WO2017018328A1 - Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell - Google Patents

Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell Download PDF

Info

Publication number
WO2017018328A1
WO2017018328A1 PCT/JP2016/071490 JP2016071490W WO2017018328A1 WO 2017018328 A1 WO2017018328 A1 WO 2017018328A1 JP 2016071490 W JP2016071490 W JP 2016071490W WO 2017018328 A1 WO2017018328 A1 WO 2017018328A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
general formula
emitting layer
atom
represented
Prior art date
Application number
PCT/JP2016/071490
Other languages
French (fr)
Japanese (ja)
Inventor
文広 米川
洋平 水口
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016142758A external-priority patent/JP6797586B2/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to EP16830433.5A priority Critical patent/EP3331043A4/en
Priority to US15/739,837 priority patent/US10439143B2/en
Priority to KR1020187000225A priority patent/KR20180034382A/en
Priority to CN201680040328.3A priority patent/CN107851725B/en
Publication of WO2017018328A1 publication Critical patent/WO2017018328A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an additive for a light emitting layer in an electrochemiluminescence cell.
  • the present invention also relates to a composition for forming a light emitting layer of an electrochemiluminescence cell.
  • the present invention also relates to an electrochemiluminescence cell using an additive for light emitting layer.
  • organic electroluminescence (organic EL) elements which are self-luminous elements using electrons and holes as carriers, has been rapidly progressing.
  • Organic EL has features such as being thinner and lighter than a liquid crystal element that does not emit light and requires a backlight, and has excellent visibility.
  • An organic EL element generally includes a pair of substrates on which electrodes are formed on the surfaces facing each other, and a light emitting layer disposed between the pair of substrates.
  • the light emitting layer is made of an organic thin film containing a light emitting material that emits light when a voltage is applied.
  • a voltage is applied to the organic thin film from the anode and the cathode to inject holes and electrons.
  • holes and electrons are recombined in the organic thin film, and the excitons generated by the recombination return to the ground state, whereby light emission is obtained.
  • the organic EL device in addition to the light emitting layer, a hole injection layer and an electron injection layer for increasing the injection efficiency of holes and electrons between the light emitting layer and the electrode, and recombination of holes and electrons. It is necessary to provide a hole transport layer and an electron transport layer for improving efficiency. As a result, the organic EL element has a multi-layered structure, which complicates the structure and increases the manufacturing process. In organic EL, there are many limitations because it is necessary to consider the work function when selecting the electrode material used for the anode and the cathode.
  • An electrochemiluminescence cell generally has a light emitting layer containing an ionic compound and a light emitting material.
  • Various inorganic salts or organic salts are used as the ionic compound, and organic polymers and metal complexes are used as the light emitting material.
  • cations and anions derived from the ionic compound move in the light emitting layer toward the cathode and the anode, respectively, which results in a large electric field gradient (electric double layer) at the electrode interface.
  • the formed electric double layer facilitates the injection of electrons and holes in the cathode and the anode, respectively. Therefore, the electrochemiluminescence cell does not require a multilayer structure like an organic EL. In addition, since there is no need to consider the work function of the material used as the cathode and anode in the electrochemiluminescence cell, there are few restrictions on the material. For these reasons, the electrochemiluminescence cell is expected as a self-luminous element that can significantly reduce the manufacturing cost as compared with the organic EL.
  • JP 2011-103234 A International Publication WO2010 / 085180 Pamphlet
  • an organic polymer light emitting material similar to the light emitting material used for organic EL, particularly a ⁇ -conjugated polymer is often used.
  • organic polymers also have the function of transporting holes and electrons.
  • a thin film using an organic polymer light-emitting material as a light-emitting material has high mobility of holes and electrons, but low mobility of ions (also referred to as ion transport) has been a problem. .
  • a light emitting material a combination of a light emitting substance such as a metal complex, a small organic molecule, or a quantum dot and an organic polymer conductive material that transports holes and electrons to these may be used.
  • the problem is that the ion mobility is low.
  • the low mobility of ions in the light-emitting layer of the electrochemiluminescence cell is due to the low-polarity light-emitting material (specifically, when an organic polymer light-emitting material is used as the light-emitting material, In the case of using a combination of a metal complex, a small organic molecule, or a quantum dot, and an organic polymer conductive material, this is due to the low compatibility between the organic polymer conductive material) and a highly polar ionic compound. It is said that.
  • the low mobility of ions especially the low mobility of ions due to low compatibility between the luminescent material and the ionic compound, reduces the reorientation rate at the electrode interface described above, Electron injection efficiency is reduced.
  • Patent Documents 1 and 2 In order to increase the compatibility between the luminescent material and the ionic compound and to increase the ion mobility in the luminescent layer, Patent Documents 1 and 2 also disclose organic salts instead of conventional inorganic salts as ionic compounds. The use of an ionic liquid, and the addition of a polymer compound such as polyethylene oxide are described. However, development of a technique capable of further improving the compatibility between the light emitting material and the ionic compound has been awaited.
  • the present inventor has added a specific compound having an ester bond to a light-emitting layer containing a light-emitting material and an ionic compound. It has been found that the compatibility of the two can be improved in combination, and the film quality of the organic thin film forming the light emitting layer can be improved, and the present invention has been completed.
  • this invention solves the said subject by providing the additive for light emitting layers of the electrochemiluminescence cell containing the compound represented by following General formula (1).
  • X is a phosphorus atom, a carbon atom or a sulfur atom
  • A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group
  • R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O.
  • Rs may be connected to each other to form a ring.
  • At least one R is an alkyl group, m is 0 or 1, r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom, n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
  • p is 1 when m is 0 or when m is 1 and A is a hydrogen atom
  • p is 2 when m is 1 and A is a direct bond
  • m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond.
  • A is not a direct bond.
  • X is a sulfur atom, A is not a hydrogen atom.
  • this invention solved the said subject by providing the composition for electroluminescent cell formation of the electrochemiluminescent cell containing the compound represented by the said General formula (1), an ionic compound, and a luminescent material. Is.
  • this invention is an electrochemiluminescence cell which has a light emitting layer and the electrode distribute
  • the said light emitting layer is a luminescent material, an ionic compound, and the compound represented by the said General formula (1).
  • an additive capable of obtaining a light emitting layer having high light emission efficiency and excellent light emission luminance when added to a light emitting layer in an electrochemiluminescence cell.
  • a composition for forming a light emitting layer having high light emission efficiency and excellent light emission luminance is provided.
  • an electrochemiluminescence cell using the additive or the composition for forming a light emitting layer in a light emitting layer.
  • FIG. 1 is a schematic cross-sectional view of an electrochemiluminescence cell according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a light emission mechanism of the electrochemiluminescence cell.
  • FIG. 2A shows an electrochemiluminescence cell before voltage application
  • FIG. 2B shows an electrochemiluminescence cell after voltage application.
  • the electrochemiluminescence cell 10 used in this embodiment includes a light emitting layer 12 and electrodes 13 and 14 disposed on each surface thereof.
  • the electrochemiluminescence cell 10 includes a first electrode 13 and a second electrode 14 that are a pair of electrodes facing each other, and a light emitting layer 12 sandwiched between the pair of electrodes 13 and 14.
  • the light emitting layer emits light when a voltage is applied.
  • the electrochemiluminescence cell 10 is used as various displays. FIG.
  • the first electrode 13 is connected to the anode of the DC power source, and the second electrode 14 is connected to the cathode.
  • the first electrode 13 may be connected to the cathode and the second electrode 14 may be connected to the anode.
  • an AC power source as a power source instead of a DC power source.
  • the first electrode 13 and the second electrode 14 may be transparent electrodes having translucency, or may be translucent or opaque electrodes.
  • the transparent electrode having translucency include those made of metal oxides such as indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO). Further, there can be mentioned those made of a polymer having transparency such as poly (3,4-ethylenedioxythiophene) (PEDOT) doped with impurities.
  • the translucent or opaque electrode include aluminum (Al), silver (Ag), gold (Au), platinum (Pt), tin (Sn), bismuth (Bi), copper (Cu), and chromium (Cr). And metal materials such as
  • the first electrode 13 and the second electrode 14 are used as a transparent electrode because light emitted from the light emitting layer 12 can be easily extracted to the outside. Further, when one is a transparent electrode and the other is an opaque metal electrode, it is preferable because light emitted from the light emitting layer 12 can be taken out while being reflected by the metal electrode. Moreover, it is good also as a see-through light-emitting body by making both the 1st electrode 13 and the 2nd electrode 14 into a transparent electrode.
  • both the first electrode 13 and the second electrode 14 are metal electrodes made of Ag or the like having a high reflectivity, and the thickness of the light emitting layer 12 is controlled, so that the electrochemiluminescence cell 10 is laser-oscillated. It can also be an element.
  • the first electrode 13 is a transparent electrode and the second electrode 14 is an opaque or translucent metal electrode
  • the first electrode 13 is, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing appropriate resistivity and light transmittance. It is preferable to have a thickness of
  • the second electrode 14 preferably has a thickness of, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing an appropriate resistivity and light transmittance in the same manner as the first electrode 13.
  • the light emitting layer 12 is a mixture of a light emitting material and an ionic compound.
  • the light emitting layer 12 may be either solid or liquid.
  • the light emitting layer 12 can maintain a certain shape and can resist the force applied from the outside, or can be expanded and contracted by combining a flexible material such as an expandable electrode with the light emitting layer 12. This is preferable because possible electrochemiluminescence cells can be produced.
  • the light-emitting material functions as an electron and hole carrier body (having a hole and electron transport function) by being doped with anions and cations, and emits light when excited by the combination of electrons and holes. It means (has a light emitting function). Therefore, in the present invention, the simple term “luminescent material” means a conductive luminescent material.
  • the light emitting material may be a material having both a hole and electron transport function and a light emission function, or a material having a hole and / or electron transport function and a positive It may be a combination with a material that receives holes and electrons and emits light.
  • examples of the material having both a hole and electron transport function and a light emitting function include organic polymer light emitting materials described later.
  • examples of the material having a function of transporting holes and / or electrons include organic polymer conductive materials such as polyvinyl carbazole described later.
  • materials other than organic polymers are usually used as a material having a function of receiving holes and electrons from a material that transports holes and / or electrons and emitting light. A dot etc. can be mentioned.
  • an organic polymer conductive material that does not have a light-emitting function or has a low light-emitting function is used in combination with a light-emitting material other than an organic polymer such as a metal complex, a small organic molecule, or a quantum dot.
  • a light-emitting material other than an organic polymer such as a metal complex, a small organic molecule, or a quantum dot.
  • light emitting material therefore, for example, “compatibility with a light emitting material” to be described later is used when the combination of the organic polymer conductive material and the metal complex, organic low molecule or quantum dot is used as the light emitting material. Including compatibility.
  • the light emitting layer 12 contains a specific additive in addition to the light emitting material and the ionic compound.
  • the additive of this embodiment contains a compound represented by the following general formula (1).
  • X is a phosphorus atom, a carbon atom or a sulfur atom
  • A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group
  • R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O.
  • Rs may be connected to each other to form a ring.
  • At least one R is an alkyl group, m is 0 or 1, r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom, n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
  • p is 1 when m is 0 or when m is 1 and A is a hydrogen atom
  • p is 2 when m is 1 and A is a direct bond
  • m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond.
  • A is not a direct bond.
  • X is a sulfur atom, A is not a hydrogen atom.
  • the additive used in the present invention includes a compound having an ester bond which is a group represented by [—X ( ⁇ O) r (—O—) n ].
  • the compatibility also referred to as dispersibility
  • the emission brightness of the electrochemiluminescence cell can be increased at a low voltage, so that high brightness can be achieved while suppressing power consumption.
  • the inventor presumes the reason for this as follows.
  • the ester bond portion represented by [—X ( ⁇ O) r (—O—) n ] has polarity
  • the alkyl group represented by R or the alkyl group and The group represented by A is a site with low polarity.
  • the polar part of the compound of the general formula (1) dispersed in the light emitting material has high compatibility with the ionic compound, the compatibility between the light emitting material and the ionic compound, or the ionicity to the light emitting material.
  • the dispersibility of the compound can be increased. As described above, the dispersibility of the ionic compound in the light-emitting material is improved, so that the ion transport property is improved.
  • the compound of the general formula (1) dispersed in the light-emitting material has a transfer point of the ionic compound. Thus, an ion transport property is imparted to the light emitting material.
  • the additive of the present invention when added to the light emitting layer, the ion transport property in the light emitting layer is increased, so that the emission luminance of the electrochemiluminescent cell can be increased at a low voltage.
  • the ester bond includes any of a phosphate ester bond, a phosphonate ester bond, a carbonate ester bond, a carboxylic acid ester bond, and a sulfate ester bond.
  • P which is the number of ester bonds in the general formula (1), is 1 when m is 0 or m is 1 and A is a hydrogen atom, and when m is 1 and A is a direct bond, , 2 on the condition that X is a carbon atom.
  • m is 1 and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or a heterocyclic group, these groups represented by A are substituted. Any group is possible.
  • the preferable lower limit of the number of p is a general formula It is preferable that it is 1 or more from a compatible viewpoint with the ionic compound of the compound represented by (1), and the viewpoint of the availability of the compound represented by General formula (1).
  • Examples of the aromatic hydrocarbon group represented by A in the general formula (1) include a group in which one hydrogen atom on the aromatic ring in the aromatic hydrocarbon compound is removed, that is, an aryl group.
  • Specific examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, an anthracenyl group, and a group in which one or more hydrogen atoms bonded to these aromatic rings are substituted with a chain aliphatic hydrocarbon group. Examples thereof include a tolyl group and a xylyl group.
  • the aromatic hydrocarbon group preferably has 6 to 22 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the luminescent material and the ionic compound, and more preferably 6 or more.
  • the number of carbon atoms here includes the number of carbon atoms of the chain aliphatic hydrocarbon group when the aromatic ring is substituted with a chain aliphatic hydrocarbon group.
  • Examples of the chain aliphatic hydrocarbon group include groups exemplified as the chain aliphatic hydrocarbon group represented by A described later.
  • Examples of the chain aliphatic hydrocarbon group represented by A in the general formula (1) include a chain saturated aliphatic hydrocarbon group and a chain unsaturated aliphatic hydrocarbon group.
  • Examples of the chain saturated aliphatic hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, isobutyl group, n-amyl group, and isoamyl group.
  • T-amyl group n-hexyl group, n-heptyl group, isoheptyl group, t-heptyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, t-octyl group, nonyl group, isononyl group, decyl group And branched or straight chain alkyl groups such as isodecyl group, undecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group.
  • Examples of the chain unsaturated aliphatic hydrocarbon group include groups in which one or more carbon-carbon single bonds in the chain saturated aliphatic hydrocarbon group are replaced with carbon-carbon double bonds or triple bonds.
  • Alkenyl group and alkynyl group examples include vinyl, allyl, isopropenyl, 2-butenyl, 2-methylallyl, 1,1-dimethylallyl, 3-methyl-2-butenyl, and 3-methyl-3-butenyl.
  • straight-chain or branched alkenyl groups such as 4-pentenyl group, hexenyl group, octenyl group, nonenyl group and decenyl group.
  • alkynyl group examples include ethynyl group and prop-2-yn-1-yl group.
  • the chain aliphatic hydrocarbon group represented by A has 2 to 16 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the light emitting material and the ionic compound. It is preferable that it is 4 or more and 8 or less.
  • Examples of the alicyclic hydrocarbon group represented by A in the general formula (1) include a saturated alicyclic hydrocarbon group and an unsaturated alicyclic hydrocarbon group.
  • Examples of the saturated alicyclic hydrocarbon group include a cyclopentyl group, a cyclohexyl group, and a group in which one or more of these hydrogen atoms are substituted with any of the above-mentioned chain aliphatic hydrocarbon groups.
  • Examples of the unsaturated alicyclic hydrocarbon group include a cyclopentynyl group, a cyclohexynyl group, a cyclohexyldienyl group, and one or more hydrogen atoms in these groups are any of the chain aliphatic hydrocarbon groups.
  • Examples include substituted groups. These alicyclic hydrocarbon groups represented by A have 4 to 20 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the luminescent material and the ionic compound. It is preferable that it is 5 or more and 18 or less.
  • the number of carbon atoms here includes the number of carbon atoms of the chain aliphatic hydrocarbon group when the alicyclic ring is substituted with a chain aliphatic hydrocarbon group.
  • heterocyclic group represented by A in the general formula (1) examples include monovalent groups derived from pyridine, pyrrole, furan, imidazole, pyrazole, oxazole, imidazoline, pyrazine and the like.
  • the heterocyclic group represented by A preferably has 3 to 8 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the luminescent material and the ionic compound, More preferably, it is 4 or more and 6 or less.
  • the number of carbon atoms here does not include the number of carbon atoms of the chain aliphatic hydrocarbon group when the heterocyclic group is substituted with a chain aliphatic hydrocarbon group.
  • the number of carbon atoms of the heterocyclic group including the number of carbon atoms of the chain aliphatic hydrocarbon group is preferably 4 or more and 20 or less, and more preferably 6 or more and 16 or less.
  • one or two or more of the hydrogen atoms contained therein may be substituted with a functional group.
  • the functional group include an amino group, a nitrile group, a phenyl group, a benzyl group, a carboxyl group, and an alkoxy group having 1 to 12 carbon atoms.
  • the functional group is substituted for the above-mentioned aromatic hydrocarbon group, chain aliphatic hydrocarbon group, alicyclic hydrocarbon group or heterocyclic group, aromatic hydrocarbon group, chain aliphatic hydrocarbon group.
  • the preferred number of carbon atoms described above for the alicyclic hydrocarbon group or heterocyclic group does not include the number of carbon atoms of the functional group.
  • the alkyl group represented by R in the general formula (1) may be branched, linear or cyclic, but is preferably branched or linear.
  • Examples of the branched or straight chain alkyl group represented by R include the groups listed above as examples of the chain saturated aliphatic hydrocarbon group represented by A.
  • Examples of the cyclic alkyl group represented by R include the groups listed above as examples of the saturated alicyclic hydrocarbon group represented by A.
  • a plurality of R bonded to the same X through O may be connected to each other to form a ring.
  • examples of the compound of the general formula (1) in which two Rs are connected to each other to form a ring include cyclic carbonates and cyclic phosphates.
  • R is an alkyl group.
  • the number of Rs that are alkyl groups is preferably 1 or more, and more preferably 2 or more.
  • n R bonded to one X via an oxygen atom O it is preferable that one or more Rs are alkyl groups among n Rs bonded to one X via an oxygen atom O, and two or more Rs are alkyl groups. More preferably.
  • the number of Rs that are alkyl groups is particularly preferably 3 or more.
  • the number of carbon atoms of the alkyl group represented by R maintains a high compatibility with the ionic compound of the additive of the present invention, the viewpoint of obtaining the effect of the present invention more reliably, and dissolution in a solvent From the viewpoint of property, it is preferably 16 or less, more preferably 14 or less, still more preferably 10 or less, and particularly preferably 8 or less. In addition, if the number of carbon atoms of the alkyl group represented by R is 1 or more, the effect of the present invention can be sufficiently obtained. However, when an additive is added to the light emitting layer, it is easy to obtain high luminance at a lower voltage. Therefore, it is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more.
  • one or more of the hydrogen atoms contained therein may be substituted with a functional group.
  • the functional group include an amino group and a nitrile group.
  • a compound represented by General formula (1) it is preferable from viewpoints of the availability of a compound that X is a phosphorus atom or a carbon atom.
  • X is a phosphorus atom
  • p is 1 from the viewpoint of easy availability and ease of handling.
  • m is 1 from the viewpoint of more reliably obtaining the effect of obtaining high emission luminance at a low voltage.
  • the compound represented by the general formula (2) is a phosphate ester.
  • X is a phosphorus atom, m is 0, and p is 1.
  • the compound represented by the following general formula (3) is a carboxylic acid ester, and in the general formula (1), X is a carbon atom and m is 1.
  • A is preferably an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or a heterocyclic group.
  • the compound represented by the general formula (1) when X is a sulfur atom, the compound represented by the following general formula (A) is used in terms of withstand voltage and compatibility with a light emitting material. To preferred.
  • R and p are the same as those in the general formula (1), and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group.
  • a compound represented by the following general formula (b) in which X is a carbon atom and m is 0 is also suitable for withstand voltage and light emitting materials. It is preferable from the viewpoint of solubility.
  • the compound represented by the general formula (b) described above a compound in which two Rs are both alkyl groups, or two Rs bonded to the same C via O are connected to each other to form a ring.
  • the formed compound represented by the following general formula (c) is preferable from the viewpoints of voltage endurance and compatibility with a light emitting material.
  • Ra, Rb, Rc and Rd are hydrogen atoms or alkyl groups, which may be the same or different from each other, and q is a number of 1 or more and 3 or less.
  • the alkyl group represented by Ra, Rb, Rc and Rd is preferably linear or branched, and the number of carbon atoms of Ra, Rb, Rc and Rd is the availability of the compound and the ease of handling. Is preferably 1 or more and 8 or less, more preferably 1 or more and 4 or less.
  • q is preferably a number from 1 to 2.
  • the most preferable compound represented by the general formula (c) is a compound in which q is 1, or Ra, Rb, Rc and Rd are all hydrogen atoms, or Ra, Rb, Rc.
  • Rd is a compound in which one group is an alkyl group and the remainder is a hydrogen atom.
  • the molecular weight of the compound represented by the general formula (1) is preferably 70 or more and 1000 or less, more preferably 120 or more and 1000 or less, particularly preferably 150 or more and 800 or less, and particularly preferably 200 or more and 500 or less.
  • the compound represented by the general formula (1) and the additive of the present invention containing the compound may be solid or liquid at normal temperature (25 ° C.).
  • the method for producing the compound represented by the general formula (1) is not particularly limited.
  • the phosphate ester compound represented by the general formula (2) can be obtained by dehydration condensation of phosphoric acid and alcohol, or by condensing phosphate compound and alcohol by the action of a base.
  • the carboxylic acid ester compound represented by the general formula (3) can be produced by dehydration condensation of carboxylic acids and alcohol.
  • the sulfonic acid ester compound represented by the general formula (I) can be obtained, for example, by reacting a sulfonic acid chloride with an alcohol.
  • the carbonate ester compound represented by the general formula (b) can be produced, for example, by transesterifying dimethyl carbonate and alcohol.
  • a commercially available compound can also be used as a compound represented by General formula (1).
  • the additive of the present invention may contain only the compound represented by the general formula (1), or may contain other components. Other components include surfactants other than the solvent and the compound represented by the general formula (1).
  • the additive of the present invention preferably contains 90% by mass or more of the compound represented by the general formula (1) from the viewpoint of ease of use when used by being added to the ionic compound and the light emitting material, and 95% by mass. It is more preferable to contain above. The upper limit of the preferable content is 100% by mass.
  • the compound represented by the general formula (1) is contained in the light emitting layer in an amount of 1% by mass or more, and the effect of improving the light emission efficiency and light emission luminance of the electrochemiluminescence cell is obtained more reliably. This is preferable.
  • the compound represented by the general formula (1) is contained in the light emitting layer in an amount of 20% by mass or less from the viewpoint of suppressing a decrease in emission luminance due to dilution. From these viewpoints, the compound represented by the general formula (1) is more preferably contained in the light emitting layer in an amount of 2% by mass or more and 18% by mass or less, and more preferably 3% by mass or more and 15% by mass or less.
  • the content of the compound represented by the general formula (1) in the light emitting layer 12 is preferably 2 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the light emitting material.
  • the amount of the light emitting material here is the amount of the organic polymer light emitting material when an organic polymer light emitting material is used as the light emitting material, and the light emitting material is a light emitting property such as a metal complex, an organic small molecule or a quantum dot.
  • the total amount of a metal complex, a light emitting substance such as an organic low molecule or a quantum dot, and an organic polymer conductive material is 2 to 30 parts by mass with respect to 100 parts by mass of the organic polymer light emitting material when the light emitting material is an organic polymer light emitting material described later. It is particularly preferred that the amount is not more than parts.
  • the light emitting material to be described later is a combination of a metal complex, a light emitting substance such as an organic low molecule or quantum dot, and an organic polymer conductive material
  • the content of the compound represented by the general formula (1) in the light emitting layer 12 Is particularly preferably 2 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the total amount of the light emitting substance such as the metal complex, the organic low molecule or the quantum dot, and the organic polymer conductive material.
  • the ionic compound is a substance for ensuring mobility of ions, forming an electric double layer easily, and facilitating injection of holes and electrons.
  • an ionic compound it is a compound containing a cation and an anion, and both the salt of an organic cation and the salt of an inorganic cation are employable.
  • the salt of the organic cation one in which the cation is a phosphonium cation, an ammonium cation, a pyridinium cation, an imidazolium cation, or a pyrrolidinium cation can be used.
  • the inorganic cation salt include salts of metal cations belonging to Group 1 or Group 2.
  • the ionic compound may be either an organic salt or an inorganic salt.
  • examples include the above-described organic cation salt and a salt composed of an inorganic cation and an organic anion.
  • Metal cations such as those that are lithium ions or potassium ions can be used. Among them, it is preferable from the viewpoint of compatibility with the light emitting material that the cation is at least one selected from a phosphonium cation, an ammonium cation and an imidazolium cation.
  • the additive of the present invention when added, it is preferable to use at least one cation selected from a phosphonium cation and an ammonium cation as the ionic compound used in the light emitting layer from the viewpoint of easily obtaining high luminance at a low voltage. .
  • Examples of the ionic compound whose cation is a phosphonium cation or an ammonium cation include a compound represented by the following general formula (4).
  • R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X ⁇ represents an anion.
  • examples of the ionic compound whose cation is an imidazolium cation include a compound represented by the following general formula (5).
  • R 5 and R 6 each represents an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group, which may be substituted with a functional group.
  • R 5 and R 6 may be the same or different from each other, and X ⁇ represents an anion.
  • the alkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be branched, linear or cyclic, but is branched or linear. preferable.
  • Examples of the branched or straight chain alkyl group include the groups mentioned above as examples of the chain saturated aliphatic hydrocarbon group represented by A in the general formula (1).
  • Examples of the cyclic alkyl group include the groups listed above as examples of the saturated alicyclic hydrocarbon group represented by A.
  • Examples of the alkoxyalkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include the alkoxides of the alkyl groups described above.
  • Examples of the alkyl group in the alkoxyalkyl group include the groups listed above as examples of the chain saturated aliphatic hydrocarbon group represented by A in the general formula (1).
  • Examples of the alkyl group in the trialkylsilylalkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include a chain saturated fat represented by A in the general formula (1)
  • Examples of the group hydrocarbon group include the groups mentioned above.
  • Examples of the alkenyl group and alkynyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include the alkenyl group and alkynyl group represented by A in the general formula (1) as described above. The groups mentioned are mentioned.
  • Examples of the aryl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as described above as examples of the aromatic hydrocarbon group represented by A in the general formula (1).
  • Examples of the heterocyclic group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the examples of the heterocyclic group represented by A in the general formula (1). The groups mentioned are mentioned.
  • Each group mentioned above as the group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is substituted with one or more of the hydrogen atoms contained therein with a functional group.
  • a functional group include a halogen atom, an amino group, a nitrile group, a phenyl group, a benzyl group, a carboxyl group, and an alkoxy group having 1 to 12 carbon atoms.
  • Each group mentioned above as a group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is such that a hydrogen atom contained in these groups is partially substituted with a fluorine atom. Also good. By introducing fluorine atoms, the withstand voltage is improved, which leads to stability and long life of the electrochemiluminescence cell.
  • the compatibility with the compound of the general formula (1) is good, a high luminance is obtained, and the compatibility with the light emitting material and the voltage resistance are viewpoints.
  • R 1, R 2, R 3 and R1 4 that one or more of the groups is an alkyl group is preferably, R 1, R 2, also R 3 and R 4 are both an alkyl group It is more preferable.
  • the number of carbon atoms of the alkyl group represented by R 1 , R 2 , R 3 and R 4 Is preferably from 2 to 18, more preferably from 4 to 8.
  • R 1 , R 2 , R 3 and R 4 are alkyl groups having the same number of carbon atoms, from the same viewpoint as described above,
  • These alkyl groups having the same number of carbon atoms preferably have 2 or more and 18 or less carbon atoms, and more preferably 4 or more and 8 or less.
  • examples of the ionic compound in which the cation is a phosphonium cation or an ammonium cation include R 1 , R 2 , R 3 and R 4 . It is preferable that one or more, particularly three or more groups of the above are alkyl groups having a carbon atom difference of 5 or less with respect to the alkyl group represented by R in the compound represented by the general formula (1). In particular, one or more of R 1 , R 2 , R 3, and R 4 , particularly 3 or more groups, is a carbon with an alkyl group represented by R in the compound represented by the general formula (1).
  • the difference in the number of atoms is an alkyl group having 3 or less.
  • R 1 , R 2 , R 3 and R 4 are represented by R in the general formula (1). It is preferably an alkyl group having the same number of carbon atoms as the alkyl group represented.
  • R in any compound when a plurality of types of compounds represented by the general formula (1) are added (or added) to the light emitting layer. .
  • the compound What is necessary is just to be materialized between any of R inside.
  • the molecular weight of the phosphonium cation or ammonium cation in the general formula (4) is 150 or more and 750 or less, particularly 200 or more and 500 or less, and particularly 250 or more and 350 or less. Is preferable because it is more excellent.
  • R 5 and / or R 6 is an alkyl group from the viewpoint of good compatibility with the compound represented by the general formula (1) and high brightness. Preferably there is.
  • the number of carbon atoms of the alkyl group represented by R 5 is 1 or more and 8 or less. It is preferably 1 or more and 4 or less.
  • the number of carbon atoms of the alkyl group represented by R 6 is 1 or more and 8 or less from the viewpoint of further improving the compatibility with the compound represented by the general formula (1) and the light emitting material. Preferably, it is 2 or more and 6 or less.
  • R 6 is represented by the general formula ( It is preferable that the difference in the number of carbon atoms with respect to the alkyl group represented by R of the compound represented by 1) is an alkyl group having 5 or less, and that the difference in the number of carbon atoms is an alkyl group having 3 or less. preferable.
  • R 6 is preferably an alkyl group having the same number of carbon atoms as the alkyl group represented by R in the general formula (1).
  • R 5 represents the general formula (1) contained in the light emitting layer. It is preferable that the difference of the carbon atom number with respect to the alkyl group represented by R of the compound represented by is an alkyl group of 8 or less.
  • the above relationship may be established with R in any compound when a plurality of types of compounds represented by the general formula (1) are added (or added) to the light emitting layer. .
  • the compound What is necessary is just to be materialized between any of R inside.
  • the molecular weight of the imidazolium cation is 90 or more and 300 or less, particularly 100 or more and 260 or less, and particularly 120 or more and 240 or less, the emission luminance of the electrochemiluminescence cell is further increased and the emission luminance is further improved. preferable.
  • Polymer compounds used for improving ion transport properties such as polyethylene oxide are usually inferior in voltage resistance compared to the additive of the present invention. Therefore, by using the additive of the present invention in addition to or as a substitute for a polymer compound such as polyethylene oxide, it is possible to obtain a certain luminance while maintaining or improving the voltage resistance of the light emitting layer. Although the reason why the additive of the present invention has such an action although it is not a polymer is not clear, the present inventor believes that the additive of the present invention is compatible with the luminescent material and the ionic compound, or One of the reasons for this is that the dispersibility of the ionic compound in the light-emitting material can be improved efficiently.
  • the metal ion is preferably a cation of a metal belonging to Group 1 or Group 2
  • the cation of a metal belonging to Group 1 is preferably a cation of Li, Na, K, or Cs.
  • Preferred examples of the metal cation belonging to Group 2 include Mg and Ca cations.
  • Li, Na, and K are particularly preferable from the viewpoint of ion transportability.
  • Examples of the organic cation salt and the inorganic cation salt, the anion in the organic salt and the inorganic salt, and the anion represented by X ⁇ in the general formulas (5) and (6) include, for example, fluorine and bromine.
  • Halogen ions such as iodine and chlorine, tetrafluoroborate (BF 4 ), benzotriazolate (N 3 (C 6 H 4 )), tetraphenyl borate (B (C 6 H 5 ) 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) imide (N (CF 3 SO 2 ) 2 ), bis (fluorosulfonyl) imide (N (SO 2 F) 2 ), trifluoromethanesulfonate (SO 3 CF 3 ), methanesulfonate (SO 3 CH 3), tris (pentafluoroethyl) trifluoro phosphate ((C 2 H 5) 3 PF 3), triflic B acetate (CF 3 COO), amino acids, Bisuo Kisara oxalatoborate (B (C 2 O 4) 2), p- toluenesulfonate (CH 3 C 6
  • R 7 is an alkyl group having 1 to 20 carbon atoms, and two R 7 may be the same or different.
  • R 8 is an alkyl group having 1 to 20 carbon atoms.
  • R 9 is an alkyl group having 1 to 20 carbon atoms, and two R 9 may be the same or different.
  • R 10 CO 2 (10) (In the formula, R 10 is an alkyl group having 1 to 20 carbon atoms.)
  • the anion in the ionic compound it is preferable to use an anion that does not contain a halogen atom, because an electrochemiluminescence cell having high luminance can be easily obtained. This is because an anion containing no halogen atom is more compatible with the light-emitting material than an anion containing a halogen atom.
  • an anion containing no halogen atom is more compatible with the light-emitting material than an anion containing a halogen atom.
  • the additive of the present invention is added to a light emitting layer containing an ionic compound having an anion containing a halogen atom, high emission luminance is obtained at a lower voltage. The effect that it is obtained can be produced.
  • the ionic compound containing the anion has a better compatibility with many light emitting materials. Therefore, it is preferable in that an electrochemiluminescence cell having higher luminance is easily obtained.
  • the compound represented by the general formula (1) added to the light emitting layer as an anion in the ionic compound from the viewpoint of obtaining an electrochemiluminescent cell having high compatibility with the additive of the present invention and high brightness. It is preferable to use an anion having an alkyl group having a carbon atom difference of 5 or less from the alkyl group represented by R, and to use an anion having an alkyl group having a carbon atom difference of 3 or less. More preferred. In particular, it is preferable to use an anion having an alkyl group having the same number of carbon atoms as the alkyl group represented by any R in any compound represented by the general formula (1) added to the light emitting layer.
  • the difference in the number of carbon atoms between R 7 to R 10 in the general formulas (7) to (10) and R in the general formula (1) is preferably in the above range, and R 7 to R 10 and R It is most preferable that the number of carbon atoms is the same.
  • the above relationship may be established with R in any compound when a plurality of types of compounds represented by the general formula (1) are added (or added) to the light emitting layer. .
  • the compound What is necessary is just to be materialized between any of R inside.
  • the ionic compound may be solid at room temperature (25 ° C.) or liquid.
  • the ionic compound is in a solid or liquid state depending on the combination of the selected cation and anion and the structure of the cation.
  • an ionic compound can be used 1 type or in combination of 2 or more types.
  • An ionic compound can be produced, for example, as follows.
  • a quaternary phosphonium halide obtained by reacting a tertiary phosphine compound corresponding to the target phosphonium cation and a halogenated hydrocarbon compound is used, and an ionic liquid in which the anion is halogen is prepared.
  • An anionic component other than halogen can be obtained by reacting the quaternary phosphonium halide with a metal salt of the anionic component to exchange anions.
  • the cation is an ammonium ion, it can be similarly obtained using a quaternary ammonium halide obtained by reacting a tertiary amine compound and a halogenated hydrocarbon compound.
  • the cation is an imidazolium ion, it can be obtained in the same manner by using an imidazolium halide obtained by reacting an imidazole compound corresponding to the target imidazolium cation with a halogenated hydrocarbon compound.
  • the cation is a phosphonium or ammonium ion and the anion is a phosphoric acid ester bond or an ionic compound having a sulfate ester bond, a tertiary phosphine compound or a tertiary amine compound and PO (OR X) 3 or SO 2 (by reacting oR X) compounds represented by compounds represented by 2, it is possible to obtain an ionic compound with a halogen-free manufacturing process.
  • Rx is an alkyl group having 1 to 20 carbon atoms.
  • the content ratio of the ionic compound in the light emitting layer 12 is preferably 1% by mass or more and 20% by mass or less from the viewpoint of ensuring ion mobility and improving the film forming property of the light emitting layer 12. It is more preferable that the amount is not more than mass%.
  • the content of the ionic compound in the light emitting layer 12 is preferably 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the light emitting material.
  • the amount of the light emitting material here is the amount of the organic polymer light emitting material when an organic polymer light emitting material is used as the light emitting material, and the light emitting material is a light emitting property such as a metal complex, an organic small molecule or a quantum dot.
  • the total amount of a metal complex, a light emitting substance such as an organic low molecule or a quantum dot, and an organic polymer conductive material is 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the organic polymer light emitting material.
  • the content of the ionic compound in the light emitting layer 12 is such metal complex, organic small molecule or quantum dot, and It is preferably 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the total amount of the organic polymer conductive material.
  • the light-emitting material included in the light-emitting layer 12 include an organic polymer light-emitting material, or a combination of a light-emitting substance such as a metal complex, an organic small molecule, or a quantum dot, and an organic polymer conductive material.
  • the organic polymer light emitting material include organic polymers that are various ⁇ -conjugated polymers. Specific examples include paraphenylene vinylene, fluorene, 1,4-phenylene, thiophene, pyrrole, paraphenylene sulfide, benzothiadiazole, biothiophine, or a derivative polymer having a substituent introduced thereto, or a copolymer containing these.
  • Examples of such a substituent include an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, [(—CH 2 CH 2 O—) n CH 3 ] (n is an integer of 1 or more and 10 or less) and the like.
  • Examples of the copolymer include those obtained by bonding each repeating unit of two or more kinds of the above-mentioned ⁇ -conjugated polymers.
  • Examples of the arrangement of each repeating unit in the copolymer include a random arrangement, an alternating arrangement, a block arrangement, or a combination thereof.
  • fluorene paraphenylene vinylene
  • a derivative polymer having a substituent introduced thereto or a copolymer containing these polymers.
  • a commercial item can also be used as an organic polymer light-emitting material.
  • Such commercial products include, for example, Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene), a compound available from Solaris Chem under the name SOL2412.
  • PDY-132 a compound available from Merck & Co., Phenylene substitutedpoly (para-phenylenevinylene), Poly [(9,9-di- n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)].
  • metal complex known ones conventionally used as a light emitting material in organic EL can be used.
  • tris (8-quinolinolato) aluminum complex tris (4-methyl-8-quinolinolato) aluminum complex, bis (8 -Quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-8-quinolinolato) aluminum complex, bis (2-methyl-5- Trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, Tris (8-quinolinolato) scandium complex, [8- (para-tosyl) aminoquinoline] zinc complexes, cadmium complexes, phosphorescent emitters such as Ir complexes, bipyridyl (
  • organic low molecule known ones conventionally used as light emitting materials in organic EL can be used. 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetra Phenylbutadiene, 1,2,3,4-tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, poly-2,5-diheptyloxy-para-phenylene vinylene, coumarin phosphor, perylene phosphor, pyran phosphor Fluorescence of anthrone phosphor, porphyrin phosphor, quinacridone phosphor, N, N′-dialkyl substituted quinacridone phosphor, naphthalimide phosphor, N, N′-diaryl substituted pyrrolopyrrole phosphor, etc. Illuminant etc. are mentioned.
  • quantum dot examples include Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof.
  • Examples of the organic polymer conductive material for transporting electrons and / or holes include polyvinylcarbazole, polyphenylene, polyfluorene, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and the like.
  • the organic polymer light emitting material described above can also be used because it has a function of transporting electrons and / or holes.
  • the content ratio in the light emitting layer 12 is preferably 60% by mass or more and 99% by mass or less when the organic polymer light emitting material is used, and 70% by mass. More preferably, it is 98 mass% or less.
  • the ratio of these total amounts in the light emitting layer 12 is 60 mass% or more 99.
  • the content is preferably not more than mass%, more preferably not less than 70 mass% and not more than 98 mass%.
  • the organic high molecular weight relative to 100 parts by weight of the light emitting substance such as a metal complex, a small organic molecule or a quantum dot is used.
  • the proportion of the molecular conductive material is preferably 5 parts by mass or more and 25 parts by mass or less.
  • the light emitting layer 12 may contain a substance other than the light emitting material and the ionic compound.
  • examples of such substances include surfactants and polymer components (polystyrene, polymethyl methacrylate (PMMA), etc.) for improving film forming properties.
  • an organic polymer light emitting material is used as the light emitting material
  • an organic polymer conductive material such as polyvinyl carbazole is also included in the other components.
  • the amount of the components other than the light emitting material, the ionic compound and the compound represented by the general formula (1) (excluding the solvent) in the light emitting layer 12 is 30 parts by mass when the entire light emitting layer 12 is 100 parts by mass.
  • the content is preferably set to the following, more preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • a polymer compound that has been conventionally used for improving charge transportability may be used.
  • a polymer compound include a compound having a polyether skeleton such as polyethylene oxide and polypropylene oxide, a compound having a polyester skeleton such as polyethylene succinate and poly- ⁇ -propiolactone, and a polyamine skeleton such as polyethyleneimine.
  • examples thereof include compounds and compounds having a polysulfide skeleton such as polyalkylene sulfide.
  • the amount of these polymer compounds in the light emitting layer is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less. It is.
  • the amount may be smaller than that, and a polymer compound such as polyethylene oxide may not be used.
  • a polymer compound such as polyethylene oxide
  • the fact that these polymer compounds are not used in the light emitting layer means, for example, that the amount of these polymer compounds in the light emitting layer is 0% by mass.
  • the film thickness of the light-emitting layer 12 thus configured is preferably 20 nm or more and 300 nm or less, and more preferably 50 nm or more and 150 nm or less.
  • the film thickness of the light emitting layer 12 is within this range, it is preferable from the viewpoints that light emission can be sufficiently and efficiently obtained from the light emitting layer 12, defects in a light emission scheduled portion can be suppressed, and short circuit prevention can be achieved.
  • the electrochemiluminescence cell 10 of this embodiment can be manufactured by the following manufacturing method, for example.
  • a substrate provided with the first electrode 13 is prepared.
  • the first electrode 13 is formed from, for example, ITO, by forming a deposited ITO film in a pattern on the surface of a glass substrate or the like by using a photolithography method or a combination of the photolithography method and the lift-off method, A first electrode 13 made of ITO can be formed on the surface.
  • an ionic compound, a luminescent material, and a compound represented by the general formula (1) are dissolved or dispersed in an organic solvent to prepare a composition for forming a luminescent layer of an electrochemiluminescence cell.
  • the organic solvent is selected from the group consisting of toluene, benzene, tetrahydrofuran, dimethyl chloride, cyclohexanone, chlorobenzene and chloroform from the viewpoint of efficiently mixing the ionic compound, the light emitting material and the compound represented by the general formula (1). It is preferable to contain at least one organic solvent. In this case, only one of these compounds or a combination of two or more of these compounds can be used as the organic solvent.
  • the organic solvent for dissolving or dispersing the ionic compound, the luminescent material, and the compound represented by the general formula (1) is at least one selected from the group consisting of toluene, benzene, tetrahydrofuran, dimethyl chloride, cyclohexanone, chlorobenzene, and chloroform.
  • a seed organic solvent and other organic solvents can be contained.
  • the compounding ratio (mass ratio) of the ionic compound and the light emitting material in the composition for forming a light emitting layer is preferably 1: 4 to 100 in the former: latter.
  • the compounding ratio (mass ratio) of the compound represented by the general formula (1) and the light emitting material in the light emitting layer forming composition is preferably 1: 3 to 50 in the former: latter.
  • the amount of the light emitting material here is the amount of the organic polymer light emitting material when an organic polymer light emitting material is used as the light emitting material, and the light emitting material is a light emitting property such as a metal complex, an organic small molecule or a quantum dot.
  • the total amount of the light emitting substance such as a metal complex, an organic low molecule, or a quantum dot, and the organic polymer conductive material is used. Furthermore, the ratio of the compound represented by the general formula (1) in the composition for forming a light emitting layer is 0.0001% by mass to 10% by mass, particularly 0.0005% by mass to 5% by mass. This is preferable from the viewpoint of easily forming a light emitting layer in which the effects of the present invention can be obtained more reliably.
  • This composition for forming a light emitting layer is applied onto the first electrode 13 of the substrate by a spin coating method or the like.
  • the preparation of the light emitting layer forming composition and the formation of the light emitting layer 12 are preferably performed in an inert gas atmosphere having a moisture content of 100 ppm or less.
  • the inert gas include argon, nitrogen, helium and the like.
  • the second electrode 14 is formed on the formed light emitting layer 12.
  • an electrode having a predetermined pattern is formed on the light emitting layer 12 by evaporating aluminum (Al) into a film shape by, for example, a vacuum evaporation method through a mask.
  • Al aluminum
  • the second electrode 14 is formed on the light emitting layer 12.
  • the electrochemiluminescence cell 10 of the present embodiment emits light by the following light emission mechanism.
  • a voltage is applied to the light emitting layer 12 so that the first electrode 13 serves as an anode and the second electrode 14 serves as a cathode.
  • ions in the light emitting layer 12 move along the electric field, and a layer in which anion species are collected in the vicinity of the interface between the light emitting layer 12 and the first electrode 13 is formed.
  • a layer in which cationic species are collected in the vicinity of the interface with the second electrode 14 in the light emitting layer 12 is formed. In this way, an electric double layer is formed at the interface of each electrode.
  • the p-doped region 16 is spontaneously formed in the vicinity of the first electrode 13 that is the anode
  • the n-doped region 17 is spontaneously formed in the vicinity of the second electrode 14 that is the cathode.
  • These doped regions constitute a pin junction with a high carrier density.
  • the composition for forming a light emitting layer, and the electrochemiluminescence cell using the compound represented by the general formula (1), the light emitting material in the light emitting layer is combined with the ionic compound in the general formula (1)
  • the compatibility between the luminescent material and the ionic compound is improved as compared with the case where the compound represented by the general formula (1) is not added.
  • the mobility of the compound is greatly improved. For this reason, it is possible to obtain an electrochemiluminescence cell having high emission luminance at a low voltage and suppressed resistance increase in a low resistance state as compared with the case where the compound represented by the general formula (1) is not added. it can.
  • the first electrode of the electrochemiluminescence cell is connected to the anode of the direct current, the second electrode is connected to the cathode, and a voltage is applied up to 15 V at a sweep rate of 1 V / sec. did. Moreover, the voltage at that time was measured. The measurement was performed with CS-2000 (manufactured by Konica Minolta).
  • Example 1 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem)
  • These mixed solutions were prepared using the product, model number SOL2412), the phosphonium phosphate ester salt shown in Table 1 as an ionic compound, and the additive which is the compound shown in Table 1.
  • a glove in an argon atmosphere In a box, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and a toluene solution of an additive (concentration: 9 g / L) at room temperature.
  • a toluene solution concentration: 9 g / L
  • ionic compound solution concentration: 9 g / L
  • additive solution 8: 1: 1 to prepare a light emitting layer forming composition.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 1 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 1-1 The same procedure as in Example 1 was performed except that no additive was added. Table 1 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 2-1 to 2-5> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Organic polymer light emitting material Super Yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck & Co., product name: PDY-132), phosphonium phosphate ester salts shown in Table 2 as ionic compounds, and additions that are compounds shown in Table 2 These mixed solutions were prepared using an agent.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 2 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 3 The same procedure as in Example 1 was performed except that the ammonium phosphate ester salt shown in Table 3 was used as the ionic compound. Table 3 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 3 The same procedure as in Example 3 was performed except that no additive was added. Table 3 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 4-1 to 4-4> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Super yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, ammonium phosphate ester salts shown in Table 4 as ionic compounds, and compounds shown in Table 4
  • These mixed solutions were prepared using additives.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 4 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 5-1 to 5-7> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem)
  • These mixed solutions were prepared using the product, model number SOL2412), an imidazolium phosphate ester salt shown in Table 5 as an ionic compound, and an additive which is a compound shown in Table 5.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and a toluene solution of an additive (concentration: 9 g / L) at room temperature.
  • an organic polymer light emitting material solution: ionic compound solution: additive solution 8: 1: 1 in a volume ratio to prepare a composition for forming a light emitting layer.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 5 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 6-1 to 6-8> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Super yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, imidazolium phosphate ester salts shown in Table 6 as ionic compounds, and compounds shown in Table 6
  • These mixed solutions were prepared using an additive.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 6 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 7-1 and 7-2> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem)
  • a mixed solution of these was prepared using the product No. SOL2412), a phosphonium (p-toluenesulfonyl) salt shown in Table 7 as an ionic compound, and an additive which is a compound shown in Table 7.
  • argon was used.
  • a toluene solution of organic polymer light emitting material (concentration: 9 g / L)
  • a toluene solution of ionic compound (concentration: 9 g / L)
  • a toluene solution of additive (concentration: 9 g) at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 7 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 8-1 to 8-2> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Super Yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (p-toluenesulfonyl) salts shown in Table 8 as ionic compounds, and Table 8
  • These mixed solutions were prepared using the additive which is a compound.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 8 shows the results of measuring the emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 9 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem)
  • These mixed solutions were prepared using the product, model number SOL2412), a phosphonium (bis (oxalato) borate) salt shown in Table 9 as an ionic compound, and an additive which is a compound shown in Table 9.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C.
  • Example 9 The same procedure as in Example 9 was performed except that no additive was added. Table 9 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 10 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Super Yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (bis (oxalato) borate) salts shown in Table 10 as ionic compounds, and Table 10
  • These mixed solutions were prepared using additives which are the compounds shown.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 10 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 10 The same method as in Example 10 was performed except that the additive was not added. Table 10 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 11 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem)
  • These mixed solutions were prepared using a product, model number SOL2412), a phosphonium (bistrifluoromethylsulfonylimide) salt shown in Table 11 as an ionic compound, and an additive which is a compound shown in Table 11.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C.
  • the organic solvent was evaporated by heating on the plate for 30 minutes.
  • the solid light emitting layer 12 having a thickness of 100 nm was formed.
  • Al aluminum
  • Table 11 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
  • Example 11 The same procedure as in Example 11 was performed except that no additive was added. Table 11 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
  • Examples 12-1 to 12-2> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Super Yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (bistrifluoromethylsulfonylimide) salt shown in Table 12 as an ionic compound, and Table 12
  • These mixed solutions were prepared using additives which are the compounds shown.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 12 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 13-1 to 13-2> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem)
  • These mixed solutions were prepared using the product, model number SOL2412), a phosphonium (tetrafluoroborate) salt shown in Table 13 as an ionic compound, and an additive which is a compound shown in Table 13.
  • a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and a toluene solution of an additive (concentration: 9 g / L) at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 13 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
  • Examples 14-1 to 14-2> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • These mixed solutions were prepared using an additive which is: Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed.
  • a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced. Table 14 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 15-1 to 15-6> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • These mixed solutions were prepared using Specifically, a cyclohexanone solution (concentration: 9 g / L) of an organic polymer light emitting material, a cyclohexanone solution (concentration: 9 g / L) of a metal salt, and an additive cyclohexanone in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box in an argon atmosphere, and further heated at 80 ° C.
  • the cyclohexanone was evaporated by heating on the plate for 60 minutes.
  • the solid light emitting layer 12 having a thickness of 100 nm was formed.
  • a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced.
  • Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 16 A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • Super Yellow Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck & Co., product name: PDY-132) as an organic polymer light emitting material, an ionic compound (metal salt) shown in Table 16, and an additive which is a compound shown in Table 16
  • These mixed solutions were prepared using Specifically, a cyclohexanone solution (concentration: 9 g / L) of an organic polymer light emitting material, a cyclohexanone solution (concentration: 9 g / L) of a metal salt, and an additive cyclohexanone in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box in an argon atmosphere, and further heated at 80 ° C.
  • the cyclohexanone was evaporated by heating on the plate for 60 minutes.
  • the solid light emitting layer 12 having a thickness of 100 nm was formed.
  • a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced.
  • Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Example 16 The same procedure as in Example 16 was performed except that no additive was added. Table 16 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Examples 17-1 to 17-2> A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
  • PFO-spiro Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9,9'-spirobifluorene-2,7-diyl)]
  • Solaris Chem as an organic polymer light-emitting material
  • a cyclohexanone solution (concentration: 9 g / L) of an organic polymer light emitting material, a cyclohexanone solution (concentration: 9 g / L) of a metal salt, and an additive cyclohexanone in a glove box in an argon atmosphere at room temperature.
  • the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box in an argon atmosphere, and further heated at 80 ° C.
  • the cyclohexanone was evaporated by heating on the plate for 60 minutes.
  • the solid light emitting layer 12 having a thickness of 100 nm was formed.
  • a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm ⁇ 2 mm square of a light emission scheduled portion was produced.
  • Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
  • Electrochemiluminescence cell 12 Light emitting layer 13 1st electrode 14 2nd electrode 16 p doped area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An additive for a light-emitting layer in an electrochemiluminescent cell of the present invention contains a compound represented by general formula (1). In the formula: X is P, C, or S; A is a cyclic hydrocarbon group that may have H, a direct bond, a chain hydrocarbon group, or a heteroatom; R is H or an alkyl group, and a plurality of R may link together to form a ring, and if said ring is formed, at least one R is an alkyl group; m is 0 or 1; r is 1 when X is a phosphorous atom or a carbon atom and 2 when X is a sulfur atom; n is a number represented by 3-m when X is a phosphorous atom, and a number represented by 2-m if X is a carbon atom or a sulfur atom; and p is 1 when m is 0, at least 1 when m is 1, and is a substitutable number in A.

