WO2017016341A1 - 一种参考信号映射方法及装置 - Google Patents

一种参考信号映射方法及装置 Download PDF

Info

Publication number
WO2017016341A1
WO2017016341A1 PCT/CN2016/086430 CN2016086430W WO2017016341A1 WO 2017016341 A1 WO2017016341 A1 WO 2017016341A1 CN 2016086430 W CN2016086430 W CN 2016086430W WO 2017016341 A1 WO2017016341 A1 WO 2017016341A1
Authority
WO
WIPO (PCT)
Prior art keywords
res
reference signal
csi
mapped
port
Prior art date
Application number
PCT/CN2016/086430
Other languages
English (en)
French (fr)
Inventor
塔玛拉卡·拉盖施
高秋彬
陈润华
陈文洪
李辉
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/747,753 priority Critical patent/US10735158B2/en
Priority to JP2018504091A priority patent/JP6618607B2/ja
Priority to EP16829708.3A priority patent/EP3331296B1/en
Priority to KR1020187004406A priority patent/KR102103655B1/ko
Priority to EP19178703.5A priority patent/EP3565355B1/en
Publication of WO2017016341A1 publication Critical patent/WO2017016341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • H04L1/0693Partial feedback, e.g. partial channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a reference signal mapping method and apparatus.
  • C-RS Cell-specifc Reference Signal
  • UE-RS user-specific reference signal
  • DM-RS Demodulation-Reference Signal
  • MBSFN Multimedia Broadcast multicast service Single Frequency Network
  • P-RS Positioning-Reference Signal
  • CSI-RS Channel State Indication Reference Signal
  • CSI-RS is used for downlink channel measurement and estimation.
  • the reference signal pattern shows the resource locations of the different reference signals, that is, the locations of the REs to which the different reference signals are mapped are located in the PRB (Physical Resource Block).
  • PRB Physical Resource Block
  • a reference signal is transmitted on each of the downstream antenna ports.
  • the current LTE system can be configured as a 2-port or 4-port or 8-port for a CSI-RS, and cannot support more CSI-RSs of antenna ports.
  • the embodiments of the present disclosure provide a reference signal mapping method and apparatus for implementing 12-port or 16-port CSI-RS mapping.
  • an embodiment of the present disclosure provides a reference signal mapping method, including:
  • N a resource unit RE location to which the channel state information reference signal CSI-RS is mapped, N being equal to 12 or 16; wherein the N-port reference signal pattern is mapped to the RE location to which the CSI-RS is mapped Is determined according to the RE position to which the CSI-RS is mapped according to one or more reference signal patterns in the 2-port, 4-port, and 8-port reference signal patterns;
  • Resource mapping is performed on the CSI-RS according to the determined RE location.
  • an embodiment of the present disclosure further provides a reference signal mapping apparatus, including:
  • a determining module configured to determine, according to the N-port reference signal pattern, a resource unit RE location to which the channel state information reference signal CSI-RS is mapped, where N is equal to 12 or 16; wherein the CSI-RS in the N-port reference signal pattern is The mapped RE location is determined according to the RE location to which the CSI-RS is mapped according to one or more of the reference signal patterns in the 2-port, 4-port, and 8-port reference signal patterns;
  • mapping module configured to perform resource mapping on the CSI-RS according to the determined RE location.
  • an embodiment of the present disclosure further provides a network side device, including:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • a transceiver for communicating with various other devices on a transmission medium
  • the network side device When the processor calls and executes the program and data stored in the memory, the network side device performs the following processing:
  • N a resource unit RE location to which the channel state information reference signal CSI-RS is mapped, N being equal to 12 or 16; wherein the N-port reference signal pattern is mapped to the RE location to which the CSI-RS is mapped Is based on 2-port, 4-port, 8-port reference signals Determining the location of the RE to which the CSI-RS is mapped in one or more reference signal patterns in the pattern;
  • Resource mapping is performed on the CSI-RS according to the determined RE location.
  • a reference signal pattern of 12 ports or 16 ports is obtained according to an existing reference signal pattern, such as one or more reference signal patterns in 2-port, 4-port, and 8-port reference signal patterns. And performing the reference signal mapping, determining the RE location to which the CSI-RS is mapped according to the reference signal pattern of the 12-port or 16-port, and performing resource mapping on the CSI-RS according to the RE location, thereby implementing 12 ports or 16
  • the CSI-RS mapping of the port which in turn enables the transmission of 12-port or 16-port CSI-RS.
  • 1A, 1B, and 1C are respectively a 2-port, 4-port, and 8-port reference signal pattern in the prior art
  • FIG. 2 is a schematic flowchart of a reference signal mapping provided by an embodiment of the present disclosure
  • 3A, 3B, and 3C are respectively 12-port reference signal patterns in the first embodiment of the present disclosure
  • 4A, 4B, and 4C are respectively 12-port reference signal patterns in Embodiment 2 of the present disclosure.
  • 5A, 5B, and 5C are respectively 12-port reference signal patterns in Embodiment 3 of the present disclosure.
  • FIG. 6A and FIG. 6B are respectively a 12-port reference signal pattern in Embodiment 4 of the present disclosure.
  • 7A to 7F are respectively 16-port reference signal patterns in Embodiment 5 of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network side device (for example, a base station) according to an embodiment of the present disclosure.
  • a reference signal is transmitted on each of the downstream antenna ports.
  • An antenna port is a logical port used for transmission, which can correspond to one or more actual physical antennas.
  • the definition of the antenna port is defined from the perspective of the receiver, that is, if the receiver needs to distinguish the spatial difference of resources, it is necessary to define multiple antenna ports.
  • the reference signal corresponding to an antenna port received by the terminal The corresponding antenna port is defined, although this reference signal may be a composite of signals transmitted by multiple physical antennas.
  • FIG. 2 is a schematic diagram of a reference signal mapping process provided by an embodiment of the present disclosure. This flow can be performed by the base station. As shown in Figure 2, the process can include:
  • Step 201 Determine, according to the N-port reference signal pattern, an RE (Resource Unit) location to which the CSI-RS is mapped, where N is equal to 12 or 16; wherein, the RE location where the CSI-RS is mapped in the N-port reference signal pattern Is determined according to the RE position to which the CSI-RS is mapped according to one or more reference signal patterns in the 2-port, 4-port, and 8-port reference signal patterns;
  • RE Resource Unit
  • Step 202 Perform resource mapping on the CSI-RS according to the determined RE location.
  • a 12-port reference signal pattern is generated using a combination of one or more reference signal patterns in the 2-port, 4-port, and 8-port reference signal patterns, according to the 12-port reference signal
  • the pattern performs CSI-RS reference signal mapping, which enables transmission of 12-port CSI-RS.
  • a 16-port reference signal pattern is generated by using a combination of one or more reference signal patterns in the 2-port, 4-port, and 8-port reference signal patterns, and CSI-RS reference signal mapping is performed according to the 16-port reference signal pattern.
  • the transmission of 16-port CSI-RS can be realized.
  • the base station can configure the terminal 12 port CSI-RS or the 16 port CSI-RS.
  • the terminal measures the channel on the configured CSI-RS port and feeds back the channel information.
  • N is equal to 12 or 16, which is relatively large.
  • the 12-port reference signal pattern and/or the 16-port reference signal pattern provided by the embodiments of the present disclosure are provided. It can be designed according to at least the 8-port reference signal pattern. That is, in the N-port reference signal pattern, among the N REs to which a group of CSI-RSs are mapped, at least a part of the REs and one or more groups of CSI-RSs in the 8-port reference signal pattern are The locations of the REs mapped to are the same.
  • the embodiments of the present disclosure do not preclude designing a 12-port or 16-port reference signal pattern in accordance with various combinations of 2-port, 4-port, and 8-port reference signal patterns.
  • the 12-port reference signal pattern provided by the embodiment of the present disclosure, among the 12 REs to which a group of CSI-RSs are mapped, there are 8 REs and 8 ports.
  • the positions of the 8 REs to which the first group of CSI-RSs in the reference signal pattern are mapped are the same.
  • the positions of the remaining 4 REs may be any one of the following first to fifth distribution cases.
  • the first distribution case the distribution of the remaining 4 REs is the same as the location of the 4 REs to which a group of CSI-RSs in the 4-port reference signal pattern is mapped. For example, an RE from which a set of 8-port CSI-RSs is mapped is selected from the pattern shown in FIG. 1C, and then a RE of a set of 4-port CSI-RSs is mapped from the pattern shown in FIG. 1B, and It is ensured that the RE to which the selected 8-port CSI-RS is mapped does not overlap with the RE to which the selected 4-port CSI-RS is mapped. Based on the location of these REs, a set of 12-port CSI-RS patterns in the 12-port reference pattern can be obtained.
  • the remaining 4 REs are REs in the 8-port reference signal pattern that are not mapped by any reference signals.
  • the mapping patterns of the four groups of 8-port CSI-RSs in the pattern shown in FIG. 1C may be retained, and the REs corresponding to the remaining ports may be selected from REs that are not mapped by any reference signals, thereby obtaining a 12-port reference signal pattern.
  • the third distribution case the positions of the remaining 4 REs are the same as the positions of the 4 REs of the REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped.
  • the fourth distribution case in the remaining four REs, the location of the two REs is the same as the location of the two REs of the eight REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped.
  • the positions of the other two REs are the same as the positions of the two REs of the eight REs to which the third group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the location of 2 REs is the same as the location of 2 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped.
  • the other two REs are REs in the 8-port reference signal pattern that are not mapped by any reference signals.
  • first group CSI-RS “second group CSI-RS”, and “third group CSI-RS” do not specifically refer to a certain
  • the group CSI-RS is only used to indicate the difference from the other two sets of CSI-RS.
  • the 12-port reference signal pattern provided by the embodiment of the present disclosure, among the 12 REs to which a group of CSI-RSs are mapped, there are 4 RE locations and 8-port reference signals.
  • the positions of the 4 REs of the 8 REs to which the first group of CSI-RSs are mapped are the same, and the positions of the remaining 8 REs include any of the following sixth to ninth distributions:
  • a seventh distribution case among the remaining 8 REs, the positions of 4 REs are the same as the positions of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped, The positions of the other 4 REs are the same as the positions of the 4 REs of the 8 REs to which the third group of CSI-RSs in the 8-port reference signal pattern are mapped.
  • the eighth distribution case in the remaining 8 REs, the location of 4 REs is the same as the position of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped,
  • the other 4 REs are REs in the 8-port reference signal pattern that are not mapped by any reference signals.
  • the remaining 8 REs are REs in the 8-port reference signal pattern that are not mapped by any reference signals.
  • first group CSI-RS "second group CSI-RS” and “third group CSI-RS” are not specifically referred to.
  • a certain set of CSI-RS is only used to indicate that it is different from the other two sets of CSI-RS.
  • the N REs to which a group of CSI-RSs are mapped may be located in the same column symbol or in different column symbols. Among them, each column symbol contains 2 adjacent symbols. Further, in a case where N REs to which a group of CSI-RSs are mapped are located in different column symbols, they may be located on two or three columns of symbols. In the 12-port reference signal pattern, there may be three columns of symbols that can be mapped on the CSI-RS. In the embodiment of the present disclosure, for a group of 12-port CSI-RS, if mapped to two columns of symbols, The two embodiments of the present disclosure do not limit the embodiments of the present disclosure.
  • the DM-RS (De Modulation Reference Signal) is not transmitted, according to the 12-port reference signal pattern, part of the REs to which a group of CSI-RSs are mapped are mapped to the The RE location to which the DM-RS is mapped. In this way, the physical resources can be fully utilized to transmit CSI-RS.
  • At least two of the 12 ports corresponding to a group of CSI-RSs are multiplexed by using 2-bit orthogonal spreading codes, or at least Four ports are multiplexed with 4-bit orthogonal spreading codes, or at least six ports are multiplexed with 6-bit orthogonal spreading codes.
  • the port can be arbitrarily selected for multiplexing.
  • each of the two ports is multiplexed with a 2-bit orthogonal spreading code; or, each of the four ports is multiplexed with a 4-bit orthogonal spreading code.
  • every 6 ports are multiplexed with a 6-bit orthogonal spreading code.
  • the number of bits of the orthogonal spreading code used by the N ports corresponding to the first group of CSI-RSs, and the N corresponding to the second group of CSI-RSs is the same or different.
