WO2017015802A1 - 一种分配接入回程资源的方法及装置 - Google Patents

一种分配接入回程资源的方法及装置 Download PDF

Info

Publication number
WO2017015802A1
WO2017015802A1 PCT/CN2015/085125 CN2015085125W WO2017015802A1 WO 2017015802 A1 WO2017015802 A1 WO 2017015802A1 CN 2015085125 W CN2015085125 W CN 2015085125W WO 2017015802 A1 WO2017015802 A1 WO 2017015802A1
Authority
WO
WIPO (PCT)
Prior art keywords
backhaul
access
user terminal
resources
network
Prior art date
Application number
PCT/CN2015/085125
Other languages
English (en)
French (fr)
Inventor
庄宏成
罗泽宙
陈军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/085125 priority Critical patent/WO2017015802A1/zh
Priority to CN201580081030.2A priority patent/CN107736048B/zh
Publication of WO2017015802A1 publication Critical patent/WO2017015802A1/zh
Priority to US15/879,092 priority patent/US10455593B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for allocating access backhaul resources.
  • the intensive wireless access network allows user terminals to access as short as possible, and enhance users. Terminal throughput and regional throughput of the system.
  • Multi-point coordinated transmission CoMP is a technology for improving cell edge spectrum efficiency and increasing data coverage.
  • the selection of cooperative sets, transmission points (base stations participating in cooperative transmission) and cooperative transmission modes determine the performance of cooperative transmission.
  • access and backhaul resources are partitioned based on the time domain, and are fixed and cannot adapt to the dynamics of dense networks.
  • the resource allocation of traditional access and backhaul does not consider the data transmission mode of the user terminal, and the low is lowered. System resource utilization and transmission efficiency.
  • the present invention provides a method and apparatus for allocating access backhaul resources to ensure reasonable division of access and backhaul resources and improve system resource utilization.
  • a method for allocating access backhaul resources including:
  • each collaboration set includes at least two wireless access points
  • an optional implementation manner is that the joint backhaul utility of the network is the sum of the following two:
  • the access backhaul utility U of the network is calculated in the following manner:
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaborative set user terminal and the total data rate of the non-cooperative set user terminal;
  • the data rate of the collaboration set user terminal j ⁇ K S is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative set of user terminals The available data rate is:
  • W is the system bandwidth, with Respecting the ratio of access resources and the proportion of backhaul resources allocated to the user terminal j, respectively; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • another optional manner is: determining, according to the transmission modes corresponding to the multiple collaboration sets and each collaboration set, that the network access backhaul joint utility is optimal Access and backhaul resource allocation methods include:
  • an alternative manner is to determine access resources and backhaul resources of each wireless access point according to the respective user terminal access and backhaul resource allocation ratios, including:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respectively indicate the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul;
  • U i is a set of users of the wireless access point i.
  • an alternative manner is to determine access resources and backhaul resources of each wireless access point according to each user terminal access and backhaul resource allocation ratio, including:
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • another optional mode is that the transmission mode of each cooperation set is a beamforming transmission mode, a joint transmission mode, or a dual connectivity transmission mode.
  • an apparatus for allocating access backhaul resources including:
  • An acquisition module configured to acquire a plurality of collaboration sets in the network and a transmission mode corresponding to each collaboration set, where each collaboration set includes at least two wireless access points;
  • the determining module determines, according to the multiple cooperation sets and the transmission modes corresponding to the respective cooperation sets, the access and backhaul resource allocation modes corresponding to the optimal access backhaul utility of the network;
  • the notification module is configured to notify the wireless access point in the network to perform data transmission on the user terminal in the network by using the access and backhaul resource allocation manner.
  • network access backhaul utility utility U is calculated in the following manner:
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaborative set user terminal and the total data rate of the non-cooperative set user terminal;
  • the data rate of the collaboration set user terminal j ⁇ K S is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative set of user terminals The available data rate is:
  • W is the system bandwidth, with Respecting the ratio of access resources and the proportion of backhaul resources allocated to the user terminal j, respectively; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • determining module is specifically configured to:
  • an optional another method is: determining, according to the user terminal access and backhaul resource allocation ratios, access resources and backhaul resources of each wireless access point, including:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul;
  • U i is a set of users of the wireless access point i; or
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • another optional mode is that the transmission mode of each cooperation set is a beamforming transmission mode, a joint transmission mode, or a dual connectivity transmission mode.
  • a method for allocating access backhaul resources including:
  • each collaboration set including at least 2 wireless access points;
  • the combination mode of the transmission modes corresponding to the optimal access backhaul joint utility and the access and backhaul resource allocation modes are selected;
  • the sum of the data rates obtainable by the cooperative set user terminals in the combined mode in the transmission mode of the combined mode, and the sum of the data rates obtainable by the non-cooperative set user terminals in the network, the sum of the two is The network's access backhaul joint utility.
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaborative set user terminal and the total data rate of the non-cooperative set user terminal;
  • the data rate of the collaboration set user terminal j ⁇ K S is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative user The available data rate is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • another optional manner is that, for the combination manner of multiple transmission modes of the multiple collaboration sets, respectively calculating a network access backhaul joint utility in each combination mode, including :
  • Another alternative manner is to select a combination mode of the transmission mode corresponding to the optimal access backhaul joint utility from the joint utility of multiple network access backhauls.
  • Incoming and returning resource allocation methods include:
  • the terminal access and backhaul resource allocation ratio determines access resources and backhaul resources of each wireless access point.
  • an alternative manner is to determine access resources and backhaul resources of each wireless access point according to the respective user terminal access and backhaul resource allocation ratios, including:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respecting the proportion of the access resource proportion and the backhaul resource allocated to the user terminal j respectively;
  • U i is a set of users of the wireless access point i; or
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • the network access backhaul joint utility in each combination mode is an optimal network access backhaul joint utility in the combined mode.
  • a fourth aspect provides an apparatus for allocating access backhaul resources, including:
  • An acquisition module configured to acquire multiple collaboration sets in a network, where each collaboration set includes at least two wireless access points;
  • a calculation module configured to calculate a combined utility of the network access backhab in each combination mode for the combination of multiple transmission modes of the multiple collaboration sets; and select a plurality of network access backhaul joint utility from the calculation, and select The combination mode of the transmission modes corresponding to the optimal access backhaul joint utility and the access and backhaul resource allocation modes;
  • the notification module is configured to notify the wireless access point in the network to perform data transmission on the user terminal in the network by using the selected transmission mode and the access and backhaul resource allocation manner.
  • the joint backhaul utility of the network in each combination mode is the sum of the following two:
  • the sum of the data rates obtainable by the cooperative set user terminals in the combined mode in the transmission mode of the combined mode, and the sum of the data rates obtainable by the non-cooperative set user terminals in the network, the sum of the two is The network's access backhaul joint utility.
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaborative set user terminal and the total data rate of the non-cooperative set user terminal;
  • the data rate of the collaboration set user terminal j ⁇ K S is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative user The available data rate is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • another optional manner is that, for the combination manner of multiple transmission modes of the multiple collaboration sets, respectively calculating a network access backhaul joint utility in each combination mode, including :
  • Another alternative manner is to select a combination mode of the transmission mode corresponding to the optimal access backhaul joint utility from the joint utility of multiple network access backhauls.
  • Incoming and returning resource allocation methods include:
  • the terminal access and backhaul resource allocation ratio determines access resources and backhaul resources of each wireless access point.
  • an optional another method is: determining access resources and backhaul resources of each wireless access point according to the respective user terminal access and backhaul resource allocation ratios, including:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respecting the proportion of the access resource proportion and the backhaul resource allocated to the user terminal j respectively;
  • U i is a set of users of the wireless access point i; or
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • the network access backhaul joint utility in each combination mode is an optimal network access backhaul joint utility in the combined mode.
  • the present invention provides a method and apparatus for selectively allocating access backhaul resources, and determining access and backhaul resource allocation corresponding to the optimal access backhaul utility of the network according to the plurality of cooperation sets and the transmission modes corresponding to the respective cooperation sets.
  • the method ensures flexible and reasonable division of access and backhaul resources and improves system resource utilization.
  • FIG. 1 is a flowchart of a method for selecting a transmission mode according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for allocating access backhaul resources according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method for allocating access backhaul resources according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus module for selecting a transmission mode according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a device selection module for selecting a transmission mode according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an apparatus for allocating an access backhaul resource according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an apparatus for allocating access backhaul resources according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • the wireless communication network usually includes: a wireless access point, a wireless access point controller and a user terminal; or only includes a wireless access point and a user terminal, and the wireless access point may be a base station, an access point AP (Access Point) or a transmission. Point, etc., the wireless communication network may be a cellular mobile communication network, such as WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), etc., or a wireless local area network WLAN or a future network, etc.; the following embodiments are cellular mobile communication networks
  • the wireless access point is a base station
  • the wireless access point controller is a base station controller.
  • a method for selecting a transmission mode according to the present invention is described in detail by taking a certain cooperation set as an example, and the cooperation set may include multiple wireless access points, and serve one or more user terminals, and
  • the mobile communication network may be executed by a base station, or may be executed by a base station controller, or may be performed by a separate controller.
  • the controller may be a functional entity integrated in other network elements, such as an MME (Mobility). Management Element Mobile Management Unit).
  • the method for selecting a transmission mode mainly includes:
  • the user terminal measures the pilot signal strength of the serving cell and the neighboring cell, for example, RSRP (Reference Signal Receiving Power reference signal receiving power), and puts the wireless access point whose pilot signal strength is greater than the preset threshold into the cooperation set;
  • RSRP Reference Signal Receiving Power reference signal receiving power
  • the user terminal measures the interference of the neighboring area it receives, such as SINR (Signal to Interference plus Noise Ratio), and may also use other parameters to place the wireless access point whose interference intensity is greater than the preset threshold.
  • SINR Signal to Interference plus Noise Ratio
  • the user terminal may determine which wireless access points, such as the base station, can be put into the cooperation set, and then report the information of the cooperation set to the base station or the controller; in addition, the user terminal The measured pilot signal strength or the interference strength may be reported to the base station or the controller, and the base station or the controller determines which base stations can be put into the cooperation set, and the controller may be a standalone device: such as a base station controller; A functional entity is integrated in a base station or other network element, such as an MME.
  • the foregoing two methods may be used by only one or two methods, that is, the wireless access points with the pilot signal strength and/or the interference strength greater than the preset threshold are put into the cooperation set.
  • the cooperation set of the user terminal 1 is: (Base station 1, Base station 2, base station 3)
  • the cooperation set of user terminal 2 is: (base station 2, base station 3, base station 4)
  • the cooperation set of user terminal 3 is: (base station 3, base station 2, base station 1)
  • user terminal 1, 3 is a user terminal of the cooperation set (base station 1, base station 2, base station 3).
  • Each base station can directly exchange the cooperation set information of its user terminal, so that the user terminals having the same cooperation set can be determined, or each base station reports the cooperation set information of its user terminal to one of the base stations or the above-mentioned controller, by the base station or the The controller determines the user terminals having the same collaboration set.
  • a collaboration set and a user terminal of the collaboration set are finally determined, and the following steps are performed for the collaboration set. If there are multiple collaboration sets, the following steps are performed for each collaboration set.
  • the combination manner of multiple base stations of the cooperation set includes ⁇ base station 1 ⁇ , ⁇ base station 2 ⁇ , ⁇ base station 3 ⁇ , ⁇ base station 1, base station 2 ⁇ , ⁇ Base Station 1, Base Station 3 ⁇ , ⁇ Base Station 2, Base Station 3 ⁇ and ⁇ Base Station 1, Base Station 2, Base Station 3 ⁇ , a total of seven combinations.
  • the combination of base station exclusion that is, the combination ⁇ base station 1 ⁇ , ⁇ base station 2 ⁇ , ⁇ base station 3 ⁇ , only the combination ⁇ base station 1, base station 3 ⁇ , ⁇ base station 2, base station 3 ⁇ and ⁇ base station 1, base station 2,
  • the base station 3 ⁇ is a combination of two or more base stations; a partial combination mode may also be selected according to requirements, which is not limited by the present invention.
  • This step can also be done by the base station or controller.
  • the access capability includes at least one parameter of available access resources, available access capacity, access delay, etc.
  • the backhaul capability includes at least one parameter such as available backhaul resources, available backhaul capacity, and backhaul delay;
  • the step of obtaining may be performed by the base station or
  • the controller is completed, and if it is completed by the base station, the acquisition mode may obtain the access capability and the backhaul capability of other base stations in the combination through an interface between the base stations, such as an X2 interface; and the controller may separately obtain access of each base station.
  • Capability and backhaul capability; the controller may be a base station controller. If the controller is a functional entity, for example, located in a core network device, such as an MME, the acquisition mode may be through an interface between the base station and the core network, such as an S1 interface. get on.
  • the following embodiments illustrate the access and backhaul capabilities respectively as available access and backhaul resources, such as the access subchannel set and the backhaul subchannel set available by each radio access point as the access capability and the backhaul capability.
  • the base station of the cooperative set has four combinations. For each combination mode, if there are three transmission modes, the calculation calculates the combined access back effect in the three transmission modes respectively; With the combined backhaul utility, the four combinations can calculate a total of 12 access backhaul joint utilities.