Description

電気化学発光セルの発光層用添加剤、電気化学発光セルの発光層形成用組成物及び電気化学発光セルELECTROCHEMICAL LIGHT EMITTING CELL LIGHT EMITTING LAYER ADDITIVE, ELECTROCHEMICAL LIGHT EMITTING CELL LIGHT EMITTING LAYER FORMING COMPOSITION AND ELECTROCHEMICAL LIGHT EMITTING CELL
 本発明は、電気化学発光セルにおける、発光層用の添加剤に関する。また本発明は、電気化学発光セルの発光層形成用組成物に関する。また本発明は発光層用添加剤を用いた電気化学発光セルに関する。 The present invention relates to an additive for a light emitting layer in an electrochemiluminescence cell. The present invention also relates to a composition for forming a light emitting layer of an electrochemiluminescence cell. The present invention also relates to an electrochemiluminescence cell using an additive for light emitting layer.
 近年、電子と正孔をキャリアとして自発光する素子である有機電界発光(有機EL)素子の開発が急激に進展している。有機ELはバックライトが必要な自発光しない素子である液晶素子よりも、薄型化及び軽量化が図れ、視認性に優れる等の特徴を有する。 In recent years, the development of organic electroluminescence (organic EL) elements, which are self-luminous elements using electrons and holes as carriers, has been rapidly progressing. Organic EL has features such as being thinner and lighter than a liquid crystal element that does not emit light and requires a backlight, and has excellent visibility.
 有機ELの素子は、一般に、各々の互いに対向する面に電極が形成された一対の基板と、一対の基板間に配された発光層とを備えている。このうち発光層は電圧が印加されることにより発光する発光材料を含む有機薄膜からなっている。このような有機ELの素子を発光させる場合、陽極と陰極から有機薄膜に電圧を印加して正孔と電子を注入する。このことにより、有機薄膜中で正孔と電子を再結合させ、再結合により生成された励起子が基底状態に戻ることにより発光が得られる。 An organic EL element generally includes a pair of substrates on which electrodes are formed on the surfaces facing each other, and a light emitting layer disposed between the pair of substrates. Among these, the light emitting layer is made of an organic thin film containing a light emitting material that emits light when a voltage is applied. When such an organic EL device emits light, a voltage is applied to the organic thin film from the anode and the cathode to inject holes and electrons. As a result, holes and electrons are recombined in the organic thin film, and the excitons generated by the recombination return to the ground state, whereby light emission is obtained.
 有機ELの素子では、発光層の他に、該発光層と電極との間に、正孔や電子の注入効率を上げるための正孔注入層や電子注入層、並びに正孔と電子の再結合効率を向上させるための正孔輸送層や電子輸送層をそれぞれ設ける必要がある。このことにより、有機ELの素子は、多層構造となって構造が複雑になり、製造過程が多くなる。また有機ELでは、陽極と陰極に用いる電極材料の選択に仕事関数を考慮する必要があるため制限が多い。 In the organic EL device, in addition to the light emitting layer, a hole injection layer and an electron injection layer for increasing the injection efficiency of holes and electrons between the light emitting layer and the electrode, and recombination of holes and electrons. It is necessary to provide a hole transport layer and an electron transport layer for improving efficiency. As a result, the organic EL element has a multi-layered structure, which complicates the structure and increases the manufacturing process. In organic EL, there are many limitations because it is necessary to consider the work function when selecting the electrode material used for the anode and the cathode.
 これらの問題に対処する自発光素子として、電気化学発光セル(Light-emittingElectrochemicalCells:LEC)が近年注目されている(特許文献1及び2)。電気化学発光セルは、一般に、イオン性化合物と発光材料とを含む発光層を有する。イオン性化合物としては各種の無機塩又は有機塩が用いられ、発光材料としては有機高分子や金属錯体等が用いられる。電圧印加時には、発光層中でイオン性化合物に由来するカチオン及びアニオンがそれぞれ陰極及び陽極に向かって移動し、これは電極界面における大きな電場勾配(電気二重層)をもたらす。形成される電気二重層は、陰極及び陽極それぞれにおける電子及び正孔の注入を容易にするため、電気化学発光セルでは有機ELのような多層構造が必要ない。また、電気化学発光セルでは陰極及び陽極として用いる材料の仕事関数を考慮する必要がないことから材料の制限が少ない。これらの理由から、電気化学発光セルは、有機ELに比べて製造コストを大幅に低減できる自発光素子として期待されている。 Recently, attention has been paid to light-emitting electrochemical cells (LECs) as self-luminous elements that deal with these problems (Patent Documents 1 and 2). An electrochemiluminescence cell generally has a light emitting layer containing an ionic compound and a light emitting material. Various inorganic salts or organic salts are used as the ionic compound, and organic polymers and metal complexes are used as the light emitting material. When a voltage is applied, cations and anions derived from the ionic compound move in the light emitting layer toward the cathode and the anode, respectively, which results in a large electric field gradient (electric double layer) at the electrode interface. The formed electric double layer facilitates the injection of electrons and holes in the cathode and the anode, respectively. Therefore, the electrochemiluminescence cell does not require a multilayer structure like an organic EL. In addition, since there is no need to consider the work function of the material used as the cathode and anode in the electrochemiluminescence cell, there are few restrictions on the material. For these reasons, the electrochemiluminescence cell is expected as a self-luminous element that can significantly reduce the manufacturing cost as compared with the organic EL.
特開2011-103234号公報JP 2011-103234 A 国際公開WO2010/085180号パンフレットInternational Publication WO2010 / 085180 Pamphlet
 従来の電気化学発光セルの発光層に用いられてきた発光材料としては、有機ELで用いられてきた発光材料と同様の有機高分子発光材料、特にπ共役系ポリマーが多く用いられている。有機高分子は発光材料として機能する他、正孔や電子を輸送する機能も持ち合わせている。発光材料として有機高分子発光材料を用いた薄膜は、正孔や電子の移動性は高いものであったが、イオンの移動性(イオンの輸送性ともいう)が低いことが課題とされてきた。一方で、発光材料として、金属錯体、有機低分子又は量子ドット等の発光性物質と、これらに正孔や電子を輸送する有機高分子導電材料との組み合わせを用いる場合があり、この場合においてもイオンの移動性が低いことが課題とされている。
 電気化学発光セルの発光層におけるイオンの移動性の低さは、極性の低い発光材料(詳細には、発光材料として有機高分子発光材料を用いた場合は該有機高分子発光材料、発光材料として金属錯体、有機低分子又は量子ドット等と有機高分子導電材料との組み合わせを用いた場合は、該有機高分子導電材料)と、極性の高いイオン性化合物との相溶性が低いことが一因とされている。イオンの移動性の低さ、特に発光材料とイオン性化合物との相溶性が低いことに起因したイオンの移動性の低さは、上述した電極界面における再配向速度を低下させる他、正孔と電子の注入効率を低下させてしまう。
 発光材料とイオン性化合物との相溶性を高めることや発光層中のイオン移動性を高めることを目的として、特許文献1及び2にも、イオン性化合物として従来の無機塩に変えて、有機塩であるイオン液体を用いることや、ポリエチレンオキシド等の高分子化合物を添加すること等が記載されている。
 しかしながら、発光材料とイオン性化合物との相溶性を更に向上させることのできる技術の開発が待たれていた。
As a light emitting material used for a light emitting layer of a conventional electrochemiluminescence cell, an organic polymer light emitting material similar to the light emitting material used for organic EL, particularly a π-conjugated polymer is often used. In addition to functioning as a light emitting material, organic polymers also have the function of transporting holes and electrons. A thin film using an organic polymer light-emitting material as a light-emitting material has high mobility of holes and electrons, but low mobility of ions (also referred to as ion transport) has been a problem. . On the other hand, as a light emitting material, a combination of a light emitting substance such as a metal complex, a small organic molecule, or a quantum dot and an organic polymer conductive material that transports holes and electrons to these may be used. The problem is that the ion mobility is low.
The low mobility of ions in the light-emitting layer of the electrochemiluminescence cell is due to the low-polarity light-emitting material (specifically, when an organic polymer light-emitting material is used as the light-emitting material, In the case of using a combination of a metal complex, a small organic molecule, or a quantum dot, and an organic polymer conductive material, this is due to the low compatibility between the organic polymer conductive material) and a highly polar ionic compound. It is said that. The low mobility of ions, especially the low mobility of ions due to low compatibility between the luminescent material and the ionic compound, reduces the reorientation rate at the electrode interface described above, Electron injection efficiency is reduced.
In order to increase the compatibility between the luminescent material and the ionic compound and to increase the ion mobility in the luminescent layer, Patent Documents 1 and 2 also disclose organic salts instead of conventional inorganic salts as ionic compounds. The use of an ionic liquid, and the addition of a polymer compound such as polyethylene oxide are described.
However, development of a technique capable of further improving the compatibility between the light emitting material and the ionic compound has been awaited.
 前記の課題を解決すべく鋭意研究した結果、本発明者は発光材料及びイオン性化合物を含む発光層に、エステル結合を有する特定の化合物を添加することで、発光材料及びイオン性化合物の様々な組み合わせにおいて両者の相溶性を向上させることができ、発光層を形成する有機薄膜の膜質改善を図ることができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventor has added a specific compound having an ester bond to a light-emitting layer containing a light-emitting material and an ionic compound. It has been found that the compatibility of the two can be improved in combination, and the film quality of the organic thin film forming the light emitting layer can be improved, and the present invention has been completed.
 すなわち本発明は、下記一般式(1)で表される化合物を含む電気化学発光セルの発光層用添加剤を提供することにより、前記課題を解決したものである。 That is, this invention solves the said subject by providing the additive for light emitting layers of the electrochemiluminescence cell containing the compound represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000008

(式中、Xはリン原子、炭素原子又は硫黄原子であり、
 Aは、水素原子、直接結合、芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基であり、
 Rは水素原子、又は、分岐鎖状、直鎖状若しくは環状のアルキル基であり、複数存在するRは同一であってもよく異なっていてもよく、同じXにOを介して結合する複数のR同士は互いに連結して環を形成してもよく、該環が形成されていない場合、少なくとも1つのRはアルキル基であり、
 mは0又は1であり、
 rはXがリン原子又は炭素原子のときは1であり、Xが硫黄原子のときは2であり、
 nは、Xがリン原子のときに3-mで表される数であり、Xが炭素原子又は硫黄原子の場合は2-mで表される数であり、
 pは、mが0であるとき又はmが1でAが水素原子であるときに、1であり、mが1でAが直接結合であるときに、2であり、mが1でAが水素原子又は直接結合でないときに、Aにおいて置換可能な数である。ただし、Xがリン原子又は硫黄原子の場合はAは直接結合ではない。またXが硫黄原子の場合はAは水素原子ではない。)
Figure JPOXMLDOC01-appb-C000008

(In the formula, X is a phosphorus atom, a carbon atom or a sulfur atom,
A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group,
R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O. Rs may be connected to each other to form a ring. When the ring is not formed, at least one R is an alkyl group,
m is 0 or 1,
r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom,
n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
p is 1 when m is 0 or when m is 1 and A is a hydrogen atom, p is 2 when m is 1 and A is a direct bond, m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond. However, when X is a phosphorus atom or a sulfur atom, A is not a direct bond. When X is a sulfur atom, A is not a hydrogen atom. )
 また本発明は、前記一般式(1)で表される化合物、イオン性化合物、及び発光材料を含有する、電気化学発光セルの発光層形成用組成物を提供することにより、前記課題を解決したものである。 Moreover, this invention solved the said subject by providing the composition for electroluminescent cell formation of the electrochemiluminescent cell containing the compound represented by the said General formula (1), an ionic compound, and a luminescent material. Is.
 また本発明は、発光層と、その各面に配された電極とを有する電気化学発光セルにおいて、前記発光層が、発光材料、イオン性化合物及び、前記一般式(1)で表される化合物を含む、電気化学発光セルを提供することにより、前記課題を解決したものである。 Moreover, this invention is an electrochemiluminescence cell which has a light emitting layer and the electrode distribute | arranged to each surface. WHEREIN: The said light emitting layer is a luminescent material, an ionic compound, and the compound represented by the said General formula (1). The above-mentioned problems are solved by providing an electrochemiluminescence cell containing
 本発明によれば、電気化学発光セルにおける発光層に添加した場合に発光効率が高く、発光輝度に優れた発光層が得られる添加剤が提供される。また、発光効率が高く、発光輝度に優れた発光層形成用組成物が提供される。また前記添加剤又は前記発光層形成用組成物を発光層に使用した電気化学発光セルが提供される。 According to the present invention, there is provided an additive capable of obtaining a light emitting layer having high light emission efficiency and excellent light emission luminance when added to a light emitting layer in an electrochemiluminescence cell. In addition, a composition for forming a light emitting layer having high light emission efficiency and excellent light emission luminance is provided. There is also provided an electrochemiluminescence cell using the additive or the composition for forming a light emitting layer in a light emitting layer.
図1は、本発明の一実施形態における電気化学発光セルの概略断面図である。FIG. 1 is a schematic cross-sectional view of an electrochemiluminescence cell according to an embodiment of the present invention. 図2は、電気化学発光セルの発光機構を示す概念図である。図2(a)は電圧印加前の電気化学発光セルを示し、図2(b)は電圧印加後の電気化学発光セルを示す。FIG. 2 is a conceptual diagram showing a light emission mechanism of the electrochemiluminescence cell. FIG. 2A shows an electrochemiluminescence cell before voltage application, and FIG. 2B shows an electrochemiluminescence cell after voltage application.
 以下、本発明の好ましい実施形態について説明する。
 まず、本発明の添加剤の添加対象である電気化学発光セルの一実施形態について図面に基づき説明する。図1に示す通り、本実施形態で用いる電気化学発光セル10は、発光層12と、その各面に配された電極13,14とを有する。電気化学発光セル10は、互いに対向する一対の電極である第1電極13及び第2電極14と、一対の電極13,14間に挟持された発光層12とを備えている。電気化学発光セル10は、電圧が印加されることにより発光層が発光するようになっている。電気化学発光セル10は、各種ディスプレイ等として使用されるものである。図1においては、電源として直流電源を用い、第1電極13を直流電源の陽極に接続し、第2電極14を陰極に接続している状態が示されている。しかしながら、図示とは反対に、第1電極13を陰極に接続し、第2電極14を陽極に接続してもよい。また、電源として直流電源の代わりに交流電源を用いることも可能である。
Hereinafter, preferred embodiments of the present invention will be described.
First, an embodiment of an electrochemiluminescence cell to which an additive of the present invention is added will be described with reference to the drawings. As shown in FIG. 1, the electrochemiluminescence cell 10 used in this embodiment includes a light emitting layer 12 and electrodes 13 and 14 disposed on each surface thereof. The electrochemiluminescence cell 10 includes a first electrode 13 and a second electrode 14 that are a pair of electrodes facing each other, and a light emitting layer 12 sandwiched between the pair of electrodes 13 and 14. In the electrochemiluminescence cell 10, the light emitting layer emits light when a voltage is applied. The electrochemiluminescence cell 10 is used as various displays. FIG. 1 shows a state where a DC power source is used as a power source, the first electrode 13 is connected to the anode of the DC power source, and the second electrode 14 is connected to the cathode. However, contrary to the illustration, the first electrode 13 may be connected to the cathode and the second electrode 14 may be connected to the anode. Moreover, it is also possible to use an AC power source as a power source instead of a DC power source.
 第1電極13及び第2電極14は、透光性を有する透明電極であってもよいし、半透明又は不透明な電極であってもよい。透光性を有する透明電極としては、インジウムドープ酸化錫(ITO)やフッ素ドープ酸化錫(FTO)などの金属酸化物からなるものが挙げられる。また、不純物を添加したポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等の透明性を有する高分子からなるものを挙げることができる。半透明又は不透明な電極としては、例えば、アルミニウム(Al)、銀(Ag)、金(Au)、白金(Pt)、錫(Sn)、ビスマス(Bi)、銅(Cu)、クロム(Cr)等の金属材料が挙げられる。 The first electrode 13 and the second electrode 14 may be transparent electrodes having translucency, or may be translucent or opaque electrodes. Examples of the transparent electrode having translucency include those made of metal oxides such as indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO). Further, there can be mentioned those made of a polymer having transparency such as poly (3,4-ethylenedioxythiophene) (PEDOT) doped with impurities. Examples of the translucent or opaque electrode include aluminum (Al), silver (Ag), gold (Au), platinum (Pt), tin (Sn), bismuth (Bi), copper (Cu), and chromium (Cr). And metal materials such as
 第1電極13及び第2電極14のうち少なくとも一方を透明電極とすると、発光層12から発せられた光を容易に外部に取り出せるため好ましい。また一方を透明電極とし、他方を不透明な金属電極とした場合には、発光層12から発せられた光を金属電極で反射させつつ外部に取り出せるので好ましい。また、第1電極13及び第2電極14の両方を透明電極としてシースルー発光体としてもよい。更に、第1電極13及び第2電極14の両方を高い反射率を有する材質であるAg等からなる金属電極とし、発光層12の膜厚を制御することで、電気化学発光セル10をレーザー発振素子とすることもできる。 It is preferable to use at least one of the first electrode 13 and the second electrode 14 as a transparent electrode because light emitted from the light emitting layer 12 can be easily extracted to the outside. Further, when one is a transparent electrode and the other is an opaque metal electrode, it is preferable because light emitted from the light emitting layer 12 can be taken out while being reflected by the metal electrode. Moreover, it is good also as a see-through light-emitting body by making both the 1st electrode 13 and the 2nd electrode 14 into a transparent electrode. Furthermore, both the first electrode 13 and the second electrode 14 are metal electrodes made of Ag or the like having a high reflectivity, and the thickness of the light emitting layer 12 is controlled, so that the electrochemiluminescence cell 10 is laser-oscillated. It can also be an element.
 第1電極13を透明電極とし、第2電極14を不透明又は半透明な金属電極とした場合、第1電極13は、適切な抵抗率及び光透過性を実現する観点から、例えば10nm以上500nm以下の厚さを有していることが好ましい。第2電極14は、第1電極13と同様に適切な抵抗率及び光透過性を実現する観点から、例えば10nm以上500nm以下の厚さを有していることが好ましい。 When the first electrode 13 is a transparent electrode and the second electrode 14 is an opaque or translucent metal electrode, the first electrode 13 is, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing appropriate resistivity and light transmittance. It is preferable to have a thickness of The second electrode 14 preferably has a thickness of, for example, 10 nm or more and 500 nm or less from the viewpoint of realizing an appropriate resistivity and light transmittance in the same manner as the first electrode 13.
 発光層12は、発光材料とイオン性化合物とが混合されてなるものである。発光層12は固体状及び液体状のいずれであってもよい。発光層12が固体状であると、一定の形状を維持して、外から加えられる力に対抗することができることや、フレキシブルな素材、例えば伸縮可能な電極を発光層12と組み合わせることで、伸縮可能な電気化学発光セルを作製することができるため好ましい。 The light emitting layer 12 is a mixture of a light emitting material and an ionic compound. The light emitting layer 12 may be either solid or liquid. When the light emitting layer 12 is in a solid state, the light emitting layer 12 can maintain a certain shape and can resist the force applied from the outside, or can be expanded and contracted by combining a flexible material such as an expandable electrode with the light emitting layer 12. This is preferable because possible electrochemiluminescence cells can be produced.
 本発明において、発光材料は、アニオン及びカチオンがドープされることにより電子及び正孔のキャリア体として働く(正孔及び電子の輸送機能を有する)とともに、電子及び正孔の結合により励起して発光する(発光機能を有する)ものをいう。従って、本発明において単に「発光材料」という場合、導電性発光材料を意味する。本発明において、発光材料は、正孔及び電子の輸送機能と発光機能とを併せ持つ材料であってもよいし、或は、正孔及び/又は電子の輸送機能を有する材料と、該材料から正孔及び電子を受け取って発光する材料との組み合わせであってもよい。
 前者の場合、正孔及び電子の輸送機能と発光機能とを併せ持つ材料としては、後述する有機高分子発光材料が挙げられる。また後者の場合、正孔及び/又は電子を輸送する機能を有する材料としては、後述するポリビニルカルバゾール等の有機高分子導電材料が挙げられる。また正孔及び/又は電子を輸送する材料から正孔及び電子を受け取って発光する機能を有する材料としては、通常、有機高分子以外のものが用いられ、後述する金属錯体、有機低分子、量子ドット等を挙げることができる。このように、本明細書では、発光機能を有しない、或いは発光機能の低い有機高分子導電材料も、金属錯体、有機低分子、量子ドット等の有機高分子以外の発光材料と組み合わせて用いる場合、「発光材料」に含まれる。従って例えば、後述する「発光材料との相溶性」は、発光材料として前記有機高分子導電材料と前記金属錯体、有機低分子又は量子ドットとの組み合わせを用いる場合、発光材料のうちの該導電材料との相溶性を含む。
In the present invention, the light-emitting material functions as an electron and hole carrier body (having a hole and electron transport function) by being doped with anions and cations, and emits light when excited by the combination of electrons and holes. It means (has a light emitting function). Therefore, in the present invention, the simple term “luminescent material” means a conductive luminescent material. In the present invention, the light emitting material may be a material having both a hole and electron transport function and a light emission function, or a material having a hole and / or electron transport function and a positive It may be a combination with a material that receives holes and electrons and emits light.
In the former case, examples of the material having both a hole and electron transport function and a light emitting function include organic polymer light emitting materials described later. In the latter case, examples of the material having a function of transporting holes and / or electrons include organic polymer conductive materials such as polyvinyl carbazole described later. In addition, as a material having a function of receiving holes and electrons from a material that transports holes and / or electrons and emitting light, materials other than organic polymers are usually used. A dot etc. can be mentioned. As described above, in this specification, an organic polymer conductive material that does not have a light-emitting function or has a low light-emitting function is used in combination with a light-emitting material other than an organic polymer such as a metal complex, a small organic molecule, or a quantum dot. , And “light emitting material”. Therefore, for example, “compatibility with a light emitting material” to be described later is used when the combination of the organic polymer conductive material and the metal complex, organic low molecule or quantum dot is used as the light emitting material. Including compatibility.
 本実施形態では、この発光層12に、発光材料及びイオン性化合物に加えて、特定の添加剤を含有させる。本実施形態の添加剤は、下記の一般式(1)で示される化合物を含有する。 In the present embodiment, the light emitting layer 12 contains a specific additive in addition to the light emitting material and the ionic compound. The additive of this embodiment contains a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009