  • the “first group CSI-RS” and the “second group CSI-RS” do not specifically refer to a certain group of CSI-RSs, but only show differences.
  • the 12-port reference signal pattern provided by the embodiment of the present disclosure includes a 12-port reference signal pattern of a Downlink Pilot Time Slot (Downlink Pilot Time Slot).
  • Downlink Pilot Time Slot Downlink Pilot Time Slot
  • the 16-port reference signal pattern provided by the embodiment of the present disclosure, among the 16 REs to which a group of CSI-RSs are mapped, there are 8 REs and the first group of CSIs in the 8-port reference signal pattern.
  • the positions of the 8 REs to which the RS is mapped are the same, and the positions of the remaining 8 REs are the same as the positions of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped.
  • one way to construct a 16-port CSI-RS reference signal map is to directly put together two 8-port patterns.
  • the N REs to which a group of CSI-RSs are mapped may be located in the same column symbol or in different column symbols. Among them, each column symbol contains 2 adjacent symbols. Further, in a case where N REs to which a group of CSI-RSs are mapped are located in different column symbols, they may be located on two or three columns of symbols. In the 16-port reference signal pattern, there may be three columns of symbols that can be mapped to CSI-RS. In the embodiment of the present disclosure, for a group of 16-port CSI-RSs, if mapped to two columns of symbols, which two are specifically mapped to The embodiment of the present disclosure is not limited in terms of column symbols.
  • the DM-RS is not transmitted, according to the 16-port reference signal pattern, among the N REs to which a group of CSI-RSs are mapped, some REs are mapped to the RE locations to which the DM-RS is mapped. In this way, the physical resources can be fully utilized to transmit CSI-RS.
  • At least two of the 16 ports corresponding to a group of CSI-RSs are multiplexed by using 2-bit orthogonal spreading codes, or at least four.
  • the ports are multiplexed using 4-bit orthogonal spreading codes, or at least 6 ports are multiplexed using 6-bit orthogonal spreading codes.
  • the port can be arbitrarily selected for multiplexing.
  • each of the 16 ports corresponding to a group of CSI-RSs is multiplexed with a 2-bit orthogonal spreading code; or, 16 ports In the reference signal pattern, each of the 16 ports corresponding to a group of CSI-RSs is multiplexed with a 4-bit orthogonal spreading code.
  • the number of bits of the orthogonal spreading code used by the N ports corresponding to the first group of CSI-RSs, and the N corresponding to the second group of CSI-RSs is the same or different.
  • the “first group CSI-RS” and the “second group CSI-RS” do not specifically refer to a certain group of CSI-RSs, but only show differences.
  • the 16-port reference signal pattern of the DwPTS is included in the 16-port reference signal pattern provided by the embodiment of the present disclosure.
  • CSI-RS mapping and transmission can be performed on the DwPTS according to the 16-port reference signal pattern of the DwPTS.
  • the first embodiment describes a scheme for obtaining a 12-port signal reference pattern according to a 4-port reference signal pattern and an 8-port reference signal pattern.
  • FIG. 3A shows a 12 port reference signal pattern. It should be noted that FIG. 3A only shows a possible 12-port reference signal pattern. Based on the distribution rule of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, which are not enumerated here.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • the REs to which the first set of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following RE of position: (5,9), (6,9), (5,3), (6,3),(5,8),(6,8),(5,2),(6,2 ), (9, 7), (10, 7), (9, 1), (10, 1).
  • the REs corresponding to the ports 0 to 7 are the same as the REs mapped to the group of 8-port CSI-RSs in FIG. 1C, and the REs corresponding to the ports 8 to 11 are mapped to the CSI-RSs in FIG. 1B.
  • the RE location is the same.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 9), (10, 9), (9, 3), (10, 3) ), (9, 8), (10, 8), (9, 2), (10, 2), (9, 6), (10, 6), (9, 0), (10, 0).
  • the REs corresponding to the ports 0 to 7 are the same as the REs mapped to the CSI-RSs in FIG. 1C, and the REs corresponding to the ports 8 to 11 and the REs mapped to the CSI-RSs in FIG. 1B. The location is the same.
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (12, 9), (13, 9), (12, 3), (13, 3) ), (12, 8), (13, 8), (12, 2), (13, 2), (9, 11), (10, 11), (9, 5), (10, 5).
  • the REs corresponding to the ports 0 to 7 are the same as the REs mapped to the CSI-RSs in FIG. 1C, and the REs corresponding to the ports 8 to 11 and the REs mapped to the CSI-RSs in FIG. 1B. The location is the same.
  • the 12-port reference signal pilot pattern in the DwPTS region of the TDD (Time Division Duplexing) subframe may also be obtained based on the above principle.
  • Figures 3B and 3C show a 12-port reference signal pattern in a DwPTS, respectively.
  • the pattern shown in FIG. 3B is applicable to a DwPTS having a length of 11 symbols or 12 symbols
  • the pattern shown in FIG. 3C is applicable to a DwPTS having a length of 9 symbols or 10 symbols.
  • FIG. 3B and FIG. 3C only show two possible 12-port reference signal patterns. Based on the distribution rule of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • FIG. 3B three sets of 12-port CSI-RS patterns are shown, and the three sets of 12-port CSI-RS patterns can be distributed according to the first distribution in the aforementioned 12-port reference signal pattern, wherein :
  • the REs to which the first set of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following RE of position: (2,9), (3,9), (2,3), (3,3), (2,8), (3,8), (2,2), (3,2 ), (5,6), (6,6), (5,0), (6,0).
  • the RE corresponding to the port 0 to the port 7 and the RE position mapped to the CSI-RS in FIG. 1C are moved forward by 3 symbols, and the RE corresponding to the port 8 to port 11 are the same as those in FIG. 1B.
  • the RE position to which a group of CSI-RSs is mapped is the same as the position after moving 4 symbols forward.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 11), (6, 11), (5, 5), (6, 5) ), (5, 10), (6, 10), (5, 4), (6, 4), (5, 7), (6, 7), (5, 1), (6, 1).
  • the RE corresponding to the port 0 to the port 7 and the RE position mapped to the CSI-RS in FIG. 1C are moved forward by 3 symbols, and the RE corresponding to the port 8 to port 11 are the same as those in FIG. 1B.
  • the RE position to which a group of CSI-RSs is mapped is the same as the position after moving 4 symbols forward.
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 9), (10, 9), (9, 3), (10, 3) ), (9, 8), (10, 8), (9, 2), (10, 2), (5, 9), (6, 9), (5, 3), (6, 3).
  • the RE corresponding to the port 0 to the port 7 and the RE position mapped to the CSI-RS in FIG. 1C are moved forward by 3 symbols, and the RE corresponding to the port 8 to port 11 are the same as those in FIG. 1B.
  • the RE position to which a group of CSI-RSs is mapped is the same as the position after moving 4 symbols forward.
  • FIG. 3C a set of 12-port CSI-RS patterns is shown.
  • the RE corresponding to the port 1 to the port 7 and the RE position mapped to the CSI-RS in FIG. 1C are moved forward by 3 symbols, and the RE corresponding to the port 8 to port 11 are the same as those of the port 8 to port 11.
  • the RE position to which a group of CSI-RSs is mapped is the same as the position after moving 4 symbols forward.
  • two-port OCC Orthogonal Complementary Code
  • Table 1 shows that CSI-RS port 0 and CSI-RS port 1 can be multiplexed using 2-bit OCC, and CSI-RS port 4 and CSI-RS port 5 can be multiplexed using 2-bit OCC, CSI-RS port 8 and CSI-RS port 9 can be multiplexed using 2-bit OCC, CSI-RS port 10 and CSI-RS port 11 can be multiplexed using 2-bit OCC, and CSI-RS port 2 and CSI-RS port 3 can use 2-bit OCC For multiplexing, CSI-RS port 6 and CSI-RS port 7 can be multiplexed using a 2-bit OCC.
  • Embodiment 2 describes a scheme for obtaining a 12-port reference signal pattern based on an 8-port reference signal pattern.
  • FIG. 4A shows a 12 port reference signal pattern. It should be noted that FIG. 4A only shows a possible 12-port reference signal pattern. Based on the distribution rule of the 12-port reference signal pattern described in the foregoing embodiment, other 12-port reference signal patterns can also be obtained, and no longer List one by one.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • a pattern of four sets of 12-port CSI-RSs is shown.
  • the patterns of the first group of CSI-RSs and the second group of CSI-RSs conform to the rule of the second distribution in the foregoing 12-port reference signal pattern, and the patterns of the third group of CSI-RSs and the fourth group of CSI-RSs are consistent.
  • the law of the fourth distribution condition in the aforementioned 12-port reference signal pattern is shown.
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (5, 3), (6, 3) ), (5, 8), (6, 8), (5, 2), (6, 2), (5, 7), (6, 7), (5, 4), (6, 4).
  • the REs corresponding to ports 0 to 7 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to ports 8 to 11 are REs that are not mapped by any reference signals in FIG. 1C.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including REs at the following locations: (12, 9), (13, 9), (12, 3), (13, 3) ), (12, 8), (13, 8), (12, 2), (13, 2), (12, 7), (13, 7), (12, 4), (13, 4).
  • the REs corresponding to ports 0 to 7 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to ports 8 to 11 are not in FIG. 1C.
  • the RE to which the test signal is mapped.
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 12), (10, 12), (9, 5), (10, 5) ), (9, 11), (10, 11), (9, 4), (10, 4), (9, 7), (10, 7), (9, 1), (10, 1).
  • the REs corresponding to the ports 0 to 7 are the same as the REs mapped to the group of CSI-RSs in FIG. 1C, and the REs corresponding to the ports 8 and 9 are mapped to the REs mapped to the other group of CSI-RSs in FIG. 1C.
  • the positions of the two REs in the same are the same, and the REs corresponding to the ports 10 and 11 are the same as the positions of the two REs in the RE to which the further group of CSI-RSs in FIG. 1C are mapped.
  • the REs to which the fourth group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 9), (10, 9), (9, 3), (10, 3) ), (9, 8), (10, 8), (9, 2), (10, 2), (9, 6), (10, 6), (9, 0), (10, 0).
  • the REs corresponding to the ports 0 to 7 are the same as the REs mapped to the group of CSI-RSs in FIG. 1C, and the REs corresponding to the ports 8 and 9 are mapped to the REs mapped to the other group of CSI-RSs in FIG. 1C.
  • the positions of the two REs in the same are the same, and the REs corresponding to the ports 10 and 11 are the same as the positions of the two REs in the RE to which the further group of CSI-RSs in FIG. 1C are mapped.
  • the 12-port reference signal pilot pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • FIG. 4B and 4C respectively show a 12-port reference signal pattern in the DwPTS, wherein the pattern shown in FIG. 4B is applied to a DwPTS having a length of 11 symbols or 12 symbols, and the pattern shown in FIG. 4C is applied to A DwPTS of 9 symbols or 10 symbols in length.
  • FIG. 4B and FIG. 4C only show two possible 12-port reference signal patterns. Based on the distribution rule of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, and no longer one. An enumeration.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • FIG. 4B a pattern of four sets of 12-port CSI-RSs is shown.
  • the REs to which the first group of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following locations: RE: (2, 9), (3, 9), (2, 3), (3, 3) ), (2, 8), (3, 8), (2, 2), (3, 2), (2, 7), (3, 7), (2, 4), (3, 4).
  • the RE corresponding to the port 0 to the port 7 and the RE position mapped to the CSI-RS in FIG. 1C are moved forward by 3 symbols, and the RE corresponding to the port 8 to the port 11
  • the frequency domain positions on symbol 2, symbol 3 are the same as the REs on the symbols 5 and 6 in Fig. 1C that are not mapped by any reference signal in the frequency domain.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 9), (10, 9), (9, 3), (10, 3) ), (9, 8), (10, 8), (9, 2), (10, 2), (9, 7), (10, 7), (9, 4), (10, 4).
  • the REs corresponding to the ports 0 to 7 are the same as the positions where the REs mapped to the CSI-RSs in FIG. 1C are moved forward by 3 symbols, and the REs corresponding to the ports 8 to 11 are at the symbols 9 and symbols.
  • the frequency domain position on 10 is the same as the position of the RE that is not mapped by any reference signal on symbols 12 and 13 in Fig. 1C in the frequency domain.
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 11), (6, 11), (5, 5), (6, 5) ), (5, 10), (6, 10), (5, 4), (6, 4), (5, 7), (6, 7), (5, 1), (6, 1).
  • the RE corresponding to the port 0 to the port 7 is the same as the RE position mapped to the CSI-RS in FIG. 1C, and the RE corresponding to the port 8 to the port 11 and the RE in FIG. 1C.
  • the four RE positions to which another set of CSI-RSs are mapped are moved to the same position after moving 4 symbols.
  • the REs to which the fourth group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (5, 3), (6, 3) ), (5,8), (6,8), (5,2), (6,2), (5,6), (6,6), (5,0), (6,0).
  • the RE corresponding to the port 0 to the port 7 is the same as the RE position mapped to the CSI-RS in FIG. 1C, and the RE corresponding to the port 8 to the port 11 and the RE in FIG. 1C.
  • the four RE positions to which another set of CSI-RSs are mapped are moved to the same position after moving 4 symbols.
  • the REs to which the first group of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following locations: RE: (2, 9), (3, 9), (2, 3), (3, 3) ), (2, 8), (3, 8), (2, 2), (3, 2), (2, 7), (3, 7), (2, 4), (3, 4).
  • the REs corresponding to the ports 0 to 7 are the same as the positions where the REs mapped to the CSI-RSs in FIG. 1C are moved forward by 3 symbols, and the REs corresponding to the ports 8 to 11 are at the symbol 2 and the symbols.
  • the frequency domain position on 3 is the same as the position of the REs on the symbols 5 and 6 in Fig. 1C that are not mapped by any reference signal in the frequency domain.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (5, 3), (6, 3) ), (5,8), (6,8),(5,2),(6,2),(5,7),(6,7), (5,4), (6,4).