  • an optimal access backhaul utility can be determined, and the transmission mode adopted by the optimal access backhaul joint utility and its corresponding combination mode are also confirmed.
  • the above steps 2.2-2.3 select the transmission mode and combination mode corresponding to the optimal access backhaul joint utility, and another method may be adopted, that is, for each combination mode, if there are three transmission modes, the calculation is respectively calculated 3
  • the joint backhaul utility in the transmission mode determines the transmission mode corresponding to the optimal access backhaul joint utility in the combination mode; if there are 4 combinations, four optimal access backhaul associations can be obtained. Applying the corresponding transmission mode, and then selecting an optimal access backhaul joint utility from the four optimal access backhaul joint utility, at this time, the corresponding transmission mode and combination mode are also determined.
  • the method can refer to the following steps 3.1-3.3:
  • step 3.1 the same as step 2.1, no longer detailed.
  • each combination mode according to the access capability and the backhaul capability of the wireless access point in the combined mode, respectively calculate the combined backhaul utility of the combination mode using different transmission modes, and determine the optimal connection of each combination mode.
  • the transfer mode corresponding to the backhaul joint utility
  • the joint utility of the access backhaul mentioned in the foregoing embodiment is a performance comprehensive indicator of the end-to-end (ie, from the terminal to the gateway) of the access link and the backhaul link, and may select different performance indicators, such as available data transmission of the user terminal. Rate or service delay of the user terminal, etc.
  • the following embodiment is described by taking the available data transmission rate of the user terminal as an example.
  • the joint utility U of the access backhaul can be calculated by the following formula:
  • C S is a set of combinations of cooperation sets
  • C is a combination of cooperation sets
  • K S is a set of user terminals in a collaborative set
  • R k, C is a user terminal k in a cooperative transfer mode under combination C End-to-end (access and backhaul) data rates, where:
  • N ac and N bh respectively represent a set of available access subchannels and a set of backhaul subchannels of combination C; with Representing the signal to noise ratio of the user terminal k on the access subchannel n and the backhaul subchannel n, respectively; Indicates that the access subchannel n is allocated to the user terminal k, Indicates that the backhaul subchannel n is assigned to the user terminal k; Indicates that the access subchannel n is not allocated to the user terminal k, It indicates that the backhaul subchannel n is not allocated to the user terminal k.
  • the U value may be maximized in the transmission mode by using different optimization algorithms.
  • the allocation of the access and backhaul resources of the user terminals may be determined, that is, the access subchannel and the backhaul subchannel. Distribution.
  • the calculation of R k,C is divided into a cooperative transmission mode and a non-cooperative transmission mode.
  • ⁇ base station 1 ⁇ , ⁇ base station 2 ⁇ , ⁇ base station 3 ⁇ use a non-cooperative transmission mode.
  • the calculation method is because there is only one base station; for the case of combining 2 or more base stations: ⁇ base station 1, base station 2 ⁇ , ⁇ base station 1, base station 3 ⁇ , ⁇ base station 2, base station 3 ⁇ and ⁇ base station 1, base station 2, base station 3 ⁇
  • the calculation method of the cooperative transmission mode and the non-cooperative transmission mode is used.
  • only the calculation mode of the cooperative transmission mode can be used as needed, and the following is further explained:
  • the end-to-end data rate R k,C of the user terminal k is:
  • N ac and N bh respectively represent the available access subchannel set and the backhaul subchannel set of the combination C, that is, the access capability and the backhaul capability; with Representing the signal to noise ratio of the user terminal k on the access subchannel n and the backhaul subchannel n, respectively; Indicates that the access subchannel n is allocated to the user terminal k, Indicates that the backhaul subchannel n is assigned to the user terminal k, and vice versa. Indicates that the access subchannel n is not allocated to the user terminal k, It indicates that the backhaul subchannel n is not allocated to the user terminal k.
  • the end-to-end data rates of the user terminal k in the cooperative beamforming transmission mode and the joint transmission mode are respectively:
  • N ac and N bh respectively represent a set of subchannels of the available access and backhaul resources of the combination C, namely access capability and backhaul capability; Indicates that the access subchannel n is allocated to the user terminal k, Indicates that the backhaul subchannel n is assigned to the user terminal k, and vice versa. Indicates that the access subchannel n is not allocated to the user terminal k, Indicates that the backhaul subchannel n is not allocated to the user terminal k; with The signal to noise ratio of the user terminal k on the access and backhaul subchannels n, respectively.
  • N ac and N bh respectively represent a set of subchannels of the available access and backhaul resources of the combination C, namely access capability and backhaul capability; Indicates that the access subchannel n is allocated to the user terminal k, Indicates that the backhaul subchannel n is assigned to the user terminal k, and vice versa. Indicates that the access subchannel n is not allocated to the user terminal k, Indicates that the backhaul subchannel n is not allocated to the user terminal k; with The signal to noise ratio of the user terminal k on the access and backhaul subchannels n, respectively.
  • the dual-connection transmission mode can also be adopted, and the base stations participating in the cooperative set of dual-connection transmission are respectively calculated by using the non-cooperative transmission mode described above.
  • the combination includes ⁇ base station 1 ⁇ , ⁇ base station 2 ⁇ , ⁇ base station 3 ⁇ , ⁇ base station 1, base station 2 ⁇ , ⁇ base station 1, base station 3 ⁇ , ⁇ base station 2, base station 3 ⁇ and ⁇ base station 1, base station 2, base station 3 ⁇ .
  • all user terminals of the cooperative set calculate the sum of the available data rates in the non-cooperative mode under the combination, and the available data rate in the cooperative beamforming mode is adopted. And, and the sum of the available data rates in the joint transmission mode, and the sum of the available data rates in the dual connectivity mode.
  • the optimal cooperative transmission mode of the combination ⁇ base station 1, base station 3 ⁇ is joint transmission.
  • Other combinations ⁇ base station 1, base station 2 ⁇ , ⁇ base station 2, base station 3 ⁇ and ⁇ base station 1, base station 2, base station 3 ⁇ are respectively calculated according to the above manner.
  • the cooperation concentration The sum of the available throughput of the user terminals and the maximum transmission mode is the optimal cooperative transmission mode of the combination.
  • each combination calculates an optimal access back joint utility U value, and among all the multiple optimal U values of all combinations, the best combination of the access backhaul utility U is selected.
  • the sum of the rates available to the user terminal using the combination and the corresponding transmission mode The base station of the combination is a transmission point, and the corresponding transmission mode is a transmission mode of the user terminal that serves the cooperation set of the transmission points.
  • the optimal combined utility U of 7 access backhags can be calculated, and then the transmission mode adopted by the corresponding combination mode of the largest U is selected among 7 Data transmission to the user terminal.
  • the base station 1 and the base station 3 are transmission points, and the base station 1 and the base station 3 adopt the beamforming transmission mode to the user.
  • the terminal performs data transmission, and the base station 2 does not participate in data transmission.
  • the base station 1 directly performs data transmission on the user terminal.
  • each transmission mode of each combination can obtain an access backhaul joint utility U value, for example, for three base stations.
  • Cooperative set, combining includes ⁇ base station 1 ⁇ , ⁇ base station 2 ⁇ , ⁇ base station 3 ⁇ , ⁇ base station 1, base station 2 ⁇ , ⁇ base station 1, base station 3 ⁇ , ⁇ base station 2, base station 3 ⁇ and ⁇ base station 1, base station 2 , base station 3 ⁇ , for a combination of only one base station ⁇ base station 1 ⁇ , ⁇ base station 2 ⁇ , ⁇ base station 3 ⁇ , respectively calculate the sum of the available data rates of all user terminals of the cooperative set in the non-cooperative mode, and obtain three U value; for a cooperative set of 2 or more base stations ⁇ base station 1, base station 2 ⁇ , ⁇ base station 1, base station 3 ⁇ , ⁇ base station 2, base station 3 ⁇ and ⁇ base station 1, base station 2, base station 3 ⁇ , each combination respectively Calculate the sum of the available data rates in
  • the wireless access point that is configured to notify the combination mode performs data transmission on the user terminal of the collaboration set by using the transmission mode.
  • the transmission mode adopted by the combined base station is notified, so that the base station (ie, the transmission point) transmits data for the user terminal of the cooperative set according to the transmission mode.
  • the base station 1 and the base station 3 are notified that the transmission mode is the beamforming transmission mode, then the base station 1 and The base station 3 performs data transmission on the user terminal by using a beamforming transmission mode.
  • step 102 when determining the optimal access backhaul utility U, the allocation of the corresponding access and backhaul resources is determined, that is, the allocation of the access subchannel and the backhaul subchannel available to each base station in the combination is determined;
  • step 103 the corresponding base station may be notified of the allocation result of the access subchannel and the backhaul subchannel available to each base station in the combination.
  • this step can be done by the base station or controller.
  • the present invention also discloses an apparatus for selecting a transmission mode for performing the above method.
  • the apparatus includes:
  • the obtaining module 401 is configured to acquire a collaboration set of the user terminal and multiple combinations of multiple wireless access points in the collaboration set;
  • the selecting module 402 is configured to select, from the plurality of combinations, a combination mode for which an access back mode joint utility optimal transmission mode is selected;
  • the notification module 403 is configured to notify the wireless access point of the combined mode to perform data transmission on the user terminal of the collaboration set by using the access back-up joint utility optimal transmission mode.
  • the selection module 402 includes:
  • the obtaining sub-module 501 is configured to separately acquire access capability and backhaul capability of each wireless access point;
  • a calculation sub-module 502 for each combination mode, according to the access capability and the backhaul capability of the wireless access point in the combination mode, respectively, the combined backhaul utility of each combination mode adopting various transmission modes is calculated , obtaining a combined backhaul utility of multiple transmission modes using different transmission modes;
  • Selection sub-module 503 for selecting from all of the access backhaul joint utilities obtained The optimal access backhaul joint utility is determined, and the combined mode and transmission mode corresponding to the optimal access backhaul joint utility are determined.
  • the selection module 402 includes:
  • the obtaining sub-module 501 respectively acquiring access capability and backhaul capability of each wireless access point;
  • the calculation sub-module 502 for each combination mode, according to the access capability and the backhaul capability of the wireless access point in the combination mode, respectively calculate the joint backhaul utility of each combination mode using various transmission modes, and determine Each combination mode optimally accesses the transmission mode corresponding to the backhaul joint utility;
  • the selecting sub-module 503 selects, from the transmission modes corresponding to the multiple optimal access backhaul joint utilities of the multiple combinations, the combination mode for which the transmission mode of the connection backhaul joint utility is optimal.
  • the function of the obtaining submodule 501 can also be implemented by the obtaining module 401.
  • the combined backhaul utility of each combination mode adopting various transmission modes is respectively calculated, including:
  • N ac and N bh respectively represent a set of available access subchannels and a set of backhaul subchannels of combination C; with Representing the signal to noise ratio of the user terminal k on the access subchannel n and the backhaul subchannel n, respectively; Indicates that the access subchannel n is allocated to the user terminal k, Indicates that the backhaul subchannel n is assigned to the user terminal k.
  • the notification module 403 is further configured to:
  • the transmission mode includes at least one of the following: a non-cooperative transmission mode, a beamforming transmission mode, a joint transmission mode, and a dual connectivity transmission mode.
  • the device may be a wireless access point, such as a base station. It can also be a base station controller or other network device, or a separate controller.
  • the controller can be a functional entity and integrated on other network elements, such as an MME (Mobility Management Element).
  • the present invention also discloses an apparatus for selecting a transmission mode for performing the above method.
  • the method includes:
  • the receiver 801 is configured to acquire a collaboration set of the user terminal and multiple combinations of multiple wireless access points in the collaboration set.
  • the processor 802 is configured to select, from the multiple combinations, a combination mode for which an access back mode joint utility optimal transmission mode is selected;
  • the transmitter 803 is configured to notify the wireless access point of the combined mode to perform data transmission on the user terminal of the collaboration set by using the access back-transfer utility optimal transmission mode.
  • the apparatus is similar to the apparatus embodiment above, the receiver performs the corresponding steps of the acquisition module, the processor performs the corresponding steps of the selection module, the transmitter performs the corresponding steps of the notification module; the execution of the other corresponding steps are also performed by the above three units
  • the device may be a wireless access point, such as a base station, or a base station controller, or a separate controller.
  • the controller may be a functional entity integrated in other network elements, such as an MME (Mobility Management Element mobile Management unit).
  • the method and device for selecting a transmission mode in the case that the cooperation set of the user terminal is determined, respectively, by using a plurality of combinations of the respective wireless access points, respectively calculating the optimal connection backhaul utility of different transmission modes, Then, the transmission mode and the combination mode of the optimal access backhaul joint utility are selected, and then the wireless access point of the combination mode is notified to perform data transmission on the user terminal of the collaboration set by using the transmission mode, and the data is improved. Transmission efficiency; further, it ensures the reasonable allocation of access and backhaul resources and improves system resource utilization.
  • the method and apparatus disclosed in the foregoing embodiments are how to select an optimal combination mode and a transmission mode for a plurality of wireless access points in the case of a cooperative set.
  • Another embodiment of the present invention further provides a method for allocating access backhaul resources. It is assumed that when there are multiple cooperation sets in the network, and the transmission mode of each cooperation set is determined, how to determine the optimal connection in the network.
  • the method of dividing the incoming and outgoing resources, the main problem solved by this method is to reasonably divide the access and backhaul resources and improve the utilization of system resources.
  • the method can be performed by a wireless access point, such as a base station, or by a base station controller, or by a separate controller, which can be a functional entity integrated in other a network element, such as an MME (Mobility Management Element); referring to FIG. 2, the method includes:
  • each collaboration set includes at least two wireless access points
  • the network here may be the entire network, or an area in the network, for example: multiple base station coverage areas, coverage areas of base stations managed by one or more base station controllers; or multiple associations The area covered by the set.
  • This step also determines which wireless access points can be used as the wireless access point of the collaboration set, and the implementation manner is the same as step 101, and details are not described herein again.
  • a network area usually includes multiple user terminals, and each user terminal can separately identify its own collaboration set. If some user terminals have the same collaboration set, these user terminals serve as user terminals of the same collaboration set; There are also some user terminals that cannot find a collaboration set and only one base station serves it.
  • each collaboration set may have a certain coordinated transmission mode; for a non-cooperative set of user terminals, only one base station serves it, and its corresponding transmission mode is a non-cooperative transmission mode.