(式中、Xはリン原子、炭素原子又は硫黄原子であり、
 Aは、水素原子、直接結合、芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基であり、
 Rは水素原子、又は、分岐鎖状、直鎖状若しくは環状のアルキル基であり、複数存在するRは同一であってもよく異なっていてもよく、同じXにOを介して結合する複数のR同士は互いに連結して環を形成してもよく、該環が形成されていない場合、少なくとも1つのRはアルキル基であり、
 mは0又は1であり、
 rはXがリン原子又は炭素原子のときは1であり、Xが硫黄原子のときは2であり、
 nは、Xがリン原子のときに3-mで表される数であり、Xが炭素原子又は硫黄原子の場合は2-mで表される数であり、
 pは、mが0であるとき又はmが1でAが水素原子であるときに、1であり、mが1でAが直接結合であるときに、2であり、mが1でAが水素原子又は直接結合でないときに、Aにおいて置換可能な数である。ただし、Xがリン原子又は硫黄原子の場合はAは直接結合ではない。またXが硫黄原子の場合はAは水素原子ではない。)
Figure JPOXMLDOC01-appb-C000009

(In the formula, X is a phosphorus atom, a carbon atom or a sulfur atom,
A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group,
R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O. Rs may be connected to each other to form a ring. When the ring is not formed, at least one R is an alkyl group,
m is 0 or 1,
r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom,
n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
p is 1 when m is 0 or when m is 1 and A is a hydrogen atom, p is 2 when m is 1 and A is a direct bond, m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond. However, when X is a phosphorus atom or a sulfur atom, A is not a direct bond. When X is a sulfur atom, A is not a hydrogen atom. )
 前記一般式(1)の通り、本発明で用いる添加剤は、[-X(=O)r(-O-)n]で示される基であるエステル結合を有する化合物を含む。エステル結合を有する特定構造の化合物を添加することで、意外にも、発光材料とイオン性化合物との相溶性(分散性ともいう)を高めることができることが、本発明者の検討の結果判明した。その結果、電気化学発光セルの発光輝度を低電圧で高めることができるため、消費電力を抑えつつ高輝度を達成することができる。
 本発明者はこの理由として以下のように推定している。一般式(1)の前記特定構造は、[-X(=O)r(-O-)n]で示されるエステル結合部分が極性を有するとともに、Rで表されるアルキル基又は該アルキル基及びAで表される基が極性の低い部位となる。そして、一般式(1)の化合物を含む添加剤を発光材料及びイオン性化合物を有する発光層に添加すると、化合物中の極性の低い部位が発光材料に対して高い相溶性を有するため、発光層中に容易に分散する。更に、発光材料中に分散した一般式(1)の化合物の極性部分がイオン性化合物に対して高い相溶性を有するため、発光材料とイオン性化合物との相溶性、ないしは発光材料へのイオン性化合物の分散性を高めることができる。このように発光材料へのイオン性化合物の分散性が高まることでイオンの輸送性が向上することに加えて、発光材料中に分散した一般式(1)の化合物がイオン性化合物の移動点となることで、発光材料にイオンの輸送性を付与する。以上の理由から、本発明の添加剤を発光層に添加すると、発光層におけるイオンの輸送性が高まることで、電気化学発光セルの発光輝度を低電圧で高めることができると考えられる。
As represented by the general formula (1), the additive used in the present invention includes a compound having an ester bond which is a group represented by [—X (═O) r (—O—) n ]. Surprisingly, as a result of the inventor's investigation, it was found that the compatibility (also referred to as dispersibility) between the light-emitting material and the ionic compound can be increased by adding a compound having a specific structure having an ester bond. . As a result, the emission brightness of the electrochemiluminescence cell can be increased at a low voltage, so that high brightness can be achieved while suppressing power consumption.
The inventor presumes the reason for this as follows. In the specific structure of the general formula (1), the ester bond portion represented by [—X (═O) r (—O—) n ] has polarity, and the alkyl group represented by R or the alkyl group and The group represented by A is a site with low polarity. Then, when an additive containing the compound of the general formula (1) is added to the light emitting layer having the light emitting material and the ionic compound, the low polarity portion in the compound has high compatibility with the light emitting material. Easily disperse in. Further, since the polar part of the compound of the general formula (1) dispersed in the light emitting material has high compatibility with the ionic compound, the compatibility between the light emitting material and the ionic compound, or the ionicity to the light emitting material. The dispersibility of the compound can be increased. As described above, the dispersibility of the ionic compound in the light-emitting material is improved, so that the ion transport property is improved. In addition, the compound of the general formula (1) dispersed in the light-emitting material has a transfer point of the ionic compound. Thus, an ion transport property is imparted to the light emitting material. For the above reasons, it is considered that when the additive of the present invention is added to the light emitting layer, the ion transport property in the light emitting layer is increased, so that the emission luminance of the electrochemiluminescent cell can be increased at a low voltage.
 本明細書でエステル結合とは、リン酸エステル結合、ホスホン酸エステル結合、炭酸エステル結合、カルボン酸エステル結合、硫酸エステル結合のいずれをも含む。一般式(1)におけるエステル結合の数であるpは、mが0であるかmが1でありAが水素原子である場合は1であり、mが1でAが直接結合である場合は、Xが炭素原子であることを条件に2である。しかしながら、mが1であって、Aが芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基である場合は、Aで表されるこれらの基において置換可能な基であればよい。mが1であって、Aが芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基である場合における好ましいpの数の上限としては、例えば、一般式(1)で表される化合物の発光材料との相溶性の観点、及び、一般式(1)で表される化合物の入手容易性の観点から6以下であることが好ましく、4以下であることがより好ましい。また、mが1であって、Aが芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基である場合における好ましいpの数の下限としては、一般式(1)で表される化合物のイオン性化合物との相溶性の観点、及び、一般式(1)で表される化合物の入手容易性の観点から1以上であることが好ましい。 In the present specification, the ester bond includes any of a phosphate ester bond, a phosphonate ester bond, a carbonate ester bond, a carboxylic acid ester bond, and a sulfate ester bond. P, which is the number of ester bonds in the general formula (1), is 1 when m is 0 or m is 1 and A is a hydrogen atom, and when m is 1 and A is a direct bond, , 2 on the condition that X is a carbon atom. However, when m is 1 and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or a heterocyclic group, these groups represented by A are substituted. Any group is possible. As the upper limit of the preferred number of p when m is 1 and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group, for example, From the viewpoint of the compatibility of the compound represented by (1) with the luminescent material and from the viewpoint of the availability of the compound represented by the general formula (1), it is preferably 6 or less, and is 4 or less. Is more preferable. In addition, when m is 1 and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or a heterocyclic group, the preferable lower limit of the number of p is a general formula It is preferable that it is 1 or more from a compatible viewpoint with the ionic compound of the compound represented by (1), and the viewpoint of the availability of the compound represented by General formula (1).
 一般式(1)におけるAで表される芳香族炭化水素基の例としては、芳香族炭化水素化合物中の芳香族環上の水素原子を1つ除いた基つまりアリール基が挙げられる。芳香族炭化水素基の具体例としては、フェニル基、ナフチル基、アントラセニル基、並びに、これらの芳香族環に結合した水素原子の1又は2以上が鎖状脂肪族炭化水素基に置換された基、例えばトリル基、キシリル基等が挙げられる。芳香族炭化水素基は、一般式(1)で表される化合物の発光材料及びイオン性化合物との相溶性等を考慮して、炭素原子数が6以上22以下であることが好ましく、6以上14以下であることがより好ましい。ここでいう炭素原子数は、芳香族環が鎖状脂肪族炭化水素基に置換されている場合は、その鎖状脂肪族炭化水素基の炭素原子数を含む。前記の鎖状脂肪族炭化水素基の例としては、後述するAで表される鎖状脂肪族炭化水素基として例示される基が挙げられる。 Examples of the aromatic hydrocarbon group represented by A in the general formula (1) include a group in which one hydrogen atom on the aromatic ring in the aromatic hydrocarbon compound is removed, that is, an aryl group. Specific examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, an anthracenyl group, and a group in which one or more hydrogen atoms bonded to these aromatic rings are substituted with a chain aliphatic hydrocarbon group. Examples thereof include a tolyl group and a xylyl group. The aromatic hydrocarbon group preferably has 6 to 22 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the luminescent material and the ionic compound, and more preferably 6 or more. More preferably, it is 14 or less. The number of carbon atoms here includes the number of carbon atoms of the chain aliphatic hydrocarbon group when the aromatic ring is substituted with a chain aliphatic hydrocarbon group. Examples of the chain aliphatic hydrocarbon group include groups exemplified as the chain aliphatic hydrocarbon group represented by A described later.
 一般式(1)におけるAで表される鎖状脂肪族炭化水素基としては鎖状飽和脂肪族炭化水素基及び鎖状不飽和脂肪族炭化水素基が挙げられる。鎖状飽和脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、イソブチル基、n-アミル基、イソアミル基、t-アミル基、n-ヘキシル基、n-ヘプチル基、イソヘプチル基、t-ヘプチル基、n-オクチル基、イソオクチル基、2-エチルヘキシル基、t-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の分岐鎖状又は直鎖状のアルキル基が挙げられる。鎖状不飽和脂肪族炭化水素基としては、鎖状飽和脂肪族炭化水素基における炭素-炭素一重結合の一つ以上が炭素-炭素二重結合又は三重結合に置き換えられた基が挙げられ、例えば、アルケニル基及びアルキニル基が挙げられる。アルケニル基としては、例えばビニル基、アリル基、イソプロペニル基、2-ブテニル基、2-メチルアリル基、1,1-ジメチルアリル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、4-ペンテニル基、ヘキセニル基、オクテニル基、ノネニル基、デセニル基等の直鎖状又は分岐鎖状のアルケニル基が挙げられる。アルキニル基としては、例えばエチニル基、プロパ-2-イン-1-イル基等が挙げられる。Aで表される鎖状脂肪族炭化水素基は、一般式(1)で表される化合物の発光材料及びイオン性化合物との相溶性等を考慮して、炭素原子数が2以上16以下であることが好ましく、4以上8以下であることがより好ましい。 Examples of the chain aliphatic hydrocarbon group represented by A in the general formula (1) include a chain saturated aliphatic hydrocarbon group and a chain unsaturated aliphatic hydrocarbon group. Examples of the chain saturated aliphatic hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, isobutyl group, n-amyl group, and isoamyl group. T-amyl group, n-hexyl group, n-heptyl group, isoheptyl group, t-heptyl group, n-octyl group, isooctyl group, 2-ethylhexyl group, t-octyl group, nonyl group, isononyl group, decyl group And branched or straight chain alkyl groups such as isodecyl group, undecyl group, dodecyl group, tridecyl group, isotridecyl group, tetradecyl group, hexadecyl group, octadecyl group, icosyl group. Examples of the chain unsaturated aliphatic hydrocarbon group include groups in which one or more carbon-carbon single bonds in the chain saturated aliphatic hydrocarbon group are replaced with carbon-carbon double bonds or triple bonds. Alkenyl group and alkynyl group. Examples of alkenyl groups include vinyl, allyl, isopropenyl, 2-butenyl, 2-methylallyl, 1,1-dimethylallyl, 3-methyl-2-butenyl, and 3-methyl-3-butenyl. And straight-chain or branched alkenyl groups such as 4-pentenyl group, hexenyl group, octenyl group, nonenyl group and decenyl group. Examples of the alkynyl group include ethynyl group and prop-2-yn-1-yl group. The chain aliphatic hydrocarbon group represented by A has 2 to 16 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the light emitting material and the ionic compound. It is preferable that it is 4 or more and 8 or less.
 一般式(1)におけるAで表される脂環式炭化水素基としては、飽和脂環式炭化水素基及び不飽和脂環式炭化水素基が挙げられる。飽和脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基及びこれらの水素原子の一以上が前記の鎖状脂肪族炭化水素基の何れかに置換された基が挙げられる。不飽和脂環式炭化水素基としては、シクロペンチニル基、シクロヘキシニル基、シクロヘキシジエニル基、及びこれらの基中の水素原子の一以上が前記の鎖状脂肪族炭化水素基の何れかに置換された基が挙げられる。これらAで表される脂環式炭化水素基は、一般式(1)で表される化合物の発光材料及びイオン性化合物との相溶性等を考慮して、炭素原子数が4以上20以下であることが好ましく、5以上18以下であることがより好ましい。ここでいう炭素原子数は、脂環が鎖状脂肪族炭化水素基に置換されている場合は、その鎖状脂肪族炭化水素基の炭素原子数を含む。 Examples of the alicyclic hydrocarbon group represented by A in the general formula (1) include a saturated alicyclic hydrocarbon group and an unsaturated alicyclic hydrocarbon group. Examples of the saturated alicyclic hydrocarbon group include a cyclopentyl group, a cyclohexyl group, and a group in which one or more of these hydrogen atoms are substituted with any of the above-mentioned chain aliphatic hydrocarbon groups. Examples of the unsaturated alicyclic hydrocarbon group include a cyclopentynyl group, a cyclohexynyl group, a cyclohexyldienyl group, and one or more hydrogen atoms in these groups are any of the chain aliphatic hydrocarbon groups. Examples include substituted groups. These alicyclic hydrocarbon groups represented by A have 4 to 20 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the luminescent material and the ionic compound. It is preferable that it is 5 or more and 18 or less. The number of carbon atoms here includes the number of carbon atoms of the chain aliphatic hydrocarbon group when the alicyclic ring is substituted with a chain aliphatic hydrocarbon group.
 一般式(1)におけるAで表される複素環基としては、例えばピリジン、ピロール、フラン、イミダゾール、ピラゾール、オキサゾール、イミダゾリン、ピラジン等から誘導される一価の基が挙げられる。Aで表される複素環基は、一般式(1)で表される化合物の発光材料及びイオン性化合物との相溶性等を考慮して炭素原子数が3以上8以下であることが好ましく、4以上6以下であることがより好ましい。ここでいう炭素原子数は、複素環基が鎖状脂肪族炭化水素基に置換されている場合は、その鎖状脂肪族炭化水素基の炭素原子数を含まない。鎖状脂肪族炭化水素基の炭素原子数を含めた複素環基の炭素原子数としては、4以上20以下が好ましく、6以上16以下であることがより好ましい。 Examples of the heterocyclic group represented by A in the general formula (1) include monovalent groups derived from pyridine, pyrrole, furan, imidazole, pyrazole, oxazole, imidazoline, pyrazine and the like. The heterocyclic group represented by A preferably has 3 to 8 carbon atoms in consideration of the compatibility of the compound represented by the general formula (1) with the luminescent material and the ionic compound, More preferably, it is 4 or more and 6 or less. The number of carbon atoms here does not include the number of carbon atoms of the chain aliphatic hydrocarbon group when the heterocyclic group is substituted with a chain aliphatic hydrocarbon group. The number of carbon atoms of the heterocyclic group including the number of carbon atoms of the chain aliphatic hydrocarbon group is preferably 4 or more and 20 or less, and more preferably 6 or more and 16 or less.
 一般式(1)におけるAで表される基の例として前記で挙げた各基は、それに含まれる水素原子のうちの1個又は2個以上が官能基で置換されていてもよい。官能基としては、例えばアミノ基、ニトリル基、フェニル基、ベンジル基、カルボキシル基、炭素原子数が1以上12以下のアルコキシ基などが挙げられる。官能基が前述した芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基を置換している場合、芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基について前述した好ましい炭素原子数に官能基の炭素原子数は含まれない。 As an example of the group represented by A in the general formula (1), one or two or more of the hydrogen atoms contained therein may be substituted with a functional group. Examples of the functional group include an amino group, a nitrile group, a phenyl group, a benzyl group, a carboxyl group, and an alkoxy group having 1 to 12 carbon atoms. When the functional group is substituted for the above-mentioned aromatic hydrocarbon group, chain aliphatic hydrocarbon group, alicyclic hydrocarbon group or heterocyclic group, aromatic hydrocarbon group, chain aliphatic hydrocarbon group, The preferred number of carbon atoms described above for the alicyclic hydrocarbon group or heterocyclic group does not include the number of carbon atoms of the functional group.
 一般式(1)におけるRで表されるアルキル基としては、分岐鎖状、直鎖状、環状のいずれでもよいが、分岐鎖状、直鎖状であるものが好ましい。Rで表される分岐鎖状又は直鎖状のアルキル基としては、Aで表される鎖状飽和脂肪族炭化水素基の例として前記で挙げた基が挙げられる。またRで表される環式のアルキル基としては、Aで表される飽和脂環式炭化水素基の例として前記で挙げた基が挙げられる。 The alkyl group represented by R in the general formula (1) may be branched, linear or cyclic, but is preferably branched or linear. Examples of the branched or straight chain alkyl group represented by R include the groups listed above as examples of the chain saturated aliphatic hydrocarbon group represented by A. Examples of the cyclic alkyl group represented by R include the groups listed above as examples of the saturated alicyclic hydrocarbon group represented by A.
 同じXにOを介して結合する複数のR同士は互いに連結して環を形成してもよい。例えばそのような2つのR同士が互いに連結して環を形成した一般式(1)の化合物としては、環状カーボネート、環状ホスフェートが挙げられる。一般式(1)の化合物は、前記複数のR同士が互いに連結して形成された環を有していない場合、一般式(1)中、n×p個存在するRのうち、少なくとも1つのRがアルキル基であることが必須である。一般式(1)のうち、アルキル基であるRの数は1以上であることが好ましく、2以上であることがより好ましい。従って、p=1の場合は1つのXに酸素原子Oを介して結合するn個のRのうち、1個以上のRがアルキル基であることが好ましく、2個以上のRがアルキル基であることがより好ましい。またp=2以上の場合は1つのXに酸素原子Oを介して結合するn個のRのうち少なくとも1個がアルキル基であることが好ましい。一般式(1)のうち、アルキル基であるRの数は3以上であることが特に好ましい。 A plurality of R bonded to the same X through O may be connected to each other to form a ring. For example, examples of the compound of the general formula (1) in which two Rs are connected to each other to form a ring include cyclic carbonates and cyclic phosphates. When the compound of the general formula (1) does not have a ring formed by connecting the plurality of Rs to each other, at least one of nxp Rs in the general formula (1) is present. It is essential that R is an alkyl group. In the general formula (1), the number of Rs that are alkyl groups is preferably 1 or more, and more preferably 2 or more. Therefore, when p = 1, it is preferable that one or more Rs are alkyl groups among n Rs bonded to one X via an oxygen atom O, and two or more Rs are alkyl groups. More preferably. When p = 2 or more, it is preferable that at least one of n R bonded to one X through an oxygen atom O is an alkyl group. In general formula (1), the number of Rs that are alkyl groups is particularly preferably 3 or more.
 Rで表されるアルキル基の炭素原子数は、本発明の添加剤のイオン性化合物との相溶性を高いものに維持して、本発明の効果をより確実に得る観点や、溶剤への溶解性の観点から、16以下であることが好ましく、14以下であることがより好ましく、10以下であることが更に好ましく、8以下であることが特に好ましい。またRで表されるアルキル基の炭素原子数は、1以上であれば本発明の効果を十分得ることができるが、発光層に添加剤を添加したときにより低い電圧で高い輝度が得やすい観点から、2以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。 The number of carbon atoms of the alkyl group represented by R maintains a high compatibility with the ionic compound of the additive of the present invention, the viewpoint of obtaining the effect of the present invention more reliably, and dissolution in a solvent From the viewpoint of property, it is preferably 16 or less, more preferably 14 or less, still more preferably 10 or less, and particularly preferably 8 or less. In addition, if the number of carbon atoms of the alkyl group represented by R is 1 or more, the effect of the present invention can be sufficiently obtained. However, when an additive is added to the light emitting layer, it is easy to obtain high luminance at a lower voltage. Therefore, it is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more.
 Rで表されるアルキル基及び前記複数のRが連結して形成された環は、それに含まれる水素原子のうちの1個又は2個以上が官能基で置換されていてもよい。官能基としては、例えばアミノ基、ニトリル基などが挙げられる。 In the ring formed by linking the alkyl group represented by R and the plurality of Rs, one or more of the hydrogen atoms contained therein may be substituted with a functional group. Examples of the functional group include an amino group and a nitrile group.
 一般式(1)で表される化合物としては、Xがリン原子又は炭素原子であることが、化合物の入手しやすさ等の観点から好ましい。また、Xがリン原子である場合は、pが1であることが、入手のしやすさや取扱いのしやすさの観点から好ましい。
 更に、Xが炭素原子である場合は、mが1であることが、低電圧で高い発光輝度が得られるという効果をより確実に得られる観点から好ましい。これらの観点から、一般式(1)で表される化合物としては、下記一般式(2)又は下記一般式(3)で表される化合物を用いることが好ましい。一般式(2)で表される化合物はリン酸エステルであり、一般式(1)において、Xがリン原子であり、mが0、pが1である化合物である。また下記一般式(3)で表される化合物はカルボン酸エステルであり、一般式(1)において、Xが炭素原子であり、mが1である化合物である。一般式(3)で表される化合物は、Aが芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基であることが好ましい。
As a compound represented by General formula (1), it is preferable from viewpoints of the availability of a compound that X is a phosphorus atom or a carbon atom. When X is a phosphorus atom, it is preferable that p is 1 from the viewpoint of easy availability and ease of handling.
Furthermore, when X is a carbon atom, it is preferable that m is 1 from the viewpoint of more reliably obtaining the effect of obtaining high emission luminance at a low voltage. From these viewpoints, it is preferable to use a compound represented by the following general formula (2) or the following general formula (3) as the compound represented by the general formula (1). The compound represented by the general formula (2) is a phosphate ester. In the general formula (1), X is a phosphorus atom, m is 0, and p is 1. The compound represented by the following general formula (3) is a carboxylic acid ester, and in the general formula (1), X is a carbon atom and m is 1. In the compound represented by the general formula (3), A is preferably an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or a heterocyclic group.
Figure JPOXMLDOC01-appb-C000010

(式中、Rは前記一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000011
(式中、A、R及びpは前記一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000010