  • the REs corresponding to the ports 0 to 7 are the same as the positions where the REs mapped to the CSI-RSs in FIG. 1C are moved forward by 7 symbols, and the REs corresponding to the ports 8 to 11 are at the symbols 5 and symbols.
  • the frequency domain position on 6 is the same as the position of the RE on the symbol 12 and the symbol 13 in Fig. 1C that is not mapped by any reference signal in the frequency domain.
  • each of the two ports may be multiplexed with a 2-bit OCC, for example, may be multiplexed according to the manner shown in Table 1.
  • Embodiment 3 describes another scheme for obtaining a 12-port reference signal pattern based on an 8-port reference signal pattern.
  • FIG. 5A shows a 12 port reference signal pattern. It should be noted that FIG. 5A only shows a possible 12-port reference signal pattern. Based on the distribution rule of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, which are not enumerated here.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • FIG. 5A four sets of 12-port CSI-RS patterns are shown, which can be distributed according to the sixth distribution condition in the aforementioned 12-port reference signal pattern.
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (9, 11), (10, 11) ), (5, 8), (6, 8), (9, 10), (10, 11), (5, 7), (6, 7), (9, 9), (10, 9).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to port 2, port 3, port 6, and port 7 are as shown in FIG. 1C.
  • the REs of the other group of CSI-RSs are mapped to the same location, and the REs corresponding to ports 10 and 11 are the same as the REs mapped to the other group of CSI-RSs in FIG. 1C, and the REs corresponding to ports 8 and 9. Is the RE that is not mapped to any reference signal in Figure 1C.
  • the second group of CSI-RSs, the third group of CSI-RSs, and the REs to which the fourth group of CSI-RSs are mapped in the 12-port reference signal pattern also conform to the above rules. Only the locations of the REs to which the second group of CSI-RSs, the third group of CSI-RSs, and the fourth group of CSI-RSs are mapped are given below:
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 4), (6, 4), (9, 8), (10, 8) ),(5,3),(6,3),(9,7),(10,7),(5,2),(6,2), (9,6), (10,6).
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (12, 9), (13, 9), (9, 5), (10, 5) ), (12, 8), (13, 8), (9, 4), (10, 4), (12, 7), (13, 7), (9, 3), (10, 3).
  • the REs to which the fourth group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (12, 4), (13, 4), (9, 2), (10, 2) ), (12, 3), (13, 3), (9, 1), (10, 1), (12, 2), (13, 2), (9, 0), (10, 0).
  • the 12-port reference signal pilot pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • FIG. 5B and 5C show a 12-port reference signal pattern in a DwPTS, respectively.
  • the pattern shown in FIG. 5B is applicable to a DwPTS having a length of 11 symbols or 12 symbols
  • the pattern shown in FIG. 5C is applicable to a DwPTS having a length of 9 symbols or 10 symbols.
  • FIG. 5B and FIG. 5C only show two possible 12-port reference signal patterns. Based on the distribution pattern of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, and no longer one by one. List.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • FIG. 5B a pattern of four sets of 12-port CSI-RSs is shown.
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 9), (3, 9), (5, 11), (6, 11) ), (2, 8), (3, 8), (5, 10), (6, 10), (2, 7), (3, 7), (5, 9), (5, 9).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the positions where the four RE locations mapped to a group of CSI-RSs in FIG. 1C are moved forward by 3 symbols, and port 2 and port 3 are The RE corresponding to port 6 and port 7 is the same as the position where 4 RE positions mapped to another CSI-RS in FIG.
  • the second group of CSI-RSs, the third group of CSI-RSs, and the fourth group in the 12-port reference signal pattern also conforms to the above rules. Only the locations of the REs to which the second group of CSI-RSs, the third group of CSI-RSs, and the fourth group of CSI-RSs are mapped are given below:
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 4), (3, 4), (5, 8), (6, 8) ), (2, 3), (3, 3), (5, 7), (6, 7), (2, 2), (3, 2), (5, 6), (5, 6).
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 9), (10, 9), (5, 5), (6, 5) ), (9, 8), (10, 8), (5, 4), (6, 4), (9, 7), (10, 7), (5, 3), (6, 3).
  • the REs to which the fourth group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 4), (10, 4), (5, 2), (6, 2) ), (9, 3), (10, 3), (5, 1), (6, 1), (9, 2), (10, 2), (5, 0), (6, 0).
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 9), (3, 9), (5, 9), (6, 9) ), (2, 8), (3, 8), (5, 8), (6, 8), (2, 7), (3, 7), (5, 7), (6, 7).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the positions where the four RE locations mapped to a group of CSI-RSs in FIG. 1C are moved forward by 3 symbols, and port 2 and port 3 are The REs corresponding to the ports 6 and 7 are the same as the positions where the 4 RE positions mapped to the CSI-RS in FIG.
  • the RE to which the second group of CSI-RSs in the 12-port reference signal pattern is mapped also conforms to the above rule. Only the locations of the REs to which the second set of CSI-RSs are mapped are given below:
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 4), (3, 4), (5, 4), (6, 4) ), (2, 3), (3, 3), (5, 3), (6, 3), (2, 2), (3, 2), (5, 2), (6, 2).
  • 4-port OCC can be multiplexed every 4 ports, for example, according to the manner shown in Table 2:
  • Table 2 shows that CSI-RS port 0 to CSI-RS port 3 can be multiplexed using 4-bit OCC, and CSI-RS port 4 to CSI-RS port 7 can be multiplexed using 4-bit OCC, CSI-RS port 8 to The CSI-RS port 11 can be multiplexed using a 4-bit OCC.
  • the embodiments of the present disclosure do not exclude that two of the 12 ports use 2-bit OCC multiplexing, and a certain four ports use 4-bit OCC multiplexing.
  • Embodiments of the present disclosure do not exclude that a 12-port group employs 4-bit OCC multiplexing, while another 12-port group employs 2-bit OCC multiplexing.
  • Embodiment 4 describes another scheme for obtaining a 12-port reference signal pattern based on an 8-port reference signal pattern.
  • FIG. 6A shows a 12 port reference signal pattern. It should be noted that FIG. 6A only shows a possible 12-port reference signal pattern. Based on the distribution pattern of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, which are not enumerated here.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • a pattern of four sets of 12-port CSI-RSs is shown.
  • the patterns of the first group, the second group, and the third group of CSI-RSs conform to the rule of the seventh distribution in the foregoing 12-port reference signal pattern, and the pattern of the fourth group of CSI-RSs conforms to the aforementioned 12-port reference signal pattern.
  • the law of the eighth distribution situation is shown.
  • the REs to which the first set of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following RE of position: (5,9), (6,9), (9,11), (10,11),(5,8),(6,8),(9,10),(10,11 ), (12, 9), (13, 9), (12, 8), (13, 8).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to port 2, port 3, port 6, and port 7 are as shown in FIG. 1C.
  • the REs mapped to the other group of CSI-RSs are the same, and the REs corresponding to ports 8 to 11 are the same as the REs mapped to the other group of CSI-RSs in FIG. 1C.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 3), (6, 3), (9, 1), (10, 1) ), (5, 2), (6, 2), (9, 0), (10, 0), (12, 3), (13, 3), (12, 2), (13, 2).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to port 2, port 3, port 6, and port 7 are as shown in FIG. 1C.
  • the REs mapped to the other group of CSI-RSs are the same, and the REs corresponding to ports 8 to 11 are the same as the REs mapped to the other group of CSI-RSs in FIG. 1C.
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 7), (10, 7), (9, 4), (10, 4) ), (9,6), (10,6), (9,3), (10,3), (9,5), (10,5), (9,2), (10,2).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to port 2, port 3, port 8, and port 9 are as shown in FIG. 1C.
  • the REs mapped to the other group of CSI-RSs are the same, and the REs corresponding to port 7, port 7, port 10, port 11 are the same as the RE locations mapped to another group of CSI-RSs of FIG. 1C.
  • the REs to which the fourth group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 7), (6, 7), (9, 9), (10, 9) ), (5, 4), (6, 4), (9, 8), (10, 8), (12, 7), (13, 7), (12, 4), (13, 4).
  • the REs corresponding to the port 2, the port 3, the port 6, and the port 7 are the same as the REs mapped to the group of CSI-RSs in FIG. 1C, and the REs corresponding to the remaining ports are the REs mapped to the reference signal in FIG. 1C. .
  • the 12-port reference signal pilot pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • FIG. 6B shows a 12 port reference signal pattern in a DwPTS. It should be noted that FIG. 6B only shows a possible 12-port reference signal pattern. Based on the distribution of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, which will not be enumerated here.
  • each square represents an RE
  • the position of an RE can be It is represented by coordinates (x, y), where x represents the symbol number and y represents the subcarrier number.
  • the value in each square represents the port number.
  • the figure shows four sets of 12-port CSI-RS patterns:
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 9), (3, 9), (5, 11), (6, 11) ), (2, 8), (3, 8), (5, 10), (6, 10), (9, 9), (10, 9), (9, 8), (10, 8).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the positions where the four RE locations mapped to a group of CSI-RSs in FIG. 1C are moved forward by 3 symbols, and port 2 and port 3 are
  • the RE corresponding to port 6 and port 7 is the same as the position where 4 RE positions mapped to a group of CSI-RSs in FIG. 1C are moved forward by 4 symbols, and the RE corresponding to port 8 to port 11 is the same as that of FIG. 1C.
  • the two RE positions to which a group of CSI-RSs are mapped are moved to the same position after moving 3 symbols.
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 3), (3, 3), (5, 1), (5, 1 ), (2, 2), (3, 2), (5, 0), (6, 0), (12, 3), (13, 3), (12, 2), (13, 2).
  • the REs to which the third group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 7), (6, 7), (5, 4), (6, 4) ), (5,6), (6,6), (5,3), (6,3), (5,5), (6,5), (5,2), (6,2).
  • the REs to which the fourth group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (2, 7), (3, 7), (5, 9), (6, 9) ), (2, 4), (3, 4), (5, 8), (6, 8), (9, 7), (10, 7), (9, 4), (10, 4).
  • port 0, port 1, port 2, port 3, port 8, and port 9 corresponding to the first group of CSI-RSs are multiplexed by 6-bit OCC; the first group of CSI-RSs corresponds to Port 4, Port 5, Port 6, Port 7, Port 10, and Port 11 are multiplexed using a 6-bit OCC.
  • This disclosure does not exclude that a 12-port group uses 6-bit OCC multiplexing, while another 12-port group uses 2-bit or 4-bit OCC multiplexing.
  • Embodiment 5 describes a scheme for obtaining a 16-port reference signal pattern based on an 8-port reference signal pattern.
  • FIGS. 7A, 7B, 7C, and 7D are distributed showing a 12-port reference signal pattern, wherein The patterns shown in FIGS. 7A and 7B are suitable for the case where symbol processing is performed using a short CP (Cyclic Prefix), and FIGS. 7C and 7D are applied to the case where symbol processing is performed using a long CP. It should be noted that these figures only show several possible 12-port reference signal patterns. Based on the distribution rule of the aforementioned 12-port reference signal pattern, other 12-port reference signal patterns can also be obtained, which will not be enumerated here.
  • each square represents an RE
  • the position of an RE can be represented by coordinates (x, y), where x represents a symbol number, and y represents a subcarrier. Numbering. The value in each square represents the port number.
  • the figure shows two sets of 16-port CSI-RS patterns:
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (5, 3), (6, 3) ),(5,8),(6,8),(5,2),(6,2),(9,11),(10,11),(9,5),(10,5), (9,10), (10,10), (9,4), (10,4).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to port 2, port 3, port 6, and port 7 are as shown in FIG. 1C.
  • the other group of CSI-RSs are mapped to the same RE location, and the REs corresponding to port 8, port 9, port 12, and port 13 are the same as the REs mapped to another group of CSI-RSs in FIG. 1C, and the remaining ports are corresponding.
  • the RE is the same as the RE location to which another set of CSI-RSs of Figure 1C are mapped.
  • the REs to which the first group of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following locations: RE: (9, 9), (10, 9), (9, 3), (9, 3) ), (9,8), (9,8),(9,2),(9,2),(12,9),(13,9),(9,3),(10,3), (9,8), (10,8), (9,2), (10,2).
  • the REs corresponding to port 0, port 1, port 4, and port 5 are the same as the REs mapped to a group of CSI-RSs in FIG. 1C, and the REs corresponding to port 2, port 3, port 6, and port 7 are as shown in FIG. 1C.
  • the other group of CSI-RSs are mapped to the same RE location, and the REs corresponding to port 8, port 9, port 12, and port 13 are the same as the REs mapped to another group of CSI-RSs in FIG. 1C, and the remaining ports are corresponding.
  • the RE is the same as the RE location to which another set of CSI-RSs of Figure 1C are mapped.
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (5, 3), (6, 3) ),(5,8),(6,8),(5,2),(6,2),(9,9),(10,9),(9,3),(10,3), (9,8), (10,8), (9,2), (10,2).
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (9, 11), (10, 11), (9, 5), (10, 5) ),(9,10),(10,10),(9,4),(10,4),(12,9),(13,9),(12,3),(13,3), (12,8), (13,8), (12,2), (13,2).
  • the figure shows two sets of 16-port CSI-RS patterns:
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including REs at the following locations: (4, 11), (5, 11), (4, 8), (5, 8) ), (4, 5), (5, 6), (4, 2), (5, 2), (10, 10), (11, 10), (10, 7), (11, 7), (10,4), (11,4), (10,1), (11,1).
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (4, 9), (5, 9), (4, 6), (5, 6) ), (4, 3), (5, 3), (4, 0), (5, 0), (10, 9), (11, 9), (10, 6), (11, 6), (10,3), (11,3), (10,0), (11,0).