  • the joint backhaul utility in the network is the sum of the following two: network The sum of the data rates obtainable by the user terminal of the cooperative set in the transmission mode, and the sum of the data rates obtainable by the user terminals of the non-cooperative set in the network, the sum of the two being the connection of the network Inward combined utility;
  • the calculation can be performed in the following manner:
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaborative set user terminal and the total data rate of the non-cooperative set user terminal;
  • the collaboration set user j ⁇ K S can obtain the data rate as:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative user The available data rate is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • the U value may be maximized in a certain user terminal access and backhaul resource allocation ratio, and the access and backhaul resources of the user terminals may be determined. Distribution ratio.
  • the access and backhaul resource allocation modes corresponding to the optimal access backhaul joint utility are selected according to the transmission modes corresponding to the multiple collaboration sets and the respective cooperation sets, including:
  • the access resources and the backhaul resources of each wireless access point are determined according to the respective user terminal access and backhaul resource allocation ratios, which are specifically calculated by two methods, and one method is a pin. Calculate each wireless access point i separately, and calculate it as:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respectively indicate the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul;
  • U i is a set of users of the wireless access point i.
  • Another method is to assign the same access and backhaul resources to each wireless access point, calculated as:
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • the wireless access point in the network is notified to perform data transmission on the user terminal in the network by using the access and backhaul resource allocation manner.
  • the wireless access point in the network may be a wireless access point of the foregoing multiple cooperative sets, or may include a wireless access point in the entire network, including wireless access points of the multiple cooperative sets and non-collaboration in the network. Set of wireless access points.
  • each of the access points and the backhaul resources may be respectively indicated for each wireless access point; or the access resources and the backhaul resources of each wireless access point may be indicated.
  • the transmission mode of each cooperation set in the foregoing method may be a beamforming transmission mode, a joint transmission mode or a dual connectivity transmission mode.
  • the present invention also discloses an apparatus for allocating access backhaul resources.
  • the method for performing the above method includes:
  • the obtaining module 601 is configured to acquire a plurality of collaboration sets in the network and a transmission mode corresponding to each collaboration set, where each collaboration set includes at least two wireless access points;
  • the determining module 602 is configured to determine, according to the multiple cooperation sets and the transmission modes corresponding to the respective cooperation sets, the access and backhaul resource allocation modes corresponding to the optimal access backhaul utility of the network;
  • the notification module 603 is configured to notify the wireless access point in the network to perform data transmission on the user terminal in the network by using the access and backhaul resource allocation manner.
  • the combined backhaul utility of the network is the sum of the following:
  • connection backhaul utility utility U of the network is calculated in the following manner:
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaborative set user terminal and the total data rate of the non-cooperative set user terminal;
  • the data rate of the collaboration set user terminal j ⁇ K S is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative set of user terminals The available data rate is:
  • W is the system bandwidth, with Respecting the ratio of access resources and the proportion of backhaul resources allocated to the user terminal j, respectively; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • the determining module 602 is specifically configured to:
  • Determining access resources and backhaul resources of each wireless access point according to the ratio of each user terminal access and backhaul resource allocation including:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul;
  • U i is a set of users of the wireless access point i; or
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • the transmission mode of each cooperative set is a beamforming transmission mode, a joint transmission mode or a dual connectivity transmission mode.
  • the foregoing device embodiment corresponds to the method embodiment, and the corresponding modules respectively perform the corresponding steps of the method of placing the method, and some steps are not listed one by one, and may refer to the method embodiment;
  • the device may be a wireless access point, such as
  • the base station can also be a base station controller or a separate controller.
  • the controller can be a functional entity and integrated on other network elements, such as an MME (Mobility Management Element).
  • the present invention also discloses an apparatus for allocating an access backhaul resource, which is used to perform the above method.
  • the method includes:
  • the receiver 801 is configured to acquire a plurality of collaboration sets in the network and a transmission mode corresponding to each collaboration set, where each collaboration set includes at least two wireless access points;
  • the processor 802 according to the transmission modes corresponding to the multiple collaboration sets and the respective cooperation sets, determine an access and backhaul resource allocation manner corresponding to when the network backhaul joint utility is optimal;
  • the transmitter 803 is configured to notify the wireless access point in the network to perform data transmission on the user terminal in the network by using the access and backhaul resource allocation manner.
  • the apparatus is similar to the apparatus embodiment above, the receiver performs the corresponding steps of the acquisition module, the processor performs the corresponding steps of the determination module, the transmitter performs the corresponding steps of the notification module; the execution of the other corresponding steps are also performed by the above three units
  • the device may be a wireless access point, such as a base station, or a base station controller or other network device, or a separate controller.
  • the controller may be a functional entity integrated in other network elements, such as an MME ( Mobility Management Element on the Mobile Management Unit).
  • MME Mobility Management Element on the Mobile Management Unit
  • the foregoing embodiment discloses a method and a device for allocating access backhaul resources.
  • determining an access and backhaul resource allocation mode when the network's access backhaul combined utility is optimal The wireless access point in the network is notified to use the allocation method to transmit data to the user terminal, which ensures the rationality and flexibility of the access backhaul and resource division, and improves the system resource utilization; further, improves the data transmission of the network.
  • Efficiency and network capacity When multiple cooperative sets and transmission modes in the network have been determined, determining an access and backhaul resource allocation mode when the network's access backhaul combined utility is optimal, The wireless access point in the network is notified to use the allocation method to transmit data to the user terminal, which ensures the rationality and flexibility of the access backhaul and resource division, and improves the system resource utilization; further, improves the data transmission of the network.
  • Efficiency and network capacity When multiple cooperative sets and transmission modes in the network have been determined, determining an access and backhaul resource allocation mode when the network's access backhaul
  • the premise of the foregoing embodiment is that multiple cooperation sets in the network have been determined, and the corresponding transmission modes have also been determined. In another embodiment, if multiple cooperation sets in the network have been determined, the corresponding transmission modes are different.
  • the combination method can separately calculate the joint backhaul utility of the network in each combination mode for different combinations, and then select one of the optimal access backhaul joint utility, and then select the combination mode of its corresponding transmission mode. And corresponding access and backhaul resource allocation methods.
  • the method includes:
  • each collaboration set includes at least two wireless access points
  • This step is similar to the above embodiment and will not be described in detail.
  • a joint backhaul utility of a network of each combination mode is Optimal combination of network access backhaul in a combined mode
  • the data rate obtained by all user terminals in the network is calculated according to different access and backhaul resource allocation ratios of each combination manner, and the sum of available data rates of all user terminals in the network is selected. Maximum user terminal access and backhaul resource allocation ratio.
  • collaboration sets each of which can be arbitrarily selected from the following cooperative transmission modes: beamforming transmission mode, joint transmission mode and dual connectivity transmission mode; then three cooperation sets can have multiple cooperative transmissions.
  • the combination of modes, the three collaboration sets can choose the same transmission mode, or the two can be the same or different.
  • it is required to traverse all the combinations, and then calculate the joint backhaul utility for each combination mode, and then select an optimal combination mode of the access back joint utility.
  • the calculation method mentioned in step 202 in the above embodiment can be used to obtain the access backhaul joint utility U; and then for another combination manner, such as:
  • the combination of each transmission mode calculates a sum U of the maximum achievable data rates, and then selects from the sum of the plurality of maximum available data rates corresponding to the plurality of combinations. a combination of a maximum data rate and a corresponding allocation ratio of each user terminal access and backhaul resource, and determining access resources of each wireless access point according to the ratio of each user terminal access and backhaul resource allocation And backhaul resources.
  • the method for determining the access resources and the backhaul resources of each of the wireless access points according to the user terminal access and the backhaul resource allocation ratio is the same as the two calculation methods mentioned in the step 202, and details are not described herein again.
  • step 302 if the U value calculated in the combination of the following transmission modes is the largest, it means that the sum of the transmission rates of all user terminals is the largest at this time.
  • the corresponding transmission mode is selected for the above three cooperation sets.
  • all the wireless access points of the network may be notified by the resource allocation manner, including the multiple cooperative set wireless access points and the non-cooperative set wireless wireless access points.
  • the base stations 1, 2 perform data transmission on the user terminals 1, 2, 3 by cooperative beamforming, and similarly, the base stations 1, 2 perform joint data transmission on the user terminals 4, 5, The base stations 2, 3 perform data transmission to the user terminal 6 using dual connections.
  • the present invention further discloses an apparatus for allocating an access backhaul resource, and the method for performing the foregoing embodiment, referring to FIG. 7, includes:
  • the obtaining module 701 is configured to acquire multiple collaboration sets in the network, where each collaboration set includes at least two wireless access points;
  • the calculating module 702 is configured to calculate, according to a combination manner of multiple transmission modes of the multiple collaboration sets, a network access backhaul joint utility in each combination mode, and obtain a plurality of network access backhaul joint utility from the calculation, Selecting the combination mode of the transmission mode corresponding to the optimal access backhaul joint utility and the access and backhaul resource allocation modes;
  • the notification module 703 is configured to notify the wireless access point in the network to perform data transmission on the user terminal in the network by using the selected transmission mode and the access and backhaul resource allocation manner.
  • the combined backhaul utility of the network in each combination mode is the sum of the following:
  • the sum of the data rates obtainable by the cooperative set user terminals in the combined mode in the transmission mode of the combined mode, and the sum of the data rates obtainable by the non-cooperative set user terminals in the network, the sum of the two is The network's access backhaul joint utility.
  • the joint backhaul utility of the network is calculated in the following manner:
  • S is a collaboration set
  • C is a collection of collaboration sets
  • K S is a collection of user terminals in the collaboration set S;
  • R j is the available data rate of the user terminal j, with The total data rate of the collaboration set user terminal and the total data rate of the non-collaboration set user terminal;
  • the data rate of the collaboration set user terminal j ⁇ K S is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul in the transmission mode, respectively; with Respecting the access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j in the transmission mode, respectively;
  • Non-collaborative user The available data rate is:
  • W is the system bandwidth, with Respecting the proportion of resources allocated to the user terminal j and the proportion of resources of the backhaul; with The access signal to noise ratio and the backhaul signal to noise ratio of the user terminal j are respectively indicated.
  • Calculating the joint utility of network access backhaul in each combination mode separately includes:
  • the combination of the optimal transmission mode and the corresponding transmission mode and the access and backhaul resource allocation modes include:
  • the terminal access and backhaul resource allocation ratio determines access resources and backhaul resources of each wireless access point.
  • Determining access resources and backhaul resources of each wireless access point according to the ratio of each user terminal access and backhaul resource allocation including:
  • Access resources of the wireless access point i are:
  • W is the system bandwidth, with Respecting the proportion of the access resource proportion and the backhaul resource allocated to the user terminal j respectively;
  • U i is a set of users of the wireless access point i; or
  • Each wireless access point accesses resources:
  • W is the system bandwidth
  • the network access backhaul joint utility in each combination mode is the optimal network access backhaul joint utility in the combined mode.
  • the foregoing device embodiment corresponds to the method embodiment, and the corresponding modules respectively perform the corresponding steps of the method of placing the method, and some steps are not listed one by one, and may refer to the method embodiment;
  • the device may be a wireless access point, such as
  • the base station can also be a base station controller or a separate controller.
  • the controller can be a functional entity and integrated on other network elements, such as an MME (Mobility Management Element).
  • the present invention also discloses an apparatus for allocating an access backhaul resource, which is used to perform the above method.
  • the method includes:
  • the receiver 801 is configured to acquire multiple collaboration sets in the network, where each collaboration set includes at least two wireless access points;
  • the processor 802 is configured to calculate, according to a combination manner of multiple transmission modes of the multiple collaboration sets, a network access backhaul utility in each combination mode, and obtain a plurality of network access backhaul joint utility from the calculation, Selecting the combination mode of the transmission mode corresponding to the optimal access backhaul joint utility and the access and backhaul resource allocation modes;
  • the transmitter 803 is configured to notify the wireless access point in the network to perform data transmission on the user terminal in the network by using the selected transmission mode and the access and backhaul resource allocation manner.
  • the apparatus is similar to the above apparatus embodiment, the receiver performs the corresponding steps of the acquisition module, the processor executes the corresponding steps of the calculation module, the transmitter performs the corresponding steps of the notification module; the execution of the other corresponding steps are also performed by the above three units
  • the device may be a wireless access point, such as a base station, or a base station controller or other network device, or a separate controller.
  • the controller may be a functional entity integrated in other network elements, such as an MME ( Mobility Management Element on the Mobile Management Unit).
  • the foregoing method and device for allocating access backhaul resources multiple cooperative sets in the network have been determined, but corresponding transmission modes have different combinations, and network access in each combination mode can be separately calculated for different combinations.
  • the backhaul joint utility and then select one of the optimal access backhaul joint utility, and then select the corresponding combination of the transmission mode and the corresponding access and backhaul resource allocation mode to ensure the reasonable network access and backhaul resource division. Sex and flexibility, improve the resource utilization of the system; further, improve the data transmission efficiency and network capacity of the network.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种分配接入回程资源的方法,包括:获取网络中的多个协作集及各个协作集对应的传输模式;根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输,保证了接入及回程资源的灵活合理划分,提高了***资源利用率。