(In the formula, R is the same as the general formula (1).)
Figure JPOXMLDOC01-appb-C000011
(In the formula, A, R and p are the same as those in the general formula (1).)
 更に、一般式(1)で表される化合物としては、Xが硫黄原子である場合、以下の一般式(イ)で表される化合物が、耐電圧性や発光材料との相溶性等の観点から好ましい。 Further, as the compound represented by the general formula (1), when X is a sulfur atom, the compound represented by the following general formula (A) is used in terms of withstand voltage and compatibility with a light emitting material. To preferred.
Figure JPOXMLDOC01-appb-C000012
 (式中、R及びpは前記一般式(1)と同じであり、Aは芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, R and p are the same as those in the general formula (1), and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group.)
 更に、一般式(1)で表される化合物としては、Xが炭素原子であり、mが0である以下の一般式(ロ)で表される化合物も、耐電圧性や発光材料との相溶性等の観点から好ましい。 Further, as the compound represented by the general formula (1), a compound represented by the following general formula (b) in which X is a carbon atom and m is 0 is also suitable for withstand voltage and light emitting materials. It is preferable from the viewpoint of solubility.
Figure JPOXMLDOC01-appb-C000013
 (式中、Rは前記一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, R is the same as the general formula (1).)
 上述する一般式(ロ)で表される化合物としては、2つのRがいずれもアルキル基である化合物や、同一のCにOを介して結合している2つのRが互いに連結して環を形成している以下の一般式(ハ)で表される化合物が、耐電圧性や発光材料との相溶性等の観点から好ましい。
Figure JPOXMLDOC01-appb-C000014
(式中、Ra、Rb、Rc及びRdは、水素原子又はアルキル基であり、互いに同一であって
も異なってもよく、qは1以上3以下の数である)
As the compound represented by the general formula (b) described above, a compound in which two Rs are both alkyl groups, or two Rs bonded to the same C via O are connected to each other to form a ring. The formed compound represented by the following general formula (c) is preferable from the viewpoints of voltage endurance and compatibility with a light emitting material.
Figure JPOXMLDOC01-appb-C000014
(In the formula, Ra, Rb, Rc and Rd are hydrogen atoms or alkyl groups, which may be the same or different from each other, and q is a number of 1 or more and 3 or less.)
 Ra、Rb、Rc及びRdで表されるアルキル基は、直鎖状又は分岐鎖状であることが好ましく、Ra、Rb、Rc及びRdの炭素原子数は化合物の入手しやすさや取扱いの容易性を考慮してそれぞれ1以上8以下が好ましく、1以上4以下がより好ましい。qは1以上2以
下の数が好ましい。一般式(ハ)で表される化合物として最も好ましいものは、qが1の化合物、或いは、Ra、Rb、Rc及びRdがすべて水素原子であるか、或いはRa、Rb、Rc
及びRdのうち1の基がアルキル基であり、残りが水素原子である化合物である。
The alkyl group represented by Ra, Rb, Rc and Rd is preferably linear or branched, and the number of carbon atoms of Ra, Rb, Rc and Rd is the availability of the compound and the ease of handling. Is preferably 1 or more and 8 or less, more preferably 1 or more and 4 or less. q is preferably a number from 1 to 2. The most preferable compound represented by the general formula (c) is a compound in which q is 1, or Ra, Rb, Rc and Rd are all hydrogen atoms, or Ra, Rb, Rc.
And Rd is a compound in which one group is an alkyl group and the remainder is a hydrogen atom.
 一般式(1)で表される化合物の分子量は好ましくは70以上1000以下、より好ましくは120以上1000以下、特に好ましくは150以上800以下、とりわけ好ましくは200以上500以下であることが、これを発光層に添加したときに電気化学発光セルの発光効率が一層高くなり、発光輝度が一層優れたものになる点から好ましい。一般式(1)で表される化合物及びこれを含む本発明の添加剤は常温(25℃)で固体であってもよく、液体であってもよい。 The molecular weight of the compound represented by the general formula (1) is preferably 70 or more and 1000 or less, more preferably 120 or more and 1000 or less, particularly preferably 150 or more and 800 or less, and particularly preferably 200 or more and 500 or less. When added to the light emitting layer, the light emission efficiency of the electrochemiluminescence cell is further increased, and this is preferable from the viewpoint that the light emission luminance is further improved. The compound represented by the general formula (1) and the additive of the present invention containing the compound may be solid or liquid at normal temperature (25 ° C.).
 一般式(1)で表される化合物の製造方法は、特に限定されない。例えば、一般式(2)で表されるリン酸エステル化合物は、リン酸とアルコールの脱水縮合、或いは、リン酸塩化物とアルコールとを塩基の作用により縮合させることで得られる。また、一般式(3)で表されるカルボン酸エステル化合物はカルボン酸類と、アルコールとを脱水縮合させることにより製造できる。一般式(イ)で表されるスルホン酸エステル化合物は例えばスルホン酸の塩化物と、アルコールとを反応させることによりできる。一般式(ロ)で表される炭酸エステル化合物は例えばジメチルカーボネートとアルコールとをエステル交換反応させることにより製造できる。また一般式(1)で表される化合物として、市販の化合物を用いることもできる。 The method for producing the compound represented by the general formula (1) is not particularly limited. For example, the phosphate ester compound represented by the general formula (2) can be obtained by dehydration condensation of phosphoric acid and alcohol, or by condensing phosphate compound and alcohol by the action of a base. Moreover, the carboxylic acid ester compound represented by the general formula (3) can be produced by dehydration condensation of carboxylic acids and alcohol. The sulfonic acid ester compound represented by the general formula (I) can be obtained, for example, by reacting a sulfonic acid chloride with an alcohol. The carbonate ester compound represented by the general formula (b) can be produced, for example, by transesterifying dimethyl carbonate and alcohol. Moreover, a commercially available compound can also be used as a compound represented by General formula (1).
 本発明の添加剤は、一般式(1)で表される化合物のみを含有してもよく、その他の成分を含有してもよい。その他の成分としては、溶剤や一般式(1)で表される化合物以外の界面活性剤が挙げられる。本発明の添加剤は、イオン性化合物及び発光材料に添加して用いる際の使用しやすさから、一般式(1)で表される化合物を90質量%以上含有する
ことが好ましく、95質量%以上含有することがより好ましい。好ましい含有量の上限は
100質量%である。
The additive of the present invention may contain only the compound represented by the general formula (1), or may contain other components. Other components include surfactants other than the solvent and the compound represented by the general formula (1). The additive of the present invention preferably contains 90% by mass or more of the compound represented by the general formula (1) from the viewpoint of ease of use when used by being added to the ionic compound and the light emitting material, and 95% by mass. It is more preferable to contain above. The upper limit of the preferable content is 100% by mass.
 本発明では、一般式(1)で表される化合物を発光層中に1質量%以上の量で含有させることが、電気化学発光セルの発光効率及び発光輝度を向上させる効果をより確実に得ることができるため好ましい。また一般式(1)で表される化合物を発光層中に20質量%以下の量で含有させることが希釈による発光輝度の低下を抑制する観点から好ましい。これらの観点から一般式(1)で表される化合物を、発光層中に2質量%以上18質量%以下含有させることがより好ましく、3質量%以上15質量%以下含有させることが更に好ましく、5質量%以上10質量%以下含有させることが特に好ましい。発光層12中の一般式(1)で表される化合物の含有量は、発光材料100質量部に対し2質量部以上30質量部以下であることが好ましい。ここでいう発光材料の量とは、発光材料として有機高分子発光材料を用いる場合は、有機高分子発光材料の量であり、発光材料として、金属錯体、有機低分子又は量子ドット等の発光性物質と有機高分子導電材料との組み合わせを用いる場合は、金属錯体、有機低分子又は量子ドット等の発光性物質、及び有機高分子導電材料の合計量である。発光層12中の一般式(1)で表される化合物の含有量は、発光材料が後述する有機高分子発光材料の場合、有機高分子発光材料100質量部に対し、2質量部以上30質量部以下であることが特に好ましい。後述する発光材料が金属錯体、有機低分子又は量子ドット等の発光性物質、及び有機高分子導電材料の組み合わせである場合、発光層12中の一般式(1)で表される化合物の含有量は、金属錯体、有機低分子又は量子ドット等の発光性物質、及び有機高分子導電材料の合計量100質量部に対し、2質量部以上30質量部以下であることが特に好ましい。 In the present invention, the compound represented by the general formula (1) is contained in the light emitting layer in an amount of 1% by mass or more, and the effect of improving the light emission efficiency and light emission luminance of the electrochemiluminescence cell is obtained more reliably. This is preferable. In addition, it is preferable that the compound represented by the general formula (1) is contained in the light emitting layer in an amount of 20% by mass or less from the viewpoint of suppressing a decrease in emission luminance due to dilution. From these viewpoints, the compound represented by the general formula (1) is more preferably contained in the light emitting layer in an amount of 2% by mass or more and 18% by mass or less, and more preferably 3% by mass or more and 15% by mass or less. It is particularly preferable to contain 5% by mass or more and 10% by mass or less. The content of the compound represented by the general formula (1) in the light emitting layer 12 is preferably 2 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the light emitting material. The amount of the light emitting material here is the amount of the organic polymer light emitting material when an organic polymer light emitting material is used as the light emitting material, and the light emitting material is a light emitting property such as a metal complex, an organic small molecule or a quantum dot. When a combination of a substance and an organic polymer conductive material is used, the total amount of a metal complex, a light emitting substance such as an organic low molecule or a quantum dot, and an organic polymer conductive material. The content of the compound represented by the general formula (1) in the light emitting layer 12 is 2 to 30 parts by mass with respect to 100 parts by mass of the organic polymer light emitting material when the light emitting material is an organic polymer light emitting material described later. It is particularly preferred that the amount is not more than parts. When the light emitting material to be described later is a combination of a metal complex, a light emitting substance such as an organic low molecule or quantum dot, and an organic polymer conductive material, the content of the compound represented by the general formula (1) in the light emitting layer 12 Is particularly preferably 2 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the total amount of the light emitting substance such as the metal complex, the organic low molecule or the quantum dot, and the organic polymer conductive material.
 次にイオン性化合物について説明する。イオン性化合物は、イオンの移動性が確保され電気二重層が形成されやすく、正孔や電子の注入を容易なものとするための物質である。イオン性化合物としては、カチオン及びアニオンを含む化合物であり、有機カチオンの塩及び無機カチオンの塩のいずれも採用できる。有機カチオンの塩としては、カチオンがホスホニウムカチオン、アンモニウムカチオン、ピリジニウムカチオン、イミダゾリウムカチオン又はピロリジニウムカチオンであるものなどを用いることができる。無機カチオンの塩としては、第1族又は第2族に属する金属カチオンの塩が好ましく挙げられる。またイオン性化合物は有機塩及び無機塩のいずれであってもよく、有機塩の場合は、上述した有機カチオンの塩や無機カチオン及び有機アニオンからなる塩が挙げられ、無機塩の場合カチオンが前述の金属カチオン、例えばリチウムイオン又はカリウムイオンであるものなどを用いることができる。中でも、カチオンがホスホニウムカチオン、アンモニウムカチオン及びイミダゾリウムカチオンから選ばれる少なくとも1種であるものを用いると、発光材料との相溶性の観点から好ましい。特に本発明の添加剤を添加した際に、低い電圧で高い輝度が得やすい観点から発光層に用いるイオン性化合物としては、カチオンがホスホニウムカチオン及びアンモニウムカチオンから選ばれる少なくとも1種を用いることが好ましい。 Next, the ionic compound will be described. The ionic compound is a substance for ensuring mobility of ions, forming an electric double layer easily, and facilitating injection of holes and electrons. As an ionic compound, it is a compound containing a cation and an anion, and both the salt of an organic cation and the salt of an inorganic cation are employable. As the salt of the organic cation, one in which the cation is a phosphonium cation, an ammonium cation, a pyridinium cation, an imidazolium cation, or a pyrrolidinium cation can be used. Preferred examples of the inorganic cation salt include salts of metal cations belonging to Group 1 or Group 2. In addition, the ionic compound may be either an organic salt or an inorganic salt. In the case of an organic salt, examples include the above-described organic cation salt and a salt composed of an inorganic cation and an organic anion. Metal cations such as those that are lithium ions or potassium ions can be used. Among them, it is preferable from the viewpoint of compatibility with the light emitting material that the cation is at least one selected from a phosphonium cation, an ammonium cation and an imidazolium cation. In particular, when the additive of the present invention is added, it is preferable to use at least one cation selected from a phosphonium cation and an ammonium cation as the ionic compound used in the light emitting layer from the viewpoint of easily obtaining high luminance at a low voltage. .
 カチオンがホスホニウムカチオン又はアンモニウムカチオンであるイオン性化合物としては、例えば、下記一般式(4)で表される化合物が挙げられる。 Examples of the ionic compound whose cation is a phosphonium cation or an ammonium cation include a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000015
(式中、R1、R2、R3及びR4は、それぞれ官能基で置換されていてもよい、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。R1、R2、R3及びR4は互いに同一でも異なっていてもよい。MはN又はPを表す。X-はアニオンを表す。)
Figure JPOXMLDOC01-appb-C000015
(Wherein R 1 , R 2 , R 3 and R 4 are each an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, which may be substituted with a functional group, or Represents a heterocyclic group, R 1 , R 2 , R 3 and R 4 may be the same or different from each other, M represents N or P, and X represents an anion.)
 またカチオンがイミダゾリウムカチオンであるイオン性化合物としては、例えば、下記一般式(5)で表される化合物が挙げられる。 Also, examples of the ionic compound whose cation is an imidazolium cation include a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000016
 (式中、R5及びR6は、それぞれ官能基で置換されていてもよい、アルキル基、アルコキシアルキル基、トリアルキルシリルアルキル基、アルケニル基、アルキニル基、アリール基又は複素環基を表す。R5及びR6は互いに同一でも異なっていてもよい。X-はアニ
オンを表す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, R 5 and R 6 each represents an alkyl group, an alkoxyalkyl group, a trialkylsilylalkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heterocyclic group, which may be substituted with a functional group. R 5 and R 6 may be the same or different from each other, and X represents an anion.)
 R1、R2、R3、R4、R5及びR6で表されるアルキル基は分岐鎖状、直鎖状、環状のいずれでもよいが、分岐鎖状、直鎖状であるものが好ましい。分岐鎖状又は直鎖状のアルキル基の例としては、前記の一般式(1)のAで表される鎖状飽和脂肪族炭化水素基の例として前記で挙げた基が挙げられる。環状アルキル基の例としては、Aで表される飽和脂環式炭化水素基の例として前記で上げた基が挙げられる。 The alkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be branched, linear or cyclic, but is branched or linear. preferable. Examples of the branched or straight chain alkyl group include the groups mentioned above as examples of the chain saturated aliphatic hydrocarbon group represented by A in the general formula (1). Examples of the cyclic alkyl group include the groups listed above as examples of the saturated alicyclic hydrocarbon group represented by A.
 R1、R2、R3、R4、R5及びR6で表されるアルコキシアルキル基の例としては、上述したアルキル基のアルコキシドが挙げられる。アルコキシアルキル基におけるアルキル基の例としては、一般式(1)のAで表される鎖状飽和脂肪族炭化水素基の例として前記で上げた基が挙げられる。
 R1、R2、R3、R4、R5及びR6で表されるトリアルキルシリルアルキル基中のアルキル基の例としては、一般式(1)のAで表される鎖状飽和脂肪族炭化水素基の例として前記で上げた基が挙げられる。
 R1、R2、R3、R4、R5及びR6で表されるアルケニル基及びアルキニル基としては、一般式(1)のAで表されるアルケニル基及びアルキニル基の例として前記で挙げた基が挙げられる。
Examples of the alkoxyalkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include the alkoxides of the alkyl groups described above. Examples of the alkyl group in the alkoxyalkyl group include the groups listed above as examples of the chain saturated aliphatic hydrocarbon group represented by A in the general formula (1).
Examples of the alkyl group in the trialkylsilylalkyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include a chain saturated fat represented by A in the general formula (1) Examples of the group hydrocarbon group include the groups mentioned above.
Examples of the alkenyl group and alkynyl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 include the alkenyl group and alkynyl group represented by A in the general formula (1) as described above. The groups mentioned are mentioned.
 R1、R2、R3、R4、R5及びR6で表されるアリール基の例としては、一般式(1)のAで表される芳香族炭化水素基の例として前記で挙げた基が挙げられる。また、R1、R2、R3、R4、R5及びR6で表される複素環基の例としては、一般式(1)のAで表される複素環基の例として前記で挙げた基が挙げられる。 Examples of the aryl group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are as described above as examples of the aromatic hydrocarbon group represented by A in the general formula (1). Groups. Examples of the heterocyclic group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the examples of the heterocyclic group represented by A in the general formula (1). The groups mentioned are mentioned.
 R1、R2、R3、R4、R5及びR6で表される基として前記で挙げた各基は、それに含まれる水素原子のうちの1個又は2個以上が官能基で置換されていてもよい。官能基としては、例えばハロゲン原子、アミノ基、ニトリル基、フェニル基、ベンジル基、カルボキシル基、炭素数が1以上12以下のアルコキシ基などが挙げられる。 Each group mentioned above as the group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is substituted with one or more of the hydrogen atoms contained therein with a functional group. May be. Examples of the functional group include a halogen atom, an amino group, a nitrile group, a phenyl group, a benzyl group, a carboxyl group, and an alkoxy group having 1 to 12 carbon atoms.
 R1、R2、R3、R4、R5及びR6で表される基として前記で挙げた各基は、これらの基に含まれる水素原子が、一部フッ素原子で置換されていてもよい。フッ素原子を導入することにより耐電圧性が向上するため、電気化学発光セルの安定性、高寿命化につながる。 Each group mentioned above as a group represented by R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is such that a hydrogen atom contained in these groups is partially substituted with a fluorine atom. Also good. By introducing fluorine atoms, the withstand voltage is improved, which leads to stability and long life of the electrochemiluminescence cell.
 カチオンがホスホニウムカチオン又はアンモニウムカチオンであるイオン性化合物としては、一般式(1)の化合物との相溶性がよく、高い輝度が得られる観点、及び、発光材料との相溶性や耐電圧性の観点から、前記R1、R2、R3及びR14のうち、1又は2以上の基がアルキル基であることが好ましく、R1、R2、R3及びR4がいずれもアルキル基であることがより好ましい。またイオン性化合物と一般式(1)の化合物及び発光材料との相溶性を一層向上させることができる観点から、R1、R2、R3及びR4で表されるアルキル基の炭素原子数としては、2以上18以下であることが好ましく、4以上8以下であることがより好ましい。
 特に、R1、R2、R3及びR4で表されるアルキル基のうち、2個、3個又は4個が炭素原子数が同じアルキル基である場合は、前記と同様の観点から、これら炭素原子数が同じアルキル基の炭素原子数が、2以上18以下であることが好ましく、4以上8以下であることがより好ましい。
As an ionic compound in which the cation is a phosphonium cation or an ammonium cation, the compatibility with the compound of the general formula (1) is good, a high luminance is obtained, and the compatibility with the light emitting material and the voltage resistance are viewpoints. from the one of R 1, R 2, R 3 and R1 4, that one or more of the groups is an alkyl group is preferably, R 1, R 2, also R 3 and R 4 are both an alkyl group It is more preferable. Further, from the viewpoint of further improving the compatibility between the ionic compound, the compound of the general formula (1) and the light emitting material, the number of carbon atoms of the alkyl group represented by R 1 , R 2 , R 3 and R 4 Is preferably from 2 to 18, more preferably from 4 to 8.
In particular, when 2, 3 or 4 of the alkyl groups represented by R 1 , R 2 , R 3 and R 4 are alkyl groups having the same number of carbon atoms, from the same viewpoint as described above, These alkyl groups having the same number of carbon atoms preferably have 2 or more and 18 or less carbon atoms, and more preferably 4 or more and 8 or less.
 また一般式(1)の化合物との相溶性を一層向上させることができる観点から、カチオンがホスホニウムカチオン又はアンモニウムカチオンであるイオン性化合物としては、R1、R2、R3及びR4のうちの1個以上、とりわけ3個以上の基が、一般式(1)で表される化合物中のRで表されるアルキル基に対する炭素原子数の差が5以下のアルキル基であることが好ましい。特に、R1、R2、R3及びR4のうちの1個以上、とりわけ3個以上の基が、一般式(1)で表される化合物中のRで表されるアルキル基との炭素原子数の差が3以下のアルキル基であることが好ましい。とりわけ、カチオンがホスホニウムカチオン又はアンモニウムカチオンであるイオン性化合物としては、R1、R2、R3及びR4のうちの1個又は2個以上の基が、一般式(1)中のRで表されるアルキル基と同数の炭素原子数のアルキル基であることが好ましい。
 前記の関係は、発光層に、一般式(1)で表される複数種の化合物を添加する場合(或いは添加している場合)、いずれかの化合物中のRとの間で成立すればよい。また発光層に、一般式(1)で表される単一化合物を添加する場合(或いは添加している場合)であって、その化合物が複数種のRを有している場合は、該化合物中のいずれかのRとの間で成立すればよい。
From the viewpoint of further improving the compatibility with the compound of the general formula (1), examples of the ionic compound in which the cation is a phosphonium cation or an ammonium cation include R 1 , R 2 , R 3 and R 4 . It is preferable that one or more, particularly three or more groups of the above are alkyl groups having a carbon atom difference of 5 or less with respect to the alkyl group represented by R in the compound represented by the general formula (1). In particular, one or more of R 1 , R 2 , R 3, and R 4 , particularly 3 or more groups, is a carbon with an alkyl group represented by R in the compound represented by the general formula (1). It is preferable that the difference in the number of atoms is an alkyl group having 3 or less. In particular, as an ionic compound in which the cation is a phosphonium cation or an ammonium cation, one or two or more groups of R 1 , R 2 , R 3 and R 4 are represented by R in the general formula (1). It is preferably an alkyl group having the same number of carbon atoms as the alkyl group represented.
The above relationship may be established with R in any compound when a plurality of types of compounds represented by the general formula (1) are added (or added) to the light emitting layer. . In addition, when a single compound represented by the general formula (1) is added (or added) to the light emitting layer, and the compound has plural types of R, the compound What is necessary is just to be materialized between any of R inside.
 一般式(4)におけるホスホニウムカチオン又はアンモニウムカチオンの分子量は、150以上750以下、特に200以上500以下、とりわけ250以上350以下であることが、電気化学発光セルの発光輝度が一層高くなり、発光輝度が一層優れたものになるため好ましい。 The molecular weight of the phosphonium cation or ammonium cation in the general formula (4) is 150 or more and 750 or less, particularly 200 or more and 500 or less, and particularly 250 or more and 350 or less. Is preferable because it is more excellent.
 またカチオンがイミダゾリウムカチオンであるイオン性化合物としては、一般式(1)で表される化合物との相溶性がよく、高い輝度が得られる観点から、R5及び/又はR6がアルキル基であることが好ましい。また、一般式(1)で表される化合物及び発光材料との相溶性を一層向上させることができる観点から、R5で表されるアルキル基の炭素原子
数としては、1以上8以下であることが好ましく、1以上4以下であることがより好ましい。また一般式(1)で表される化合物及び発光材料との相溶性を一層向上させることができる観点からR6で表されるアルキル基の炭素原子数としては、1以上8以下であるこ
とが好ましく、2以上6以下であることがより好ましい。
Moreover, as an ionic compound whose cation is an imidazolium cation, R 5 and / or R 6 is an alkyl group from the viewpoint of good compatibility with the compound represented by the general formula (1) and high brightness. Preferably there is. In addition, from the viewpoint of further improving the compatibility with the compound represented by the general formula (1) and the light emitting material, the number of carbon atoms of the alkyl group represented by R 5 is 1 or more and 8 or less. It is preferably 1 or more and 4 or less. The number of carbon atoms of the alkyl group represented by R 6 is 1 or more and 8 or less from the viewpoint of further improving the compatibility with the compound represented by the general formula (1) and the light emitting material. Preferably, it is 2 or more and 6 or less.
 また一般式(1)で表される化合物との相溶性を一層向上させることができる観点から、カチオンがイミダゾリウムカチオンであるイオン性化合物としては、R6が、発光層に
含まれる一般式(1)で表される化合物のRで表されるアルキル基に対する炭素原子数の差が5以下のアルキル基であることが好ましく、当該炭素原子数の差が3以下のアルキル基であることがより好ましい。とりわけ、カチオンがイミダゾリウムカチオンであるイオン性化合物としては、R6が、一般式(1)中のRで表されるアルキル基と同数の炭素原
子数のアルキル基であることが好ましい。また、R5は、発光層に含まれる一般式(1)
で表される化合物のRで表されるアルキル基に対する炭素原子数の差が8以下のアルキル基であることが好ましい。
 前記の関係は、発光層に、一般式(1)で表される複数種の化合物を添加する場合(或いは添加している場合)、いずれかの化合物中のRとの間で成立すればよい。また発光層に、一般式(1)で表される単一化合物を添加する場合(或いは添加している場合)であって、その化合物が複数種のRを有している場合は、該化合物中のいずれかのRとの間で成立すればよい。
Further, from the viewpoint of further improving the compatibility with the compound represented by the general formula (1), as an ionic compound in which the cation is an imidazolium cation, R 6 is represented by the general formula ( It is preferable that the difference in the number of carbon atoms with respect to the alkyl group represented by R of the compound represented by 1) is an alkyl group having 5 or less, and that the difference in the number of carbon atoms is an alkyl group having 3 or less. preferable. In particular, as an ionic compound in which the cation is an imidazolium cation, R 6 is preferably an alkyl group having the same number of carbon atoms as the alkyl group represented by R in the general formula (1). R 5 represents the general formula (1) contained in the light emitting layer.
It is preferable that the difference of the carbon atom number with respect to the alkyl group represented by R of the compound represented by is an alkyl group of 8 or less.
The above relationship may be established with R in any compound when a plurality of types of compounds represented by the general formula (1) are added (or added) to the light emitting layer. . In addition, when a single compound represented by the general formula (1) is added (or added) to the light emitting layer, and the compound has plural types of R, the compound What is necessary is just to be materialized between any of R inside.
 イミダゾリウムカチオンの分子量は、90以上300以下、特に100以上260以下、とりわけ120以上240以下であることが、電気化学発光セルの発光輝度が一層高くなり、発光輝度が一層優れたものになるため好ましい。 When the molecular weight of the imidazolium cation is 90 or more and 300 or less, particularly 100 or more and 260 or less, and particularly 120 or more and 240 or less, the emission luminance of the electrochemiluminescence cell is further increased and the emission luminance is further improved. preferable.
 一般に、イオン性化合物として、カチオンが金属カチオンであるものを用いる場合、有機カチオンの塩に比べてイオンの輸送性が低い。このため従来は、金属カチオンを有するイオン性化合物を用いる電気化学発光セルをスムーズに発光させたり一定の輝度を得るためには、ポリエチレンオキシド等の高分子化合物を併用することが必要とされていた。しかしながら、驚くべきことに、本発明においては金属カチオンを有するイオン性化合物を用いる場合、本発明の添加剤との組み合わせにより、ポリエチレンオキシド等の高分子化合物を用いなくても、発光材料とイオン性化合物との相溶性を高めて一定の輝度を得ることができる。ポリエチレンオキシド等、イオン輸送性向上のために用いられる高分子化合物は通常本発明の添加剤に比べて耐電圧性に劣る。このため、本発明の添加剤をポリエチレンオキシド等の高分子化合物に加えて或いは代替として用いることで、発光層の耐電圧性を維持ないし向上させながら一定の輝度を得ることが可能である。本発明の添加剤が高分子でないにもかかわらずこのような作用を有する理由は明確ではないが、本発明者は、本発明の添加剤が、発光材料とイオン性化合物との相溶性、ないしは発光材料へのイオン性化合物の分散性を効率よく高めることができることがその一因とみている。上述したように金属イオンとしては、第1族又は第2族に属する金属のカチオンが好ましいところ、第1族に属する金属のカチオンとしてはLi、Na、K、Csのカチオンが好ましく挙げられ、第2族に属する金属カチオンとしてはMg、Caのカチオンが好ましく挙げられる。金属カチオンとしては、とりわけLi、Na、Kがイオンの輸送性の点から好ましい。 Generally, when an ionic compound having a cation as a metal cation is used, the ion transport property is lower than that of an organic cation salt. For this reason, conventionally, in order to smoothly emit an electrochemiluminescent cell using an ionic compound having a metal cation or to obtain a certain luminance, it has been necessary to use a polymer compound such as polyethylene oxide in combination. . Surprisingly, however, when an ionic compound having a metal cation is used in the present invention, the combination with the additive of the present invention allows the luminescent material and ionicity to be used without using a polymer compound such as polyethylene oxide. A certain luminance can be obtained by increasing the compatibility with the compound. Polymer compounds used for improving ion transport properties such as polyethylene oxide are usually inferior in voltage resistance compared to the additive of the present invention. Therefore, by using the additive of the present invention in addition to or as a substitute for a polymer compound such as polyethylene oxide, it is possible to obtain a certain luminance while maintaining or improving the voltage resistance of the light emitting layer. Although the reason why the additive of the present invention has such an action although it is not a polymer is not clear, the present inventor believes that the additive of the present invention is compatible with the luminescent material and the ionic compound, or One of the reasons for this is that the dispersibility of the ionic compound in the light-emitting material can be improved efficiently. As described above, the metal ion is preferably a cation of a metal belonging to Group 1 or Group 2, and the cation of a metal belonging to Group 1 is preferably a cation of Li, Na, K, or Cs. Preferred examples of the metal cation belonging to Group 2 include Mg and Ca cations. As the metal cation, Li, Na, and K are particularly preferable from the viewpoint of ion transportability.