  • the REs to which the first group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including REs at the following locations: (4, 11), (5, 11), (4, 8), (5, 8) ), (4, 5), (5, 6), (4, 2), (5, 2), (10, 9), (11, 9), (10, 6), (11, 6), (10,3), (11,3), (10,0), (11,0).
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (4, 9), (5, 9), (4, 6), (5, 6) ), (4, 3), (5, 3), (4, 0), (5, 0), (10, 10), (11, 10), (10, 7), (11, 7), (10,4), (11,4), (10,1), (11,1).
  • the 12-port reference signal pilot pattern in the DwPTS region of the TDD subframe may also be obtained based on the above principle.
  • FIG. 7E and 7F show a 16-port reference signal pattern in the DwPTS. It should be noted that FIG. 7E only shows two possible 16-port reference signal patterns. Based on the distribution of the aforementioned 16-port reference signal pattern, other 16-port reference signal patterns can also be obtained, which are not enumerated here.
  • each square represents an RE
  • the position of one RE can be represented by coordinates (x, y), where x represents a symbol number and y represents a subcarrier number.
  • the value in each square represents the port number.
  • the REs to which the first group of CSI-RSs are mapped in the order of port numbers from 0 to 11, including the following locations: RE: (2, 9), (3, 9), (2, 3), (3, 3) ), (2, 8), (3, 8), (5, 2), (6, 2), (5, 11), (10, 11), (5, 5), (6, 5), (5,10), (6,10), (5,4), (6,4).
  • the REs to which the second group of CSI-RSs are mapped are in the order of port numbers from 0 to 11, including the following locations: RE: (5, 9), (6, 9), (5, 3), (6, 3) ),(5,8),(6,8),(5,2),(6,2),(9,9),(10,9),(9,3),(10,3), (9,8), (10,8), (9,2), (10,2).
  • the figure shows a set of 16-port CSI-RS patterns: REs including the following positions in the order of port numbers from 0 to 11: (2, 9), (3, 9), ( 2,3),(3,3),(2,8),(3,8),(2,2),(3,2),(5,9),(10,9),(5, 3), (6, 3), (5, 8), (6, 8), (5, 2), (6, 2).
  • the 2-bit OCC can be multiplexed every 2 ports, for example, according to the manner shown in Table 3:
  • Table 3 shows: CSI-RS port 0, CSI-RS port 1 uses 2-bit OCC multiplexing, CSI-RS port 4, CSI-RS port 5 uses 2-bit OCC multiplexing, CSI-RS port 2, CSI-RS port 3 uses 2-bit OCC multiplexing, and so on.
  • each of the four ports may be multiplexed with a 2-bit OCC, for example, according to the manner shown in Table 4:
  • Port 0, port 1, port 8, and port 9 are multiplexed with 4-bit OCC; port 4, port 5, port 12, and port 13 are multiplexed with 4-bit OCC; port 2, port 3, port 10, Port 11 uses 4-bit OCC multiplexing; port 6, port 7, port 14, and port 15 are 4OCC multiplexed.
  • FIG. 7A is compared to FIG. 1C, a portion of REs are not mapped by CSI-RS, and the present disclosure does not exclude that RE locations that are not mapped appear elsewhere.
  • Embodiments of the present disclosure do not exclude different port combinations and different orthogonal multiplexing codes.
  • embodiments of the present disclosure do not exclude that two of the 16 ports use 2-bit OCC multiplexing, and a certain four ports use 4-bit OCC multiplexing. In addition, embodiments of the present disclosure do not exclude that a 16-port group employs 4-bit OCC multiplexing, while another 16-port group employs 2-bit OCC multiplexing.
  • the embodiment of the present disclosure also provides a reference signal mapping device.
  • FIG. 8 is a schematic structural diagram of a reference signal mapping apparatus according to an embodiment of the present disclosure, where the apparatus can implement the reference signal mapping process.
  • the apparatus can include a determination module 81 and a mapping module 82.
  • a determining module 81 configured to determine, according to the N-port reference signal pattern, an RE location to which the CSI-RS is mapped, where N is equal to 12 or 16; wherein the RE location to which the CSI-RS is mapped in the N-port reference signal pattern is Determined according to the RE position to which the CSI-RS is mapped according to one or more of the reference signal patterns in the 2-port, 4-port, and 8-port reference signal patterns.
  • the mapping module 82 is configured to perform resource mapping on the CSI-RS according to the determined RE location.
  • a position of at least a part of the REs to which a group of CSI-RSs is mapped is mapped with one or more groups of CSI-RSs in the 8-port reference signal pattern.
  • the location of the RE is the same.
  • the location of 8 REs and the first group of CSI-RSs in the 8-port reference signal pattern are mapped to The positions of the 8 REs are the same, and the positions of the remaining 4 REs include one of the following first to fifth distributions:
  • the distribution of the remaining 4 REs is the same as the location of 4 REs to which a group of CSI-RSs in the 4-port reference signal pattern is mapped;
  • the remaining 4 REs are REs of the 8-port reference signal pattern that are not mapped by any reference signals;
  • the positions of the remaining 4 REs are the same as the positions of 4 REs of the REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the fourth distribution case in the remaining four REs, the location of the two REs is the same as the location of the two REs of the eight REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped.
  • the positions of the other two REs are the same as the positions of the two REs of the eight REs to which the third group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the location of 2 REs is the same as the location of 2 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped.
  • the other two REs are REs of the 8-port reference signal pattern that are not mapped by any reference signals;
  • the location of 4 REs and the first group of CSI-RSs in the 8-port reference signal pattern are mapped to The positions of the 4 REs of the 8 REs are the same, and the positions of the remaining 8 REs include one of the following sixth to ninth distributions:
  • the location of 4 REs is the same as the location of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped;
  • the location of 2 REs is the same as the location of 2 REs of the 8 REs to which the third group of CSI-RSs in the 8-port reference signal pattern is mapped, and the other 2 REs are 8 ports.
  • a seventh distribution case among the remaining 8 REs, the positions of 4 REs are the same as the positions of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped, The positions of the other 4 REs are the same as the positions of 4 REs of the 8 REs to which the third group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the eighth distribution case in the remaining 8 REs, the location of 4 REs is the same as the position of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped, The other four REs are REs of the 8-port reference signal pattern that are not mapped by any reference signals;
  • the remaining 8 REs are REs in the 8-port reference signal pattern that are not mapped by any reference signals.
  • the positions of 8 REs are mapped with the first group of CSI-RSs in the 8-port reference signal pattern.
  • the positions of the 8 REs are the same, and the positions of the remaining 8 REs are the same as the positions of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped.
  • N REs to which a group of CSI-RSs are mapped are located in the same column symbol or in different column symbols, wherein each column symbol includes 2 adjacent symbols.
  • the demodulation reference signal DM-RS is not transmitted, according to the N port reference signal pattern, among the N REs to which a group of CSI-RSs are mapped, some REs are mapped to the DM-RS to be mapped. Go to the RE location.
  • At least two of the N ports corresponding to a group of CSI-RSs are multiplexed by using a 2-bit orthogonal spreading code, or at least 4 ports are 4
  • the bit orthogonal spreading codes are multiplexed, or at least six ports are multiplexed using a 6-bit orthogonal spreading code.
  • the N port reference signal pattern includes an N port reference signal pattern of the DwPTS.
  • FIG. 9 is a schematic structural diagram of a network side device (for example, a base station) according to an embodiment of the present disclosure, where the base station can implement the reference signal mapping process.
  • a network side device for example, a base station
  • the network side device may include a processor 901, a memory 902, a transceiver 903, and a bus interface.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 can store data used by the processor 901 in performing operations.
  • the transceiver 903 is configured to receive and transmit data under the control of the processor 901.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 901 and various circuits of memory represented by memory 902.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 903 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 can store data used by the processor 901 in performing operations.
  • the data transmission procedure on the network side disclosed in the embodiment of the present disclosure may be applied to the processor 901 or implemented by the processor 901.
  • the steps of the data transmission process can be The integrated logic circuit of the hardware in the processor 901 or the instruction in the form of software is completed.
  • the processor 901 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or perform embodiments of the present disclosure.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly embodied as hardware processor execution completion or performed in combination with hardware and software modules in a processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 902, and the processor 901 reads the information in the memory 902, and combines its hardware to complete the steps of the processing method of the control plane.
  • the processor 901 is configured to read a program in the memory 902 and perform the following process:
  • N is equal to 12 or 16; wherein the RE location to which the CSI-RS is mapped in the N-port reference signal pattern is based on the 2-port, 4-port Determining the location of the RE to which the CSI-RS is mapped in one or more reference signal patterns in the 8-port reference signal pattern; and performing resource mapping on the CSI-RS according to the determined RE location.
  • a position of at least a part of the REs to which a group of CSI-RSs is mapped is mapped with one or more groups of CSI-RSs in the 8-port reference signal pattern.
  • the location of the RE is the same.
  • the location of 8 REs and the first group of CSI-RSs in the 8-port reference signal pattern are mapped to The positions of the 8 REs are the same, and the positions of the remaining 4 REs include one of the following first to fifth distributions:
  • the distribution of the remaining 4 REs is the same as the location of 4 REs to which a group of CSI-RSs in the 4-port reference signal pattern is mapped;
  • the remaining 4 REs are REs of the 8-port reference signal pattern that are not mapped by any reference signals;
  • the positions of the remaining 4 REs are the same as the positions of 4 REs of the REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the fourth distribution case in the remaining four REs, the location of the two REs is the same as the location of the two REs of the eight REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped.
  • the positions of the other two REs are the same as the positions of the two REs of the eight REs to which the third group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the location of 2 REs is the same as the location of 2 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped.
  • the other two REs are REs of the 8-port reference signal pattern that are not mapped by any reference signals;
  • the location of 4 REs and the first group of CSI-RSs in the 8-port reference signal pattern are mapped to The positions of the 4 REs of the 8 REs are the same, and the positions of the remaining 8 REs include one of the following sixth to ninth distributions:
  • the location of 4 REs is the same as the location of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped;
  • the location of 2 REs is the same as the location of 2 REs of the 8 REs to which the third group of CSI-RSs in the 8-port reference signal pattern is mapped, and the other 2 REs are 8 ports.
  • a seventh distribution case among the remaining 8 REs, the positions of 4 REs are the same as the positions of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped, The positions of the other 4 REs are the same as the positions of 4 REs of the 8 REs to which the third group of CSI-RSs in the 8-port reference signal pattern are mapped;
  • the eighth distribution case in the remaining 8 REs, the location of 4 REs is the same as the position of 4 REs of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern is mapped, The other four REs are REs of the 8-port reference signal pattern that are not mapped by any reference signals;
  • the remaining 8 REs are REs in the 8-port reference signal pattern that are not mapped by any reference signals.
  • the location of 8 REs and the first group of CSI-RSs in the 8-port reference signal pattern are mapped to The positions of the 8 REs are the same, and the positions of the remaining 8 REs are the same as the positions of the 8 REs to which the second group of CSI-RSs in the 8-port reference signal pattern are mapped.
  • N REs to which a group of CSI-RSs are mapped are located in the same column symbol or in different column symbols, wherein each column symbol includes 2 adjacent symbols.
  • the demodulation reference signal DM-RS is not transmitted, according to the N port reference signal pattern, among the N REs to which a group of CSI-RSs are mapped, some REs are mapped to the DM-RS to be mapped. Go to the RE location.
  • At least two of the N ports corresponding to a group of CSI-RSs are multiplexed by using a 2-bit orthogonal spreading code, or at least 4 ports are 4
  • the bit orthogonal spreading codes are multiplexed, or at least six ports are multiplexed using a 6-bit orthogonal spreading code.
  • the N port reference signal pattern includes an N port reference signal pattern of the DwPTS.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本提供一种参考信号映射方法及装置。在本公开文本提供的方法中,根据N端口参考信号图样,确定CSI-RS被映射到的RE位置,N等于12或16,根据确定出的RE位置对CSI-RS进行资源映射。所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的。采用本公开文本可实现12端口或16端口的CSI-RS映射,进而实现了12端口或16端口CSI-RS的传输。