Description

一种分配接入回程资源的方法及装置 技术领域
本发明涉及通信技术领域,特别涉及一种分配接入回程资源的方法及装置。
背景技术
为提高网络容量,无线网络的接入点小型化和部署密集化是无线网络的发展趋势,密集无线接入网(Ultra-dense network,UDN)在尽可能短距离让用户终端接入,提升用户终端吞吐量和***的区域吞吐量。
网络密集化意味着在相同的覆盖区域,需要部署更多的无线接入点,如基站,导致网络中存在大量的覆盖重叠区域,大量用户终端会处于这些重叠区域,增加了协作多点传输技术(Coordinated Multiple Point transmission&receiving,CoMP)应用的必要性。多点协作传输CoMP是提升小区边缘频谱效率,增大数据覆盖的技术,其中,协作集合、传输点(参与协作传输的基站)以及协作传输模式的选择决定了协作传输的性能。常见的协作多点传输技术有两种,一种是联合传输(Joint Transmission)技术,一种是协作波束赋形(Coordinated Beamforming)技术。协作波束赋形技术在应用时,需要参与协作的小区之间共享用户终端与所有小区之间的信道信息,而联合传输技术不但要求小区之间共享信道信息,还要求共享用户终端的数据信息。
另一方面,在密集网络下,基于成本等因素的限制,并非每个无线接入点(如:基站)都有理想回程。在回程限制下,接入与回程的资源的灵活使用对***的资源利用和传输性能有很大的影响。
传统上,接入和回程的资源是基于时域进行划分,并且是固定的,不能适应密集网络的动态性,另外,传统接入和回程的资源分配没有考虑用户终端的数据传输模式,降低低了***资源的利用率和传输效率。
因此,如何为网络中的用户终端合理的划分接入及回程资源,是一个 很重要的急需解决的问题。
发明内容
本发明提供一种分配接入回程资源的方法及装置,以保证接入及回程资源的合理划分,提高***资源利用率。
第一方面,提供一种分配接入回程资源的方法,包括:
获取网络中的多个协作集及各个协作集对应的传输模式,每个协作集包括至少2个无线接入点;
根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;
通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
结合第一方面,可选的一种实现方式为,所述网络的接入回程联合效用为以下两者之和:
所述网络中的协作集的用户终端在所述传输模式下可获得的数据速率之和,以及所述网络中的非协作集的用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
结合上述第一方面及各个实现方式,可选的另一种方式为,所述网络的接入回程联合效用U采用以下方式计算:
Figure PCTCN2015085125-appb-000001
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000002
Figure PCTCN2015085125-appb-000003
分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000004
Figure PCTCN2015085125-appb-000005
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000006
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000007
Figure PCTCN2015085125-appb-000008
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000009
Figure PCTCN2015085125-appb-000010
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户终端
Figure PCTCN2015085125-appb-000011
可获得数据速率为:
Figure PCTCN2015085125-appb-000012
Figure PCTCN2015085125-appb-000013
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000014
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000015
Figure PCTCN2015085125-appb-000016
分别表示分配给用户终端j的接入资源比例和回程资源比例;
Figure PCTCN2015085125-appb-000017
Figure PCTCN2015085125-appb-000018
分别表示用户终端j的接入信噪比和回程信噪比。
结合上述第一方面及各个实现方式,可选的另一种方式为,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的的接入及回程资源分配方式包括:
针对不同的接入及回程资源分配比例,根据所述多个协作集及各个协作集对应的传输模式分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
结合上述第一方面及各个实现方式,可选的另一种方式为,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000019
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000020
其中,W为***带宽,
Figure PCTCN2015085125-appb-000021
Figure PCTCN2015085125-appb-000022
分别表示分配给用户终端j接入的资源比例和回程的资源比例;Ui为无线接入点i的用户的集合。
结合上述第一方面及各个实现方式,可选的另一种方式为,根据各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000023
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000024
其中,W为***带宽,
Figure PCTCN2015085125-appb-000025
Figure PCTCN2015085125-appb-000026
分别表示分配给用户终端j接入的资源比例和回程的资源比例。
结合上述第一方面及各个实现方式,可选的另一种方式为,每个协作集的传输模式为波束赋形传输模式,联合传输模式或双连接传输模式。
第二方面,提供一种分配接入回程资源的装置,包括:
获取模块,用于获取网络中的多个协作集及各个协作集对应的传输模式,每个协作集包括至少2个无线接入点;
确定模块,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;
通知模块,用于通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
结合上述第二方面,可选的另一种方式为,所述网络的接入回程联合效用为以下两者之和:
所述网络中的协作集的用户终端在所述传输模式下可获得的数据速率之和,以及所述网络中的非协作集的用户终端可获得的数据速率之和, 两者之和为所述网络的接入回程联合效用。
结合上述第二方面及各个实现方式,可选的另一种方式为,所述网络的接入回程联合效用U采用以下方式计算:
Figure PCTCN2015085125-appb-000027
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000028
Figure PCTCN2015085125-appb-000029
分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000030
Figure PCTCN2015085125-appb-000031
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000032
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000033
Figure PCTCN2015085125-appb-000034
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000035
Figure PCTCN2015085125-appb-000036
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户终端
Figure PCTCN2015085125-appb-000037
可获得数据速率为:
Figure PCTCN2015085125-appb-000038
Figure PCTCN2015085125-appb-000039
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000040
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000041
Figure PCTCN2015085125-appb-000042
分别表示分配给用户终端j的接入资源比例和回程资源比例;
Figure PCTCN2015085125-appb-000043
Figure PCTCN2015085125-appb-000044
分别表示用户终端j的接入信噪比和回程信噪比。
结合上述第二方面及各个实现方式,可选的另一种方式为,所述确定模块具体用于:
针对不同的接入及回程资源分配比例,根据所述多个协作集及各个协作集对应的传输模式分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
结合上述第二方面及各个实现方式,可选的另一种方式为,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000045
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000046
其中,W为***带宽,
Figure PCTCN2015085125-appb-000047
Figure PCTCN2015085125-appb-000048
分别表示分配给用户终端j接入的资源比例和回程的资源比例;Ui为无线接入点i的用户的集合;或
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000049
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000050
其中,W为***带宽,
Figure PCTCN2015085125-appb-000051
Figure PCTCN2015085125-appb-000052
分别表示分配给用户终端j接入的资源比例和回程的资源比例。
结合上述第二方面及各个实现方式,可选的另一种方式为,每个协作集的传输模式为波束赋形传输模式,联合传输模式或双连接传输模式。
第三方面,提供一种分配接入回程资源的方法,包括:
获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合 方式下的网络接入回程联合效用;
从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式;
通知所述多个协作集中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
结合上述第三方面,可选的另一种方式为,所述每种组合方式下的网络的接入回程联合效用为以下两者之和:
所述网络中的协作集用户终端在所述组合方式的传输模式下可获得的数据速率之和,以及所述网络中的非协作集用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
结合上述第三方面及各个实现方式,可选的另一种方式为,所述网络的接入回程联合效用采用以下方式计算:
Figure PCTCN2015085125-appb-000053
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000054
Figure PCTCN2015085125-appb-000055
分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000056
Figure PCTCN2015085125-appb-000057
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000058
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000059
Figure PCTCN2015085125-appb-000060
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000061
Figure PCTCN2015085125-appb-000062
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户
Figure PCTCN2015085125-appb-000063
可获得数据速率为:
Figure PCTCN2015085125-appb-000064
Figure PCTCN2015085125-appb-000065
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000066
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000067
Figure PCTCN2015085125-appb-000068
分别表示分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000069
Figure PCTCN2015085125-appb-000070
分别表示用户终端j的接入信噪比和回程信噪比。
结合上述第三方面及各个实现方式,可选的另一种方式为,针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用包括:
根据每种组合方式不同的接入及回程资源分配比例,分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例。
结合上述第三方面及各个实现方式,可选的另一种方式为,从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式包括:
从多种组合方式对应的多个最大可获得数据速率之和中,选择最大的数据速率之和对应的组合方式及对应的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
结合上述第三方面及各个实现方式,可选的另一种方式为,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000071
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000072
其中,W为***带宽,
Figure PCTCN2015085125-appb-000073
Figure PCTCN2015085125-appb-000074
分别表示分配给用户终端j接入资源比例和回程资源的比例;Ui为无线接入点i的用户的集合;或
包括:
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000075
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000076
其中,W为***带宽,
Figure PCTCN2015085125-appb-000077
Figure PCTCN2015085125-appb-000078
分别表示分配给用户终端j接入资源比例和回程资源的比例。
结合上述第三方面及各个实现方式,可选的另一种方式为,所述每种组合方式下的网络接入回程联合效用为该种组合方式下最优的网络接入回程联合效用。
第四方面,提供一种分配接入回程资源的装置,包括:
获取模块:用于获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
计算模块:用于针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用;从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式;
通知模块:用于通知所述网络中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
结合上述第四方面,可选的另一种方式为,述每种组合方式下的网络的接入回程联合效用为以下两者之和:
所述网络中的协作集用户终端在所述组合方式的传输模式下可获得的数据速率之和,以及所述网络中的非协作集用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
结合上述第四方面及各个实现方式,可选的另一种方式为,所述网络 的接入回程联合效用采用以下方式计算:
Figure PCTCN2015085125-appb-000079
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000081
分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000082
Figure PCTCN2015085125-appb-000083
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000084
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000085
Figure PCTCN2015085125-appb-000086
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000087
Figure PCTCN2015085125-appb-000088
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户
Figure PCTCN2015085125-appb-000089
可获得数据速率为:
Figure PCTCN2015085125-appb-000090
Figure PCTCN2015085125-appb-000091
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000092
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000093
Figure PCTCN2015085125-appb-000094
分别表示分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000095
Figure PCTCN2015085125-appb-000096
分别表示用户终端j的接入信噪比和回程信噪比。
结合上述第四方面及各个实现方式,可选的另一种方式为,针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用包括:
根据每种组合方式不同的接入及回程资源分配比例,分别计算所述网 络中所有用户终端可获得的数据速率,选择计算的所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例。
结合上述第四方面及各个实现方式,可选的另一种方式为,从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式包括:
从多种组合方式对应的多个最大可获得数据速率之和中,选择最大的数据速率之和对应的组合方式及对应的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
结合上述第四方面及各个实现方式,可选的另一种方式为,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000097
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000098
其中,W为***带宽,
Figure PCTCN2015085125-appb-000099
Figure PCTCN2015085125-appb-000100
分别表示分配给用户终端j接入资源比例和回程资源的比例;Ui为无线接入点i的用户的集合;或
包括:
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000101
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000102
其中,W为***带宽,
Figure PCTCN2015085125-appb-000103
Figure PCTCN2015085125-appb-000104
分别表示分配给用户终端j接入资源比例和回程资源的比例。
结合上述第四方面及各个实现方式,可选的另一种方式为,所述每种组合方式下的网络接入回程联合效用为该种组合方式下最优的网络接入回程联合效用。
本发明提供选择分配接入回程资源的方法及装置,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式,保证了接入及回程资源的灵活合理划分,提高了***资源利用率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的选择传输模式的方法流程图;
图2为本发明实施例提供的分配接入回程资源的方法流程图;
图3为本发明另一实施例提供的分配接入回程资源的方法示意图;
图4为本发明实施例提供的选择传输模式的装置模块结构示意图;
图5为本发明实施例提供的选择传输模式的装置选择模块结构示意图;
图6为本发明实施例提供的分配接入回程资源的装置结构示意图;
图7为本发明另一实施例提供的分配接入回程资源的装置结构示意图;
图8为本发明另一实施例提供的网络设备结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的 范围。
为使本发明技术方案的优点更加清楚,下面结合附图和实施例对本发明作详细说明。
无线通信网络通常包括:无线接入点,无线接入点控制器及用户终端;或仅包括无线接入点及用户终端,无线接入点可以为基站,接入点AP(Access Point)或传输点等,无线通信网络可以为蜂窝移动通信网络,如WCDMA(Wideband Code Division Multiple Access),LTE(Long Term Evolution)等,也可以无线局域网WLAN或未来的网络等;以下实施例以蜂窝移动通信网络为例进行说明,无线接入点为基站,无线接入点控制器为基站控制器。