 前記の有機カチオンの塩及び無機カチオンの塩、並びに有機塩及び無機塩におけるアニオン、及び、前記一般式(5)及び(6)におけるX-で表されるアニオンの例としては、例えばフッ素、臭素、ヨウ素、塩素等のハロゲンのイオン、テトラフルオロボレート(BF4)、ベンゾトリアゾレート(N3(C64))、テトラフェニルボレート(B(C654)、ヘキサフルオロホスフェート(PF6)、ビス(トリフルオロメチルスルホニル)イミド(N(CF3SO22)、ビス(フルオロスルホニル)イミド(N(SO2F)2)、トリフルオロメタンスルホネート(SO3CF3)、メタンスルホネート(SO3CH3)、トリス(ペンタフルオロエチル)トリフルオロホスフェート((C253PF3)、トリフルオロ酢酸(CF3COO)、アミノ酸、ビスオキサラトボレート(B(C242)、p-トルエンスルホネート(CH364SO3)、p-トルエンスルホニル(CH364SO2)、メシチレンスルホニル((CH3) 364SO2)、ジメチルベンゼンスルホニル((CH3)264SO2)、チオシアネート(SCN)、ジシアナミド(N(CN)2)、ジ亜リン酸の他、下記一般式(7)で示されるリン酸エステル、下記一般式(8)で示される硫酸エステルアニオン、下記一般式(9)で表されジチオリン酸、下記一般式(10)で示される脂肪族カルボン酸等が挙げられる。 Examples of the organic cation salt and the inorganic cation salt, the anion in the organic salt and the inorganic salt, and the anion represented by X in the general formulas (5) and (6) include, for example, fluorine and bromine. , Halogen ions such as iodine and chlorine, tetrafluoroborate (BF 4 ), benzotriazolate (N 3 (C 6 H 4 )), tetraphenyl borate (B (C 6 H 5 ) 4 ), hexafluorophosphate (PF 6 ), bis (trifluoromethylsulfonyl) imide (N (CF 3 SO 2 ) 2 ), bis (fluorosulfonyl) imide (N (SO 2 F) 2 ), trifluoromethanesulfonate (SO 3 CF 3 ), methanesulfonate (SO 3 CH 3), tris (pentafluoroethyl) trifluoro phosphate ((C 2 H 5) 3 PF 3), triflic B acetate (CF 3 COO), amino acids, Bisuo Kisara oxalatoborate (B (C 2 O 4) 2), p- toluenesulfonate (CH 3 C 6 H 4 SO 3), p- toluenesulfonyl (CH 3 C 6 H 4 SO 2 ), mesitylenesulfonyl ((CH 3 ) 3 C 6 H 4 SO 2 ), dimethylbenzenesulfonyl ((CH 3 ) 2 C 6 H 4 SO 2 ), thiocyanate (SCN), dicyanamide (N (CN) 2 ), Diphosphorous acid, phosphoric acid ester represented by the following general formula (7), sulfate anion represented by the following general formula (8), dithiophosphoric acid represented by the following general formula (9), and the following general formula The aliphatic carboxylic acid shown by (10) etc. are mentioned.
PO2(OR72 (7)
(式中、R7は炭素原子数1以上20以下のアルキル基であり、2つのR7は同一であってもよく異なっていてもよい。)
PO 2 (OR 7 ) 2 (7)
(In the formula, R 7 is an alkyl group having 1 to 20 carbon atoms, and two R 7 may be the same or different.)
SO3(OR8)    (8)
(式中、R8は炭素原子数1以上20以下のアルキル基である。)
SO 3 (OR 8 ) (8)
(Wherein, R 8 is an alkyl group having 1 to 20 carbon atoms.)
(R9O)2PSS (9)
(式中、R9は炭素原子数1以上20以下のアルキル基であり、2つのR9は同一であってもよく異なっていてもよい。)
(R 9 O) 2 PSS (9)
(In the formula, R 9 is an alkyl group having 1 to 20 carbon atoms, and two R 9 may be the same or different.)
 R10CO2   (10)
(式中、R10は炭素原子数1以上20以下のアルキル基である。)
R 10 CO 2 (10)
(In the formula, R 10 is an alkyl group having 1 to 20 carbon atoms.)
 イオン性化合物におけるアニオンとしては、ハロゲン原子を非含有であるアニオンを用いることが、高い輝度を有する電気化学発光セルが得やすい点で好ましい。これは、ハロゲン原子を含有するアニオンに比べて、ハロゲン原子を非含有のアニオンは発光材料との相溶性が高いためである。しかしながら、後述する実施例13~17の記載から明らかな通り、ハロゲン原子を含むアニオンを有するイオン性化合物を含む発光層に本発明の添加剤を添加した場合も、より低い電圧で高い発光輝度が得られるという効果を奏することができる。 As the anion in the ionic compound, it is preferable to use an anion that does not contain a halogen atom, because an electrochemiluminescence cell having high luminance can be easily obtained. This is because an anion containing no halogen atom is more compatible with the light-emitting material than an anion containing a halogen atom. However, as is apparent from the description of Examples 13 to 17 described later, even when the additive of the present invention is added to a light emitting layer containing an ionic compound having an anion containing a halogen atom, high emission luminance is obtained at a lower voltage. The effect that it is obtained can be produced.
 特に、イオン性化合物におけるアニオンとして、リン酸エステル結合及び硫酸エステル結合等のエステル結合を有するアニオンを用いると、該アニオンを含むイオン性化合物が、多くの発光材料との相溶性に一層優れたものになるため、より高い輝度を有する電気化学発光セルが得やすい点で好ましい。 In particular, when an anion having an ester bond such as a phosphate ester bond and a sulfate ester bond is used as the anion in the ionic compound, the ionic compound containing the anion has a better compatibility with many light emitting materials. Therefore, it is preferable in that an electrochemiluminescence cell having higher luminance is easily obtained.
 また本発明の添加剤との相溶性が高く、高い輝度を有する電気化学発光セルが得られる観点から、イオン性化合物におけるアニオンとして、発光層に添加する一般式(1)で表される化合物におけるRで表されるアルキル基との炭素原子数の差が5以下であるアルキル基を有するアニオンを用いることが好ましく、当該炭素原子数の差が3以下であるアルキル基を有するアニオンを用いることがより好ましい。とりわけ、発光層に添加する一般式(1)で表されるいずれかの化合物におけるいずれかのRで表されるアルキル基と炭素原子数が同一のアルキル基を有するアニオンを用いることが好ましい。従って、一般式(7)~(10)のR7~R10と一般式(1)のRとの炭素原子数の差が上記の範囲である
ことが好ましく、R7~R10とRとの炭素原子数が同数であることが最も好ましい。
 前記の関係は、発光層に、一般式(1)で表される複数種の化合物を添加する場合(或いは添加している場合)、いずれかの化合物中のRとの間で成立すればよい。また発光層に、一般式(1)で表される単一化合物を添加する場合(或いは添加している場合)であって、その化合物が複数種のRを有している場合は、該化合物中のいずれかのRとの間で成立すればよい。
In addition, in the compound represented by the general formula (1) added to the light emitting layer as an anion in the ionic compound from the viewpoint of obtaining an electrochemiluminescent cell having high compatibility with the additive of the present invention and high brightness. It is preferable to use an anion having an alkyl group having a carbon atom difference of 5 or less from the alkyl group represented by R, and to use an anion having an alkyl group having a carbon atom difference of 3 or less. More preferred. In particular, it is preferable to use an anion having an alkyl group having the same number of carbon atoms as the alkyl group represented by any R in any compound represented by the general formula (1) added to the light emitting layer. Therefore, the difference in the number of carbon atoms between R 7 to R 10 in the general formulas (7) to (10) and R in the general formula (1) is preferably in the above range, and R 7 to R 10 and R It is most preferable that the number of carbon atoms is the same.
The above relationship may be established with R in any compound when a plurality of types of compounds represented by the general formula (1) are added (or added) to the light emitting layer. . In addition, when a single compound represented by the general formula (1) is added (or added) to the light emitting layer, and the compound has plural types of R, the compound What is necessary is just to be materialized between any of R inside.
 イオン性化合物は、常温(25℃)において固体であってもよく、或いは液体であってもよい。イオン性化合物は、選択されるカチオン及びアニオンの組み合わせや、カチオンの構造により、固体又は液体の状態となるものである。本発明においては、イオン性化合物を1種又は2種以上組み合わせて用いることができる。 The ionic compound may be solid at room temperature (25 ° C.) or liquid. The ionic compound is in a solid or liquid state depending on the combination of the selected cation and anion and the structure of the cation. In this invention, an ionic compound can be used 1 type or in combination of 2 or more types.
 イオン性化合物は例えば、以下のように製造できる。カチオンがホスホニウムイオンである場合には、目的とするホスホニウムカチオンに対応した3級ホスフィン化合物とハロゲン化炭化水素化合物とを反応させて得られる4級ホスホニウムハライドを用い、アニオンがハロゲンであるイオン液体を得ることができる。アニオン成分がハロゲン以外のものは、前記の4級ホスホニウムハライドとアニオン成分の金属塩とを反応させアニオン交換することにより得ることができる。カチオンがアンモニウムイオンである場合も、3級アミン化合物とハロゲン化炭化水素化合物とを反応させて得られる4級アンモニウムハライドを用いて同様に、得ることができる。カチオンがイミダゾリウムイオンである場合は、目的とするイミダゾリウムカチオンに対応したイミダゾール化合物とハロゲン化炭化水素化合物とを反応させて得られるイミダゾリウムハライドを用いて同様にして得ることができる。 An ionic compound can be produced, for example, as follows. When the cation is a phosphonium ion, a quaternary phosphonium halide obtained by reacting a tertiary phosphine compound corresponding to the target phosphonium cation and a halogenated hydrocarbon compound is used, and an ionic liquid in which the anion is halogen is prepared. Obtainable. An anionic component other than halogen can be obtained by reacting the quaternary phosphonium halide with a metal salt of the anionic component to exchange anions. Even when the cation is an ammonium ion, it can be similarly obtained using a quaternary ammonium halide obtained by reacting a tertiary amine compound and a halogenated hydrocarbon compound. When the cation is an imidazolium ion, it can be obtained in the same manner by using an imidazolium halide obtained by reacting an imidazole compound corresponding to the target imidazolium cation with a halogenated hydrocarbon compound.
 また、例えばカチオンがホスホニウム又はアンモニウムイオンであり、アニオンがリン酸エステル結合を有するもの又は硫酸エステル結合を有するイオン性化合物である場合には、三級ホスフィン化合物又は三級アミン化合物と、PO(ORX3又はSO2(ORX2で表される化合物で表される化合物とを反応させることで、ハロゲンフリーな製造方法
によりイオン性化合物を得ることができる。ここでRxは炭素原子数1以上20以下のアルキル基である。
For example, when the cation is a phosphonium or ammonium ion and the anion is a phosphoric acid ester bond or an ionic compound having a sulfate ester bond, a tertiary phosphine compound or a tertiary amine compound and PO (OR X) 3 or SO 2 (by reacting oR X) compounds represented by compounds represented by 2, it is possible to obtain an ionic compound with a halogen-free manufacturing process. Here, Rx is an alkyl group having 1 to 20 carbon atoms.
 発光層12におけるイオン性化合物の含有割合は、イオン移動度を確保し、且つ発光層12の製膜性を高める観点から1質量%以上20質量%以下であることが好ましく、2質量%以上10質量%以下であることがより好ましい。発光層12中のイオン性化合物の含有量は、発光材料100質量部に対し、1質量部以上25質量部以下であることが好ましい。ここでいう発光材料の量とは、発光材料として有機高分子発光材料を用いる場合は、有機高分子発光材料の量であり、発光材料として、金属錯体、有機低分子又は量子ドット等の発光性物質と有機高分子導電材料との組み合わせを用いる場合は、金属錯体、有機低分子又は量子ドット等の発光性物質、及び有機高分子導電材料の合計量である。更に発光材料が後述する有機高分子発光材料の場合、発光層12中のイオン性化合物の含有量は、有機高分子発光材料100質量部に対し、1質量部以上25質量部以下であることが好ましく、発光材料が金属錯体、有機低分子又は量子ドットと有機高分子導電材料である場合、発光層12中のイオン性化合物の含有量は、これらの金属錯体、有機低分子又は量子ドット、及び有機高分子導電材料の合計量100質量部に対し、1質量部以上25質量部以下であることが好ましい。 The content ratio of the ionic compound in the light emitting layer 12 is preferably 1% by mass or more and 20% by mass or less from the viewpoint of ensuring ion mobility and improving the film forming property of the light emitting layer 12. It is more preferable that the amount is not more than mass%. The content of the ionic compound in the light emitting layer 12 is preferably 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the light emitting material. The amount of the light emitting material here is the amount of the organic polymer light emitting material when an organic polymer light emitting material is used as the light emitting material, and the light emitting material is a light emitting property such as a metal complex, an organic small molecule or a quantum dot. When a combination of a substance and an organic polymer conductive material is used, the total amount of a metal complex, a light emitting substance such as an organic low molecule or a quantum dot, and an organic polymer conductive material. Furthermore, when the light emitting material is an organic polymer light emitting material described later, the content of the ionic compound in the light emitting layer 12 is 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the organic polymer light emitting material. Preferably, when the light emitting material is a metal complex, an organic small molecule or quantum dot and an organic polymer conductive material, the content of the ionic compound in the light emitting layer 12 is such metal complex, organic small molecule or quantum dot, and It is preferably 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the total amount of the organic polymer conductive material.
 上述したように発光層12に含まれる発光材料の具体例としては、有機高分子発光材料、或いは、金属錯体、有機低分子又は量子ドット等の発光性物質と、有機高分子導電材料との組み合わせが挙げられる。
 有機高分子発光材料としては、各種のπ共役系ポリマーである有機高分子を挙げることができる。具体的には、パラフェニレンビニレン、フルオレン、1,4-フェニレン、チオフェン、ピロール、パラフェニレンスルフィド、ベンゾチアジアゾール、ビオチオフィン若しくはこれらに置換基を導入させた誘導体のポリマー又はこれらを含むコポリマー等を挙げることができる。そのような置換基としては、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基、炭素数6以上18以下のアリール基、〔(-CH2CH2O-)nCH3〕で表される基(nは1以上10以下の整数である。)等を挙げることができる。またコポリマーとしては、前記で挙げたπ共役系ポリマーのうち2種類以上のポリマーの各繰り返し単位を結合させてなるものが挙げられる。コポリマーにおける各繰り返し単位の配列としては、ランダム配列、交互配列、ブロック配列、又はそれらを組み合わせた配列が挙げられる。特に、フルオレン若しくはパラフェニレンビニレン又はこれらに置換基を導入させた誘導体のポリマー又はこれらを含むコポリマーを用いることが好ましい。更に有機高分子発光材料として市販品を用いることもできる。そのような市販品としては、例えばSOL2412の名称でSolaris Chem社から入手可能な化合物であるPoly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]や、PDY-132の名称でメルク社から入手可能な化合物であるPhenylenesubstitutedpoly(para-phenylenevinylene)、アルドリッチ社から入手可能な化合物であるPoly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)]などが挙げられる。
As described above, specific examples of the light-emitting material included in the light-emitting layer 12 include an organic polymer light-emitting material, or a combination of a light-emitting substance such as a metal complex, an organic small molecule, or a quantum dot, and an organic polymer conductive material. Is mentioned.
Examples of the organic polymer light emitting material include organic polymers that are various π-conjugated polymers. Specific examples include paraphenylene vinylene, fluorene, 1,4-phenylene, thiophene, pyrrole, paraphenylene sulfide, benzothiadiazole, biothiophine, or a derivative polymer having a substituent introduced thereto, or a copolymer containing these. Can do. Examples of such a substituent include an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 18 carbon atoms, [(—CH 2 CH 2 O—) n CH 3 ] (n is an integer of 1 or more and 10 or less) and the like. Examples of the copolymer include those obtained by bonding each repeating unit of two or more kinds of the above-mentioned π-conjugated polymers. Examples of the arrangement of each repeating unit in the copolymer include a random arrangement, an alternating arrangement, a block arrangement, or a combination thereof. In particular, it is preferable to use fluorene, paraphenylene vinylene, a derivative polymer having a substituent introduced thereto, or a copolymer containing these polymers. Furthermore, a commercial item can also be used as an organic polymer light-emitting material. Such commercial products include, for example, Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene), a compound available from Solaris Chem under the name SOL2412. -2,7-diyl)], PDY-132, a compound available from Merck & Co., Phenylene substitutedpoly (para-phenylenevinylene), Poly [(9,9-di- n-octylfluorenyl-2,7-diyl) -alt- (benzo [2,1,3] thiadiazol-4,8-diyl)].
 金属錯体としては従来有機ELで発光材料として用いられてきた公知のものを用いることができ、例えばトリス(8-キノリノラート)アルミニウム錯体、トリス(4-メチル-8-キノリノラート)アルミニウム錯体、ビス(8-キノリノラート)亜鉛錯体、トリス(4-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム錯体、トリス(4-メチル-5-シアノ-8-キノリノラート)アルミニウム錯体、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)[4-(4-シアノフェニル)フェノラート]アルミニウム錯体、ビス(2-メチル-5-シアノ-8-キノリノラート)[4-(4-シアノフェニル)フェノラート]アルミニウム錯体、トリス(8-キノリノラート)スカンジウム錯体、ビス〔8-(パラ-トシル)アミノキノリン〕亜鉛錯体及びカドミウム錯体、Ir錯体等の燐光性発光体、ビピリジル(bpy)若しくはその誘導体、フェナントロリン若しくはその誘導体を配位子とするルテニウム錯体等を挙げることができる。 As the metal complex, known ones conventionally used as a light emitting material in organic EL can be used. For example, tris (8-quinolinolato) aluminum complex, tris (4-methyl-8-quinolinolato) aluminum complex, bis (8 -Quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-8-quinolinolato) aluminum complex, bis (2-methyl-5- Trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, Tris (8-quinolinolato) scandium complex, [8- (para-tosyl) aminoquinoline] zinc complexes, cadmium complexes, phosphorescent emitters such as Ir complexes, bipyridyl (bpy) or derivatives thereof, ruthenium complexes having phenanthroline or derivatives thereof as ligands, etc. be able to.
 有機低分子としては従来有機ELで発光材料として用いられてきた公知のものを用いることができ、9,10-ジアリールアントラセン誘導体、ピレン、コロネン、ペリレン、ルブレン、1,1,4,4-テトラフェニルブタジエン、1,2,3,4-テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、ポリ-2,5-ジヘプチルオキシ-パラ-フェニレンビニレン、クマリン系蛍光体、ペリレン系蛍光体、ピラン系蛍光体、アンスロン系蛍光体、ポルフィリン系蛍光体、キナクリドン系蛍光体、N,N’-ジアルキル置換キナクリドン系蛍光体、ナフタルイミド系蛍光体、N,N’-ジアリール置換ピロロピロール系蛍光体等の蛍光性発光体等が挙げられる。 As the organic low molecule, known ones conventionally used as light emitting materials in organic EL can be used. 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetra Phenylbutadiene, 1,2,3,4-tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, poly-2,5-diheptyloxy-para-phenylene vinylene, coumarin phosphor, perylene phosphor, pyran phosphor Fluorescence of anthrone phosphor, porphyrin phosphor, quinacridone phosphor, N, N′-dialkyl substituted quinacridone phosphor, naphthalimide phosphor, N, N′-diaryl substituted pyrrolopyrrole phosphor, etc. Illuminant etc. are mentioned.
 また量子ドットとしては、例えば、Si、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In23、ZnO、CdO又はこれらの混合物が挙げられる。 Examples of the quantum dot include Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof.
 電子及び/又はホールを輸送するための有機高分子導電材料としては、ポリビニルカルバゾール、ポリフェニレン、ポリフルオレン、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン、ポリキノキサリンなどが挙げられる。また、上述した有機高分子発光材料も電子及び/又はホールの輸送機能を有するため使用可能である。 Examples of the organic polymer conductive material for transporting electrons and / or holes include polyvinylcarbazole, polyphenylene, polyfluorene, polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, polyquinoxaline, and the like. The organic polymer light emitting material described above can also be used because it has a function of transporting electrons and / or holes.
 これらの発光材料は、その機能を十分に発揮させる観点から、発光層12における含有割合が、有機高分子発光材料を用いる場合は60質量%以上99質量%以下であることが好ましく、70質量%以上98質量%以下であることがより好ましい。また、金属錯体、有機低分子又は量子ドット等の発光性物質と、有機高分子導電材料との組み合わせを用いる場合には、発光層12における、これらの合計量の割合が、60質量%以上99質量%以下であることが好ましく、70質量%以上98質量%以下であることがより好ましい。
 また、金属錯体、有機低分子又は量子ドット等の発光性物質と、有機高分子導電材料とを用いる場合には、金属錯体、有機低分子又は量子ドット等の発光性物質100質量部に対する有機高分子導電材料の割合が、5質量部以上25質量部以下であることが好ましい。
From the viewpoint of sufficiently exhibiting the function of these light emitting materials, the content ratio in the light emitting layer 12 is preferably 60% by mass or more and 99% by mass or less when the organic polymer light emitting material is used, and 70% by mass. More preferably, it is 98 mass% or less. Moreover, when using the combination of luminescent substances, such as a metal complex, an organic low molecule, or a quantum dot, and an organic polymer electrically-conductive material, the ratio of these total amounts in the light emitting layer 12 is 60 mass% or more 99. The content is preferably not more than mass%, more preferably not less than 70 mass% and not more than 98 mass%.
In the case of using a light emitting substance such as a metal complex, a small organic molecule or a quantum dot, and an organic polymer conductive material, the organic high molecular weight relative to 100 parts by weight of the light emitting substance such as a metal complex, a small organic molecule or a quantum dot is used. The proportion of the molecular conductive material is preferably 5 parts by mass or more and 25 parts by mass or less.
 発光層12には、発光材料及びイオン性化合物以外の物質を含有させていてもよい。そのような物質としては、例えば界面活性剤、製膜性向上のためのポリマー成分(ポリスチレン、ポリメタクリル酸メチル(PMMA)等)等を挙げることができる。また、発光材料として有機高分子発光材料を用いる場合は、ポリビニルカルバゾール等の有機高分子導電材料も、その他の成分に含まれる。発光層12における発光材料、イオン性化合物及び一般式(1)で表される化合物以外の成分(ただし溶媒を除く)の量は、発光層12全体を100質量部としたときに、30質量部以下とすることが好ましく、20質量部以下とすることが更に好ましく、10質量部以下とすることが特に好ましい。 The light emitting layer 12 may contain a substance other than the light emitting material and the ionic compound. Examples of such substances include surfactants and polymer components (polystyrene, polymethyl methacrylate (PMMA), etc.) for improving film forming properties. When an organic polymer light emitting material is used as the light emitting material, an organic polymer conductive material such as polyvinyl carbazole is also included in the other components. The amount of the components other than the light emitting material, the ionic compound and the compound represented by the general formula (1) (excluding the solvent) in the light emitting layer 12 is 30 parts by mass when the entire light emitting layer 12 is 100 parts by mass. The content is preferably set to the following, more preferably 20 parts by mass or less, and particularly preferably 10 parts by mass or less.
 更に、本発明では、従来電荷輸送性を高めるために用いられてきた高分子化合物を用いてもよい。このような高分子化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル骨格を有する化合物、ポリエチレンサクシネート、ポリ-β-プロピオラクトン等のポリエステル骨格を有する化合物、ポリエチレンイミン等のポリアミン骨格を有する化合物、ポリアルキレンスルフィド等のポリスルフィド骨格を有する化合物が挙げられる。発光層においてこれらの高分子化合物を用いる場合、発光層においてこれらの高分子化合物の量は、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、特に好ましくは30質量%以下である。本発明においてはそれよりも少ない量であってもよく、ポリエチレンオキシド等の高分子化合物を用いなくてもよい。発光層においてこれらの高分子化合物を用いないとは、例えば発光層においてこれらの高分子化合物の量が0質量%であることをいう。 Furthermore, in the present invention, a polymer compound that has been conventionally used for improving charge transportability may be used. Examples of such a polymer compound include a compound having a polyether skeleton such as polyethylene oxide and polypropylene oxide, a compound having a polyester skeleton such as polyethylene succinate and poly-β-propiolactone, and a polyamine skeleton such as polyethyleneimine. Examples thereof include compounds and compounds having a polysulfide skeleton such as polyalkylene sulfide. When these polymer compounds are used in the light emitting layer, the amount of these polymer compounds in the light emitting layer is preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 30% by mass or less. It is. In the present invention, the amount may be smaller than that, and a polymer compound such as polyethylene oxide may not be used. The fact that these polymer compounds are not used in the light emitting layer means, for example, that the amount of these polymer compounds in the light emitting layer is 0% by mass.
 このようにして構成される発光層12の膜厚は、20nm以上300nm以下であることが好ましく、50nm以上150nm以下であることがより好ましい。発光層12の膜厚がこの範囲であると、発光層12から十分かつ効率よく発光を得ることができることや発光予定部分の欠陥を抑えることができ短絡防止になること等の観点から好ましい。 The film thickness of the light-emitting layer 12 thus configured is preferably 20 nm or more and 300 nm or less, and more preferably 50 nm or more and 150 nm or less. When the film thickness of the light emitting layer 12 is within this range, it is preferable from the viewpoints that light emission can be sufficiently and efficiently obtained from the light emitting layer 12, defects in a light emission scheduled portion can be suppressed, and short circuit prevention can be achieved.
 本実施形態の電気化学発光セル10は、例えば以下の製造方法により製造できる。まず、第1電極13が設けられた基板を準備する。第1電極13を例えばITOから形成する場合は、ガラス基板等の表面に、フォトリソグラフィー法又はフォトリソグラフィー法及びリフトオフ法を組み合わせて用いてITOの蒸着膜をパターン状に形成することによって、基板の表面にITOからなる第1電極13を形成することができる。 The electrochemiluminescence cell 10 of this embodiment can be manufactured by the following manufacturing method, for example. First, a substrate provided with the first electrode 13 is prepared. In the case where the first electrode 13 is formed from, for example, ITO, by forming a deposited ITO film in a pattern on the surface of a glass substrate or the like by using a photolithography method or a combination of the photolithography method and the lift-off method, A first electrode 13 made of ITO can be formed on the surface.
 次に、有機溶媒に、イオン性化合物、発光材料及び一般式(1)で表される化合物を溶解又は分散して、電気化学発光セルの発光層形成用組成物を調製する。イオン性化合物、発光材料及び一般式(1)で表される化合物を効率よく混合する等の観点から、有機溶媒としてトルエン、ベンゼン、テトラヒドロフラン、ジメチルクロライド、シクロヘキサノン、クロロベンゼン及びクロロホルムからなる群から選ばれる少なくとも1種の有機溶媒を含有することが好ましい。この場合、有機溶媒として、これらの化合物の1種のみを、又は2種以上を組み合わせたもののみを用いることができる。或いは、これらの化合物の溶解性等の特性を損なわない範囲で、メタノールやエタノール等の他の有機溶媒と混合して用いることもできる。すなわち、イオン性化合物、発光材料及び一般式(1)で表される化合物を溶解ないし分散する有機溶媒は、トルエン、ベンゼン、テトラヒドロフラン、ジメチルクロライド、シクロヘキサノン、クロロベンゼン及びクロロホルムからなる群から選ばれる少なくとも1種の有機溶媒と、それ以外の有機溶媒とを含有することができる。 Next, an ionic compound, a luminescent material, and a compound represented by the general formula (1) are dissolved or dispersed in an organic solvent to prepare a composition for forming a luminescent layer of an electrochemiluminescence cell. The organic solvent is selected from the group consisting of toluene, benzene, tetrahydrofuran, dimethyl chloride, cyclohexanone, chlorobenzene and chloroform from the viewpoint of efficiently mixing the ionic compound, the light emitting material and the compound represented by the general formula (1). It is preferable to contain at least one organic solvent. In this case, only one of these compounds or a combination of two or more of these compounds can be used as the organic solvent. Alternatively, it can also be used by mixing with other organic solvents such as methanol and ethanol as long as the properties such as solubility of these compounds are not impaired. That is, the organic solvent for dissolving or dispersing the ionic compound, the luminescent material, and the compound represented by the general formula (1) is at least one selected from the group consisting of toluene, benzene, tetrahydrofuran, dimethyl chloride, cyclohexanone, chlorobenzene, and chloroform. A seed organic solvent and other organic solvents can be contained.
 発光層形成用組成物中のイオン性化合物と発光材料との配合比率(質量比)は前者:後者が1:4~100であることが好ましい。また発光層形成用組成物中の一般式(1)で表される化合物と発光材料との配合比率(質量比)は前者:後者が1:3~50であることが好ましい。ここでいう発光材料の量とは、発光材料として有機高分子発光材料を用いる場合は、有機高分子発光材料の量であり、発光材料として、金属錯体、有機低分子又は量子ドット等の発光性物質と、有機高分子導電材料との組み合わせを用いる場合は、金属錯体、有機低分子又は量子ドット等の発光性物質及び有機高分子導電材料の合計量である。更に発光層形成用組成物中の一般式(1)で表される化合物の割合は、0.0001質量%以上10質量%以下、特に0.0005質量%以上5質量%以下であることが、本発明の効果がより確実に得られる発光層を形成しやすい観点から好ましい。この発光層形成用組成物を、基板の第1電極13上に、スピンコーティング法等により塗布する。その後、この塗布によって形成された塗膜を乾燥させて有機溶媒を蒸発させ、発光層12を形成する。発光層形成用組成物の調製及び発光層12の形成は、好ましくは水分率100ppm以下の不活性ガス雰囲気下で行うことが好ましい。この場合の不活性ガスとしては、アルゴン、窒素、ヘリウム等が挙げられる。 The compounding ratio (mass ratio) of the ionic compound and the light emitting material in the composition for forming a light emitting layer is preferably 1: 4 to 100 in the former: latter. The compounding ratio (mass ratio) of the compound represented by the general formula (1) and the light emitting material in the light emitting layer forming composition is preferably 1: 3 to 50 in the former: latter. The amount of the light emitting material here is the amount of the organic polymer light emitting material when an organic polymer light emitting material is used as the light emitting material, and the light emitting material is a light emitting property such as a metal complex, an organic small molecule or a quantum dot. When a combination of a substance and an organic polymer conductive material is used, the total amount of the light emitting substance such as a metal complex, an organic low molecule, or a quantum dot, and the organic polymer conductive material is used. Furthermore, the ratio of the compound represented by the general formula (1) in the composition for forming a light emitting layer is 0.0001% by mass to 10% by mass, particularly 0.0005% by mass to 5% by mass. This is preferable from the viewpoint of easily forming a light emitting layer in which the effects of the present invention can be obtained more reliably. This composition for forming a light emitting layer is applied onto the first electrode 13 of the substrate by a spin coating method or the like. Thereafter, the coating film formed by this coating is dried to evaporate the organic solvent, thereby forming the light emitting layer 12. The preparation of the light emitting layer forming composition and the formation of the light emitting layer 12 are preferably performed in an inert gas atmosphere having a moisture content of 100 ppm or less. In this case, examples of the inert gas include argon, nitrogen, helium and the like.
 次に、形成された発光層12に第2電極14を形成する。この場合、発光層12上に、例えばマスクを介した真空蒸着法等によってアルミニウム(Al)を膜状に蒸着することにより、所定のパターンの電極を形成する。このようにして、発光層12上に第2電極14を形成する。これによって、図1に示す電気化学発光セル10が得られる。 Next, the second electrode 14 is formed on the formed light emitting layer 12. In this case, an electrode having a predetermined pattern is formed on the light emitting layer 12 by evaporating aluminum (Al) into a film shape by, for example, a vacuum evaporation method through a mask. In this way, the second electrode 14 is formed on the light emitting layer 12. Thereby, the electrochemiluminescence cell 10 shown in FIG. 1 is obtained.
 本実施形態の電気化学発光セル10は、以下の発光機構により発光する。図2(a)及び(b)に示すように、第1電極13が陽極となり第2電極14が陰極となるように発光層12に電圧が印加される。このことにより、発光層12内のイオンが電界に沿って移動し、発光層12における第1電極13との界面近傍にアニオン種が集まった層が形成される。一方、発光層12における第2電極14との界面近傍にカチオン種が集まった層が形成される。このようにして、それぞれの電極の界面に電気二重層が形成される。これにより陽極である第1電極13近傍にpドープ領域16が自発形成され、陰極である第2電極14近傍にnドープ領域17が自発形成される。そして、これらのドープ領域が高キャリア密度のp-i-n接合を構成する。その後、陽極と陰極から発光層12の発光材料に正
孔と電子がそれぞれ注入され、i層で再結合する。この再結合した正孔と電子とから励起
子が生成され、この励起子が基底状態に戻ることにより光が発せられる。このようにして、発光層12から発光が得られる。所望の波長の光を得るためには、最高被占軌道(Highest Occupied Molecular Orbital)と最低空軌道(Lowest Unoccupied Molecular Orbital)のエネルギー差(バンドギャップ)が当該所望の波長に対応する発光材料を選択すればよい。