Description

一种参考信号映射方法及装置
相关申请的交叉参考
本申请主张在2015年7月27日在中国提交的中国专利申请号No.201510447065.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及无线通信技术领域,尤其涉及一种参考信号映射方法及装置。
背景技术
Rel-10版本的LTE(Long Term Evolution,长期演进)***中,下行定义了五种参考信号,分别为:小区专用参考信号(Cell-specifc Reference Signal,C-RS)、用户专用参考信号(UE-specific reference signal,简称为UE-RS,又称DM-RS,英文为Demodulation-Reference Signal,即解调参考信号)、MBSFN(Multimedia Broadcast multicast service Single Frequency Network,多播/组播单频网络)参考信号、位置参考信号(Positioning-Reference Signal,P-RS)以及信道状态信息参考信号(Channel State Indication Reference Signal,CSI-RS)。其中,CSI-RS用于下行信道测量和估计。
图1A、图1B和图1C分别示出了LTE***中支持CSI-RS的参考信号图样。该参考信号图样示出了不同参考信号的资源位置,即示出了不同参考信号被映射到的RE在PRB(Physical Resource Block,物理资源块)中的位置。
每一个下行天线端口上都传输一个参考信号。1个PRB中有20个2端口(如图1A所示)、10个4端口(如图1B所示)、5个8端口(如图1C所示)参考信号图样。
如图1A、图1B和图1C所示,目前LTE***针对CSI-RS可以配置为2端口或4端口或8端口,无法支持更多天线端口的CSI-RS。
发明内容
(一)要解决的技术问题
本公开文本实施例提供了一种参考信号映射方法及装置,用以实现12端口或16端口的CSI-RS映射。
(二)技术方案
根据第一方面,本公开文本实施例提供了一种参考信号映射方法,其包括:
根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
根据确定出的RE位置对CSI-RS进行资源映射。
根据第二方面,本公开文本实施例还提供了一种参考信号映射装置,其包括:
确定模块,用于根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
映射模块,用于根据确定出的RE位置对CSI-RS进行资源映射。
根据第三方面,本公开文本实施例还提供了一种网络侧设备,其包括:
处理器;以及
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
收发机,用于在传输介质上与各种其他设备进行通信,
当处理器调用并执行所述存储器中所存储的程序和数据时,所述网络侧设备执行如下处理:
根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号 图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
根据确定出的RE位置对CSI-RS进行资源映射。
(三)有益效果
本公开文本的有益效果如下:
在本公开文本的上述实施例中,根据现有参考信号图样,比如2端口、4端口和8端口参考信号图样中的一种或多种参考信号图样,得到12端口或16端口的参考信号图样,并在执行参考信号映射时,根据该12端口或16端口的参考信号图样确定CSI-RS被映射到的RE位置,根据该RE位置对CSI-RS进行资源映射,从而实现了12端口或16端口的CSI-RS映射,进而实现了12端口或16端口CSI-RS的传输。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A、图1B和图1C分别为现有技术中2端口、4端口和8端口参考信号图样;
图2为本公开文本实施例提供的参考信号映射流程示意图;
图3A、图3B和图3C分别为本公开文本实施例一中的12端口参考信号图样;
图4A、图4B和图4C分别为本公开文本实施例二中的12端口参考信号图样;
图5A、图5B和图5C分别为本公开文本实施例三中的12端口参考信号图样;
图6A、图6B分别为本公开文本实施例四中的12端口参考信号图样;
图7A至图7F分别为本公开文本实施例五中的16端口参考信号图样;
图8为本公开文本实施例提供的参考信号映射装置的结构示意图;以及
图9为本公开文本实施例提供的网络侧设备(例如,基站)的结构示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
下面将结合本公开文本实施例中的附图,对本公开文本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
下面结合说明书附图对本公开文本实施例做详细描述。
每一个下行天线端口上都传输一个参考信号。天线端口是指用于传输的逻辑端口,它可以对应一个或多个实际的物理天线。天线端口的定义是从接收机的角度来定义的,即如果接收机需要区分资源在空间上的差别,就需要定义多个天线端口。对于终端来说,其接收到的某天线端口对应的参考信号 就定义了相应的天线端口,尽管此参考信号可能是由多个物理天线传输的信号复合而成。
参见图2,为本公开文本实施例提供的参考信号映射流程示意图。该流程可由基站执行。如图2所示,该流程可包括:
步骤201:根据N端口参考信号图样,确定CSI-RS被映射到的RE(资源单元)位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
步骤202:根据确定出的RE位置对CSI-RS进行资源映射。
可以看出,在本公开文本实施例中,利用2端口、4端口和8端口参考信号图样中的一种或多种参考信号图样的组合,生成12端口参考信号图样,根据该12端口参考信号图样进行CSI-RS参考信号映射,可以实现12端口CSI-RS的传输。同理,利用2端口、4端口和8端口参考信号图样中的一种或多种参考信号图样的组合,生成16端口参考信号图样,根据该16端口参考信号图样进行CSI-RS参考信号映射,可以实现16端口CSI-RS的传输。
通过上述流程,在基站天线端口数为12或16以上的情况下,基站可以配置终端12端口CSI-RS或16端口CSI-RS。终端在配置的CSI-RS端口上测量信道并反馈信道信息。
考虑到所述N端口参考信号图样中,N等于12或16,其取值较大,为了简化设计,优选地,本公开文本实施例提供的12端口参考信号图样和/或16端口参考信号图样,可以至少依据8端口参考信号图样进行设计。也就是说,所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE中,至少有一部分RE的位置与8端口参考信号图样中的一组或多组CSI-RS被映射到的RE的位置相同。当然,本公开文本实施例不排除依据2端口、4端口、8端口参考信号图样中的各种排列组合的情况,来设计12端口或16端口的参考信号图样。
(一)12端口参考信号图样
优选地,在一种实现方式中,在本公开文本实施例提供的12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有8个RE的位置与8端口 参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同。进一步地,其余4个RE的位置可以是以下第一分布情况至第五分布情况中的任一种。
第一分布情况:所述其余4个RE的分布与4端口参考信号图样中的一组CSI-RS被映射到的4个RE的位置相同。例如,从图1C所示的图样中任选一组8端口CSI-RS被映射到的RE,再从图1B所示的图样中任选一组4端口CSI-RS被映射到的RE,并保证所选择的8端口CSI-RS被映射到的RE与所选择的4端口CSI-RS被映射到的RE不重叠。根据这些RE的位置,即可得到12端口参考图样中一组12端口CSI-RS的图样。
第二分布情况:所述其余4个RE为8端口参考信号图样中未被任何参考信号映射到的RE。例如,可保留图1C所示的图样中的四组8端口CSI-RS的映射图样,其余端口对应的RE可从未被任何参考信号映射的RE中选取,从而得到12端口参考信号图样。
第三分布情况:所述其余4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的RE中的4个RE的位置相同。
第四分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同;。
第五分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
需要注意的是,在上述第一至第五分布情况中,所述的“第一组CSI-RS”、“第二组CSI-RS”和“第三组CSI-RS”并不特指某组CSI-RS,只是用于表示与其他两组CSI-RS进行区别。
优选地,在另一种实现方式中,本公开文本实施例提供的12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有4个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE中的4个RE的位置相同,其余8个RE的位置包括以下第六分布情况至第九分布情况中的任一种:
第六分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考 信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同;在另外4个RE中,有2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
第七分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的4个RE的位置相同。
第八分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
第九分布情况:所述其余8个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
同样值得注意的是,在上述第六至第九分布情况中,所述的“第一组CSI-RS”、“第二组CSI-RS”和“第三组CSI-RS”并不特指某组CSI-RS,只是用于表示与其他两组CSI-RS进行区别。
在本公开文本实施例提供的12端口参考信号图样中,一组CSI-RS被映射到的N个RE可以位于同一列符号或者位于不同列符号。其中,每列符号包含2个相邻符号。进一步地,在一组CSI-RS被映射到的N个RE位于不同列符号的情况下,可以位于两列或三列符号上。在12端口参考信号图样中,有三列符号上可以映射CSI-RS,在本公开文本实施例中,对于一组12端口CSI-RS,如果被映射到两列符号上,则对具体映射到哪两列符号上,本公开文本实施例不作限制。
优选地,若不发送DM-RS(De Modulation Reference Signal,解调参考信号),则根据12端口参考信号图样,一组CSI-RS被映射到的N个RE中,有部分RE被映射到所述DM-RS被映射到的RE位置上。这样,可以充分利用物理资源传输CSI-RS。
在本公开文本实施例提供的12端口参考信号图样中,一组CSI-RS对应的12个端口中,至少有2个端口采用2位正交扩频码进行复用,或者,至少 有4个端口采用4位正交扩频码进行复用,或者,至少有6个端口采用6位正交扩频码进行复用。优选地,可以任意选择端口进行复用。优选地,本公开文本实施例提供的12端口参考信号图样中,每2个端口采用2位正交扩频码进行复用;或者,每4个端口采用4位正交扩频码进行复用;或者,每6个端口采用6位正交扩频码进行复用。
优选地,本公开文本实施例提供的12端口参考信号图样中,第一组CSI-RS对应的N个端口所采用的正交扩频码的位数,与第二组CSI-RS对应的N个端口所采用的正交扩频码的位数相同或不同。这里,所述的“第一组CSI-RS”、“第二组CSI-RS”并不特指某组CSI-RS,只是以示区别。
进一步地,本公开文本实施例所提供的12端口参考信号图样中包括DwPTS(Downlink Pilot Time Slot,下行特殊时隙,也称下行导频时隙)的12端口参考信号图样。这样,根据DwPTS的12端口参考信号图样,可在DwPTS进行CSI-RS映射和传输。
(二)16端口参考信号图样
优选地,本公开文本实施例提供的16端口参考信号图样中,一组CSI-RS被映射到的16个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余8个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE的位置相同。比如,一种构造16端口CSI-RS参考信号图的方法是直接用2个8端口的图样拼在一起。
在本公开文本实施例提供的16端口参考信号图样中,一组CSI-RS被映射到的N个RE可以位于同一列符号或者位于不同列符号。其中,每列符号包含2个相邻符号。进一步地,在一组CSI-RS被映射到的N个RE位于不同列符号的情况下,可以位于两列或三列符号上。16端口参考信号图样中,有三列符号上可以映射CSI-RS,在本公开文本实施例中,对于一组16端口CSI-RS,如果被映射到两列符号上,则对具体映射到哪两列符号上,本公开文本实施例不作限制。
优选地,若不发送DM-RS,则根据16端口参考信号图样,一组CSI-RS被映射到的N个RE中,有部分RE被映射到所DM-RS被映射到的RE位置上。这样,可以充分利用物理资源传输CSI-RS。
在本公开文本实施例提供的16端口参考信号图样中,一组CSI-RS对应的16个端口中,至少有2个端口采用2位正交扩频码进行复用,或者,至少有4个端口采用4位正交扩频码进行复用,或者,至少有6个端口采用6位正交扩频码进行复用。优选地,可以任意选择端口进行复用。优选地,在本公开文本实施例提供的16端口参考信号图样中,一组CSI-RS对应的16个端口中,每2个端口采用2位正交扩频码进行复用;或者,16端口参考信号图样中,一组CSI-RS对应的16个端口中,每4个端口采用4位正交扩频码进行复用。
优选地,本公开文本实施例提供的16端口参考信号图样中,第一组CSI-RS对应的N个端口所采用的正交扩频码的位数,与第二组CSI-RS对应的N个端口所采用的正交扩频码的位数相同或不同。这里,所述的“第一组CSI-RS”、“第二组CSI-RS”并不特指某组CSI-RS,只是以示区别。
进一步地,本公开文本实施例所提供的16端口参考信号图样中包括DwPTS的16端口参考信号图样。这样,根据DwPTS的16端口参考信号图样,可在DwPTS进行CSI-RS映射和传输。
为了更清楚地理解本公开文本实施例,下面结合实施例一至实施例五,对本公开文本实施例提供的12端口和16端口参考信号图样的几种示例进行详细描述。
实施例一
实施例一描述了根据4端口参考信号图样、8端口参考信号图样,得到12端口信号参考图样的方案。
图3A示出了一种12端口参考信号图样。需要说明的是,图3A仅示出了一种可能的12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图3A中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图3A所示,图中示出了三组12端口CSI-RS的图样,其中:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下 位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(9,7),(10,7),(9,1),(10,1)。其中,端口0~端口7对应的RE与图1C中的一组8端口CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置相同。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,9),(10,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2),(9,6),(10,6),(9,0),(10,0)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置相同。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(12,9),(13,9),(12,3),(13,3),(12,8),(13,8),(12,2),(13,2),(9,11),(10,11),(9,5),(10,5)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置相同。
在本公开文本实施例中,还可以基于上述原理得到TDD(Time Division Duplexing,时分双工)子帧的DwPTS区域中的12端口参考信号导频图样。
图3B和图3C分别示出了一种DwPTS中12端口参考信号图样。其中,图3B所示的图样适用于长度为11个符号或12个符号的DwPTS,而图3C所示的图样适用于长度为9个符号或10个符号的DwPTS。需要说明的是,图3B和图3C仅示出了两种可能的12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图3B和图3C中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图3B所示,图中示出了三组12端口CSI-RS的图样,这三组12端口CSI-RS的图样均可以根据前述12端口参考信号图样中的第一分布情况来分布,其中:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下 位置的RE:(2,9),(3,9),(2,3),(3,3),(2,8),(3,8),(2,2),(3,2),(5,6),(6,6),(5,0),(6,0)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置向前移动4个符号后的位置相同。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,11),(6,11),(5,5),(6,5),(5,10),(6,10),(5,4),(6,4),(5,7),(6,7),(5,1),(6,1)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置向前移动4个符号后的位置相同。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,9),(10,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2),(5,9),(6,9),(5,3),(6,3)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置向前移动4个符号后的位置相同。
