416A (zh) * 1993-07-06 1995-02-08 霍夫曼-拉罗奇有限公司 生产疏水多肽、蛋白质或肽的方法
CN105001307A (zh) * 2015-07-31 2015-10-28 南京斯拜科生化实业有限公司 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR522501A0 (en) * 2001-05-25 2001-06-14 Proteome Systems Ltd Increased solubilisation of hydrophobic proteins
WO2010063460A1 (en) * 2008-12-02 2010-06-10 Universität Zürich Recombinant production of hydrophobic peptides and fusion proteins for use in producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098416A (zh) * 1993-07-06 1995-02-08 霍夫曼-拉罗奇有限公司 生产疏水多肽、蛋白质或肽的方法
CN105001307A (zh) * 2015-07-31 2015-10-28 南京斯拜科生化实业有限公司 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, X. ET AL.: "RESINS WITH HYDROXYL GROUPS USED IN SOLID-PHASE ORGANIC SYNTHESIS.", ION EXCHANGE AND ADSORPTION, vol. 18, no. 5, 28 October 2002 (2002-10-28) *

Also Published As

Publication number Publication date
US20180186830A1 (en) 2018-07-05
CN105001307A (zh) 2015-10-28
CN105001307B (zh) 2016-08-24
US10906933B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2017020569A1 (zh) 一种难溶多肽的合成-分离纯化方法
WO2017020568A1 (zh) 一种溶解难溶多肽的偶联肽链及其在液相色谱中分离纯化的应用
WO2018032521A1 (zh) 一种利拉鲁肽的合成方法
EP2757107B1 (en) Method for solid phase synthesis of liraglutide
EP3398957B1 (en) Method for synthesizing etelcalcetide
TW201639867A (zh) 胜肽合成方法
CN103497245A (zh) 一种合成胸腺法新的方法
WO2017097194A1 (zh) 一种全固相制备卡贝缩宫素的方法
CN108218957B (zh) 一种固液相结合制备amg416的方法
CN106554391B (zh) 一种海洋生物肽Xen2174的合成方法
CN101519444B (zh) 一种制备奈西利肽的方法
US20220033440A1 (en) An improved process for the preparation of plecanatide
Tailhades et al. Synthesis of Peptide Alcohols on the Basis of an O–N Acyl‐Transfer Reaction
WO2021051861A1 (zh) 一种乌拉立肽的制备方法
WO2020000555A1 (zh) 一种制备特立帕肽的方法
WO2019218381A1 (zh) 一种合成etelcalcetide的方法
WO2021103458A1 (zh) 一种地加瑞克的固相合成方法
WO2022141615A1 (zh) 一种阿托西班的合成方法
CN112175066A (zh) 一种制备舍莫瑞林的方法
WO2021038431A1 (en) An improved process for the preparation of etelcalcetide hydrochloride
WO2018205402A1 (zh) 一种乌拉立肽的合成方法
CN106317161B (zh) 一种氟甲基酮肽系列化合物的制备方法
CN105713082B (zh) 一种制备利西拉来的方法
US20140296144A1 (en) Process for the preparation of octreotide acetate
CN109748950B (zh) 一种固相合成血管升压素受体肽激动剂selepressin的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832057

Country of ref document: EP

Kind code of ref document: A1