The electrochemiluminescence cell 10 of the present embodiment emits light by the following light emission mechanism. As shown in FIGS. 2A and 2B, a voltage is applied to the light emitting layer 12 so that the first electrode 13 serves as an anode and the second electrode 14 serves as a cathode. As a result, ions in the light emitting layer 12 move along the electric field, and a layer in which anion species are collected in the vicinity of the interface between the light emitting layer 12 and the first electrode 13 is formed. On the other hand, a layer in which cationic species are collected in the vicinity of the interface with the second electrode 14 in the light emitting layer 12 is formed. In this way, an electric double layer is formed at the interface of each electrode. As a result, the p-doped region 16 is spontaneously formed in the vicinity of the first electrode 13 that is the anode, and the n-doped region 17 is spontaneously formed in the vicinity of the second electrode 14 that is the cathode. These doped regions constitute a pin junction with a high carrier density. Thereafter, holes and electrons are respectively injected from the anode and the cathode into the light emitting material of the light emitting layer 12 and recombined in the i layer. Excitons are generated from the recombined holes and electrons, and light is emitted when the excitons return to the ground state. In this way, light emission can be obtained from the light emitting layer 12. In order to obtain light of the desired wavelength, select the light emitting material whose energy difference (band gap) between the highest occupied orbital (Lowest Occupied Molecular Orbital) and the lowest unoccupied molecular orbital corresponds to the desired wavelength. do it.
 一般式(1)で表される化合物を用いた本発明の添加剤、発光層形成用組成物及び電気化学発光セルによれば、発光層中の発光材料にイオン性化合物と共に一般式(1)で表される化合物が分散することで、一般式(1)で表される化合物を添加しない場合に比べて、発光材料とイオン性化合物との相溶性が向上し、また発光材料中のイオン性化合物の移動性が大幅に向上する。このため、一般式(1)で表される化合物を添加しない場合に比べて、低い電圧で高い発光輝度を有し、低抵抗の状態で抵抗上昇の抑えられた電気化学発光セルを得ることができる。 According to the additive of the present invention, the composition for forming a light emitting layer, and the electrochemiluminescence cell using the compound represented by the general formula (1), the light emitting material in the light emitting layer is combined with the ionic compound in the general formula (1) As a result of the dispersion of the compound represented by general formula (1), the compatibility between the luminescent material and the ionic compound is improved as compared with the case where the compound represented by the general formula (1) is not added. The mobility of the compound is greatly improved. For this reason, it is possible to obtain an electrochemiluminescence cell having high emission luminance at a low voltage and suppressed resistance increase in a low resistance state as compared with the case where the compound represented by the general formula (1) is not added. it can.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。以下の例中の特性は下記の方法によって測定した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The characteristics in the following examples were measured by the following methods.
 <発光特性>
 電気化学発光セルの第1電極を直流電流の陽極に接続し、第2電極を陰極に接続して、掃引速度1V/secで15Vまで電圧を印加し、その間の輝度の最高値を発光輝度とした。また、そのときの電圧を測定した。測定はCS-2000(コニカミノルタ社製)により行った。
<Luminescent characteristics>
The first electrode of the electrochemiluminescence cell is connected to the anode of the direct current, the second electrode is connected to the cathode, and a voltage is applied up to 15 V at a sweep rate of 1 V / sec. did. Moreover, the voltage at that time was measured. The measurement was performed with CS-2000 (manufactured by Konica Minolta).
<実施例1>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro((Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、イオン性化合物として表1に示すホスホニウムリン酸エステル塩、及び表1に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表1に示す。
<Example 1>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro ((Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem) These mixed solutions were prepared using the product, model number SOL2412), the phosphonium phosphate ester salt shown in Table 1 as an ionic compound, and the additive which is the compound shown in Table 1. Specifically, a glove in an argon atmosphere In a box, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and a toluene solution of an additive (concentration: 9 g / L) at room temperature. Were mixed at a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1 to prepare a light emitting layer forming composition.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 1 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例1-1>
 添加剤を無添加としたこと以外は実施例1と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表1に示す。
<Comparative Example 1-1>
The same procedure as in Example 1 was performed except that no additive was added. Table 1 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例1-2~1-4>
 表1に示す添加剤を添加したこと以外は実施例1と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000017
<Comparative Examples 1-2 to 1-4>
The same method as in Example 1 was performed except that the additives shown in Table 1 were added. Table 1 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000017
<実施例2-1~2-5>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料Super Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表2に示すホスホニウムリン酸エステル塩、及び表2に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表2に示す。
<Examples 2-1 to 2-5>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Organic polymer light emitting material Super Yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck & Co., product name: PDY-132), phosphonium phosphate ester salts shown in Table 2 as ionic compounds, and additions that are compounds shown in Table 2 These mixed solutions were prepared using an agent. Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 2 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例2-1>
 添加剤を無添加としたこと以外は実施例2-1~2-5と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表2に示す。
<Comparative Example 2-1>
The same procedure as in Examples 2-1 to 2-5 was performed except that no additive was added. Table 2 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例2-2~2-4>
 表2に示す添加剤を添加したこと以外は実施例2-1~2-5と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表2に示す。
<Comparative Examples 2-2 to 2-4>
The same procedure as in Examples 2-1 to 2-5 was performed except that the additives shown in Table 2 were added. Table 2 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<実施例3>
 イオン性化合物として表3に示すアンモニウムリン酸エステル塩を用いたこと以外は実施例1と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表3に示す。
<Example 3>
The same procedure as in Example 1 was performed except that the ammonium phosphate ester salt shown in Table 3 was used as the ionic compound. Table 3 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例3>
 添加剤を無添加としたこと以外は実施例3と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000019
<Comparative Example 3>
The same procedure as in Example 3 was performed except that no additive was added. Table 3 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000019
<実施例4-1~4-4>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表4に示すアンモ
ニウムリン酸エステル塩、及び表4に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表4に示す。
<Examples 4-1 to 4-4>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, ammonium phosphate ester salts shown in Table 4 as ionic compounds, and compounds shown in Table 4 These mixed solutions were prepared using additives. Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 4 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例4>
 添加剤を無添加としたこと以外は実施例4-1~4-4と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000020
<Comparative Example 4>
The same method as in Examples 4-1 to 4-4 was performed except that no additive was added. Table 4 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000020
<実施例5-1~5-7>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro((Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、イオン性化合物として表5に示すイミダゾリウムリン酸エステル塩、及び表5に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表5に示す。
<Examples 5-1 to 5-7>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro ((Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem) These mixed solutions were prepared using the product, model number SOL2412), an imidazolium phosphate ester salt shown in Table 5 as an ionic compound, and an additive which is a compound shown in Table 5. Specifically, in an argon atmosphere In a glove box, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and a toluene solution of an additive (concentration: 9 g / L) at room temperature. And an organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1 in a volume ratio to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 5 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例5>
 添加剤を無添加としたこと以外は実施例5-1~5-7と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表5に示す。
<Comparative Example 5>
The same procedure as in Examples 5-1 to 5-7 was performed except that no additive was added. Table 5 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
<実施例6-1~6-8>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表6に示すイミダゾリウムリン酸エステル塩、及び表6に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表6に示す。
<Examples 6-1 to 6-8>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, imidazolium phosphate ester salts shown in Table 6 as ionic compounds, and compounds shown in Table 6 These mixed solutions were prepared using an additive. Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 6 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例6>
 添加剤を無添加としたこと以外は実施例6-1~6-8と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000022
<Comparative Example 6>
The same method as in Examples 6-1 to 6-8 was performed except that no additive was added. Table 6 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000022
<実施例7-1~7-2>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro((Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、イオン性化合物として表7に示すホスホニウム(p-トルエンスルホニル)塩、及び表7に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表7に示す。
<Examples 7-1 and 7-2>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro ((Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem) A mixed solution of these was prepared using the product No. SOL2412), a phosphonium (p-toluenesulfonyl) salt shown in Table 7 as an ionic compound, and an additive which is a compound shown in Table 7. Specifically, argon was used. In an atmosphere glove box, a toluene solution of organic polymer light emitting material (concentration: 9 g / L), a toluene solution of ionic compound (concentration: 9 g / L), and a toluene solution of additive (concentration: 9 g) at room temperature. / L) was mixed at a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 7 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例7>
 添加剤を無添加としたこと以外は実施例7-1~7-2と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表7に示す。
Figure JPOXMLDOC01-appb-T000023
<Comparative Example 7>
The same method as in Examples 7-1 and 7-2 was performed except that no additive was added. Table 7 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000023
<実施例8-1~8-2>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表8に示すホスホニウム(p-トルエンスルホニル)塩、及び表8に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表8に示す。
<Examples 8-1 to 8-2>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super Yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (p-toluenesulfonyl) salts shown in Table 8 as ionic compounds, and Table 8 These mixed solutions were prepared using the additive which is a compound. Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 8 shows the results of measuring the emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例8>
 添加剤を無添加としたこと以外は実施例8-1~8-2と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000024
<Comparative Example 8>
The same procedure as in Examples 8-1 and 8-2 was performed except that no additive was added. Table 8 shows the results of measuring the emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000024
<実施例9>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro((Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、イオン性化合物として表9に示すホスホニウム(ビス(オキサラト)ボレート)塩、及び表9に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表9に示す。
<Example 9>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro ((Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem) These mixed solutions were prepared using the product, model number SOL2412), a phosphonium (bis (oxalato) borate) salt shown in Table 9 as an ionic compound, and an additive which is a compound shown in Table 9. Specifically, In a glove box in an argon atmosphere, a toluene solution of organic polymer light-emitting material (concentration: 9 g / L), a toluene solution of ionic compound (concentration: 9 g / L), and a toluene solution of additive (concentration: 9 g / L) was mixed at a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 9 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例9>
 添加剤を無添加としたこと以外は実施例9と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表9に示す。
<Comparative Example 9>
The same procedure as in Example 9 was performed except that no additive was added. Table 9 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
<実施例10>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表10に示すホスホニウム(ビス(オキサラト)ボレート)塩、及び表10に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表10に示す。
<Example 10>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super Yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (bis (oxalato) borate) salts shown in Table 10 as ionic compounds, and Table 10 These mixed solutions were prepared using additives which are the compounds shown. Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 10 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例10>
 添加剤を無添加としたこと以外は実施例10と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表10に示す。
Figure JPOXMLDOC01-appb-T000026
<Comparative Example 10>
The same method as in Example 10 was performed except that the additive was not added. Table 10 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000026
<実施例11>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro((Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、イオン性化合物として表11に示すホスホニウム(ビストリフルオロメチルスルホニルイミド)塩、及び表11に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表11に示す。
<Example 11>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro ((Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem) These mixed solutions were prepared using a product, model number SOL2412), a phosphonium (bistrifluoromethylsulfonylimide) salt shown in Table 11 as an ionic compound, and an additive which is a compound shown in Table 11. Specifically, In a glove box in an argon atmosphere, a toluene solution of organic polymer light-emitting material (concentration: 9 g / L), a toluene solution of ionic compound (concentration: 9 g / L), and a toluene solution of additive (concentration: 9 g / L) was mixed at a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 11 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
<比較例11>
 添加剤を無添加としたこと以外は実施例11と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表11に示す。
Figure JPOXMLDOC01-appb-T000027
<Comparative Example 11>
The same procedure as in Example 11 was performed except that no additive was added. Table 11 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000027
<実施例12-1~12-2>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表12に示すホスホニウム(ビストリフルオロメチルスルホニルイミド)塩、及び表12に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表12に示す。
<Examples 12-1 to 12-2>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super Yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (bistrifluoromethylsulfonylimide) salt shown in Table 12 as an ionic compound, and Table 12 These mixed solutions were prepared using additives which are the compounds shown. Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 12 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例12>
 添加剤を無添加としたこと以外は実施例12-1~12-2と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表12に示す。
Figure JPOXMLDOC01-appb-T000028
<Comparative Example 12>
The same method as in Examples 12-1 to 12-2 was performed except that no additive was added. Table 12 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000028
<実施例13-1~13-2>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro((Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、イオン性化合物として表13に示すホスホニウム(テトラフルオロボレート)塩、及び表13に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表13に示す。
<Examples 13-1 to 13-2>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro ((Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9'-spirobifluorene-2,7-diyl)], Solaris Chem) These mixed solutions were prepared using the product, model number SOL2412), a phosphonium (tetrafluoroborate) salt shown in Table 13 as an ionic compound, and an additive which is a compound shown in Table 13. Specifically, an argon atmosphere In a glove box, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and a toluene solution of an additive (concentration: 9 g / L) at room temperature. L) was mixed at a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 13 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
<比較例13>
 添加剤を無添加としたこと以外は実施例13-1~13-2と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表13に示す。
Figure JPOXMLDOC01-appb-T000029
<Comparative Example 13>
The same procedure as in Examples 13-1 to 13-2 was carried out except that no additive was added. Table 13 shows the results of measuring the luminescence properties of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000029
<実施例14-1~14-2>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow(Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、イオン性化合物として表14に示すホスホニウム(テトラフルオロボレート)塩、及び表14に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のトルエン溶液(濃度:9g/L)と、イオン性化合物のトルエン溶液(濃度:9g/L)と、添加剤のトルエン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:イオン性化合物の溶液:添加剤の溶液=8:1:1で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に50℃のホットプレート上で30分間加熱して有機溶媒を蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表14に示す。
<Examples 14-1 to 14-2>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck, product name: PDY-132) as an organic polymer light-emitting material, phosphonium (tetrafluoroborate) salts shown in Table 14 as ionic compounds, and compounds shown in Table 14 These mixed solutions were prepared using an additive which is: Specifically, a toluene solution (concentration: 9 g / L) of an organic polymer light emitting material, a toluene solution of an ionic compound (concentration: 9 g / L), and an additive in a glove box in an argon atmosphere at room temperature. A composition for forming a light emitting layer is prepared by mixing a toluene solution (concentration: 9 g / L) in a volume ratio of organic polymer light emitting material solution: ionic compound solution: additive solution = 8: 1: 1. did.
Next, the composition for forming a light emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box under an argon atmosphere, and is further heated at 50 ° C. The organic solvent was evaporated by heating on the plate for 30 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 14 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例14>
 添加剤を無添加としたこと以外は実施例14-1~14-2と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表14に示す。
<Comparative example 14>
The same procedure as in Examples 14-1 to 14-2 was performed except that no additive was added. Table 14 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表1~表14に示す結果から明らかな通り、一般式(1)で表される化合物を発光層に添加した各実施例の電気化学発光セルでは、イオン性化合物と発光材料との相溶性が向上し、その結果、一般式(1)で表される化合物を添加していない、或いは一般式(1)以外の化合物を添加した各比較例に比べると電気化学発光セルの発光輝度が高く、そのときの電圧も低いことから低電圧駆動が可能であることが判る。 As is apparent from the results shown in Tables 1 to 14, in the electrochemiluminescence cells of each Example in which the compound represented by the general formula (1) was added to the light emitting layer, the compatibility between the ionic compound and the light emitting material was high. As a result, the emission luminance of the electrochemiluminescence cell is high compared to the comparative examples in which the compound represented by the general formula (1) is not added or the compound other than the general formula (1) is added, Since the voltage at that time is also low, it can be seen that low voltage driving is possible.
<実施例15-1~15-6>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow (Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、表15に示すイオン性化合物(金属塩)、及び表15に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のシクロヘキサノン溶液(濃度:9g/L)と、金属塩のシクロヘキサノン溶液(濃度:9g/L)と、添加剤のシクロヘキサノン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:金属塩の溶液:添加剤の溶液=80:5:10で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に80℃のホットプレート上で60分間加熱してシクロヘキサノンを蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表15に示す。
<Examples 15-1 to 15-6>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck & Co., product name: PDY-132) as an organic polymer light-emitting material, an ionic compound (metal salt) shown in Table 15, and an additive which is a compound shown in Table 15 These mixed solutions were prepared using Specifically, a cyclohexanone solution (concentration: 9 g / L) of an organic polymer light emitting material, a cyclohexanone solution (concentration: 9 g / L) of a metal salt, and an additive cyclohexanone in a glove box in an argon atmosphere at room temperature. The solution (concentration: 9 g / L) was mixed at a volume ratio of organic polymer light emitting material solution: metal salt solution: additive solution = 80: 5: 10 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box in an argon atmosphere, and further heated at 80 ° C. The cyclohexanone was evaporated by heating on the plate for 60 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例15>
 添加剤を無添加としたこと以外は実施例15-1~15-6と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表15に示す。
<Comparative Example 15>
The same procedure as in Examples 15-1 to 15-6 was carried out except that no additive was added. Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
<実施例16>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてSuper Yellow (Phenylenesubstitutedpoly(para-phenylenevinylene)、メルク社製、製品名:PDY-132)、表16に示すイオン性化合物(金属塩)、及び表16に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のシクロヘキサノン溶液(濃度:9g/L)と、金属塩のシクロヘキサノン溶液(濃度:9g/L)と、添加剤のシクロヘキサノン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:金属塩の溶液:添加剤の溶液=80:5:10で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に80℃のホットプレート上で60分間加熱してシクロヘキサノンを蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表15に示す。
<Example 16>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
Super Yellow (Phenylene substituted poly (para-phenylenevinylene), manufactured by Merck & Co., product name: PDY-132) as an organic polymer light emitting material, an ionic compound (metal salt) shown in Table 16, and an additive which is a compound shown in Table 16 These mixed solutions were prepared using Specifically, a cyclohexanone solution (concentration: 9 g / L) of an organic polymer light emitting material, a cyclohexanone solution (concentration: 9 g / L) of a metal salt, and an additive cyclohexanone in a glove box in an argon atmosphere at room temperature. The solution (concentration: 9 g / L) was mixed at a volume ratio of organic polymer light emitting material solution: metal salt solution: additive solution = 80: 5: 10 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box in an argon atmosphere, and further heated at 80 ° C. The cyclohexanone was evaporated by heating on the plate for 60 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例16>
 添加剤を無添加としたこと以外は実施例16と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表16に示す。
<Comparative Example 16>
The same procedure as in Example 16 was performed except that no additive was added. Table 16 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
<実施例17-1~17-2>
 市販のITO膜付きガラス基板(ジオマテック株式会社製、ITO膜厚200nm)を第1電極13として用いた。
 有機高分子発光材料としてPFO-spiro(Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9,9'-spirobifluorene-2,7-diyl)]、Solaris Chem社製、型番SOL2412)、表17に
示すイオン性化合物(金属塩)、及び表17に示す化合物である添加剤を用いてこれらの混合溶液を調製した。具体的には、アルゴン雰囲気のグローブボックス中、室温下で有機高分子発光材料のシクロヘキサノン溶液(濃度:9g/L)と、金属塩のシクロヘキサノン溶液(濃度:9g/L)と、添加剤のシクロヘキサノン溶液(濃度:9g/L)とを体積比で有機高分子発光材料の溶液:金属塩の溶液:添加剤の溶液=80:5:10で混合して発光層形成用組成物を調製した。
 次に、アルゴン雰囲気のグローブボックス中、室温下でガラス基板の第1電極13上に、前記で調製された発光層形成用組成物をスピンコートにより塗布して製膜し、更に80℃のホットプレート上で60分間加熱してシクロヘキサノンを蒸発させた。このようにして、100nmの膜厚からなる固体状の発光層12を形成した。更に、形成された発光層12上に、上述した方法により、50nm厚さのアルミニウム(Al)からなる第2電極14を形成した。このようにして、発光予定部分の面積2mm×2mm角からなる電気化学発光セル10を作製した。得られた電気化学発光セル10の発光特性を測定した結果を表15に示す。
<Examples 17-1 to 17-2>
A commercially available glass substrate with an ITO film (manufactured by Geomatic Co., Ltd., ITO film thickness 200 nm) was used as the first electrode 13.
PFO-spiro (Poly [(9,9-dioctylfluorenyl-2,7-diyl) -alt-co- (9,9,9'-spirobifluorene-2,7-diyl)], Solaris Chem as an organic polymer light-emitting material These mixed solutions were prepared by using an additive which is a model, SOL2412), an ionic compound (metal salt) shown in Table 17, and a compound shown in Table 17. Specifically, a cyclohexanone solution (concentration: 9 g / L) of an organic polymer light emitting material, a cyclohexanone solution (concentration: 9 g / L) of a metal salt, and an additive cyclohexanone in a glove box in an argon atmosphere at room temperature. The solution (concentration: 9 g / L) was mixed at a volume ratio of organic polymer light emitting material solution: metal salt solution: additive solution = 80: 5: 10 to prepare a composition for forming a light emitting layer.
Next, the composition for forming a light-emitting layer prepared above is applied by spin coating on the first electrode 13 of the glass substrate at room temperature in a glove box in an argon atmosphere, and further heated at 80 ° C. The cyclohexanone was evaporated by heating on the plate for 60 minutes. Thus, the solid light emitting layer 12 having a thickness of 100 nm was formed. Further, a second electrode 14 made of aluminum (Al) having a thickness of 50 nm was formed on the formed light emitting layer 12 by the method described above. In this manner, an electrochemiluminescence cell 10 having an area of 2 mm × 2 mm square of a light emission scheduled portion was produced. Table 15 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
<比較例17>
 添加剤を無添加としたこと以外は実施例17-1~17-2と同じ方法で行った。得られた電気化学発光セル10の発光特性を測定した結果を表17に示す。
<Comparative Example 17>
The same procedure as in Examples 17-1 to 17-2 was performed except that the additive was not added. Table 17 shows the results of measuring the light emission characteristics of the obtained electrochemiluminescence cell 10.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
10 電気化学発光セル
12 発光層
13 第1電極
14 第2電極
16 pドープ領域
17 nドープ領域
DESCRIPTION OF SYMBOLS 10 Electrochemiluminescence cell 12 Light emitting layer 13 1st electrode 14 2nd electrode 16 p doped area | region 17 n doped area | region