如图3C所示,图中示出了一组12端口CSI-RS的图样。其中,端口1~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE与图1B中的一组CSI-RS映射到的RE位置向前移动4个符号后的位置相同。
图3A、图3B或图3C中,可以每2个端口采用2位OCC(Orthogonal Complementary Code,正交扩频码)复用在一起,比如可以根据表1所示的方式进行复用:
表1
Figure PCTCN2016086430-appb-000001
表1表示:CSI-RS端口0和CSI-RS端口1可以使用2位OCC进行复用,CSI-RS端口4和CSI-RS端口5可以使用2位OCC进行复用,CSI-RS端口8和CSI-RS端口9可以使用2位OCC进行复用,CSI-RS端口10和CSI-RS端口11可以使用2位OCC进行复用,CSI-RS端口2和CSI-RS端口3可以使用2位OCC进行复用,CSI-RS端口6和CSI-RS端口7可以使用2位OCC进行复用。
实施例二
实施例二描述了根据8端口参考信号图样,得到12端口参考信号图样的方案。
图4A示出了一种12端口参考信号图样。需要说明的是,图4A仅示出了一种可能的12端口参考信号图样,基于前述实施例描述的12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图4A中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图4A所示,图中示出了四组12端口CSI-RS的图样。其中,第一组CSI-RS和第二组CSI-RS的图样符合前述12端口参考信号图样中的第二分布情况的规律,而第三组CSI-RS和第四组CSI-RS的图样符合前述12端口参考信号图样中的第四分布情况的规律。
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(5,7),(6,7),(5,4),(6,4)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE是图1C中未被任何参考信号映射到的RE。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(12,9),(13,9),(12,3),(13,3),(12,8),(13,8),(12,2),(13,2),(12,7),(13,7),(12,4),(13,4)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE是图1C中未被任何参 考信号映射到的RE。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,12),(10,12),(9,5),(10,5),(9,11),(10,11),(9,4),(10,4),(9,7),(10,7),(9,1),(10,1)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口8和端口9对应的RE与图1C中的另一组CSI-RS映射到的RE中的2个RE的位置相同,而端口10和端口11对应的RE与图1C中的再一组CSI-RS映射到的RE中的2个RE的位置相同。
第四组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,9),(10,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2),(9,6),(10,6),(9,0),(10,0)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口8和端口9对应的RE与图1C中的另一组CSI-RS映射到的RE中的2个RE的位置相同,而端口10和端口11对应的RE与图1C中的再一组CSI-RS映射到的RE中的2个RE的位置相同。
在本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的12端口参考信号导频图样。
图4B和图4C分别示出了一种DwPTS中12端口参考信号图样,其中,图4B所示的图样适用于长度为11个符号或12个符号的DwPTS,而图4C所示的图样适用于长度为9个符号或10个符号的DwPTS。需要说明的是,图4B和图4C仅示出了两种可能的12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图4B和图4C中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图4B所示,图中示出了四组12端口CSI-RS的图样。
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(2,3),(3,3),(2,8),(3,8),(2,2),(3,2),(2,7),(3,7),(2,4),(3,4)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE 在符号2、符号3上的频域位置,与图1C中符号5和符号6上未被任何参考信号映射到的RE在频域上的位置相同。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,9),(10,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2),(9,7),(10,7),(9,4),(10,4)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE在符号9、符号10上的频域位置,与图1C中符号12和符号13上未被任何参考信号映射到的RE在频域上的位置相同。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,11),(6,11),(5,5),(6,5),(5,10),(6,10),(5,4),(6,4),(5,7),(6,7),(5,1),(6,1)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE与图1C中的另一组CSI-RS映射到的4个RE位置向前移动4个符号后的位置相同。
第四组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(5,6),(6,6),(5,0),(6,0)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE与图1C中的另一组CSI-RS映射到的4个RE位置向前移动4个符号后的位置相同。
如图4C所示,图中示出了两组12端口CSI-RS的图样。其中:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(2,3),(3,3),(2,8),(3,8),(2,2),(3,2),(2,7),(3,7),(2,4),(3,4)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动3个符号后的位置相同,而端口8~端口11对应的RE在符号2、符号3上的频域位置,与图1C中符号5和符号6上未被任何参考信号映射到的RE在频域上的位置相同。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(5,7),(6,7), (5,4),(6,4)。其中,端口0~端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置向前移动7个符号后的位置相同,而端口8~端口11对应的RE在符号5、符号6上的频域位置,与图1C中符号12和符号13上未被任何参考信号映射到的RE在频域上的位置相同。
此外,在图4A、图4B或图4C中,可以每2个端口采用2位OCC复用在一起,比如可以根据表1所示的方式进行复用。
实施例三
实施例三描述了另一种根据8端口参考信号图样,得到12端口参考信号图样的方案。
图5A示出了一种12端口参考信号图样。需要说明的是,图5A仅示出了一种可能的12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图5A中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图5A所示,图中示出了四组12端口CSI-RS的图样,这四组CSI-RS可根据前述12端口参考信号图样中的第六分布情况来分布。
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(9,11),(10,11),(5,8),(6,8),(9,10),(10,11),(5,7),(6,7),(9,9),(10,9)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口2、端口3、端口6、端口7对应的RE与图1C中的另一组CSI-RS映射到的RE位置相同,而端口10、端口11对应的RE与图1C中的再一组CSI-RS映射到的RE位置相同,端口8、端口9对应的RE是图1C中未被任何参考信号映射到的RE。
该12端口参考信号图样中的第二组CSI-RS、第三组CSI-RS、第四组CSI-RS被映射到的RE,也符合上述规律。下面仅给出第二组CSI-RS、第三组CSI-RS、第四组CSI-RS被映射到的RE的位置:
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,4),(6,4),(9,8),(10,8),(5,3),(6,3),(9,7),(10,7),(5,2),(6,2), (9,6),(10,6)。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(12,9),(13,9),(9,5),(10,5),(12,8),(13,8),(9,4),(10,4),(12,7),(13,7),(9,3),(10,3)。
第四组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(12,4),(13,4),(9,2),(10,2),(12,3),(13,3),(9,1),(10,1),(12,2),(13,2),(9,0),(10,0)。
在本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的12端口参考信号导频图样。
图5B和图5C分别示出了一种DwPTS中12端口参考信号图样。其中,图5B所示的图样适用于长度为11个符号或12个符号的DwPTS,而图5C所示的图样适用于长度为9个符号或10个符号的DwPTS。需要说明的是,图5B和图5C仅示出了两种可能12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图5B和图5C中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图5B所示,图中示出了四组12端口CSI-RS的图样。
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(5,11),(6,11),(2,8),(3,8),(5,10),(6,10),(2,7),(3,7),(5,9),(5,9)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的4个RE位置向前移动3个符号后的位置相同,端口2、端口3、端口6、端口7对应的RE与图1C中的另一组CSI-RS映射到的4个RE位置向前移动4个符号后的位置相同,端口10、端口11对应的RE与图1C中的一组CSI-RS映射到的2个RE位置向前移动4个符号后的位置相同,而端口8、端口9对应的RE在符号2、符号3上的频域位置,与图1C中符号5和符号6上未被任何参考信号映射到的RE的频域位置相同。
该12端口参考信号图样中的第二组CSI-RS、第三组CSI-RS、第四组 CSI-RS被映射到的RE,也符合上述规律。下面仅给出第二组CSI-RS、第三组CSI-RS、第四组CSI-RS被映射到的RE的位置:
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,4),(3,4),(5,8),(6,8),(2,3),(3,3),(5,7),(6,7),(2,2),(3,2),(5,6),(5,6)。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,9),(10,9),(5,5),(6,5),(9,8),(10,8),(5,4),(6,4),(9,7),(10,7),(5,3),(6,3)。
第四组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,4),(10,4),(5,2),(6,2),(9,3),(10,3),(5,1),(6,1),(9,2),(10,2),(5,0),(6,0)。
如图5C所示,图中示出了两组12端口CSI-RS的图样。其中:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(5,9),(6,9),(2,8),(3,8),(5,8),(6,8),(2,7),(3,7),(5,7),(6,7)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的4个RE位置向前移动3个符号后的位置相同,端口2、端口3、端口6、端口7对应的RE与图1C中的一组CSI-RS映射到的4个RE位置向前移动4个符号后的位置相同,端口10、端口11对应的RE与图1C中的一组CSI-RS映射到的2个RE位置向前移动4个符号后的位置相同,而端口8、端口9对应的RE在符号2、符号3上的频域位置与图1C中符号5和符号6上未被任何参考信号映射到的RE的频域位置相同。
该12端口参考信号图样中的第二组CSI-RS被映射到的RE,也符合上述规律。下面仅给出第二组CSI-RS被映射到的RE的位置:
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,4),(3,4),(5,4),(6,4),(2,3),(3,3),(5,3),(6,3),(2,2),(3,2),(5,2),(6,2)。
在图5A、图5B或图5C中,可以每4个端口采用4位OCC复用在一起,比如可以根据表2所示的方式进行复用:
表2
Figure PCTCN2016086430-appb-000002
表2表示:CSI-RS端口0至CSI-RS端口3可以使用4位OCC进行复用,CSI-RS端口4至CSI-RS端口7可以使用4位OCC进行复用,CSI-RS端口8至CSI-RS端口11可以使用4位OCC进行复用。
本公开文本实施例不排除在12个端口中某2个端口采用2位OCC复用,而某4个端口采用4位OCC复用。
本公开文本实施例不排除某12端口组采用4位OCC复用,而另一12端口组采用2位OCC复用。
实施例四
实施例四描述了另一种根据8端口参考信号图样,得到12端口参考信号图样的方案。
图6A示出了一种12端口参考信号图样。需要说明的是,图6A仅示出了一种可能12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图6A中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图6A所示,图中示出了四组12端口CSI-RS的图样。其中,第一组、第二组和第三组CSI-RS的图样符合前述12端口参考信号图样中的第七分布情况的规律,第四组CSI-RS的图样符合前述12端口参考信号图样中的第八分布情况的规律。
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下 位置的RE:(5,9),(6,9),(9,11),(10,11),(5,8),(6,8),(9,10),(10,11),(12,9),(13,9),(12,8),(13,8)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口2、端口3、端口6、端口7对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE与图1C的另一组CSI-RS映射到的RE位置相同。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,3),(6,3),(9,1),(10,1),(5,2),(6,2),(9,0),(10,0),(12,3),(13,3),(12,2),(13,2)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口2、端口3、端口6、端口7对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,而端口8~端口11对应的RE与图1C的另一组CSI-RS映射到的RE位置相同。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,7),(10,7),(9,4),(10,4),(9,6),(10,6),(9,3),(10,3),(9,5),(10,5),(9,2),(10,2)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口2、端口3、端口8、端口9对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,而端口7、端口7、端口10、端口11对应的RE与图1C的另一组CSI-RS映射到的RE位置相同。
第四组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,7),(6,7),(9,9),(10,9),(5,4),(6,4),(9,8),(10,8),(12,7),(13,7),(12,4),(13,4)。其中,端口2、端口3、端口6、端口7对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,其余端口对应的RE是图1C未被任何参考信号映射到的RE。
在本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的12端口参考信号导频图样。