以下一个具体实施例中,以一个确定的协作集为例,对本发明选择传输模式的方法进行详细的说明,该协作集可以包括多个无线接入点,服务一个或多个用户终端,以蜂窝移动通信网络为例,该方法可以由基站执行,也可以由基站控制器执行,或者由一个独立的控制器执行,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
参考图1,该选择传输模式的方法主要包括:
101,获取用户终端的协作集及所述协作集中多个无线接入点的多种组合方式;
获取用户终端的协作集即,确定哪些无线接入点可以作为协作集的无线接入点;以下面的2个例子来说明:
1.1,用户终端测量服务小区及邻区的导频信号强度,如:RSRP(Reference Signal Receiving Power参考信号接收功率),将导频信号强度大于预设门限的无线接入点放入协作集;
1.2,用户终端测量其受到的邻区的干扰,如SINR(Signal to Interference plus Noise Ratio,信号与干扰和噪声比),也可以使用其它参数,将干扰强度大于预设门限的无线接入点放入协作集;
上述两种方法中,可以由用户终端决定哪些无线接入点,如基站,可以放入协作集,然后将协作集的信息上报基站或控制器;另外,用户终端 可以将测量到的导频信号强度或干扰强度上报基站或控制器,由基站或控制器来决定哪些基站可以放入协作集,该控制器可以为一个独立装置:如基站控制器;也可以为一个功能实体集成在基站或其它网元,如MME中。
另外,上述两个方法可以只用一个,也可以两个方法同时使用,即:将导频信号强度和/或干扰强度大于预设门限的无线接入点均放入协作集。
进一步的,如果网络中有多个用户终端,则分别确定其协作集,并将具有相同协作集的用户终端确定为该协作集的用户终端,例如用户终端1的协作集为:(基站1,基站2,基站3),用户终端2的协作集为:(基站2,基站3,基站4),用户终端3的协作集为:(基站3,基站2,基站1),则用户终端1,3为该协作集(基站1,基站2,基站3)的用户终端。
各个基站直接可以交换其用户终端的协作集信息,从而可以确定具有相同协作集的用户终端,或者各个基站将其用户终端的协作集信息上报其中一个基站或上述的控制器,由基站或所述控制器确定具有相同协作集的用户终端。
上述步骤中,最终确定一个协作集及该协作集的用户终端,并针对该协作集执行下面的步骤,如果有多个协作集,针对每个协作集执行下面的步骤。
另外,获取所述协作集中多个无线接入点的多种组合方式;
对于协作集内的用户终端,需要确定哪些基站参与数据传输,以及采用哪种传输模式最好,因此,首先确定协作集中多个无线接入点的各种组合方式;
比如协作集有3个基站,分别为基站1、2和3,则该协作集的多个基站的组合方式包括{基站1},{基站2},{基站3},{基站1,基站2},{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3},共7种组合方式。对于只有一个基站的组合{基站1},{基站2},{基站3},对应的是非协作传输模式,即每个基站单独服务其用户终端,不需要其他基站协作;其它两个或两个以上基站的组合,则对应协作传输模式或非协作传输模式。
上面的实施例中,也可以根据需要挑出部分的组合方式,例如:将单 基站的组合排除,即排除组合{基站1},{基站2},{基站3},则只保留组合{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3},即两个及两个以上的基站组合方式;也可以根据需要选择出部分组合方式,本发明不做限定。
该步骤也可以由基站或控制器来完成。
102,从所述各种组合方式中,挑选出接入回程联合效用最优的传输模式所针对的组合方式,具体流程如下:
2.1,分别获取各个无线接入点的接入能力及回程能力;
接入能力包括可用接入资源,可用接入容量,接入时延等至少一个参数,回程能力包括可用回程资源,可用回程容量,回程时延等至少一个参数;该获取的步骤可以由基站或控制器完成,如果由基站完成,则获取方式可以通过基站之间的接口,如X2接口,来获取组合中其它基站的接入能力及回程能力;也可以由控制器分别获取各个基站的接入能力及回程能力;该控制器可以为基站控制器,如果控制器是一个功能实体,例如,位于核心网设备,如MME,则获取方式可以通过基站与核心网之间的接口,如S1接口来进行。
以下实施例以接入及回程能力分别为可用接入及回程资源为例进行说明,如:各个无线接入点可用的接入子信道集合和回程子信道集合作为接入能力及回程能力。
2.2,针对每种组合方式,根据所述组合方式中无线接入点的接入能力及回程能力,分别计算所述每种组合方式采用不同传输模式的接入回程联合效用,得到多种组合方式采用不同传输模式的接入回程联合效用;
例如:协作集的基站有4种组合方式,针对每种组合方式,如果有3种传输模式,则计算分别计算3种传输模式下的接入回程联合效用;则一种组合方式可以得到三个接入回程联合效用,四种组合方式一共可以计算得到12个接入回程联合效用。
2.3,从所述得到的所有接入回程联合效用中,挑选出最优的接入回程联合效用,确定所述最优的接入回程联合效用对应的传输模式及组合方式。
例如:从上述得到的12个接入回程联合效用中,可以确定一个最优的接入回程联合效用,则该最优的接入回程联合效用所采用的传输模式及其对应的组合方式也就确定了。
上述步骤2.2-2.3挑选最优的接入回程联合效用对应的传输模式及组合方式,还可以采用另一种方式,即,针对每种组合方式,如果有3种传输模式,则计算分别计算3种传输模式下的接入回程联合效用,确定该种组合方式下的最优的接入回程联合效用对应的传输模式;如果有4种组合方式,则可以得到4个最优的接入回程联合效用对应的传输模式,然后从这4个最优的接入回程联合效用中,挑选出一个最优的接入回程联合效用,此时,其对应的传输模式及组合方式也就确定了,该方法可以参考下面的步骤3.1-3.3:
3.1,同步骤2.1,不再详述。
3.2,针对每种组合方式,根据所述组合方式中无线接入点的接入能力及回程能力,分别计算该组合方式采用不同传输模式的接入回程联合效用,确定每种组合方式最优接入回程联合效用对应的传输模式;
3.3,从多种组合方式的多个最优接入回程联合效用对应的传输模式中,挑选出接入回程联合效用最优的传输模式所对应的组合方式;
上述实施例提到的接入回程的联合效用为接入链路和回程链路端到端(即从终端到网关)性能综合指标,可以选取不同的性能指标,例如用户终端的可获得数据传输速率或用户终端的业务时延等。以下实施例以用户终端的可获得数据传输速率为例进行说明,接入回程的联合效用U可以采用下式计算:
Figure PCTCN2015085125-appb-000105
其中:
S为协作集的组合的集合;C为协作集的一个组合;KS为协作集中的用户终端的集合;Rk,C为在组合C下,在某种协作传输模式下的用户终端k的端到端(接入及回程)的数据速率,其中:
Figure PCTCN2015085125-appb-000106
其中:
Figure PCTCN2015085125-appb-000107
表示用户终端k在某种传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000108
表示用户终端k在某种传输模式下可获得的回程数据速率;
Nac和Nbh分别表示组合C的可用的接入子信道集合和回程子信道集合;
Figure PCTCN2015085125-appb-000109
Figure PCTCN2015085125-appb-000110
分别表示用户终端k在接入子信道n和回程子信道n上的信噪比;
Figure PCTCN2015085125-appb-000111
表示接入子信道n分配给用户终端k,
Figure PCTCN2015085125-appb-000112
表示回程子信道n分配给用户终端k;反之
Figure PCTCN2015085125-appb-000113
表示接入子信道n不分配给用户终端k,
Figure PCTCN2015085125-appb-000114
表示回程子信道n不分配给用户终端k。
上述的计算过程中,可以通过不同的优化算法,使得在该传输模式下U值最大,此时可以确定所述各个用户终端的接入及回程资源的分配,即接入子信道和回程子信道的分配。
Rk,C的计算分为协作传输模式及非协作传输模式,在上面提到的关于基站组合的实施例中,{基站1},{基站2},{基站3}使用非协作传输模式的计算方式,因为只有一个基站;对于2个及以上基站组合的情况:{基站1,基站2},{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3}使用协作传输模式及非协作传输模式的计算方式,当然,也可以根据需要只使用协作传输模式的计算方式,以下分别来进行进一步的说明:
在非协作传输模式下,用户终端k的端到端的数据速率Rk,C为:
Figure PCTCN2015085125-appb-000115
其中
Figure PCTCN2015085125-appb-000116
表示用户终端k在非协作传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000117
表示用户终端k在非协作传输模式下可获得的回程数据速率;
Nac和Nbh分别表示组合C的可用的接入子信道集合和回程子信道集合,即接入能力和回程能力;
Figure PCTCN2015085125-appb-000118
Figure PCTCN2015085125-appb-000119
分别表示用户终端k在接入子信道n和回程子信道n上的信噪比;
Figure PCTCN2015085125-appb-000120
表示接入子信道n分配给用户终端k,
Figure PCTCN2015085125-appb-000121
表示回程子信道n分配给用户终端k,反之
Figure PCTCN2015085125-appb-000122
表示接入子信道n不分配给用户终端k,
Figure PCTCN2015085125-appb-000123
表示回程子信道n不分配给用户终端k。
同理,在协作传输模式下,例如:协作波束赋形传输模式和联合传输模式下的用户终端k的端到端数据速率分别为:
Figure PCTCN2015085125-appb-000124
Figure PCTCN2015085125-appb-000125
针对协作波束赋形传输模式:
Figure PCTCN2015085125-appb-000126
其中
Figure PCTCN2015085125-appb-000127
表示用户终端k在协作波束赋形传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000128
表示用户终端k在协作波束赋形传输模式下可获得的回程数据速率;
Nac和Nbh分别表示组合C的可用的接入和回程资源的子信道集合,即接入能力和回程能力;
Figure PCTCN2015085125-appb-000129
表示接入子信道n分配给用户终端k,
Figure PCTCN2015085125-appb-000130
表示回程子信道n分配给用户终端k,反之
Figure PCTCN2015085125-appb-000131
表示接入子信道n不分配给用户终端k,
Figure PCTCN2015085125-appb-000132
表示回程子信道n不分配给用户终端k;
Figure PCTCN2015085125-appb-000133
Figure PCTCN2015085125-appb-000134
分别表示用户终端k在接入和回程子信道n上的信噪比。
针对联合传输模式:
Figure PCTCN2015085125-appb-000135
其中
Figure PCTCN2015085125-appb-000136
表示用户终端k在联合传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000137
表示用户终端k在联合传输模式下可获得的回程数据速率;
Nac和Nbh分别表示组合C的可用的接入和回程资源的子信道集合,即接入能力和回程能力;
Figure PCTCN2015085125-appb-000138
表示接入子信道n分配给用户终端k,
Figure PCTCN2015085125-appb-000139
表示回程子信道n分配给用户终端k,反之
Figure PCTCN2015085125-appb-000140
表示接入子信道n不分配给用户终端k,
Figure PCTCN2015085125-appb-000141
表示回程子信道n不分配给用户终端k;
Figure PCTCN2015085125-appb-000142
Figure PCTCN2015085125-appb-000143
分别表示用户终端k在接入和回程子信道n上的信噪比。
同理,还可以采用双连接传输模式,对参与双连接传输的协作集的基站,分别采用上面所述的非协作传输模式计算。
例如,对于有3个基站的协作集,组合包括{基站1},{基站2},{基站3},{基站1,基站2},{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3}。对于其中一个组合{基站1,基站3},分别计算协作集的所有用户终端在该组合下采用非协作模式下的可获得数据速率的和,采用协作波束赋形模式下的可获得数据速率的和,以及采用联合传输模式下的可获得数据速率的和,以及采用双连接模式下的可获得数据速率的和。如果联合传输模式下的可获得数据速率的和最大,组合{基站1,基站3}的最优协作传输模式为联合传输。其它组合{基站1,基站2},{基站2,基站3}和{基站1,基站2,基站3}则根据上述方式分别计算。对于组合{基站1},{基站2}及{基站3},由于每个组合只有一个基站,则只计算采用非协作模式下的可获得数据速率的和,在上面的实施例中,协作集中的用户终端的可获得吞吐量之和最大的传输模式为该组合的最优协作传输模式。
通过上述的计算方法,每个组合都计算得到一个最佳的接入回程联合效用U值,在所有组合的多个最佳的U值中,选取接入回程效用U最佳的组合,则表示采用该组合及对应的传输模式,用户终端可获得的速率之和 最大;该组合的基站即为传输点,其对应的传输模式为这些传输点服务该协作集的用户终端的传输模式。例如:上面的例子中,共有7种组合方式,则可以计算得到7个接入回程的最优联合效用U,然后在7个中选择最大的U的所对应的组合方式所采取的传输方式,对用户终端进行数据传输。
例如:对于有3个基站的协作集,在所有组合{基站1},{基站2},{基站3},{基站1,基站2},{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3}中,如果组合{基站1,基站2}的接入回程效用U值最大,并且其对应的传输方式为联合传输模式,则基站1和基站2为传输点,基站1和基站2采用联合传输方式对用户终端进行数据传输,基站3不参与数据传输。
如果组合{基站1,基站3}的U值最大,并且其对应的传输方式为波束赋形传输模式,则基站1和基站3为传输点,基站1和基站3采用波束赋形传输模式对用户终端进行数据传输,基站2不参与数据传输。
如果组合{基站1}的U值最大,并且其对应的传输方式为非协作传输模式,即单点传输,则基站1直接对用户终端进行数据传输。
上面的实施例中,如果只保留了两个及以上的基站组合,则不存在单点传输的情况,只有联合传输模式及波束赋形传输模式,或双连接传输的情况。
另外,在另一个实施方式中,通过上述的接入回程联合效用U值计算方法,每个组合的每种传输方式都可以得到一个接入回程联合效用U值,例如,对于有3个基站的协作集,组合包括{基站1},{基站2},{基站3},{基站1,基站2},{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3},对于只有一个基站的组合{基站1},{基站2},{基站3},分别计算协作集的所有用户终端采用非协作模式下的可获得数据速率的和,得到三个U值;对于2个以上基站的协作集{基站1,基站2},{基站1,基站3},{基站2,基站3}和{基站1,基站2,基站3},每个组合分别计算协作集的所有用户终端波束赋形模式下,联合传输模式下及双连接模式下的可获得数据速率的和,共可以得到12个U值,则所有组合共得到15个U值,然后从15个U值中取最大的U值,则该最大的U值对于的传输模式及组合方式 即为最终要采用的传输模式及组合方式。
103,通知所述组合方式的无线接入点采用所述传输模式对所述协作集的用户终端进行数据传输;
即通知所述组合的基站其所采用的传输模式,以使得所述基站(即:传输点)按照所述的传输模式为所述协作集的用户终端传输数据。
例如:如果组合{基站1,基站3}的U值最大,并且其对应的传输方式为波束赋形传输模式,则通知基站1和基站3其传输模式为波束赋形传输模式,则基站1和基站3采用波束赋形传输模式对用户终端进行数据传输。
步骤102中,确定最优接入回程联合效用U时,对应的接入及回程资源的分配就确定了,即:确定了组合中各个基站可用的接入子信道和回程子信道的分配;因此,步骤103中,可以将组合中各个基站可用的接入子信道和回程子信道的分配结果通知相应的基站。
和上述步骤类似,该步骤可以由基站或控制器完成。
基于上述的方法实施例,本发明还公开了一种选择传输模式的装置,用于执行上述方法,参考图4,该装置包括:
获取模块401,用于获取用户终端的协作集以及所述协作集中多个无线接入点的多种组合方式;
选择模块402,用于从所述多种组合方式中,挑选出接入回程联合效用最优的传输模式所针对的组合方式;
通知模块403,用于通知所述组合方式的无线接入点采用所述接入回程联合效用最优的传输模式对所述协作集的用户终端进行数据传输。
其中,参考图5,选择模块402包括:
获取子模块501:用于分别获取各个无线接入点的接入能力及回程能力;
计算子模块502:用于针对每种组合方式,根据所述组合方式中无线接入点的接入能力及回程能力,分别计算所述每种组合方式采用各种传输模式的接入回程联合效用,得到多种组合方式采用不同传输模式的接入回程联合效用;
选择子模块503:用于从所述得到的所有接入回程联合效用中,挑选 出最优的接入回程联合效用,确定所述最优的接入回程联合效用对应的组合方式及传输模式。
或者,选择模块402包括:
获取子模块501:分别获取各个无线接入点的接入能力及回程能力;
计算子模块502:针对每种组合方式,根据所述组合方式中无线接入点的接入能力及回程能力,分别计算所述每种组合方式采用各种传输模式的接入回程联合效用,确定每种组合方式最优接入回程联合效用对应的传输模式;
选择子模块503:从多种组合方式的多个最优接入回程联合效用对应的传输模式中,挑选出接入回程联合效用最优的传输模式所针对的组合方式。
其中获取子模块501的功能也可以由获取模块401来实现。
针对每种组合方式,根据所述组合方式中无线接入点的接入能力及回程能力,分别计算所述每种组合方式采用各种传输模式的接入回程联合效用,包括:
针对每种组合方式,根据所述组合方式中的无线接入点的可用的接入子信道集合和回程子信道集合分别计算所述协作集的所有用户终端采用各种传输模式时可获得的数据速率之和。
根据所述组合方式中的无线接入点的可用的接入子信道集合和回程子信道集合分别计算所述协作集的所有用户终端采用各种传输模式时可获得的数据速率之和包括:
Figure PCTCN2015085125-appb-000144
其中:
S为所述协作集无线接入点的组合的集合;C为协作集无线接入点的一个组合;KS为协作集中的用户终端的集合;Rk,C为在组合C下,在某种传输模式下的用户终端k的数据速率;其中:
Figure PCTCN2015085125-appb-000145
其中:
Figure PCTCN2015085125-appb-000146
表示用户终端k在某种传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000147
表示用户终端k在某种传输模式下可获得的回程数据速率;
Nac和Nbh分别表示组合C的可用的接入子信道集合和回程子信道集合;
Figure PCTCN2015085125-appb-000148
Figure PCTCN2015085125-appb-000149
分别表示用户终端k在接入子信道n和回程子信道n上的信噪比;
Figure PCTCN2015085125-appb-000150
表示接入子信道n分配给用户终端k,
Figure PCTCN2015085125-appb-000151
表示回程子信道n分配给用户终端k。
所述通知模块403还用于:
确定所述接入回程联合效用最优的组合方式对应的接入资源的子信道分配及回程资源的子信道分配,并将所述接入及回程资源的子信道分配通知所述组合方式的各无线接入点。
所述传输模式包括以下至少一种:非协作传输模式,波束赋形传输模式,联合传输模式和双连接传输模式。
上述的装置实施例与方法实施例对应,其相应的功能模块分别执行方法实施例的相应步骤,有些步骤没有一一列出,可以参考方法实施例;该装置可以是无线接入点,如基站,也可以是基站控制器或其它网络设备,或者是一个独立的控制器,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
本发明还公开了一种选择传输模式的装置,用于执行上述方法,参考图8,包括:
接收机801,用于获取用户终端的协作集以及所述协作集中多个无线接入点的多种组合方式;
处理器802,用于从所述多种组合方式中,挑选出接入回程联合效用最优的传输模式所针对的组合方式;
发射机803,用于通知所述组合方式的无线接入点采用所述接入回程联合效用最优的传输模式对所述协作集的用户终端进行数据传输。
该装置与上面的装置实施例类似,接收机执行获取模块的相应步骤,处理器执行选择模块的相应步骤,发射机执行通知模块的相应步骤;其它相应的步骤的执行也分别由上面三个单元完成,不在一一列出,可以参考上述的方法实施例及装置实施例。该装置可以是无线接入点,如基站,也可以是基站控制器,或者是一个独立的控制器,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
上述实施例介绍的选择传输模式的方法及装置,在用户终端的协作集确定的情况下,通过对各个无线接入点的多种组合方式分别计算不同传输模式最优的接入回程联合效用,然后挑选出最优的接入回程联合效用针对的传输模式及组合方式,然后通知该组合方式的无线接入点采用所述的传输模式对所述协作集的用户终端进行数据传输,提高了数据传输效率;进一步的,保证了接入及回程资源的合理分配,提高***资源利用率。
上述实施例公开的方法及装置是在一个协作集的情况下,如何针对其中多个无线接入点选择最优组合方式及传输模式。本发明另一实施例还提供了一种分配接入回程资源的方法,假设在网络中有多个协作集,并且每个协作集的传输模式确定的情况下,如何确定网络中最优的接入及回程资源的划分方式,该方法主要解决的问题是合理的划分接入及回程资源,提高***资源利用率。
和上面的实施例类似,该方法可以由无线接入点执行,如基站,也可以由基站控制器执行,或者由一个独立的控制器执行,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上;参考图2,该方法包括:
201,获取网络中的用户终端的多个协作集及每个协作集的传输模式,每个协作集包括至少2个无线接入点;
这里的网络可以为整个网络,或者网络中一个区域,例如:多个基站覆盖区域,一个或多个基站控制器管理下的基站的覆盖区域;或者多个协 作集覆盖的区域。