Claims (17)

  1.  下記一般式(1)で表される化合物を含む、電気化学発光セルの発光層用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xはリン原子、炭素原子又は硫黄原子であり、
     Aは、水素原子、直接結合、芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基であり、
     Rは水素原子、又は、分岐鎖状、直鎖状若しくは環状のアルキル基であり、複数存在するRは同一であってもよく異なっていてもよく、同じXにOを介して結合する複数のR同士は互いに連結して環を形成してもよく、該環が形成されていない場合、少なくとも1つのRはアルキル基であり、
     mは0又は1であり、
     rはXがリン原子又は炭素原子のときは1であり、Xが硫黄原子のときは2であり、
     nは、Xがリン原子のときに3-mで表される数であり、Xが炭素原子又は硫黄原子の場合は2-mで表される数であり、
     pは、mが0であるとき又はmが1でAが水素原子であるときに、1であり、mが1でAが直接結合であるときに、2であり、mが1でAが水素原子又は直接結合でないときに、Aにおいて置換可能な数である。ただし、Xがリン原子又は硫黄原子の場合、Aは直接結合ではない。またXが硫黄原子の場合、Aは水素原子ではない。)
    The additive for light emitting layers of an electrochemiluminescence cell containing the compound represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X is a phosphorus atom, a carbon atom or a sulfur atom,
    A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group,
    R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O. Rs may be connected to each other to form a ring. When the ring is not formed, at least one R is an alkyl group,
    m is 0 or 1,
    r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom,
    n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
    p is 1 when m is 0 or when m is 1 and A is a hydrogen atom, p is 2 when m is 1 and A is a direct bond, m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond. However, when X is a phosphorus atom or a sulfur atom, A is not a direct bond. When X is a sulfur atom, A is not a hydrogen atom. )
  2.  前記一般式(1)で表される化合物が下記一般式(2)で表される、請求項1に記載の添加剤。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは前記一般式(1)と同じである。)
    The additive according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R is the same as the general formula (1).)
  3.  前記一般式(1)で表される化合物が下記一般式(3)で表される、請求項1に記載の添加剤。
    Figure JPOXMLDOC01-appb-C000003
    (式中、A、R及びpは前記一般式(1)と同じである。)
    The additive according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, A, R and p are the same as those in the general formula (1).)
  4.  前記一般式(1)で表される化合物が下記一般式(イ)で表される、請求項1に記載の添加剤。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びpは前記一般式(1)と同じであり、Aは芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基である。)
    The additive according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R and p are the same as those in the general formula (1), and A is an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group.)
  5.  前記一般式(1)で表される化合物が下記一般式(ロ)で表される、請求項1に記載の添加剤。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは前記一般式(1)と同じである。)
    The additive according to claim 1, wherein the compound represented by the general formula (1) is represented by the following general formula (b).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R is the same as the general formula (1).)
  6.  前記電気化学発光セルが、発光材料とイオン性化合物とを含有する発光層を有し、前記添加剤は、前記発光材料中への前記イオン性化合物の分散性を向上させるために用いられる、請求項1~5のいずれか1項に記載の添加剤。 The electrochemiluminescence cell has a light emitting layer containing a light emitting material and an ionic compound, and the additive is used to improve the dispersibility of the ionic compound in the light emitting material. Item 6. The additive according to any one of Items 1 to 5.
  7.  前記電気化学発光セルが、発光材料とイオン性化合物とを含有する発光層を有し、前記一般式(1)で表される化合物が前記発光層中に1質量%以上20質量%以下の量で含有されるように用いられる、請求項1~6のいずれか1項に記載の添加剤。 The electrochemiluminescence cell has a light emitting layer containing a light emitting material and an ionic compound, and the compound represented by the general formula (1) is contained in an amount of 1% by mass to 20% by mass in the light emitting layer. The additive according to any one of claims 1 to 6, which is used so as to be contained in
  8.  下記一般式(1)で表される化合物、イオン性化合物、及び発光材料を含有する、電気化学発光セルの発光層形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xはリン原子、炭素原子又は硫黄原子であり、
     Aは、水素原子、直接結合、芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基であり、
     Rは水素原子、又は、分岐鎖状、直鎖状若しくは環状のアルキル基であり、複数存在するRは同一であってもよく異なっていてもよく、同じXにOを介して結合する複数のR同士は互いに連結して環を形成してもよく、該環が形成されていない場合、少なくとも1つのRはアルキル基であり、
     mは0又は1であり、
     rはXがリン原子又は炭素原子のときは1であり、Xが硫黄原子のときは2であり、
     nは、Xがリン原子のときに3-mで表される数であり、Xが炭素原子又は硫黄原子の場合は2-mで表される数であり、
     pは、mが0であるとき又はmが1でAが水素原子であるときに、1であり、mが1でAが直接結合であるときに、2であり、mが1でAが水素原子又は直接結合でないときに、Aにおいて置換可能な数である。ただし、Xがリン原子又は硫黄原子の場合はAは直接結合ではない。またXが硫黄原子の場合はAは水素原子ではない。)
    A composition for forming a light emitting layer of an electrochemiluminescence cell, comprising a compound represented by the following general formula (1), an ionic compound, and a light emitting material.
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, X is a phosphorus atom, a carbon atom or a sulfur atom,
    A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group,
    R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O. Rs may be connected to each other to form a ring. When the ring is not formed, at least one R is an alkyl group,
    m is 0 or 1,
    r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom,
    n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
    p is 1 when m is 0 or when m is 1 and A is a hydrogen atom, p is 2 when m is 1 and A is a direct bond, m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond. However, when X is a phosphorus atom or a sulfur atom, A is not a direct bond. When X is a sulfur atom, A is not a hydrogen atom. )
  9.  前記イオン性化合物のカチオンが、ホスホニウムカチオン、アンモニウムカチオン及びイミダゾリウムカチオンから選ばれる少なくとも1種である、請求項8に記載の発光層形成用組成物。 The composition for forming a light emitting layer according to claim 8, wherein the cation of the ionic compound is at least one selected from a phosphonium cation, an ammonium cation and an imidazolium cation.
  10.  前記イオン性化合物のカチオンが、Li、Na、K、Cs、Mg及びCaから選ばれる少なくとも1種の金属のカチオンである、請求項8に記載の発光層形成用組成物。 The composition for forming a light emitting layer according to claim 8, wherein the cation of the ionic compound is a cation of at least one metal selected from Li, Na, K, Cs, Mg and Ca.
  11.  前記一般式(1)で表される化合物を0.0001質量%以上10質量%以下の量で含有する、請求項8~10のいずれか1項に記載の発光層形成用組成物。 The composition for forming a light emitting layer according to any one of claims 8 to 10, comprising the compound represented by the general formula (1) in an amount of 0.0001 mass% to 10 mass%.
  12.  前記発光材料が、パラフェニレンビニレン、フルオレン、1,4-フェニレン、チオフェン、ピロール、パラフェニレンスルフィド、ベンゾチアジアゾール、ビオチオフィン若しくはこれらの誘導体のポリマー又はこれらを含むコポリマーである有機高分子発光材料である請求項8~11のいずれか1項に記載の発光層形成用組成物。 The organic light-emitting material, wherein the light-emitting material is a polymer of paraphenylene vinylene, fluorene, 1,4-phenylene, thiophene, pyrrole, paraphenylene sulfide, benzothiadiazole, biothiophine, or a derivative thereof, or a copolymer containing these. Item 12. The composition for forming a light emitting layer according to any one of Items 8 to 11.
  13.  発光層と、その各面に配された電極とを有する電気化学発光セルにおいて、
     前記発光層が、発光材料、イオン性化合物及び、下記一般式(1)で表される化合物を含む、電気化学発光セル。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Xはリン原子、炭素原子又は硫黄原子であり、
     Aは、水素原子、直接結合、芳香族炭化水素基、鎖状脂肪族炭化水素基、脂環式炭化水素基又は複素環基であり、
     Rは水素原子、又は、分岐鎖状、直鎖状若しくは環状のアルキル基であり、複数存在するRは同一であってもよく異なっていてもよく、同じXにOを介して結合する複数のR同士は互いに連結して環を形成してもよく、該環が形成されていない場合、少なくとも1つのRはアルキル基であり、
     mは0又は1であり、
     rはXがリン原子又は炭素原子のときは1であり、Xが硫黄原子のときは2であり、
     nは、Xがリン原子のときに3-mで表される数であり、Xが炭素原子又は硫黄原子の場合は2-mで表される数であり、
     pは、mが0であるとき又はmが1でAが水素原子であるときに、1であり、mが1でAが直接結合であるときに、2であり、mが1でAが水素原子又は直接結合でないときに、Aにおいて置換可能な数である。ただし、Xがリン原子又は硫黄原子の場合はAは直接結合ではない。またXが硫黄原子の場合はAは水素原子ではない。)
    In an electrochemiluminescence cell having a light emitting layer and electrodes arranged on each surface thereof,
    The electrochemiluminescence cell in which the light emitting layer contains a light emitting material, an ionic compound, and a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, X is a phosphorus atom, a carbon atom or a sulfur atom,
    A is a hydrogen atom, a direct bond, an aromatic hydrocarbon group, a chain aliphatic hydrocarbon group, an alicyclic hydrocarbon group or a heterocyclic group,
    R is a hydrogen atom or a branched, linear or cyclic alkyl group, and a plurality of R may be the same or different, and a plurality of R bonded to the same X via O. Rs may be connected to each other to form a ring. When the ring is not formed, at least one R is an alkyl group,
    m is 0 or 1,
    r is 1 when X is a phosphorus atom or a carbon atom, and 2 when X is a sulfur atom,
    n is a number represented by 3-m when X is a phosphorus atom, and is a number represented by 2-m when X is a carbon atom or a sulfur atom.
    p is 1 when m is 0 or when m is 1 and A is a hydrogen atom, p is 2 when m is 1 and A is a direct bond, m is 1 and A is A number that can be substituted in A when not a hydrogen atom or a direct bond. However, when X is a phosphorus atom or a sulfur atom, A is not a direct bond. When X is a sulfur atom, A is not a hydrogen atom. )
  14.  前記イオン性化合物のカチオンが、ホスホニウムカチオン、アンモニウムカチオン及びイミダゾリウムカチオンから選ばれる少なくとも1種である、請求項13に記載の電気化学発光セル。 The electrochemiluminescence cell according to claim 13, wherein the cation of the ionic compound is at least one selected from a phosphonium cation, an ammonium cation, and an imidazolium cation.
  15.  前記イオン性化合物のカチオンが、Li、Na、K、Cs、Mg及びCaから選ばれる少なくとも1種の金属のカチオンである、請求項13に記載の電気化学発光セル。 The electrochemiluminescence cell according to claim 13, wherein the cation of the ionic compound is a cation of at least one metal selected from Li, Na, K, Cs, Mg and Ca.
  16.  前記一般式(1)で表される化合物を前記発光層中に1質量%以上20質量%以下含有する、請求項13~15のいずれか1項に記載の電気化学発光セル。 The electrochemiluminescence cell according to any one of claims 13 to 15, wherein the compound represented by the general formula (1) is contained in the light emitting layer in an amount of 1% by mass to 20% by mass.
  17.  前記発光材料が、パラフェニレンビニレン、フルオレン、1,4-フェニレン、チオフェン、ピロール、パラフェニレンスルフィド、ベンゾチアジアゾール、ビオチオフィン若しくはこれらの誘導体のポリマー又はこれらを含むコポリマーである有機高分子発光材料である請求項13~16のいずれか1項に記載の電気化学発光セル。 The organic light-emitting material, wherein the light-emitting material is a polymer of paraphenylene vinylene, fluorene, 1,4-phenylene, thiophene, pyrrole, paraphenylene sulfide, benzothiadiazole, biothiophine, or a derivative thereof, or a copolymer containing these. Item 17. The electrochemiluminescence cell according to any one of Items 13 to 16.
PCT/JP2016/071490 2015-07-27 2016-07-22 Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell WO2017018328A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16830433.5A EP3331043A4 (en) 2015-07-27 2016-07-22 Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell
US15/739,837 US10439143B2 (en) 2015-07-27 2016-07-22 Additive for light-emitting layer in light-emitting electrochemical cell, composition for forming light-emitting layer in light-emitting electrochemical cell, and light-emitting electrochemical cell
KR1020187000225A KR20180034382A (en) 2015-07-27 2016-07-22 An additive for a light emitting layer of an electrochemiluminescent cell, a composition for forming a light emitting layer of an electrochemiluminescent cell, and an electrochemiluminescent cell
CN201680040328.3A CN107851725B (en) 2015-07-27 2016-07-22 Additive for electrochemical luminescence cell luminescent layer, composition for electrochemical luminescence cell luminescent layer formation, and electrochemical luminescence cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-148135 2015-07-27
JP2015148135 2015-07-27
JP2016142758A JP6797586B2 (en) 2015-07-27 2016-07-20 Additives for light-emitting layer of electrochemical light-emitting cell, composition for forming light-emitting layer of electrochemical light-emitting cell, and electrochemical light-emitting cell
JP2016-142758 2016-07-20