图6B示出了一种DwPTS中12端口参考信号图样。需要说明的是,图6B仅示出了一种可能12端口参考信号图样,基于前述12端口参考信号图样的分布,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图6B中,为了方便描述,每个方格表示一个RE,一个RE的位置可 用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图6B所示,图中示出了四组12端口CSI-RS的图样:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(5,11),(6,11),(2,8),(3,8),(5,10),(6,10),(9,9),(10,9),(9,8),(10,8)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的4个RE位置向前移动3个符号后的位置相同,端口2、端口3、端口6、端口7对应的RE与图1C中的一组CSI-RS映射到的4个RE位置向前移动4个符号后的位置相同,而端口8~端口11对应的RE与图1C中的一组CSI-RS映射到的2个RE位置向前移动3个符号后的位置相同。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,3),(3,3),(5,1),(5,1),(2,2),(3,2),(5,0),(6,0),(12,3),(13,3),(12,2),(13,2)。
第三组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,7),(6,7),(5,4),(6,4),(5,6),(6,6),(5,3),(6,3),(5,5),(6,5),(5,2),(6,2)。
第四组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,7),(3,7),(5,9),(6,9),(2,4),(3,4),(5,8),(6,8),(9,7),(10,7),(9,4),(10,4)。
在图6A或图6B中,第一组CSI-RS对应的端口0、端口1、端口2、端口3、端口8、端口9采用6位OCC复用在一起;第一组CSI-RS对应的端口4、端口5、端口6、端口7、端口10、端口11采用6位OCC复用在一起。本公开文本不排除某12端口组采用6位OCC复用,而另一12端口组采用2位或4位OCC复用。
实施例五
实施例五描述了一种根据8端口参考信号图样,得到16端口参考信号图样的方案。
图7A、图7B、图7C、图7D分布示出了12端口参考信号图样,其中, 图7A和图7B所示的图样适合于使用短CP(Cyclic Prefix,循环前缀)进行符号处理的情况,而图7C和图7D适用于使用长CP进行符号处理的情况。需要说明的是,这些图仅示出了几种可能12端口参考信号图样,基于前述12端口参考信号图样的分布规律,还可以得到其他12端口参考信号图样,在此不再一一列举。
在图7A、图7B、图7C、图7D中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图7A所示,图中示出了两组16端口CSI-RS的图样:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(9,11),(10,11),(9,5),(10,5),(9,10),(10,10),(9,4),(10,4)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口2、端口3、端口6、端口7对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,端口8、端口9、端口12、端口13对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,而其余端口对应的RE与图1C的另一组CSI-RS映射到的RE位置相同。
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,9),(10,9),(9,3),(9,3),(9,8),(9,8),(9,2),(9,2),(12,9),(13,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2)。其中,端口0、端口1、端口4、端口5对应的RE与图1C中的一组CSI-RS映射到的RE位置相同,端口2、端口3、端口6、端口7对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,端口8、端口9、端口12、端口13对应的RE与图1C的另一组CSI-RS映射到的RE位置相同,而其余端口对应的RE与图1C的另一组CSI-RS映射到的RE位置相同。
如图7B所示,图中示出了两组16端口CSI-RS的图样:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(9,9),(10,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2)。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(9,11),(10,11),(9,5),(10,5),(9,10),(10,10),(9,4),(10,4),(12,9),(13,9),(12,3),(13,3),(12,8),(13,8),(12,2),(13,2)。
如图7C所示,图中示出了两组16端口CSI-RS的图样:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(4,11),(5,11),(4,8),(5,8),(4,5),(5,6),(4,2),(5,2),(10,10),(11,10),(10,7),(11,7),(10,4),(11,4),(10,1),(11,1)。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(4,9),(5,9),(4,6),(5,6),(4,3),(5,3),(4,0),(5,0),(10,9),(11,9),(10,6),(11,6),(10,3),(11,3),(10,0),(11,0)。
如图7D所示,图中示出了两组16端口CSI-RS的图样:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(4,11),(5,11),(4,8),(5,8),(4,5),(5,6),(4,2),(5,2),(10,9),(11,9),(10,6),(11,6),(10,3),(11,3),(10,0),(11,0)。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(4,9),(5,9),(4,6),(5,6),(4,3),(5,3),(4,0),(5,0),(10,10),(11,10),(10,7),(11,7),(10,4),(11,4),(10,1),(11,1)。
本公开文本实施例中,还可以基于上述原理得到TDD子帧的DwPTS区域中的12端口参考信号导频图样。
图7E、图7F示出了一种DwPTS中16端口参考信号图样。需要说明的是,图7E仅示出了两种可能16端口参考信号图样,基于前述16端口参考信号图样的分布,还可以得到其他16端口参考信号图样,在此不再一一列举。
在图7E、图7F中,为了方便描述,每个方格表示一个RE,一个RE的位置可用坐标(x,y)表示,其中,x表示符号编号,y表示子载波编号。每个方格中的数值表示端口号。
如图7E所示,图中示出了两组16端口CSI-RS的图样:
第一组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(2,3),(3,3),(2,8),(3,8),(5,2),(6,2),(5,11),(10,11),(5,5),(6,5),(5,10),(6,10),(5,4),(6,4)。
第二组CSI-RS被映射到的RE,按照端口号从0到11的顺序,包括以下位置的RE:(5,9),(6,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2),(9,9),(10,9),(9,3),(10,3),(9,8),(10,8),(9,2),(10,2)。
如图7F所示,图中示出了一组16端口CSI-RS的图样:按照端口号从0到11的顺序,包括以下位置的RE:(2,9),(3,9),(2,3),(3,3),(2,8),(3,8),(2,2),(3,2),(5,9),(10,9),(5,3),(6,3),(5,8),(6,8),(5,2),(6,2)。
图7A至图7E中,可以每2个端口采用2位OCC复用在一起,比如可以根据表3所示的方式进行复用:
表3
Figure PCTCN2016086430-appb-000003
表3表示:CSI-RS端口0、CSI-RS端口1使用2位OCC复用,CSI-RS端口4、CSI-RS端口5使用2位OCC复用,CSI-RS端口2、CSI-RS端口3使用2位OCC复用,以此类推。
图7A至图7E中,也可以每4个端口采用2位OCC复用在一起,比如可以根据表4所示的方式进行复用:
表4
Figure PCTCN2016086430-appb-000004
其中,端口0、端口1、端口8和端口9采用4位OCC复用;端口4、端口5、端口12、端口13采用4位OCC复用;端口2、端口3、端口10、 端口11采用4位OCC复用;而端口6、端口7、端口14、端口15采用4OCC复用。
图7A与图1C相比,有一部分RE没有被CSI-RS映射,本公开文本不排除没有被映射的RE位置出现在其他地方。
本公开文本实施例不排除不同端口组合以及不同正交复用码。
本公开文本实施例不排除在16个端口中某2个端口采用2位OCC复用,而某4个端口采用4位OCC复用。另外,本公开文本实施例不排除某16端口组采用4位OCC复用,而另一16端口组采用2位OCC复用。
基于相同的技术构思,本公开文本实施例还提供了一种参考信号映射装置。
参见图8,为本公开文本实施例提供的参考信号映射装置的结构示意图,该装置可实现上述参考信号映射流程。该装置可包括:确定模块81和映射模块82。
确定模块81,用于根据N端口参考信号图样,确定CSI-RS被映射到的RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的。
映射模块82,用于根据确定出的RE位置对CSI-RS进行资源映射。
优选地,所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE中,至少有一部分RE的位置与8端口参考信号图样中的一组或多组CSI-RS被映射到的RE的位置相同。
优选地,所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余4个RE的位置包括以下第一分布情况至第五分布情况中的一种:
第一分布情况:所述其余4个RE的分布与4端口参考信号图样中的一组CSI-RS被映射到的4个RE的位置相同;
第二分布情况:所述其余4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
第三分布情况:所述其余4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的RE中的4个RE的位置相同;
第四分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同;
第五分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
或者,在所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有4个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE中的4个RE的位置相同,其余8个RE的位置包括以下第六分布情况至第九分布情况中的一种:
第六分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同;在另外4个RE中,有2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
第七分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的4个RE的位置相同;
第八分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;以及
第九分布情况:所述其余8个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
优选地,所述16端口参考信号图样中,一组CSI-RS被映射到的16个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射 到的8个RE的位置相同,其余8个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE的位置相同。
优选地,在所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE位于同一列符号或者位于不同列符号,其中,每列符号包含2个相邻符号。
优选地,若不发送解调参考信号DM-RS,则根据所述N端口参考信号图样,一组CSI-RS被映射到的N个RE中,有部分RE被映射到所DM-RS被映射到的RE位置上。
优选地,所述N端口参考信号图样中,一组CSI-RS对应的N个端口中,至少有2个端口采用2位正交扩频码进行复用,或者,至少有4个端口采用4位正交扩频码进行复用,或者,至少有6个端口采用6位正交扩频码进行复用。
优选地,所述N端口参考信号图样包括DwPTS的N端口参考信号图样。
参见图9,为本公开文本实施例提供的网络侧设备(例如,基站)的结构示意图,该基站可实现上述参考信号映射流程。
该网络侧设备可包括:处理器901、存储器902、收发机903以及总线接口。
处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。收发机903用于在处理器901的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器902代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机903可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。
本公开文本实施例揭示的网络侧的数据传输流程,可以应用于处理器901中,或者由处理器901实现。在实现过程中,数据传输流程的各步骤可以通 过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。处理器901可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开文本实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开文本实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成控制面的处理方法的步骤。
具体地,处理器901,用于读取存储器902中的程序,执行下列过程:
根据N端口参考信号图样,确定CSI-RS被映射到的RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及根据确定出的RE位置对CSI-RS进行资源映射。
优选地,所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE中,至少有一部分RE的位置与8端口参考信号图样中的一组或多组CSI-RS被映射到的RE的位置相同。
优选地,所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余4个RE的位置包括以下第一分布情况至第五分布情况中的一种:
第一分布情况:所述其余4个RE的分布与4端口参考信号图样中的一组CSI-RS被映射到的4个RE的位置相同;
第二分布情况:所述其余4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
第三分布情况:所述其余4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的RE中的4个RE的位置相同;
第四分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同;以及
第五分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
或者,在所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有4个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE中的4个RE的位置相同,其余8个RE的位置包括以下第六分布情况至第九分布情况中的一种:
第六分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同;在另外4个RE中,有2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
第七分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的4个RE的位置相同;
第八分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;以及
第九分布情况:所述其余8个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
优选地,所述16端口参考信号图样中,一组CSI-RS被映射到的16个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余8个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE的位置相同。
优选地,所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE位于同一列符号或者位于不同列符号,其中,每列符号包含2个相邻符号。
优选地,若不发送解调参考信号DM-RS,则根据所述N端口参考信号图样,一组CSI-RS被映射到的N个RE中,有部分RE被映射到所DM-RS被映射到的RE位置上。
优选地,所述N端口参考信号图样中,一组CSI-RS对应的N个端口中,至少有2个端口采用2位正交扩频码进行复用,或者,至少有4个端口采用4位正交扩频码进行复用,或者,至少有6个端口采用6位正交扩频码进行复用。
优选地,所述N端口参考信号图样包括DwPTS的N端口参考信号图样。
本领域内的技术人员应明白,本公开文本的实施例可提供为方法、***、或计算机程序产品。因此,本公开文本可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开文本可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开文本是参照根据本公开文本实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开文本进行各种改动和变型而不脱离本公开文本的精神和范围。这样,倘若本公开文本的这些修改和变型属于本公开文本权利要求及其等同技术的范围之内,则本公开文本也意图包含这些改动和变型在内。