该步骤同样确定哪些无线接入点可以作为协作集的无线接入点,其实现方式同步骤101,不再赘述。
网络一个区域中通常包括多个用户终端,各个用户终端可以分别确认自己的协作集,如果某些用户终端的协作集相同,则这些用户终端作为同一个协作集的用户终端;另外,可能网络中还存在一些用户终端,无法找到协作集,只有一个基站为其服务。
对于协作集的用户终端来说,至少有2个基站为其服务,其对应的传输模式为协作传输模式,常见的协作传输模式有波束赋形传输模式,联合传输模式和双连接传输模式等,每个协作集可以有一个确定的协作传输模式;对于非协作集的用户终端来说,只有1个基站为其服务,其对应的传输模式为非协作传输模式。本实施例中,假设多个协作集已经确定,并且每个协作集的传输模式也已经确定。
202,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配比例;
这里提到的接入回程联合效用U的定义,与上面的实施例类似;本实施例中,在一个具体实施例中,所述网络中的接入回程联合效用为以下两者之和:网络中协作集的用户终端在所述传输模式下可获得的数据速率之和,以及所述网络中的非协作集的用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用;
在一个具体实施例中,可以用以下方式进行计算:
Figure PCTCN2015085125-appb-000152
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000153
Figure PCTCN2015085125-appb-000154
分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000155
Figure PCTCN2015085125-appb-000156
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000157
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000158
Figure PCTCN2015085125-appb-000159
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000160
Figure PCTCN2015085125-appb-000161
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户
Figure PCTCN2015085125-appb-000162
可获得数据速率为:
Figure PCTCN2015085125-appb-000163
Figure PCTCN2015085125-appb-000164
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000165
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000166
Figure PCTCN2015085125-appb-000167
分别表示分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000168
Figure PCTCN2015085125-appb-000169
分别表示用户终端j的接入信噪比和回程信噪比。
上述的确定U值的过程中,可以通过不同的优化算法,使得在某种用户终端接入及回程资源分配比例情况下U值最大,此时可以确定所述各个用户终端的接入及回程资源的分配比例。
在一个具体实施方式中,根据所述多个协作集及各个协作集对应的传输模式,选择最优接入回程联合效用所对应的的接入及回程资源分配方式包括:
针对不同的用户终端接入及回程资源分配比例,根据所述多个协作集及各个协作集对应的传输模式,分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
其中,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,具体由两种方法来计算,一种方法为针 对每个无线接入点i分别进行计算,计算方式为:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000170
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000171
其中,W为***带宽,
Figure PCTCN2015085125-appb-000172
Figure PCTCN2015085125-appb-000173
分别表示分配给用户终端j接入的资源比例和回程的资源比例;Ui为无线接入点i的用户的集合。
另一种方法为每个无线接入点分配相同的接入及回程资源,计算方式为:
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000174
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000175
其中,W为***带宽,
Figure PCTCN2015085125-appb-000176
Figure PCTCN2015085125-appb-000177
分别表示分配给用户终端j接入的资源比例和回程的资源比例。
203,通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输;
这里网络中的无线接入点可以是上述多个协作集的无线接入点,也可以包括整个网络中的无线接入点,包括所述多个协作集的无线接入点及网络中非协作集的无线接入点。
针对步骤202中的两种计算方式,可以分别为每个无线接入点指示各自的接入资源和回程资源;或者指示每个无线接入点统一的接入资源和回程资源。
上述方法中每个协作集的传输模式可以为波束赋形传输模式,联合传输模式或双连接传输模式。
基于上述的方法实施例,本发明还公开了一种分配接入回程资源的装 置,用于执行上述方法,参考图6,包括:
获取模块601,用于获取网络中的多个协作集及各个协作集对应的传输模式,每个协作集包括至少2个无线接入点;
确定模块602,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;
通知模块603,用于通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
所述网络的接入回程联合效用为以下两者之和:
所述网络中的协作集的用户终端在所述传输模式下可获得的数据速率之和,以及所述网络中的非协作集的用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
所述网络的接入回程联合效用U采用以下方式计算:
Figure PCTCN2015085125-appb-000178
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000179
Figure PCTCN2015085125-appb-000180
分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000181
Figure PCTCN2015085125-appb-000182
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000183
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000184
Figure PCTCN2015085125-appb-000185
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000186
Figure PCTCN2015085125-appb-000187
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户终端
Figure PCTCN2015085125-appb-000188
可获得数据速率为:
Figure PCTCN2015085125-appb-000189
Figure PCTCN2015085125-appb-000190
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000191
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000192
Figure PCTCN2015085125-appb-000193
分别表示分配给用户终端j的接入资源比例和回程资源比例;
Figure PCTCN2015085125-appb-000194
Figure PCTCN2015085125-appb-000195
分别表示用户终端j的接入信噪比和回程信噪比。
所述确定模块602具体用于:
根据不同的接入及回程资源分配比例以及所述多个协作集及各个协作集对应的传输模式,分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000196
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000197
其中,W为***带宽,
Figure PCTCN2015085125-appb-000198
Figure PCTCN2015085125-appb-000199
分别表示分配给用户终端j接入的资源比例和回程的资源比例;Ui为无线接入点i的用户的集合;或
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000200
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000201
其中,W为***带宽,
Figure PCTCN2015085125-appb-000202
Figure PCTCN2015085125-appb-000203
分别表示分配给用户终端j接入的资源比例和回程的资源比例。
每个协作集的传输模式为波束赋形传输模式,联合传输模式或双连接传输模式。
上述的装置实施例与方法实施例对应,其相应的模块分别执行放入法实施例的相应步骤,有些步骤没有一一列出,可以参考方法实施例;该装置可以是无线接入点,如基站,也可以是基站控制器,或者是一个独立的控制器,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
本发明还公开了一种分配接入回程资源的装置,用于执行上述方法,参考图8,包括:
接收机801,用于获取网络中的多个协作集及各个协作集对应的传输模式,每个协作集包括至少2个无线接入点;
处理器802,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;
发射机803,用于通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
该装置与上面的装置实施例类似,接收机执行获取模块的相应步骤,处理器执行确定模块的相应步骤,发射机执行通知模块的相应步骤;其它相应的步骤的执行也分别由上面三个单元完成,不在一一列出,可以参考上述的方法实施例及装置实施例。该装置可以是无线接入点,如基站,也可以是基站控制器或其它网络设备,或者是一个独立的控制器,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
上述实施例公开分配接入回程资源的方法及装置,在网络中多个协作集及传输模式已经确定的情况下,确定网络的接入回程联合效用最优时的接入及回程资源分配方式,并通知网络中的无线接入点采用该分配方式对用户终端进行数据传输,保证了接入回程及资源划分的合理性及灵活性,提升了***资源利用率;进一步的,提高网络的数据传输效率及网络容量。
上述实施例的前提条件是网络中多个协作集已经确定,并且各自对应的传输模式也已经确定,在另一个实施例中,如果网络中多个协作集已经确定,但对应的传输模式有不同的组合方式,则可以针对不同的组合方式,分别计算每种组合方式下网络的接入回程联合效用,然后选出其中一个最优接入回程联合效用,然后选择其对应的传输模式的组合方式及对应的接入及回程资源分配方式。
该实施例的具体算法及相应的执行网元都于上面的实施例类似,参考图3,该方法包括:
301、获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
该步骤同上述实施例类似,不再详述。
302、针对所述多个协作集的多种传输模式的组合方式,确定每种组合方式的网络的接入回程联合效用,可选的,每种组合方式下的网络接入回程联合效用为该种组合方式下最优的网络接入回程联合效用;
具体包括:根据每种组合方式不同的接入及回程资源分配比例,分别计算所述网络中所有用户终端可获得的数据速率,选择计算的所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例。
假设有3个协作集,每个协作集都可以从以下协作传输模式中任意选择一种:波束赋形传输模式,联合传输模式和双连接传输模式;则三个协作集可以有多种协作传输模式的组合方式,三个协作集可以选相同的传输模式,或两个选相同的,也可以都不相同。本实施例中需要遍历所有的组合方式,然后针对每个组合方式分别来计算接入回程联合效用,然后挑出一个最优的接入回程联合效用对应的组合方式。
假设其中的一种方式为:
协作集 协作集用户 协作传输模式
{基站1,基站2} 用户1,用户2,用户3 波束赋形
{基站1,基站3} 用户4,用户5 波束赋形
{基站2,基站3} 用户6 双连接
则针对这种传输模式的组合方式,采用上面的实施例中步骤202提到的计算方式,可以得到接入回程联合效用U;然后针对另一个组合方式如:
协作集 协作集用户 协作传输模式
{基站1,基站2} 用户1,用户2,用户3 波束赋形
{基站1,基站3} 用户4,用户5 联合传输
{基站2,基站3} 用户6 双连接
计算得到针对该组合方式U值;然后再换一个组合方式,分别来计算针对不同组合方式的U值,然后比较这些U值的大小,U值最大,表示采用该种传输模式及组合方式下所有用户终端可获得的数据传输速率之和最大。
303、从计算得到的多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式;
具体的,步骤302中,每种传输模式的组合方式都计算得到一个最大可获得的数据速率之和U,然后,从多种组合方式对应的多个最大可获得数据速率之和U中,选择一个最大的数据速率之和对应的组合方式及对应的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
其中根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源的方法与步骤202中提到的两种计算方式相同,在此不再赘述。
步骤302中,如果以下传输方式的组合方式下计算得到的U值最大,则表示此时所有用户终端的传输速率之和最大。
协作集 协作集用户 协作传输模式
{基站1,基站2} 用户1,用户2,用户3 协作波束赋形
{基站1,基站3} 用户4,用户5 联合传输
{基站2,基站3} 用户6 双连接
则上述根据表格,分别为上面的三个协作集选择对应的传输模式。
304、通知所述多个协作集中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
进一步的,也可以将所述资源分配方式通知所述网络的所有无线接入点,包括所述多个协作集无线接入点及非协作集无线无线接入点。
在一个例子中,根据上面的表格,基站1,2采用协作波束赋形对用户终端1,2,3进行数据传输,同样,基站1,2采用联合传输对用户终端4,5进行数据传输,基站2,3采用双连接对用户终端6进行数据传输。
基于上述的方法实施例,本发明还公开了一种分配接入回程资源的装置,用于执行上述实施例的方法,参考图7,包括:
获取模块701:用于获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
计算模块702:用于针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用;从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式;
通知模块703:用于通知所述网络中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
所述每种组合方式下的网络的接入回程联合效用为以下两者之和:
所述网络中的协作集用户终端在所述组合方式的传输模式下可获得的数据速率之和,以及所述网络中的非协作集用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
所述网络的接入回程联合效用采用以下方式计算:
Figure PCTCN2015085125-appb-000204
S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
Rj为用户终端j的可获得的数据速率,
Figure PCTCN2015085125-appb-000205
Figure PCTCN2015085125-appb-000206
分别为协作集 用户终端的总数据速率和非协作集用户终端的总数据速率;
在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
Figure PCTCN2015085125-appb-000207
Figure PCTCN2015085125-appb-000208
表示用户终端j在所述传输模式下可获得的接入数据速率;
Figure PCTCN2015085125-appb-000209
表示用户终端j在所述传输模式下可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000210
Figure PCTCN2015085125-appb-000211
分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000212
Figure PCTCN2015085125-appb-000213
分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
非协作集的用户
Figure PCTCN2015085125-appb-000214
可获得数据速率为:
Figure PCTCN2015085125-appb-000215
Figure PCTCN2015085125-appb-000216
表示用户终端j可获得的接入数据速率;
Figure PCTCN2015085125-appb-000217
表示用户终端j可获得的回程数据速率;
W为***带宽,
Figure PCTCN2015085125-appb-000218
Figure PCTCN2015085125-appb-000219
分别表示分配给用户终端j接入的资源比例和回程的资源比例;
Figure PCTCN2015085125-appb-000220
Figure PCTCN2015085125-appb-000221
分别表示用户终端j的接入信噪比和回程信噪比。
分别计算每种组合方式下的网络接入回程联合效用包括:
根据每种组合方式不同的接入及回程资源分配比例,分别计算所述网络中所有用户终端可获得的数据速率,选择计算的所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例。
从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式包括:
从多种组合方式对应的多个最大可获得数据速率之和中,选择最大的数据速率之和对应的组合方式及对应的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
无线接入点i的接入资源:
Figure PCTCN2015085125-appb-000222
无线接入点i的回程资源:
Figure PCTCN2015085125-appb-000223
其中,W为***带宽,
Figure PCTCN2015085125-appb-000224
Figure PCTCN2015085125-appb-000225
分别表示分配给用户终端j接入资源比例和回程资源的比例;Ui为无线接入点i的用户的集合;或
包括:
每个无线接入点接入资源:
Figure PCTCN2015085125-appb-000226
每个无线接入点回程资源:
Figure PCTCN2015085125-appb-000227
其中,W为***带宽,
Figure PCTCN2015085125-appb-000228
Figure PCTCN2015085125-appb-000229
分别表示分配给用户终端j接入资源比例和回程资源的比例。
所述每种组合方式下的网络接入回程联合效用为该种组合方式下最优的网络接入回程联合效用。
上述的装置实施例与方法实施例对应,其相应的模块分别执行放入法实施例的相应步骤,有些步骤没有一一列出,可以参考方法实施例;该装置可以是无线接入点,如基站,也可以是基站控制器,或者是一个独立的控制器,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
本发明还公开了一种分配接入回程资源的装置,用于执行上述方法,参考图8,包括:
接收机801,用于获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
处理器802,用于针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用;从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式;
发射机803,用于通知所述网络中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
该装置与上面的装置实施例类似,接收机执行获取模块的相应步骤,处理器执行计算模块的相应步骤,发射机执行通知模块的相应步骤;其它相应的步骤的执行也分别由上面三个单元完成,不在一一列出,可以参考上述的方法实施例及装置实施例。该装置可以是无线接入点,如基站,也可以是基站控制器或其它网络设备,或者是一个独立的控制器,该控制器可以为一个功能实体,集成在其它的网元,如MME(Mobility Management Element移动管理单元)上。
上述分配接入回程资源的方法及装置,网络中多个协作集已经确定,但对应的传输模式有不同的组合方式,则可以针对不同的组合方式,分别计算每种组合方式下网络的接入回程联合效用,然后选出其中一个最优接入回程联合效用,然后选择其对应的传输模式的组合方式及对应的接入及回程资源分配方式,保证了网络的接入及回程资源划分的合理性及灵活性,提升了***的资源利用率;进一步的,提高网络的数据传输效率及网络容量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发 明的保护范围应该以权利要求的保护范围为准。