Publications (1)

Publication Number Publication Date
WO2017018328A1 true WO2017018328A1 (en) 2017-02-02

Family

ID=57886841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071490 WO2017018328A1 (en) 2015-07-27 2016-07-22 Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell

Country Status (1)

Country Link
WO (1) WO2017018328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084701A1 (en) * 2019-10-31 2021-05-06 シャープ株式会社 Light-emitting element, light-emitting device, and method for manufacturing light-emitting element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506747A (en) * 1994-06-28 1998-06-30 ユニアックス コーポレイション Electrochemical light emitting device
JP2006339010A (en) * 2005-06-01 2006-12-14 Toshiba Corp Electrolytic solution for electrochemical device
JP2011103234A (en) * 2009-11-11 2011-05-26 Dainippon Printing Co Ltd Organic solid membrane, electrochemical light-emitting element, electrochemical light-emitting device, and method of manufacturing electrochemical light-emitting element and method of driving the same
JP2013522816A (en) * 2010-03-11 2013-06-13 メルク パテント ゲーエムベーハー Light emitting fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10506747A (en) * 1994-06-28 1998-06-30 ユニアックス コーポレイション Electrochemical light emitting device
JP2006339010A (en) * 2005-06-01 2006-12-14 Toshiba Corp Electrolytic solution for electrochemical device
JP2011103234A (en) * 2009-11-11 2011-05-26 Dainippon Printing Co Ltd Organic solid membrane, electrochemical light-emitting element, electrochemical light-emitting device, and method of manufacturing electrochemical light-emitting element and method of driving the same
JP2013522816A (en) * 2010-03-11 2013-06-13 メルク パテント ゲーエムベーハー Light emitting fiber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EUN-MI HAN ET AL.: "Lighit-Emitting Electrochemical Cell (LEC) Using Polythiophene Derivative", MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 349, September 2000 (2000-09-01), pages 467 - 470, XP055349935 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084701A1 (en) * 2019-10-31 2021-05-06 シャープ株式会社 Light-emitting element, light-emitting device, and method for manufacturing light-emitting element

Similar Documents

Publication Publication Date Title
JP5994038B1 (en) Electrochemiluminescence cell, composition for forming light emitting layer of electrochemiluminescence cell, and ionic compound for light emitting layer of electrochemiluminescence cell
He et al. Enhancing the overall performances of blue light-emitting electrochemical cells by using an electron-injecting/transporting ionic additive
JP6163185B2 (en) Electrochemiluminescence cell and composition for forming luminescent layer of electrochemiluminescence cell
JP6858709B2 (en) An electrochemical light emitting cell, a composition for forming a light emitting layer of an electrochemical light emitting cell, and an ionic compound for a light emitting layer of an electrochemical light emitting cell.
KR20150087323A (en) Organic electroluminescent device and a method of producing an organic electroluminescent device
JP6797586B2 (en) Additives for light-emitting layer of electrochemical light-emitting cell, composition for forming light-emitting layer of electrochemical light-emitting cell, and electrochemical light-emitting cell
WO2017018328A1 (en) Additive for light-emitting layer in electrochemiluminescent cell, composition for forming light-emitting layer in electrochemiluminescent cell, and electrochemiluminescent cell
KR101556433B1 (en) Organic light emitting devices and method for manufacturing the same
WO2016056529A1 (en) Electrochemical luminescent cell and composition for forming luminescent layer of electrochemical luminescent cell
JP2015216095A (en) Electrochemical light-emitting cell and composition for forming light-emitting layer of electrochemical light-emitting cell
US20190341554A1 (en) Light-emitting electrochemical cell and composition for forming light-emitting layer of light-emitting electrochemical cell
TW201726886A (en) Electrochemical light emitting cell, composition for forming light emitting layer of electrochemical light emitting cell, and ionic compound for light emitting layer of electrochemical light emitting cell R1, R2, R3, and R4 each independently represents a saturated aliphatic compound with carbon atoms higher than 1 and lower than 20.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187000225

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016830433

Country of ref document: EP