Claims (20)

  1. 一种参考信号映射方法,包括:
    根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
    根据确定出的RE位置对CSI-RS进行资源映射。
  2. 如权利要求1所述的方法,其中,在所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE中,至少有一部分RE的位置与8端口参考信号图样中的一组或多组CSI-RS被映射到的RE的位置相同。
  3. 如权利要求2所述的方法,其中,在所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余4个RE的位置包括以下第一分布情况至第五分布情况中的一种:
    第一分布情况:所述其余4个RE的分布与4端口参考信号图样中的一组CSI-RS被映射到的4个RE的位置相同;
    第二分布情况:所述其余4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    第三分布情况:所述其余4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的RE中的4个RE的位置相同;
    第四分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同;以及
    第五分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    或者,在所述12端口参考信号图样中,一组CSI-RS被映射到的12个 RE中,有4个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE中的4个RE的位置相同,其余8个RE的位置包括以下第六分布情况至第九分布情况中的一种:
    第六分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同;在另外4个RE中,有2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    第七分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的4个RE的位置相同;
    第八分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;以及
    第九分布情况:所述其余8个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
  4. 如权利要求2所述的方法,其中,所述16端口参考信号图样中,一组CSI-RS被映射到的16个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余8个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE的位置相同。
  5. 如权利要求1至4中任一项所述的方法,其中,在所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE位于同一列符号或者位于不同列符号,其中,每列符号包含2个相邻符号。
  6. 如权利要求1至4中任一项所述的方法,其中,若不发送解调参考信号DM-RS,则根据所述N端口参考信号图样,一组CSI-RS被映射到的N个RE中,有部分RE被映射到所述DM-RS被映射到的RE位置上。
  7. 如权利要求1至4中任一项所述的方法,其中,在所述N端口参考信号图样中,一组CSI-RS对应的N个端口中,至少有2个端口采用2位正 交扩频码进行复用,或者,至少有4个端口采用4位正交扩频码进行复用,或者,至少有6个端口采用6位正交扩频码进行复用。
  8. 如权利要求7所述的方法,其中,在所述N端口参考信号图样中,每2个端口采用2位正交扩频码进行复用;或者
    每4个端口采用4位正交扩频码进行复用;或者
    每6个端口采用6位正交扩频码进行复用。
  9. 如权利要求1至4中任一项所述的方法,其中,在所述N端口参考信号图样中,第一组CSI-RS对应的N个端口所采用的正交扩频码的位数,与第二组CSI-RS对应的N个端口所采用的正交扩频码的位数相同或不同。
  10. 如权利要求1至7中任一项所述的方法,其中,所述N端口参考信号图样包括下行特殊时隙DwPTS的N端口参考信号图样。
  11. 一种参考信号映射装置,包括:
    确定模块,用于根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
    映射模块,用于根据确定出的RE位置对CSI-RS进行资源映射。
  12. 如权利要求11所述的装置,其中,在所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE中,至少有一部分RE的位置与8端口参考信号图样中的一组或多组CSI-RS被映射到的RE的位置相同。
  13. 如权利要求12所述的装置,其中,在所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有8个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE的位置相同,其余4个RE的位置包括以下第一分布情况至第五分布情况中的一种:
    第一分布情况:所述其余4个RE的分布与4端口参考信号图样中的一组CSI-RS被映射到的4个RE的位置相同;
    第二分布情况:所述其余4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    第三分布情况:所述其余4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的RE中的4个RE的位置相同;
    第四分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同;以及
    第五分布情况:在所述其余4个RE中,有2个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    或者,在所述12端口参考信号图样中,一组CSI-RS被映射到的12个RE中,有4个RE的位置与8端口参考信号图样中的第一组CSI-RS被映射到的8个RE中的4个RE的位置相同,其余8个RE的位置包括以下第六分布情况至第九分布情况中的一种:
    第六分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同;在另外4个RE中,有2个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的2个RE的位置相同,另外2个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    第七分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE的位置与8端口参考信号图样中的第三组CSI-RS被映射到的8个RE中的4个RE的位置相同;
    第八分布情况:在所述其余8个RE中,有4个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE中的4个RE的位置相同,另外4个RE为8端口参考信号图样中未被任何参考信号映射到的RE;
    第九分布情况:所述其余8个RE为8端口参考信号图样中未被任何参考信号映射到的RE。
  14. 如权利要求12所述的装置,其中,所述16端口参考信号图样中,一组CSI-RS被映射到的16个RE中,有8个RE的位置与8端口参考信号图 样中的第一组CSI-RS被映射到的8个RE的位置相同,其余8个RE的位置与8端口参考信号图样中的第二组CSI-RS被映射到的8个RE的位置相同。
  15. 如权利要求11至14中任一项所述的装置,其中,在所述N端口参考信号图样中,一组CSI-RS被映射到的N个RE位于同一列符号或者位于不同列符号,其中,每列符号包含2个相邻符号。
  16. 如权利要求11至14中任一项所述的装置,其中,若不发送解调参考信号DM-RS,则根据所述N端口参考信号图样,一组CSI-RS被映射到的N个RE中,有部分RE被映射到所述DM-RS被映射到的RE位置上。
  17. 如权利要求11至14中任一项所述的装置,其中,在所述N端口参考信号图样中,一组CSI-RS对应的N个端口中,至少有2个端口采用2位正交扩频码进行复用,或者,至少有4个端口采用4位正交扩频码进行复用,或者,至少有6个端口采用6位正交扩频码进行复用。
  18. 如权利要求11至14中任一项所述的装置,其中,所述N端口参考信号图样包括下行特殊时隙DwPTS的N端口参考信号图样。
  19. 一种网络侧设备,包括:
    处理器;以及
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
    收发机,用于在传输介质上与各种其他设备进行通信,
    当处理器调用并执行所述存储器中所存储的程序和数据时,所述网络侧设备执行如下处理:
    根据N端口参考信号图样,确定信道状态信息参考信号CSI-RS被映射到的资源单元RE位置,N等于12或16;其中,所述N端口参考信号图样中CSI-RS被映射到的RE位置是根据2端口、4端口、8端口参考信号图样中的一种或多种参考信号图样中CSI-RS被映射到的RE位置确定的;以及
    根据确定出的RE位置对CSI-RS进行资源映射。
  20. 如权利要求19所述的网络侧设备,其中,所述网络侧设备是LTE***中的基站。
PCT/CN2016/086430 2015-07-27 2016-06-20 一种参考信号映射方法及装置 WO2017016341A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/747,753 US10735158B2 (en) 2015-07-27 2016-06-20 Reference signal mapping method and device
JP2018504091A JP6618607B2 (ja) 2015-07-27 2016-06-20 参照信号マッピング方法および装置
EP16829708.3A EP3331296B1 (en) 2015-07-27 2016-06-20 Reference signal mapping method and device
KR1020187004406A KR102103655B1 (ko) 2015-07-27 2016-06-20 참고신호 맵핑 방법 및 장치
EP19178703.5A EP3565355B1 (en) 2015-07-27 2016-06-20 Reference signal mapping method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510447065.5A CN106411473B (zh) 2015-07-27 2015-07-27 一种参考信号映射方法及装置
CN201510447065.5 2015-07-27

Publications (1)

Publication Number Publication Date
WO2017016341A1 true WO2017016341A1 (zh) 2017-02-02

Family

ID=57884042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086430 WO2017016341A1 (zh) 2015-07-27 2016-06-20 一种参考信号映射方法及装置

Country Status (7)

Country Link
US (1) US10735158B2 (zh)
EP (2) EP3331296B1 (zh)
JP (1) JP6618607B2 (zh)
KR (1) KR102103655B1 (zh)
CN (1) CN106411473B (zh)
TW (1) TWI611680B (zh)
WO (1) WO2017016341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451796A (zh) * 2017-11-17 2019-03-08 北京小米移动软件有限公司 传输上行业务数据的方法、装置和***

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804572B (zh) * 2016-10-11 2022-08-30 瑞典爱立信有限公司 用于自适应解调参考信号的密度的方法
CN108809503B (zh) 2017-05-05 2023-10-20 华为技术有限公司 一种参考信号图样的传输方法及其装置
CN108989008B (zh) * 2017-06-05 2021-12-14 华为技术有限公司 参考信号的传输方法、装置和设备
CN109150428B (zh) * 2017-06-15 2020-07-24 电信科学技术研究院 一种信号传输方法、装置及基站
CN109391411B (zh) * 2017-08-10 2021-03-02 电信科学技术研究院 一种导频配置方法、信道测量方法及通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179664A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
WO2013110219A1 (en) * 2012-01-29 2013-08-01 Nokia Siemens Networks Oy Virtual antenna ports for flexible csi-rs resource definition
WO2014166052A1 (en) * 2013-04-09 2014-10-16 Panasonic Intellectual Property Corporation Of America Method of mapping csi-rs ports to resource blocks, base station and user equipment
CN104604170A (zh) * 2012-09-07 2015-05-06 株式会社Ntt都科摩 无线基站、无线通信***以及无线通信方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9432164B2 (en) * 2009-10-15 2016-08-30 Qualcomm Incorporated Method and apparatus for reference signal sequence mapping in wireless communication
KR101790505B1 (ko) 2010-06-01 2017-11-21 주식회사 골드피크이노베이션즈 서브프레임 구성에 따른 채널상태정보-기준신호 할당 장치 및 방법
KR101783165B1 (ko) * 2010-06-16 2017-09-28 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 기준 신호를 전송 및 디코딩하기 위한 방법 및 장치
WO2013025551A1 (en) * 2011-08-12 2013-02-21 Interdigital Patent Holding, Inc. Reference signal configuration for extension carriers and carrier segments
CN103733539A (zh) * 2011-08-12 2014-04-16 交互数字专利控股公司 用于多输入多输出操作的方法和装置
WO2013024967A2 (ko) * 2011-08-16 2013-02-21 엘지전자 주식회사 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 다중화하는 방법 및 이를 위한 장치
JP6002243B2 (ja) 2012-01-19 2016-10-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 参照信号をスクランブルする方法、ならびにその方法を用いた装置およびユーザ機器
US9503235B2 (en) * 2012-09-11 2016-11-22 Lg Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system
WO2014051374A1 (en) * 2012-09-27 2014-04-03 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
KR101839741B1 (ko) 2013-01-21 2018-03-16 후지쯔 가부시끼가이샤 채널 상태 정보 기준 신호의 전송 방법, 기지국, 단말기, 시스템, 기계 판독가능 프로그램 및 기계 판독가능 프로그램을 저장하는 기억 매체
JP6114153B2 (ja) 2013-09-26 2017-04-12 株式会社Nttドコモ 基地局、移動局、参照信号送信方法及びチャネル品質測定方法
US9900198B2 (en) * 2015-02-20 2018-02-20 Samsung Electronics Co., Ltd. Channel-state-information reference signals for advanced wireless systems
US10361757B2 (en) * 2015-04-10 2019-07-23 Lg Electronics Inc. Method for reporting channel state information in wireless communication system and device therefor
JP2018516481A (ja) * 2015-04-10 2018-06-21 華為技術有限公司Huawei Technologies Co.,Ltd. チャネル測定方法、基地局、およびue
WO2016179791A1 (en) * 2015-05-12 2016-11-17 Nec Corporation Method and apparatus for transmission pattern configuration and signal detection
ES2832454T3 (es) * 2015-05-14 2021-06-10 Ericsson Telefon Ab L M Configurar señales de referencia de medición para MIMO
US10903958B2 (en) * 2015-06-19 2021-01-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting reference signal in wireless communication system
KR102181585B1 (ko) * 2015-07-10 2020-11-23 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179664A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 端口映射、预编码矩阵和调制编码方式选择方法及装置
WO2013110219A1 (en) * 2012-01-29 2013-08-01 Nokia Siemens Networks Oy Virtual antenna ports for flexible csi-rs resource definition
CN104604170A (zh) * 2012-09-07 2015-05-06 株式会社Ntt都科摩 无线基站、无线通信***以及无线通信方法
WO2014166052A1 (en) * 2013-04-09 2014-10-16 Panasonic Intellectual Property Corporation Of America Method of mapping csi-rs ports to resource blocks, base station and user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "New WID Proposal: Elevation Beamforming/Full-Dimension (FD) MIMO for LTE", 3GPPTSG RAN MEETING #68 RP-151085, 18 June 2015 (2015-06-18), XP050985863 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451796A (zh) * 2017-11-17 2019-03-08 北京小米移动软件有限公司 传输上行业务数据的方法、装置和***
CN109451796B (zh) * 2017-11-17 2021-06-04 北京小米移动软件有限公司 传输上行业务数据的方法、装置和***

Also Published As

Publication number Publication date
EP3331296B1 (en) 2021-08-18
KR20180030142A (ko) 2018-03-21
US20180227095A1 (en) 2018-08-09
EP3565355A1 (en) 2019-11-06
EP3331296A1 (en) 2018-06-06
US10735158B2 (en) 2020-08-04
JP2018527803A (ja) 2018-09-20
EP3565355B1 (en) 2023-10-04
EP3331296A4 (en) 2018-07-18
CN106411473A (zh) 2017-02-15
KR102103655B1 (ko) 2020-04-22
TW201705714A (zh) 2017-02-01
CN106411473B (zh) 2019-07-19
JP6618607B2 (ja) 2019-12-11
TWI611680B (zh) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2017016341A1 (zh) 一种参考信号映射方法及装置
US9445420B2 (en) Downlink data rate-matching method and device
BR112012019729B1 (pt) Método de mapeamento de uma camada para uma porta de símbolo de referência de demodulação de multiplexação e aparato para alcançar pré-codificação baseado em um símbolo de referência de demodulação de multiplexação
CN108631986B (zh) 一种确定下行控制信道dmrs资源的方法和装置
CN106559363B (zh) 一种解调参考信号传输方法、信道估计方法及装置
KR20230054510A (ko) 참조 신호 전송 방법, 장치, 기지국 및 단말
KR20120048014A (ko) 채널 측정 참조신호 송신 방법 및 시스템
EP3618530A1 (en) Resource mapping method for demodulation reference signal and base station
JP2015519014A (ja) 制御チャネル送信方法および装置
CN103313391A (zh) 资源通知及信令解调方法和设备
CN109728888B (zh) 解调参考信号资源单元个数的确定方法、终端及网络设备
TWI650982B (zh) 一種參考信號映射方法及裝置
TW201815116A (zh) 一種參考信號映射方法及裝置
US10651997B2 (en) Pilot signal configuration method and device
WO2018028397A1 (zh) 解调参考信号的资源映射方法、基站、终端及存储媒介
CN109150428B (zh) 一种信号传输方法、装置及基站
CN107294676B (zh) 导频映射方法、导频信号传输方法及装置、基站和终端
WO2017054167A1 (zh) 传输信道状态信息-参考信号csi-rs的方法及装置
WO2019062339A1 (zh) 一种csi-rs的传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829708

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15747753

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018504091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187004406

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016829708

Country of ref document: EP