Claims (27)

  1. 一种分配接入回程资源的方法,其特征在于,包括:
    获取网络中的多个协作集及各个协作集对应的传输模式,每个协作集包括至少2个无线接入点;
    根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;
    通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述网络的接入回程联合效用为以下两者之和:
    所述网络中的协作集的用户终端在所述传输模式下可获得的数据速率之和,以及所述网络中的非协作集的用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
  3. 根据权利要求2所述的方法,其特征在于,所述网络的接入回程联合效用U采用以下方式计算:
    Figure PCTCN2015085125-appb-100001
    S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
    Rj为用户终端j的可获得的数据速率,
    Figure PCTCN2015085125-appb-100002
    Figure PCTCN2015085125-appb-100003
    分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
    在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
    Figure PCTCN2015085125-appb-100004
    Figure PCTCN2015085125-appb-100005
    表示用户终端j在所述传输模式下可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100006
    表示用户终端j在所述传输模式下可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100007
    Figure PCTCN2015085125-appb-100008
    分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
    Figure PCTCN2015085125-appb-100009
    Figure PCTCN2015085125-appb-100010
    分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
    非协作集的用户终端
    Figure PCTCN2015085125-appb-100011
    可获得数据速率为:
    Figure PCTCN2015085125-appb-100012
    Figure PCTCN2015085125-appb-100013
    表示用户终端j可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100014
    表示用户终端j可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100015
    Figure PCTCN2015085125-appb-100016
    分别表示分配给用户终端j的接入资源比例和回程资源比例;
    Figure PCTCN2015085125-appb-100017
    Figure PCTCN2015085125-appb-100018
    分别表示用户终端j的接入信噪比和回程信噪比。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的的接入及回程资源分配方式包括:
    针对不同的接入及回程资源分配比例,根据所述多个协作集及各个协作集对应的传输模式分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
  5. 根据权利要求4所述的方法,其特征在于:根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
    无线接入点i的接入资源:
    Figure PCTCN2015085125-appb-100019
    无线接入点i的回程资源:
    Figure PCTCN2015085125-appb-100020
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100021
    Figure PCTCN2015085125-appb-100022
    分别表示分配给用户终端j接入的资源 比例和回程的资源比例;Ui为无线接入点i的用户的集合。
  6. 根据权利要求4所述的方法,其特征在于,根据各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
    每个无线接入点接入资源:
    Figure PCTCN2015085125-appb-100023
    每个无线接入点回程资源:
    Figure PCTCN2015085125-appb-100024
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100025
    Figure PCTCN2015085125-appb-100026
    分别表示分配给用户终端j接入的资源比例和回程的资源比例。
  7. 如权利要求1所述的方法,其特征在于:每个协作集的传输模式为波束赋形传输模式,联合传输模式或双连接传输模式。
  8. 一种分配接入回程资源的装置,其特征在于,包括:
    获取模块,用于获取网络中的多个协作集及各个协作集对应的传输模式,每个协作集包括至少2个无线接入点;
    确定模块,根据所述多个协作集及各个协作集对应的传输模式,确定网络的接入回程联合效用最优时所对应的接入及回程资源分配方式;
    通知模块,用于通知所述网络中的无线接入点采用所述的接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
  9. 根据权利要求8所述的装置,其特征在于,所述网络的接入回程联合效用为以下两者之和:
    所述网络中的协作集的用户终端在所述传输模式下可获得的数据速率之和,以及所述网络中的非协作集的用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
  10. 根据权利要求9所述的装置,其特征在于,所述网络的接入回程联合效用U采用以下方式计算:
    Figure PCTCN2015085125-appb-100027
    S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
    Rj为用户终端j的可获得的数据速率,
    Figure PCTCN2015085125-appb-100028
    Figure PCTCN2015085125-appb-100029
    分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
    在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
    Figure PCTCN2015085125-appb-100030
    Figure PCTCN2015085125-appb-100031
    表示用户终端j在所述传输模式下可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100032
    表示用户终端j在所述传输模式下可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100033
    Figure PCTCN2015085125-appb-100034
    分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
    Figure PCTCN2015085125-appb-100035
    Figure PCTCN2015085125-appb-100036
    分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
    非协作集的用户终端
    Figure PCTCN2015085125-appb-100037
    可获得数据速率为:
    Figure PCTCN2015085125-appb-100038
    Figure PCTCN2015085125-appb-100039
    表示用户终端j可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100040
    表示用户终端j可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100041
    Figure PCTCN2015085125-appb-100042
    分别表示分配给用户终端j的接入资源比例和回程资源比例;
    Figure PCTCN2015085125-appb-100043
    Figure PCTCN2015085125-appb-100044
    分别表示用户终端j的接入信噪比和回程信噪比。
  11. 根据权利要求8-10任意一项所述的装置,其特征在于,所述确定模块具体用于:
    针对不同的接入及回程资源分配比例,根据所述多个协作集及各个协作集对应的传输模式分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个 用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
  12. 根据权利要求11所述的装置,其特征在于:根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
    无线接入点i的接入资源:
    Figure PCTCN2015085125-appb-100045
    无线接入点i的回程资源:
    Figure PCTCN2015085125-appb-100046
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100047
    Figure PCTCN2015085125-appb-100048
    分别表示分配给用户终端j接入的资源比例和回程的资源比例;Ui为无线接入点i的用户的集合;或
    每个无线接入点接入资源:
    Figure PCTCN2015085125-appb-100049
    每个无线接入点回程资源:
    Figure PCTCN2015085125-appb-100050
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100051
    Figure PCTCN2015085125-appb-100052
    分别表示分配给用户终端j接入的资源比例和回程的资源比例。
  13. 如权利要求8所述的装置,其特征在于:每个协作集的传输模式为波束赋形传输模式,联合传输模式或双连接传输模式。
  14. 一种分配接入回程资源的方法,其特征在于,包括:
    获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
    针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用;
    从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合 效用对应的传输模式的组合方式及接入及回程资源分配方式;
    通知所述多个协作集中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
  15. 根据权利要求14所述的方法,其特征在于,所述每种组合方式下的网络的接入回程联合效用为以下两者之和:
    所述网络中的协作集用户终端在所述组合方式的传输模式下可获得的数据速率之和,以及所述网络中的非协作集用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
  16. 根据权利要求15所述的方法,其特征在于,所述网络的接入回程联合效用采用以下方式计算:
    Figure PCTCN2015085125-appb-100053
    S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
    Rj为用户终端j的可获得的数据速率,
    Figure PCTCN2015085125-appb-100054
    Figure PCTCN2015085125-appb-100055
    分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
    在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
    Figure PCTCN2015085125-appb-100056
    Figure PCTCN2015085125-appb-100057
    表示用户终端j在所述传输模式下可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100058
    表示用户终端j在所述传输模式下可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100059
    Figure PCTCN2015085125-appb-100060
    分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
    Figure PCTCN2015085125-appb-100061
    Figure PCTCN2015085125-appb-100062
    分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
    非协作集的用户
    Figure PCTCN2015085125-appb-100063
    可获得数据速率为:
    Figure PCTCN2015085125-appb-100064
    Figure PCTCN2015085125-appb-100065
    表示用户终端j可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100066
    表示用户终端j可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100067
    Figure PCTCN2015085125-appb-100068
    分别表示分配给用户终端j接入的资源比例和回程的资源比例;
    Figure PCTCN2015085125-appb-100069
    Figure PCTCN2015085125-appb-100070
    分别表示用户终端j的接入信噪比和回程信噪比。
  17. 根据权利要求14-16任意一项所述的方法,其特征在于,针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用包括:
    根据每种组合方式不同的接入及回程资源分配比例,分别计算所述网络中所有用户终端可获得的数据速率之和,选择所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例。
  18. 根据权利要求17所述的方法,其特征在于,从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式包括:
    从多种组合方式对应的多个最大可获得数据速率之和中,选择最大的数据速率之和对应的组合方式及对应的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
  19. 根据权利要求17所述的方法,其特征在于,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
    无线接入点i的接入资源:
    Figure PCTCN2015085125-appb-100071
    无线接入点i的回程资源:
    Figure PCTCN2015085125-appb-100072
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100073
    Figure PCTCN2015085125-appb-100074
    分别表示分配给用户终端j接入资源比 例和回程资源的比例;Ui为无线接入点i的用户的集合;或
    包括:
    每个无线接入点接入资源:
    Figure PCTCN2015085125-appb-100075
    每个无线接入点回程资源:
    Figure PCTCN2015085125-appb-100076
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100077
    Figure PCTCN2015085125-appb-100078
    分别表示分配给用户终端j接入资源比例和回程资源的比例。
  20. 根据权利要求14所述的方法,其特征在于,所述每种组合方式下的网络接入回程联合效用为该种组合方式下最优的网络接入回程联合效用。
  21. 一种分配接入回程资源的装置,其特征在于,包括:
    获取模块:用于获取网络中的多个协作集,每个协作集包括至少2个无线接入点;
    计算模块:用于针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用;从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式;
    通知模块:用于通知所述网络中的无线接入点采用所述选择的传输模式及接入及回程资源分配方式对所述网络中的用户终端进行数据传输。
  22. 根据权利要求21所述的装置,其特征在于,所述每种组合方式下的网络的接入回程联合效用为以下两者之和:
    所述网络中的协作集用户终端在所述组合方式的传输模式下可获得的数据速率之和,以及所述网络中的非协作集用户终端可获得的数据速率之和,两者之和为所述网络的接入回程联合效用。
  23. 根据权利要求22所述的装置,其特征在于,所述网络的接入回程 联合效用采用以下方式计算:
    Figure PCTCN2015085125-appb-100079
    S为协作集,C为协作集的集合,KS为协作集S中的用户终端的集合;
    Rj为用户终端j的可获得的数据速率,
    Figure PCTCN2015085125-appb-100080
    Figure PCTCN2015085125-appb-100081
    分别为协作集用户终端的总数据速率和非协作集用户终端的总数据速率;
    在某种传输模式下,协作集用户终端j∈KS可获得数据速率为:
    Figure PCTCN2015085125-appb-100082
    Figure PCTCN2015085125-appb-100083
    表示用户终端j在所述传输模式下可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100084
    表示用户终端j在所述传输模式下可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100085
    Figure PCTCN2015085125-appb-100086
    分别表示在所述传输模式下分配给用户终端j接入的资源比例和回程的资源比例;
    Figure PCTCN2015085125-appb-100087
    Figure PCTCN2015085125-appb-100088
    分别表示用户终端j在所述传输模式下的接入信噪比和回程信噪比;
    非协作集的用户
    Figure PCTCN2015085125-appb-100089
    可获得数据速率为:
    Figure PCTCN2015085125-appb-100090
    Figure PCTCN2015085125-appb-100091
    表示用户终端j可获得的接入数据速率;
    Figure PCTCN2015085125-appb-100092
    表示用户终端j可获得的回程数据速率;
    W为***带宽,
    Figure PCTCN2015085125-appb-100093
    Figure PCTCN2015085125-appb-100094
    分别表示分配给用户终端j接入的资源比例和回程的资源比例;
    Figure PCTCN2015085125-appb-100095
    Figure PCTCN2015085125-appb-100096
    分别表示用户终端j的接入信噪比和回程信噪比。
  24. 根据权利要求21-23任意一项所述的装置,其特征在于,针对所述多个协作集的多种传输模式的组合方式,分别计算每种组合方式下的网络接入回程联合效用包括:
    根据每种组合方式不同的接入及回程资源分配比例,分别计算所述网 络中所有用户终端可获得的数据速率,选择计算的所述网络中所有用户终端的可获得数据速率之和最大时的各个用户终端接入及回程资源分配比例。
  25. 根据权利要求24所述的装置,其特征在于,从计算得到多个网络接入回程联合效用中,选择最优的接入回程联合效用对应的传输模式的组合方式及接入及回程资源分配方式包括:
    从多种组合方式对应的多个最大可获得数据速率之和中,选择最大的数据速率之和对应的组合方式及对应的各个用户终端接入及回程资源分配比例,并根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源。
  26. 根据权利要求25所述的装置,其特征在于,根据所述的各个用户终端接入及回程资源分配比例确定各个无线接入点的接入资源和回程资源,包括:
    无线接入点i的接入资源:
    Figure PCTCN2015085125-appb-100097
    无线接入点i的回程资源:
    Figure PCTCN2015085125-appb-100098
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100099
    Figure PCTCN2015085125-appb-100100
    分别表示分配给用户终端j接入资源比例和回程资源的比例;Ui为无线接入点i的用户的集合;或
    包括:
    每个无线接入点接入资源:
    Figure PCTCN2015085125-appb-100101
    每个无线接入点回程资源:
    Figure PCTCN2015085125-appb-100102
    其中,W为***带宽,
    Figure PCTCN2015085125-appb-100103
    Figure PCTCN2015085125-appb-100104
    分别表示分配给用户终端j接入资源比例和回程资源的比例。
  27. 根据权利要求21所述的装置,其特征在于,所述每种组合方式下的网络接入回程联合效用为该种组合方式下最优的网络接入回程联合效用。
PCT/CN2015/085125 2015-07-25 2015-07-25 一种分配接入回程资源的方法及装置 WO2017015802A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/085125 WO2017015802A1 (zh) 2015-07-25 2015-07-25 一种分配接入回程资源的方法及装置
CN201580081030.2A CN107736048B (zh) 2015-07-25 2015-07-25 一种分配接入回程资源的方法及装置
US15/879,092 US10455593B2 (en) 2015-07-25 2018-01-24 Method and apparatus for allocating access and backhaul resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/085125 WO2017015802A1 (zh) 2015-07-25 2015-07-25 一种分配接入回程资源的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/879,092 Continuation US10455593B2 (en) 2015-07-25 2018-01-24 Method and apparatus for allocating access and backhaul resources

Publications (1)

Publication Number Publication Date
WO2017015802A1 true WO2017015802A1 (zh) 2017-02-02

Family

ID=57883991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085125 WO2017015802A1 (zh) 2015-07-25 2015-07-25 一种分配接入回程资源的方法及装置

Country Status (3)

Country Link
US (1) US10455593B2 (zh)
CN (1) CN107736048B (zh)
WO (1) WO2017015802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000224A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Backhaul aware bandwidth management

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714772A (zh) * 2017-10-25 2019-05-03 索尼公司 用于无线通信的电子设备和方法
CN108307511B (zh) * 2018-03-07 2022-02-22 重庆邮电大学 无线自回传小基站接入控制与资源分配联合优化方法
US10834645B2 (en) * 2018-11-30 2020-11-10 Google Llc Active coordination set for mobility management
US11224081B2 (en) 2018-12-05 2022-01-11 Google Llc Disengaged-mode active coordination set management
WO2020186097A1 (en) 2019-03-12 2020-09-17 Google Llc User-equipment coordination set beam sweeping
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
EP4005101B1 (en) 2019-09-19 2023-12-20 Google LLC Enhanced beam searching for active coordination sets
WO2024054138A1 (en) * 2022-09-07 2024-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Transmission mode selection for serving a user equipment in a d-mimo network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186178A (zh) * 2011-04-26 2011-09-14 北京邮电大学 一种用于协作多点***的小区间干扰协调方法
US20130039349A1 (en) * 2011-08-12 2013-02-14 Research In Motion Limited Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System
CN104135315A (zh) * 2014-08-14 2014-11-05 哈尔滨工业大学 基于LTE-Advanced***的下行CoMP混合协作通信方法
CN104284438A (zh) * 2013-07-09 2015-01-14 电信科学技术研究院 一种协作多点传输中心调度的数据传输方法和装置及***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553711B2 (en) 2009-03-19 2013-10-08 Qualcomm Incorporated Association and resource partitioning in a wireless network with relays
KR101615236B1 (ko) * 2010-05-18 2016-05-13 엘지전자 주식회사 다중 셀 협력 통신을 위한 적응적 피드백 및 적응적 전송 모드 결정 방법 및 장치
US8838118B2 (en) * 2011-05-03 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements in a wireless communication system
WO2013010307A1 (zh) * 2011-07-15 2013-01-24 富士通株式会社 探测参考信号的发送方法、基站和用户设备
US9130709B2 (en) * 2012-09-12 2015-09-08 Telefonaktiebolaget L M Ericsson (Publ) Method for inter-cell downlink interference minimization via comp
US10193667B2 (en) * 2014-05-09 2019-01-29 Lg Electronics Inc. Method for performing comp operation in wireless communication system and an apparatus for supporting the same
JP6474007B2 (ja) * 2014-11-28 2019-02-27 パナソニックIpマネジメント株式会社 基地局および協調送信方式選択方法
CN104618003A (zh) 2014-12-26 2015-05-13 中国科学院计算技术研究所 一种CoMP下行***中选择传输模式的方法和相应的***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186178A (zh) * 2011-04-26 2011-09-14 北京邮电大学 一种用于协作多点***的小区间干扰协调方法
US20130039349A1 (en) * 2011-08-12 2013-02-14 Research In Motion Limited Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System
CN104284438A (zh) * 2013-07-09 2015-01-14 电信科学技术研究院 一种协作多点传输中心调度的数据传输方法和装置及***
CN104135315A (zh) * 2014-08-14 2014-11-05 哈尔滨工业大学 基于LTE-Advanced***的下行CoMP混合协作通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000224A1 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Backhaul aware bandwidth management

Also Published As

Publication number Publication date
US10455593B2 (en) 2019-10-22
CN107736048A (zh) 2018-02-23
CN107736048B (zh) 2020-04-28
US20180152951A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2017015802A1 (zh) 一种分配接入回程资源的方法及装置
US10038525B2 (en) Management of coordinated multi-point communication
US10057034B2 (en) Method and system for dynamic allocation of resources in a cellular network
US11350405B2 (en) Enabling exchange of information on radio frame configuration in neighbor cells
CN104737608B (zh) 用于动态小区间干扰协调的***和方法
WO2015127880A1 (zh) 一种基站频率资源配置方法及网络设备
WO2015131677A1 (zh) 虚拟小区的构建、协作节点的选择方法及装置
CN103781050B (zh) 一种小区边缘d2d用户的资源分配方法
US20140308968A1 (en) Dynamic spectrum sharing method and device
WO2014101674A1 (zh) 负载均衡的方法和网络控制节点
US10320449B2 (en) Dynamic cell clustering for coordinated multipoint operation
CN104902431B (zh) 一种lte网络中跨小区d2d通信频谱分配方法
WO2016101518A1 (zh) 小小区频率资源的分配方法及装置
TW201503722A (zh) 用於網路中負載平衡及干擾協調之方法及系統
WO2015085494A1 (zh) 基站及用户调度方法
KR101874082B1 (ko) 동적 자원 할당 방법 및 장치
CN104955143A (zh) 无线通信设备、无线通信方法和无线通信***
WO2017015803A1 (zh) 一种选择传输模式的方法及装置
CN103442365B (zh) 一种降低站内CoMP***干扰的频率复用方法
US11356895B2 (en) Method and apparatus for load balancing
KR20120064937A (ko) 무선 통신 시스템에서 기지국의 자원 운용 방법 및 장치
CN104270784A (zh) 一种确定上行协作多点传输协作小区的方法、***及基站
CN105007628A (zh) 一种无线资源分配方法和装置
CN104717656A (zh) 动态确定协作小区的方法
WO2017063430A1 (zh) 一种选择参与协作多点传输的传输节点的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899154

Country of ref document: EP

Kind code of ref document: A1